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1 Introduction

This paper introduces and estimates a new model of frailty-correlated de-
faults, according to which firms have an unobservable common source of
“frailty,” a default risk factor that changes randomly over time. The posterior
distribution of this frailty factor, conditional on past observable covariates
and past defaults, represents a significant additional source of uncertainty to
creditors. Our model is estimated for U.S. non-financial public firms for the
period 1979-2004. The results show that the frailty factor induces a large es-
timated increase in default clustering, and significant additional fluctuation
over time in the conditional expected level of default losses, above and be-
yond that predicted by our observable default covariates, including leverage,
volatility, and interest rates.

The usual duration-based model of default probabilities is based on the
doubly-stochastic assumption, by which firms’ default times are conditionally
independent given the paths of observable factors influencing their credit
qualities. Under this assumption, different firms’ default times are correlated
only to the extent implied by the correlation of observable factors determining
their default intensities. For example, Couderc and Renault (2004), Shumway
(2001), and Duffie, Saita, and Wang (2006) use this property to compute the
likelihood function, which is to be maximized when estimating the coefficients
of a default intensity model, as the product across firms of the covariate-
conditional likelihoods of each firm’s default or survival. This significantly
reduces the computational complexity of the estimation.

The doubly-stochastic assumption is violated in the presence of “frailty,”
meaning unobservable explanatory variables that may be correlated across
firms. For example, the defaults of Enron in 2001 and WorldCom in 2002
may have revealed faulty accounting practices that could have been used at
other firms, and thus may have had an impact on the conditional default
probabilities of other firms. Even if all relevant covariates are observable in
principle, some will inevitably be ignored in practice. The impacts of missing
and unobservable covariates are essentially equivalent from the viewpoint of
estimating default probabilities or portfolio credit risk.

Our primary objective is to measure the degree of frailty that has been
present for U.S. corporate defaults, and then to examine its empirical im-
plications. We are particularly interested in the implications of common
unobserved covariates on aggregate default rates and on default correlation.
We find strong evidence of persistent unobserved covariates. For example,
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even after controlling for the “usual-suspect” covariates, both firm-specific
and macroeconomic, we find that defaults were persistently higher than ex-
pected during lengthy periods of time, for example 1986-1991, and persis-
tently lower in others, for example during the mid-nineties. From trough to
peak, the impact of frailty on the average default rates of U.S. corporations
is roughly a factor of 2. This is quite distinct from the effect of time fixed
effects (time dummy variables, or baseline hazard functions), because of the
discipline placed on the behavior of the unobservable covariate through its
transition probabilities. Deterministic time effects eliminate an important
potential channel for default correlation, namely uncertainty regarding the
current level of the time effect and its future evolution.

Incorporating unobserved covariates also has an impact on the relative de-
fault probabilities of individual issuers because it changes the relative weights
placed on different observable covariates, although this effect is not especially
large for our data because of the dominant role of a single covariate, the dis-
tance to default, which is a volatility corrected measure of leverage.

We anticipate several types of applications for our work. Understanding
how corporate defaults are correlated is particularly important for the risk
management of portfolios of corporate debt. For example, as backing for the
performance of their loan portfolios, banks retain capital at levels designed
to withstand default clustering at extremely high confidence levels, such as
99.9%. Some banks do so on the basis of models in which default correlation
is assumed to be captured by common risk factors determining conditional
default probabilities, as in Gordy (2003) and Vasicek (1987). If, however,
defaults are more heavily clustered in time than currently captured in these
default-risk models then significantly greater capital might be required in
order to survive default losses with high confidence levels. An understanding
of the sources and degree of default clustering is also crucial for the rating
and risk analysis of structured credit products that are exposed to corre-
lated default, such as collateralized debt obligations (CDOs) and options on
portfolios of default swaps. The Bank of International Settlements (BIS) has
cited reports1 that cash CDO volumes reached $163 billion in 2004, while
synthetic CDO volumes reached $673 billion. While we do not address the
pricing of credit risk in this paper, a “risk-neutral” frailty effect could play
a useful role in the valuation of relatively senior tranches of CDOs.

The remainder of the paper is organized as follows. The rest of this

1Data are provided in the 75th BIS Annual Report, June 2005.
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introductory section gives an overview of related literature and describes
our dataset. Section 2 specifies the basic probabilistic model for the joint
distribution of default times. Section 3 shows how we estimate the model
parameters using a combination of the Monte Carlo EM algorithm and the
Gibbs sampler. Section 4 summarizes some of the properties of the fitted
model and of the posterior distribution of the frailty variable, given the entire
sample. Section 5 is concerned with the posterior of the frailty variable at
any point in time, given only past history, which determines the dynamics
of conditional default risk from the viewpoint of investors in corporate debt.
Section 6 addresses the term-structure of default probabilities implied by
the model. Section 7 examines the impact of the frailty variable on default
correlation, and on the tail risk of a U.S. corporate debt portfolio. Section
8 examines the out-of-sample performance of our model, while Section 9
concludes and suggests some areas for future research. Appendices outline
the Gibbs sampling methodology for maximum likelihhod estimation.

1.1 Related Literature

A standard structural model of default timing assumes that a corporation
defaults when its assets drop to a sufficiently low level relative to its liabilities.
For example, the models of Black and Scholes (1973), Merton (1974), Fisher,
Heinkel, and Zechner (1989), and Leland (1994) take the asset process to be
a geometric Brownian motion. In these models, a firm’s conditional default
probability is completely determined by its distance to default, which is the
number of standard deviations of annual asset growth by which the asset level
(or expected asset level at a given time horizon) exceeds the firm’s liabilities.
This default covariate, using market equity data and accounting data for
liabilities, has been adopted in industry practice by Moody’s KMV, a leading
provider of estimates of default probabilities for essentially all publicly traded
firms (see Crosbie and Bohn (2002) and Kealhofer (2003)). Based on this
theoretical foundation, it seems natural to include distance to default as a
covariate.

In the context of a standard structural default model of this type, how-
ever, Duffie and Lando (2001) show that if distance to default cannot be ac-
curately measured, then a filtering problem arises, and the resulting default
intensity depends on the measured distance to default and other covariates
that may reveal additional information about the firm’s condition. More
generally, a firm’s financial health may have multiple influences over time.
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For example, firm-specific, sector-wide, and macroeconomic state variables
may all influence the evolution of corporate earnings and leverage. Given the
usual benefits of parsimony, the model of default probabilities estimated in
this paper adopts a relatively small set of firm-specific and macroeconomic
covariates.

Altman (1968) and Beaver (1968) were among the first to estimate statis-
tical models of the likelihood of default of a firm within one accounting period,
using accounting data. Early in the empirical literature on default time dis-
tributions is the work of Lane, Looney, and Wansley (1986) on bank default
prediction, using time-independent covariates. Lee and Urrutia (1996) used
a duration model based on a Weibull distribution of default times. Dura-
tion models based on time-varying covariates include those of McDonald and
Van de Gucht (1999), in a model of the timing of high-yield bond defaults
and call exercises. Related duration analysis by Shumway (2001), Kavvathas
(2001), Chava and Jarrow (2004), and Hillegeist, Keating, Cram, and Lund-
stedt (2004) predict bankruptcy. Shumway (2001) uses a discrete duration
model with time-dependent covariates. Duffie, Saita, and Wang (2006) pro-
vide maximum likelihood estimates of term structures of default probabilities
by using a joint model for default intensities and the dynamics of the un-
derlying time-varying covariates. These papers make the doubly-stochastic
assumption, and therefore do not account for possibly unobservable or miss-
ing covariates affecting default probabilities. Das, Duffie, Kapadia, and Saita
(2006), using roughly the same data studied here and by Duffie, Saita, and
Wang (2006), provide strong evidence that defaults are significantly more
correlated than would be suggested by the doubly stochastic assumption and
the assumption that default intensities are explained by the observable co-
variates.

Empirical studies such as those of Collin-Dufresne, Goldstein, and Hel-
wege (2003) and Zhang (2004) find that major credit events are associated
with significant increases in the credit spreads of other firms, consistent with
the existence of a frailty effect for actual or risk-neutral default probabil-
ities. Collin-Dufresne, Goldstein, and Huggonier (2004), Giesecke (2004),
and Schönbucher (2003) explore learning-from-default interpretations, based
on the statistical modeling of frailty, under which default intensities include
the expected effect of unobservable covariates. In a frailty setting, the arrival
of a default causes, via Bayes’ Rule, a jump in the conditional distribution
of hidden covariates, and therefore a jump in the conditional default prob-
abilities of any other firms whose default intensities depend on the same
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unobservable covariates. For example, the collapses of Enron and WorldCom
could have caused a sudden reduction in the perceived precision of account-
ing leverage measures of other firms. Delloy, Fermanian, and Sbai (2005),
in independent research that appeared shortly before ours, estimate default
probabilities using a dynamic frailty model of rating transitions. They sup-
pose that the intensities of downgrades from one rating to the next lower
rating depend on a common unobservable factor, which gives rise to fatter
tails for the distribution of aggregate portfolio losses.

