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A Low-Pass Filtered Panel Model  

For Estimating Production Function Parameters: 

The Substitution Elasticity And Growth Theory 

 
Abstract 

 
  This paper presents a new estimation strategy that combines low-pass filters 
with standard panel data techniques to obtain estimates of production function 
parameters.  We are particularly concerned with the value of the elasticity of 
substitution between labor and capital because of its key role in models of long-run 
growth.  A host of important issues, including the possibility of perpetual growth 
or decline, depend on the precise positive value of σ.   This paper examines the role 
of σ in the neoclassical growth model and estimates σ by combining a low-pass 
filter with standard panel data techniques to better measure the theoretical 
constructs appropriate to production function estimation.  Our approach is in the 
spirit of Friedman's permanent income theory of consumption and Eisner's related 
permanent income theory of investment.  While their approaches and ours are 
similar in relying on permanent components, we extract these components with 
spectral methods that are more powerful and general for identifying these 
unobservables.  We transform the data with the Baxter-King low-pass filter that 
depends on two parameters, the critical periodicity defining the long-run 
frequencies and a window for the number of lags approximating the ideal low-pass 
filter.  Based on an analysis of the spectrum of the transformed series, we confirm 
that our choices of the critical periodicity and window emphasize long-run 
variation.    
 
 The empirical results are based on the comprehensive panel industry data 
constructed by Dale Jorgenson and his research associates.  Our estimate of σ is 
0.288 for the baseline values of the critical periodicity of eight years and window 
of three years.  This result is robust to variations in the window.  As the periodicity 
declines from eight to the minimum value of two, the elasticity declines owing to 
the distorting effects of transitory variation.    
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A Low-Pass Filtered Panel Model  

For Estimating Production Function Parameters: 

The Substitution Elasticity And Growth Theory 
 

A "crucial" assumption is one on which the conclusions 
do depend sensitively, and it is important that crucial 
assumptions be reasonably realistic.   

 
    Solow (1956, p. 65) 

 
 
The relation between the theoretical constructs used in 
consumption research and the observable magnitudes 
regarded as approximating them has, I believe, received 
inadequate attention. 

       Friedman (1957, p. 7) 
 
 

1.  Introduction 

 The essential innovation contained in the neoclassical growth model was the 

modification of the steady-state equilibrium condition.  Prior to Solow (1956), 

growth models determined the steady-state with a set of independent parameters, 

and equilibrium was achieved in only the most unlikely of circumstances.  Solow's 

innovation was to introduce a variable capital/output ratio in place of the Harrod-

Domar fixed parameter.  This tour de force resolved the pressing analytic problem 

of the knife-edge solution inherent with independent parameters by relaxing the 

"crucial" assumption that production occurs with fixed factor proportions.  

However, this innovation pushed the key issues of growth onto other "crucial" 

assumptions embedded in the neoclassical production function.  Key among these 

is the elasticity of substitution between labor and capital, σ, a parameter that has 

received too little notice in the growth literature. 
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 This paper examines the role of σ in the neoclassical growth model and 

estimates this parameter by combining a low-pass filter with standard panel data 

techniques to better measure the long-run relations appropriate to production 

function estimation.  We begin in Section 2 with a discussion of the key role 

played by σ in a variety of issues in growth theory -- the possibility of perpetual 

growth or decline, the level of steady-state income per capital, the speed of 

convergence, the rate of return on capital, the role of biased technical change, and 

the allocation of per capita income between factors of production and the 

efficiency with which they are utilized.  In one sense, Solow's fundamental 

innovation replaces the Harrod-Domar assumption that σ = 0 with the more general 

assumption that σ > 0.  Our discussion highlights that a host of important growth 

issues depend on the precise positive value of σ.   

 Section 3 develops three results concerning the estimation of the aggregate 

σ.  In aggregate time series data, long-run relations have been identified by 

cointegration properties.  However, our first result demonstrates that aggregate data 

will be uninformative about the value of σ.  Consequently, we are lead to focus on 

disaggregate data at the industry (or firm) level.  Since we are ultimately interest 

resides with an aggregate substitution elasticity, a mapping is required from 

parameters estimated on industry data to the aggregate parameter of interest for 

growth theory.  Our second result develops a formula that generates such an 

aggregate estimate that recognizes substitution effects within an industry and 

reallocation effects across industries.  Our third result shows that, if factor shares 

are independent of demand elasticities at the industry level, then reallocation 

effects are absent and the aggregate σ is a simple weighted average of the industry 

σi's.  
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 Section 4 develops strategy for estimating industry σi's utilizing low-pass 

filters defined in the frequency domain and analyzed with spectral methods. 1  

Production function parameters are recovered by focusing on the long-run relations 

between arguments appearing in the first-order condition for capital.  Our approach 

is in the spirit of Friedman's (1957) permanent income theory of consumption and 

Eisner's (1967) related permanent income theory of investment.  Friedman 

observed that the fundamental relation between consumption and income obtained 

between their permanent components and then identified the permanent 

components in terms of geometric distributed lags of past values.  Eisner also 

emphasized the distinction between the transitory and permanent components of 

variables affecting investment demand and isolated the effect of the latter by 

grouping firms by industry and then using the group means as the data used in 

estimation.  While our approach also relies on permanent components, we extract 

these components with spectral methods that are more powerful and general for 

identifying these unobservable variables.  We transform the data with a low-pass 

filter developed by Baxter and King (1999) that depend on two parameters, the 

critical periodicity (p#) defining long-run frequencies and a window (q) for the 

number of lags and leads used to approximate the ideal low-pass filter.  The 

transformed data reflect long-run variation and closely match production function 

concepts.  The theoretical properties of the spectral representation of the low-pass 

filter are then examined.  We compute the spectra associated with our estimator to 

assess the extent to which our choices of the critical periodicity and window are 

successful in emphasizing long-run variation.  We also vary the key periodicity 

                                           
1 Engle and Foley (1975) also use spectral methods to study capital formation.  They estimate a 
model relating investment spending to an equity price series (approximately a Brainard-Tobin's 
Q variable) and use a band-pass filter to emphasize middle frequencies centered at two years.  
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(p#) and window (q) parameters to assess the sensitivity of the allocation of 

variance across the low and high frequencies.  

 Section 5 contains empirical results based on the comprehensive panel of 

U.S. industry data constructed by Dale Jorgenson and his research associates.  Our 

econometric model relates the long-run capital/output ratio to the long-run relative 

price of capital.  The benchmark estimate of σ is 0.288 for our baseline values of 

the critical periodicity of eight years (p# = 8) and a window of three years (q = 3).  

This result is robust to variations in the window.  Moreover, there is great value in 

using the spectral methods to extract permanent components.  As the periodicity 

declines from eight to the minimum value of two, the estimated σ declines by one-

third owing to the distorting effects of transitory variation.  At p# = 2, the low-pass 

filter is neutral, the raw data are not transformed, low frequency variation is not 

emphasized, and σ reaches a lower bound (relative to other values of p#) of 0.206.  

 Section 5 also contains three alternative sets of estimates of σ that serve as 

robustness checks.  First, the prior estimates are based on the assumption of 

exogenous prices, and hence OLS is the appropriate estimation technique.  

Nonetheless, the assumption may not hold strictly.  Instrumental variables estimate 

confirm the prior OLS results.  We also document that the instrumental variables 

are relevant.  Second, the benchmark estimates are based on the assumption of a 

constant σ across time; we document that our estimate of σ is temporally stable.  

Third, we examine alternative specifications for estimating σ.  The first-order 

conditions yield two additional estimating equations that contain the labor/output 

ratio or the labor/capital ratio as the dependent variable and a relative price 

multiplying σ.  However, the neoclassical growth model implies that neither series 

is stationary, a prediction consistent with the stylized facts of growth highlighted 

by Kaldor (1961) and King and Rebelo (1999, pp. 940-941).  Hence, the low-pass 

filter used in this study is not applicable because spectral methods require 
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stationary data.  We nonetheless examine the estimates of σ derived from these 

models given the important study of Berndt (1976) that reported a disturbing wide 

range of estimates.   

 (Section 6 presents one estimate from the unconstrained model that allows 

the 'sσ�  to vary across industries.  This result is robust in comparison to the 

constrained estimate.)    

 Section 7 concludes.   
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2.  The Implications of σ for Growth Theory 

 The elasticity of substitution was introduced by Hicks (1932) to analyze 

changes in the shares of capital and labor in a growing economy.  His key insight 

was that the impact of the capital/labor ratio on the distribution of income (given 

output) could be completely characterized by the curvature of the isoquant 

(Blackorby and Russell, 1989, p. 882).  It is well known that the elasticity of 

substitution (σ) is important in, among other areas, the analysis of trade and factor 

returns (Jones and Ruffin, 2003) and tax policies (Chirinko, 2002).  Less well 

known is the critical role played by σ in models of economic growth.  Several of 

the prominent issues are discussed in this section.   

