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Abstract 

 
The conventional wisdom in economic theory holds that switching costs make markets less 
competitive. This paper challenges this claim. We find that steady-state equilibrium prices 
may fall as switching costs are introduced into a simple model of dynamic price competition 
that allows for differentiated products and imperfect lock-in.  To assess whether this finding 
is of empirical relevance, we consider a more general model with heterogeneous consumers.  
We calibrate this model with data from a frequently purchased packaged goods market 
where consumers exhibit inertia in their brand choices, a behavior consistent with switching 
costs.  We estimate the level of switching costs from the brand choice behavior in this data.  
At switching costs of the order of magnitude found in our data, prices are lower than 
without switching costs. 
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1. Introduction 

For some models, it has been shown that switching costs make markets less competitive in 

the sense that prices are higher in equilibrium with switching costs than without (c.f. Farrell 

and Klemperer 2005).  Klemperer (1995) conjectures that this result is likely to hold across a 

wide array of models whenever firms are unable to price discriminate between existing and 

new customers.  In this paper, we analyze a class of switching cost models that can be taken 

directly to data.  In order to account for customer behavior and the observed outcomes in 

“real world” markets, we allow for product differentiation and the possibility of imperfect 

lock-in of customers.  In our model, we find that there are plausible values of switching 

costs for which prices decline in equilibrium relative to the zero switching cost case.  We 

estimate the level of switching costs from scanner data on frequently purchased consumer 

products for which customers exhibit “brand loyalty,” a particular form of switching costs.  

The result that switching costs lead to lower, not higher prices is robust to flexible demand 

specifications and holds for a wide range of switching costs centered on the values obtained 

from our data. 

 The existing literature on switching costs stems from Klemperer (1987) who shows 

that prices increase in the second period of a two-period model: “bargain then rip-off 

prices.”  In general, markets with switching costs exhibit two forces that have opposite 

effects on equilibrium prices.  First, firms have an incentive to invest in their market share, 

which induces them to lower their prices.  Second, firms want to “harvest” their base of 

customers for whom switching is costly by raising prices.  In two period models, the typical 

prediction is that prices are low in the first period, when firms compete for market share, 

and then rise in the second period to a level above that which would exist in a model without 
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switching costs.  Cabral and Villas-Boas (2005) provide sufficient conditions under which 

this “bargain then rip-off” pricing can lower firms’ profits in equilibrium. 

 In models without a terminal period or with long-lived consumers, theories have 

been developed to assess which of the two forces, harvesting versus investing, will dominate 

in a long-run equilibrium.  Farrell and Shapiro (1988), Padilla (1995) and Anderson et al. 

(2004) consider markets with undifferentiated products and overlapping generations of 

consumers, where price equals cost in the Bertrand-Nash equilibrium without switching 

costs.  Each of these papers demonstrates that the presence of switching costs generates 

economic rents with equilibrium price above marginal cost.  However, product 

differentiation can generate positive profits even without switching costs and, therefore, may 

lead to lower prices in the presence of switching costs as firms compete to “lock-in” 

customers. 

 Beggs and Klemperer (1992) consider the differentiated products case and customers 

that have the potential to live many periods and show that, even in this case, the equilibrium 

prices are higher in the presence of switching costs.  The model considered in Beggs and 

Klemperer assumes that customers who purchase a product become perfectly locked-in (i.e. 

will never switch in the future), an assumption of infinite switching costs.  Beggs and 

Klemperer state that the main results of their paper would hold for large, but finite switching 

costs.  Viard (2003) and Doganoglu (2005) challenge this claim using slightly different 

models in which firms sell to overlapping generations of consumers whose tastes change 

over time.  For sufficiently low switching costs, equilibrium prices are found to be lower 

than in the absence of switching costs.  It remains to be seen if these levels of switching 

costs are similar to those found to be consistent with the brand switching behavior of 

consumers. 
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 A small body of empirical research has developed which supports the qualitative 

conclusions formed from the theoretical literature.  Viard (2005) and Shi et al. (2006) look at 

the effects of telephone number portability on the prices of telephone service.  Both papers 

conclude that, after number portability is achieved, prices fall, consistent with the theoretical 

prediction that prices are increasing in switching costs.    Stango (2002) documents a similar 

positive correlation between observed prices and switching costs in the credit cards market. 

 This paper considers models of switching costs with differentiated products that 

allow for the possibility of imperfect lock-in.  That is, we consider the case where a 

consumer may switch brands in spite of the switching cost.  We find that steady-state prices 

under a wide range of plausible switching costs often fall, and hence switching costs can 

make markets more competitive.  We first illustrate this effect in a very simple model that 

allows us to explore the forces that drive this main result.  We solve for a Markov perfect 

equilibrium using computational techniques.  Computation has obvious drawbacks over 

analytical methods, yet progress in the extant literature on switching costs has been impeded 

by the difficulty of characterizing the complex behavior that arises under state-dependent 

demand. 