Yu (2005) finds empirical evidence that, other things equal, a reduction in
the measured precision of accounting variables is associated with a widening
of credit spreads.

1.2 Data

Our dataset, drawing from Bloomberg, Compustat, CRSP and Moody’s, is
almost the same as that used in Duffie, Saita, and Wang (2006) and Das,
Duffie, Kapadia, and Saita (2006). We have slightly improved the data by
using The Directory of Obsolete Securities and the SDC database to iden-
tify additional mergers, defaults, or failures. The few additional defaults
and mergers identified through these sources do not change significantly the
results in Duffie, Saita, and Wang (2006). Our dataset contains 402,434
firm-months of data between January 1979 and March 2004. Because of the
manner in which we define defaults, it is appropriate to use data only up to
December 2003. For the total of 2,793 companies in this improved dataset,
Table 1 shows the number of firms in each exit category. Of the total of
496 defaults, 176 first occurred as bankruptcies, although many of the other
defaults eventuallyled to bankruptcy. In particular, many of the “other de-
faults” led subsequently to bankruptcy. We refer the interested reader to
Section 3.1 in Duffie, Saita, and Wang (2006) for an in-depth description of
the construction of the dataset and an exact definition of these event types.

Figure 1 shows the total number of defaults (bankruptcies and other
defaults) in each year. Moody’s 13th annual corporate bond default study2

provides a detailed exposition of historical default rates for various categories
of firms since 1920.

The model of default intensities estimated in this paper adopts a parsi-

2Moody’s Investor Service, ”Historical Default Rates of Corporate Bond Issuers, 1920-
1999.”
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Exit type Number
bankruptcy 176
other default 320
merger-acquisition 1,047
other 671

Table 1: Number of firm exits of each type.

monious set of observable firm-specific and macroeconomic covariates:

• Distance to default, a volatility-adjusted measure of leverage. Our
method of construction, based on market equity data and Compustat
book liability data, is along the lines of that used by Vassalou and Xing
(2004), Crosbie and Bohn (2002), and Hillegeist, Keating, Cram, and
Lundstedt (2004).

• The firm’s trailing 1-year stock return.

• The 3-month Treasury bill rate.

• The trailing 1-year return on the S&P500 index.

Duffie, Saita, and Wang (2006) give a detailed description of these co-
variates and discuss their relative importance in modeling corporate default
intensities. Other macroeconomic variables, such as GDP growth rates, in-
dustrial production growth, and the industry average distance to default,
were also considered but found to be at best marginally significant after con-
trolling for distance to default, trailing returns of the firm and the S&P 500,
and the 3-month treasury-bill rate. We also considered a firm size covariate,
measured as the logarithm of the model-implied assets. Size may be asso-
ciated with market power, management strategies, or borrowing ability, all
of which may affect the risk of failure. For example, it might be easier for a
big firm to re-negotiate with its creditors to postpone the payment of debt,
or to raise new funds to pay old debt. In a “too-big-to-fail” sense, firm size
may also negatively influence failure intensity. The statistical significance
of size as a determinant of failure risk has been documented by Shumway
(2001). For our data and our measure of firm size, this covariate did not play
a statistically significant role.
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Figure 1: The number of defaults in our dataset for each year between 1980 and 2003.

2 The Model

We fix a probability space and a filtration of information3 for the purpose of
an introduction to the default timing model, which will be made precise as
we proceed. For a given borrower whose default time is τ, we will say that
a non-negative progressively measurable process λ is the default intensity of
the borrower if a martingale is defined by 1τ≤t −

∫ t

0
λs1τ>s ds. This means

that for a firm that is currently active the default intensity is the conditional
mean arrival rate of default, measured in events per year (or per month, in
some of our results).

Our model is based on a Markov state vector Xt of firm-specific and
macroeconomic covariates, that may be only partially observable. If all of
these covariates were observable, the default intensity of firm i at time t

would be λit = Λ (Si(Xt), θ), where θ is a parameter vector to be estimated
and Si(Xt) is the component of the state vector relevant to the default in-

3For precise mathematical definitions not offered here, see Protter (2004).
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tensity of firm i. The doubly-stochastic assumption, as stated for example in
Chapter 11 of Duffie (2001) or Duffie, Saita, and Wang (2006), is that, con-
ditional on the path of the underlying state process X determining default
and other exit intensities, exit times are the first event times of indepen-
dent Poisson processes. In particular, this means that, given the path of
the state-vector process, the merger and failure times of different firms are
conditionally independent.

A major advantage of the doubly-stochastic formulation is that it allows
decoupled maximum-likelihood estimation of the parameter vector γ deter-
mining the time-series dynamics of the covariate process X as well as the
parameter vector θ determining the default intensities. The two parameter
vectors γ and θ can then be combined to obtain the maximum-likelihood
estimator of, for example, a multi-year portfolio loss probability.

Coupled with the model of default intensities that we adopt here, the
doubly-stochastic assumption is overly restrictive for US corporations during
1979-2004, according to tests developed in Das, Duffie, Kapadia, and Saita
(2006). There are several channels by which the excessive default correlation
shown in Das, Duffie, Kapadia, and Saita (2006) data could arise. With
“contagion,” for example, default by one firm could have a direct influence
on the default likelihood of another firm. This would be anticipated to some
degree if one firm plays a relatively large role in the marketplace of another.
The influence of the bankruptcy of autoparts manufacturer Delphi in Novem-
ber 2005 on the survival prospects of General Motors’ illustrates how failure
by one firm could weaken another, above and beyond the default correlation
induced by common and correlated covariates.

In this paper, we will examine instead the implications of a “frailty”
effect, by which many firms could be jointly exposed to one or more unob-
servable risk factors. We restrict attention for simplicity to a single com-
mon frailty factor and to firm-by-firm idiosyncratic frailty factors, although
a richer model and sufficient data could allow for the estimation of additional
frailty factors, for example at the sectoral level.

The mathematical model that we adopt is actually doubly stochastic once
the information available to the econometrician is artificially enriched to in-
clude the frailty factors. That is, conditional on the future paths of both
the observable and unobservable components of the state vector X, firms are
assumed to default independently. Thus, there are two channels for default
correlation: (i) future co-movement of the observable and unobservable fac-
tors determining intensities, and (ii) uncertainty in the current conditional
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distribution of the frailty factors, given past observations of the observable
covariates and past defaults.

We let Uit be a firm-specific vector of covariates that are observable for
firm i until its exit time Ti, let Vt denote a vector of macro-economic variables
that are observable at all times, and let Yt be an vector of unobservable frailty
variables. The complete state vector is then Xt = (U1t, . . . , Umt, Vt, Yt), where
m is the total number of firms in the dataset.

We let Wit = (1, Uit, Vt) be the vector of observed covariates for company
i (including a constant). Since we observe these covariates on a monthly
basis but measure default times continuously, we take Wit = Wi,k(t), where
k (t) is the time of the most recent month end. We let ti and Ti be the first
and last points in time, respectively, at which company i is observed.

The information filtration (Ht)0≤t≤T generated by firm-specific covariates
is defined by

Ht = σ ({Ui,s : 1 ≤ i ≤ m, ti ≤ s ≤ t ∧ Ti}) .

The default-time filtration (Ut)0≤t≤T is given by

Ut = σ ({Dis : 1 ≤ i ≤ m, ti ≤ s ≤ t ∧ Ti}) ,

where Di is the default indicator process of company i (0 before default, 1
afterwards). The econometrician’s information filtration (Ft)0≤t≤T is defined
by the join,

Ft = σ (Ht ∪ Ut ∪ {Vs : 0 ≤ s ≤ t}) .

The complete-information filtration (Gt)0≤t≤T is the yet larger join

Gt = σ ({Ys : 0 ≤ s ≤ t}) ∨ Ft.

