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Abstract

This paper formalizes and assesses empirically the implications of widely observed evidence

for downward nominal wage rigidity (DNWR). First, we formulate and solve an explicit model

of wage-setting in the presence of worker resistance to nominal wage cuts � something that

has previously been considered intractable. In particular, we show that this resistance renders

wage increases (partially) irreversible. Second, using this model, we can explain why previous

estimates of the macroeconomic e¤ects of DNWR have been so weak despite remarkably robust

microeconomic evidence. In particular, we show that previous studies have neglected the possi-

bility that DNWR can lead to a compression of wage increases as well as decreases. Thus, the

literature may have been overstating the increase in labor costs due to DNWR.

Using micro-data for the US and Great Britain, we �nd robust evidence in support of the

predictions of the model. In the light of this evidence, we conclude that increased wage pressure

due to DNWR may not be as large as previously envisaged, but that the data is nevertheless

consistent with a model in which workers resist nominal wage cuts.
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1 Introduction

The existence of nominal rigidities is a cornerstone of macroeconomic theory. Such rigidities act as

the key theoretical motivation for the existence of a trade-o¤ between in�ation and unemployment

in the form of the Phillips curve, and are thus of critical importance to the conduct and e¢ cacy of

macroeconomic policy.

Perhaps the most widespread evidence for nominal rigidity comes from a burgeoning literature

on the dynamics of wages using micro�data. In particular, this research details some striking

characteristics of the distribution of nominal wage changes at the individual level. These include

the existence of a mass point at zero nominal wage change and an asymmetry in the form of a de�cit

of nominal wage cuts, which are taken together as evidence for downward nominal wage rigidity

(henceforth DNWR). Such evidence has been found in numerous datasets spanning a vast number

of developed economies (for a survey see Kramarz, 2001, and the references therein). However, a

number of issues remain unresolved in the light of this research.

An important question relates to evidence for the expected macroeconomic e¤ects of DNWR.

In particular, a number of studies have shown that the above results predict the existence of a

convex, long run Phillips curve (Akerlof, Dickens & Perry, 1996). Intuitively, low in�ation implies

that reductions in real labor costs can only be e¤ected through nominal wage cuts. If �rms are

prevented from cutting nominal wages, then their only recourse is to layo¤ workers, leading to

increased unemployment. Thus, when in�ation is low, increased in�ation can relax the constraint

of DNWR on wage-setting for a signi�cant fraction of �rms, and thereby reduce unemployment.

This result has been of particular interest in recent years due to the adoption of in�ation targeting

by many monetary authorities. In particular, the existence of a long-run Phillips curve implies

that implementing a low in�ation target could result in a persistent increase in unemployment.

Much of the research on DNWR addresses precisely this issue. A typical reference is the analysis

of Card & Hyslop (1997) for the US. Their micro-level analysis �nds strong evidence that nominal

wage cuts are restricted when in�ation is low, and they conclude that the existence of DNWR leads

to an increase in average real wage growth of up to 1% per annum. Card & Hyslop then assess
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whether the predictions of this micro-level evidence are corroborated by evidence at a higher level

of aggregation. In contrast to their micro-level results, Card & Hyslop�s state-level results are

much weaker. In particular, whilst they �nd some evidence for the existence of a Phillips curve

trade-o¤, they obtain estimates that are too imprecise to conclude that this trade-o¤ is stronger in

periods of low in�ation1. Moreover, informal observation of the recent incidence of low in�ation

together with low unemployment in the US and UK con�rms the weakness of this prediction at the

most basic level. Thus, there exists a puzzle: if the micro-level evidence for DNWR is so robust,

why is the analogous macro-level evidence so fragile?

We argue that we can make progress in resolving this issue via a more careful consideration of

the theoretical underpinnings of DNWR. In particular, we present a model of DNWR informed

by recent evidence that wage-setters and negotiators are reluctant to cut the nominal wages of

workers (see Bewley, 1999, and the survey in Howitt, 2002). In particular, by interviewing over 300

managers, pay professionals, labor leaders etc., Bewley �nds that the most common explanation

provided for this reluctance is the belief that nominal wage cuts damage worker morale. Moreover,

there is additional evidence that agents are subject to money illusion (Sha�r, Diamond & Tversky,

1997). In particular, these studies show that agents in di¤erent economic settings exhibit signi�cant

aversion to nominal losses. A typical �nding is that respondents believe it much more acceptable

to receive a 5% nominal wage increase when in�ation is 12%, than a 7% wage cut when there is no

in�ation (Kahneman, Knetsch & Thaler, 1986). This is corroborated by Genesove & Mayer (2001)

who �nd evidence from real-estate data that condominium owners were reluctant to sell at a price

below that they originally paid, even though they were typically moving locally, and hence were

buying in the same market. Thus, an aversion to nominal loss applied to wage cuts can provide a

key to explaining the existence of DNWR.

The need for an explicit model of wage-setting in the presence of worker resistance to wage cuts

has been noted in the previous literature on money illusion, as well as by labor economists studying

the distribution of wage changes:

1Weak macroeconomic e¤ects have also been found by Lebow, Saks & Wilson (1999) for the US, and by Nickell &
Quintini (2003) and Smith (2004) for the UK. Indeed, Lebow, Saks & Wilson coined the term �micro-macro puzzle�
for the observed tension between micro- and macro-level estimates.
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�Plausibly, the relationship [between wages and e¤ort] is not continuous: there is a

discontinuity coming from nominal wage cuts.... A central issue is how to model such

a discontinuity.� Sha�r, Diamond & Tversky (1997), p.371.

�[I]t is surprising to us that there is no rigorous treatment in the literature of how

forward looking �rms should set wages when it is costly to cut nominal wages.� Altonji

& Devereux (2000), p.423 note 7.

We address these issues and show that a key insight into the implications of these behavioral models

is that nominal wage increases become partially irreversible. In particular, consider a �rm that

raises the wage today, but reverses the wage increase by cutting the wage by an equal amount

tomorrow. When workers resist wage cuts, the net e¤ect on productivity will be negative: today�s

wage increase will raise productivity, but tomorrow�s wage cut will reduce productivity by a greater

amount. Thus, reversals of wage increases are costly to �rms. In this sense we can think of there

being an asymmetric adjustment cost to changing nominal wages.2

The solution to this �behavioral�model equips us with a number of predictions that can po-

tentially reconcile the two strands of evidence mentioned above. We show that a key limitation in

the previous empirical literature is that it assumes (implicitly or otherwise) that the existence of

DNWR has no e¤ect on the upper tail of the wage change distribution. In particular, this is a key

identifying assumption in Card & Hyslop (1997), which leads them to use the observed upper tail of

the distribution of wage changes to infer the properties of the lower tail in the absence of DNWR.

The predictions of our model show that this is misguided3. In particular, the upper tail of wage

changes will be compressed for two related reasons. First, we show that �rms may actively reduce

the nominal wage paid when they increase the wage relative to a �counterfactual�world without

DNWR �what we will term �active compression�. In the behavioral model, this results because

2Models of adjustment costs have been widely studied in the investment and labor demand literatures, typically in
the form of continuous time Brownian models. In contrast, we formulate and solve our model of partial irreversibility
in discrete time (Bentolila & Bertola, 1990, and Abel & Eberly, 1996, are closest in spirit to the model analyzed here).
This is helpful for two reasons. First, since data are reported in discrete intervals, this method allows us to align
theoretical and empirical concepts more naturally. Moreover, many wage contracts are renegotiated on an annual
basis, which is more consistent with a discrete-time setup.

3This is not to say that Card & Hyslop (1997) is any more subject to this criticism than other previous empirical
work on DNWR. Rather, it is the clarity of the statement of identifying assumptions in that paper that allows a
particularly clean point of contrast with the implications of the model and results of this paper.

4



raising the wage today increases the likelihood of having to cut the wage, at a cost, in the future.

Second, the model shows that, even if �rms do not actively compress nominal wage increases, the

upper tail of the wage change distribution will still be compressed relative to the counterfactual

with no DNWR. This is because DNWR raises the general level of wages in the economy, and

thus �rms do not have to raise wages as often or as much to obtain their desired wage level. In

particular, we show that this process occurs because of a steady state result that average wages

and productivity grow at the same constant rate in the long run. We refer to this process as �latent

compression�.

These properties of the model culminate in the prediction that worker resistance to wage cuts

should in fact have no e¤ect on aggregate wage growth. Contrary to conventional wisdom, we show

that the costs of DNWR are not derived from increases in the cost of labor, but rather from any

reduction in worker productivity due to wage cuts. Moreover, we in turn show that any erroneous

suggestion that DNWR indeed raises wage growth will imply a substantial overstatement of the

true costs of DNWR to �rms.

In the light of this, we seek evidence for these predictions using micro-data for the US and Great

Britain. We �nd signi�cant evidence that the upper tail of the wage change distribution exhibits

a compression of wage increases that is related to DNWR. In particular, we �nd that this limits

the estimated increase in real wage growth due to DNWR from around 1�1.5% to no more than

0.3%. We show that this is because �rms can �save�at least 75% of the increase in wage growth

due to restricted wage cuts by reducing nominal wage increases.

As an additional test of the implications of the model of DNWR presented, we show that the

model also implies that increased rates of turnover should mitigate the necessity for �rms to restrict

wage increases. This occurs because higher turnover reduces the probability that a given worker

will stay in the �rm an additional period, and thus renders the �rm more myopic when it sets

wages. Thus �rms do not need to compress wage increases as a precaution against future costly

wage cuts to the same extent. We again �nd robust evidence for this hypothesis using data from

Great Britain. This reinforces the claim that a model of DNWR based on worker resistance to

nominal wage cuts is a useful way of understanding the empirical properties of wage setting.
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In the light of this evidence, we conclude that the macro e¤ects of DNWR may not be as large

as previously envisaged, and thus do not provide such a strong argument against the adoption of a

low in�ation target. However, the data is nevertheless consistent with a model in which workers

resist nominal wage cuts and may thereby imply something fundamental about the nature of human

behavior.

The rest of the paper is organized as follows. Section 2 presents an explicit behavioral model of

wage-setting in the presence of worker resistance to nominal wage cuts; section 3 �eshes out some

of the predictions of these models that we can take to the data; section 4 presents our empirical

methodology and the results obtained; section 5 discusses some remaining issues for future work;

and section 6 concludes. Where possible, we omit technical details from the main text, and relegate

them to the appendices4.

2 A Model of DNWR based on Worker Resistance to Wage Cuts

In this section we present an explicit model of downward nominal wage rigidity based on the

observations detailed in the empirical literatures mentioned above. In particular, we study the

optimal nominal wage policies of worker-�rm pairs for whom the productivity of the worker (denoted

e) depends upon the wage as follows:

e = ln
�!
b

�
+ c ln

�
W

W�1

�
1� (1)

where W is the nominal wage, W�1 the lagged nominal wage, 1� an indicator for a nominal wage

cut, ! �W=P the real wage, and b a measure of real unemployment bene�ts (which we assume to

be constant over time). The parameter c > 0 varies the productivity cost to the �rm of a nominal

wage cut.

The motivation for the qualitative features of this e¤ort function is as follows5. We assume that

4 In addition, we omit some of the more straightforward proofs to save space �these are available from the author
on request.

5The precise parametric form of (1) is chosen primarily for analytical convenience. None of the qualitative results
emphasized in what follows depends on the speci�c parametric form of (1) �the key is that e¤ort is increasing in the
wage and kinked around the lagged nominal wage.
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worker e¤ort depends positively on the di¤erence between the level of the real wage, !, and real

unemployment bene�ts, b. This captures the idea that, the higher the worker�s real standard of

living from being in work relative to unemployment, the harder that worker will work. In addition,

we model the productivity loss due to nominal wage cuts by assuming that e¤ort is falling in the

geometric nominal wage cut. Our reasoning for this is that the most obvious alternative �that

it is the absolute value of the cut in the nominal wage that reduces e¤ort �is implausible in the

following sense. It implies that a wage cut of a cent will cause the same loss in e¤ort whether last

period�s nominal wage is $1 or $1,000,000. This is clearly extreme, so we employ the more sensible

concept that it is the percentage cut in the nominal wage that a¤ects e¤ort6.

The qualitative features of this e¤ort function are illustrated in Figure 1. Clearly, there is a

kink at W =W�1 re�ecting the existence of DNWR. In particular, the marginal productivity loss

of a nominal wage cut exceeds the marginal productivity gain of a nominal wage increase:

@e=@W jW"W�1

@e=@W jW#W�1

= 1 + c > 1 (2)

This characteristic is what makes nominal wage increases (partially) irreversible �a nominal wage

increase can only be reversed at an additional marginal cost of c. Clearly, this is the key driving

force in the model that we seek to analyze, and the parameter c is what drives this feature of the

model.

The e¤ort function, (1), can be interpreted as a very simple way of capturing the basic essence

of the motivations for DNWR mentioned in the literature. It is essentially a parametric form

of e¤ort functions in the spirit of the fair-wage e¤ort hypothesis expounded by Solow (1979) and

Akerlof & Yellen (1988), with an additional term re�ecting the impact of nominal wage cuts on

e¤ort � as envisaged in the quote from Sha�r, Diamond & Tversky (1997) in the introduction.

