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1. Introduction

Formal Bayesian methods surprisingly rarely used in empirical
WOrk in economics.

Surprising, because they are attractive options in many set-
tings, especially with many parameters (like random coefficient
models), when large sample normal approximations are not ac-
curate. (see examples below)

In cases where large sample normality does not hold, frequentist
methods are sometimes awkward (e.g, confidence intervals that
can be empty, such as in unit root or weak instrument cases).

Bayesian approach allows for conceptually straightforward way
of dealing with unit-level heterogeneity in preferences/parameters.
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Why are Bayesian methods not used more widely?

1. choice of methods does not matter (bernstein-von mises
theorem)

2. difficulty in specifying prior distribution (not “objective’)

3. need for fully parametric model

4. computational difficulties



2.A Basics: The General Case
Model:
fx6(x|0).

As a function of the parameter this is called the likelihood
function, and denoted by L(6|z).

A prior distribution for the parameters, p(6).

T he posterior distribution,

fxox,0)  fx)e(x]0) - p(6)

POR) =2 @y~ Tixp(al) - p(0)do

Note that, as a function of 8, the posterior is proportional to

p(0lz) o< fx|9(x|0) - p(0) = L(0]x) - p(0).



2.B Example: The Normal Case

Suppose the conditional distribution of X given the parameter
pis N(p, 1).

Suppose the prior distribution for u to be N(0, 100).

T he posterior distribution is proportional to

Tuix (plz) oc exp (_%(”3 N “)2) b (_2 - 100“2)

1
= exp —5(:132 —2zu 4+ u? + ,uz/lOO)

1

2
_2(100/101)(“_ (100/101)z)7)

ox exp(

~ N(z-100/101,100/101)



2.B The Normal Case with General Normal Prior Distri-
bution

Model: N(u, o2)
Prior distribution for u is N(ug, 72).

Then the posterior distribution is:

AR e T L S

1/02+4+1/72"1/72 4 1/02)

The result is quite intuitive: the posterior mean is a weighted
average of the prior mean ug and the observation x with weights
proportional to the precision, 1/¢2 for  and 1/72 for ug:

£ 240

-+ =5 1 1 1
EuX =al =% % =2+
5L VX)) o2




Suppose we are really sure about the value of u before we
conduct the experiment. In that case we would set 72 small
and the weight given to the observation would be small, and the
posterior distribution would be close to the prior distribution.

Suppose on the other hand we are very unsure about the value
of . What value for 7 should we choose? We can let 7 go
to infinity. Even though the prior distribution is not a proper
distribution anymore if 72 = oo, the posterior distribution is
perfectly well defined, namely u|X ~ N(X, o2).

In that case we have an improper prior distribution. We give
equal prior weight to any value of u (flat prior). That would
seem to capture pretty well the idea that a priori we are ignorant
about u.

This is not always easy to do. For example, a flat prior distri-
bution is not always uninformative about particular functions
of parameters.



2.C The Normal Case with Multiple Observations
N independent draws from N(u,c2), o2 known.
Prior distribution on u is N(ug, 72).

The likelihood function is

N
1 1
L 02,:13,...,:c = ex (——:c'— 2),
(ulo®, z N) zl;[1 —5 &P (5,2t — 1)
Then
pl X1, .., XN

1 02 /(NT2) 02 /N )

~ N (f T+ o2/(N-72) M0 T 1 02/ (N72) 1+ 02/ (N+2)
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3.A Bernstein-Von Mises Theorem: normal example
When N is large
VN(Z — )|z, .., o5 =~ N(0,52).
In large samples the prior does not matter.
Moreover, in a frequentist analysis, in large samples,
VN(z — p)|p ~ N(0,02).