With respect to the complete information filtration (Gt), defaults are as-
sumed to be doubly stochastic, with the default intensity of firm i given
by λit = Λ(Si(Xt); θ), where Si(Xt) = (Wit, Yt). We take the proportional-
hazards form

Λ ((w, y) ; θ) = eβ1w1+···+βnwn+ηy (1)

for a parameter vector θ = (β, η) common to all firms. We can write

λit = eβ·Wit eηYt ≡ λ̃it e
ηYt ,
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so that λ̃it is the component of the (Gt)-intensity that is due to observable
covariates and eηYt is a scaling factor due to the unobservable frailty.

In spirit (see Brémaud (1981), Chapter II, Theorem 14), the econometri-
cian’s default intensity for firm i is

λit = E (λit | Ft) = eβ·WitE
(
eηYt | Ft

)
,

which is obtained by averaging over the distribution of Yt given Ft. We do
not rely on this calculation, which need not hold in general settings. Even
when this calculation of the econometrician’s default intensity is justified, it
is not generally true4 that the conditional probability of survival to a future
time T (neglecting the effect of other exits) is given by the “usual formula,”

E
(
e−

R T

t
λis ds | Ft

)
.

Rather, for a firm that has survived to time t, the probability of survival to
time T is (again neglecting other exits)

E
(
e−

R T

t
λis ds | Ft

)
. (2)

Although λi is not the (Ft)-intensity of default, (2) is justified by the law of
iterated expectations and the fact that, conditional on the complete informa-
tion filtration, the doubly stochastic property implies that the Gt-conditional
survival probability is

E
(
e−

R T

t
λis ds | Gt

)
.

Similarly, ignoring other exits, the Ft-conditional probability of joint survival
by two currently alive firms, i and j, until a future time T is

E
(
e−

R T

t
(λis+λjs) ds | Ft

)
.

Before considering the effect of other exits, such as mergers and acquisitions,
the maximum likelihood estimators for these Ft-conditional survival proba-
bilities, and related quantities such as default correlation, are obtained under
the usual smoothness conditions by substituting the maximum likelihood es-
timators for the parameters (γ, θ) into these formulas. An extension that

4See Collin-Dufresne, Goldstein, and Huggonier (2004) for another approach to this
calculation.
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treats other exits is given by Duffie, Saita, and Wang (2006). For example, it
is impossible for a firm to default beginning in 2 years if it has already been
acquired by another firm within 2 years.

Under the doubly-stochastic assumption, if all covariates determining de-
fault intensities are observable, Proposition 2 of Duffie, Saita, and Wang
(2006) states that the joint maximum likelihood estimation of the parameter
vector γ determining the covariate time-series dynamics and the coefficients
θ determining the exit intensities can be decomposed into separate maximum
likelihood estimation problems for θ and for γ. This decomposition, however,
is not generally feasible for the frailty model.

To further simplify notation, let W = (Wi : 1 ≤ i ≤ m) denote the
vector of observed covariate processes for all companies, and let D = (Dis :
1 ≤ i ≤ m) denote the vector of default indicators of all companies. On
the complete-information filtration (Gt), the doubly-stochastic property and
Proposition 2 of Duffie, Saita, and Wang (2006) states that the likelihood of
the data at the parameters (γ, θ) is of the form

L (γ, θ |W, Y, D)

= L (γ |W, Y )L (θ |W, Y, D)

= L (γ |W, Y )
m∏

i=1



e
−

Ti
P

t=ti

λit∆t
Ti∏

t=ti

[Ditλit∆t + (1 − Dit)]



 . (3)

We simplify by supposing that the frailty process Y has a fixed probability
distribution, and is independent of the observable covariate process W . With
respect to the econometrician’s filtration (Ft), the likelihood is therefore

L (γ, θ |W, D) =

∫
L (γ, θ |W, y, D)pY (y) dy

= L (γ |W )

∫
L (θ |W, y, D)pY (y) dy

= L (γ |W )EY




m∏

i=1



e
−

Ti
P

t=ti

λit∆t
Ti∏

t=ti

[Ditλit + (1 − Dit)]




∣∣∣∣ W, D



 , (4)

where pY ( · ) and EY denote the probability density of the path of the un-
observed frailty process Y , and expectation with respect to that density,
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respectively. (This expression ignores for simplicity the precise intra-month
timing of default.)

We will provide the maximum likelihood estimator (MLE) (θ̂, γ̂) for (θ, γ).
Extending from Duffie, Saita, and Wang (2006), we can decompose this MLE
problem into separate maximum likelihood estimations of γ and θ, by maxi-
mization of the first and second factors on the right-hand side of (4), respec-
tively.

Even when considering other exits, (θ̂, γ̂) is the full maximum likelihood
estimator for (θ, γ) provided other exits are jointly doubly stochastic with
defaults on the complete information filtration (Gt), as in Duffie, Saita, and
Wang (2006). We make this simplifying assumption.

In order to evaluate the expectation in (4) one could simulate sample
paths of the frailty process Y . Since our covariate data are monthly obser-
vations from 1979 to 2004, evaluating (4) means Monte Carlo integration in
a high dimensional space. This is extremely numerically intensive by brute-
force Monte Carlo, given the overlying search for parameters. We suppose
that Y is a standard Brownian motion and estimate the model parameters
using a combination of the EM algorithm and the Gibbs sampler, as described
in Section 3 and the appendices.

Brownian motion is a reasonable starting point for this frailty analysis,
given its continuity and iid increments properties. Although allowing for
jumps and mean reversion could enrichen the frailty effects, we have avoided
these extensions because of our concern at identifying the additional pa-
rameters involved, given the relatively small number of defaults that have
occurred. Similarly, we avoid including a drift (time trend) coefficient, al-
lowing the posterior distribution of a zero-drift Brownian motion to inform
us of the effect of variation over time of the frailty effect. Without loss of
generality, we can fix the volatility parameter of the Brownian motion to
be any constant, in our case 1, because scaling the parameter η determin-
ing the dependence of the default intensities on Yt plays precisely the same
role in the model as the scaling of the volatility parameter of the Brownian
motion Y . The starting value of the Brownian motion is taken to be zero.
Although any fixed starting condition for Y (t) can be absorbed into the de-
fault intensity intercept coefficient β1 without loss of generality, we do lose
some generality by taking the initial condition for Y to be deterministic. An
alternative would be to add one or more additional parameters specifying
the initial probability distribution of Y . We found that the posterior of Y (t)
tended to be robust to the initial assumed distribution of Y , for t within a
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year or two after the initial date in our sample.

2.1 Unobserved Heterogeneity

It may be that a substantial portion of the differences among firms’ default
risks is due to unobserved heterogeneity. We consider an extension of the
model by introducing a firm-specific heterogeneity factor Zi, so that the
complete-information (Gt) default intensity is assumed to be of the form

λit = eXitβ+γYtZi = λ̃ite
γYtZi, (5)

where Z1, . . . , Zm are independently and identically gamma distributed ran-
dom variables that are jointly independent of the observable covariates W

and the common frailty process Y . Again, we assume that defaults and other
exits are doubly stochastic on the complete-information filtration (Gt).

Fixing the mean of the heterogeneity factor Zi to be 1 without loss of
generality, we found that maximum likelihood estimation does not pin down
the variance of Zi to any reasonable precision with the limited set of data
available. We anticipate that far larger datasets would be needed, given the
already large degree of observable heterogeneity. In the end, we examine
the potential role of unobserved heterogeneity for default risk by fixing the
standard deviations of Zi at 0.5.

Letting Z = (Z1, . . . , Zm), the complete-information likelihood of the
parameters (γ, θ) is

L (γ, θ |W, Y, Z, D)

= L (γ |W ) · L (θ |W, Y, Z, D)

= L (γ |W )

m∏

i=1



e
−

Ti
P

t=ti

λit∆t
Ti∏

t=ti

[Ditλit + (1 − Dit)]



 , (6)

where the default intensities λit are given by (5). Using our independence
assumptions, the likelihood of the observed data is therefore

L (γ, θ |W, D) = L (γ |W )

∫ ∫
L (θ |W, y, z, D) pY (y)pZ(z) dy dz

= L (γ |W )E




m∏

i=1



e
−

Ti
P

t=ti

λit∆t
Ti∏

t=ti

[Ditλit + (1 − Dit)]







 , (7)
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where pY (y) and pZ(z) denote the densities of the frailty path y and the
vector z of heterogeneity outcomes, respectively, and where the expectation
integrates over the product of the distributions of Y and Z.

3 Parameter Estimation

We now turn to the problem of inference from data. The parameter vector
γ determining the time-series model for the observable covariate process W

is specified and estimated in Duffie, Saita, and Wang (2006). This model
is vector-autoregressive Gaussian, with a number of structural restrictions
chosen for parsimony and tractability. We focus here on the estimation of
the parameter vector θ of the default intensity model.