Bewley (1999) also advocates such a characterization7:
6One may be interested in a speci�cation with a �xed e¤ort cost due to wage cuts, or a more general convexity of

e¤ort in wage cuts informed by the literature on loss aversion (Kahneman & Tversky, 1979). Both such speci�cations
would lead employers to cut the wage dramatically if they cut the wage at all. This di¤ers from the model analyzed
here in that we would expect to see a �hole� in the density of wage changes to the left of zero. Whilst previous
studies have not found strong support for this (Card & Hyslop, 1997), further work may be worthwhile to assess this
more formally.

7However, such is the intricacy of Bewley�s study, he would probably consider (1) a simpli�cation, not least for its
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�The only one of the many theories of wage rigidity that seems reasonable is the

morale theory of Solow...�Bewley (1999), p.423.

�The [Solow] theory...errs to the extent that it attaches importance to wage levels

rather than to the negative impact of wage cuts.�Bewley (1999), p.415.

In addition, an e¤ort function with these properties can be derived from a compensating di¤erentials

model where worker utility exhibits nominal loss aversion. The basic intuition for this is that, if

workers dislike nominal losses and the �rm wishes to cut the nominal wage, then the �rm must

compensate the worker in the form of lower on-the-job e¤ort in order to prevent the worker from

quitting. Thus, in this sense, (1) can be considered a reduced form of a model in which workers

dislike nominal loss. The goal of this paper is not to highlight the nuances of emphasis �which do

indeed exist �between these behavioral foundations, but rather to show that they share a common,

theoretically important, qualitative implication as to the nature of a �rm�s wage-setting choice.

This is intended as a start towards richer models of these phenomena, and to this end aims to unify

rather than to di¤erentiate.

The most comparable previous attempt at explicitly modelling the behavioral foundation to

DNWR is that of Akerlof, Dickens & Perry (1996). However, Akerlof et al. present a model in

which �rms have no operational discretion over wage-setting �wages are given by a wage-setting

relationship which �rms take as exogenous, and which dictates that nominal wages can never fall.

Thus, the implicit assumption in their model is that �rms do not cut wages because, if they did,

all of their workers would quit. The model presented in this paper di¤ers critically in that �rms

have a non-trivial wage-setting decision: �rms can cut nominal wages if they wish, but it will have

a strong adverse e¤ect on productivity at the margin. We argue that this is a more desirable

setup. In the �rst instance, it accords better with the evidence that �rms restrict wage cuts due

to concerns over morale within the �rm, rather than because the external labor market dictates it

(Bewley, 1999). Secondly, we will see that a model with wage discretion captures an important

characteristic of the available data: that wage increases are also compressed when DNWR binds.

neglect of emphasis on morale as distinct from productivity, and of the internal wage structure of �rms as a source
of wage rigidity. We argue that it is a useful simpli�cation as it provides key qualitative insights into the implied
dynamics of wage-setting under more nuanced theories of morale.
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The Wage Setting Problem

We consider a discrete-time, in�nite-horizon model in which price-taking worker-�rm pairs choose

the nominal wage Wt at each date t to maximize the expected discounted value of pro�ts. For

simplicity, we assume that each worker-�rm�s production function is given by a � e, where a is a real

technology shock that is idiosyncratic to the worker-�rm match, is observed contemporaneously,

and acts as the source of uncertainty in the model. Thus, de�ning � 2 [0; 1) as the discount factor

of the �rm, the typical �rm�s decision problem is given by:

max
fWtg

Et

" 1X
s=t

�s�t fases � !sg
#

(3)

where es = ln
�!s
b

�
+ c ln

�
Ws

Ws�1

�
1�s

It turns out in what follows that it is convenient to re-express the �rm�s pro�t stream in constant

date t prices. To this end, we multiply through by Pt, which we de�ne as the competitive price

level at date t, and assume that it evolves according to Pt = (1 + �)Pt�1, where � is the rate of

in�ation. Finally, de�ning the nominal counterparts, At � Ptat and Bt � Ptb and substituting for

et, we obtain the following optimization problem for the �rm:

max
fWtg

Et

" 1X
s=t

�
�

1 + �

�s�t�
As

�
ln

�
Ws

Bs

�
+ c ln

�
Ws

Ws�1

�
1�s

�
�Ws

�#
(4)

We assume that the nominal shock has support [0;1) and that its evolution can be described

by the cumulative density function F (A0jA). Thus, rewriting the problem in recursive form8 we

have9:

v (W�1; A) = max
W

�
A

�
ln

�
W

B

�
+ c ln

�
W

W�1

�
1�
�
�W +

�

1 + �

Z
v
�
W;A0

�
dF
�
A0jA

��
(5)

8We adopt the convention of denoting lagged values by a subscript, �1, and forward values by a prime, 0.
9 In addition, we make the assumptions that the measure dF (A0jA) satis�es the Feller property and is monotone,

so that the mapping (5) preserves continuity of the value function, and monotonicity of the value function in A. A
su¢ cient condition for this is that A is governed by the stochastic di¤erence equation, A0 = g (A; "0), where g is a
continuous function, "0 is an i.i.d. innovation (see Stokey & Lucas, 1989, pp.237, 261�262), and gA > 0. We maintain
these assumptions throughout the paper.
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(5) is the basic problem that we will attempt to solve in what follows10. Before we begin, though,

we �rst present an intuitive outline of the type of results we might expect.

2.1 Some Intuition for the Model

As the theory presented in the forthcoming sections can seem analytically complicated, in this

section we present the economic intuition for each of the predictions of the model, which we deal

with in turn.

First, the model predicts that there will be a spike at zero in the distribution of nominal wage

changes across �rms. This occurs because of the kink in the objective function at W = W�1.

In particular, this implies that for each �rm there will be a range of values (�region of inaction�)

for the nominal shock, A, for which it is optimal not to change the nominal wage. Since A is

distributed across �rms, there will exist a positive fraction of �rms each period whose realization

of A lies in their region of inaction that will in turn not change their nominal wage.

Second, in the event that a �rm does decide to change the nominal wage, the wage change will

be actively compressed relative to the case where there is no DNWR. That nominal wage cuts are

attenuated is straightforward to explain �as wage cuts involve a discontinuous fall in productivity

at the margin, the �rm will be less willing to e¤ect them. In particular, some small wage cuts

that would have been implemented in the absence of DNWR will instead be implemented as wage

freezes. Moreover, larger counterfactual wage cuts will be reduced in magnitude. It is slightly

less obvious why nominal wage increases are also attenuated in this way. The reason is that, in an

uncertain world, increasing the wage today increases the likelihood that you will have to cut the

wage, at a cost, in the future.

A direct implication of this last prediction is that increases in the productivity cost of cutting

the nominal wage, c, will accentuate all these e¤ects. That is, a higher productivity cost due to

nominal wage cuts will widen the region of inaction, thereby increasing the mass point at zero in

10There is an issue that, for su¢ ciently low values of the wage, e¤ort is potentially negative. However, accounting
for such a non-negativity constraint signi�cantly complicates the solution to the model without much gain in relevance.
We maintain the assumption that the level of bene�ts is su¢ ciently low relative to wages as to allow almost all �rms
to ignore this constraint.
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the distribution of nominal wage changes, and will also render the active compression of nominal

wage changes more acute.

An additional, perhaps more fundamental e¤ect that obtains from the model even in the absence

of active compression is what we will refer to as �latent compression�of wage increases. This e¤ect

captures the idea that an inability on behalf of �rms to cut wages will tend to raise the wages that

�rms inherit from the past. As a result, when raising wages, �rms do not have to increase wages by

as much or as often in order to achieve their optimal wage. Thus, this process of latent compression

works in tandem with the active compression of wage increases outlined above11.

The �nal prediction we want to emphasize at this stage is the e¤ect of increased in�ation

on nominal wage increases. In particular, we �nd that the active compression of nominal wage

increases becomes less pronounced as in�ation rises. As explained earlier, this is because the only

reason �rms restrict wage increases in the model is the prospect of costly nominal wage cuts in

the future. Since higher in�ation reduces the probability of this occurring, �rms no longer need to

worry as much about increasing the nominal wage.

2.2 The Dynamic Model

In this section we solve the full dynamic optimization problem as stated in (5) above. First we

will present the general structure of the solution, and then we will obtain its speci�c form under

additional assumptions as to the distribution of shocks F (�).

The basic structure of the solution to the full dynamic model is as follows. We solve the

problem by �rst taking the �rst-order condition with respect to W , conditional on �W 6= 0:

�
1 + c1�

� A
W
� 1 + �

1 + �
D (W;A) = 0; if �W 6= 0 (6)

where D (W;A) �
R
vW (W;A

0) dF (A0jA) is the marginal e¤ect of the current wage choice on the

future pro�ts of the �rm. Clearly, a key step in solving for the �rm�s optimal wage policy involves
11 Identifying this additional e¤ect is an important bene�t of the in�nite horizon model studied here. In particular,

one might imagine that active compression-type results could be obtained from a �simpler�two-period model. Latent
compression will be shown to be an outcome of steady state considerations, which cannot be treated in a two-period
context.
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characterizing the properties of the function D (�). However, we leave this for the moment and

note �rst that the general structure of the optimal nominal wage policy is as follows:

Proposition 1 The optimal nominal wage policy in the dynamic model is of the form:

If A > u (W�1) � Au; �W > 0 until W = u�1(A)

If A < l (W�1) � Al; �W < 0 until W = l�1 (A)

If A 2 [Al; Au] ; �W = 0 or W =W�1

(7)

where the functions u (�) and l (�) satisfy:

u (W )

W
� 1 + �

1 + �
D (W;u (W )) � 0 (8)

(1 + c)
l (W )

W
� 1 + �

1 + �
D (W; l (W )) � 0

The reasoning for this is very straightforward. In particular, Proposition 1 uses the conditional

�rst-order condition (6) to de�ne the functions u (�) and l (�), as in (8). These functions determine

the optimal relationship between the nominal wage, W , and the nominal shock, A, in the event

that wages are adjusted up or down respectively. The rest of the result follows from the fact that,

by virtue of the continuity and concavity of the �rm�s objective, (5), the optimal value of W must

be a continuous function of A12.

However, to complete our characterization of the �rm�s optimal nominal wage policy, we need

to establish the functions u (�), and l (�), to which we now turn. In particular, we can see from (8)

that, in order to solve for these functions, we require knowledge of the functions D (W;u (W )) and

D (W; l (W )). This is aided by Proposition 2:

Proposition 2 The function D (�) satis�es:

D (W;A) =

Z u(W )

l(W )

�
A0

W
� 1
�
dF �

Z l(W )

0
c
A0

W
dF +

�

1 + �

Z u(W )

l(W )
D
�
W;A0

�
dF (9)

12This follows from the Theorem of the Maximum (see e.g. Stokey & Lucas, 1989, pp. 62-63).
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which is a contraction mapping in D (�) over the relevant range, and thus has a unique �xed point

over this range.

The intuition for this result is as follows. The �rst term on the RHS of (9) represents tomorrow�s

expected within-period marginal bene�t, given that W 0 is set equal to W . To see this, note that

the �rm will freeze tomorrow�s wage if A0 2 [A0l � l (W ) ; A0u � u (W )], and that in this event a

wage level of W today will generate a within-period marginal bene�t of
h
A0

W � 1
i
. Similarly, the

second term on the RHS of (9) represents tomorrow�s expected marginal cost, given that the �rm

cuts the nominal wage tomorrow. Finally, the last term on the RHS of (9) accounts for the fact

that, in the event that tomorrow�s wage is frozen, the marginal e¤ects of W persist into the future

in a recursive fashion. It is this recursive property that provides us with the key to determining

the function D (�).

For the purposes of the present paper, we use a speci�c form for F (�). In particular, we imagine

that real shocks, a, evolve according to the following geometric random walk:

ln a0 = ln a� 1
2
�2 + "0 (10)

"0 � N
�
0; �2

�
Given that prices are assumed to evolve according to P 0 = (1 + �)P , we obtain the following

process for nominal shocks, A:

lnA0 = ln (1 + �) + lnA� 1
2
�2 + "0 (11)

Note that this implies that E (A0jA) = (1 + �)A. We can then use this information to determine

the full solution as follows. First, we solve for the functions D (W;u (W )) and D (W; l (W )) using

equation (9), via the method of undetermined coe¢ cients. Then, given these, we obtain the

solutions for u (W ) and l (W ) using the equations in (8). Following this method yields Proposition

3:

Proposition 3 If nominal shocks evolve according to the geometric random walk, (11), the func-
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tions u (�) and l (�) are of the form:

u (W ) = u �W (12)

l (W ) = l �W

where u and l are given constants that depend upon the parameters of the model, fc; �; �; �g.

Thus, the optimal nominal wage policy takes the following piecewise linear form:

If A > u �W�1 � Au; �W > 0 until W = A=u

If A < l �W�1 � Al; �W < 0 until W = A=l

If A 2 [Al; Au] ; �W = 0 or W =W�1

(13)

2.3 Some Special Cases

In order to get a feeling for how the model works, we present solutions to special cases of the above

full dynamic model. In particular, we consider two cases: where nominal wage increases are fully

reversible (c = 0), and the case where nominal increases are partially irreversible (c > 0), but where

�rms are myopic (� = 0).