   

2.1. From The Harrod-Domar Knife-Edge to the Solow Interval 

 The neoclassical revolution in growth theory places the burden of 

equilibrium on the properties of the production function.  When σ equals unity, the 

capital/labor ratio (KL) converges to a positive, finite value because, as KL moves 

towards its limiting values of 0 or ∞, the marginal product of capital (MPK[KL : 

σ]) and average product of capital (APK[KL : σ]) tend to ∞ or 0, respectively.  

Thus the Inada conditions are satisfied and, as determined by Solow’s fundamental 

equation of motion for k, capital accumulation converges to zero.  However, when 

σ departs from unity, some interesting possibilities arise, and the capital stock and 

per capita income can exhibit perpetual decline or perpetual growth.  Whether 

these outcomes obtain depends on the relation of σ to two critical values that 

depend on other parameters of the neoclassical growth model.  These relations are 

portrayed in Figure 1.  Values of σ greater than (less than) a critical value, #
Hσ  

( #
Lσ ), lead to perpetual growth (perpetual decline) in the capital stock.  More 

standard behavior occurs for values of σ between #
Hσ  and #

Lσ ; in this no growth 
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case, capital accumulation converges to zero and k to a positive, finite value.  The 

neoclassical model replaces the Harrod-Domar knife-edge with the Solow interval 

defined by the two critical σ’s.    

 To examine the role of σ in generating non-standard equilbria, we need to 

consider the Solow’s equation of motion for k and the limiting behavior of the 

average product of capital.2  The well-known equation of motion in the 

neoclassical growth model is as follows, 

 

   KL/ KL s * APK[KL; ] (n )
.

= σ − + δ ,       (1) 

 

where s, n, and δ are the rates of saving, population growth, and depreciation, 

respectively.  The APK[KL : σ] is derived from the following intensive form of the 

CES production function (ignoring in this section the role of technical change), 

 

   (( 1) / ) ( /( 1))f[KL : ] { KL (1 )} 0 1σ− σ σ σ−σ = φ + − φ ≤ φ ≤ ,   (2) 

 

where f[KL:σ] is a per capita neoclassical production function depending on σ and 

φ,  the capital distribution parameter.  The MPK[KL: σ] and APK[KL: σ] are as 

follows, 

 

   ((1 ) / ) (1/( 1))
kMPK[KL : ] f [KL : ] { (1 )KL }−σ σ σ−σ ≡ σ = φ φ + − φ ,   (3) 

                                           
2 The analysis is this sub-section draws on the presentations of the neoclassical growth model in 
Barro and Sala-i-Martin (1995, Section 1.3.3), de La Grandville (1989), Klump and Preissler 
(2000), Klump and de La Grandville (2000), and de La Grandville and Solow (2004).  The latter 
paper also discusses how increases in σ expand production possibilities in a manner similar to 
exogenous technical progress.   
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   ((1 ) / ) ( /( 1))APK[KL : ] f[KL : ]/ KL { (1 )KL }−σ σ σ σ−σ ≡ σ = φ + − φ .   (4) 

 

The two non-standard cases arise because 1) MPK[KL: σ] fails to satisfy one of the 

Inada conditions and 2) this positive, finite limit affects the APK[KL: σ] so that no 

root exists for equation (1).  In the first case when σ > 1, the limits for MPK and 

APK as KL  ∞ are as follows,  

 

   ( /( 1))
KL KL
lim MPK[KL : ] lim APK[KL : ] 1σ σ−

→∞ →∞
σ = σ = φ σ >   (5) 

 

Perpetual growth arises when the limit in equation (5) is above the value of the  

APK[KL: σ] that sets KL/ KL 0
.

=  in equation (1).  This critical value of the 

APK[KL: σ] can be stated in terms of a critical value of #
H, ,σ σ  determined by 

setting equation (1) to zero and solving for #
Hσ  in terms of four other model 

parameters collected in H H H{ , ,n,s : s n }Γ = δ φ > + δ ,   

 

   
#
H H H H

H H

g[ ] g[ , ,n,s : s n ]
log[s /(n )] / log[( s ) /(n )] 1,

σ > σ ≡ Γ ≡ δ φ φ > + δ
= + δ φ + δ >

    (6) 

 

where ΓH represents the collection of four parameters such that g[ΓH] > 1.  When σ 

is high and substitution is relatively easy, the decrement to the marginal and 

average products of capital is modest as KL goes to infinity.  If σ exceeds the 

critical value defined in equation (6), perpetual accumulation of capital and 

perpetual growth in per capita income are possible even in the absence of technical 
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change.  While receiving some sporadic attention over the past 50 years,3 the 

distinct possibility of perpetual growth in the neoclassical model has gone largely 

unnoticed, being eclipsed by the popularity of endogenous growth models.   

 To gain some intuition for this result, note that the limits in equation (5) are 

increasing in any positive, finite value of σ.  The higher is σ, the greater the 

“similarity” between capital and labor in the production function (Brown, 1968, p. 

50).  Assume that the increase in the capital/labor ratio represents an increment to 

capital with labor held fixed.  When σ is high, the incremental capital is easily 

substituted for labor, resulting in a nearly equiproportionate increase in both 

factors.  Under constant returns to scale, diminishing returns sets-in very slowly, 

and the marginal and average products of capital can remain above the critical 

value so that capital accumulation is always positive.  

 In the second case when σ < 1, the other Inada condition fails, 

 

   ( /( 1))
KL 0 KL 0
lim MPK[KL : ] lim APK[KL : ] 1σ σ−

→ →
σ = σ = φ σ < ,  (7) 

 

and this limit is below a critical value,  

  

   
#
L L L L

L L

g[ ] g[ , ,n,s : s n ]
log[s /(n )] / log[( s ) /(n )] 1.

σ < σ ≡ Γ ≡ δ ϕ < + δ
= + δ φ + δ <

      (8) 

 

When σ is low, capital and labor are “dissimilar” productive factors.  With limited 

substitution possibilities, reductions in capital have little positive impact on 

marginal productivity.  In an effort to raise the marginal product, capital 

                                           
3 Solow (1956, pp. 77-78) and Pitchford (1960) were the first to note the possibility of perpetual 
growth.  See the papers cited in fn. 2 for more recent statements.  
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accumulation remains negative and, for a value of σ below the #
Lσ  defined in 

equation (8), KL declines perpetually.      

 In their textbook on economic growth, Burmeister and Dobell (1970, p. 34) 

refer to situations where σ ≠ 1 as "troublesome cases" because they do not yield 

balanced growth paths.  It is far from clear why the requirements for balanced 

growth paths in a particular theoretical model should dictate the shape of the 

production function, especially when σ = 1 is a sufficient but not necessary 

condition for a balanced growth path (cf. Acemoglu (2003) discussed below).  To 

treat σ as a free parameter determined by the theory runs dangerously close to the 

fallacy of affirming the consequent.  An alternative approach interprets cases 

where σ ≠ 1 as quite interesting, suggesting needed modifications to the standard 

neoclassical growth model and highlighting the key role played by σ.   

 

2.2.  Per Capita Income  

 The value of σ is linked to per capita income and growth.  Klump and de La 

Grandville (2000) show that, for two countries with identical initial conditions (in 

terms of k, n, and s), the country with a higher value of σ experiences higher per 

capita income at any stage of development, including the steady state (if it exists).4   

De La Grandville (1989) argues theoretically that a relative price change (e.g., a 

decrease in the price of capital) leads to relatively more output the higher the value 

of σ.  (He also notes a second channel depending on σ -- a higher substitution 

elasticity permits a greater flow of resources between sectors with different factor 

                                                                                                                                        
 
4 A caveat has been advanced by Miyagiwa and Papageorgiou (2003), who demonstrate that a 
monotonic relationship between σ and growth does not exist in the Diamond overlapping-
generations model. 
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intensities.)  Yuhn (1991) finds empirical support of this hypothesis in the case of 

South Korea.   

 

2.3.  Speed of Convergence 

 The speed of convergence to the steady-state depends on σ through capital 

accumulation.  Turnovsky’s (2002, pp. 1776-1777) calibrated neoclassical growth 

model indicates that the rate of convergence is sensitive to and decreasing in σ.  

For a given productivity shock, the speed of convergence is 45.3% (per year) when 

σ equals 0.1, but drops markedly to 12.2% when σ equals 0.8.  The speed of 

convergence falls further to 8.9%, 6.4%, and 3.5% as σ is increased to 1.0, 1.2, and 

1.5, respectively.5  

 Several papers have shown that the influence of σ on the speed of 

convergence interacts with other parameters in the model.  In Ramanathan (1975), 

the speed of convergence is negatively related to the share of capital.  The larger 

the capital share, the less rapidly the average product of capital declines and, since 

the APK is positively related to σ (cf. equation (4)), larger values of σ slow 

convergence.  Mankiw (1995, p. 291) reports that an increase in the capital share 

from one-third to two-thirds reduces the speed of convergence by one-half.  In the 

Klump and Preissler (2000, p. 50) model, the Ramanathan/Mankiw result holds, 

and the speed of convergence also depends on the relation between the initial and 

steady-state capital intensities.   