 We find that in our model, steady-state prices first fall and then rise as the magnitude 

of the switching costs increases.  Hence, the counter-example to Klemperer's claim is 

dependent on model parameters.  In order to investigate whether our result is merely a 

theoretical curiosity or actually a relevant prediction for some real-world markets, we extend 

the model and allow for a rich demand side, which generalizes much of the empirical 

literature on differentiated product demand systems.  We estimate the demand model from 

data on two categories of frequently purchased consumer products (refrigerated orange juice 

and margarine), and then compute the price equilibrium. 
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 Orange juice is an example of a branded, frequently purchased product.  A large 

literature in marketing has shown that such products exhibit “brand loyalty,” a special form 

of switching costs (Klemperer 1995, Farrell and Klemperer 2005).  Brand loyalty may have 

“psychological” sources or it may be the rational result of “shopping costs,” where 

consumers do not re-optimize the set of products considered and bought at each shopping 

occasion.  In this paper, we are not concerned with the exact source of brand loyalty, but 

rather whether it in fact exists and can be identified from observed purchasing behavior.  

 Switching costs are typically not directly observed.  Instead, the analyst must infer 

their magnitude from the observed switching behavior of consumers.  Given that consumers 

are heterogeneous in their tastes, we face the well-known problem of separating 

heterogeneity and state-dependence in demand.   Our approach is to use panel data with a 

reasonably long time dimension and considerable price variation coupled with a semi-

parametric model of consumer heterogeneity.  This allows us to separate heterogeneity from 

state dependence in demand and obtain reasonably precise estimates of the distribution of 

switching costs across consumers. 

 Our estimated switching costs are on the order of 15 to 60 per cent of the purchase 

price of the goods.  When these switching costs are used in model simulations, equilibrium 

prices decrease relative to prices without switching costs.  This prediction is very robust to 

variation in the parameter values.  In particular, if switching costs are scaled up to several 

times those inferred from our data, we still find that prices decline in the presence of 

switching costs.   
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2. Model 

In this section, we first develop a simple model of price competition in markets with 

switching costs.  As a point of departure from much of the established literature, we allow 

for product differentiation and the possibility that consumers switch away from products 

they have previously purchased, which are features commonly present in actual markets.  

The simple model allows us to explore the economic forces that determine equilibrium 

prices.  Finally, we show how the simple model can be easily extended to be suitable for an 

empirical application. 

 

Model Details 

We consider a market with J competing firms.  Each firm sells one product.  Time is 

discrete,   t = 0,1,... .  There is exactly one consumer in the market, who chooses among the J 

products and an outside option in each period. 

 In each period, the consumer is loyal to one product, j = st .  The loyalty variable 

∈ ={1, ..., }ts X J  summarizes all current-period payoff-relevant information, and describes 

the state of the market.  Demand is derived from a discrete choice model.  Conditional on 

price 
 
p jt  and her current loyalty state st , the consumer’s utility index from the choice of j  is 

 
  
U jt = δ j +α p jt + γ I{st = j}+ λε jt .  (1) 

 
As is common with much of the empirical literature on demand estimation, we assume that 

the random utility component 
 
ε jt  is i.i.d. Type I Extreme Value distributed. λ  determines 

the scale of the utility shock, and thus the degree of horizontal product differentiation 
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between the products.  In the limiting case of λ = 0 , product differentiation is purely 

vertical.  If the consumer is loyal to j but buys productk ≠ j , she foregoes the utility 

component γ .  Thus, she implicitly incurs a switching cost.   

 An alternative specification of the utility index is  

 
  
U jt = δ j +α p jt − γ I{st ≠ j}+ λε jt .  (2) 

Under this formulation, the consumer incurs an explicit switching cost γ when she chooses 

a product to which she is not loyal.  If there is no outside alternative, the state dependence 

model (1) is equivalent to the switching cost formulation in (2).  With an outside alternative, 

there are some subtle differences as discussed in the section on comparison of switching 

cost formulations below.  Those familiar with the switching cost literature may find the pure 

switching cost specification in (2) more appealing as this corresponds to a literal 

interpretation of an explicit switching cost which might be a monetary cost, a search cost, a 

“hassle” cost, or a psychological barrier.  However, the empirical literature has favored the 

state dependence specification in (1).  Thus, we will carry forward both specifications and 

report results for both.   

 Let   U( j , st , pt )  denote the deterministic component of the utility index, such that 

  
U jt =U( j , st , pt )+ λε jt .  The utility from the outside alternative is   U0t =U(0, st , pt ) =  

  = δ0 + ε0t .  If  λ > 0 , demand is given by the logit choice probabilities 

 

  

Pj (st , pt ) =
exp(U( j , st , pt )/ λ )

exp(U(k, st , pt )/ λ )
k=0

J∑
.  

 If there is no horizontal product differentiation (λ = 0 ), the consumer buys the 

product with the highest utility index.  If there is more than one product that maximizes 
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utility, the consumer chooses the product to which she is loyal if it is among the utility-

maximizing options, and randomizes among the utility-maximizing products otherwise.  

 The current loyalty state of the consumer, st , evolves as follows.  If the consumer 

buys product  k ≠ j  in period t, then st +1 = k , i.e. she becomes loyal to k.  If the consumer 

buys product  j = st  or chooses the outside option, then st +1 = st , i.e. her loyalty remains 

unchanged.  The firms cannot observe the random utility component.  Hence, conditional 

on a product price vector,  pt , the state variable follows a Markov process from the firm’s 

point of view: 

 
  
Pr{st +1 = j|st , pt }=

Pj (st , pt )+ P0(st , pt ) if j = st ,

Pj (st , pt ) if j ≠ st .