The Case where c = 0

Note that the assumption that c = 0 removes any dynamic considerations from the �rm�s wage-

setting choice by removing the dependence of e¤ort on last period�s wage. In this case, it is

straightforward to show that the solution for this problem is:

W = A =) �W = �A (14)

In this case, wage changes fully re�ect changes in productivity, and the distribution of nominal

wage changes across �rms will be exactly the same as the distribution of changes in the nominal

shock. We term this result the counterfactual solution.

The Case where � = 0
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This is another static special case of (5), but retains the productivity cost of cutting the nominal

wage, c. In this case it is straightforward to con�rm that the optimal wage policy is the special

case of (13) where u = 1 and l = 1
1+c . By comparing this wage policy to the case where c = 0, we

can see that the �rm is taking counterfactual nominal wage cuts in the interval
h
W�1
1+c ;W�1

i
and is

instead implementing them as wage freezes. Moreover, for all counterfactual wages below W�1
1+c , the

�rm is reducing the magnitude of wage cuts by a factor 1
1+c . Thus nominal wage cuts are being

actively compressed as a result of DNWR.

However, the same is not true for nominal wage increases. All counterfactual wage increases

are being implemented without alteration. The reason for this is that � = 0 implies that the �rm

doesn�t care about the future consequences of raising the nominal wage in the current period. We

shall see that this is in stark contrast to the general case where we allow � > 0, to which we turn in

the following section. However, it should be noted at this point that even in this simple case the

methods of Card & Hyslop (1997) and other previous studies will be potentially biased. Whilst

this special case yields no active compression of wage increases by �rms, there will still be some

latent compression: since DNWR places upward pressure on the level of wages in the past, the �rm

does not have to raise wages as frequently to achieve their target wage today.

3 Predictions

3.1 Active Compression

Returning to the more general solution in (13), it can be seen that active compression of wage

changes can be related to the parameters u and l. Numerical simulations of the model establish

that u > 1 > l and that 1=l > u.13 This is precisely in accordance with our original intuition

(section 2.1). Since u > l there exists a region of inaction for the nominal shock variable in

which it is optimal not to change the nominal wage. Moreover, because l < 1 there will be an

active compression of nominal wage cuts. This follows directly from the discontinuous fall in e¤ort

following a wage cut at the margin. In addition, u > 1 means that nominal wage increases will also

be actively compressed relative to the counterfactual solution. Recall that the intuition for this is
13Unfortunately, due to the analytical complexity of the solution, a formal proof of this result has proved elusive.
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that raising the nominal wage today raises the likelihood that the �rm will wish to cut the wage,

at a cost, in the future. Finally, the fact that 1=l > u implies that the active compression of wage

increases will not be as strong as that for wage cuts. The reason for this is that the potential

costs associated with wage increases are discounted in two ways. First, some discounting derives

from the fact that raising the wage may only increase the costs of wage cuts in the future. But, in

addition to this, the probability that these additional future costs will be realized is less than one,

leading to further discounting.

Recall that our main concern is with the characteristics of the nominal wage change distribution.

Using (13) it is straightforward to establish the following proposition for the form of the log nominal

wage change distribution, conditional on the lagged wage:

Proposition 4 The log nominal wage change density, conditional on the lagged wage, implied by

the model of section 2 is given by:

f (� lnW jW�1) =

8>>>><>>>>:
~f (� lnW + lnujW�1) if � lnW > 0

~F (lnujW�1)� ~F (ln ljW�1) if � lnW = 0

~f (� lnW + ln ljW�1) if � lnW < 0

(15)

where ~F (�jW�1) and ~f (�jW�1) are the c.d.f. and p.d.f. of the counterfactual (no DNWR) condi-

tional log nominal wage change distribution.

Figure 2 illustrates this result. In particular, it shows that the distribution of log wage cuts is

exactly the same as the counterfactual distribution below ln l < 0, just shifted horizontally by an

amount � ln l > 0. A similar result obtains for wage increases. The residual density is �piled up�

to a mass point at zero wage change. Thus, the e¤ect of worker resistance to wage cuts is to yield

a conditional log wage change distribution with dual censoring from above and below relative to

the counterfactual14.

The key prediction that we will test in our empirical work is the e¤ect of the rate of in�ation,

�, on the compression of nominal wage increases. To this end, �gure 3 presents results for the
14This censoring result has interesting parallels in the previous empirical literature. Altonji & Devereux (2000)

estimate an econometric model similar to (15) except that they neglect the possibility of compression of wage increases.
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e¤ect of changes in the rate of in�ation on the parameter u. It is clear is that the �rm will reduce

any active compression of wage increases as in�ation rises since u falls as � rises. The intuition

for this is that active compression of wage increases occurs only insofar as wage increases raise the

likelihood of future costly nominal wage cuts. To see this, note that our special case in which

the �rm does not care about the future (� = 0) yielded no active compression of wage increases

(u = 1). Thus, since higher in�ation reduces the likelihood of future costly nominal cuts, the �rm

no longer needs to worry about raising the nominal wage today. A key related result that we want

to emphasize is that, as in�ation becomes large, u! 1. That is, high in�ation implies that wage

increases cease to be actively compressed relative to a counterfactual world without DNWR. Thus,

if the behavioral model is correct, we would expect to observe the upper tail of f (� lnW jW�1)

becoming more dispersed as in�ation rises. This is illustrated in Figure 4. However, this is not

the end of the story: the next section shows that there are additional reasons for there to be a

compression of wage increases, even in the absence of these e¤ects.

3.2 Latent Compression

All of the above discussion on active compression has been in terms of the nominal wage change

distribution conditional on the lagged nominal wage. The reason for this is that the lagged wage is

taken as given (is part of the state) at the time of setting the current wage, and so all theories will

yield direct implications on the conditional distribution, f (� lnW jW�1). However, most of the

previous empirical literature has concentrated on the properties of the unconditional distribution,

f (� lnW ), typically by estimating some measure of the increase in average wage growth due to

DNWR, E (� lnW jDNWR)�E (� lnW jno DNWR), to try to gain an impression of the e¤ect of

DNWR on the �rms�real labor costs. The following proposition demonstrates that this emphasis

in the previous literature may well be misleading:

Proposition 5 DNWR has no e¤ect on average wage growth in the long run for �nite G � u=l.

This result can be interpreted in a number of ways. First, and closest to the form of the proof,

note that the optimal wage policy (13) implies that the di¤erence in the levels of the log wage with

and without DNWR must be bounded (between � lnu < 0 and � ln l > 0). Thus, it follows that

17



the rates of growth of actual and counterfactual log wages cannot be di¤erent in the long run, as it

would necessarily imply a violation of these bounds.15

An alternative interpretation for this result is that it is simply a requirement for the existence of

a steady state in which average growth rates are equal. Since productivity shocks grow on average

at a constant rate, so must wages grow at that same rate in the long run. Thus, even the model

with DNWR must comply with this simple steady state condition in the long run.

How might this result come about? First, our results above indicate that �rms may actively

compress wage increases as a precaution against future costly wage cuts, thereby limiting the wage

growth increasing e¤ects of DNWR. However, this cannot be the whole story �we saw above that

the active compression of wage increases will be less than that of wage cuts. In addition, we can

�nd cases in which there will be no active compression of wage increases for which Proposition 5

still applies. So there must be an additional process at work.

Consider the case where � = 0. Recall that this is the case in which there is no active compres-

sion of wage increases as �rms are myopic. Figure 5 shows a simulation of the unconditional wage

change distribution implied by the behavioral model in this case. We can see from Figure 5 that,

contrary to the assumption of previous studies, the upper tail of f (� lnW ) displays a compression

in the presence of DNWR. Thus, the upper tail of the wage change distribution is still compressed,

even if �rms do not actively compress wage increases.

This provides an additional insight into the process by which this steady state requirement

might be achieved in practice. If wage increases are not actively compressed, this means that when

�rms increase the wage, they increase it to the counterfactual level, A. However, recall that the

existence of DNWR will tend to raise the general level of lagged wages in the economy, as �rms

will have been constrained in cutting wages in the past. Thus, when �rms increase the wage, they

do not have to increase it by as much or as often to reach the counterfactual wage level. Thus the

upper tail of f (� lnW ) will indeed still be a¤ected by the existence of DNWR �in particular, it

will be less dispersed, as seen in Figure 5. We term this additional e¤ect �latent compression�.

15A similar result has been established independently in the investment literature by Bloom (2000).
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3.3 The Costs of DNWR to Firms

Proposition 5 has important implications with respect to the previous empirical literature. First,

by not taking into account the compression of wage increases, previous empirical studies could have

overstated the increase in wage growth due to DNWR. To see this, consider Figure 6. This shows

three simulated wage change distributions derived from the model of section 2. The bold line shows

the wage change distribution with DNWR (c > 0), whereas the thick dashed line illustrates the

true counterfactual wage change density (c = 0). In addition, we include a �median symmetric�

(hereafter MS) counterfactual density that is derived by imposing symmetry in the upper tail of

the distribution with DNWR (according to the method of Card & Hyslop, 1997). It can be clearly

seen that, by using the MS counterfactual, we obtain an overestimate of the increase in average

wage growth due to DNWR when there is a compression of the upper tail. By neglecting this

compression, previous studies could have overstated the e¤ects of DNWR on average wage growth.

The question then arises as to how this bias is related to the implied costs of DNWR to �rms.

Proposition 6 addresses this issue:

Proposition 6 To a �rst�order approximation around the frictionless (c = 0) case, (i) the true

average reduction in the value of a �rm due to DNWR is equal to �g �E (� lnAj� lnA < 0) �ACL�

and is entirely driven by reductions in e¤ort following wage cuts; and (ii) the overstatement of the

increase in the value of real labor costs assuming a MS counterfactual is equal to g � �
1�� � ACL

�;

where g is the increase in average wage growth due to DNWR assuming a MS counterfactual, and

ACL� is the average value of real labor costs.

A number of points are worthy of note in the light of this. First, a corollary of Proposition 6 is

that the conventional view that DNWR imposes costs on �rms by increasing �rms�real labor costs

is incorrect in this model. The true impact of DNWR to �rms occurs because nominal wage cuts

substantially reduce worker e¤ort at the margin, and thereby reduce productivity. In this way,

Proposition 6 fundamentally alters the way one should think about the costs imposed on �rms from

being constrained in their ability to cut wages.

Moreover, Proposition 6 also allows us to compare the magnitude of the overstatement of the
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costs of DNWR under the MS method relative to the true costs of DNWR implied by the current

model. As an example, if g = :01 and E (� lnAj� lnA < 0) = :1516, Proposition 6 suggests

that the true costs of DNWR are approximately 0.15% of the average value of labor costs. In

contrast, taking � = :6 as an example, the MS method would imply additional costs of around

1.5% of labor costs, a ten�fold overstatement. More generally, the ratio of these is given by

� �
1�� [E (� lnAj� lnA < 0)]�1. Figure 7 plots this ratio as a function of �, the �rm�s discount

factor. It can be seen that for even mildly forward�looking �rms the implied overstatement is

quite severe. The intuition for this is quite simple �the suggestion that DNWR raises the rate

of growth of wages implies that forward�looking �rms will anticipate an accumulation of increased

labor costs over time, which can be large.

One might be tempted to argue that Proposition 6 nevertheless states that the true costs of

DNWR are indeed dependent on g, the MS estimate of the increase in wage growth due to DNWR,

and that therefore the MS results are informative of the costs of DNWR. However, the key point

is that g is informative, but not in the sense that previous studies have thought. Importantly, g

does not re�ect the increase in wage growth due to DNWR; and if it did, it would imply much

larger economic costs on �rms than is truly the case.

3.4 Turnover E¤ects

In addition to the above, the model of section 2 can also provide predictions on the e¤ect of turnover

on the distribution of wage changes. To see this, imagine that there is now some exogenous

probability that a worker will separate from the �rm each period, � < 1. The e¤ect of this is to

reduce the �rm�s real discount factor from � to ��, since there is now a lower probability that the

match will survive until next period. As a result, sectors in which turnover is high (high �) will

act more myopically than sectors with low turnover. In other words, high turnover sectors should

set wages more like the special case in which � = 0 (section 2.2), and low turnover sectors should

act more like the forward looking �rm of section 2.3. It follows that we should expect to see a

greater active compression of wage increases in sectors with lower turnover.17 Moreover, we should
16Card & Hyslop (1997) conclude on an estimate of g = :01. The value E (� lnAj�lnA < 0) = :15 broadly

corresponds to the average real wage cut under high in�ation found in the data used in section 4.
17Thanks to Marianne Bertrand for originally suggesting this idea to me.
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also expect this e¤ect to be stronger in periods of low in�ation: when in�ation is high, the �rm

does not have to worry about the future consequences of current wage decisions, regardless of the

probability that a worker will stay at the �rm. We will examine these claims in the forthcoming

empirical section to which we now turn.

4 Empirical Implementation

4.1 Data

The data used in this analysis are taken from the Current Population Survey (CPS) and the

Panel Study of Income Dynamics (PSID) for the US, and the New Earnings Survey Panel Dataset

(NESPD) for Great Britain. For all datasets, the relevant wage measure used in this study is the

basic hourly wage rate for respondents aged 16 to 65. Since the CPS and PSID are relatively

well-known datasets, we only describe them brie�y here.