 

                                           
5 These figures are based on an intratemporal elasticity of substitution between consumption and 
leisure of 1.0 and an intertemporal elasticity of substitution for the composite consumption good 
of 0.4.  The pattern of results is robust to variations in the latter parameter.   
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2.4.  Other Issues in Growth Models 

 The value of σ can play an important role in assessing the plausibility of the 

neoclassical growth model.  King and Rebelo (1993, Section IV) show that, in a 

Cass-Koopmans model with endogenous saving, the rate of return on capital (R) is 

sensitive to σ and is implausibly high when some part of growth is due to 

transitional dynamics.  When transitional dynamics account for 25% of growth, R 

decreases modestly in σ.  However, when transitional dynamics are more 

important, R increases dramatically in σ.  Mankiw (1995, p. 287) also investigates 

the relation between σ and R but in terms of the following formula, 

 

   dR / R ((1 ) /( )) (dYL / YL)= − − μ μσ ,       (9) 

 

where μ  is the capital factor share and YL is per capita income.  Equation (9) 

approximates the difference in rates of return between poor and rich countries with 

the income differential represented by dYL/YL.  For example, if σ = 4.0, the 

difference in the rate of return is only about 3 percent.6  But if σ falls to 1.0 or 0.5, 

the above differential becomes implausibly large, increasing to 100 and 10,000 

respectively.  The relation between σ and R appears to be model dependent, but 

extant results suggest that the neoclassical model may not be correctly specified.     

 The importance of technical change in growth models is sensitive to σ.  

Acemoglu (2003) examines the tension between fluctuations in income shares, σ = 

1, and balanced growth.  He develops a model in which technical change is both 

labor-augmenting and capital-augmenting and shows that, along the balanced 

growth path, all technical change will be labor-augmenting.  If σ < 1, technical 

                                           
6 These computations are based on φ = 0.33 and an income level in rich countries that is 10 times 
larger than in poor countries.  
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change stabilizes income shares, and the balanced growth path is stable and unique.  

In his review of developmental accounting (which assesses how much of cross-

country differences in per capita income are attributable to factors of production 

and the efficiency with which they are utilized), Caselli (forthcoming, Section 7) 

shows that the relative roles assigned to factors of production and efficiency is very 

sensitive to σ.  When σ is near 0.5, variation in factors of production accounts for 

almost 100% of the variation in per capita income across countries.  The 

percentage is decreasing in σ and drops to 40% for σ = 1.0 (the Cobb-Douglas 

case) and 25% for σ = 1.5.  Caselli concludes (end of Section 7) that “gathering 

more information on this elasticity is a high priority for development accounting."   
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3.  Estimation Strategy: Aggregate σ 

 Given the importance of the value of the aggregate σ, it would seem natural 

to obtain estimates with aggregate data.  However, this approach proves 

problematic.  The first result presented in this section shows that, if long-run 

relations are identified by cointegration properties, then aggregate data will be 

uninformative about the value of σ.  This negative result suggests that we need to 

focus on disaggregate data at the industry (or firm) level.  Assuming that 

econometrically sound estimates of σi can be obtained, a mapping is required from 

these micro parameters to the macro parameter of interest for growth theory that 

recognizes substitution effects within an industry and reallocation effects across 

industries.7  Based on Hicks' formula for the derived demand of a factor of 

production, we develop a mapping from industry σi's to the aggregate σ.  Our third 

result shows that, if factor shares are independent of demand elasticities at the 

industry level, then the aggregate σ is a simple weighted average of the industry 

σi's.   

 In innovative papers, Caballero (1994) and Schaller (forthcoming) measure 

long-run values by exploiting the cointegration relations between the capital/output 

ratio and the relative price (or user cost) of capital.  The cointegating model can be 

written as follows (equation numbers in this section are prefixed with P), 

  

   t t tky a b * uc e− + = ,          (P1) 

 

where tky  is the logarithm of the capital/output ratio, a and b are estimated 

parameters, tuc  is the logarithm of the user cost of capital (which equals the 

                                           
7 We thank Robert Solow and an anonymous referee for highlighting the importance or 
reallocation effects in inferring an aggregate σ from disaggregate estimates.  
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logarithm of the price of capital ( K
tp ) less the logarithm of the price of output 

( Y
tp )), and te  is an error term.  The tky  and tuc  series are assumed to be I(1) and 

cointegrated; thus long-run movements in  tky  and tuc  dominate.  (If the two 

series are I(0), then this approach no longer measures long-run values.)  The 

cointegrating vector is (1, b).  The estimated value of b equals the price elasticity 

of capital; under a CES technology with constant returns, this elasticity equals the 

aggregate σ (this equality relation will be made explicit in Section 4).    

 While it provides an elegant solution to the problem of estimating the 

substitution elasticity from data subject to short-run deviations from long-run 

values, the cointegrating model will not be informative in an important case.  A 

well-accepted stylized fact since at least Klein and Kosobud (1961) is that factor 

shares are constant in the long-run.  Evaluating the relation between tky  and K
tp  in 

light of this fact, we demonstrate the following result, 

 

RESULT I:  If tky  and K
tp  are I(1) and cointegrated and if factor shares are 

constant, then the cointegrating vector will be [1, 1] independent of the production 

technology.   

 We begin with the definition of the logarithm of capital's factor share ( K
tμ ), 

 

   ( ) ( )K K Y
t t t t t tk p y p cμ ≡ + − + = + υ        (P2) 

   

where kt and yt are the logarithms of capital and output, respectively, c is a 

constant, and tυ  a mean zero error term.  Equation (P2) can be rearranged in terms 

of the capital/output ratio and the user cost, 
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   ( ) ( )K Y
t t t t t t tk y p p ky uc c− + − = + = + υ       (P3) 

 

which is a special case of the cointegrating model with a=0 and b=1.  Thus, the 

combination of cointegrating properties and constant long-run factor shares 

necessarily yields a b coefficient of unity.8  While the Cobb-Douglas technology is 

a sufficient condition for constant factor shares, it is not necessary (cf. Acemoglu, 

2003).  Hence, the cointegrating model will not be informative about b and the 

related technology parameters. 

 There is no small number of other models using aggregate data to infer σ.  

However, as mentioned in Section 1, these models need to solve the challenging 

problem of measuring long-run values relevant for production function estimation.  

Extant solutions involve explicit modeling of dynamics, an approach that will be 

particularly challenging given the complexity of the underlying dynamics.   

 We are thus lead to consider estimating aggregate σ from industry data based 

on long-run values, an approach that will be developed in Section 4.9  Assuming 

that econometrically sound estimates of industry σi's can be obtained, a mapping is 

required from these industry elasticities to an aggregate elasticity that recognizes 

substitution and reallocation effects.  We label the aggregate σ based on a mapping 

of industry σi's asσ� .   

 We wish to obtain a mapping that clearly delineates the effects of 

substitution and reallocation effects, the latter defined as the difference between 

                                           
8 This property of cointegrated relations explains a puzzle noted by Fisher (1971), who found in 
simulation studies that, when the factor share was nearly constant, an aggregate Cobb-Douglas 
technology fit the data well independent of the underlying technology.   Similar results were 
obtained by Fisher, Solow, and Kearl (1977) when the study was extended to include CES 
production functions.   
 
9 The cointegration model requires long spans of data that may not be available at the industry 
level.  
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scale effects computed at the industry and aggregate levels.  We begin with Hicks' 

formula for the derived demand of a factor of production, 

 

   K Kλ = σ − σμ + ημ� �� � � � ,         (P4) 

 

where λ�  is the aggregate own price elasticity of capital, σ�  is the aggregate 

substitution elasticity, Kμ�  is capital's factor share in the aggregate, and η�  is the 

price elasticity of output.   

 In equation (P4), the three terms in parentheses capture in a succinct manner 

the substitution and scale effects associated with a change in the user cost of 

capital.  The first term captures the direct substitution effect holding output price 

and output constant.  The second term represents an additional indirect substitution 

effect driven by the lower marginal cost of production.  Under competitive 

conditions, the decline in marginal cost translates into a decline in the output price.  

The extent of this decline is determined by the relative importance of capital in 

production represented by Kμ� .  Since output price enters the denominator of the 

user cost, the decline in output price raises the relative price of and lowers the 

demand for capital.  The third effect occurs because the lower factor price allows 

the firm to slide down the product demand curve and increase output.  This scale 

effect is represented by the product of Kμ�  and the price elasticity of output ( Kη� ) in 

the third term of equation (P4).  It is interesting to that reallocation effects, which 

are central to our exercise, were explicitly assumed away by Hicks (1963, p. 241) 

 Equation (P4) can be solved for the aggregate substitution elasticity, 

 

   ( )Kσ = λ − ημ Ω� ��� � ,         (P5) 
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where K 1(1 )−Ω = − μ� � .  In equation (P5), the aggregate substitution elasticity 

depends on the aggregate price elasticity less a subtraction for the scale effect.  As 

capital's share becomes vanishingly small, K 0μ →�  and 1Ω →� , and the scale effect 

disappears.   