Bayesian probability and frequentiest confidence intervals agree:

Pr(ue 7—1.96-%,7—1.96-%”X1,...,XN>
- o) —_ O
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3.B Bernstein-VVon Mises Theorem: general case

This is known as the Bernstein-von Mises Theorem. Here is
a general statement for the scalar case. Let the information
matrix Jg at 6:

82
0600’

2
Jg = —E [ O, fX(CC|9)] = —

0006’ In fx (x]0) fx (x|0)dz,

and let o2 = 30_1.
0]

Let p(6) be the prior distribution, and pg x, . x,(0[X1,...,XN)
be the posterior distribution.

Now let us look at the distribution of a transformation of
0, v = VN(0 — 6p), with density p,x.  x,(V[X1,...., XN) =
p9|X1,...,XN(90 + VN "YIX].?' .- 7XN)/V N.
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Now let us look at the posterior distribution for ~ if in fact the

data were generated by f(z|0) with 6§ = 65. In that case the
posterior distribution of ~ converges to a normal distribution

with mean zero and variance equal to o2 in the sense that

— 0.

1 1 5
sup X1,...,XnNn) — ex (—— )
5 p7|X1,...,XN(’YI 1 N) \/ﬁ P 20_27

See Van der Vaart (2001), or Ferguson (1996).
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At the same time, if the true value is 6g, then the mle 8,,,;. also
has a limiting distribution with mean zero and variance o2

VN@,,, — 6) -% N(0, o2).

The implication is that we can interpret confidence intervals as
approximate probability intervals from a Bayesian perspective.

Specifically, let the 95% confidence interval be [@ml — 1.96 -
5/vVN,0,.;+ 1.96-5/+/N]. Then, approximately,

Pr (G — 1.96-5/VN < 0 < B, + 1.96 - 5/VN| X1,..., Xy)
—— 0.95.
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3.C When Bernstein-VVon Mises Fails

There are important cases where this result does not hold, typ-
ically when convergence to the limit distribution is not uniform.

One is the unit-root setting. In a simple first order autore-
gressive example it is still the case that with a normal prior
distribution for the autoregressive parameter the posterior dis-
tribution is normal (see Sims and Uhlig, 1991).

However, if the true value of the autoregressive parameter is
unity, the sampling distribution is not normal even in large
samples.

In such settings one has to take a more principled stand whether
one wants to make subjective probability statements, or fre-
quentist claims.
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4. Numerical Methods: Markov-Chain-Monte-Carlo

The general idea is to construct a chain, or sequence of values,
0p,01,...,such that for large k, 6, can be viewed as a draw from
the posterior distribution of 6 given the data.

This is implemented through an algorithm that, given a current
value of the parameter vector 0, and given the data Xq,..., Xy
draws a new value 64, from a distribution f(-) indexed by 6y,
and the data:

Ok+1 ~ f(0]0, data),

in such a way that if the original 6, came from the posterior
distribution, then so does 041

0r|data ~ p(f|data), then 6, |data ~ p(f|data).
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In many cases, irrespective of where we start, that is, irrespec-
tive of 6y, as kK — oo, it will be the case that the distribution

of the parameter conditional only on the data converges to the
posterior distributionas k£ — oo:

0, |data —% p(d|data),

Then just pick a 6 and approximate the mean and standard
deviation of the posterior distribution as

A 1 K
E|f|datal = 0.,
[f]data] = —— Kot 1 kzi}j{@ k
N 1 K _ >
V[f|data] = > (Hk — E[9|data]> .

K- Ko+1,5

The first Kg — 1 iterations are discarded to let algorithm con-
verge to the stationary distribution, or “burn in.”
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4.A Gibbs Sampling

The idea being the Gibbs sampler is to partition the vector of
parameters ¢ into two (or more) parts, 8’ = (6%,05). Instead of
sampling 041 directly from a conditional distribution of

f(ewk? data)a

it may be easier to sample 917k+1 from the conditional distri-
bution

p(01]60> i, data),
and then sample 65 ;41 from
p(92|91,k+17data)-

It is clear that if (01,02 ) is from the posterior distribution,
then so is (01 k,021).
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4.B Data Augmentation

Suppose we are interested in estimating the parameters of a
censored regression or Tobit model. There is a latent variable

Y =X[B+¢e, &i|X;~N(O,1)
We observe
Y; = max(0,Y;"),

and the regressors X,. Suppose the prior distribution for 3 is
normal with some mean u, and some covariance matrix €2.
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The posterior distribution for 8 does not have a closed form
expression. The first key insight is to view both the vector
Y* = (Y{,...,Yy) and 8 as unknown random variables.