3.1 Estimating the Model with Frailty

We use a variant of the expectation maximization (EM) algorithm (Demptser,
Laird, and Rubin (1977)), an iterative method for the computation of the
maximum likelihood estimator of parameters in models involving missing or
incomplete data. See also Cappé, Moulines, and Rydén (2005), who discuss
EM in the context of hidden Markov models. In many potential applications,
explicitly calculating the conditional expectation required in the E-step of
the algorithm may not be possible. Nevertheless, the expectation can be
approximated by Monte Carlo integration, which gives rise to the stochas-
tic EM algorithm, as explained for example by Celeux and Diebolt (1986)
and Nielsen (2000), or to the Monte-Carlo EM algorithm (Wei and Tanner
(1990)).

Maximum likelihood estimation (MLE) of the intensity parameter vector
θ involves the following steps:

0. Initialize an estimate of θ = (β, η) at θ(0) = (β̂, 0.05), where β̂ is the
maximum likelihood estimator of β in the model without frailty, which
can be obtained by maximizing the likelihood function (3) by standard
methods such as the Newton-Raphson algorithm.

1. (Monte-Carlo E-step.) Given the current parameter estimate θ(k) and
the observed covariate and default data W and D, respectively, draw
sample paths Y (j) := {Y

(j)
t , 0 ≤ t ≤ T} for j = 1, . . . , n from the

conditional distribution p( · |W, D, θ(k)) of the latent Brownian motion
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frailty process Y . We do this with the Gibbs sampler described in
Appendix A. We let

Q
(
θ, θ(k)

)
= Eθ(k) (logL (θ |W, Y, D))

=

∫
logL (θ |W, y, D)pY

(
y |W, D, θ(k)

)
dy, (8)

which is commonly referred to in the EM literature as the “expected
complete-data log-likelihood” or “intermediate quantity.” Using the
sample paths generated by the Gibbs sampler, (8) can be approximated
as

Q̂
(
θ, θ(k)

)
=

1

n

n∑

j=1

logL
(
θ |W, Y (j), D

)
. (9)

2. (M-step.) Maximize Q̂(θ, θ(k)) with respect to the parameter vector
θ, for example by Newton-Raphson. The maximizing choice of θ is the
new parameter estimate θ(k+1).

3. Replace k with k + 1, and return to Step 2, repeating the MC E-step
and the M-step until reasonable numerical convergence.

One can show (Demptser, Laird, and Rubin (1977) or Gelman, Carlin,
Stern, and Rubin (2004)) that L(γ, θ(k+1) |W, D) ≥ L(γ, θ(k) |W, D), that
is, the observed data likelihood (4) is non-decreasing in each step of the
EM algorithm. Under regularity conditions, the parameter sequence {θ(k) :
k ≥ 0} therefore converges to at least a local maximum. (See Wu (1983)
for a precise formulation in terms of stationarity points of the likelihood
function.) Nielsen (2000) gives sufficient conditions for global convergence
and asymptotic normality of the parameter estimates, which however are
usually hard to verify. As with many maximization algorithms, a simple
way to mitigate the risk that one misses the global maximum is to start the
iterations at many points throughout the parameter space.

One can show under regularity conditions (see for example Proposition
10.1.4. of Cappé, Moulines, and Rydén (2005)) that

∇θL (θ′ |W, Y, D) = ∇θQ (θ, θ′) |θ=θ′,
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so that in particular

∇θL
(
θ̂ |W, Y, D

)
= ∇θQ

(
θ, θ̂
)
|θ=θ̂.

This means that the Hessian matrix of the expected complete-data likelihood
can be used to calculate asymptotic standard errors for the MLE parameter
estimators.

3.2 Estimation with Unobserved Heterogeneity

An extension of the model that incorporates unobserved heterogeneity can
be estimated with the following algorithm:

0. Initialize Z
(0)
i = 1 for 1 ≤ i ≤ m and initialize θ(0) = (β̂, 0.05), where β̂

is the maximum likelihood estimator of β, in the model without frailty.

1. (Monte-Carlo E-step.) Given the current parameter estimate θ(k), draw
samples

(
Y (j), Z(j)

)
for j = 1, . . . , n from the joint posterior distribu-

tion pY,Z( · | W, D, θ(k)) of the frailty sample path Y = {Yt : 0 ≤ t ≤ T}
and the vector Z = (Zi : 1 ≤ i ≤ m) of unobserved heterogeneity
variables. This can done by, for example, using the Gibbs sampler
described in Appendix B. Then calculate the expected complete-data
log-likelihood

Q
(
θ, θ(k)

)
= Eθ(k) (logL (θ | W, Y, Z, D))

=

∫
logL (θ | W, y, z, D) pY,Z

(
y, z | W, D, θ(k)

)
dy dz. (10)

Using the sample paths generated by the Gibbs sampler, (10) can be
approximated by

Q̂
(
θ, θ(k)

)
=

1

n

n∑

j=1

logL
(
θ |W, Y (j), Z(j), D

)
. (11)

2. (M-step.) Maximize Q̂(θ, θ(k)) with respect to the parameter vector θ,
using the Newton-Raphson algorithm. Set the new parameter estimate
θ(k+1) equal to this maximizing value.

3. Replace k with k + 1, and return to Step 2, repeating the MC E-step
and the M-step until reasonable numerical convergence.
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4 Empirical analysis

We fit our models to the data for all matchable U.S. non-financial public
firms, as described in Section 1.2. This section presents the basic results.

4.1 The Model with Frailty

Table 2 shows the estimated covariate parameter vector β̂ and frailty volatil-
ity parameter η̂, with “asymptotic” estimates of standard errors of the coef-
ficients given parenthetically.

Constant DTD Trailing Stock Return
−1.625
(0.137)

−1.198
(0.037)

−0.651
(0.075)

3m T-bill Trailing S&P Latent Factor Volatility
−0.216
(0.029)

1.677
(0.303)

0.109
(0.015)

Table 2: Maximum likelihood estimates of the intensity parameters in the model with

frailty. “DTD” is distance to default. The frailty volatility is the coefficient η of depen-

dence of the default intensity on the standard Brownian frailty process Y . Standard errors,

given in parentheses, were computed using the Hessian matrix of the expected complete

data log-likelihood at θ = θ̂.

Our results concerning important roles of both firm-specific and macroe-
conomic covariates are consistent with prior literature on modeling default
intensities. In particular, distance to default, although statistically highly
significant, does not on its own determine the default intensity, but does
explain a large part of the variation of default risk over time. For example
a negative shock of distance to default by one unit increases the default in-
tensity by roughly e1.2 − 1 ≈ 230%. As in Duffie, Saita, and Wang (2006),
the one-year trailing stock return covariate proposed by Shumway (2001) has
a highly significant impact on default intensities. Perhaps it is a proxy for
firm-specific information that is not captured by distance to default.5 The
coefficient linking the trailing S&P 500 return to a firm’s default intensity

5There is also the potential, with the momentum effects documented by Jegadeesh and
Titman (1993) and Jegadeesh and Titman (2001), that trailing return is a forecaster of
future distance to default.
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is positive at conventional significance levels, and of the unexpected sign by
univariate reasoning. Of course, with multiple covariates, the sign need not
be evidence that a good year in the stock market is itself bad news for default
risk. It could also be the case that, after “boom” years for the stock market,
distance-to-default overstates the financial health of a company.

The estimate η̂ = 0.109 of the dependence of the unobservable default
intensities on the frailty variable Y (t), corresponds to a monthly volatility of
this frailty effect of 10.9%, which translates to an annual volatility of 37.8%.
The effect is highly economically and statistically significant.

Constant DTD Trailing Stock Return
−2.093
(0.108)

−1.200
(0.035)

−0.681
(0.070)

3m T-bill Trailing S&P Latent Factor Volatility
−0.106
(0.020)

1.481
(0.284)

0
(0)

Table 3: Maximum likelihood estimates of the intensity parameters in the model without

frailty. Standard errors, given in parenthesis, were computed using the Hessian matrix of

the likelihood function at θ = θ̂.

Table 3 reports the MLE of θ in the model without frailty. We see that
the signs, magnitudes and statistical significance of the coefficients on the
observable covariates are essentially unaffected. In particular, they almost
all lie within one standard error of those of the original estimates for the
model with frailty variable.