The CPS samples are taken from the Merged Outgoing Rotation Group (MORG) �les from 1979

to 2002. We link respondents across consecutive years using a method similar to that advocated

by Madrian & Lefgren (1999)18. This method yields approximately 25,000 individual annual wage

changes each year from 1980�2002, although changes in sampling method yield lower sample sizes

in 1985�86 and 1995�96 (see Table 1). Unfortunately, we cannot easily di¤erentiate between

job-stayers and changers using the CPS due to a lack of information on job characteristics and

tenure19. Additional problems arise in the CPS resulting from the survey redesign in 1994. Figure

8 illustrates the dispersion of log wage changes in the CPS over the sample period, as measured by

the standard deviation, and the 90-10 and 80-20 percentile di¤erentials. One can clearly detect

a signi�cant rise in the dispersion of wage changes starting in 199420. In our ensuing empirical

18 In particular, �rst we match individuals according to their personal identi�ers, as well as their month of interview.
We then employ Madrian & Lefgren�s �sjrja� criterion � i.e. that matched observations must report the same sex
and race across years, and that the di¤erence in their age must lie in the interval [0; 2].
19Card & Hyslop (1997) attempt to identify job-stayers in the CPS by restricting their analysis to those respondents

who do not change occupation year-on-year. We do not make such an attempt as it is complicated by changes in the
occupational classi�cation over the period. However, the sample used in this paper displays very similar properties
to that of Card & Hyslop.
20This is likely to be due in particular to an increase in the fraction of imputed wage observations in the CPS for

1994 onwards. However, it is di¢ cult to simply deleted such imputed observations from the analysis due to large
changes in the accuracy of the CPS imputation �ags over the period �see Hirsch & Schumacher (2004).

21



analysis we attempt to control for this.

The PSID data are taken from the random (not poverty) samples for the years 1971 to 1992.

We use data on regular hourly pay rates for household heads to construct individual annual wage

changes. We concentrate on the wage changes of job-stayers21 by excluding workers with tenure

of strictly less than 12 months22, and additionally remove respondents who report that they live

in a foreign country, and top-coded wage data. Our PSID sample provides us with much smaller

samples than those from the CPS, with approximately 1,300�2,200 individual wage changes each

year over the sample period (see Table 1).

Finally, the NESPD is an individual level panel which is collected in April of each year running

from 1975 through to 2001 for Great Britain23. It is a 1% sample of British income tax-paying

workers with a National Insurance (Social Security) number that ends in a given pair of digits. The

wage measure used is the gross hourly earnings, excluding overtime, of job-stayers whose pay is

una¤ected by absence. Table 1 provides summary statistics for the NESPD sample. An important

observation to make is that the statistics for the level of real wage changes in 1977 are vastly lower

than in all other periods in the NESPD. In particular, the fraction of respondents reporting a real

wage cut was 77:64% in 1977, but was never below 52% in any other year in the sample period (see

Table 1). The reason for this is that the UK government of the time instituted an incomes policy

in order to try to curb high in�ation. In particular, these policies were remarkably successful in

containing wage in�ation in late 1976 to early 1977 as a result of the cooperation of the unions

(see Cairncross, 1995, pp. 220�221). Despite this, however, retail price in�ation remained high,

thereby leading to the signi�cant real wage losses that we observe in our data. As a result of this,

we treat the 1977 data as an outlier throughout the rest of our analysis.

Since the descriptive properties of DNWR in all of these datasets have been well-explored in
21 It should be noted that tenure in the PSID refers to the time spent with the same employer, except for the years

1979�80 when it refers to the time spent in the same position.
22A selection issue arises when excluding job-changers. In particular, previous research has shown that �displaced�

workers often accept signi�cant reductions in earnings on re-employment (see Jacobson, LaLonde & Sullivan, 1993).
Thus, by concentrating on job-stayers, our results might overstate the true extent of DNWR. However, it is also the
case that much of the previous literature has focused on job-stayers, so our analysis will be comparable to that of
other studies. We leave these empirical issues for future research.
23However, much of our analysis requires the use of consistent industry and occupation coding, which we have up

to 1999 only.
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previous analyses � Card & Hyslop (1997) for the CPS, Kahn (1997) and Altonji & Devereux

(2000) for the PSID, and Nickell & Quintini (2003) for the NESPD �we do not seek to provide a

full descriptive account of DNWR. For reference, though, Tables 1 and 2 present summary statistics

for wage changes and the key variables that will be used in the forthcoming analysis. The primary

aim of the current section is rather to assess the validity of the predictions of the model presented

in section 2. However, the relative merits of the datasets used are worth mentioning, especially

since the NESPD data have not been as widely used to date.

The NESPD data for Great Britain have a number of key advantages for our purposes, especially

in comparison with the CPS and PSID samples for the US. The �rst, and most obvious, is that

the NESPD provides us with comparatively very large sample sizes: we obtain sample sizes of

60�80,000 wage change observations each year. The second advantage of the NESPD data is its

sample period: from 1975�2001. This is particularly useful for our purposes given that we seek to

use variation in the rate of in�ation to gauge the impact of DNWR on wage changes, since the UK

experienced signi�cant variation in in�ation over this period relative to the US. Figure 9 displays

the time-series of the leading UK in�ation indicator �the Retail Price Index (RPI) �and the CPI-U

in�ation rate for the US, over the relevant periods. It can be seen that the UK in�ation rate varied

substantially, with rates over 20% in the 1970s down to below 2% in the 1990s. In�ation in the

US, on the other hand, displays much less variation, with rates no higher than 11%.

The �nal key advantage of the NESPD sample is that measurement error in these data is likely

to be less of a problem relative to individually reported data of the CPS and PSID samples. The

reason for this is that the NESPD is collected from employers�payroll records, thereby leaving less

scope for error due to imperfect memory etc. (see Nickell & Quintini, 2003, for more on this)24.

This is important because the existence of measurement error in hourly wages has been shown

in previous empirical studies to act as a key impediment to inferring the extent of DNWR. As

emphasized throughout this analysis, the existence of a spike at zero in the distribution of nominal

wage changes is a key characteristic of DNWR. Classical measurement error in wages and hours

24 Indeed validation studies of leading panel datasets have used matched data from employer surveys to assess the
extent of measurement error in worker reported earnings data. In particular, Bound & Krueger (1990) and Card &
Hyslop (1997) both seek to assess the importance of measurement error in the CPS via this method.
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data would yield an understatement of the spike by rendering true wage freezes to be observed

as (small) wage changes (Akerlof et al., 1996). In contrast, previous studies have also stressed

that individuals may round their reported wages yielding an overstatement of the extent of DNWR

as small true wage changes are reported as wage freezes (Smith, 2000). Whilst some existing

studies have attempted to circumvent this by explicitly modelling measurement error, or using

data from payroll records of individual establishments (Altonji & Devereux, 1999; Fehr & Goette,

2003), the relative accuracy of the NESPD allows us to avoid these di¢ culties and preserve a more

representative sample, and is thus an important virtue in this context25.

A �nal note worth making in the context of our datasets is that in�ation stayed at persistently

low levels in the US and UK from 1992 onwards, with an average in�ation rate of 2.56% for the US

1992�2002 and 2.69% for the UK 1992�2001. This is important, as a criticism levelled at previous

studies of DNWR has been that individuals will get used to receiving nominal wage cuts when

in�ation has remained low for some time (Gordon, 1996, and Mankiw, 1996). Such a criticism

becomes less compelling when the in�ation rate has stayed low for the 9�10 years observed in our

samples for the CPS and the NESPD.

4.2 Does DNWR Increase Aggregate Wage Growth?

In order to test our hypotheses, we need a way of modelling empirically the wage change distrib-

ution, f (� lnW ). In what follows, we will focus on the analogous real wage change distribution

counterparts to these26. In order to motivate our preferred method, let us begin by considering

some naive approaches. First, we might think of simply looking at the di¤erences between the wage

change distributions in high in�ation periods and low in�ation periods to see if the predictions of

section 3 are con�rmed at this basic level. To this end, �gures 10(a) and 11(a) present estimates of

the density of log real wage changes for periods with di¤erent in�ation rates using the PSID for the

25 It should be noted that hourly earnings in the NESPD are derived from dividing weekly earnings by weekly
hours, thereby potentially exacerbating any underlying measurement error. However, Nickell & Quintini (2003) have
compared the accuracy of hourly wage changes in the NESPD with those obtained from a sample whose payslip was
checked in the British Household Panel Study and found remarkably similar properties in both datasets.
26Note that this does not alter any substantive aspects of the analysis, since these are exactly the same shaped

distributions, just shifted to the left by a constant, �ln (W=P ) = � lnW ��lnP �= � lnW � � where � is the rate
of in�ation. However, focusing on real wage changes does allow greater ease of comparison across years with di¤erent
in�ation rates.
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US, and the NESPD for Britain (the redesign of the CPS renders this a less useful exercise for the

CPS data). Notice that lower in�ation leads to a compression of the lower and, more importantly

for our purposes, the upper tail of the wage change distribution, precisely in accordance with the

predictions of section 4.127.

However, one could argue that at least some of the observed di¤erences were due to changes in

other variables that a¤ect wage changes. For example, there have been changes in the industrial,

age, gender, regional etc. compositions of the workforce in both the US and Britain over these

time periods. So, we should control for factors such as these before attributing any di¤erences

to DNWR. To address this, we introduce a set of micro-level control variables for each dataset,

summarized in Table 2. In particular, we control for changes in micro-level variables by re-weighting

the observed wage change distributions according to the method of DiNardo, Fortin & Lemieux

(1996) (henceforth DFL)28. To do this, we �rst de�ne a �base year�, T �for all datasets this will

be the �nal sample year �and re-weight each year�s observed wage change distribution to obtain

an estimate of what the wage change distribution would have looked like if the distribution of

micro-level characteristics were identical to that at date T . In particular, if we de�ne the log wage

change as �w, micro-level characteristics as x, and the year of the relevant x distribution as tx, we

derive:

f (�wt; tx = T ) =

Z
f (�wjx) dF (xjtx = T ) =

Z
f (�wjx) �  � dF (xjtx = t) (16)

for all t < T . The key insight of DFL is that this is simply a re-weighted version of the observed

date t wage change distribution, with weights  given by:

 =
dF (xjtx = T )

dF (xjtx = t)
=
Pr (tx = T jx)
Pr (tx = tjx) �

Pr (tx = t)

Pr (tx = T )
(17)

where the second equality follows from Bayes�Rule. The conditional probabilities in (17) can then

27 It should be noted that the existence of the spike in the lower tail of the real wage change distribution (at
approximately minus the rate of in�ation) can lead to an overstatement of lower tail compression. However, our
emphasis is on the e¤ects on the upper tail, which are not subject to this problem.
28An important bene�t of the DFL methodology is that it requires few parametric assumptions on the impact of

the x variables. Given the intrinsically non-linear character of the wage policy (13), this is especially helpful.
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be estimated simply via a probit model.

Figures 10(b) and 11(b) displays density estimates of the DFL re-weighted distribution of log

real wage changes for di¤erent in�ation periods, again for the PSID and NESPD. Again, it can be

seen clearly that lower rates of in�ation are associated with a compression both of tails of the wage

change distribution, in line with the predictions of section 3.

However, even having controlled for such factors, it is still not necessarily legitimate to attribute

all the residual di¤erence in the wage change distributions to DNWR. Thus we need a way

of ensuring that only the variation in wage change distributions that varies systematically with

DNWR is attributed. To do this, we estimate regressions of the form:

Pnrt = �0n + �1nP50rt + �n�t + z
0
rt
n + "nrt (18)

where Pnrt is the nth percentile of the real wage change distribution in region r at time t, �t is the

rate of in�ation at time t and thereby measures the prominence of nominal zero in the distribution

of log real wage changes, and zrt is a vector of aggregate controls that could potentially a¤ect the

distribution of wage changes. P50rt is included on the RHS of (18) in order to control for changes in

the central tendency of the distribution of wage changes. That is, it �re-centres�the distributions

over time in order to make them comparable. We estimate (18) by Least Squares, where we weight

by the size of the region at each date29.

The measure of in�ation used will be the CPI-U-X1 series for the US, and the April to April

log change in the Retail Price Index for Great Britain. The aggregate controls will be as follows.

First, we control for any distortion to the wage change distributions caused by peculiarities of the

datasets used. So, to control for the e¤ects of survey redesign issues after 1994 in the CPS, we

include a dummy variable that takes value one for all years from 1994 onwards when we estimate

(18) for the CPS. In addition, to control for the incomes policies implemented in 1977 in the UK,

we include a dummy that takes value one for the year 1977 in our NESPD regressions.

29Formal quantile regression (Least Absolute Deviation) estimators were also tried with little di¤erence in results.
However, such is the computational intensity involved in estimating the correct standard errors for these estimators,
we opted for simple OLS instead.
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In addition, we control for the absolute change in the rate of in�ation. This is motivated by the

hypothesis that greater in�ation volatility will yield greater dispersion in relative wages regardless of

the existence of DNWR (see Groshen & Schweitzer, 1999). We also include both current and lagged

regional unemployment rates. This is motivated by the idea that the existence of DNWR might

lead to unemployment �indeed, as mentioned before, this is one of the principal reasons for interest

in the topic. Since unemployment will lead to workers �leaving� the wage change distribution,

it is important to control for any resulting distributional consequences. We also include lagged

regional unemployment in accordance with the wage curve hypothesis of Blanch�ower & Oswald

(1994) that the level of wages is empirically associated with the level of unemployment. If this is

true, then we would expect the change in unemployment to a¤ect the change in wages, and so we

include lagged regional unemployment to control for this possibility.

