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Abstract

Recent work by Bansal and Yaron (2004) on Long Run Risks suggests that these

fundamental economic risks can account for key features of asset market data. In this

paper we develop methods to estimate their equilibrium model by exploiting the asset

pricing Euler Equations. Using an empirical estimate for the long run risk component

we demonstrate that the Long Run Risk model can indeed capture a rich array of asset

returns. The model, at plausible preference estimates, can account for the market as

well as the ‘value’ and ‘size’ premium. We show that time averaging effects—that is, a

mismatch in the sampling and the agent’s decision interval leads to significant biases

in the estimates for risk aversion and the elasticity of intertemporal substitution. Our

evidence suggests that accounting for these biases is important for interpreting the

magnitudes of the preference parameters and the economic implications of the model

for asset prices.
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1 Introduction

Asset market data ought to contain valuable information about investors’ behavior (see

Cochrane and Hansen (1992)). It should also contain information about the sources of risks

that concern investors and hence drive asset markets. Asset market features, such as the

low real returns on bills, the equity premium, large returns on value (high book-to-market)

stocks relative to growth (low book-to-market) stocks, among others, provide an important

market laboratory to simultaneously learn about sources of risks and preferences of investors.

A challenging task is to account for these asset market facts with well identified risk sources

and plausible investor behavior. Bansal and Yaron (2004) develop a Long Run Risk (LRR)

asset pricing model and show that it can account for the risk free rate, equity premium and

volatility puzzles. Further, they suggest that the same long run risks in consumption should

empirically account for a rich cross section of asset returns with reasonable risk preferences.

In this paper we develop methods and empirically evaluate the ability of the LRR model to

account for asset market data using Euler Equation based estimation methods.

An elegant approach to evaluate the empirical plausibility of an asset pricing model,

developed in Hansen and Singleton (1982), is to exploit its asset pricing Euler Equations

using the Generalized Method of Moment (GMM) estimation technique. This approach

provides a convenient way to impose the model restrictions on asset payoffs and learn about

investor behavior. A priori it is not entirely clear how to proceed with this estimation as

the intertemporal marginal rate of substitution in the LRR model, based on the Epstein and

Zin (1989) and Weil (1989) preferences, incorporates the return on the consumption asset

which is not directly observed by the econometrician. In this paper we present methods

for estimating models with these recursive preferences using Euler Equations and a GMM

estimator.

To make estimation feasible in the LRR model we exploit the dynamics of aggregate

consumption growth and the model’s Euler restrictions to solve for the unobserved return on

the claim over the future consumption steam. The LRR model proposed in Bansal and Yaron

(2004) has three risk sources (state variables) in the aggregate consumption dynamics: (i)

high frequency or short run risks in consumption, (ii) low frequency or long run movements in

consumption, and (iii) fluctuations in consumption uncertainty, i.e., consumption volatility

risk. We derive expressions for the Intertemporal Marginal Rates of Substitution (IMRS) in

terms of these risk sources for a wide range of risk aversion and intertemporal substitution
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parameters. We document that our methods for characterizing the model’s pricing kernel

are very accurate. Earlier work by Epstein and Zin (1991) also pursues the strategy of

exploiting the Euler Equation-GMM method for estimation; however, they assume that the

return on the consumption asset coincides with the observed value weighted market return.

This premise, we show, can distort the estimated preferences and lead to false rejections of

the model.

More recently several other papers explore the ability of long run risks to account for

asset market data. Bansal, Dittmar, and Lundblad (2005), Hansen, Heaton, and Li (2005)

show that long run risks in cash flows are an important risk source in accounting for asset

returns. Bekaert, Engstrom, and Xing (2005), Bansal, Gallant, and Tauchen (2005), Kiku

(2006), Malloy, Moskowitz, and Vissing-Jorgensen (2004), and Lettau and Ludvigson (2005),

also explore implication of LRR for asset returns. However, these papers, unlike the focus of

this paper, do not evaluate the empirical plausibility of the LRR model from the perspective

of the Euler Equation-GMM based estimation approach for a rich cross-section of assets.

Exploiting the estimation methods we develop, we find considerable empirical support

for the LRR model at plausible preference configurations. Our evidence suggests that the

investor concerns about long run risks are empirically important for understanding asset

returns. More specifically, our Euler Equation-GMM based estimation of the LRR model

shows that: (i) the long run risk component is highly persistent, displays fluctuations that

are correlated with business cycles, and is economically and statistically significantly pre-

dictable by theoretically motivated variables, (ii) in the cross section, assets with large mean

returns (e.g., value and small assets) are more sensitive to innovations in the long run risk

variable; that is, these returns have larger betas with respect to the long run risk component

while having negligible dependence on the betas constructed for short horizon consumption

innovations; (iii) the model is not rejected by the overidentifying restrictions. The pricing

errors for the various assets we consider seem small and plausible. In the annual data, the

estimated risk aversion is in excess of twenty while estimates for the IES are less than one.

We show, however, that after accounting for time averaging effects, the most likely value for

the population risk aversion and IES are closer to 10 and 2 respectively.

Time averaging plays an important role in interpreting our estimates and evidence. The

decision interval of the agent and the frequency with which an econometrician observes

consumption data need not coincide. In the context of the LRR model, if consumption data
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is observed only on a coarser interval (e.g., annual), while the decision interval of the agent is

on a finer interval (e.g., monthly), then the estimates of the risk aversion will be much larger

than their true value, while the estimates of the IES will be lower than their true values,

and typically less than one. This effect is important as much of the earlier evidence, indeed,

finds estimates that are in the region of high risk aversion and low IES (see Campbell (1999),

Hall (1988)). Our evidence indicates that much of the earlier evidence and the associated

views regarding low values of IES and high risk aversion could simply be an artifact of time

averaging effects in estimation.

In sum, the evidence in this paper shows that the long run risk model is quite capable in

quantitatively pricing the time series and cross section of returns, and doing so with plausible

parameter estimates. These parameter estimates can be quite difficult to precisely estimate

using annual data. They tend to produce a somewhat misspecified model that leads to

preference parameter estimates that are biased towards what is often found in the literature.

The paper continues as follows: Section 2 presents the model and its testable restrictions.

Section 3 presents the data, while Section 4 provides the results of our empirical analysis.

Section 5 presents Monte-Carlo evidence regarding time averaging. Section 6 provides con-

cluding remarks.

2 Model

In this section we specify a model based on Bansal and Yaron (2004). The underlying

environment is one with complete markets and the representative agent has Epstein and Zin

(1989) type preferences which allow for the separation of risk aversion and the elasticity of

intertemporal substitution. Specifically, the agent maximizes her life-time utility, which is

defined recursively as,

Vt =

[
(1− δ)C

1−γ
θ

t + δ
(
Et

[
V 1−γ

t+1

]) 1
θ

] θ
1−γ

, (1)

where Ct is consumption at time t, 0 < δ < 1 reflects the agent’s time preferences, γ is the

coefficient of risk aversion, θ = 1−γ

1− 1
ψ

, and ψ is the elasticity of intertemporal substitution
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(IES). Utility maximization is subject to the budget constraint,

Wt+1 = (Wt − Ct)Rc,t+1 , (2)

where Wt is the wealth of the agent, and Rc,t is the return on all invested wealth.

Consumption and dividends have the following joint dynamics:

∆ct+1 = µc + xt + σtηt+1

xt+1 = ρxt + ϕeσtet+1

σ2
t+1 = σ̄2 + ν(σ2

t − σ̄2) + σwwt+1, (3)

where ∆ct+1 is the growth rate of log consumption. As in the long run risks model of

Bansal and Yaron (2004) (BY), µc+xt is the conditional expectation of consumption growth,

and xt is a small but persistent component that captures long run risks in consumption

growth. The parameter ρ determines the persistence in the conditional mean of consumption

growth, µc + xt. For parsimony, as in Bansal and Yaron (2004), we have a common time-

varying volatility in consumption, which, as shown in their paper, leads to time-varying risk

premia. The unconditional variance of consumption is σ̄2 and ν governs the persistence of

the volatility process.

As in Epstein and Zin (1989), it is easily shown that, for any asset j, the first order

condition yields the following asset pricing Euler condition,

Et [exp (mt+1 + rj,t+1)] = 1, (4)

where mt+1 is the log of the intertemporal marginal rate of substitution and rj,t+1 is the log

of the gross return on asset j.

2.1 Estimation Feasibility

It can be shown that with the Epstein and Zin (1989) preferences, the log of the Intertemporal

Marginal Rate of Substitution (IMRS), mt+1, is

mt+1 = θ log δ − θ

ψ
∆ct+1 + (θ − 1)rc,t+1, (5)
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where rc,t+1 is the continuous return on the consumption asset. As this return is unobservable

and endogenous to the model we need to solve for it using the consumption dynamics. Epstein

and Zin (1991) circumvent the unobservability of rc,t+1 by equating it with the observed

market return, rm,t+1. Bansal and Yaron (2004) explicitly solve for this return given the

consumption dynamics.