⎧
⎨
⎪

⎩⎪
 (3) 

Below, we discuss the extension to forward-looking consumer behavior. 

 Conditional on all product prices and the state of the market, firm j receives the 

expected current-period profit 
  
π j (st , pt ) = Pj (st , pt ) ⋅( p jt − c j ) .  c j  is the marginal cost of 

production, which does not vary over time.  Firms compete in prices, and choose Markovian 

pricing strategies that depend on the current payoff-relevant information, summarized by st .  

This assumption rules out behavior that conditions current prices also on the history of past 

play, and thus collusive strategies in particular.  We denote firm j’s strategy by σ →:j X .  

Firms discount the future using the factor β , 0 ≤ β < 1.  For a given profile of strategies, 

  
σ = (σ1 , ...,σ J ) , the expected PDV of profits, β t

t =0

∞∑ π j (st ,σ(st )) , is well-defined.  

Conditional on a profile of competitor’s strategies, σ− j ,  firm j chooses a pricing strategy 

that maximizes its expected value.  Associated with a solution of this problem is firm j’s 

value function, which satisfies the Bellman equation 
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In this equation, the price vector consists of firm j’s price and the prices prescribed by the 

competitor’s strategies, 
  
p = (σ1(s ),...,σ j −1(s ), p j ,σ j +1(s ),...,σ J (s )) .   Therefore, the Bellman 

equation (4) depends on the pricing strategies chosen by the competitors.  Note that the 

expectation of the firm’s future value is taken with respect to the transition probabilities of 

 st , which are directly related to the current choice probabilities. 

 If 
  
p j = σ j (s )  attains the right-hand side of the Bellman equation for each state s, 

then 
 
σ j  is a best response to the strategy profile σ− j .  With these preliminaries, we can define 

the solution concept for the pricing game: 

Definition.  A strategy profile  σ
*  is a Markov perfect equilibrium if each σ j

*  is a best response 

to 
  
σ− j

* .  That is, for each firm j and state s, p j = σ j (s )  attains the right-hand side of the 
Bellman equation (4). 

 

For this pricing game, there always exists a Markov perfect equilibrium in pure strategies.  

The proof for the case of horizontal product differentiation, λ > 0 , relies on the quasi-

concavity of a logit-based objective function, which is well known for the static case and also 

holds for the case of dynamic competition considered here.  Quasi-concavity ensures that 

each player has a unique best response.  The proof is presented in the Appendix.  While we 

can show the existence of a pure-strategy equilibrium, we cannot characterize the equilibrium 

policies analytically.  Instead, we solve the game numerically for different parameter values. 
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 In the case of no horizontal product differentiation, λ = 0 , the equilibrium can be 

characterized analytically.  We focus on the case of symmetry across players, where all firms 

have the same utility intercepts and costs.  We assume that δ > c ≥ 0 .  

 

Proposition.  Let υ  be such that  0 ≤ υ ≤ (1− β )γ  and c +υ ≤ δ + γ .   Then under the assumptions 
stated above there is a symmetric Markov perfect equilibrium with pricing strategies 

  
σ j

*( j ) = c +υ  and 

  
σ j

*(k) = c +υ − γ  for all   k ∈X , k ≠ j . 

 

Proof.  j denotes the product to which the customer is loyal and k denotes any other product.  

Because 
 
p j = c +υ = pk + γ , the customer’s utility index is the same for all products.  

Therefore, by assumption she will not switch from product j to k, and because 

  0 ≤ δ + γ − (c +υ ) , she will not choose the outside option.  The value from this strategy is 

  
V j ( j ) = (1− β )−1υ  and 

  
V j (k) = 0 .  In order to assess whether the proposed strategies 

constitute a best response for each player, we only need to consider one-period deviations.  

If firm j reduces its price, it will reduce its current-period profit and leave its future value 

unchanged.  If firm j raises its price, it will loose its loyal customer and receive a payoff of 

zero now and in future.  Hence, 
 
p j = c +υ  is a best response to pk .  Competitor k needs to 

offer a price   pk = c +υ − γ − ε , ε > 0 , in order to acquire the customer.  Because 

 υ ≤ (1− β )γ , the present value from this one-period deviation is negative: 

 
 
υ − γ − ε + β

υ
1− β

=
υ

1− β
− γ − ε < 0.  

Alternatively, firm k cannot improve on its current outcome by raising its price, and hence, 

 pk = c +υ − γ  is a best response to p j . 
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Model Predictions 

We now explore the predictions of the pricing model developed above.  To keep the 

exposition as simple as possible, we focus on symmetric games with two firms.  Each firm 

has the same utility intercept and marginal production cost.  In a symmetric equilibrium, 

 σ1
*(1) = σ 2

*(2)  and  σ1
*(2) = σ1

*(1) .  We therefore only need to know firm 1’s pricing policy 

to characterize the market equilibrium. 

 We first consider the case of homogenous products (λ = 0) .  The proposition above 

states that switching costs allow firms to raise prices above the baseline Bertrand outcome, 

where  p = c .  In particular, there is an equilibrium where the firm that possesses the loyal 

customer increases its price above cost by the value υ = (1− β )γ .  υ  is the flow value of the 

switching cost.  If the firm charges an even higher price, the competitors could poach the 

customer by subsidizing the switching cost, incurring a loss in the current period, and 

recouping this loss by pricing above cost in the future.  In summary, if products are not 

differentiated, then we find that switching costs make markets less competitive, as predicted 

by much of the previous literature. 