It should be noted that the empirical method described above is robust to a number of possible

concerns. First, the speci�cation is robust to the existence of rigidity in real wages. The reason

is that real wage rigidity, in its traditional form, will be invariant to in�ation by de�nition. An

exception to this is the argument put forward by Akerlof, Dickens & Perry (2001) that real wage

rigidity is ampli�ed as in�ation rises because it becomes optimal for workers to direct their scarce

attention to maintaining their real wage. However, if anything, such a possibility would work

against the claim of the model in section 2, as it would predict that the upper tail of wage changes

would become more compressed as in�ation rises. If this were the case, any evidence we �nd for

the predictions of section 3 could be interpreted as lower bounds on the true e¤ects. A similar

reasoning applies to any concerns one might have about the impact of skill-biased technical change

(SBTC). Under SBTC, we might expect that workers obtaining high wage increases early in our

samples will obtain even higher wage increases later on as technical change increasingly favors those

in skilled sectors. However, since in�ation is in practice declining over the sample periods of our

data, SBTC would, if anything, work against the predictions of section 3.

Clearly, the coe¢ cients of interest in (18) for the purposes of estimating the e¤ects of DNWR

are �n. In particular, the predictions of section 3.2 indicate that �n should be negative for low

percentiles, and positive for high percentiles. The reasoning is that higher in�ation should lead to
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an increased dispersion of wage changes, and thereby decrease negative percentiles, and increase

positive ones.

Recall that we would like to obtain an estimate of the increase in average wage growth due to

DNWR, � � E (�wjDNWR)�E (�wjno DNWR). Such an estimate can be obtained using the

estimates obtained from regressions of the form (18). In order to use this information to get an

estimate of �, we obtain an estimate of the predicted average wage change when in�ation is very

low (e.g. 1.3% in 1993 for Britain) and subtract the analogous average wage change when in�ation

is very high (e.g. 21.8% in 1980 for Britain)30:

�̂ = Ê (�wj� = 1:3%; x; z)� Ê (�wj� = 21:8%; x; z) (19)

To obtain these estimates using (18), we can use the fact that the quantiles of a random variable

are uniformly distributed. In particular, if we estimate k equi-spaced percentiles of f (�w) then a

best guess of the predicted average wage change is:

E (�wj�; x; z) � 1

2 (k � 1)

k�1X
i=1

�
P̂i + P̂i+1

�
(20)

where i is an ascending index of the percentiles, with i = 1 indicating the lowest percentile, i = 2

the second lowest etc., and the P̂ s are the predicted values of these percentiles obtained from

estimating equation (18).

Since our predicted percentiles allow us to sketch out a discretization of the whole distribution

of wage changes, we can also decompose the increase in average wage growth due to DNWR into

two components. The �rst is the increase in average wage growth due to compressed nominal wage

cuts, which we refer to as �lower tail losses�; the second is the decrease in average wage growth due

to compressed wage increases, �upper tail gains�. In practice, we will perform this procedure on

99 estimated wage change percentiles, P̂1; P̂2; :::; P̂99, for the speci�cation detailed above.

The E¤ects of Measurement Error

30Note that this involves out-of-sample predictions for the US data.
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As mentioned previously, the impact of measurement error on our ability to infer the e¤ects of

DNWR has received substantial attention in the literature. Whilst we have attempted to mitigate

this as a problem by using the relatively clean data in the NESPD for Britain, the question arises

as to the e¤ects of measurement error on the methodology detailed above. Proposition 7 answers

this question:

Proposition 7 If measurement error is independent of the rate of in�ation, then (i) estimates of �n

in (18) report attenuated estimates of the corresponding true e¤ects; (ii) this attenuation vanishes

for su¢ ciently high and low percentiles; and (iii) estimates of � based on (20) will nonetheless

remain consistent.

The intuition for this is quite straightforward31. The existence of measurement error will render

some true negative wage changes to be observed as positive wage changes (and vice versa). Thus,

measurement error will lead to a partial con�ation of the e¤ects of in�ation on the upper tail

with those in the lower tail. However, as we proceed further into the tails of the wage change

distribution, the likelihood of measurement error having displaced observations in this way becomes

smaller. Thus, such attenuation will disappear for su¢ ciently high or low percentiles.

Whilst this result does mean that a certain caution should be a¤orded to our interpretation of

the magnitude of the estimated coe¢ cients from (18), the main question we are trying to answer is

a qualitative one: does lower in�ation compress both the upper and lower tails of the wage change

distribution? To this end, the above attenuation result will actually reduce our ability to observe

any such compression, should it exist. Thus, any evidence of compression we might �nd would be

found despite the existence of measurement error, rather than because of it.

The �nal part of Proposition 7 results from the fact that, by de�nition, the mean of any random

variable can always be expressed as an unweighted average of its percentiles. Since measurement

error is assumed independent of the rate of in�ation (see Gottschalk, 2004, for evidence that this is

empirically the case), it follows that the observed mean wage change at any given rate of in�ation

31 It should be noted, however, that this attenuation result is quite distinct from the traditional attenuation bias
resulting from errors in variables when implementing OLS.
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will be una¤ected by the existence of measurement error. Thus, our estimates of � based on (20)

should also be una¤ected by measurement error.

Empirical Results

We estimate (18) in three speci�cations. First, we simply include controls for the median wage

change, P50, and for any dataset peculiarities such as the CPS survey redesign from 1994 onwards

and incomes policies of 1977 in the NESPD. We then include controls for the absolute change in the

rate of in�ation, and for regional current and lagged unemployment rates. Finally, we implement

a speci�cation with full controls that estimates (18) using percentiles of the DFL re-weighted wage

change distributions so we can control for an array of micro-level characteristics as well.

The results from estimating our three speci�cations of (18) for each dataset are reported in

Tables 3�5. First, consider the results obtained for the CPS in Table 3. In all three speci�cations

it can be seen that the estimated impact of in�ation is negative for the 20th�30th percentiles, with

strongest e¤ects around the 30th percentile; and positive for the 40th�90th percentiles, with strong

e¤ects in the 60th�90th percentiles. Thus, these results are in line with the hypothesis that higher

in�ation reduces the compression of both tails of the wage change distribution. Moreover, we see

that the estimated e¤ects of in�ation at di¤erent points in the distribution are generally signi�cant

and fairly stable across all speci�cations. In addition, Table 3 presents estimates of the lower

tail losses and upper tail gains due to DNWR. It can be seen that in all speci�cations there are

substantial savings due to compressed wage increases, some of which even outweigh the costs from

compressed wage cuts.

Table 4 reports the analogous estimates for the PSID data. We can see that in all speci�cations

the e¤ect of in�ation is negative for the 10th�20th percentiles, and positive for the 40th�90th

percentiles. However, here the estimated e¤ects are strongest in the 10th, and particularly the

20th, percentiles in the lower tail in contrast to the CPS results. The di¤erences in the lower

tail e¤ects between the CPS and PSID results are likely to re�ect the di¤erences in the position

of nominal zero in the respective wage change distributions, due to higher rates of in�ation in

the PSID sample period. In the CPS, nominal zero appears mostly between the 20th and 35th
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percentiles, whereas it appears at around the 10th�35th percentile in the PSID sample. Thus, the

point at which DNWR binds di¤ers across these two datasets.

The PSID results are broadly as signi�cant as those for the CPS, with both lower and upper

tail e¤ects remaining signi�cant, and fairly stable across speci�cations. In addition, the coe¢ cient

estimates in the upper tail are comparable to those obtained in the CPS results, and we again

observe that there are large savings from the compression of the upper tail. In particular, we �nd

an estimated increase in average wage growth due to lower tail losses of around 1 � 1:2% which

is o¤set by a reduction in average wage growth due to upper tail compression of 0:9 � 1:1%. It

should however be noted that for the PSID, and to some extent the CPS data, these estimates

are constructed from a number of regressions for which no signi�cant in�ation e¤ect was detected.

This is likely due to the relative lack of observations and in�ation variation in the CPS and PSID

compared to the NESPD. Thus, we do not want to place too much stock in the actual quantitative

estimates obtained from this dataset. Rather, we consider our estimates of upper tail gains and

lower tail losses for the PSID to be instructive of the fact that there is some signi�cant compression

of the upper tail of wage changes, and that this compression is of similar signi�cance and magnitude

to the compression of the lower tail due to DNWR.

The results for the NESPD data are reported in Table 5. Again we observe that in�ation

has a negative impact on lower percentiles (10th�40th) and a positive impact on higher percentiles

(60th�90th). Moreover, we obtain highly signi�cant estimates for almost all percentiles and in all

speci�cations. As mentioned above, this greater signi�cance in comparison to the results for the

PSID and the CPS is likely to be due to the larger sample sizes, more precise wage information,

and large variation in in�ation in the NESPD. In addition, we again observe substantial upper tail

gains due to compression of wage increases relative to lower tail losses, which are more consistent

across speci�cations than those obtained for the CPS and the PSID. In particular, our results

suggest that 75�95% of the lower tail losses due to DNWR is saved by restricting wage increases

in the upper tail in the NESPD data, and that the increase in average real wage growth due to

DNWR is of the order 0.04�0.3% �much lower than results obtained previously.

Together, these results provide strong evidence for the prediction that the upper tail of the
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wage change distribution will be less dispersed as a result of DNWR �in all speci�cations and for

all datasets we see that wage increases become more restricted as in�ation falls. As a result, by

allowing both the upper and lower tails of the wage change distribution to be a¤ected by DNWR,

the estimated increase in average wage growth due to DNWR becomes much reduced and closer to

zero �precisely in line with the predictions of section 3 and Proposition 5.

4.3 Does Higher Turnover Reduce the Compression of Wage Increases?

In addition to the above, recall that section 3.3 established the claim that higher turnover sectors

should act more myopically, will thus feel more at liberty to raise nominal wages, but that such an

e¤ect should fade as in�ation rises32. We test this hypothesis in a manner similar to that employed

in section 4.2. First, we de�ne a measure of �turnover� as the fraction of workers that changes

jobs each year in a given occupation, region group. In a steady state this should closely match the

fraction of workers who separate, and thus correspond to the parameter � in section 3.3.

To gain an initial impression for whether such e¤ects exist, Figure 12(a) plots density estimates

of the nominal wage change distribution for job stayers in high and low turnover (respectively above

and below median turnover) occupations using the NESPD data33. It can be seen from this simple

comparison that low turnover occupations seem to be compressing wage increases much more than

high turnover occupations.

However, recall that section 3.3 noted that these e¤ects should be manifested through changes

in the active compression of wage increases, and thus relate to the properties of the conditional

distribution, f (� lnW jW�1). To address this issue, Figure 12(b) replicates the exercise but

controls for the covariates listed in Table 2, as well as the lagged wage34, using the DFL technique.

This allows us to control for any micro-level factors that may be driving the results, as well to focus

32Note that we are making a claim about the e¤ects of turnover on the distribution of wage growth rather than
mean wage growth. Clearly, there are additional concerns that would relate turnover to mean wage growth such
as e¤ects on tenure, match quality etc. These are not however related to compression of the distribution of wage
growth emphasized here.
33Since tenure is not reported in the CPS, and is subject to changes in de�nition in the PSID, we concentrate on

the NESPD data for this section.
34 In particular, we use the lagged wage adjusted for in�ation and productivity growth, ~Wt�1 �Wt�1 � PT�1Pt�1

� aT�1
at�1

,
where as is measured as GDP per hour in year s. This is legitimate provided that DNWR has no impact on either
price or productivity growth. Given Proposition 5 and the results of section 4.2 this does not seem unreasonable.
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on variation in the distribution of wage changes conditional on the lagged wage. Again, however,

we see low turnover occupations compressing wage increases more than high turnover occupations,

consistent with the predictions of section 3.3.

To complete the picture, panels (c) and (d) of Figure 12 attempt to assess whether the e¤ect of

turnover on the distribution of wage changes varies with the rate of in�ation. It can be seen that

the compression of wage increases due to lower turnover appears to be stronger in periods of low

in�ation, as predicted by the model of section 2. Together, then, there appears to be suggestive

evidence that the predictions of section 3.3 are supported in the data.

To identify these turnover e¤ects more formally, however, we run Least Squares regressions of

the form:

Pnort = �0n + �1nP50ort + �n� ort + �n�t + �n (�t � � ort) + z0rt n + "nort (21)

where Pnort now refers to the nth percentile of nominal wage changes for job stayers, re-weighted for

micro covariates and the lagged wage, in occupation o, region r, at time t. The variable of interest

is � ort which denotes the fraction of job changers in an occupation, region, year cell. Under the

predictions of section 3.3, we would expect that the coe¢ cients on turnover, �n, to be positive, the

coe¢ cients on in�ation, �n, to be positive, and the coe¢ cients on the interaction term, �n, to be

negative, for all positive percentiles of nominal wage changes.