To solve for the return on wealth we use the log-linear approximation for the continuous

return on the wealth portfolio, namely,

rc,t+1 = κ0 + κ1zt+1 + ∆ct+1 − zt , (6)

where zt = log(Pt/Ct) is log price to consumption ratio (the valuation ratio corresponding

to a claim that pays consumption) and the κ’s are log linearization constants with κ0 and

κ1 being,

κ1 =
exp(z̄)

1 + exp(z̄)
, (7)

κ0 = log(1 + exp(z̄))− κ1z̄ , (8)

and z̄ is the mean of the log price-consumption ratio.

To derive the time series for rc,t+1 we require a solution for log price-consumption ratio,

which we conjecture follows, zt = A0 + A1xt + A2σ
2
t . The solution for the A’s depends on

all the preference parameters and the parameters that govern the state variables. Given this

solution and the solution for the κ’s, which are also endogenous to the model, one can create

the return to the consumption asset.

For notational ease let the state variables for the model be Y ′
t = [1 xt σ2

t ], and A′ =

[A0 A1 A2], then the solution for zt = A′Yt, where1

A′ =
[
A0

1− 1
ψ

1−κ1ρ
− (γ−1)(1− 1

ψ
)

2 (1−κ1ν)

[
1 +

(
κ1ϕe

1−κ1ρ

)2
]]

. (9)

As the A’s depend on κ’s and hence on the average price-consumption ratio, z̄, a solution to

the system is fixed on z̄. That is, to solve for the κ1 and κ0 one needs the numerical solution

1The expression for A0, as well as for Γ0 in equation (13), is given in the Appendix.
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for z̄, which satisfies

z̄ = A(z̄)Ȳ . (10)

This is quite easy to implement in practice.

Given the solution for zt, the IMRS, in terms of the state variables and innovations can

be stated as

mt+1 = Γ′Yt −Λ′ζt+1 (11)

where the three sources of risks are

ζ ′t+1 =
[
σtηt+1 σtet+1 σwwt+1

]
(12)

and the three dimensional vectors Γ and Λ, follow

Γ′ =
[
Γ0 − 1

ψ
−(γ − 1)(γ − 1

ψ
)1

2

[
1 + ( κ1ϕe

1−κ1ρ
)2

]]
(13)

and

Λ′ =
[
γ (γ − 1

ψ
) κ1ϕe

1−κ1ρ
−(γ − 1)(γ − 1

ψ
) κ1

2 (1−κ1ρ)

[
1 + ( κ1ϕe

1−κ1ρ
)2

]]
. (14)

Note that equation (11) for the pricing kernel has an approximation error emanating

from the linear approximation around the theoretical value of average price to consumption

ratio. We show that this approximation error is quite small and does not materially affect

the results.

Given the expression for (11), it immediately follows that the risk premium on any asset

j is

Et[rj,t+1 − rf,t + 0.5σ2
t,r] =

3∑
i=1

λiσ
2
i,tβi,j (15)

where βi,j is the beta with respect to the ith risk source of ζt+1 for asset j, and λi is the ith

entry of Γ.
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2.2 Special Case: IES=1

The IES is a critical parameter in the Long Run Risk Model. Many papers specialize the

Epstein and Zin (1989) preferences to the case in which IES is set to one (e.g., Giovannini and

Weil (1989), Tallarini (2000), Hansen, Heaton, and Li (2005), Hansen and Sargent (2006)).

This has great analytical convenience in certain situations. It is important to note that our

estimation methodology nests the case of IES=1 in a continuous fashion. Namely, the IMRS

components as given in (11) adjust in continuous way as one takes the limit of the IES

parameter to one. Specifically, as is well known, in the IES=1 case the price-consumption

ratio, z, is constant and is determined by δ. A virtue of our approach of approximating the

return, rc,t+1, and accounting for the dependence of the approximating constants (i.e., κ0,

κ1) on all the model parameters, is that the pricing kernel is continuous in IES. That is,

lim
ψ→1

κ1 = δ lim
ψ→1

Γ′ = Γ′(ψ = 1, κ1 = δ) lim
ψ→1

Λ′ = Λ′(ψ = 1, κ1 = δ) (16)

Evaluating the pricing kernel (11) under the above restrictions gives exactly the same

solution as in Giovannini and Weil (1989), Tallarini (2000) and Hansen, Heaton, and Li

(2005). This approach does not confine the econometrician to prespecified value of the IES.

That is, in estimation the IES is a free parameter.

2.3 Pricing Kernel Approximation Error

In our empirical work, we rely on the approximate analytical solutions of the model presented

above and discussed in more details in the Appendix. In this section, we evaluate the

accuracy of the log-linear approximation by comparing the approximate analytical solution

for the price to consumption ratio to its numerical counterpart. The magnitude of the

approximation error in the price-consumption ratio allows us to assess the reliability of the

log-linear analytical solution for the stochastic discount factor, and consequently, model

implications based on log-linear approximation.

Notice first that the value function in the Epstein-Zin preferences is given by,

Vt = (1− δ)
ψ

ψ−1 Wt(Wt/Ct)
1

ψ−1 , (17)
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i.e., the life-time utility of the agent, normalized by the level of either consumption or wealth,

is proportional to the wealth to consumption ratio. Hence, the solution to the wealth-

consumption ratio (or, alternatively, price to consumption) based on the log-linearization of

the wealth return in equation (6) will determine the dynamics of the value function. Recall

also that the evolution of the IMRS (see equation (5)), through the return on wealth, depends

on the valuation of the consumption claim. Thus, the log-linear solution for the IMRS, as

well, hinges on the accuracy of the log-linear approximation of the price-consumption ratio.

To solve the model numerically, we use the approach proposed by Tauchen and Hussey

(1991). This method is based on a discrete representation of the conditional density of the

state variables, x and σ2. In particular, we solve the pricing equation by approximating the

integral in (4) by a finite sum using the Gauss-Hermite quadrature. Note that the resulting

solutions, in their turn, are subject to an approximation error. In order to minimize this error

and ensure the high quality of the benchmark numerical solutions, we use sufficiently large

number of grid points in the quadrature rule.2 In addition, for simplicity in this exercise we

shut-off the channel of time-varying consumption volatility. Aside from this restriction, we

evaluate the numerical and log-linear analytical solutions using the same parametrization of

consumption growth dynamics that we subsequently employ in our simulation experiment

(see Section 5 and Panel A of Table VI). Our benchmark calibration of preferences is δ =

0.9989, γ = 10 and ψ = 2; however, we also consider alternative combinations of risk aversion

and IES parameters. The approximation errors results are given in Table I.

Overall, we find that log-linear analytical solutions are remarkably close to the numerical

results. In particular, for risk aversion of 10 and IES of 2, the numerical and analytical

mean (volatility) of the log price to consumption ratio are 4.724 (0.0318) and 4.716 (0.0321)

respectively.3 Thus, the approximation error, expressed as a percentage of the corresponding

numerical value, is about 0.17% for the mean and 0.86% for the standard deviation of the log

price-consumption ratio. As the elasticity of intertemporal substitution decreases to 0.5, the

percentage error falls to about 0.02% for z̄ and 0.42% for σz. Although the approximation

somewhat deteriorates as the magnitude of risk aversion increases, the deviation between

analytical and numerical solutions remains quite small. For example, holding IES at 2 and

varying risk aversion between 5 and 15 results in 0.03%–0.51% error band for the mean and

2Specifically, we discretize the dynamics of the expected growth component, xt, using 100-point rule. We
find that increasing the number of grid points leads to virtually identical numerical results.

3All the numbers reported in this section are in monthly terms.

8



0.17%–2.17% for the standard deviation of the log price-consumption ratio.

As discussed above, the dynamics of the price to consumption ratio has a direct bear-

ing on the time-series properties of the IMRS. The fairly small approximation error in the

price-consumption ratio, that we document, guarantees the accuracy of the pricing impli-

cations of the log-linearized solutions. Indeed, we find that approximate analytical and

numerical solutions deliver very similar quantitative implications along all dimensions of

the model, including levels and variances of the risk-free rate, price-dividend ratios, returns

on consumption and dividend claims, and the pricing kernel.4 This evidence confirms that

empirical findings that we present below are robust to the log-linear approximation of the

model.

3 Data

In this paper we use data on consumption and asset prices for the time period from 1930 till

2002 — the longest available sample. We take the view that this sample better represents

the overall variation in asset and macro economic data. Importantly, this long sample

also helps in achieving more reliable statistical inference. In addition, annual data is less

prone to measurement errors that arise from seasonalities and other measurement problems

highlighted in Wilcox (1992). The decision interval of the agent is assumed to be monthly

which is motivated by standard payment cycles and is a common assumption in the literature.

It is fairly straightforward to assume a different decision frequency (e.g., weekly or quarterly);

however, this change will not alter the empirical findings in a significant manner.

In our empirical tests, we employ portfolios with opposite size and book-to-market char-

acteristics that are known to provide investors with different premia over the years. In

addition, our asset menu comprises the aggregate stock market portfolio and a proxy of a

risk-less asset. The construction of portfolios is standard (see Fama and French (1993)).

In particular, for the size sort, we allocate individual firms across 10 portfolios according

to their market capitalization at the end of June of each year. Book-to-market deciles are

likewise re-sorted at the end of June by ranking all the firms into 10 portfolios using their

book-to-market values as of the end of the previous calendar year. NYSE breakpoints are

used in both sorts. For each portfolio, including the aggregate market, we construct value-

4For brevity, the detailed evidence is not reported here (it is yet available upon request).
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weighted monthly returns as well as per-share price and dividend series as in Campbell and

Shiller (1988), Bansal, Dittmar, and Lundblad (2005), and Hansen, Heaton, and Li (2005).