 Equation (P5) is related to the industry parameters (per Basu and Fernald, 

1997, Section III) by defining the aggregate own price elasticity as a weighted-

average of the industry own price elasticity, 

   

   i i
i

λ = ω λ∑� ,          (P6a) 

   K K
i i i i i iλ = σ − σ μ + η μ ,         (P6b) 

 

where the i 'sω  are weights reflecting the size of industry i (e.g., the percentage of 

total capital stock in industry i).  Substituting equations (P6) into (P5) and 

rearranging terms, we obtain the following equation and key result,  

 

RESULT II:  The mapping between the aggregate and industry substitution 

elasticities is given by the following formula that is the sum of substitution and 

reallocation effects, 

    

   ( ) ( )⎧ ⎫ ⎧ ⎫
= − + −⎨ ⎬ ⎨ ⎬

⎩ ⎭ ⎩ ⎭
∑ ∑K K K

i i i i i i
i i

1σ ω σ μ Ω ω η μ η μ Ω� ��� � .    (P7) 

 

The substitution effect is represented by the first summation and equals the direct 

and indirect substitution effects at the industry level ( K
i i(1 )σ − μ ) weighted by 

industry size and adjusted by Ω� .  The reallocation effect is represented by the 
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second summation containing the difference in scale effects at the industry and 

aggregate levels.  This difference captures the important characteristic that 

reallocation is measured by the industry scale effect relative to the aggregate scale 

effect.  The response of industry output to a change in the price of capital will be 

larger than the average aggregate value if industry output is very price sensitive or 

the industry price falls substantially because capital plays an important role in this 

industry's cost structure.  As before, the differential is weighted by industry size 

and adjusted by Ω� .   

 While Result II presents the general formula for mapping industry and 

aggregate elasticities, its usefulness is compromised to some degree because it 

depends on price elasticities of output that are not readily available.  However, the 

presence of scale effects does not necessarily imply that reallocations affect the 

mapping from industry to aggregate substitution elasticities.   

 

RESULT III:  If, at the industry level, the price elasticity of output is independent 

of capital's factor share, then the reallocation effect vanishes and the mapping 

from industry to aggregate parameters is given by the following equation, 

 

   ( ) ( ) ( )⎧ ⎫ ⎧ ⎫
= − = − −⎨ ⎬ ⎨ ⎬

⎩ ⎭ ⎩ ⎭
∑ ∑K K K

i i i i i i
i i

1 1 / 1σ ω σ μ Ω ω σ μ μ�� � .   (P8) 

 

The result follows straightforwardly from equation (P7).  Under the independence 

assumption stated in Result III, K K K
i i i i i i i

i i i
ω η μ = ω η ω μ =ημ∑ ∑ ∑ � � .  Thus, the 

aggregate substitution elasticity is the weighted-average of the industry substitution 

elasticities adjusted by the labor's relative factor share.    



 

 

20

4.  Estimation Strategy: Industry σi's 

4.1.  The First-Order Condition  

 Our approach focuses on long-run production relations and low-frequency 

variation in the model variables.  The long-run is defined by the vector of output 

and inputs consistent with profit maximization when all inputs can be adjusted 

without incurring costly frictions.  This focus allows us to ignore short-run 

adjustment issues that are difficult to model and may bias estimates.  Production 

for industry i at time t is characterized by the following Constant Elasticity of 

Substitution (CES) technology that depends on long-run values denoted by *, 

 

   * * * * K* L*
i,t i,t i,t i,t t tY Y[K ,L ,A ,B ,B ]=        (10) 

    { }[ /( 1)]* K* * [( 1) / ] L* * [( 1) / ]
i,t t i,t t i,tA (B K ) (1 )(B L )

σ σ−σ− σ σ− σ= φ + − φ , 

 

where *
i,tY  is long-run real output, *

i,tK  is the long-run real capital stock, *
i,tL  is the 

long-run level of labor input, φ is the capital distribution parameter, and σ is the 

elasticity of substitution between labor and capital.  Technical progress is both 

neutral ( *
i,tA ), and biased for capital and labor ( K* L*

t tB and B ,  respectively).  

Neutral technical change can have both industry and aggregate effects, and biased 

technical change, since it affects capital goods available to all industries, has an 

aggregate effect.  Equation (10) is homogeneous of degree one in *
i,tK  and *

i,tL and 

has three desirable features for the purposes of this study.  First, this production 

function depends on only two parameters -- φ representing the distribution of factor 

returns and, most importantly, σ representing substitution possibilities between the 

factors of production.  Second, the CES function is strongly separable and thus can 

be expanded to include many additional factors of production (e.g., intangible 
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capital) without affecting the estimating equation derived below.  This feature 

gives the CES specification an important advantage relative to other production 

functions that allow for a more general pattern of substitution possibilities (e.g., the 

translog, minflex-Laurent).  Third, the Cobb-Douglas production function is a 

special case of the CES; as σ 1 and biased technical change disappears 

( K* L*
t tB 1 B ,= = ), equation (10) becomes { }* * * [ ] * [1 ]

i,t i,t i,t i,tY A K Lφ −φ= .   

 Constrained by the CES production function (10), a profit-maximizing firm 

chooses capital so that its marginal product equals the Jorgensonian user cost of 

capital, K*
i,tP , which combines interest, depreciation, and tax rates and the relative 

price of capital goods.  (The firm also sets the marginal product of labor equal to 

the real wage rate, L*
i,tP ; this condition will be discussed in Section VI.C.)  

Differentiating equation (10) with respect to capital and rearranging terms (as 

detailed in the Appendix), we obtain the following factor demand equation for the 

long-run capital/output ratio, 

 

   * * K* K*
i,t i,t i,t i,t(K / Y ) (P ) Uσ −σ= φ ,       (11a) 

 K* [1/ ] *[ 1] K*[ 1]
i,t ti,tU A Bσ σ− σ−≡ .       (11b) 

 

To capture fixed industry and aggregate effects, we assume that the error term 

follows a two-way error component model, 

 

   K* K* K* K*
i,t i t i,tU exp[u u u ]= + + ,        (12)  

 

where K*
i,tu  may have a non-zero mean.  Taking logs of the first-order condition in  
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equation (11a),  

 

   * * K* K*
i,t i,t i,t i,tln(K / Y ) ln( ) ln(P ) ln(U )= σ φ − σ + ,     (13) 

 

removing fixed industry effects by first-differencing equation (13), and defining 
* *
i,t i,t i,tky ln(K / Y )≡ , K* K*

i,t i,tp ln(P )= , K K*
t tuτ ≡ Δ , and K K*

i,t i,te u≡ Δ , we obtain the 

following estimating equation,    

 

   * K K* K K*
i,t i,t t i,tky p eΔ = ζ − σΔ + τ + ,       (14) 

 

where K
tτ  are aggregate fixed time effects and Kζ  is a constant term (included in 

place of one of the K
tτ 's).   

 Conditional on observing ky*i,t and pK*
i,t, equation (14) provides a rather 

straightforward framework for estimating σ.  Consistent estimates are obtained 

because the industry-level factor prices are exogenous.  (This assumption is relaxed 

in Section 5.2, which contains instrumental variables estimates.)  Importantly, in 

light of the recent critique and evidence by Antrás (2004), our estimates of σ are 

immune to biased technical change.10  The key unresolved issue is that the long-run 

values denoted by *'s are not observable, an issue to which we now turn.      

 

                                           
10 See his equation (1'), which is comparable to our equation (14) multiplied by minus one.  The 
effects of biased technical change are removed by time effects in our framework based on panel 
data and by a linear time trend in Antrás’ framework based on aggregate data.  If we adopt 
Antrás’ specification of biased technical change, K*B exp[ t]t = λ .  In this case, λ  is absorbed in 
the constant in equation (14).  
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4.2.  Low-Pass Filters and Long-Run Values  

 Estimation of equation (14) is made difficult because the long-run values are 

not observed.  Previous research generally addresses this problem in one of three 

ways.  One approach estimates an investment equation that links changes in the 

observed capital stock to the unobserved long-run capital stock by assuming that 1) 

the change in the observed capital stock is measured by investment spending, 2) 

that the change in the long-run capital stock is measured by changes in output and 

the price of capital, and 3) that these changes are distributed over time due to 

various short-run frictions (Chirinko and von Kalckreuth, 2004, Appendix B).  

Relying on investment data replaces the unobservability problem with a set of 

difficult issues concerning dynamics and the specification of investment 

equations.11  A second approach assumes that the observed capital stock, output, 

and price of capital approximate the long-run values and estimates variants of 

equations (13) or (14).  This procedure effectively removes the *’s from these 

equations, an assumption that seems unwarranted.  Third, as noted above, 

Caballero (1994) and Schaller (forthcoming) measure long-run values in an 

equation similar to (13) by exploiting the cointegration relation between the 

capital/output ratio and the relative price (or user cost) of capital.  Deviations 

between the long-run and observed values are accounted for with the Stock and 

Watson (1993) correction, which has a substantial influence on the estimated σ’s.  