The Monte Carlo EM algorithm allows us to compute the FT -conditional
posterior distribution6 of the frailty variable Yt, where T is the final date
of our sample. This posterior for the latent Brownian motion frailty Yt is
a by-product of the E-step. Figure 2 visualizes the conditional mean of the
latent factor, estimated as the average of 5,000 sample paths for Y (t) drawn
from the Gibbs sampler. Also shown are bands around the posteriod mean
given by standard deviations from the posterior distribution. We see that
there are substantial fluctuations in the frailty effect on default risk over
time. For example in 2001, average default intensities were estimated to be

6With this we mean the conditional distribution of the latent factor given all of the
historical default and covariate data through the end of the sample period, and using the
estimated parameter vector θ̂.
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Figure 2: Conditional posterior mean of the scaled latent Brownian motion frailty vari-

able with 1-sigma error bands, that is, {E (ηYt | FT ) : 0 ≤ t ≤ T }

roughly e0.8 ≈ 2.2 times larger than during 1995, ignoring for now the non-
linear effects. In order to precisely calculate the increase in the conditional
expected default intensity, one compares E[eY (t) | FT ] for t in 1995 and in
2001, respectively. The ratio of these two expectations is the ratio of the FT -
conditional expected default intensities for 1995 and 2001, everything else
equal. In our case, the linear approximation works reasonably well because
the Jensen effects when calculating the expectations of eY (t) for the two
years are roughly offsetting. The implications of frailty for contemporaneous
conditional default probabilities are the subject of Section 6.

Figure 3 shows the conditional density of Y (t) for t at the end of January
1998, conditioning on FT (in effect, the entire sample of default times and
observable covariates to 2004), and also shows the density of Yt when con-
ditioning on only Ft (the data available up to and including January 1998).
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Figure 3: Conditional posterior density of the scaled latent factor in January 1998 using

all data, that is, p (ηYt | FT ) (solid line), and using only past data, that is p (ηYt|Ft) (dashed

line). These densities were calculated using the forward-backward recursions described in

Section 5.

One observes that the FT -conditional distribution of Yt is more concentrated
than that obtained by conditioning on only the concurrently available in-
formation, Ft. The posterior mean of Yt given the information available in
January 1998 is lower that than that given all of the data through 2004,
reflecting the sharp rise in corporate defaults in 2001 and 2002 above and
beyond that predicted from the observed covariates alone.

Figure 4 shows the cross-sectional average of the observable component
eβ̂·Wit of the estimated default intensity. Figure 5 shows the same average
covariate-implied default intensity after removing the three most risky firms
at each single point in time. The differences between Figure 4 and 5 indicate
that the three most risky companies at each point in time explain a large
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Figure 4: Portfolio average yearly default intensity associated with observable covariates

only.

portion of the instantaneous default risk of the whole portfolio. For example,
in December 2001 one company alone, Classic Communications, Incorported,
contributed about 300 basis points to the average covariate-implied default
intensity of the whole portfolio, having had an estimated mean arrival rate
of 50 default events per year. Classic Communications defaulted in July 2002.

4.2 With Frailty and Unobserved Heterogeneity

Table 4 shows the MLE of the covariate parameter vector β and the frailty
volatility parameter η, with estimated standard errors shown parenthetically.
Table 4 and Figure 6 indicate that, while including unobserved heterogeneity
decreases the volatility of the latent Brownian motion frailty variable from
10.9% to 9.1% a month, the conclusions from the previous section remain
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Figure 5: Same as Figure 9, but with three most risky firms removed at each point in

time. Note that these three firms will in general vary over time.

the same.

4.3 Model Comparison

Unlike standard tests that evaluate the overall fit of a statistical model (such
as the chi-square test), we will compare the marginal likelihoods of the mod-
els. This does not rely on large-sample distribution theory and has the intu-
itive interpretation of attaching weights to the competing models.

We consider a Bayesian approach to comparison of the quality of fit of
competing models and assume positive prior weights each of the models
“noF” (the model without frailty), “F”(the model with a common frailty
variable), “H”(the model with unobserved heterogeneity and no common
frailty), and finally “F&H”(the model with a common frailty variable and
with unobserved heterogeneity). Consider for example the model with com-
mon frailty variable versus the model without. Using the natural informal
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Constant DTD Trailing Stock Return
−1.551
(0.119)

−1.594
(0.046)

−0.450
(0.074)

3m T-bill Trailing S&P Latent Factor Volatility
−0.206
(0.026)

1.655
(0.306)

0.091
(0.013)

Table 4: Maximum likelihood estimates of the intensity parameters in the model with

frailty variable and unobserved heterogeneity. Asymptotic standard errors, given in paren-

theses, were computed using the Hessian matrix of the likelihood function at θ = θ̂.

notation, the posterior odds ratio is

p (F |W, D)

p (noF |W, D)
=

LF (θ̂F |W, D)

LnoF (θ̂noF |W, D)

p (F)

p (noF)
, (12)

where θ̂M and LM denote the MLE and the likelihood function for a certain
model M, respectively. Plugging (4) into (12) gives

p (F |W, D)

p (noF |W, D)
=

L (γ̂F |W, Y )L(θ̂F |W, D)

L (γ̂noF |W, Y )L(θ̂noF |W, D)

p (F)

p (noF)

=
L(θ̂F |W, D)

L(θ̂noF |W, D

p (F)

p (noF)
, (13)

using the fact that the time-series model for the covariate process W is the
same in both models. The first factor of the right-hand side is sometimes
known as the “Bayes factor.”

Following Kass and Raftery (1995) and Eraker, Johannes, and Polson
(2003), we focus on the size of the statistic Φ given by twice the natural
logarithm of the Bayes factor, which is on the same scale as the likelihood
ratio test statistic. A value for Φ between 2 and 6 provides positive evi-
dence, a value between 6 and 10 strong evidence, and a value larger than
10 provides very strong evidence for the alternative model. This criterion
does not necessarily favor more complex models due to the marginal nature
of the likelihood functions in (13). See Smith and Spiegelhalter (1980) for a
discussion of the penalizing nature of the Bayes factor, sometimes referred
to as the “fully automatic Occam’s razor.” Table 5 shows the Bayes factors
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Figure 6: Conditional posterior mean {E (ηYt | FT ) : 0 ≤ t ≤ T } with 1-sigma error

bands for the scaled latent Brownian motion frailty variable in the model that also in-

corporates unobserved heterogeneity.

for various pairs of models.7 In the sense of this approach to model compari-
son, we see strong evidence in favor of including a time-varying latent frailty
variable as well as unobserved heterogeneity.

5 Default Intensity Dynamics

While Figure 2 illustrates the posterior distribution of the frailty Brownian
motion Yt given all information available at the final time T of the sample
period, most applications of a default-risk model would call for the posterior
distribution of Yt given the current information Ft. For example, a bank
holding a portfolio of corporate debt could be interested in measuring its
current value at risk on this basis.

7We currently use the expected complete-data log-likelihood as a crude estimate of the
log-likelihood, and will include the precise Bayes factors in the next draft of the paper.
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noF vs. F noF vs. H F vs. F&H H vs. F&H
56.2 337.2 337.4 56.4

Table 5: Twice the natural logarithm of the Bayes factor. Here, “noF” is the model

without frailty variable, “F” is the model with the common frailty variable, “H” is the

model with unobserved heterogeneity, and “F&H” is the model with a common frailty

variable and with unobserved heterogeneity.

The standard approach to filtering and smoothing in non-Gaussian state
space models is the so-called forward-backward algorithm due to Baum,
Petrie, Soules, and Weiss (1970). We let R (t) = {i : Di,t = 0, ti ≤ t ≤ Ti}
denote the set of firms that are alive at time t, and ∆R (t) = {i ∈ R(t− 1) :
Dit = 1, ti ≤ t ≤ Ti} be the set of firms that defaulted at time t. A discrete-
time approximation of the complete-information likelihood of the observed
survivals and defaults at time t is

Lt (θ |W, Y, D) = Lt (θ |Wt, Yt, Dt) =
∏

i∈R(t)

e−λit∆t
∏

i∈∆R(t)

λit∆t.

The normalized version of the forward-backward algorithm allows us to cal-
culate the filtered density of the latent Brownian motion frailty variable by
the recursion

ct =

∫ ∫
p (yt−1 | Ft−1) φ (yt − yt−1)Lt (θ |Wt, yt, Dt) dyt−1 dyt

p (yt | Ft) =
1

ct

∫
p (yt−1 | Ft−1) φ (yt − yt−1)Lt (θ |Wt, yt, Dt) dyt−1,

where φ( · ) is the Gaussian unconditional density of Yt − Yt−1. For this
recursion, we begin with the distribution (Dirac measure) of Y0 concentrated
at 0. Figure 7 shows the path over time of the mean E(Yt | Ft) of this posterior
density.