Monthly data are then time-aggregated to an annual frequency and converted to real us-

ing the personal consumption deflator. Panel A of Table II provides descriptive statics for

returns, dividend growth rates and price-dividend ratios for the five portfolios of interest

— small and large (i.e., firms in the top and bottom market capitalization deciles), growth

and value (firms with the lowest and highest book-to-market ratios, respectively), and the

aggregate stock market. The first column illustrates the well-known size and value premia.

Over the sample period, small stocks have outperformed large firms by about 9%; the spread

in returns on value and growth firms has averaged about 6.4%. Both high book-to-market

and small firms have experienced higher growth rate of dividends and have been much more

volatile than their corresponding counterparts. The bottom line of Panel A reports the mean

and the standard deviation of the risk-free rate. The real interest rate is constructed by sub-

tracting the 12-month expected inflation from the annualized yield on the 3-month Treasury

bill taken from the CRSP treasury files.

Finally, we take seasonally adjusted per-capita data on real consumption and gross do-

mestic product (GDP) from the NIPA tables available on the Bureau of Economic Analysis

website. Aggregate consumption is defined as consumer expenditures on non-durables and

services. Summary statistics of consumption and GDP growth rates are presented in Panel B

of Table II. Growth rates are constructed by taking the first difference of the corresponding

log series. In addition, Panel B displays the mean and the standard deviation of the default

premium measured as the difference in yields on Baa and Aaa corporate bonds published by

the Board of Governors of the Federal Reserve System.

4 Empirical Findings

Estimating and testing equation (4) involves computing the pricing kernel in equation (11).

To achieve this we require to specify the dynamics of consumption growth rate and xt. An

econometrician who relies on the long risk model but relies on an annual data and decision

interval will focus on annual consumption growth rates, ∆ca
t+1 ≡ log(Ca

t /Ca
t−1), and the long

run risk component, xa
t .

Our approach to estimating the long run component xa
t is to use observed financial market
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prices and consumption data, all of which, under the null of the model, depend on the state

variable xa
t among others. The standard VAR, Y a

t = [∆ca
t , v

a
t ] where va

t is an n−1×1 vector

of predictive variables can used to measure the low frequency variable x, which corresponds

to the conditional mean of consumption growth. In the appendix we show via simulation that

our VAR approach, using financial market variables, provides a fairly good way to extract x

from the data.

Our VAR includes consumption growth, log of GDP to consumption ratio, and the predic-

tive variables the market’s price-dividend ratio, the risk-free rate, and the default premium.

Assume that,

Y a
t+1 = BY a

t + Υa
t+1, (18)

where B is an n×n matrix and Υa
t+1 is a vector of residuals, and all the variables in equation

(18), without loss of generality, are demeaned. Let ιj be a row vector of zeros with one in jth

column. The persistent component, xa
t , equals the conditional expectation of consumption

growth which under the specification above is

xa
t = ι1BY a

t .

Further, the innovation to consumption growth, which corresponds to high frequency shock

is

ηa
t+1 = ι1Υ

a
t+1.

The long run risk shock, ea
t+1, is extracted by fitting an AR(1) to xa

t , that is

xa
t+1 = ρaxa

t + ea
t+1 (19)

Given the dynamics of xa
t and shocks ηa

t+1 and ea
t+1, the pricing kernel in (11) can be computed

for any configuration of preference parameters. Reducing the multivariate representation of

the conditional mean of consumption growth to the single variable representation in equation

(19) allows to maintain a very parsimonious and easily interpretable structure on the model

and the estimation.

Table III provides the VAR estimates of equation (18) for extracting xa
t . In predicting

consumption growth, we use a two-year moving average of lagged consumption growth, the

log of consumption to GDP ratio, as well as other typical asset pricing predictive variables.

Specifically, we use the price-dividend ratio of the aggregate market portfolio, the short
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interest rate, and the default premium. The price-dividend ratio rises, as theory predicts,

when xa
t rises. In addition, when consumption is above GDP it is predicted to revert back

towards GDP’s level. Finally, both the default premium and risk-free rate affect xa
t in a

significant way. There are two key features of Table III. First, consumption growth is highly

predictable with an adjusted R2 of 37%. Figure 1 provides the time series of xa
t plotted

along with realized consumption growth and NBER recessions. It is clear that this variable

is relatively slow moving and captures features of the business cycle. Recessions are clearly

associated with a decline in xa
t . Together, this evidence clearly shows that the data is far

from an i.i.d view for consumption growth. Second, the persistence parameter, ρa, is quite

large at 0.67, implying an approximate monthly persistence of 0.671/12 = 0.968.

One important issue is whether the long run response of the consumption growth in the

parsimonious structure of the univariate x in equation (19) is similar to that obtained from

the VAR. Figure 2 display the accumulated impulse responses to a one percent short and long

run shocks under the VAR and univariate dynamics. The shock to the long run component

in the VAR is defined as ι1BΥa
t , while the short run shock to consumption is simply ηa

t . The

figure shows that quantitatively the short and long run behavior of consumption is virtually

the same under the two alternative specifications. First the short run shock ηt and the long

run shock et are virtually uncorrelated–the correlation in the data is 0.10. Consequently, the

ηt shock has no impact on consumption growth beyond its immediate effect. The full VAR

based consumption accumulated impulse response rises rapidly up to 7 years and there after

is fairly flat at a value of about 2.8 for a 30 year horizon. This implies that a one percent

shock to the conditional mean of consumption growth, xt, leads to an upward revision of

about 2.8 percent in the long run consumption level. Note that in order to make figure 2

comparable across shocks and configuration each plot refers to a one percent shock. However,

a one percent shock to the long run component of consumption is a very large one as a one

standard deviation shock to et is only 0.0084 — a shock that would lead to a long run rise in

consumption of only 0.0275 percent! The main point to take away from Figure 2 is that the

single variable representation of equation (19) leads to a very similar accumulated impulse

response as that of the VAR.

In principle, the volatility component can be estimated by adding a standard GARCH

specification for Υa
t+1, but given the annual data and for other reasons discussed further

12



below we only use the long run component in specifying consumption growth dynamics.5

4.1 Returns and Betas

Before continuing on to formally estimating the model, we provide preliminary evidence

linking the returns, betas, and market price of risk as described in equation (15). In order

to derive the betas we use the following strategy. We first estimate the expected return for a

given asset, r̄a
j,t+1, by projecting the asset return on lagged realized and expected growth of

consumption, ∆ct and xt respectively, as well as its own lagged dividend growth and price-

dividend ratio. Given the innovations ηa
t+1 and ea

t+1, described above, and the innovations

to the asset return, ua
r,j,t+1 = ra

j,t+1 − r̄a
j,t+1, we compute the asset’s betas with respect to

various consumption risks. Specifically, the long-run consumption beta is measured as βa
e,j ≡

Cov(ea
t+1, u

a
r,j,t+1)

Var(ea
t+1)

, while the exposure of asset returns to transient risks in consumption is

constructed as βa
η,j ≡

Cov(ηa
t+1, u

a
r,j,t+1)

Var(ηa
t+1)

.

The cross-sectional prices of risks are estimated by regressing mean returns on the two

betas, i.e.,

R̄a
j = λa

0 + λa
ηβ

a
η,j + λa

eβ
a
e,j + εa

j (20)

To expand the degrees of freedom, in the cross-sectional regression we employ the full asset

menu consisting of 10 size and 10 book-to-market sorted portfolios plus the aggregate stock

market. We find that the price of short-run consumption risks, although positive, is not

significantly different from zero. In particular, λ̂a
η = 0.33 (SE=0.252). In contrast, the

market price of low-frequency fluctuations in consumption is both positive and significant:

λ̂a
e = 0.58 (SE=0.092). Together, the consumption betas explain about 50% of the cross-

5In general, the above VAR can be augmented by the variance equation as in Bansal and Yaron (2004)
model described in Section 2. In particular, the variance of consumption growth can be measured by taking
an absolute value of consumption residuals, and, similarly to xa, its dynamics can be modelled via a simple
first-order autoregressive process. This would allow us to estimate the exposure of asset returns to volatility
risks, βa

w,j , and evaluate the market price of fluctuating economic uncertainty. Although feasible, this
specification will unlikely yield a reliable estimate of the volatility component and its time-series behavior
given a low sampling frequency of the data in hand. Therefore, in our empirical work, we abstract from
time-varying uncertainty and focus primarily on the pricing of short- and long-run risks in consumption level.
However, the volatility component is needed for matching salient features of annualized asset market data
when in Section 5 we calibrate a monthly long run risk model and time aggregate it to annual frequency.
We find that in the simulated annual data, as in the actual data, it is difficult to detect the presence of the
volatility component.
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sectional variation in risk premia. It is worthy to note, though, that the predictive ability in

the cross-section is entirely attributed to the long-run beta. Table IV provides the betas for

the five returns we consider. There is a clear link between average returns on these assets

and their exposures to long-run risk as measured by βa
e . In particular, note that value and

growth portfolios have a βa
e of 15.3 and 10.4 respectively reflecting the ‘value premium’; in a

similar fashion the long run β’s for small and big firms are 16.4 and 9.1 respectively, reflecting

the effect of size. Finally, the table also provides the standard CCAPM betas, βa
ccapm. It is

quite evident that average returns are not well captured by these traditional betas, giving

rise to the well documented failure of the CCAPM.