Table 6 summarizes these estimates for the 60�90th percentiles. In the �rst speci�cation

(column 1), we include only basic controls for the median wage change and a dummy for 1977 to

control for the incomes policies of that time, and exclude the rate of in�ation and its interaction

with turnover. It can be clearly seen that turnover has a positive and highly signi�cant impact on

the 60�90th percentiles of nominal wage changes. The two additional columns address potential

concerns one might have about the simple speci�cation of column (1).

In particular, one concern might be that we would expect sectors with greater DNWR to have

greater rates of turnover due to workers being made unemployed more often. In addition, we
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would also expect sectors with greater DNWR to exhibit a greater compression of wage increases,

and thus create downward pressure on percentiles of wage increases. In this sense there may be

an omitted variable �the extent of DNWR �that will lead to bias in the estimates of column (1).

In particular, it would imply a downward bias to the estimates. Column (2) seeks to assess this

possibility by including the current and lagged regional unemployment rates as controls. It can

be seen, however, that this actually reduces the estimated e¤ects of turnover, which nevertheless

remain positive and highly signi�cant. Thus, there does not appear to be strong evidence for an

omitted variables problem of this type.

However, we may still be concerned that the measure of turnover is more generally cyclical,

and thus potentially correlated with the rate of in�ation. Thus we may be worried that we are

attributing to turnover the e¤ects due to declining in�ation. We may also be concerned that the

e¤ects of in�ation found in section 4.2 are not robust to the addition of turnover as a control.

Finally, we would like to assess whether the e¤ect of turnover on the distribution of wage changes

diminishes as in�ation rises. To address these concerns, speci�cation (3) includes the rate of

in�ation and the interaction between in�ation and turnover as regressors. It can be seen that

introducing these controls does not signi�cantly alter the estimated e¤ects of turnover, and that

the coe¢ cients remain positive and highly signi�cant. Moreover, we �nd that the e¤ect of in�ation

is robust to the addition of turnover as a control, and remains positive and highly signi�cant for

all except the 90th percentile of wage changes.

The coe¢ cients on the interaction between turnover and in�ation are less successful, however.

In particular, the estimates are positive, but close to zero and highly insigni�cant for the 60th and

70th percentiles. The estimates for the 80th and 90th percentiles are negative and much larger

in magnitude � in accordance with the �behavioral� model�s predictions � though the e¤ect is

signi�cant only at the 80th percentile. However, these latter estimates imply that a 20% in�ation

rate will reduce the e¤ect of turnover on the distribution of wage changes by 50�60%.

We thus �nd robust evidence that increased turnover leads to an increased dispersion of wage

increases, that the e¤ects of turnover and in�ation are mutually robust, and that there is sugges-
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tive evidence that the e¤ects of turnover are reduced as in�ation rises, broadly in line with the

predictions of section 3.3.

5 Conclusions

This paper has sought to clarify our interpretation of the widespread empirical evidence for DNWR.

In particular, it has shown that the conventional view that the costs of DNWR are driven by

increases in real labor costs in times of low in�ation is misguided. In particular, we have shown

as a theoretical issue that DNWR should have no e¤ect of aggregate wage growth in the long

run, and that this is achieved because �rms compress wage increases as well as wage cuts when

DNWR binds. Moreover, we show that a neglect of the compression of wage increases leads to an

overstatement of the increase in aggregate wage growth due to DNWR, and thereby a substantial

implied overstatement of the costs of DNWR to �rms.

Taking these predictions to a range of micro�data on wages from the US and Great Britain we

�nd that �rms do indeed compress wage increases as well as wage cuts. Furthermore we �nd that

accounting for the compression of wage increases reduces the estimated increase in aggregate wage

growth due to DNWR to be much closer to zero, consistent with the predictions of the model. In

this way, the theoretical and empirical results of the paper can help explain the limited evidence

for large macroeconomic e¤ects despite robust micro�level evidence for DNWR.

A number of issues arise in the light of the results of this paper. From a theoretical perspective,

one may ask whether the �ndings of section 4 can be explained by models of nominal rigidity other

than DNWR. In particular, one may contend that a standard model of menu costs can explain

the observed compression of wage increases in times of low in�ation. In particular, Sheshinski

& Weiss (1977) show that, in a deterministic price-setting model, increased in�ation will result in

more extreme price increases �as �rms increase prices less often to avoid successive payment of

menu costs in high in�ation environments, when they do increase the price, they will increase it by

more. However, if this were the correct model, we would expect to see �holes�either side of zero in

the density of nominal wage changes, and moreover that these holes would widen as in�ation rises.
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Whilst previous empirical work has found some evidence for menu cost e¤ects, these e¤ects have

only a modest impact on wage changes around zero (Card & Hyslop, 1997), and certainly are not

accentuated in times of high in�ation. So it is by no means clear that a menu cost model could

explain the results presented in section 4.

An additional question that arises is whether the model of DNWR presented here is subject to

the Barro (1977) critique that wage rigidity should not be allocational. As presented, the model

indeed implies that DNWR imposes costs on �rms, and that labor demand is actually reduced when

in�ation is low. The reason is that, although long�term wage contracts allow the �rm to smooth

out labor costs over time, the wage is not only a side payment in this model but also a determinant

of productivity. However, a number of points should be made at this point. First, it should

nevertheless be noted that a key result of this paper is that the costs of DNWR are likely to be not

nearly as large as previously envisaged. Second, an issue arises as to whether �rms can obviate

the costs of DNWR, for instance by replacing incumbent workers with new workers without a wage

history. The results of this paper suggest that this option is not universally at �rms�disposal. In

particular, if �rms could operate such a policy DNWR would not be a concern to them, and they

would not feel the need to constrain wage increases when in�ation is low. An implication is that it

is not easy for �rms to replace existing workers, perhaps due to costs of searching for, hiring, and

training new workers. In the light of this, then, fruitful areas of future research might be to try

to quantify the productivity costs of DNWR, and to analyze how these costs vary with the costs

of replacing workers.35

From an empirical perspective, the results of this paper have important implications with respect

to our ability to identify a valid contemporaneous counterfactual wage change distribution. In

particular, we have highlighted the problems inherent in previous studies which have sought to

obtain identi�cation from the observed distribution of wage increases. A fundamental question

arises in the light of this as to how one can obtain estimates of the e¤ects of DNWR with a clean
35 In addition, the theory presented in section 2 neglected the possibility of DNWR motivated by factors such as

the legal requirement in many countries (notably excluding the US) that wage contracts be renegotiated by mutual
consent of the �rm and the worker (MacLeod & Malcomson, 1993; Holden, 1994). The current paper does not seek
to deny the existence of such motivations, but merely to draw out and test the implications of behavioral foundations
to DNWR. Indeed, as pointed out in Holden (2004), contract and behavioral motivations may even reinforce one
another in explaining DNWR.
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causal interpretation. This paper has shown that there are strong theoretical and empirical reasons

to conclude that such a question is more di¢ cult to solve than previously envisaged, and therefore

that future work on this issue is needed.

In addition, there is a need in the literature on DNWR for an empirical model that can conform

well with an explicit theory of wage setting as well as with the structure of the data. In particular,

whilst the empirical methods of section 4 allow the data to speak more � by allowing di¤erent

e¤ects of in�ation at di¤erent points in the wage change distribution, and by assuming little about

the parametric form of counterfactual wage changes �they do not provide us with direct estimates

that can be related back to a model of wage setting. The current paper seeks to contribute to this

process by showing how one can write down models of wage setting based on worker resistance to

wage cuts, and by also providing empirical evidence that can inform future, more complex, models

of DNWR. This will hopefully enable the formulation of more realistic structural models of DNWR

that can be successfully estimated with meaningful parameter estimates.
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7 Appendix

A Lemmas and Proofs

Lemma 1 The value function de�ned in (5) has the following properties:

v�W
�
W;A0

�
= �cA

0

W
(22)

v0W
�
W;A0

�
=

A0

W
� 1 + �

1 + �
D
�
W;A0

�
v+W

�
W;A0

�
= 0

Proof. First, note that standard application of the Envelope Theorem implies:

v�W
�
W;A0

�
= c

A0

W
(23)

v+W
�
W;A0

�
= 0

It is only slightly less obvious what happens when �W 0 = 0, i.e. when the wage is not adjusted.
In this case, W 0 =W and this implies that:

v0
�
W;A0

�
= A0 ln

�
W

B0

�
�W +

�

1 + �

Z
v
�
W;A00

�
dF
�
A00jA0

�
(24)

It therefore follows that:

v0W
�
W;A0

�
=
A0

W
� 1 + �

1 + �

Z
vW

�
W;A00

�
dF
�
A00jA0

�
(25)

Since, by de�nition D (W;A0) �
R
vW (W;A

00) dF (A00jA0), the statement holds as required.
Proof of Proposition 2. First, note that we can re-write the continuation value conditional

on each of the three possible continuation regimes:

v
�
W;A0

�
=

8<:
v� (W;A0) if A0 < A0l
v0 (W;A0) if A0 2 [A0l; A0u]
v+ (W;A0) if A0 > A0u

(26)

where superscripts �=0=+ refer to whether the nominal wage is cut, frozen, or raised tomorrow.
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Note also that, due to the recursive nature of the problem:

Al � l (W�1) ; Au � u (W�1) (27)

=) A0l � l (W ) ; A0u � u (W )

Thus we can write36:Z
v
�
W;A0

�
dF
�
A0jA

�
=

Z l(W )

0
v�
�
W;A0

�
dF +

Z u(W )

l(W )
v0
�
W;A0

�
dF +

Z 1

u(W )
v+
�
W;A0

�
dF (28)

Taking derivatives with respect to W and recalling the de�nition of D (�), and noting that, since
v (W;A0) is continuous, it must be that v� (W; l (W )) = v0 (W; l (W )) and v0 (W;u (W )) = v+ (W;u (W ))
yields:

D (W;A) =

Z l(W )

0
v�W

�
W;A0

�
dF +

Z u(W )

l(W )
v0W

�
W;A0

�
dF +

Z 1

u(W )
v+W

�
W;A0

�
dF (29)

Finally, using the Envelope conditions in Lemma 1, and substituting into (29) we obtain (9) in the
main text:

D (W;A) =

Z u(W )

l(W )

�
A0

W
� 1
�
dF�

Z l(W )

0
c
A0

W
dF+

�

1 + �

Z u(W )

l(W )
D
�
W;A0

�
dF � (CD) (W;A) (30)

To verify that C is a contraction mapping over the �relevant range� (to be de�ned shortly),
we con�rm that Blackwell�s su¢ cient conditions for a contraction hold here (see Stokey & Lucas,
1989, p.54). First, note that any values for (W;A) that render C unbounded cannot obtain under
optimality, since they will necessarily violate the conditional �rst-order condition, (6). Thus,
we can restrict our attention to a subset of values for (W;A) around the optimum for which C
is bounded. This is what we de�ne as the �relevant range�. That C then maps the space of
bounded functions into itself over this range holds by de�nition. Given this, monotonicity and
discounting are straightforward to verify. To verify monotonicity, �x (W;A) =

�
�W; �A

�
, and take

D̂ � D. Then note that:Z u( �W)

l( �W)
D̂
�
�W;A0

�
dF
�
A0j �A

�
�

Z u( �W)

l( �W)
D
�
�W;A0

�
dF
�
A0j �A

�
(31)

=

Z u( �W)

l( �W)

h
D̂( �W;A0)�D

�
�W;A0

�i
dF
�
A0j �A

�
� 0

Since
�
�W; �A

�
were arbitrary, it thus follows that C is monotonic in D. To verify discounting, note

that:

[C (D + a)] (W;A) = (CD) (W;A) +
�

1 + �
a [F (u (W ) jA)� F (l (W ) jA)] (32)

� (CD) (W;A) +
�

1 + �
a

36Henceforth, �dF�without further elaboration is to be taken as �dF (A0jA)�.
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Since we know that �
1+� < 1 it follows that C is a contraction over the relevant range. It therefore

follows from the Contraction Mapping Theorem that C has a unique �xed point over the relevant
range.

Proof of Proposition 5. Denote the counterfactual nominal wage at time t asW �
t = At. We

seek the properties of the di¤erence in average wage growth between the �actual� (with DNWR)
and counterfactual cases, which we de�ne as �:

�T � 1

T

t+TX
s=t+1

ln

�
Ws

Ws�1

�
� 1

T

t+TX
s=t+1

ln

�
W �
s

W �
s�1

�
(33)

=
1

T

�
ln

�
Wt+T

W �
t+T

�
� ln

�
Wt

W �
t

��
Then note that, from the optimal wage policy of the �rm, (13), it follows that the log�di¤erence
between the actual and counterfactual wages must be bounded, ln (Wt=W

�
t ) 2 [� lnu;� ln l]. Thus:

sup�T =
1

T
[lnu� ln l] = 1

T
lnG (34)

inf �T =
1

T
[ln l � lnu] = � 1

T
lnG

Therefore, for �nite G, limT!1 sup�T = 0 = limT!1 inf �T .
Proof of Proposition 6. (i) De�ne the increase in wage growth due to DNWR in the

median�symmetric (MS) case as:

g �
Z 0

�1
xf (x) dx�

Z 0

�1
xf̂ (x) dx (35)

where f , and f̂ are respectively the observed, and MS counterfactual log wage change densities.
Further de�ne the true average cost of DNWR as C � E (v� � v) where v� denotes the true
frictionless value of a �rm. Taking a �rst order Taylor series approximation around c = 0 yields:

C
c=0� dC

dc

����
c=0

� c (36)

Note �rst that dC=dcjc=0 = �
�
@v
@c +

@v
@W � @W@c

���
c=0

= �E
P1
t=0 �

tat� lnAt1
�
t = �E (� lnA1�)

E(a)
1�� ,

since @v=@W jc=0 = 0, and where the second equality follows from the stationarity of, and the in-
dependence of increments to, the shock process. It follows from this that the costs of DNWR are
entirely driven by reductions in e¤ort following wage cuts. Next, note that by using the de�nition

of G in (55) one can show that lnG
c=0� c.