The Gibbs sampler consists of two steps. First we draw all the
missing elements of Y™* given the current value of the parameter

B, say B

Y*|3, data ~ :TN(Xgﬁ, 1,0) ,

if observation i is truncated, where TN(u, 02, ¢) denotes a trun-
cated normal distribution with mean u, variance 02, and trun-
cation point ¢ (truncated from above).

Second, we draw a new value for the parameter, B4 1 given
the data and given the (partly drawn) Y*:

p (ﬁ|data,Y*) ~ N ((X’X -+ Q_1>_1 : (X’Y + Q_l,u> 7 (X/X 4 Q_1>—]
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4.C Metropolis Hastings

We are again interested in p(f|data). In this case L(f|data) is
assumed to be easy to evaluate. Draw a new candidate value
for the chain from a candidate distribution ¢(0|0;,data). We
will either accept the new value with probability T he probability
that the new draw 6 is accepted is

p(0x,0) = min (1 p(f|data) - ¢(6|0, data) )

'p(0|data) - q(0|0, data)
so that
Pr (9k+1 = 9) = p(@k,e), and Pr (9k+1 — 9k> =1- p(@k,e).

The optimal (typically infeasible) choice for the candidate dis-
tribution is

q*(0|0y,data) = p(f|data) == p(6;,0) =1
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5. Example: Demand Models with Unobs Heterog in
Prefer.

Rossi, McCulloch, and Allenby (1996, RMA) are interested
in the optimal design of coupon policies. Supermarkets can
choose to offer identical coupons for a particular product.

Alternatively, they may choose to offer differential coupons
based on consumer’s fixed characteristics.

Taking this ever further, they could tailoring the coupon value
to the evidence for price sensitivity contained in purchase pat-
terns.

Need to allow for household-level heterogeneity in taste param-
eters and price elasticities. Even with large amounts of data
available, there will be many households for whom these pa-
rameters cannot be estimated precisely. RMA therefore use a
hieararchical, or random coefficients model.
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RMA model households choosing the product with the highest
utility, where utility for household 2, product 5, y =0,1,...,J,
at purchase time t is

_ /
Uijt = XitBi + €ijt;

with the ¢;;; independent accross households, products and
purchase times, and normally distributed with product-specific
variances aj2 (and o3 normalized to one).

The X;; are observed choice characteristics that in the RMA
application include price, some marketing variables, as well as
brand dummies.

All choice characteristics are assumed to be exogenous, al-
though that assumption may be questioned for the price and
marketing variables.
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Because for some households we have few purchases, it is not
possible to accurately estimate all 3; parameters. RMA there-
fore assume that the household-specific taste parameters are
random draws from a normal distribution centered at Zgl‘:

Bi = Z;T +m;, n; ~N(0,X).

Now Gibbs sampling can be used to obtain draws from the
posterior distribution of the g;.
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T he first step is to draw the household parameters 3; given the
utilities Uijt and the common parameters [, >, and aj2. This
IS straightforward, because we have a standard normal linear
model for the utilities, with a normal prior distribution for g;
with parameters Z,Lfl‘ and variance 2, and T; observations. We
can draw from this posterior distribution for each household z.

In the second step we draw the aj2 using the results for the
normal distribution with known mean and unknown variance.

The third step is to draw from the posterior of [ and 2, given
the @;. This again is just a normal linear model, now with
unknown mean and unknown variance.