 We now turn to the case of differentiated products and switching in equilibrium 

 (λ > 0) .  In the case of homogenous products, the customer never switches in equilibrium, 

and hence the realized transaction price is the price that the customer pays for the product 

that she is loyal to.  In the case of product differentiation, the customer sometimes switches, 

and therefore we characterize the equilibrium outcome by the average transaction price paid, 

conditional on a purchase: 

 
  
pa =

P1(1,σ *(1)) ⋅σ1
*(1)+ P2(1,σ *(1)) ⋅σ 2

*(1)
P1(1,σ *(1))+ P2(1,σ *(1))

.  
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That is,  p
a  is the expected price paid in state st = 1 , which—due to symmetry—is the same 

as the expected price paid in state st = 2 . 

 Figure 1 shows the relationship between the level of switching costs and the average 

transaction price for the case of δ j = 1, c j = 0.5, α = 1,  and λ = 1 .  We find that prices 

initially fall and then rise for larger switching cost levels.  Indeed, only for switching cost 

levels larger than 4 does the average transaction price exceed the transaction price without 

switching costs.  For a switching cost level of γ = 3 , despite the fact that the probability of 

staying loyal is 0.77, the average prices are lower than without switching costs1.  Table 1 

displays the average transaction price and the individual prices set by firms 1 and 2.  The 

table also shows the purchase probabilities for each product and the probability that the 

customer stays loyal.  In this example, the price of firm 1 increases and the price of firm 2 

decreases in the level of switching costs.  However, there are other cases where both firm’s 

prices decrease for small switching cost levels (see the case of λ = 0.2  in Table 2). 

 In Table 2 we explore the relationship between the random utility scale factor (λ ) 

and equilibrium prices at different switching cost levels.  As λ  decreases, we observed prices 

falling for a fixed level of switching costs as there is less horizontal differentiation.  What is 

important to note is that prices fall and then rise in switching costs for all values of λ  

considered.  For smaller values of λ , the switching cost level as which prices begins to rise 

are lower.   Holding the other parameter values constant, lower values of λ  imply less 

horizontal product differentiation and increase the probability that the customer stays loyal.  

                                                 
1 This pattern of declining-then-rising equilibrium prices is robust to other parameter values.  We have not been 
able to find an example where average transaction price always—even for small switching cost levels—
increases. 
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This higher rate of retention increases the incentive to “milk” the loyal customer and causes 

the average transaction price to begin increasing at lower switching cost levels. 

 The result of decreasing-then-increasing equilibrium prices also persists across 

different levels of the outside good intercept, δ0 .  In particular, this outcome arises even if 

there is no outside option ( δ0 = −∞ ). 

 Our results show that the conjectured effect of switching costs on prices—switching 

costs make markets less competitive—need not be true in a model that is simple, yet 

nonetheless the foundation of an important and widely used class of empirical demand 

models.  As previously discussed, under competition with switching costs firms face two 

incentives that work in opposite directions.  First, firms can “milk” a loyal customer by 

charging higher prices.  Second, firms can invest into future loyalty by lowering current 

prices.  Our results imply that either force can dominate in equilibrium.  We now examine 

the case where only the first force (“milking”) is present to illustrate this point.  To exclude 

the investment motive, we consider competitors who do not anticipate the future benefits 

from lowering current prices, and are hence myopic (β = 0 ).  Figure 1 shows the average 

transaction price paid under this scenario, and allows us to compare the pricing outcomes 

with fully rational, forward-looking firms and myopic decision makers.  After eliminating the 

investment motive, prices always rise in the degree of switching costs—switching costs make 

markets less competitive.  In contrast, a forward-looking firm has an incentive to lower its 

price to poach a customer who is loyal to its competitor.  The firm with the loyal customer 

anticipates the competitor’s incentive, and lowers its price to prevent the customer from 

switching.  Therefore, the average transaction price under competition with forward-looking 

firms is always lower than the average price under myopic competition. 
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Forward-Looking Consumers 

The demand side of the model can be extended to allow for forward-looking consumer 

behavior, where the customer anticipates the consequences of becoming loyal to a particular 

product.  Demand is then similar to Rust (1987); the technical details can be found in the 

Appendix.  In the particular case of symmetric competition, which we discussed above, 

demand and hence equilibrium prices are the same under both myopic and forward-looking 

consumer behavior.  Due to symmetry, the customer’s current and future payoffs are 

identical regardless of the identity of the product to which she is loyal.  If she is currently 

loyal to product 1, for example, she faces the identical choice situation next period regardless 

of whether she switches to product 2 today or remains loyal to product 1.  This argument 

depends on the assumption that the customer is always loyal to one of the products, and not 

to the outside option. 

 

Comparison of Switching Cost Formulations 

In our introductory discussion of the demand side of the model, we noted two alternative 

switching cost formulations.  Both models imply inertia in consumer choices over time: 

ceteris paribus, under switching costs the customer is more likely to buy the product to 

which she is loyal.  The difference is in the exact way that the switching cost enters the utility 

index:  in model (1), the customer “gains” additional utility from the product to which she is 

loyal, while in (2) she pays a monetary or utility cost when she switches to another product.  