 Our approach also focuses on the first-order condition that holds in the long-

run but uses the Baxter-King (1999) low-pass filter (LPF) defined in the frequency 

domain to measure the long-run values of variables denoted by *’s.  A LPF allows 

frequencies lower than some critical frequency, ω#, to pass through to the 

                                           
11 Chirinko, Fazzari, and Meyer (2004) document that, relative to the approach pursued in this 
paper, investment equations  based on firm-level panel data impart a downward bias on estimates 
of σ. 



 

 

24

transformed series but excludes frequencies higher than ω#.  Baxter and King 

present two important results regarding LPF's for the purpose of the current study.  

They derive the formulas that translate restrictions from the frequency domain into 

the time domain.  For an input series, tx , the ideal LPF for a critical value ω# 

produces the transformed series, * #
tx [ ,q]ω , for an infinite lag and lead lengths,  

q → ∞,  

 

   
q

* # #
t h t hq h q

x [ ,q] lim d [ ]x −
→∞ =−

ω = ω∑ ,       (15a) 

    # # #
h hd [ ] d ' [ ] [ ,q]ω = ω + θ ω ,       (15b) 

    # #
hd ' [ ] /ω = ω π ,           h = 0,   (15c) 

    # #
hd ' [ ] sin[ h ]/( h )ω = ω π ,         h = +1, +2, …, q, (15d) 

 
q

# #
hq h q

[ ,q] lim 1 d ' [ ] (2q 1)/
→∞ =−

⎛ ⎞
θ ω = − ω +⎜ ⎟⎜ ⎟

⎝ ⎠
∑ ,     (15e) 

 # # #2 / p F[p ]ω = π = ,          p# = [2, ∞),  (15f)  

 

where the #
hd [ ]'sω  are weights defined as the sum of two terms – a provisional set 

of weights denoted by a prime (the #
hd ' [ ]'sω in equations (15c) and (15d)) and a 

frequently imposed normalization that the #
hd [ ]'sω  sum to 1 (per the constant 

#[ ,q]θ ω  computed in equation (15e)).  Equation (15g) defines the inverse relation 

between the critical frequency (ω#) and the critical periodicity (p#), the latter 

defined as the length of time required for the series to repeat a complete cycle.  
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Since periodicities are relatively easy to interpret, hereafter we focus on #p  in 

place of #ω .  

 A difficulty with implementing equations (15) is that the ideal LPF requires 

an infinite amount of data.  Baxter and King's second key result is that the optimal 

approximate LPF for a window (i.e., the length of the leads and lags) of finite 

length q truncates the symmetric moving average at q.  Thus, for h q≤ , the 

#
hd [p ]'s  

are given in equations (15); for h q> , #
hd [p ] 0= .  The optimal approximate LPF 

for the critical periodicity #p  and lead and lag length q, #LPF[p ,q], is given by 

equations (15) for any finite q.   

 

4.3.  Spectral Properties of the Low-Pass Filter Panel Model 

 Our estimation strategy is designed to emphasize long-run variation and, in 

this sub-section, we use spectral analysis to assess the extent to which choices of 

the critical periodicity and window are successful.12  The estimating equation is 

derived in three steps:  a) define long-run values with the #LPF[p ,q] (equations 

(15)); b) insert these long-run values into the first-order condition for optimal 

capital accumulation and take logarithms (equation (13)); c) first-difference this 

logarithmic equation to remove industry fixed effects (equation (14)).  Each of 

these steps impacts the spectrum of the transformed data and hence the relative 

weights given to long-run variation in the variables ultimately entering the 

estimating equation.  To compute the spectrum of a transformed series, we rely on 

the fundamental result from spectral analysis linking the spectrum of an output 

                                           
12 See Hamilton (1994, Chapter 6) or Sargent (1987, Chapter IX) for discussions of spectral 
analysis. 
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series to the product of the spectrum of an input series and a scalar that may be a 

function of ω, p#, or q.  To understand the impact of each step, we need only 

compute the scalar associated with each transformation.   

 In analyzing the spectral properties of our estimator, it is convenient to 

recast the LPF transformation (for a finite q), the logarithmic transformation, and 

the first-difference transformation as follows,  

 

   
q

* # #
t h t h

h q
x [p ,q] d [p ] x −

=−
= ∑ ,        (16a) 

 
 
   * # * #

t ty [p ,q] ln[x [p ,q]]= ,        (16b) 
 
 
   * # * #

t tz [p ,q] y [p ,q]= Δ ,         (16c) 

 

where tx  represents the raw data series, either K
i,t i,t i,t(K / Y ) or p .  The spectra  

corresponding to the * * *
t t tx [.], y [.], and z [.] output series in equations (16) are 

defined over the interval ω = [0, π] as the product of the spectrum for the input 

series and a scalar that is nonnegative, real, and may be depend on ω, #p , or q,  

 

   i # i
x* xg [e ] a [p ,q] g [e ]− ω − ω

ω= ,       (17a) 

 

   i i
y* x*g [e ] b g [e ]− ω − ω= ,         (17b) 

 

   i i
z* y*g [e ] c g [e ]− ω − ω

ω= ,        (17c) 
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where i
xg [e ]− ω  is the spectrum for the raw series and the scalars are defined as 

follows, 

 
# #

2q
# #

h
h 1

# 1/ 2

a [p ,q] [p ,q]

(2 / p ) 2 cos[h ] d ' [p ]

[p ,q] {(1 cos[ (2q 1)]) /(1 cos[ ])}

ω

=

= α

⎧ ⎫
+ ω⎪ ⎪

⎨ ⎬
⎪ ⎪+ θ − ω + − ω⎩ ⎭

∑    (17d) 

 

   2
x*b ( )−= β μ ,          (17e) 

 

   c 2 (1 cos[ ])ω = γ − ω ,         (17f) 

 

where x*μ  equals the unconditional expectation of *
tx [.] .  To ensure comparability 

in the analyses to follow that vary p# and q, the three spectra are normalized by an 

appropriate choice of a constant (α, β, or γ) so that the integrals for equations 

(17a), (17b), and (17c) evaluated from 0 to π equal 1.0.   

 The three scalars #a [p ,q]ω , b, and cω  correspond to the LPF, logarithmic, 

and first-difference transformations, respectively, and are derived as follows.  The 
#a [p ,q]ω  scalar is based on Sargent (1987, Chapter XI, equation (33)), 

 

   
q q

# # ih # ih #
h h

h q h q
a [p ,q] [p ,q] e d [p ] e d [p ] .− ω ω

ω
=− =−

⎧ ⎫ ⎧ ⎫⎪ ⎪ ⎪ ⎪= α ⎨ ⎬ ⎨ ⎬
⎪ ⎪ ⎪ ⎪⎩ ⎭ ⎩ ⎭

∑ ∑    (18) 

 

The two-sided summations are symmetric about zero and only differ by the minus 

sign in the exponential terms.  Hence, the two sums in braces are identical.  The 
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hd [.]'s  appearing in the summations are separated into [.]θ  and the hd ' [.]'s  (cf. 

equations (15)).  For the latter terms, a further distinction is made between the term 

at h=0 and the remaining terms (h=±1,±q) that are symmetric about h=0.  Equation 

(18) can be written as follows, 

 

  

2q
# ih

h q# #
q

# ih ih #
h

h 1

[p ,q] e
a [p ,q] [p ,q]

(2 / p ) (e e ) d ' [p ]

ω

=−
ω

− ω ω

=

⎧ ⎫
θ⎪ ⎪

⎪ ⎪= α ⎨ ⎬
⎪ ⎪+ + +⎪ ⎪⎩ ⎭

∑

∑
.   (19) 

 

The first sum of exponential terms is evaluated based on Sargent (1987, p. 275), 

 

   

( ){ }

1/ 22q q
ih ih

h q h q

1/ 2

e e

(1 cos[(2q 1) ]/ (1 cos[ ] .

ω ω

=− =−

⎧ ⎫⎛ ⎞⎪ ⎪= ⎜ ⎟⎨ ⎬⎜ ⎟
⎪ ⎪⎝ ⎠⎩ ⎭

= − + ω − ω

∑ ∑
     (20) 

 

The second sum of exponential terms is evaluated with the Euler relations, 
ihe cos[h ] sin[h ]± ω = ω ± ω ,  

 

   
q q

ih ih # #
h h

h 1 h 1
(e e )d ' [p ] 2 cos[h ] d ' [p ]− ω ω

= =
+ = ω∑ ∑ .     (21) 

 

The b scalar is based on the approximation in Granger (1964, p. 48, equation 

3.7.6), which states that the approximation will be accurate if the mean is much 

larger than the standard deviation of the input series ( *
tx [.] ).  The cω  scalar is 



 

 

29

based on the well-known formula for the first-difference transformation (Hamilton, 

1994, equation 6.4.8).  Note that b and cω  are independent of p# and q.  The 

importance of the above analytical results is that the combined effects of the three 

transformations are captured by three scalars that multiply the spectrum of the raw 

series,  

 

   { }i # i
z* xg [e ] a [p ,q] * b * c * g [e ]− ω − ω

ω ω= .     (22)  

 

 With equation (22), we are now in a position to examine the extent to which 

our estimation strategy based on the definition of the long-run ( #p 8= ) and the 

window (q=3) approximates the ideal low-pass filter and hence is successful in 

emphasizing long-run variation in the data.  Since the spectra for the raw series 

( i
xg [e ]− ω ) and the scalars associated with the logarithmic and first-difference 

transformations ( b and cω , respectively) do not depend on #p  or q, they can be 

ignored in drawing relative comparisons among estimators.  Alternative values of 
#p  or q will only affect the #LPF[p ,q] and the associated frequency response 

scalar, #a [p ,q]ω .   