Once the filtered density p (yt | Ft) is available, the marginal smoothed
density p (yt | FT ) can be calculated using the normalized backward recursions
(Rabiner (1989)). Specifically, for t = T − 1, T − 2, . . . , 1, we apply the
recursion for the marginal density

αt|T (yt) =
1

ct+1

∫
φ (yt − yt+1)Lt+1 (θ |Wt+1, yt+1, Dt+1)αt+1|T (yt+1) dyt+1
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Figure 7: Posterior mean and 1-sigma error bands of the scaled latent Brownian motion

frailty variable conditional on only past data, that {ηE (Yt | Ft) : 0 ≤ t ≤ T }

p (yt | FT ) = p (yt | Ft)αt|T (yt) ,

beginning with αT |T (yt) = 1.
For the joint posterior distribution p

(
(y0, y1, . . . , yT )′ | FT

)
of the latent

Brownian motion frailty variables, one may employ, for example, the Gibbs
sampler described in Appendix A.

6 The Term-Structure of Defaults

We turn to the implications of frailty on the term structure of default risk for
a given conditioning date t and currently active issuer i, defined at maturity
time u by the hazard rate

hi(t, u) =
1

pi(t, u)

−∂pi(t, u)

∂u
,
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where (ignoring other exit effects, which are treated in Duffie, Saita, and
Wang (2006))

pi(t, u) = E
(
e−

R u

t
λis ds

∣∣ Ft

)

is the Ft-conditional probability of survival from t to u. The hazard rate
is the time-t conditional mean expected rate of default at time u, given the
currently available information Ft and given as well the event of survival up
to time u.

As an illustration, we consider the term structure of default hazard rates
of Xerox Corporation for three different models, (i) the basic model in which
only observable covariates are considered, (ii) the model with the latent
Brownian frailty variable, and (iii) the model with the common Brownian
frailty variable as well as unobserved heterogeneity. Figure 8 shows the term
structure of default rates for Xerox Corporation in December 2003, given the
available information at that time.

7 Default Correlation

As noted before, in the model without frailty, firms’ default times are cor-
related only as implied by the correlation of observable factors determining
their default intensities. In this case, model-implied default correlations were
found to be significantly lower than the empirically observed ones (DeServi-
gny and Renault (2002), and Das, Duffie, Kapadia, and Saita (2006)). Com-
mon dependence on unobservable covariates, as in our model, introduces an
additional channel of default correlation.

For a given conditioning date t and maturity date u > t, and for two given
active firms i and j, the default correlation is the Ft-conditional correlation
between Diu and Dju. Figure 9 shows the effect of the latent Brownian
motion frailty variable on the default correlation for two companies in our
dataset. We see that the latent factor induces additional correlation and that
the effect is increasing as the time horizon increases.

A common frailty also increases the likelihood of a large number of de-
faults. In order to isolate this effect, we considered a hypothetical portfolio
consisting of the 1,813 companies in our data set that were active as of Jan-
uary 1998. We computed the posterior distribution, as of January 1998,
of the total number of defaults during the subsequent five years, January
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Figure 8: The term structure of hazard rates for Xerox Corporation in December 2003

for a) the model with frailty variable (solid line), b) the model without frailty variable

(dashed line) and c) the model with frailty variable and unobserved heterogeneity (dotted

line).

1998 to December 2002. Figure 10 shows the density of the total number of
defaults in the portfolio for three different models, namely the fitted model
with (i) common frailty variable, (ii) a hypothetical model that has the same
coefficients but an independently evolving Brownian frailty variable for each
company with the same initial value at the beginning time t, January 1998,
drawn from the posterior distribution of Yt−1 given Ft and (iii) a hypothetical
model, again with the same coefficients, but completely independent frailty
variables for each company.

The fatter right tail of the aggregate default distribution for the model
with a common frailty variable reflects both the effect of correlation associ-
ated with future co-movements of default intensities through their exposure
to the common frailty variable, as well as uncertainty regarding the current
level of the frailty variable in January 1998.

In particular, we see in Figure 10 that the two hypothetical models that
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Figure 9: Default correlation of ICO, Incorporated and Xerox Corporation for a) the

model with a common frailty variable (solid line), b) the model without a frailty variable

(dashed line), and c) the model with frailty variable and unobserved heterogeneity (dotted

line)

do not have a common frailty variable assign virtually no probability of more
than 175 defaults occurring between 1998/01 and 2002/12. The 95- and
99-percentile for the model with completely independent frailty variable are
117 and 123 defaults, respectively. The model with independently evolving
frailty variables with the same initial value in January 1998 has a 95- and
99-percentile of 147 and 167 defaults respectively. The actual number of
defaults in our dataset during this time period was 195.

The 95- and 99-percentiles of the model with a common frailty variable
are 189 and 245 defaults, respectively. The realized number of defaults during
this event horizon, 195, is slightly below the 96-percentile of the distribution
implied by the fitted frailty model, and therefore constituting a rather ex-
treme event. On the other hand, taking the hindsight bias into account, in
that our analysis was partially motivated by the high number of defaults in
the years 2001 and 2002, the occurrence of 195 defaults might not be such
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Figure 10: Density of total number of defaults in portfolio in model a) with frailty

variable (solid line), b) with independent frailty variable for each company but same initial

value drawn from p (yt−1 | Ft), (dashed line), and c) with completely independent frailty

variable for each company (dotted line). The density estimates were obtained by applying

a Gaussian kernel smoother (bandwidth equal to 5) to the empirical default distributions

which in turn were generated by Monte Carlo simulation.

an extreme event.

8 Out-of-Sample Accuracy

Here we examine the out of sample accuracy ratios, computed as explained in
Duffie, Saita, and Wang (2006). The overall accuracy is indeed approximately
the same as that of Duffie, Saita, and Wang (2006). Accuracy ratios, however,
measure only the ability to rank firms by default probability, and do not
capture the out-of-sample ability to estimate the magnitudes of the default
probabilities, which we will turn to in the next draft.
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Figure 11: Out-of-sample accuracy ratios (ARs). The model is that estimated
with data up to December 1992. The solid line provides one-year-ahead ARs based
on the model without frailty. The dashed line shows one-year-ahead ARs for the
model with frailty. The dash-dot line shows 5-year-ahead ARs for the model with
frailty.

9 Conclusion

This paper finds significant evidence of the presence among U.S. corporates
of one or more unobservable common source of default risk, that increases
default correlation and extreme portfolio loss risk above and beyond that im-
plied by observable common and correlated macroeconomic and firm-specific
sources of default risk. We offer a new model of corporate default intensities
in the presence of a time-varying latent “frailty” factor, and with unobserved
heterogeneity. We provide a method for fitting the model parameters using a
combination of the Monte Carlo EM algorithm and the Gibbs sampler. This
also provides the conditional posterior distribution of the Brownian motion
frailty variable as a by-product.

Applying this model to data for U.S. firms between January 1979 and
March 2004, we find that the level of corporate default rates varies over time
well beyond what can be explained by a model that only includes observable
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covariates. In particular, the posterior distribution of the frailty variable
shows that the rate of corporate defaults was much higher in 1989-1990 and
2001-2002, and much lower during the mid-nineties and in 2003-2004, than
those implied by an analogous model without frailty. Moreover, the histori-
cally observed number of defaults in our dataset between January 1998 and
December 2002 lies above the 99.9-percentile of the aggregate default distri-
bution associated with the model based on observable covariates only, but
lies well within the support of the distribution of the total defaults produced
by the frailty-based model.

Our methodology could be applied to other situations in which a com-
mon unobservable factor is suspected to play an important role in the time-
variation of arrivals for certain events, for example mergers and acquisitions,
mortgage prepayments and defaults, or leveraged buyouts.

Das, Duffie, Kapadia, and Saita (2006) developed a test that rejected the
joint hypothesis of correctly specified default probabilities and the doubly
stochastic assumption that defaults are independent conditional on the paths
of observable risk factors. We plan to extend that test to this setting, in
order to test whether the default clustering in the data can be captured by
the frailty effect.

Our results suggests both significant shifts in individual firm default prob-
abilities associated with shifts in the posterior distribution of the frailty fac-
tor, as well as significant increases in the likelihood of default clustering.