Therefore, some may consider (2) a more “natural” formulation of demand under switching 

costs.  However, the empirical brand choice literature has routinely used model (1) to 

capture observed inertia in household brand choices, c.f. Erdem (1996), Roy, Chintagunta, 

and Haldar (1996), Keane (1997), Seetharaman, Ainslie, and Chintagunta (1999), 
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Seetharaman (2004) and Shum (2004).  We call model (1), which we analyzed before, the 

“state dependence model” of switching costs2, and model (2) the “pure switching cost 

model.”  To clarify the difference between the two, we solve and compare the equilibria of 

both models using the same parameter values.   

Figure 2 shows the average price for both the state dependence and the pure 

switching cost models.  Prices fall and then rise in the pure switching cost model, as we 

previously found for the state dependence model.  Furthermore, the average price is always 

lower in the pure switching cost model compared to the state dependence model.  However, 

in contrast to the case analyzed previously, in the pure switching cost model prices may 

decline even in the case of myopic competition (β = 0 ), where the firms do not invest in 

future loyalty.  In order to understand the intuition for this difference in outcomes, note that 

varying the switching cost level, γ , varies both the relative purchase probabilities of the 

products in the market and the share of the outside good.  In the pure switching cost model, 

the share of the outside good increases in γ , holding prices constant, while in the state 

dependence model the share of the outside good decreases.  The market becomes less 

attractive to all firms jointly in the former case, and more attractive in the latter.  Recall that 

in a static Bertrand game with logit demand, the price of a product is proportional to its 

market share.  In the pure switching cost model, the average share of the firms in the market 

decreases in the level of switching costs.  Figure 2 shows that therefore, switching costs can 

lower the average transaction price under myopic competition.  Under pure switching costs, 

prices may decline in the level of switching costs even if the investment motive is absent.  In 

                                                 
2 Klemperer (1995) notes that state dependence can be viewed as a form of switching costs. 
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the state dependence model, on the other hand, prices increase under myopic decision 

making3. 

 

Overlapping Generations Version of the Simple Model 

In the theory literature on switching costs, competition in an infinite horizon setting (Beggs 

and Klemperer 1992 and Padilla 1995, for example) is examined using overlapping 

generations (OLG) models.  Shortening the lifetime of a customer reduces the incentive to 

invest in customer loyalty and prices might therefore be higher compared to an infinite 

horizon setting.  We now develop an OLG version of our simple state dependence model 

and examine the robustness of our previous finding that switching costs can lower 

equilibrium prices. 

 In each period, a new customer is born.  The customer lives for two periods and, 

hence, there are always a “young” and an “old” customer in the market.  A customer can be 

loyal to one of the J products, or she can be unattached, i.e. loyal to the outside alternative.  

If a customer is loyal to the outside alternative, she does not incur a switching cost for any 

product choice.  Otherwise, her demand is as in the model analyzed before.  When the 

young customer is born, she is unattached.  If she chooses the outside alternative, she stays 

unattached in the next period, when she is old.  Otherwise, if she buys product j she 

becomes loyal to j.  The state of the market is now described by st ∈{0,1,..., J}, the choice 

that the currently old customer made in the previous period, t − 1 . 

Table 3 shows the average transaction prices paid by the young and the old customer 

for different switching cost levels.  The model was solved with forward-looking consumers.  

Due to lock-in, the old customer always pays a higher average price than the young 

                                                 
3 For this reason, we chose the state dependence formulation to illustrate the basic economics of pricing under switching costs. 
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customer.  Unless switching cost levels are sufficiently large, however, both the young and 

the old customer pay a lower price, on average, than in the case without switching costs.  

The young customer, in particular, generally pays a lower price.  Similar to the basic model 

examined above, reducing the magnitude of the random utility scale factor, λ , causes the 

average transaction price of the old customer to begin rising at lower switching cost levels. 

Thus, our main conclusion that switching costs do not necessarily lead to higher 

prices is robust to a different model formulation as well as a wide range of parameter values.   

 

3. Empirical Model 

In both the infinite horizon and OLG versions of the simple model, we observe that 

equilibrium prices are lower with switching costs than without for a wide range of parameter 

values.  Switching costs are rarely directly observed (some components may be known, but 

the “hassle” costs of switching are not).  For this reason, we must turn to data on the 

purchase histories of customers to infer switching costs from the observed patterns of 

switching between brands in the face of price variation.  Consumer panel data on the 

purchases of packaged goods are ideal for estimating switching costs as the panel length is 

long relative to the average inter-purchase times and there is extensive price variation.  If 

households are observed to forego large utility increases afforded by a temporary price cut or 

sale, we can infer that there must be a relatively high level of switching cost. 

 To infer switching costs from consumer panel data, we must enrich our model to 

consider multiple differentiated products as well as multiple consumer types or consumer 

heterogeneity.  It is well documented (c.f. Allenby and Rossi 1999) that consumers exhibit a 

very high degree of heterogeneity with differing product preferences (intercepts) as well as 

price sensitivities (price coefficient).  It is also entirely possible that households will exhibit 
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differing degrees of switching costs.  Our approach will be to specify a very flexible model of 

consumer heterogeneity around a standard logit specification.  