4.2 Euler Equation Estimation Evidence

This section provides the main results of our paper. The vector of structural parameters we

seek to estimate includes the preference and technology parameters governing the dynamics

for consumption. We utilize an annual version of equation (4) for the five asset returns: the

risk-free rate, market return, value and growth, large and small firm portfolios in estimating

this parameter vector. Table V provides the estimates of the structural parameters based

on the Euler equations for the Long Run Risk model for several alternative GMM weighting

matrices. In the first panel, we use the identity matrix. In the second panel, we use the

diagonal of the inverse of the returns’ covariance matrix which gives more weight to assets

with lower volatility. Each of these panels provides the structural parameters regarding

preferences, namely, IES, and risk aversion (ψ and γ), where we pre-set the time discount

rate, δ, to 0.998912. In addition, we provide the average pricing error for each of the returns,

and the J test for overidentifying restrictions.

The results are quite illuminating. For the identity matrix, risk aversion is above 27

and the IES is 0.6. For the inverse of the covariance return matrix, the results are similar;

risk aversion is 23, and IES is 0.7. In both cases the standard errors for the IES and risk

aversion are quite large.6 The main feature of the results is the fact that the model prices

assets quite well. Formally the model is not rejected as the overidentifying restrictions have

p-values above 0.2 for all alternative weighting matrices. Moreover, the pricing errors are

quite small. The largest pricing error is only 0.054 for the return on the portfolio of small

6The results are quite similar when we use the continuously updated weighting matrix, as in Hansen,
Heaton, and Yaron (1996), to those using the inverse of the covariance matrix of returns.
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stocks when using the inverse of the covariance return matrix. For comparison, Table VI

provides similar results for the more restrictive case of time separable CRRA preferences.

As is well known, these preferences have more difficulty in pricing assets. The model’s

overidentifying restriction test is rejected when the weighting matrix used is the returns

covariance matrix, and is only marginally significant for the identity weighting matrix (a p-

value of 12%). Moreover, the pricing errors are substantially larger for the CRRA preferences.

In particular, the maximal pricing error (for small portfolio) is now around 22%, and there

is another two digit pricing error. Perhaps, the most apparent discrepancy in statistical fit

between the CRRA preferences and the LRR model is the pricing errors of a portfolio of

Value minus Growth, and Small minus Large. While the t-statistics on these two pricing

errors are insignificant for the LRR model, they are statistically rejected for the CRRA

model.

Table VII presents GMM results for alternative specifications for the persistence of the

long run component of consumption. In each case we scale the innovation to maintain the

same unconditional variance as the one from our estimates. The estimation is based on the

identity weighting matrix and thus the results are directly comparable to the estimates under

vertical panel A in Table V. The model is still not rejected by the overidentifying restrictions

and to a large extent the pricing errors are of similar magnitude. The results illuminate an

important trade-off between the persistence in x and the estimated preference parameters.

As ρ increases the estimated risk aversion drops and the estimated IES coefficients rise. In

fact for the case for ρ = 0.75 the risk aversion is now 21.6 and the IES estimate is 1.2 where

as for ρ = 0.5 the risk aversion estimate rise to 30 and the IES drops to 0.2. This trade-off

underscores an important channel in ultimately interpreting our point estimates. As we

show below time averaging causes a downward bias in the estimated persistence of x, which

in turn leads to an upward bias in the estimated risk aversion and a downward bias in the

estimated IES.

Finally, our results are robust to alternative use of instruments. In results that are not

reported here, we use more elaborate system of instruments to capture potential important

variation in conditional moments. For example, adding lagged consumption growth, or risk

free rate or market return as instruments, leads to similar large (above twenty) risk aversion

estimates.

In sum, our model shows that once the return to wealth is appropriately accounted for,
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the Long Run Risk Model can account quite well for both the time series and cross sectional

variation in returns. A concerning open issue is the fact that the IES seems to be below one

and risk aversion is quite large. This parameter configuration in simulations of the Long Run

Risk model is likely to produce data features which are counterfactual. This consequently

raises an important issue in terms of interpreting the empirical evidence documented in the

data in this paper and in earlier work. In the remaining sections we address this issue by

highlighting the effects of time averaging. In particular, we show that even if the population

risk aversion is low and the IES is larger than one, the GMM when contaminated by time

averaging effects will produce estimates, as in our case above, of high risk aversion and low

IES. More specifically, we write down a monthly Long Run Risk Model of the type specified

in equation (3) and show that time averaging to annual data leads to downward bias in

the estimated IES and an upward bias in the estimated risk aversion, while maintaining the

ability to price annual asset returns.

5 Decision Interval and Time Averaging

5.1 Time Averaging and Finite Sample Effects on Estimation

In this section we examine the effects the decision interval and time averaging have on

the economic plausibility of the Long Run Risk model and the interpretation of structural

parameters. In particular, we wish to assess how time averaging affects the estimation

procedure utilized in the previous section. To do so we calibrate a monthly version of the

Long Run Risk model and then time aggregate the data to construct simulated annual

variables counterpart to their observed data.

Time averaging, in our context, arises due to the fact that the sampling frequency of the

data is different from the decision interval of the agent. For example, the data is sampled at

an annual frequency while the decision interval may be monthly. This averaging effect, we

show, has the effect of distorting the parameter estimates and consequently the interpretation

of the model implications. Role of time averaging in models has been emphasized in the past;

Hansen and Sargent (1983) highlight its importance in interpreting an adaptive expectations

model and Heaton (1995) in the context of an asset pricing model with time-nonseparable

preferences. In this paper we show the importance of this issue in the context of the long
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run risks model.

In our case time averaging effects emanate from two sources. First, the monthly consump-

tion is replaced by annual consumption Ca
t =

∑12
j=1 Ct−j, where Ct−j corresponds to month

j consumption in year t. Second, with annual data the estimates of monthly xt are replaced

by annual estimates xa
t , which are obtained from annual consumption growth. This latter

feature, as we show below, will also distort the measure of the persistence in the xt process,

and consequently the market price of risks. As Table VII already demonstrates this empir-

ically the preference parameters are quite sensitive to the persistence in x. To gather more

intuition regarding this tradeoff note that the econometrician utilize the following stochastic

discount factor in estimating risk premia,

ma
t+1 = Γa′Y a

t −Λa′ζa
t+1. (21)

Recall, the risk compensation for the long run risk on a monthly frequency is λe

λeσ
2
t =

(
γ − 1

ψ

)
κ1ϕe

1− κ1ρ
σ2

t . (22)

The ’effective risk aversion’, λe, is highly sensitive to the risk aversion parameter γ, as well

as the parameter ρ governing the persistence of the long run component xt. If the true

decision interval of the agent is monthly but the econometrician uses annual data, then ρa is

much smaller than ρ, and this tends to make the market price of risk on an annual frequency

smaller for any given risk aversion and IES parameters. For example, as we show below, a

monthly model in which ρ is 0.982 yields an annual (via time averaging) ρa of only 0.65.

The fact that the annualized volatility multiplying this effective risk premia, σt, is about 12

times that of the monthly volatility is still not enough to compensate for the reduction in

effective risk aversion due to the smaller annual persistence coefficient. Thus, to achieve the

desired risk premia, and to offset the reduction in ’effective risk aversion’, the econometrician

estimates a very large risk aversion even though the true risk aversion is much smaller.

The message from this is simple but important. Time averaging and the appropriate de-

cision interval can have critical affects for deducing the appropriate risk aversion parameter.

Note, that these potential effects would be absent in a model that focuses on i.i.d consump-

tion growth, in which case the long run piece is absent and time averaging essentially does

not effect the estimation of γ via λη.
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In addition to the time-averaging effects, another channel that tends to push the risk

aversion to a larger magnitude is the finite sample bias in estimating ρ. It is well known,

see Kendell (1954), that the persistence parameter in a standard AR(1) process is biased

downwards – this again tends to lower the market price of long run risks and hence estima-

tion, to match the risk premium, tends to push the risk aversion higher. We provide, via

simulations, a decomposition of the magnitude of the effects that arise solely due to time

averaging and due to finite sample bias.

5.2 Consumption, Dividends, and Asset Returns

To complete the specification of the model, we need, in addition to the consumption dynamics

already given in (3), to specify the dividend dynamics of each asset j,

∆dj,t+1 = µd + φjxt + πjσtηt+1 + ϕjσtud,j,t+1 (23)

where ∆dj,t+1 is the dividend growth rate of portfolio j. In addition, we assume that all

shocks are i.i.d normal and are orthogonal to each other, although we allow for cross-sectional

correlations in dividend news, ud,j,t+1. Dividends have a levered exposure to the persistent

component in consumption, xt, which is captured by the parameter φj. In addition, we

allow the i.i.d consumption shock ηt+1 to influence the dividend process, and thus serve as

an additional source of risk premia. The magnitude of this influence is governed by the

parameter πj.
7 The dynamics are similar to those in Bansal and Yaron (2004), Bansal,

Dittmar, and Lundblad (2005), and Kiku (2006).8 The model is assumed to have a monthly

decision interval and the parameters governing the consumption and dividend dynamics

are given in Panels A of Table IX and X respectively. Throughout we use a risk aversion

parameter of 10 and an IES value of 2.9

We simulate from the monthly consumption and dividend dynamics specified in equa-

7Note that this type of specification is isomorphic to one in which πj = 0 but the correlation between
ηt+1 and ud,j,t+1 is non-zero.