  Our first set of analyses holds the window fixed at q = 3 and examines 

different values of the critical periodicity, p#, that determines which frequencies are 

passed-through in the #LPF[p ,q].  Four values of  #p  are considered in Figure 2.  

We begin with the minimum value of the critical frequency, #p  = 2, which 

corresponds to the standard investment equation that does not transform the raw 

data (other than the logarithmic and differencing operations).  The frequency 

response for the standard investment model ( #a [p 2,q 3]ω = = ) is flat, indicating 
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that this estimator does not reweight the variances across frequencies of the raw 

series.  By contrast, our benchmark model represented by #a [p 8,q 3]ω = =  effects 

a substantial reweighting.  With p# = 8, the benchmark model emphasizes the 

variances from periodicities greater than or equal to 8 years (which corresponds to 

ω# < 0.79 on the horizontal axis), thus allocating a substantial amount of weight to 

those frequencies that we believe will yield better estimates of production function 

parameters.  The remaining entries in Figure 2 are for the intermediate cases, 
#a [p 4,q 3]ω = =  and #a [p 6,q 3]ω = = .   

 The benchmark model is based on the assumption that periodicities greater 

than or equal to 8 years contain useful information for the parameter estimates.  We 

now explore how much additional reweighting occurs when we increase the critical 

periodicity above 8; specifically, for values of #p  equal to 10, 20 and, in the limit, 

∞.  The a [.]'sω  corresponding to these critical values are graphed in Figure 3.  

Comparing the frequency responses for these higher periodicities indicates that 

they weight the lower frequencies in a manner very similar to the benchmark case 

of #p 8= .   

 This analysis suggests two conclusions concerning our choice of the critical 

periodicity.  First, our estimation strategy based on #p 8=  appears to be reasonably 

successful in emphasizing long-run variation.  This critical value appears to be a 

well-accepted standard for separating long-run frequencies from short-run and 

medium-run frequencies.13  Second, results in Figure 3 suggest that parameter 

estimates are likely to be insensitive to the critical periodicity for values of #p 8> . 

                                           
13 A critical value of p# = 8 is used by Baxter and King (1999, p. 575), Levy and Dezhbakhsh 
(2003, p. 1502), Prescott (1986, p. 14), and  Stock and Watson, 1999, p. 11).  Burns and Mitchell 
(1946) report that the duration of the typical business cycle in the U.S. is less than 8 years.   
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 We can also use the spectral formulas to assess the impact of variations in 

the window, q, in approximating the ideal low-pass filter.  Recall that the ideal LPF 

is based on the limiting behavior as q --> ∞.   Since the span of our data are 

limited, this procedure is not feasible, and our empirical work relies on the optimal 

approximation based on a finite number of q leads and lags.  This approximation 

introduces error into the analysis because variances associated with frequencies 

other than those desired enter into the transformation of the model variables.  

However, increasing q is costly in terms of lost degrees of freedom.   

 The tradeoff between approximation error and degrees of freedom is 

assessed in Figure 4, which plots #a [p 8,q]ω =  and values of q equal to 1, 3 and 5.  

The ideal LPF is also plotted as a rectangle that takes on a constant positive values 

for ω's corresponding to #p 8≥ , and 0 for all other ω's.14  When q = 1, the 

approximation error is substantial, and the LPF is extensively contaminated by the 

variances associated with frequencies above the critical value.  This contamination 

can not be totally eliminated with finite data but, when q = 3, it is reduced 

substantially.  When q = 5, the LPF moves closer to the ideal LPF, but the 

improvement relative to q=3 is modest.  Since using a window of q = 5 is costly in 

terms of degrees of freedom and the reduction in approximation error appears 

small, we will adopt q=3 as our preferred window, though we will experiment with 

q=1 and q=5 to examine robustness.15    

                                           
14  This constant positive value is chosen so that the area under the ideal LPF is 1.0.  A critical 
value of p# = 8 implies ω# = π / 4 = 0.785, and hence the positive constant equals (0.785)-1 = 
1.273.  
 
15 Baxter and King (1999, pp. 581-582) reached a similar conclusion based on their analysis of 
band-pass filters.   
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5.  Empirical Results:  Homogenous Industry σi's 

 This section estimates σ using our low-pass filter model defined with 

various critical periodicities and windows.  Data are obtained from the webpage of 

Dale Jorgenson 

(http://post.economics.harvard.edu/faculty/jorgenson/data/35klem.html), and 

represent output, inputs, and prices for 35 industries for the period 1959-1996.  

This section imposes the restriction that the σi's are identical across all 35 

industries; this restriction will be relaxed in Section 6.   

 

5.1.  OLS Estimates 

 In our model, σ is identified by the correlation between the growth rates of 

the capital/output ratio and the relative price of capital, conditional on fixed 

industry and aggregate effects (see equation (14)).  The OLS results from our low-

pass filtered model based on p# = 8 and q = 3 are as follows,    

 

   

* K* K K*
i,t i,t t i,t

2

ky 0.007 0.308 p e ,
(0.001) (0.017)

0.288 R 0.404
(0.004)

Δ = − Δ + τ +

σ = =�
     (23) 

 
where σ�  is computed according to equation (P8) with ω -weights  based on capital 

stocks (the results are very robust to defining the ω -weights by real output, 

nominal output, or 1/35).16  The point estimate for σ�  is 0.288 with a very small 

standard error of 0.004, and the R2 is 0.404.  As we shall, see subsequent results 

very rarely depart in a meaningful way from the benchmark estimates presented in 

                                           

16 The standard error of σ�  is computed with the following formula,  
0.5

2
i i

i
VAR[ ]

⎡ ⎤
ω σ⎢ ⎥

⎢ ⎥⎣ ⎦
∑ . 
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equation (23) and, when meaningful differences occur, they are due to the presence 

of high frequency variation in the model variables.   

 Table 1 examines the sensitivity of estimates of σ to variations in the 

window (q) and the critical periodicity (p#).  For a given p#, the σ's are very robust 

to variations in q.  For example, when p# = 8, the σ's are 0.275, 0.308, and 0.292 

for q of 1, 3, and 5, respectively.  The standard errors rise as the window is 

increased and more data are used in computing the filters and less data are 

available for estimation.  Nonetheless, the standard errors for the σ's remain less 

than 0.02 for all entries.  (Note that the R2's are not strictly comparable across cells 

because the dependent variable depends on p# and q.)  These results suggest that 

little is gained by increasing the size of the window and compromising degrees of 

freedom above  

q = 3.   

 Table 1 also allows us to assess the robustness of variations in p# for a given 

q by reading down the columns.  For q = 3, as p# increase from 8 to ∞ in column 2, 

the estimates of σ hardly change.  Consistent with the theoretical analysis in 

Figures 2 and 3, this robustness confirms that the relevant information about the 

long-run has been captured at p# = 8.  When p# is set to its minimum value of 2, the 

low-pass filter is neutral, and the raw data are transformed only by logarithmic and 

first-difference operations (cf. equation (22)).  In this case, σ drops by one-third 

relative to the benchmark value (0.193 vs. 0.288).  Thus, high frequency and 

presumably transitory variation affects the estimates of σ and, as has been 

frequently noted in the permanent income literature, transitory variation attenuates 

point estimates.  

 Table 2 explores robustness with respect to the constant term and fixed 

aggregate effects with p#  = 8 and q = 3.  Column 1 contains our benchmark results.  

When we remove the time dummies in column 2, σ rises from 0.308 to 0.350, and 
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the R2 falls from 0.404 to 0.335.  Columns 3 and 4 remove the constant term, and 

the results mirror those in columns 1 and 2.  Thus, estimates of σ are robust to 

including a constant and fixed time effects.  Both are included in the estimating 

equation for the subsequent results.    

 

5.2.  IV Estimates 

 The estimates reported in Section 5.1 are based on the assumption of 

exogenous prices, and hence OLS is the appropriate estimation technique.  Since 

the exogeneity assumption necessary for consistent estimation may not hold 

strictly, instrumental variable estimates provide a useful robustness check.  

 Table 3 contains the instrumental variable results using K*
i,t 2p − as the 

instrument for the same range of values for p# and q that appeared in Table 1.  For 

values of p# equal to or greater than 6, the IV estimates of σ are approximately 0.10 

higher than their OLS counterparts in Table 1.  All of these σ's are statistically 

significant at the 1% level.  The discrepancy widens for p# = 4.  However, for p# = 

2, the results become nonsensical.  Thus, for those estimates emphasizing long-run 

variation, the IV estimates of σ are greater than the comparable OLS estimates, but 

still far from σ equal to unity.    