The fourth step is to draw the unobserved utilities given the
B; and the data. Doing this one household/choice at a time,
conditioning on the utilities for the other choices, this merely
involves drawing from a truncated normal distribution, which
is simple and fast.
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ROSSI, McCULLOCH, AND ALLENBY
Purchase History Data in Target Marketing

Figure 2

Boxplots of posterior distributions of household price coefficients. Various information sets. 10 selected households with the number
of purchase occasions indicated along the X axis below each boxplot. The boxplot labelled “Marg” is the predictive distribution for a

representative household from the model heterogeneity distribution. Note that these are the 11-20th households as ordered in our

dataset.
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6. Example: Panel Data with Multiple Individual Specific
Param.

Chamberlain and Hirano are interested in deriving predictive

distributions for earnings using longitudinal data, using the
model

Yy = X[8+ Vi + o + U/ hy.

The second component in the model, Vj, is a first order au-
toregressive component,

Vit =7 Vig—1 + Wi,
2 2
V:il ~ N(07 av)a Wit ~ N(07 aw)-

Uit ~ N(07 1)
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Analyzing this model by attempting to estimate the a; and h;
directly would be misguided. From a Bayesian perspective this
corresponds to assuming a flat prior distribution on a high-
dimensional parameter space.

To avoid such pitfalls CH model «; and h; through a random
effects specification.

a; ~N(0,02). and h; ~ G(m/2,7/2).
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In their empirical application using data from the Panel Study
of Income Dynamics (PSID), CH find strong evidence of het-

erogeneity in conditional variances.

quantiles of the predictive dist. of 1/vh;
Quantile

Sample 0.05 0.10 0.25 0.50 0.75 0.90 0.95
All (N=813) 0.04 0.05 0.07 0.11 0.20 0.45 0.81
HS Dropouts (N=37) | 0.06 0.08 0.11 0.16 0.27 0.49 0.79
HS Grads (N=100) |0.04 0.05 0.06 0.11 0.21 0.49 0.93
C Grads (N=122) 0.03 0.04 0.05 0.09 0.18 0.40 0.75
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However, CH wish to go beyond this and infer individual-level
predictive distributions for earnings.

Taking a particular individual, one can derive the posterior dis-
tribution of oy, h;, 8, 02, and o2, given that individual’s earnings
as well as other earnings, and predict future earnings.

0.90-0.10 quantile
individual sample std | 1 year out 5 years out

321 0.07 0.32 0.60

415 0.47 1.29 1.29

The variation reported in the CH results may have substantial
importance for variation in optimal savings behavior by individ-

uals.
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7. Example: Instrumental Variables with Many Instru-
ments

Chamberlain and Imbens analyze the many instrument prob-
lem from a Bayesian perspective. Reduced form for years of
education,

X; =mo + Zim1 +n;,
combined with a linear specification for log earnings,
Y,=a+ 8- Zm +¢;

CI assume joint normality for the reduced form errors,

(2) ~x0.2
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This gives a likelihood function
L(ﬁaa7ﬂ-07ﬂ-17§2|data)'

The focus of the CI paper is on inference for 3, and the sen-
Sitivity of such inferences to the choice of prior distribution in
settings with large numbers of instruments.

A flat prior distribution may be a poor choice. One way to
illustrate see this is that a flat prior on w1 leads to a prior on

the sum }:K_ 72 that puts most probability mass away from
k=1 "1k
Zero.

CI then show that the posterior distribution for 8, under a flat
prior distribution for w1 provides an accurate approximation to
the sampling distribution of the TSLS estimator.
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As an alternative CI suggest a hierarchical prior distribution
with

2
Tk ~ N(ur, ox).

In the Angrist-Krueger 1991 compulsory schooling example
there is in fact a substantive reason to believe that o2 is small
rather than the o2 = oo implicit in TSLS. If the ;. represent
the effect of the differences in the amount of required school-
ing, one would expect the magnitude of the w1, to be less than
the amount of variation in the compulsory schooling implying
the standard deviation of the first stage coefficients should not

be more than ,/1/12 = 0.2809.