8Note that as we are dealing with dividend per-share cashflows this configuration does not impose coin-
tegration between consumption and dividends as analyzed in Bansal and Yaron (2006). Menzly, Santos, and
Veronesi (2004) provide an alternative specification for cashflow dynamics across assets which does not rely
on the LRR channels but does impose cointegration between consumption and per share dividends.

9Kandel and Stambaugh (1991) find a configuration with risk aversion larger than twenty and an IES
that is very small as plausible. As we show below the low IES leads to risk free rate (market) volatility that
is too large (small).
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tions (3) and (23). We construct the appropriate time aggregated Ca
t and Da

t level series

and then construct their annual growth rates. Panel B of Table IX provides Monte-Carlo

evidence regarding the annual time series of consumption growth. Specifically, we simulate

the model with 876 months which results in 73 annual observations as in our data set. We

replicate this over 500 simulations. The last two columns in Table IX are the median and

standard deviation respectively of annual consumption growth across these simulations. The

table clearly shows that the model successfully matches the mean, standard deviation, and

autocorrelation of annual consumption growth.

Panel A of Table X provides the parameters governing the dividend dynamics for the five

assets we consider. Panel B of this table, provides information regarding the mean, standard

deviation of dividend growth and its correlation with consumption growth from the data and

the model. Again, the model’s statistics are based on the median and standard deviation

across the 500 Monte-Carlo simulations. By and large, the model’s output matches quite well

with the data. The correlations between consumption and dividend growth are essentially

indistinguishable from their point estimates in the data. The data and the model’s mean

dividend growth rates are all within standard error of each other. More importantly, the

ranking across the four assets of interest is maintained. The volatility of dividend growth

is matched very precisely (and within one standard error) for the market, growth and large

portfolios. For the small and value portfolios the model’s median volatility is quite smaller

than that implied by the data. However, these two portfolios’ extreme volatility are driven

by few data points. Our approach is to be more conservative with respect to these volatility

numbers while ensuring the model generates average returns that are comparable to what is

observed in the data.

Table XI provides the data and model predictions for the mean and volatility of the

return as well as the level of the price dividend ratio for each asset. Again, the model

replicates quite well all of these statistics. The data is well within one standard error of the

model estimates. In particular, note that the model is able to generate the ‘size’ and ‘value’

premium as in also highlighted in Kiku (2006).
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5.3 GMM Estimation and Time Averaging

Equipped with plausible model-generated data for returns, we use GMM on the annual

simulated data and test equation (4) in an analogous fashion to the estimation procedure

we used for the observed data. Table XII provides the distribution of risk aversion and IES

estimates, as well as the J−Stat and p-values across the 500 simulations. This table provides

several important implications. First, the mean of the risk aversion and IES estimates across

simulations is quite close to those estimated directly on the annual data in Table V. This

holds true for the different weighting schemes used. Noteworthy is the fact that the mean risk

aversion is large (e.g., 21 for the identity weighting matrix). Figure 3 provides a histogram

of the risk aversion estimates using the identity weighting matrix; the dispersion and right

skewness are apparent. Moreover, the mean estimates for the IES are all less than 1. Recall,

these simulations are based on a model in which risk aversion is 10 and the IES is 2. Thus,

time averaging leads to severe downward bias in IES and quite significant upward bias in risk

aversion. Further, note that the model is not rejected by the overidentifying restrictions. In

fact the mean J − Stat is quite close to that estimated by the data in Table V which is well

within the 90% confidence interval generated by the simulations.

Table XIII provides analogous estimates for risk aversion, the IES, and J−Stat when the

moment conditions specialize the utility function to power utility as in Table VI. The risk

aversion estimates are larger than those for the Epstein and Zin (1989) preferences in Table

XII. Figure 3 also provides the histogram of risk aversion estimates across simulations for

the power utility preferences. The distribution is large and seem to be somewhat bimodal

with a mass at small and very large risk aversion levels. The model is rejected based on

the mean J − Stats and the pricing errors deteriorate substantially relative to the case of

Epstein-Zin preferences. In this respect the results of imposing the power utility restriction

are similar to those estimated in the data as seen in comparing Tables V and VI.

Together, Tables XII-XIII remarkably replicate the results in Tables V-VI, providing

additional support in favor of the model proposed and estimated. A natural question to

ask is why the IES is estimated with a downward bias while risk aversion is estimated with

an upward bias? The answer hinges on time averaging. As explained in section 5.1 time

averaging (in conjunction with stochastic volatility) reduces the persistence of the monthly

xt process and therefore the ability of the model to generate risk premia.
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In Table XIV we isolate the time averaging effects from those of having a finite sample by

estimating the model using a very long annual sample. The top two rows in this table provide

the persistence ρa of xa
t and the R2 of consumption growth process. It is clear that even

in a very long sample the autocorrelation in xa
t is obviously lower than that of xt but more

surprisingly is also quite lower than that of ρ12. That is the long sample’s autocorrelation

is 0.71 while the monthly’s model autocorrelation (0.982) raised to the power of 12 is 0.80.

Finally, the median estimate for ρ in finite samples is 0.65 (the 5% and 95% quintiles are

0.27 and 0.84 respectively), which shows that finite sample contributes to another small

reduction in the persistence of the long run component. Based on this long sample, the

remaining panels of this table provide the GMM estimates of risk aversion and IES for the

two alternative weighting matrices. Specifically, risk aversion is around 12-15 (relative to a

true population value of 10) and the IES is around 0.4-0.6 relative to a population of value

2. Note, however, that the p-values of the over-identifying restrictions of the model are

significantly and uniformly rejected across the various weighting matrices. This information

compared to the results in Table XII shows that finite sample properties are, to a large

degree, responsible for the non rejection results of the model.

The discussion above demonstrates the important consequences of the downward bias in

estimating the persistence in x for interpreting the preference parameters. One additional

channel that may contribute to this downward bias is the missing stochastic volatility feature

of consumption and dividend growth. When using financial market data to extract x, the

presence of volatility generates a second factor in the monthly model that can bias the ex-

tracted x. Our preliminary experiments indicate that the contribution of stochastic volatility

does not fully account for the bias in the estimated preference parameters. To account for

this we conduct an experiment in which we eliminate stochastic volatility but increase the

persistence of x and lower σe/ση to maintain the unconditional volatility of consumption as

well as key risk premia moments. Based on a long sample estimates, the persistence of x is

now 0.82, and the estimated risk aversion, γ is 13.5 and the IES is just about 1.

As emphasized in section 5.1 risk aversion and persistence play complementary roles in

contributing to risk premia. To generate risk premia while compensating for the downward

bias in persistence, as just shown above, the estimated risk aversion is increased relative to

its true value. This larger risk aversion has an adverse effect in lowering the risk free rate

through the precautionary effect term. To compensate for that, the IES is lowered. This
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is demonstrated by the fact that in the simulations the correlation between γ and µ/ψ, the

non precautionary term of the risk free rate, is 0.60. Together, this evidence underscores the

importance of sampling frequency and the potential consequences of extracting preferences

from time aggregated data.

Epstein and Zin (1991) pursue a GMM estimation approach but in evaluating the pricing

kernel in equation (5) replace the return on the consumption claim rc,t+1 with the observed

value weighted NYSE stock market return. In Table XV we use our simulated data to es-

timate the model with a pricing kernel based on the market return. The estimated risk

aversion is quite low. This, to a large extent, is due to the large volatility induced into the

pricing kernel by the volatile market return. Finally, and most importantly, the table clearly

shows that the model’s overidentifying restrictions are overwhelmingly rejected. Finite sam-

ple experiments also lead to vast rejection of the model. The implication of this experiment

is that deriving the appropriate return on consumption is critical for appropriately assessing

the LRR model.

6 Conclusions

This paper establishes a practical method for obtaining the long run risk component – an

essential ingredient of the Long Run Risk model proposed in Bansal and Yaron (2004).

Using this we are able to empirically construct the unobservable return on total wealth, a

required input in pricing assets when using the Epstein and Zin (1989) preferences. The Long

Run Risk model is quite successful at capturing the time series and cross-sectional variation

in returns. The model prices assets quite well including the ‘value’ and ‘size’ premium. A

calibrated version of the model generates the equity premium, volatility of the market return,

and the mean and volatility of the risk free rate as well as the returns on several portfolios

and their price-dividend ratios. In using the model as a data generating process we show

that time averaging leads to downward biased estimates of the IES and upward bias in risk

aversion — and to estimates of similar magnitude to the levels estimated using the observed

data. Together, this information provides strong evidence in favor of the long run risk model,

while at the same time reconciling why often the literature had found large values of risk

aversion and small values of the IES.