 Recent work with instrumental variables has raised concerns about weak 

instruments and biased estimates (Nelson and Startz, 1990).17  Instrumental 

relevance is assessed with the test statistic proposed by Stock, Wright, and Yogo 

(2002), which involves an auxiliary regression of the model variable on the 

instrument and a comparison of the F-statistic for the goodness of fit to a critical 

value of 8.96 (reported in their Table 1).  As shown below, the σ's in Table 3, only 

                                           
17  Note that Hansen-Sargen test of instrument validity is not useful in this just identified model.   
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the instrument used for the p# = 2 results is weak, and hence these estimates are 

unreliable.  This result suggests a reason for the implausible estimates for p# = 2.  

All of the other estimates are based on strong (relevant) instruments.  For p# > 4, 

the estimated σ's range from 0.304 to 0.423.   

 

5.3.  Split-Sample Estimates  

 To further assess the robustness of our results, Table 4 contains estimates 

from the first and second halves of the sample, 1958-1977 and 1978-1996, 

respectively.  The results closely follow those reported previously.  For example, 

for our preferred specification with p# = 8 and q = 3, the estimates of σ from the 

first and second halves of the sample are 0.261 and 0.362, respectively.  These 

estimates bracket our preferred estimate from the full sample of 0.308.     

 

5.4.  Other Estimating Equations 

 The first-order conditions for profit maximization yield two additional 

estimating equations that contain the labor/output ratio or the labor/capital ratio as 

the dependent variable.  However, the neoclassical growth model implies that 

neither series is stationary, an implication consistent with the first two of the 

stylized facts of growth advanced by Kaldor (1961).  Hence, the low-pass filter 

used in this study is not strictly applicable because spectral methods require 

stationary data.  Murray (2003) and Cogley and Nason (1995) document the 

problems that can arise when band pass filters are applied to nonstationary data and 

Mallick (in process) is exploring the effects of nonstationary data on the variety of 

estimates of σ appearing in the literature.  With this important caveat noted, we 

nonetheless examine the estimates of σ derived from the equations with 

labor/output (ℓy*) or the capital/labor  

ratio (kℓ*) as the dependent variable, and estimate the following equations,   
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   * L L* L L*
i,t i,t t i,ty p eΔ = ζ − σΔ + τ +A ,       (24) 

   * KL K* L* KL KL*
i,t i,t i,t t i,tk (p p ) eΔ = ζ − σΔ − + τ +A .     (25) 

 

 Table 5 contains σ's and R2's for q = 3 and the usual range of p# 's.  Column 1 

contains the previously reported estimates for ky* and columns 2 and 3 the results 

for ℓy* and kℓ*, respectively.  Relative to the results with ky*, the σ's estimated 

with the ℓy* equation are higher for all critical periodicities (save p# = 4); those for 

kℓ* are lower.  The maximal difference among the σ's across the three 

specifications is 0.17.  While this difference is not negligible, it must be kept in 

mind that the estimates based on ℓy* and kℓ* are not on firm statistical footing.  

Nonetheless, this array of estimates of σ is bounded above by 0.40. 

  In a well-known study, Berndt (1976) estimated these three first-order 

conditions, and uncovered a disturbingly wide range of results.  Part of this 

dispersion was due to different definitions of factor prices.  But he also found that 

the labor/output equation delivered higher values of σ.  With the exception of the 

p# = 4 results, Table 5 confirms the Berndt finding.    
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6.  Empirical Results:  Heterogeneous Industry σi's  

 

 This section relaxes the constraint that iσ = σ  and permits separate i 'sσ  to 

be estimated for each industry.   A full set of results are not available for this 

heterogeneous industry i 'sσ  model.  The initial indication is that the results are 

robust.  For example, when the constraint is imposed across industries, σ�  is 0.288 

(0.004).  In the unconstrained model, σ�  is lower and equals 0.170 (0.022).  The 

standard error rises in the unconstrained model, though the substitution elasticity is 

still precisely estimated.  While the two aggregate estimates are statistically 

different, the difference is not economically meaningful.    
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7.  Summary and Conclusions 

  The elasticity of substitution between labor and capital (σ) is a crucial 

parameter in growth theory.  Solow's fundamental innovation can be cast in terms 

of σ, where the Harrod-Domar assumption that σ = 0 is replaced with the more 

general assumption that σ > 0.  Our discussion highlights that a host of important 

growth issues depend on the precise positive value of σ.  It affects the possibility of 

perpetual growth or decline, the level of steady-state income per capital, the speed 

of convergence, the rate of return on capital, the role of biased technical change, 

and the allocation of per capita income to factors of production and the efficiency 

with which they are utilized.  

 This key production function parameter is estimated by focusing on the 

long-run relations using a low-pass filter defined in the frequency domain.  Our 

preferred point estimate is 0.288, and it proves robust to variations in several 

directions.  Our review of the growth literature, suggests that σ is not an engine of 

growth.  This estimate is well below the critical value needed for perpetual growth 

in the neoclassical growth model.  Moreover, the empirical results suggest that the 

dynamic macroeconomics in general and the growth literature in particular need to 

move away from the convenient but inaccurate assumption of σ equal to unity.  

Such a departure from a Cobb-Douglas production function will force an 

expansion of the neoclassical growth model to include, among other factors, a 

central role for biased technical change in influencing factor shares and balanced 

growth.    
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Appendix: 

Specifying the Marginal Product of Capital 

With Neutral and Biased Technical Change 

 This appendix presents the details of the derivation of the marginal product 

of capital when there is both neutral and biased technical change.  We assume that 

production possibilities are described by the following CES technology that relates 

output ( *
i,tY ) to capital ( *

i,tK ), labor ( *
i,tL ), neutral technical progress ( *

i,tA ), and 

biased technical progress on capital and labor ( K* L*
t tB and B ,  respectively) for firm 

i at time t,  

 

 * * * * K* L*
i,t i,t i,t i,t t tY Y[K ,L ,A ,B ,B ]= ,       (A1) 

{ }[ /( 1)]* K* * [( 1) / ] L* * [( 1) / ]
i,t t i,t t i,tA (B K ) (1 )(B L )

σ σ−σ− σ σ− σ= φ + − φ  

 

where φ is the capital distribution parameter and σ is the elasticity of substitution 

between labor and capital. 

 The derivative of *
i,tY  with respect to *

i,tK  is computed from equation (A1) 

as follows, 

 

 { }[[ /( 1)] 1]* * K* * [( 1) / ] L* * [( 1) / ]
i,t t i,t t i,ti,t

K* * [[( 1) / ] 1] K*
t i,t t

Y ' [ /( 1)]A (B K ) (1 )(B L )

*[( 1) / ] (B K ) B .

σ σ− −σ− σ σ− σ

σ− σ −

= σ σ − φ + − φ

σ − σ φ
 (A2)  

 

Noting that the set of parameters in the exponent of K* *
t i,t(B K )  on the second line 

of equation (A2) can be rewritten,  
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   (( 1) / ) 1 1/σ − σ − = − σ ,         (A3) 

 

we rearrange equation (A2) as follows, 

 

  
{ }

{ }

* * [ 1/ ]
i,t i,t

[ /( 1)]* K* * [( 1) / ] L* * [( 1) / ]
i,t t i,t t i,t

1K* * [( 1) / ] L* * [( 1) / ]
t i,t t i,t

K*[( 1) / ]
t

Y ' K

A (B K ) (1 )(B L )

(B K ) (1 )(B L )

B .

− σ

σ σ−σ− σ σ− σ

−σ− σ σ− σ

σ− σ

= φ

φ + − φ

φ + − φ
    (A4)   

    

In equation (A4), the second line equals *
i,tY  per equation (A1), and the third line 

equals the product of * *
i,t i,tY and A  raised to the appropriate powers, 

 

   

* * [ 1/ ]
i,t i,t

*
i,t
*[(1 ) / ] *[( 1) / ]
i,t i,t

K*[( 1) / ]
t

Y ' K

Y

Y A

B ,

− σ

−σ σ σ− σ

σ− σ

= φ

        (A5) 

 

which can be rewritten as follows, 

 

   *[1/ ] *[( 1) / ]* * [ 1/ ] K*[( 1) / ]
i,t i,t ti,t i,tY ' K Y A Bσ σ− σ− σ σ− σ= φ  .    (A6a) 

   * * [1/ ] K*[1/ ]
i,t i,t i,t(Y / K ) Uσ σ= φ ,       (A6b) 

        K*[1/ ] *[ 1] K*[ 1]
i,t ti,tU A Bσ σ− σ−≡ .     (A6c) 
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We assume that the marginal product of capital in equation (A6a) is equated to the 

price of capital, K*
i,tP , 

 

   K* * * [1/ ] K* [1/ ]
i,t i,t i,t i,tP (Y / K ) Uσ σ= φ .       (A7) 

 

Equation (A7) can be rearranged to isolate the capital/output ratio on the left-side, 

 

   * * K* K*
i,t i,t i,t i,t(K / Y ) (P ) Uσ −σ= φ ,       (A8) 