We estimate that the common frailty variable represents a common un-
observable factor in default intensities with an annual volatility of roughly
40%. We are currently investigating the implications of mean reversion of
this common factor. In the setting of an Ornstein-Uhlenbeck extension of the
frailty model, our preliminary results suggest an estimated annual mean re-
version rate of roughly 20%, which means that when defaults cluster in time
above and beyond what is suggested by observable default-risk factors, the
half life of the impact on the unobservable common default intensity factor
is roughly 3 years. Unfortunately, the data do not appear to be sufficiently
rich to pin down the mean reversion rate well. While difficult to pin down,
mean reversion is nevertheless likely to be an important feature of a model
of the type that we suggest, given the unconditionally explosive nature of
Brownian motion without mean reversion. While the posterior distribution
of the Brownian frailty factor without mean reversion is kept well under
control by the mere conditioning effect of the default data, we are finding
preliminary evidence in the absence of mean reversion of over-shooting of

33



portfolio-average default-rate forecasts, out of sample.

Appendices

A Applying the Gibbs Sampler with Frailty

A central quantity of interest for describing and estimating the historical
default dynamics is the posterior density pY ( · |W, D, θ) of the latent frailty
process Y . This is a complicated high-dimensional density. It is prohibitively
computationally intensive to directly generate samples form this distribution.
Nevertheless, Markov Chain Monte Carlo (MCMC) methods can be used for
exploring this posterior distribution by generating a Markov Chain over Y ,
denoted {Y (n)}N

n≥1, whose equilibrium density is pY ( · |W, D, θ). Samples
from the joint posterior distribution can then be used for parameter inference
and for analyzing the properties of the frailty process Y . For a function f ( · )
satisfying regularity conditions, the Monte Carlo estimate of

E [f (Y ) |W, D, θ] =

∫
f (y) pY (y |W, D, θ) dy (14)

is given by

1

N

N∑

n=1

f
(
Y (n)

)
. (15)

Under conditions, the ergodic theorem for Markov chains guarantees the
convergence of this sum to its expectation as N → ∞. One such function
that will be of interest to us is the identity, f (y) = y, so that

E [f (Y ) |W, D, θ] = E [Y |W, D, θ] = {E (Yt | FT ) : 0 ≤ t ≤ T} ,

the posterior mean of the latent Brownian motion frailty process.
The linchpin to MCMC is that the joint distribution of the frailty path

Y = {Yt : 0 ≤ t ≤ T} can be broken into a set of conditional distributions. A
general version of the Clifford-Hammersley (CH) Theorem (Hammersley and
Clifford (1970) and Besag (1974)) provides conditions under which a set of
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conditional distributions characterizes a unique joint distribution. For exam-
ple, in our setting, the CH Theorem indicates that the density pY ( · |W, D, θ)
is uniquely determined by the following set of conditional distributions,

Y0 | Y1, Y2, . . . , YT , W, D, θ

Y1 | Y0, Y2, . . . , YT , W, D, θ
...
YT | Y0, Y1, . . . , YT−1, W, D, θ

using the naturally suggested interpretation of this informal notation. We
refer the interested reader to Robert and Casella (2005) for an extensive
treatment of Monte Carlo methods, as well as Johannes and Polson (2003) for
an overview of MCMC methods applied to problems in financial economics.

In our case, the conditional distribution of Yt at a single point in time t,
given the observable variables (W, D) and given Ys for all s 6= t in some dis-
crete set Y (−t) of times, is somewhat tractable, as shown below. This allows
us to use the Gibbs sampler (Geman and Geman (1984) or Gelman, Carlin,
Stern, and Rubin (2004)) to draw whole sample paths from the posterior
distribution of {Yt : 0 ≤ t ≤ T}, given the default and covariate data and the
parameter vector θ.

First, we derive the conditional distribution of Yt given (W, D) and given
Y (−t) = {Ys : s 6= t}, which by the Markov property of Y is the same as
the conditional distribution of Y given (W, D), Yt−1, and Yt+1. Recall that
L (θ |W, Y, D) denotes the complete-information likelihood of the observed
default pattern, where θ = (β, η). For 0 < t < T, Bayes’ rule implies that

p
(
Yt |W, D, Y (−t), θ

)
∝ L

(
θ |W, D, Y (−t)

)
· p
(
Yt | Y

(−t), θ
)

= L (θ |W, Y, D) · p (Yt | Yt−1, θ) · p (Yt | Yt+1, θ) . (16)

Combining (4) and (16),

log p
(
Yt |W, D, Y (−t), θ

)

= C0 + logL (θ |W, Y, D) + log p (Yt | Yt−1, η) + log p (Yt | Yt+1, η)

= −

m∑

i=1

λit∆t+

m∑

i=1

log (λit) Dit−
1

2η2
(Yt − Yt−1)

2−
1

2η2
(Yt+1 − Yt)

2 +C1

= −

m∑

i=1

λ̃ite
ηYt∆t +

m∑

i=1

log
(
λ̃it

)
Dit + ηYt

m∑

i=1

Dit
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−
1

2η2
(Yt − Yt−1)

2 −
1

2η2
(Yt+1 − Yt)

2 + C2,

where C0, C1, and C2 are constants. Hence, for 0 < t < T ,

log p
(
Yt |W, D, Y (−t), θ

)

= co + c1 ·
(
(Yt − Yt−1)

2 + (Yt+1 − Yt)
2)+ c2 · e

ηYt + c3 · Yt, (17)

where the constants c0, . . . , c3 depend on the default and covariate data, but
do not depend on the latent factor at any point in time.

Equation (17) determines the conditional density of Yt given Yt−1 and
Yt+1 in an implicit form. In order to draw numbers from this conditional
distribution, we discretize the space of possible outcomes of Y , allowing Yt

to take values in a some finite set {y1, . . . , yJ}.
8 By defining

qj = exp
(
c0 + c1 ·

(
(yj − Yt−1)

2 + (Yt+1 − yj)
2)+ c2 · e

ηyj + c3 · yj

)
,

we adopt an approximation of the posterior distribution of Yt of the form

P
(
Yt = yj

∣∣ Yt−1, Yt+1, W, D
)
'

qj

q1 + · · ·+ qJ

. (18)

The Gibbs sampler for drawing paths from the posterior distribution of
{Yt : 0 ≤ t ≤ T} is then given by the algorithm:

0. Initialize Yt = 0 for t = 0, . . . , T .

1. For t ∈ {1, . . . , T}, draw a new value of Yt from its conditional distri-
bution9 given Yt−1 and Yt+1.

2. Store the sample path {Yt : 0 ≤ t ≤ T} and return to Step 1 until the
desired number of paths has been simulated.

8As an alternative to discretizing the state space, known as the Griddy Gibbs method
(Tanner (1998)), one can use the Metropolis-Hastings algorithm (see Hasting (1970) or
Gelman, Carlin, Stern, and Rubin (2004)) to sample from the conditional distribution of
Yt given Yt−1 and Yt+1.

9The formula (17) applies only for 0 < t < T . For the two end points, modifications are
needed. For t = T , it is easy to derive the transition density by using arguments similar
to those for the case 0 < t < T . Finally, we take Y0 = 0 as the starting value of the latent
frailty variable.
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We usually discard the first several hundred paths as a “burn-in” sample,
because initially the Gibbs sampler has not approximately converged10 to the
posterior distribution of {Yt : 0 ≤ t ≤ T}.

In our case, we used J = 321 states for the discretized frailty variable Yt,
which should give a reasonably good approximation of a Brownian motion.11

We have also tried using a much higher number of hidden states with little
visible improvement. Using a smaller number of states caused some of the
graphs of output paper to show artifactual effects of the discretization.

B Gibbs and Unobserved Heterogeneity

The Gibbs sampler for drawing paths from the joint posterior distribution of
{Yt : 0 ≤ t ≤ T} and {Zi : 1 ≤ i ≤ m} works as follows:

0. Initialize Yt = 0 for t = 0, . . . , T . Initialize Zi = 1 for i = 1, . . . , m.

1. For t = 1, . . . , T draw a new value of Yt from its conditional distribu-
tion given Yt−1, Yt+1 and the current values for Zi. This can be done
using a straightforward modification of the Gibbs sampler described in
Appendix A by treating log Zi as an additional covariate with corre-
sponding coefficient in (1) equal to 1.

2. For i = 1, . . . , m, draw the unobserved heterogeneity variables Z1, . . . , Zm

from their conditional distributions given the current path of Y . See
below.

3. Store the sample path {Yt, 0 ≤ t ≤ T} and the variables {Zi : 1 ≤ i ≤ m}.
Return to Step 1 and repeat until the desired number of scenarios has
been drawn, discarding the first several hundred as a burn-in sample.