22



7 Appendix

To derive asset prices we use the IMRS together with consumption and dividend dynamics

given in (3) and (23). The Euler condition in equation (4) implies that any asset j in this

economy should satisfy the following pricing restriction,

Et

[
exp

(
θ ln δ − θ

ψ
∆ct+1 + (θ − 1)rc,t+1 + rj,t+1

)]
= 1 , (24)

where rj,t+1 ≡ log(Rj,t+1) and rc,t+1 is the log return on wealth. Notice that the solution

to (24) depends on time-series properties of the unobservable return rc. Therefore, we first

substitute rj,t+1 = rc,t+1 and solve for the return on the aggregate consumption claim; after

that, we present the solution for the return on a dividend-paying asset.

7.1 Consumption Claim

We start by conjecturing that the logarithm of the price to consumption ratio follows, zt =

A0 + A1xt + A2σ
2
t . Armed with the endogenous variable zt, we plug the approximation

rc,t+1 = κ0 + ∆ct+1 + κ1zt+1 − zt into the Euler equation above. The solution coefficients,

A’s, can now be easily derived by collecting the terms on the corresponding state variables.

In particular,

A0 =
1

1− κ1

[
log δ + κ0 +

(
1− 1

ψ

)
µc + κ1A2(1− ν)σ̄2 +

θ

2

(
κ1A2σw

)2
]

A1 =
1− 1

ψ

1− κ1ρ
(25)

A2 = −
(γ − 1)(1− 1

ψ
)

2 (1− κ1ν)

[
1 +

( κ1ϕe

1− κ1ρ

)2
]

For more details, see the the appendix in Bansal and Yaron (2004).

Notice that the derived solutions depend on the approximating constants, κ0 and κ1,

which, in their turn, depend on the unknown mean of the price to consumption ratio, z̄. In

order to solve for the price of the consumption asset, we first substitute expressions for κ’s
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(equations (7) and (8)) into the expressions for A’s and solve for the mean of the price to

consumption ratio. Specifically, z̄ can be found by numerically solving a fixed-point problem:

z̄ = A0(z̄) + A2(z̄)σ̄2 ,

where the dependence of A’s on z̄ is given above.

The solution for the price-consumption ratio, zt, allows us to write the pricing kernel as

a function of the evolution of the state variables and the model parameters,

mt+1 = Γ0 + Γ1xx + Γ2σ
2
t − λησtηt+1 − λeσtet+1 − λwσwwt+1 , (26)

where

Γ0 = log δ − 1

ψ
µc − (θ − 1)

[
A2(1− ν)σ̄2 +

θ

2

(
κ1A2σw

)2
]

Γ1 = − 1

ψ
(27)

Γ2 = (θ − 1)(κ1ν − 1)A2

and

λη = γ

λe = (1− θ)κ1A1ϕe = (γ − 1

ψ
)

κ1ϕe

1− κ1ρ
(28)

λw = (1− θ)κ1A2 = −(γ − 1)(γ − 1

ψ
)

κ1

2 (1− κ1ρ)

[
1 + (

κ1ϕe

1− κ1ρ
)2

]

Note that λ’s represent market prices of transient (ηt+1), long-run (et+1) and volatility (wt+1)

risks respectively. For more detailed discussion see Bansal and Yaron (2004).

7.2 Dividend Paying Assets

The solution coefficients for the valuation ratio of a dividend-paying asset j can be derived

in a similar fashion as for the consumption asset. In particular, the price-dividend ratio for
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a claim to dividends, zj,t = A0,j + A1,jxt + A2,jσ
2
t , where

A0,j =
1

1− κ1,j

[
Γ0 + κ0,j + µdj

+ κ1,jA2,j(1− ν)σ̄2 +
1

2

(
κ1,jA2,j − λw

)2

σ2
w

]

A1,j =
φj − 1

ψ

1− κ1,jρ
(29)

A2,j =
1

1− κ1,jν

[
Γ2 +

1

2

(
(πj − λη)

2 + (κ1,jA1,jϕe − λε)
2
)]

It follows then that the innovation into the asset return is given by,

rj,t+1 − Et[rj,t+1] = ϕjσtuj,t+1 + βη,jσtηt+1 + βe,jσtet+1 + βw,jσwwt+1 , (30)

where the asset’s betas are defined as,

βη,j = πj

βe,j = κ1,jA1,jϕe

βw,j = κ1,jA2,j

The risk premium for any asset is determined by the covariation of the return innovation

with the innovation into the pricing kernel. Thus, the risk premium for rj,t+1 is equal to the

asset’s exposures to systematic risks multiplied by the corresponding risk prices,

Et(rj,t+1 − rf,t) + 0.5σ2
t,rj

= −Covt

(
mt+1 − Et(mt+1), rj,t+1 − Et(rj,t+1)

)

= λησ
2
t βη,j + λeσ

2
t βe,j + λwσ2

wβw,j

7.3 IES=1

When ψ = 1, the log of the IMRS is given in terms of the value function normalized by

consumption, vct = log(Vt/Ct),

mt+1 = log δ − γ∆ct+1 + (1− γ)vct+1 − 1− γ

δ
vct
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Conjecturing that vct = B0 + B1xt + B2σ
2
t and using the evolution of vct:

vct =
δ

1− γ
log Et

[
exp{(1− γ)(vct+1 + ∆ct+1}

]
,

the solution coefficients are given by,

B0 =
δ

1− δ

[
µ + B2(1− ν)σ̄2 +

1

2
(1− γ)(B2σw)2

]

B1 =
δ

1− δρ
(31)

B2 = −(γ − 1)
δ

2 (1− δν)

[
1 +

( δϕe

1− δρ

)2
]

(32)

As above, the pricing kernel can be expressed in terms of underlying preference parame-

ters, state variables and systematic shocks,

mt+1 = Γ0 + Γ1xt + Γ2σ
2
t − λησtηt+1 − λεσtεt+1 − λwσwwt+1 (33)

where:

Γ0 = log δ − µ − (1− γ)

[
1

δ
B2(1− ν)σ̄2 +

1

2
(1− γ)(B2σw)2

]
(34)

Γ1 = −1

Γ2 = −(γ − 1)2

2

[
1 +

( δϕe

1− δρ

)2
]

and

λη = γ (35)

λε = (γ − 1)
δϕe

1− δρ

λw = −(γ − 1)2 δ

2 (1− δρ)

[
1 +

( δϕe

1− δρ

)2
]

26



Finally, note that in the IES=1 case, the wealth-to-consumption ratio is constant, namely,
Wt

Ct

=
1

1− δ
. The price-to-consumption ratio, therefore, is equal

Pt

Ct

= exp(z̄) =
δ

1− δ
.

Consequently, the parameter of the log-approximation of the log-wealth return,

κ1 =
exp(z̄)

1 + exp(z̄)
=

δ
1−δ

1 + δ
1−δ

= δ.

Plugging κ1 = δ and ψ = 1 into equations (26), (27) and (28), yields exactly equation (33),

(34) and (35). It then follows that

lim
ψ→1

κ1 = δ lim
ψ→1

Γ′ = Γ′(ψ = 1, κ1 = δ) lim
ψ→1

Λ′ = Λ′(ψ = 1, κ1 = δ) (36)
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Table I

Approximation Error

Panel A: Approximate Analytical Solutions

Mean log(P/C) Vol log(P/C)

IES IES
0.5 1.5 2 0.5 1.5 2

5 3.592 4.754 5.058 0.059 0.021 0.032

RA 10 3.789 4.572 4.716 0.060 0.021 0.032

15 4.055 4.421 4.470 0.062 0.021 0.032

Panel B: Numerical Solutions

Mean log(P/C) Vol log(P/C)

IES IES
0.5 1.5 2 0.5 1.5 2

5 3.594 4.755 5.060 0.059 0.021 0.032

RA 10 3.788 4.576 4.724 0.060 0.021 0.032

15 4.033 4.436 4.493 0.061 0.021 0.031

Panel C: Approximation Error (as a % of numerical values)

Mean log(P/C) Vol log(P/C)

IES IES
0.5 1.5 2 0.5 1.5 2

5 0.05 0.01 0.03 0.04 -0.16 -0.17

RA 10 -0.02 0.10 0.17 -0.42 -0.83 -0.86

15 -0.54 0.32 0.51 -1.84 -2.16 -2.17
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Table II

Summary Statistics

Panel A: Asset Data

Returns Div Growth Log(P/D)

Mean StdDev Mean StdDev Mean StdDev

Size Portfolios
Small 0.166 0.40 0.066 0.27 4.07 0.62
Large 0.076 0.19 0.003 0.11 3.30 0.43

B/M Portfolios
Growth 0.070 0.22 -0.003 0.16 3.71 0.62
Value 0.134 0.33 0.047 0.29 3.42 0.68