 

which is equation (11a) in the text. 
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Table 1:   Benchmark Model  
  Ordinary Least Squares Estimates Of Equation (14) 
  Dependent Variable: Capital/Output Ratio 
  Various Critical Periodicities (p#) and Windows (q) 
 
 
 
  q = 1 q = 3 q = 5 
  (1) (2) (3) 

p# = 2 σ { R2} 0.206 {0.466} 0.206 {0.476} 0.218 {0.495} 
     
p# = 4 σ { R2} 0.275 {0.500} 0.278 {0.519} 0.281 {0.532} 
     
p# = 6 σ { R2} 0.276 {0.487} 0.296 {0.454} 0.274 {0.402} 
     
p# = 8 σ { R2} 0.275 {0.483} 0.308 {0.404} 0.292 {0.381} 
     
p# = 10 σ { R2} 0.274 {0.481} 0.311 {0.390} 0.314 {0.359} 
     
p# = 20 σ { R2} 0.274 {0.480} 0.304 {0.392} 0.327 {0.349} 
     
p# → ∞ σ { R2} 0.273 {0.480} 0.302 {0.394} 0.313 {0.353} 
 
 
Notes:  Estimates of σ are based on panel data for 35 industries for the period 
1959-1996.  Standard errors are heteroscedastic consistent using the technique of 
White (1980), are less than 0.02 for all entries, and are not reported because all 
estimates of σ are statistically significant at the 1% level.  A constant term and 
fixed time effects are included in the regression equation but are not reported.  The 
R2's are not comparable across cells because the dependent variable depends on p# 
and q.  Our preferred estimate is for the equation for which the Low-Pass Filter 
parameters are p# = 8 and q = 3.     
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Table 2:   Benchmark Model  
  Ordinary Least Squares Estimates Of Equation (14) 
  Dependent Variable: Capital/Output Ratio 
  p#=8 and q=3 
  Combinations of Fixed Industry and Time Effects   
 
 
 (1) (2) (3) (4) 

σ 0.308 0.350 0.308 0.352 
 (0.017) (0.018) (0.020) (0.018) 
     
ζK 0.007 0.007 0.000 0.000 
 (0.001) (0.001) (-----) (-----) 
     
τK

t Yes No Yes No 
     
     
R2 0.404 0.335 0.440 0.335 
 
 
Notes:  Estimates of σ are based on panel data for 35 industries for the period 
1959-1996.  Standard errors are heteroscedastic consistent using the technique of 
White (1980).   
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Table 3:   Benchmark Model  
  Instrumental Variable Estimates Of Equation (14) 
  Dependent Variable: Capital/Output Ratio 
  Various Critical Periodicities (p#) and Windows (q) 
 
 
  q = 1 q = 3 q = 5 
  (1) (2) (3) 

p# = 2 σ [F-stat] -0.575@ [6.88] -0.605@ [6.82] 1.560@ [7.48] 
     
p# = 4 σ [F-stat] 0.388 [25.33] 0.385 [25.73] 0.423 [21.00] 
     
p# = 6 σ [F-stat] 0.389 [27.00] 0.342 [58.16] 0.304 [58.97] 
     
p# = 8 σ [F-stat] 0.393 [25.90] 0.331 [118.56] 0.328 [74.97] 
     
p# = 10 σ [F-stat] 0.396 [25.35] 0.340 [117.19] 0.338 [147.91] 
     
p# = 20 σ [F-stat] 0.398 [24.78] 0.374 [57.04] 0.352 [129.11] 
     
p# → ∞ σ [F-stat] 0.399 [24.69] 0.382 [48.30] 0.362 [70.47] 
 
 
Notes:  Estimates of σ are based on panel data for 35 industries for the period 
1959-1996.  The instrument is pK*

i,t-2.  Standard errors are heteroscedastic 
consistent using the technique of White (1982) and are not reported because all 
estimates of σ are statistically significant at the 1% level with the exception of the 
σ's in row 1 marked with a @, which are not significant at the 10% level.  [F-stat] is 
the F-statistic for the first-stage regression of ΔpK*

i,t on pK*
i,t-2.  The null hypothesis 

of a weak instrument is rejected at the 5% level for F-stat greater than or equal to 
8.96 (Stock, Wright, and Yogo, 2002, Table 1).  A constant term and fixed time 
effects are included in the regression equation but are not reported.  Our preferred 
estimate is for the equation for which the Low-Pass Filter parameters are p# = 8 and 
q = 3.   
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Table 4:   Benchmark Model  
  Ordinary Least Squares Estimates Of Equation (14) 
  Dependent Variable: Capital/Output Ratio 
  Various Critical Periodicities (p#) and q = 3 
  Split-Sample Results 
 
 
 Period  q = 1 q = 3 q = 5 
   (1) (2) (3) 

1958-77 σ {R2} 0.199 {0.536} 0.208 {0.517} 0.236 {0.527}  p# = 2 
 1978-96 σ {R2} 0.203 {0.413} 0.179 {0.401} 0.118 {0.364} 
      

1958-77 σ {R2} 0.243 {0.556} 0.250 {0.530} 0.270 {0.505} p# = 4 
 1978-96 σ {R2} 0.291 {0.471} 0.268 {0.386} 0.216 {0.298} 
      

1958-77 σ {R2} 0.236 {0.540} 0.248 {0.436} 0.294 {0.434} p# = 6 
1978-96 σ {R2} 0.301 {0.472} 0.326 {0.367} 0.292 {0.321} 

      
1958-77 σ {R2} 0.232 {0.533} 0.261 {0.410} 0.315 {0.451} p# = 8 

 1978-96 σ {R2} 0.302 {0.470} 0.362 {0.357} 0.300 {0.283} 
      

1958-77 σ {R2} 0.231 {0.531} 0.273 {0.423} 0.339 {0.415} p# = 10 
 1978-96 σ {R2} 0.302 {0.470} 0.367 {0.349} 0.355@ {0.241} 
      

1958-77 σ {R2} 0.230 {0.528} 0.285 {0.458} 0.336 {0.399} p# = 20 
 1978-96 σ {R2} 0.302 {0.469} 0.344 {0.337} 0.394@ {0.272} 
      

1958-77 σ {R2} 0.229 {0.528} 0.286 {0.465} 0.317 {0.403} p# → ∞ 
1978-96 σ {R2} 0.302 {0.469} 0.337 {0.335} 0.379@ {0.298} 

 
Notes:  Estimates of σ are based on panel data for 35 industries for the sub-samples 
indicated in the row headings.  The data are filtered after the sub-sample is defined. 
Standard errors are heteroscedastic consistent using the technique of White (1980), 
are less than 0.02 for all entries with the exception of the σ's in column 3 marked 
with a @), and are not reported because all estimates of σ are statistically 
significant at the 1% level.  A constant term and fixed time effects are included in 
the regression equation but are not reported.  The R2's are not comparable across 
cells because the dependent variable depends on p# and q.  The window is fixed at 
q = 3; our preferred estimate is for the equations for which the Low-Pass Filter 
parameter is p# = 8.  



 

 

51

 
Table 5:   Benchmark And Alternative Models  
  Ordinary Least Squares Estimates Of  
       Equations (14), (24), and (25) 
  Alternative Dependent Variables  
  Various Critical Periodicities (p#) and q = 3 
 
 
  Dependent Variable 
  Δky*i,t Δℓy*i,t Δkℓ*i,t 
  (1) (2) (3) 
     
p# = 2 σ {R2} .206 {.476} .233 {.214} .109 {.417} 
     
p# = 4 σ {R2} .278 {.519} .239 {.249} .168 {.419} 
     
p# = 6 σ {R2} .296 {.454} .298 {.276} .207 {.393} 
        
p# = 8 σ {R2} .308 {.404} .353 {.310} .245 {.387} 
         
p# = 10 σ {R2} .311 {.390} .379 {.328} .255 {.384} 
        
p# = 20 σ {R2} .304 {.392} .398 {.341} .239 {.377} 
        
p# → ∞ σ {R2} .302 {.394} .399 {.340} .233 {.375} 
        
 
 
Notes:  Estimates of σ are based on panel data for 35 industries for the period 
1959-1996.  Standard errors are heteroscedastic consistent using the technique of 
White (1980), are less than 0.02 for all entries, and are not reported because all 
estimates of σ are statistically significant at the 1% level.  A constant term and 
fixed time effects are included in the regression equation, but are not reported.  The 
R2's are not comparable across cells because the dependent variable depends on p# 
and q.  The window is fixed at q = 3; our preferred estimate is for the equation in 
column (1) for which the Low-Pass Filter parameter is p# = 8.    
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Steady-State Relation Between  

Growth in the Capital/Labor Ratio σ and (KL KL
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Figure 2
Frequency Response Of a[ω : p#, q]

Equation (17d)    
Various Critical Periodicities (p#) With q=3
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Figure 3
Frequency Response Of a[ω : p#, q]

Equation (17d)
For Various Critical Periodicities (p#) With q=3
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Figure 4
Frequency Response Of a[ω : p#, q]

Equation (17d)
For The Ideal LPF And Various Windows (q) With p# = 8 
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