The �nal step for part (i) is to show that lnG � g=Pr (� lnA < 0). Recall that in the wage cut
regime, � lnW = ln (A=W�1)� ln l = ln (A=A�s)� ln l+ ln��s, since W�1 = A�s=��s, where s is
the number of periods since the last wage change, and ��s 2 fl; ug depending on whether the last
wage change was negative or positive. Then note that if one were to assume that observed wage
increases were una¤ected by DNWR, one implicitly assumes that the counterfactual wage change
is given by � ln Â = ln (A=W�1)� lnu = ln (A=A�s)� lnu+ ln��s. If follows that, for a given s,
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f̂ (x) = f (x+ lnG). Thus, for a given s,

g =

Z 0

�1
xf (x) dx�

Z lnG

�1
(x� lnG) f (x) dx lnG=0� lnG � Pr (� lnA < 0) (37)

which is independent of s. It follows that g � lnG � Pr (� lnA < 0) as required. Piecing these
components together we obtain:

C
c=0� � g � E (� lnAj� lnA < 0) � E (a)

1� � (38)

(ii) Previous studies asserted that DNWR is costly because it raises the cost of labor, and
thereby sought to estimate these increased costs. In this way, they identify the costs of DNWR to
be equal to:

W � E
1X
t=0

�t (!t � !�t ) = E
1X
t=0

�t
tY

n=1

(1 + gn)!0 �
E (a)

1� � (39)

where gn is the (random) growth rate of real wages in period n. From the above de�nition of g,
E (gn) � g. Together with the stationarity of the increments to the shock process, this implies
that E (gnjgn�1; gn�2; :::) = g; i.e. that the gs are independent of each other. Thus:

W =
E (!0)

1� � � �g �
E (a)

1� � (40)

According to Proposition 5, of course, the �true�value of g is zero. Thus the overstatement of the
wage costs of DNWR under the MS methodology is given by:

�g

1� � � �g
E (!0)

1� �
g=0
� g � �

1� � �
E (a)

1� � (41)

as required.
Proof of Proposition 7. (i) By de�nition, F (Pn) � n=100. Totally di¤erentiating yields:

@Pn
@�

=
�@F=@�
f (�w)

����
�w=Pn

(42)

Now, de�ning measurement error as � with cdf G (�), it follows that the cdf of observed wage
changes, �w, is given by F (�w) =

R
F � (�w�j�) dG (�) where F � is the cdf of true wage changes,

�w� � �w � �. It follows that:

@F

@�
=

Z
f� (�w�j�) @ (�w

�)

@�
dG (�) (43)

where f� is the pdf of true wage changes. To make the exposition most stark, consider the following
case:

@ (�w�)

@�
= � � 1 (�w� > 0) + � � 1 (�w� < 0) (44)

where 1 (�) is the indicator function, and � > 0 and � < 0. In this case, it is straightforward to

43



show that:
@Pn
@�

= � � ' (n) + � � [1� ' (n)] (45)

where ' (n) =
R1
0 f(�wj�w�)dF (�w�)R1
�1 f(�wj�w�)dF (�w�)

����
�w=Pn

2 (0; 1). Thus, the estimates of (18) report a weighted

average of upper and lower tail e¤ects, and are thus attenuated.
(ii) It is also true, however, that as n ! 100 (resp. 0) then ' ! 1 (resp. 0). Therefore, this

attenuation vanishes for both su¢ ciently high and low percentiles.
(iii) Note that, since � is independent of �, then E (�wj�) = E (�w�j�): i.e. the mean

conditional wage change is una¤ected by measurement error. To complete the proof, note that,
by de�nition:

E (�wj�) � 1

100

Z
Pndn = E (�w�j�) (46)

B Technical Details of Proposition 3

The following lemma will turn out to be useful in what follows:

Lemma 2 If lnx � N
�
�; �2

�
then it follows that:Z x

x
xdF (x) = exp

�
�+

1

2
�2
��
�

�
lnx� �

�
� �

�
� �

�
lnx� �

�
� �

��
(47)

where � (�) is the c.d.f. of the standard Normal.

Proof. Since x is log-Normally distributed, the p.d.f. of x is given by f (x) = 1
�x�

�
lnx��
�

�
,

where � (�) is the p.d.f. of the standard Normal. It follows that:Z x

x
xdF (x) =

Z x

x
x

1

�x
p
2�
exp

"
�1
2

�
lnx� �

�

�2#
dx (48)

De�ning z � lnx� � =) dx = exp (�+ z) dz, we obtain:Z x

x
xdF (x) =

Z lnx��

lnx��

1

�
p
2�
exp

�
�+ z � 1

2�2
z2
�
dz (49)

Completing the square for the term in brackets and substituting back into the former expression:Z x

x
xdF (x) =

Z lnx��

lnx��

1

�
p
2�
exp

"
�+

1

2
�2 � 1

2

�
z � �2
�

�2#
dz (50)

= exp

�
�+

1

2
�2
��
�

�
lnx� �

�
� �

�
� �

�
lnx� �

�
� �

��
as required.
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B.1 Obtaining the functions D (W;u (W )) and D (W; l (W ))

We proceed by using the method of undetermined coe¢ cients. We conjecture that D (W;A) is of
the form:

D (W;A) = �1
A

W
+ �2 (51)

and verify that this will indeed be the case for A = u (W ) or l (W ), using Lemma 2 to solve out
the integrals in (9). Following this method yields37:

D (W;u (W )) = (1 + �)
u (W )

W

�
�1 � (1 + c) �1
1� � (�1 � �1)

�
� �2 � �2
1� �

1+� (�2 � �2)
(52)

D (W; l (W )) = (1 + �)
l (W )

W

�
�3 � (1 + c)�1
1� � (�3 � �1)

�
� �4 � �2
1� �

1+� (�4 � �2)

where:

�1 = �
�
1
�

�
� lnG� ln (1 + �) + 1

2�
2
�
� �

�
�2 = �

�
1
�

�
� lnG� ln (1 + �) + 1

2�
2
��

�3 = �
�
1
�

�
lnG� ln (1 + �) + 1

2�
2
�
� �

�
�4 = �

�
1
�

�
lnG� ln (1 + �) + 1

2�
2
��

�1 = �
�
1
�

�
� ln (1 + �) + 1

2�
2
�
� �

�
�2 = �

�
1
�

�
� ln (1 + �) + 1

2�
2
�� (53)

and we de�ne G � u(W )
l(W ) , the geometric gap between the two trigger values for A.

B.2 Obtaining the functions u (W ) and l (W )

It is now straightforward to solve for the functions u (W ) and l (W ) by substituting the above (52)
into the equations (8) to obtain after some algebra:

u (W ) =

"
1� � (�1 � �1)
1� �

1+� (�2 � �2)
� 1

1� c��1

#
�W (54)

l (W ) =

"
1� � (�3 � �1)
1� �

1+� (�4 � �2)
� 1

1 + c� c��3

#
�W

These two equations clearly depend on G � u(W )
l(W ) , which is unknown so far. However, we can

determine G using our expressions for u (W ) and l (W ) above:

u (W )

l (W )
� G =

1 + � � � (�4 � �2)
1 + � � � (�2 � �2)

� 1� � (�1 � �1)
1� � (�3 � �1)

� 1 + c� c��3
1� c��1

� T (G) (55)

Note that all the terms on the RHS of this equation are functions of G, and not ofW . Obtaining the
relevant value of G requires solving for the �xed point(s) of the mapping de�ned by this equation.
Given the relevant value of G, this implies that the �is, i = 1; :::; 4, will be given constants, as will
the coe¢ cients on W in (54), and it follows that u (W ) = u �W and l (W ) = l �W as stated in the
main text.
37Technical details of this derivation are available on request from the author.
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B.3 Properties of the Map T (G)

Simulations of the mapping T (G) in (55) reveal that, whilst there always exists at least one �xed
point for T (G), there is not, in general, a unique �xed point. Thus, in the case where there
exists more than one �xed point, we need a criterion for identifying which �xed point value of G
maximizes the value function, which is provided by the following proposition:

Proposition 8 Where there exist multiple �xed points for the mapping T (G), the wage policy that
maximizes the value function is that associated with G1 � min fG : G = T (G)g.

Proof. De�ne the multiple �xed points of T (G) as G1 < G2 < G3 < :::, and the associated
value functions as v1; v2; v3; :::. We claim that the following must be true:

v1 � v2 � v3 � ::: (56)

To see this, note �rst that a higher value of G only serves to restrict the �rm�s choice of W by
widening the region in which wages are not changed. In particular, under a lower value of G, the
�rm can always choose a W arbitrarily close to W�1, and hence replicate the wage policy under a
higher G, if it wishes. In general, though, the �rm can do better than this under lower values of
G. Thus the statement must hold.
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Figure 1: The Effort Function 
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Figure 2: ( )1|ln −Δ WWf  implied by Theory 
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Figure 3: Properties of the Optimal Wage Policy Parameters 
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Figure 4: Theoretical ( )1|ln −Δ WWf  for Different Rates of Inflation 
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Figure 5:  Implied by Theory when β=0 ( Wf lnΔ )
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Parameter values: c = 0.1, β = 0, π = 0.02, σ = 0.15. 

 
 

Figure 6: Overstatement of Costs of DNWR 
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Figure 7: Overstatement of the Increase in Labor Costs as a Fraction of the True Costs 
of DNWR 
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Figure 8: The Dramatic Increase in the Dispersion of Real Wage Changes after CPS 
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80
10

0
12

0
14

0
16

0

1980 1985 1990 1995 20001993
year

90-10 differential 80-20 differential
Standard Deviation

 
Notes: 
We measure dispersion by the standard deviation and the 90-10 and 80-20 percentile differentials of log real wage changes.  All measures of 
dispersion are normalised to equal 100 in 1980. 

 



 

Figure 9: US & UK Inflation over the Sample Periods 
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Source: US CPI data was obtained from http://data.bls.gov.  UK RPI data was obtained from www.statistics.gov.uk/statbase.  
 

 
 
Figure 10: Density Estimates of Log Real Wage Change Distributions (PSID) 
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Notes:  
a. Kernel density estimates using an Epanechnikov kernel, over 250 data points, and a bandwidth of 0.005. 
b. “Re-weighting” refers to the use of the DiNardo, Fortin & Lemieux (1996) re-weighting technique to control for changes in age, age2, 

sex, education, 1-digit industry, 1-digit occupation, region, self employment, and tenure. 
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Figure 11: Density Estimates of Log Real Wage Change Distributions (NESPD) 
 

a) Without Re-weighting b) With Re-weighting 
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Notes:  
a. Kernel density estimates using an Epanechnikov kernel, over 250 data points, and a bandwidth of 0.005. 
b. “Re-weighting” refers to the use of the DiNardo, Fortin & Lemieux (1996) re-weighting technique to control for changes in age, age2, 

sex, region (including London dummy), 2-digit industry, 2-digit occupation, and major union coverage.  
 

Figure 12: Turnover Effects on the Distribution of Log Nominal Wage Changes for  
  Job Stayers (NESPD) 
 

a) Without Re-Weighting b) With Re-Weighting 
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c) Re-Weighted – High Inflation d) Re-Weighted – Low Inflation 
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Notes:  
a. Kernel density estimates using an Epanechnikov kernel, over 250 data points, and a bandwidth of 0.005. 
b. “Re-weighting” refers to the use of the DiNardo, Fortin & Lemieux (1996) re-weighting technique to control for changes in adjusted 

lagged wages, age, age2, sex, region (including London dummy), 2-digit industry, 2-digit occupation, and major union coverage.  
c. High turnover refers to occupations for which the fraction of job changers in any given year exceeds the median. 
d. High inflation refers to years for which the inflation rate exceeded 10%. 
 