 

Extending the Simple Model 

For these reasons, we consider a market populated by many heterogeneous customers.  We 

allow for N different types and assume that there is a continuum of consumers with mass 

 μn for each type n.  The latter assumption is for convenience.  As we will see below, it makes 

the evolution of the state vector deterministic.  Demand at the consumer level is identical to 

the simple model described previously, but the utility parameters are now type-specific.  We 

thus index the choice probability of a consumer by her type.  The probability of buying 

product j by a consumer of type n in state st , for example, is denoted by Pj (st , pt ;n ) . 

 To summarize the overall state of the market, we need to know the distribution of 

consumers of different types over loyalty states.  Let x jt
n  be the fraction of consumers of 

type n who are loyal to product j.  The vector xt
n = (x1t

n , ..., x Jt
n )  summarizes the distribution 

over loyalty states for all consumers of type n, and xt = (xt
1, ..., xt

N )  summarizes the state of 

the whole market.  As before, we denote the state space by X.  We write each state as an NJ 

dimensional vector.  Note, however, that by definition, x jt
n

j=1
J∑ = 1  for all types n.  Hence, 

the information contained in the state can be described more parsimoniously by a vector that 

has only N(J-1) dimensions.  This is not theoretically important, but allows us to simplify the 

solution algorithm for the model on a computer. 

 Aggregate demand is obtained by summing household level demand over consumer 

types and loyalty states: 
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 ( ) ( )μ
= =

⎛ ⎞
= ∑ ∑⎜ ⎟

⎝ ⎠1 1
, , ; .

JN n
j t t n kt j t

n k
D x p x P k p n  

In contrast to the simple model, demand is now deterministic.  This is a consequence of the 

assumption that there is a continuum of consumers for each type. 

 In the discussion of the simple model, we described the law of motion of the state 

variable at the individual level.  The transition of the aggregate state can be easily derived 

from the transition probabilities of the individual states, as shown in (3).  Conditional on a 

price vector  pt , we can define a Markov transition matrix Q( pt ;n )  with elements 

 
  
Qkj ( pt ;n ) = Pr{st +1 = j |st , pt ;n}.  

  
Qkj ( pt ;n )  denotes the probability that a household of type n who is currently loyal to j will 

become loyal to product k.  The whole state vector for type n then evolves according to the 

Markov chain 

 xt +1
n = Q( pt ;n )xt

n .  

Households can change loyalty states but not types such that the overall market state vector 

 x t  also evolves according to a Markov Chain with a block diagonal transition matrix.  The 

evolution of the state vector is deterministic, and we denote the transition function by f, 

  xt +1 = f (xt , pt ) . 

 Firm j’s current-period profit function is π j (xt , pt ) = D j (xt , pt ) ⋅( p j − c j ) .  As in the 

case of the simple model, firms compete in Markovian strategies, σ →:j X .  The best 

response to a profile of competitor’s strategies, σ− j , is found from the Bellman equation: 

 { }π β
≥

= + ∀ ∈
0

( ) max ( , ) ( ( , )) .
j

j j jp
V x x p V f x p x X  
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Here, 
  
p = (σ1(x ), ...,σ j −1(x ), p j ,σ j +1(x ),...,σ J (x )) . 

 The definition of the Markov equilibrium concept is the same as in the simple 

model.  In contrast to the simple model, we cannot prove that a pure strategy equilibrium 

generally exists.  Even in static games of price competition, restrictions on the distribution of 

consumer tastes typically need to be imposed to establish the existence of a pure strategy 

equilibrium (Caplin and Nalebuff 1991).  In general, the “non-parametric” distribution of 

tastes that our model allows for does not obey these restrictions.  In our empirical 

application, we can therefore only establish the existence of a pure strategy equilibrium 

computationally on a case-by-case approach. 

 

Econometric Specification 

We have extended the simple model by using a standard multinomial logit model conditional 

on consumer/household type. The probability that household h chooses alternative j given 

loyalty to product k is given by 

( ) ( )
( )

δ α γ
θ

δ α γ=

+ + =
= =

+ + + =∑ 1

exp { }
| ;

1 exp { }

h h h
j jh

J h h h
j jk

p I s j
P j s k

p I s k
.  

 To accommodate differences across households, we use a potentially large number 

of household types and a continuum of households of each type.  A literal interpretation of 

this assumption is that the distribution of demand parameters is discrete but with a very 

large number of mass points.  In the consumer heterogeneity literature (c.f. Allenby et al 

1999), continuous models of heterogeneity have gained favor over models with a small 

number of mass points.  The distinction between continuous models of heterogeneity and 

discrete models with a very large number of mass points is largely semantic.  In fact, some 



 21

non-parametric methods rely on discrete approximations.  Our approach will be to specify a 

very flexible, but continuous model of heterogeneity and then exploit recent developments 

in Bayesian inference and computation to use draws from the posterior of this model as 

“representative” of the large number of consumer types.   Each household in our data will 

be viewed as “representative” of a type.  We will use MCMC methods to construct a Bayes 

estimate of each household’s coefficient vector. 