10We used various convergence diagnostics, such as trace plots of a given parameter as
a function of the number of samples drawn, to assure that the iterations have proceeded
long enough for approximate convergence and to assure that our results do not depend
markedly on the starting values of the Gibbs sampler. See Gelman, Carlin, Stern, and
Rubin (2004), Chapter 11.6, for a discussion of various methods for assessing convergence
of MCMC methods.

11A model with discrete state space is an internally consistent model on its own, and need
not be viewed as an approximation to the case of Brownian motion. Due to computational
limitations, such regime-switching models as in Hamilton (1989) have incorporated only a
small number of states, typically two or three, for unobserved variables.

37



It remains to show how to draw the heterogeneity variables Z1, . . . , Zm

from their posterior conditional distribution. First, we note that

p (Z |W, Y, D, θ) =

m∏

i=1

p (Zi |Wi, Y, Di, θ) ,

by conditional independence of the unobserved heterogeneity variables Zi.
Because we have chosen these to be gamma distributed with mean 1 and
standard deviation 0.5, the density parameters a and b are both 4. Applying
Bayes’ rule,

p (Zi |W, Y, D, θ) ∝ pΓ (Zi; 4, 4)L (θ |Wi, Y, Zi, Di)

∝ Z3
i e

−4Zie
−

Ti
P

t=ti

λit∆t
Ti∏

t=ti

[Ditλit∆t + (1 − Dit)] , (19)

where pΓ (Zi; a, b) denotes the density function of a Gamma distribution with
parameters a and b. Plugging (5) into (19) gives

p (Zi |W, Y, D, θ) ∝ Z3
i e

−4Zi exp

(
−

Ti∑

t=ti

λ̃ite
γYtZi

)
Ti∏

t=ti

[Ditλit + (1 − Dit)]

= Z3
i e

−4Zi exp (−AiZi) ·

{
BiZi if company i did default

1 if company i did not default

}
, (20)

for company specific constants Ai and Bi. The factors in (20) can be com-
bined to give

p (Zi |Wi, Y, Di, θ) = Γ (Zi; 3 + Di,Ti
, 4 + Ai) . (21)

This is again a Gamma distribution, but with different parameters, and it is
therefore easy to draw samples of Zi from its conditional distribution.
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Cappé, O., E. Moulines, and T. Rydén (2005). Inference in Hidden Markov
Models. Springer Series in Statistics.

Celeux, G. and J. Diebolt (1986). The SEM Algorithm: A Probabilistic
Teacher Algorithm Derived From The EM Algorith For The Mixture
Problem. Computational Statistics Quaterly 2, 73–82.

Chava, S. and R. Jarrow (2004). Bankruptcy Prediction with Industry
Effects. Review of Finance 8, 537–569.

Collin-Dufresne, P., R. Goldstein, and J. Helwege (2003). Is Credit Event
Risk Priced? Modeling Contagion via The Updating Of Beliefs. Work-
ing Paper, Haas School, University of California, Berkeley.

Collin-Dufresne, P., R. Goldstein, and J. Huggonier (2004). A General
Formula For Valuing Defaultable Securities. Econometrica 72, 1377–
1407.

Couderc, F. and O. Renault (2004). Times-to-Default: Life Cycle, Global
and Industry Cycle Impacts. Working paper, University of Geneva.

Crosbie, P. J. and J. R. Bohn (2002). Modeling Default Risk. Technical
Report, KMV, LLC.

39



Das, S. S., D. Duffie, N. Kapadia, and L. Saita (2006). Common Failings:
How Corporate Defaults are Correlated. Journal of Finance. forthcom-
ing.

Delloy, M., J.-D. Fermanian, and M. Sbai (2005). Estimation Of a reduced-
form credit portfolio model and extensions To dynamic frailties. Pre-
liminary Version, BNP-Paribas.

Demptser, A., N. Laird, and D. Rubin (1977). Maximum Likelihood Es-
timation From Incomplete Data via The EM Algorithm (with Discus-
sion). Journal of the Royal Statistical Society: Series B 39, 1–38.

DeServigny, A. and O. Renault (2002). Default Correlation: Empirical
Evidence. Working Paper, Standard and Poor’s.

Duffie, D. (2001). Dynamic Asset Pricing Theory (Third edition). Prince-
ton, New Jersey: Princeton University Press.

Duffie, D. and D. Lando (2001). Term Structures Of Credit Spreads with
Incomplete Accounting Information. Econometrica 69, 633–664.

Duffie, D., L. Saita, and K. Wang (2006). Multi-Period Corporate De-
fault Prediction with Stochastic Covariates. Journal of Financial Eco-
nomics forthcoming.

Eraker, B., M. Johannes, and N. Polson (2003). The Impact Of Jumps in
Volatility and Returns. Journal of Finance 58, 1269–1300.

Fisher, E., R. Heinkel, and J. Zechner (1989). Dynamic Capital Structure
Choice: Theory and Tests. Journal of Finance 44, 19–40.

Gelman, A., J. B. Carlin, H. S. Stern, and D. B. Rubin (2004). Bayesian
Data Analysis (Second edition). Chapman and Hall.

Geman, S. and D. Geman (1984). Stochastic relaxation, Gibbs distribu-
tions and The Bayesian restoration Of images. IEEE Transactions on
Pattern Analysis and Machine Intelligence 6, 721–741.

Giesecke, K. (2004). Correlated Default With Incomplete Information.
Journal of Banking and Finance 28, 1521–1545.

Gordy, M. (2003). A Risk-Factor Model Foundation For Ratings-Based
Capital Rules. Journal of Financial Intermediation 12, 199–232.

Hamilton, J. D. (1989). A New Approach To The Economic Analysis Of
Nonstationary Time Series and The Business Cycle. Econometrica 57,
357–384.

40



Hammersley, J. and P. Clifford (1970). Markov Fields On Finite Graphs
and Lattices. Unpublished Manuscript.

Hasting, W. (1970). Monte-Carlo Sampling Methods using Markov Chains
and Their Applications. Biometrika 57, 97–109.

Hillegeist, S. A., E. K. Keating, D. P. Cram, and K. G. Lundstedt (2004).
Assessing the Probability Of Bankruptcy. Review of Accounting Stud-
ies 9, 5–34.

Jegadeesh, N. and S. Titman (1993). Returns To Buying Winners and
Selling Losers: Implications For Stock Market Efficiency. Journal of
Finance 48, 65–91.

Jegadeesh, N. and S. Titman (2001). Profitability Of Momentum Strate-
gies: An Evaluation Of Alternative Explanations. Journal of Fi-
nance 66, 699–720.

Johannes, M. and N. Polson (2003). MCMC Methods For Continuous-
Time Financial Econometrics.

Kass, R. and A. Raftery (1995). Bayes factors. Journal of The American
Statistical Association 90, 773–795.

Kavvathas, D. (2001). Estimating Credit Rating Transition Probabilities
for Corporate Bonds. Working paper, University of Chicago.

Kealhofer, S. (2003). Quantifying Credit Risk I: Default Prediction. Fi-
nancial Analysts Journal , January–February, 30–44.

Lane, W. R., S. W. Looney, and J. W. Wansley (1986). An Application
Of the Cox Proportional Hazards Model to Bank Failure. Journal of
Banking and Finance 10, 511–531.

Lee, S. H. and J. L. Urrutia (1996). Analysis and Prediction Of Insolvency
in the Property-Liability Insurance Industry: A Comparison Of Logit
and Hazard Models. The Journal of Risk and Insurance 63, 121–130.

Leland, H. (1994). Corporate Debt Value, Bond Covenants, and Optimal
Capital Structure. Journal of Finance 49, 1213–1252.

McDonald, C. G. and L. M. Van de Gucht (1999). High-Yield Bond Default
and Call Risks. Review of Economics and Statistics 81, 409–419.

Merton, R. C. (1974). On the Pricing Of Corporate Debt: The Risk Struc-
ture Of Interest Rates. Journal of Finance 29, 449–470.

41



Nielsen, S. F. (2000). The Stochastic EM algorithm: Estimation and
Asymptotic Results. Department of Theoretical Statistics, University
of Copenhagen.

Protter, P. (2004). Stochastic Integration and Differential Equations, Sec-
ond Edition. New York: Springer-Verlag.

Rabiner, L. R. (1989). A tutorial On hidden Markov models and selected
applications in speech recognition. Proceedings of the IEEE 77, 257–
285.

Robert, C. and G. Casella (2005). Monte Carlo Statistical Methods (Second
edition). Springer Texts in Statistics.
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