 



 

Table 1: Descriptive Statistics of Wage Changes (CPS, PSID, NESPD) 
 

US Data: CPS PSID British Data: NESPD 
Year 

Π Obs. ΔW=0 Δω<0 Obs. ΔW=0 Δω<0 Π Obs. ΔW=0 Δω<0 
1971 4.4    1,520 10.39 34.41     
1972 3.0    1,527 11.59 32.35     

1973 6.3    1,599 8.88 46.34     

1974 10.0    1,676 8.35 56.74     

1975 8.3    1,733 7.39 42.07     

1976 5.7    1,471 7.48 34.33 18.9 60,318 0.67 41.00 

1977 6.4    1,468 8.65 36.72 17.5 64,838 1.43 77.64 
1978 6.8    1,605 7.35 37.57 7.9 66,168 2.15 33.73 

1979 9.6    1,704 6.51 51.35 10.1 65,619 2.33 38.39 

1980 11.2 25,626 5.70 53.39 1,756 4.38 52.51 21.8 66,574 0.44 46.81 

1981 9.5 28,343 5.79 48.07 1,746 7.22 50.29 12 70,431 2.62 40.53 

1982 6.1 27,426 10.41 45.76 1,664 8.17 38.58 9.4 75,745 3.01 49.34 

1983 4.2 26,521 12.73 45.99 1,606 14.51 44.46 4 77,910 2.06 19.93 
1984 4.3 26,675 12.76 46.29 1,621 12.95 46.33 5.2 75,652 5.09 41.62 

1985 3.6 13,122 12.28 43.72 1,702 11.16 41.07 6.9 75,311 1.69 50.80 

1986 1.9 6,935 13.67 40.63 1,830 15.30 42.51 3 74,487 1.39 18.88 

1987 3.7 27,348 13.68 45.94 1,801 15.16 49.53 4.2 74,848 2.52 24.97 

1988 4.1 26,825 12.59 46.43 1,848 15.42 50.87 3.9 73,440 1.55 20.57 

1989 4.8 26,736 11.99 47.90 1,863 13.96 53.30 8 72,278 2.13 44.91 
1990 5.4 28,045 11.14 49.11 1,815 12.01 54.66 9.4 70,752 2.49 50.33 

1991 4.2 28,688 11.61 46.52 2,441 13.93 49.77 6.4 72,065 2.75 26.40 

1992 3.0 28,521 13.43 44.94 2,441 16.39 45.60 4.3 76,335 4.87 30.87 

1993 3.0 28,468 13.25 45.73    1.3 78,171 6.95 27.91 

1994 2.6 26,584 11.88 44.49    2.6 78,167 6.36 48.14 

1995 2.8 10,227 12.20 45.32    3.3 79,644 5.55 51.37 
1996 3.0 8,458 11.46 44.68    2.4 82,489 1.53 32.31 

1997 2.3 25,386 10.67 41.53    2.4 80,221 1.71 33.52 

1998 1.6 25,255 10.31 38.00    4 76,999 4.08 51.19 

1999 2.2 25,489 9.80 41.02    1.6 77,227 4.38 25.93 

2000 3.4 25,215 9.68 44.19    3 76,806 4.35 39.69 

2001 2.9 24,574 9.32 42.65    1.8 79,689 0.00 32.69 
2002 1.6 26,575 10.32 42.38        
Notes: 
“П” denotes the rate of inflation in a given year.  This is measured by the CPI-U-X1 for the US, and the RPI for the UK. 
“Obs.” Refers to the number of non-missing wage change observations each year. 
“ΔW=0” reports the percentage of nominal wage changes each year that are exactly zero. 
“Δω<0” reports the percentage of real wage cuts implemented each year. 
 
 

 



 

Table 2: Summary Statistics (CPS, PSID, NESPD) 
 
(a) CPS: Obs Mean Std. Dev. Min Max 
Change in log real wage 547042 0.025061 0.310781 -5.72642 4.562072 

Age 547042 38.01381 12.52692 16 65 

Female 547042 0.501651 0.499998 0 1 

Education:      

< High School 546516 0.175773 0.380628 0 1 

High School 546516 0.451021 0.497596 0 1 

Some College 546516 0.287882 0.452776 0 1 

College Degree 546516 0.071936 0.258382 0 1 

Advanced Degree 546516 0.013388 0.114931 0 1 

Metropolitan area 521083 0.710509 0.453527 0 1 

Non-white 547042 0.204385 0.403252 0 1 

Self-employed 546877 0.000104 0.010209 0 1 
      
(b) PSID:      

Change in log real wage 33283 0.022087 0.337482 -3.72463 4.619859 

Age 33283 38.24457 11.53739 18 65 
Female 33283 0.196617 0.397446 0 1 

Education:      

0-5 grades 30671 0.036256 0.186929 0 1 

6-8 grades 30671 0.114375 0.318272 0 1 

9-11 grades 30671 0.218382 0.413155 0 1 

12 grades 30671 0.448469 0.497346 0 1 

Some College 30671 0.130253 0.336587 0 1 

College degree 30671 0.040201 0.196433 0 1 

Advanced degree 30671 0.012064 0.109171 0 1 

Tenure:      

[1, 1.5] years 30536 0.092907 0.290306 0 1 

(1.5, 3.5) years 30536 0.204546 0.403376 0 1 

[3.5, 9.5) years 30536 0.354008 0.47822 0 1 

[9.5, 19.5) years  30536 0.236999 0.425249 0 1 

19.5 years + 30536 0.111541 0.314805 0 1 

Self-employed 33257 0.014313 0.118779 0 1 

      
(c) NESPD:      
Change in log real wage 1922184 0.026539 0.190503 -9.9292 9.757886 

Age 1922184 41.01464 11.85092 16 65 

Female 1922184 0.409069 0.491662 0 1 

Major union coverage 1922029 0.426511 0.49457 0 1 
London dummy 1919091 0.144433 0.351528 0 1 
Notes: 
CPS sample also contains 2-digit industry classifications, and 50 regional dummies. 
PSID sample also contains 1-digit industry and 1-digit occupation classifications, and 6 region dummies. 
NESPD sample also contains 2-digit industry and 2-digit occupation classifications, and 10 region dummies.  Major union coverage variable 
does not include more disaggregated union agreements. 
 
 

 



 

  

Table 3: Regressions of Percentiles of Real Wage Changes on the Rate of Inflation and 
  Controls (CPS, 1980 – 2002) 
 

Coefficient on Inflation Ratea
Percentile 

No Controlsb Aggregate Controlsc Full Controlsd

    

10th -0.062 [0.134] 0.06 [0.148] -0.067 [0.151] 

20th -0.254 [0.070]*** -0.157 [0.090]* -0.15 [0.091] 

30th -0.326 [0.074]*** -0.275 [0.074]*** -0.366 [0.068]***

40th 0.04 [0.040] 0.049 [0.043] 0.035 [0.038] 

60th 0.053 [0.024]** 0.053 [0.025]** 0.045 [0.028] 

70th 0.123 [0.050]** 0.123 [0.051]** 0.127 [0.049]** 

80th 0.178 [0.093]* 0.198 [0.100]* 0.154 [0.092] 

90th 0.162 [0.159] 0.262 [0.172] 0.373 [0.131]***

    

Lower Tail 
Losses +0.98% +0.37% 1.10% 

Upper Tail Gains -0.98% -1.45% -1.57% 

↑ in wΔ  due to 
DNWRe

0% -1.07% -0.47% 

Notes: 
a. Reports Least Squares estimates (weighted by region size) of real wage change percentiles on the rate of inflation and controls. 
b. Includes a dummy for the years 1994 onwards to control for the increase in dispersion of real wage changes following introduction of 

CAPI. 
c. As b, but includes additional controls for the absolute change in the rate of inflation, and the contemporaneous and lagged state 

unemployment rate. 
d. As c, but uses real wage change percentiles re-weighted for changes in age, age2, sex, race, region (including metropolitan dummy), 2-

digit industry, education, public sector employment, and self-employment. 
e. Predicted effect on real wage growth of a change in inflation from 22% (maximum NESPD sample inflation, 1980) down to 1.3% 

(minimum NESPD sample inflation, 1993).  Computed from estimation of 99 percentile regressions of the form summarised in the 
Table using the method outlined in the main text. 

f. Standard errors in brackets: robust to non-independence within years.   
g. * significant at the 10% level; ** significant at the 5% level; *** significant at the 1% level. 
 

 



 

Table 4: Regressions of Percentiles of Real Wage Changes on the Rate of Inflation and 
  Controls (PSID, 1971 – 92) 
 

Coefficient on Inflation Ratea
Percentile 

No Controls Aggregate Controlsb Full Controlsc

    

10th -0.228 [0.076]*** -0.227 [0.077]*** -0.236 [0.100]** 

20th -0.596 [0.090]*** -0.57 [0.099]*** -0.585 [0.100]*** 

30th 0.018 [0.034] 0.003 [0.041] -0.026 [0.040] 

40th 0.017 [0.024] 0.016 [0.027] 0.012 [0.030] 

60th 0.029 [0.023] 0.027 [0.027] 0.015 [0.033] 

70th 0.096 [0.047]* 0.11 [0.051]** 0.066 [0.054] 

80th 0.177 [0.074]** 0.173 [0.081]** 0.16 [0.081]* 

90th 0.313 [0.123]** 0.33 [0.122]** 0.301 [0.118]** 

    

Lower Tail 
Losses +1.05% +1.13% +1.18% 

Upper Tail Gains -0.90% -1.11% -1.04% 

↑ in wΔ  due to 
DNWRd

+0.15% +0.02% +0.14% 

Notes: 
a. Reports Least Squares estimates (weighted by region size) of real wage change percentiles on the rate of inflation and controls.  
b. Controls for the absolute change in the rate of inflation. 
c. As b, but uses real wage change percentiles re-weighted for changes in age, age2, sex, education, 1-digit industry, 1-digit occupation, 

region, self employment, and tenure. 
d. Predicted effect on real wage growth of a change in inflation from 22% (maximum NESPD sample inflation, 1980) down to 1.3% 

(minimum NESPD sample inflation, 1993).  Computed from estimation of 97 percentile regressions of the form summarised in the 
Table using the method outlined in the main text – bottom and top percentiles are trimmed away as these yield extreme results. 

e. Standard errors in brackets: robust to non-independence within years. 
f. * significant at the 10% level; ** significant at the 5% level; *** significant at the 1% level. 
 

 



 

Table 5: Regressions of Percentiles of Real Wage Changes on the Rate of Inflation and 
  Controls (NESPD, 1976 – 2001) 
 

Coefficient on Inflation Ratea
Percentile 

No Controlsb Aggregate Controlsc Full Controlsd

    

10th -0.138 [0.061]** -0.057 [0.061] -0.103 [0.068] 

20th -0.286 [0.033]*** -0.227 [0.018]*** -0.239 [0.021]*** 

30th -0.197 [0.023]*** -0.149 [0.020]*** -0.143 [0.023]*** 

40th -0.101 [0.016]*** -0.089 [0.016]*** -0.089 [0.011]*** 

60th 0.088 [0.008]*** 0.076 [0.009]*** 0.074 [0.008]*** 

70th 0.165 [0.015]*** 0.147 [0.017]*** 0.148 [0.014]*** 

80th 0.206 [0.028]*** 0.176 [0.027]*** 0.172 [0.023]*** 

90th 0.117 [0.053]** 0.066 [0.047] 0.103 [0.043]** 

    

Lower Tail 
Losses +1.26% +0.71% +1.16% 

Upper Tail 
Gains -0.96% -0.67% -1.04% 

↑ in wΔ  due 
to DNWRe

+0.30% +0.04% +0.13% 

Notes: 
a. Reports Least Squares estimates (weighted by region size) of real wage change percentiles on the rate of inflation and controls. 
b. Includes a dummy for the year 1977 to control for the dramatic fall in real wage growth due to the incomes policies implemented in 

the UK at that time. 
c. As b, but includes additional controls for the absolute change in the rate of inflation, and the contemporaneous and lagged regional 

unemployment rate. 
d. As c, but uses real wage change percentiles re-weighted for changes in age, age2, sex, region (including London dummy), 2-digit 

industry, 2-digit occupation, and major union coverage.  
e. Predicted effect on real wage growth of a change in inflation from 22% (maximum NESPD sample inflation, 1980) down to 1.3% 

(minimum NESPD sample inflation, 1993).  Computed from estimation of 99 percentile regressions of the form summarised in the 
Table using the method outlined in the main text. 

f. Standard errors in brackets: robust to non-independence within years.   
g. * significant at the 10% level; ** significant at the 5% level; *** significant at the 1% level. 
 

 



 

Table 6: Effect of Turnover on Percentiles of Nominal Wage Increases for Job  
  Stayers (NESPD) 
 

(1) (2) (3)c
Percentile 

τ τ τ π π*τ 

0.023 0.016 0.011 0.081 0.057 
60th

[0.002]*** [0.002]*** [0.004]*** [0.010]*** [0.037] 

0.047 0.032 0.028 0.133 0.024 
70th

[0.003]*** [0.003]*** [0.008]*** [0.020]*** [0.075] 

0.074 0.054 0.066 0.153 -0.2 
80th

[0.005]*** [0.005]*** [0.010]*** [0.027]*** [0.102]* 

0.113 0.092 0.116 0.077 -0.29 
90th

[0.008]*** [0.008]*** [0.020]*** [0.064] [0.207] 

Controls 
Median Wage 

Change 
1977 dummy 

(1) + 
Current & 
Lagged 
Regional 
U/E Rates 

(2) + Inflation & Inflation*Turnover 

Notes: 
a. Report Least Squares estimates, weighted by cell (occupation, region, year) size. 
b. Uses nominal wage change percentiles for job stayers, re-weighted for changes in adjusted lagged wage, age, age2, sex, region 

(including London dummy), 2-digit industry, 2-digit occupation, and major union coverage.  
c. Standard errors robust to non-independence within years. 
d. * significant at the 10% level; ** significant at the 5% level; *** significant at the 1% level. 
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