 It is well known (c.f. Heckman 1981 and Keane 1997) that state dependence and 

heterogeneity can be confounded in the sense that mis-specified tightly parametric models of 

heterogeneity can lead to spurious findings of state dependence.   The state-of-the-art in this 

literature (cf. Keane 1997 and Seetharaman et al. 1999) is to use normal models of 

heterogeneity.  There is good reason to believe that there may be substantial departures from 

normality for the distribution of choice model parameters across households.  For example, 

there may be sub-populations of households with different preferences for different brands.  

This might lead to multimodality in the distribution of the intercepts.    

 Our approach is to use a mixture of normals as the distribution of heterogeneity in a 

hierarchical Bayesian model.  As with sufficient components in the mixture, we will be able 

to accommodate deviations from normality such as multi-modality, skewness, and fat tails.  

Let  θ
h  be the vector of choice model parameters for household h.  The mixture of normals 

model specifies the distribution of θh  across households as follows: 

  

θh ~ N μind ,Σ ind( )
ind ~ multinomial π( )
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π is a vector giving the mixture probabilities for each the K components.  We complete the 

model specification with priors over the mixture probabilities and the mean and covariance 

matrices: 

  

π ~ Dirichlet α( )
μk Σk ~ N μ ,Σk × aμ

−1( )
Σk ~ IW υ ,V( )
μk ,Σk{ }independent

   

We implement posterior inference for the mixture of normals model of 

heterogeneity and the multinomial logit base model along the lines of Rossi et al. (2005).  We 

use a hybrid Metropolis method that uses customized Metropolis candidate densities for 

each household.  Conditional on the draws of θh , we use an unconstrained Gibbs sampler.  

Since our goal is to estimate the distribution of model parameters over households, we do 

not have to impose constraints on this Gibbs sampler to ensure identification.   The density 

of model parameters is identified even if there is label switching.4  Moreover, it has been 

noted (Frühwirth-Schnatter (2001)) that the unconstrained Gibbs sampler has superior 

mixing properties relative to Gibbs Samplers that are constrained in hopes of achieving 

identification of each component parameters. 

 Our MCMC algorithm will provide draws of the mixture probabilities as well as the 

normal component parameters.  Thus, each MCMC draw of the mixture parameters 

provides a draw of the entire multivariate density of household parameters.  We can average 

these densities to provide a Bayes estimate of the household parameter density.  We can also 

                                                 
4 In mixture models, there is a generic identification problem which has been dubbed “label switching.”  That 
is, the likelihood is unchanged if the labels for components are interchanged.  This is only a problem if 
inference is desired for the mixture component parameters.  In our application, we are interested in estimating 
individual household parameters and the distribution of parameters across households.  These quantities are 
identified even in the presence of label switching. 
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construct Bayesian credibility regions for any given density ordinate to gauge the level of 

uncertainty in the estimation of the household distribution. 

 Some might argue that you do not have a truly non-parametric method unless you 

can claim that your procedure consistently recovers the true density of parameters in the 

population of all possible households.  In the mixture of normals model, this requires that 

the number of mixture components (K) increase with the sample size.  There are several 

ways to achieve this.  One could put a prior over models with differing numbers of mixture 

components and use a reversible jump MCMC algorithm to navigate this space of models.  

However, there are no reliable reversible jump MCMC methods for multivariate mixtures of 

normals.  Our approach is to fit models with successively larger numbers of components and 

gauge the adequacy of the number components by examining the fitted density as well as the 

Bayes factor associated with each number of components.  What is important to note is that 

our improved MCMC algorithm is capable of fitting models with a large number of 

components at relatively low computational cost. 

 

Description of the Data 

For our empirical analysis, we estimate the logit demand model described above using 

household panel data containing all purchase behavior for the refrigerated orange juice and 

the 16 oz tub margarine categories.  The panel data were collected by AC Nielsen for 2,100 

households in a large Midwestern city between 1993 and 1995.  In each category, we focus 

only on those households that purchase a brand at least twice during our sample period.  

Hence we use 354 households to estimate orange juice, and 444 households to estimate 

margarine demand.  Table 4 lists the products considered in each category as well as the 

purchase incidence, product shares and average retail and wholesale prices.  Over 85 per cent 
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of the trips to the store recorded in our panel data do not involve purchases in the product 

category.  This means that the outside good share is very large as is typical in many product 

categories and analyses of scanner data.  In addition, households who adopt a pattern of 

purchasing a product on a regular cycle will be perceived as relatively price insensitive as the 

changes in price of the category relative to the outside good will have little influence on 

purchase incidence for these households.  

 In our econometric specification, we have been careful to control for heterogeneity 

as flexibly as possible to avoid confounding state dependence with unobserved 

heterogeneity.  Even with these controls in place, it is still important to ask which patterns in 

our consumer shopping panel give rise to the identification of a “switching cost.”  Table 5 

indicates that for each of the brands in the two categories, the marginal purchase probability 

is considerably smaller than the re-purchase probability.  While this evidence is consistent 

with state dependence, it could also be a reflection of heterogeneity in consumer tastes for 

brands.  Identification of state dependence in our context relies on the frequent temporary 

price changes typically observed in supermarket scanner data.  If there is sufficient price 

variation, we will observe consumers switching away from their preferred products.  The 

detection of state dependence relies on spells during which the consumer purchases these 

less-preferred alternatives on successive visits, even after prices return to their “typical” 

levels. 

 

Demand Estimates 

We now report the empirical estimates of demand from the orange juice and margarine data.  