Market 0.083 0.20 0.007 0.11 3.33 0.46

Risk-free Rate 0.008 0.01

Panel B: Predictive Variables

Mean StdDev

Consumption Growth 0.020 0.022
GDP Growth 0.022 0.051
Default Spread 0.012 0.007

Panel A of Table II presents descriptive statistics for returns, dividend growth rates and logarithms of price-
dividend ratios of size and book-to-market sorted portfolios, and the aggregate stock market. Small and large
portfolios represent firms in the top and bottom market capitalization deciles, growth and value correspond
to the lowest and highest book-to-market decile. Returns are value-weighted, dividends and price-dividend
ratios are constructed on the per-share basis, growth rates are measured by taking the first difference of the
logarithm of dividend series. The bottom line of Panel A reports the mean and the standard deviation of
the annualized yield on the 3-month Treasuary bill. Panel B presents sample statistics for the per-capita
consumption of nondurables and services, gross domestic product (GDP), and the default premium. The
latter is defined as the difference in yields on Baa and Aaa corporate bonds. All asset and macro data are
real, sampled on an annual frequency and cover the period from 1930 to 2002.
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Table III

Predictability of Consumption Growth

Predictor Estimate t-stat

2-yr Moving Ave of Cons Growth 0.445 2.90
Log(Cons/GDP) -0.070 -2.52
Default Spread 1.912 3.62
Short Interest Rate -0.116 -2.09
Log(P/D) 0.019 2.30

R̄2 = 0.37

Table III presents predictability evidence for consumption growth. The second column reports estimated
regression coefficients from projecting consumption growth onto lagged predictive variables. The corre-
sponding t-statistics are calculated using the Newey-West variance-covariance estimator with 4 lags. The
data employed in the regression are annual and span the period from 1930 to 2002.
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Table IV

Consumption Betas

Mean Ret βa
η βa

e βa
ccapm

Small 0.166 0.51 16.40 0.71
Large 0.076 2.22 9.10 0.69
Growth 0.070 2.65 10.69 0.82
Value 0.134 0.90 15.30 0.14
Market 0.083 2.28 10.40 0.59

Table IV presents mean returns and consumption betas for firms in the lowest and highest deciles of size
and book-to-market sorted portfolios — small and large, and growth and value, respectively, as well as the
aggregate stock market. Consumption betas are calculated as the covariation between consumption news and
innovations in asset returns scaled by the variance of the corresponding consumption shock. βa

η represents the
exposure of returns to transient shocks in consumption, βa

e measures risks related to long-run fluctuations
in consumption. Short-run consumption innovations are constructed by removing the conditional mean
from the realized growth in consumption, where the former is modelled according to Table III. Long-run
consumption risks are extracted by fitting an AR(1) process to the expected growth component. Innovations
in returns are constructed using a log-linear approximation of returns and estimated VAR(1)-dynamics for
dividend growth rates and price-dividend ratios. The frequency of the data is annual, the sample covers the
period from 1930 to 2002.
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Table V

Estimation Evidence: Long Run Risk Model

Panel A:
W = Identity

Panel B:
W = diag{Var(R)}−1

Parameter Estimate SE Estimate SE

RA 27.70 8.67 22.89 7.37
IES 0.59 2.57 0.70 2.67

Asset PrError t-stat PrError t-stat

Small 0.038 0.30 0.054 0.53
Large -0.020 -0.18 -0.009 -0.11
Growth -0.032 -0.29 -0.020 -0.24
Value 0.021 0.18 0.037 0.40
Market -0.018 -0.16 -0.006 -0.07
Risk-Free 0.012 0.09 0.000 0.00

Small-Large 0.058 1.33 0.063 1.45
Value-Growth 0.052 1.62 0.057 1.82

J-stat 5.60 5.28
p-value 0.23 0.26

Table V presents GMM estimates of Long Run Risk model: the risk aversion parameter (RA) and the
elasticity of intertemporal substitution (IES). Three vertical panels summarize estimation results for different
weighting schemes: the identity matrix (A), the inverse of the diagonal of the variance-covariance matrix of
returns (B). The asset menu consists of firms with small and large market capitalization, low and high book-
to-market ratio (growth and value, respectively), aggregate stock market and the risk-free rate. Average
pricing errors and their t-statistics are presented for each asset. The bottom two lines report J-statistics for
overidentifying restrictions and the corresponding p-values. The data employed in the estimation are annual
and cover the period from 1930 to 2002.
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Table VI

Estimation Evidence: CRRA Preferences

Panel A:
W = Identity

Panel B:
W = diag{Var(R)}−1

Parameter Estimate SE Estimate SE

RA 4.07 1.35 42.86 7.71

Asset PrError t-stat PrError t-stat

Small 0.072 1.38 0.220 0.32
Large -0.017 -0.70 -0.007 -0.02
Growth -0.021 -0.83 -0.036 -0.08
Value 0.044 1.24 0.134 0.22
Market -0.009 -0.40 0.009 0.02
Risk-Free -0.081 -2.99 -0.003 -0.01

Small-Large 0.089 2.02 0.227 1.18
Value-Growth 0.065 2.54 0.170 1.19

J-stat 8.64 12.14
P-value 0.12 0.03

Table VI presents GMM estimates of the parameter of risk aversion (RA) for CRRA preferences. Three
vertical panels summarize estimation results for different weighting schemes: the identity matrix (A), the
inverse of the diagonal of the variance-covariance matrix of returns (B). The asset menu consists of firms with
small and large market capitalization, low and high book-to-market ratio (growth and value, respectively),
aggregate stock market and the risk-free rate. Average pricing errors and their t-statistics are presented for
each asset. The bottom two lines report J-statistics for overidentifying restrictions and the corresponding
p-values. The data employed in the estimation are annual and cover the period from 1930 to 2002.
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Table VII

Estimation Evidence: The Effects of Persistence in x

Panel A:
ρ = 0.50

Panel B:
ρ = 0.75

Parameter Estimate SE Estimate SE

RA 30.39 14.17 21.56 5.90
IES 0.22 0.52 1.22 5.61

Asset PrError t-stat PrError t-stat

Small 0.068 0.41 0.032 0.31
Large -0.022 -0.18 -0.017 -0.19
Growth -0.033 -0.27 -0.030 -0.32
Value 0.042 0.29 0.017 0.18
Market -0.016 -0.13 -0.016 -0.17
Risk-Free -0.024 -0.17 0.012 0.10

J-stat 2.92 6.34
p-value 0.57 0.18

Table VII presents GMM estimates of Long Run Risk model for alternative specifications for the persistence
of x: the risk aversion parameter (RA) and the elasticity of intertemporal substitution (IES). In each case
the innovation to the long run innovation is scaled to maintain identical unconditional variance as in the
estimated model. All estimation utilize the identity matrix as in vertical panel A in Table V. The asset
menu consists of firms with small and large market capitalization, low and high book-to-market ratio (growth
and value, respectively), aggregate stock market and the risk-free rate. Average pricing errors and their t-
statistics are presented for each asset. The bottom two lines report J-statistics for overidentifying restrictions
and the corresponding p-values. The data employed in the estimation are annual and cover the period from
1930 to 2002.

37



Table VIII

Model-Implied Risk Premia Decomposition

Mean Ret Risk Premia
Long-Run Short-Run Total

Small 0.166 0.102 0.004 0.105
Large 0.076 0.056 0.016 0.072
Growth 0.070 0.066 0.019 0.085
Value 0.134 0.095 0.006 0.101
Market 0.083 0.064 0.016 0.080

Table VIII presents the decomposition of risk premia implied by the Long Run Risk Model. Compensations
for various consumption risks are determined by asset betas and the corresponding prices of risks. Specifically,
the long-run risk premium is computed as λa

e σ̄2,a
e βa

e ; the compensation for short-run risks in consumption
corresponds to λa

ησ̄2,a
η βa

η . Risk prices are based on GMM estimates with the identity weight matrix. For
comparison, the first column reports sample mean returns for the five assets. The data employed in the
estimation are annual and cover the period from 1930 to 2002.
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Table IX

Consumption Growth Dynamics

Panel A: Calibration of Monthly Consumption Growth

µc ρ ϕe σ̄ ν σw

0.0015 0.982 0.042 0.0054 0.98 0.0000068

Panel B: Dynamics of Annual Consumption Growth

Statistic — Data — — Model —

E[∆c] 1.96 (0.34) 1.83 (0.62)

σ(∆c) 2.21 (0.38) 2.27 (0.37)

AC(1) 0.44 (0.13) 0.47 (0.12)

Panel A of Table IX summarizes the calibration of parameters that govern the dynamics of monthly
consumption growth:

∆ct+1 = µc + xt + σtηt+1

xt+1 = ρxt + ϕeσtet+1

σ2
t+1 = σ̄2 + ν(σ2

t − σ̄2) + σwwt+1

Panel B reports the mean, the volatility and the first-order autocorrelation of annual consumption growth.
“Data” column presents summary statistics of observed per-capita consumption of non-durables and services
over the period from 1930 till 2002. Numbers in parentheses are robust standard errors calculated using the
Newey-West variance-covariance estimator with 4 lags. The entries reported in “Model” column are based
on 500 simulated samples, each with 876 months, time-aggregated to 73 annual observations. Model-implied
statistics represent the median and the standard deviation (in parentheses) of the corresponding statistics
across simulations.
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Table X

Dividend Growth Dynamics

Panel A: Calibration of Monthly Dividend Growth Rates

Asset µd φ π ϕ

Small 0.0058 5.4 1.5 7.3
Large 0.0015 2.3 3.3 5.7
Growth 0.0015 2.0 3.6 7.1
Value 0.0040 4.4 1.9 5.2
Market 0.0015 2.3 3.8 5.4