Using the Angrist-Krueger data CI find that the posterior dis-
tribution for o is concentrated close to zero, with the posterior
mean and median equal to 0.119.
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3. Example: Binary Response with Endogenous Regres-
sors

Geweke, Gowrisankaran, and Town are interested in estimating
the effect of hospital quality on mortality, taking into account
possibly non-random selection of patients into hospitals. Pa-
tients can choose from 114 hospitals. Given their characteris-
tics Z;, latent mortality is

114
Y=Y CiiBi+ Ziv+e,

j=1

where Cz-j is an indicator for patient ¢« going to hospital 3. The
focus is on the hospital effects on mortality, ﬁj. Realized mor-
tality is

Y; = 1{Y;* > 0}.
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The concern is about selection into the hospitals, and the pos-
sibility that this is related to unobserved components of latent
mortality GG T model latent the latent utility for patient ¢ as-
sociated with hospital 5 as

Cli = Xia+ mgj,
where the X,L-j are hospital-individual specific characteristics,
including distance to hospital. Patient ¢+ then chooses hospital

g if

Cyi > Cy,, for k=1,...,114.
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The endogeneity is modelled through the potential correlation
between Mi; and ¢;. Specifically, GGT asssume that as

114
&= Y Mmij- 0+ ¢,

=1

where the (; is a standard normal random variable, independent
of the other unobserved components.

GGT model the n;; as standard normal, independent across
hospitals and across individuals. This is a very strong assump-
tion, implying essentially the independence of irrelevant alter-
natives property. One may wish to relax this by allowing for
random coefficients on the hospital characteristics.
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Given these modelling decisions GGT have a fully specified joint
distribution of hospital choice and mortality given hospital and
individual characteristics.

The log likelihood function is highly nonlinear, and it is unlikely
it can be well approximated by a quadratic function.

GGT therefore use Bayesian methods, and in particular the
Gibbs sampler to obtain draws from the posterior distribution
of interest.

In their empirical analysis GGT find strong evidence for non-
random selection. They find that higher quality hospitals at-
tract sicker patients, to the extent that a model based on
exogenous selection would have led to misleading conclusions
on hospital quality.
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9. Example: Discrete Choice Models with Unobserved
Choice Characteristics

Athey and Imbens (2007, AI) study discrete choice models,
allowing both for unobserved individual heterogeneity in taste
parameters as well as for multiple unobserved choice charac-
teristics.

In such settings the likelihood function is multi-modal, and
frequentist approximations based on quadratic approximations
to the log likelihood function around the maximum likelihood
estimator are unlikely to be accurate.
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T he specific model Al use assumes that the utility for individual
¢ in market t for choice j is

_ / /
Uijt = XuBi + &7 + €ijts

where X;; are market-specific observed choice characteristics,
§; i1s a vector of unobserved choice characteristics, and ¢;;; Is
an idiosyncratic error term, with a normal distribution centered
at zero, and with the variance normalized to unity.

The individual-specific taste parameters for both the observed
and unobserved choice characteristics normally distributed:

( bi ) Z; ~ N(AZ;, ),
Yi

with the Z; observed individual characteristics.
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Al specify a prior distribution on the common parameters, A,
and €2, and on the values of the unobserved choice character-
istics &;.

Using mcmc with the unobserved utilities as unobserved ran-
dom variables makes sampling from the posterior distribution
conceptually straightforward even in cases with more than one
unobserved choice characteristic.

In contrast, earlier studies using multiple unobserved choice
characteristics (Elrod and Keane, 1995; Goettler and Shachar,
2001), using frequentist methods, faced much heavier compu-
tational burdens.

37