Panel B: Dynamics of Annual Dividend Growth Rates

Asset Statistic — Data — — Model —

Small E[∆d] 6.57 (4.15) 6.63 (3.71)
σ(∆d) 27.2 (4.19) 15.4 (2.15)
Corr(∆c, ∆d) 0.44 (0.09) 0.45 (0.14)

Large E[∆d] 0.34 (1.09) 1.87 (2.05)
σ(∆d) 10.5 (1.69) 12.4 (1.60)
Corr(∆c, ∆d) 0.50 (0.15) 0.54 (0.11)

Growth E[∆d] -0.26 (1.65) 1.77 (2.41)
σ(∆d) 16.3 (1.94) 14.4 (1.80)
Corr(∆c, ∆d) 0.47 (0.10) 0.47 (0.11)

Value E[∆d] 4.67 (3.40) 4.74 (2.81)
σ(∆d) 28.6 (3.61) 11.8 (1.78)
Corr(∆c, ∆d) 0.51 (0.07) 0.57 (0.12)

Market E[∆d] 0.74 (1.18) 1.87 (2.02)
σ(∆d) 11.0 (1.92) 12.3 (1.63)
Corr(∆c, ∆d) 0.60 (0.14) 0.60 (0.10)

Panel A of Table X presents the calibration of monthly dividend growth rates for the cross-section of assets:

∆dj,t+1 = µdj + φjxt + πjσtηt+1 + ϕjσtud,j,t+1

The asset menu comprises small and large market capitalization firms, growth and value portfolios that
represent low and high book-to-market firms respectively, and the aggregate stock market. Panel B re-
ports the mean and the volatility of dividend growth rates, as well as their correlation with consumption
growth. “Data” column presents summary statistics of the per-share dividend series observed over 1930-
2002 time period. Numbers in parentheses are robust standard errors calculated using the Newey-West
variance-covariance estimator with 4 lags. The entries reported in “Model” column are based on 500 simu-
lated samples, each with 876 months, time-aggregated to 73 annual observations. Model-implied statistics
represent the median and the standard deviation (in parentheses) of the corresponding statistics across
simulations.
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Table XI

Asset Pricing Implications

Asset Statistic — Data — — Model —

Small E(R) 16.60 (4.18) 15.40 (4.32)
σ(R) 40.4 (3.84) 35.7 (6.48)
E(pd) 4.07 (0.15) 3.59 (0.15)

Large E(R) 7.58 (2.19) 7.90 (2.20)
σ(R) 19.1 (1.79) 19.2 (2.74)
E(pd) 3.30 (0.10) 3.22 (0.05)

Growth E(R) 7.01 (2.40) 6.87 (2.59)
σ(R) 21.6 (1.89) 21.1 (3.11)
E(pd) 3.71 (0.15) 3.48 (0.05)

Value E(R) 13.37 (3.03) 12.58 (3.05)
σ(R) 33.1 (3.89) 26.4 (4.45)
E(pd) 3.42 (0.15) 3.18 (0.11)

Market E(R) 8.27 (2.10) 8.10 (2.17)
σ(R) 20.1 (1.88) 19.6 (2.75)
E(pd) 3.33 (0.11) 3.15 (0.05)

Risk-Free Rate E(R) 0.76 (0.27) 1.08 (0.34)
σ(R) 1.12 (0.22) 0.87 (0.18)

Table XI presents asset pricing moments for five equity portfolios and the risk-free rate. Small and large
are portfolios of firms with low and high market capitalization, growth and value correspond to the top
and the bottom book-to-market deciles. E(R), σ(R) and E(pd) denote expected returns, return volatilities
and means of log price-dividend ratios respectively. “Data” column presents summary statistics of the
observed annual data that span the period from 1930 to 2002. Numbers in parentheses are robust standard
errors calculated using the Newey-West variance-covariance estimator with 4 lags. The entries reported in
“Model” column are based on 500 simulated samples, each with 876 months, time-aggregated to 73 annual
observations. Model-implied statistics represent the median and the standard deviation (in parentheses) of
the corresponding statistics across simulations.
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Table XII

Simulation Evidence: Long Run Risk Model

Mean 5% 50% 95%

Panel A: RA 21.12 8.16 19.03 41.17
W = Identity IES 0.51 0.12 0.40 1.10

J-stat 5.82 1.96 5.60 9.92
P-value 0.29 0.04 0.23 0.74

Panel B: RA 18.62 8.05 17.32 35.76
W = diag{Var(R)}−1 IES 0.57 0.18 0.51 1.00

J-stat 6.07 1.68 5.47 12.10
P-value 0.28 0.02 0.24 0.79

Table XII presents the distribution of GMM estimates of the Long Run Risk Model, J-statistics for overi-
dentifying restrictions and the corresponding p-values. RA and IES denote risk aversion and the elasticity of
intertemporal substitution respectively. Three horizontal panels summarize estimation results for different
weighting schemes: the identity matrix (A), the inverse of the diagonal of the variance-covariance matrix
of returns (B). The asset menu consists of firms with small and large market capitalization, low and high
book-to-market ratio, aggregate stock market and the risk-free rate. The entries are based on 500 simulated
samples, each with 876 months, time-aggregated to 73 annual observations.
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Table XIII

Simulation Evidence: CRRA Preferences

Mean 5% 50% 95%

Panel A: RA 28.27 3.02 24.51 74.63
W = Identity J-stat 7.47 2.74 7.40 11.95

P-value 0.26 0.04 0.19 0.74

Panel B: RA 42.67 0.13 43.71 80.18
W = diag{Var(R)}−1 J-stat 28.14 5.46 18.01 77.31

P-value 0.07 0.00 0.00 0.36

Table XIII presents the distribution of the GMM estimate of the risk aversion parameter (RA) of CRRA
preferences, J-statistics for overidentifying restrictions and the corresponding p-values. Three horizontal
panels summarize estimation results for different weighting schemes: the identity matrix (A), the inverse of
the diagonal of the variance-covariance matrix of returns (B). The asset menu consists of firms with small
and large market capitalization, low and high book-to-market ratio, aggregate stock market and the risk-free
rate. The entries are based on 500 simulated samples, each with 876 months, time-aggregated to 73 annual
observations.
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Table XIV

Simulation Evidence: Time Aggregation and Long Run Risk Model

Long Sample

X-properties : ρ 0.71
R2 0.46

Panel A: RA 15.09
W = Identity IES 0.39

P-value 0.00

Panel B: RA 12.30
W = diag{Var(R)}−1 IES 0.48

P-value 0.00

Table XIV presents the GMM estimates of the Long Run Risk Model, J-statistics for overidentifying restric-
tions and the corresponding p-values for a long simulation. RA and IES denote risk aversion and the elasticity
of intertemporal substitution respectively. Three horizontal panels summarize estimation results for different
weighting schemes: the identity matrix (A), the inverse of the diagonal of the variance-covariance matrix
of returns (B). The asset menu comprises firms with small and large market capitalization, low and high
book-to-market ratio, aggregate stock market and the risk-free rate, as well as an asset that pays aggregate
consumption each period. The entries are based on a sample with 10,000 annual observations.
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Table XV

Simulation Evidence: Pricing Kernel based on Market Return

Long Sample

RA 1.78
IES 1.71
P-value 0.00

Table XV presents the GMM estimates of the Long Run Risk Model, J-statistics for overidentifying restric-
tions and the corresponding p-values for a pricing kernel in which the market return rm,t is used instead
of the return on consumption, rc,t. The model and estimation are based on monthly frequency. RA and
IES denote risk aversion and the elasticity of intertemporal substitution respectively. The results are for the
identity matrix. The asset menu comprises firms with small and large market capitalization, low and high
book-to-market ratio, aggregate stock market and the risk-free rate, as well as an asset that pays aggregate
consumption each period. The entries are based on a sample with 120,000 monthly observations.
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Figure 1. Realized and Expected Growth of Consumption

Figure 1 plots time series of realized (thin red line) and expected (thick black line) growth in consumption.
Consumption is defined as the per-capita expenditure on non-durables and services. The expected consump-
tion growth is constructed according to the predictability evidence presented in Table III. The data are
real, sampled on an annual frequency and cover the period from 1930 to 2002. Shaded areas correspond to
NBER-dated recessions.
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Figure 2. Accumulated Impulse Response Function to Short and Long Run Shocks

Figure 2 plots the accumulated impulse response of log consumption to a unit shock in e and η. The thick
(thin) solid line represents the impulse response based on the univariate (VAR) dynamics for a one percent
long run shock. The dash (dotted) line represents the impulse response based on the univariate (VAR)
dynamics to a one percent short-run shock.
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Figure 3. Histogram of the RA Estimate

Figure 3 displays the monte carlo distribution of the GMM estimate of the parameter of risk aversion. In
the top panel, (a) and (b), moment conditions are based on Epstein and Zin (1989) preferences, the bottom
figures, (c) and (d) correspond to CRRA preferences. Plots are based on the identity weight matrix. The
figures are based on 500 simulated samples, each with 876 months, time-aggregated to 73 annual observations.
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