In Table 6, we report the log-marginal density for several alternative model specifications 

and for each category.  The posterior probability of a model specification is monotone in the 
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log-marginal density, so that by choosing the model with the largest log marginal density we 

are picking the model with the highest posterior probability.   It should be noted that the 

log-marginal density includes an automatic penalty for adding additional parameters (c.f. 

Rossi et al. 2005).  By comparing models with and without switching costs and with varying 

degrees of heterogeneity, we can assess the importance of incorporating switching costs and 

non-normality.  We assess the non-normality of the distribution of heterogeneity by 

comparing the log-marginal density for mixture models with varying numbers of 

components. 

 The results in Table 6 indicate several important features of the model.  First, 

heterogeneity clearly leads to a substantial improvement in fit in both categories.  Adding a 

switching cost term to the model also leads to an improvement in fit, albeit smaller.  

However, the usual state dependence specification appears to generate a better fit than the 

pure switching costs specification.  These results confirm the well-established belief that 

consumer demand for frequently-purchased CPG products exhibits state dependence.  For 

the remainder of this section, we will focus on the results from the state dependence 

specification.  In the next section, we will contrast the equilibrium implications of state 

dependence versus switching costs to assess whether the choice of specification alters the 

substantive predictions we make for pricing. 

 An interesting finding is the extent to which flexibility in the heterogeneity 

distribution may be required to “fit” the data.  In the orange juice category, a model with a 

single mixing component (the usual normal random coefficients model) performs relatively 

well.  However, in the margarine category, we observe considerable improvement in fit by 

adding more components to the mixture.  The improved fit from including five components 

in the mixture confirms the non-normality of the distribution of tastes in this category. 
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 We now examine the model estimates to assess the non-normality of the fitted 

distributions of taste parameters.  Ultimately, our goal is to estimate the distribution of tastes 

across households, not to attach any meaning or substantive significance to the parameters 

of the mixture components.  Rather than report parameter estimates for the moments of 

each of the normal components, we instead plot the fitted marginal densities for several taste 

coefficients. 

 In Figures 3 and 4, we plot several fitted densities from the 1, 2 and 5 component 

mixture models for the margarine data under the state dependence specification.  We also 

report the 95% posterior credibility region for the 5-component mixture model.  This region 

provides point-wise evidence for the non-normality of the population marginal density for a 

given coefficient.  Figure 3 provides compelling evidence of the need for a flexible model 

capable of addressing non-normality.  In the upper panel, the Shedd’s brand intercepts from 

the 5-component model exhibit bimodality that cannot be captured by the 1 or 2 component 

models.  The bimodality implies that there are households who differ markedly in their 

quality perceptions for margarines (note: the outside good is purchased most often so that 

the intercepts for all margarine brands are typically negative).  In general, the results suggest 

that one would recover a very misleading description of the data-generating process if the 

usual symmetric normal (1-component) prior were used to fit these data. 

 In Figure 4, the price coefficient (upper panel) for the 5-component model leads to a 

slightly asymmetric density with fat tails.  In contrast, a symmetric 1-component model has 

both a mode and tails lying outside the credibility region for the 5-component model.  For 

the state dependence estimates (lower panel), the 1 component model has a higher mean and 

thinner tails than the 5-component model. 
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 In Figure 5, we report fitted densities from the orange juice category.  These plots 

illustrate why we do not get the same improvement from more mixing components as we 

did in the margarine data.  In the upper plot (96 oz MM), the marginal densities from the 1 

and 2 component models are completely contained within the credibility region around the 

5-component model.  For the orange juice data, the one component normal approximation 

seems adequate.   

 Figures 6 and 7 display the fitted densities of the state dependence premium (i.e. 

switching costs) in dollar terms for each category.  The inclusion of the outside option in the 

model enables us to assign money-metric values to our model parameters simply by re-

scaling them by the price parameter (i.e. the marginal utility of income).  For the switching 

cost parameter reported in the figures, this ratio represents the dollar cost foregone when a 

consumer switches to another brand than the one purchased previously.  In the graphs, the 

point-estimate of switching costs from the homogeneous logit specification is denoted by a 

vertical red line. 

 Figures 6 and 7 display an entire distribution of switching costs across the population 

of households.  Some of the values on which this distribution puts substantial mass are 

rather large values, others are small.  To provide some sense of the magnitudes of these 

values, we compute the ratio of the dollar switching cost to the average price of the 

products.  The ratio of the mean dollar switching cost to average price is 0.13 for margarine 

and 0.19 for orange juice.  It should be emphasized that the entire distribution of switching 

costs will be used in computation of equilibrium prices.   The distribution of dollar switching 

costs puts mass on some very large values.  For example, the ratio of the 95th percentile of 

dollar switching costs to average prices is 0.61 for margarine and 0.60 for orange juice.  In 
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the computations in Section 4 below, we will use this distribution of switching costs as the 

center point.  We will also explore magnifying this distribution by scaling it by a factor of 4. 

 

4. Pricing Implications of the Demand Estimates 

In this section, we use the estimated demand systems to explore the implications of 

switching costs for pricing.  For each of the categories, we compute the steady-state Markov 

perfect equilibrium prices corresponding to the demand estimates.  We then examine the 

sensitivity of these steady-state price levels to specific parameter values. 

 To compute prices, we need to simplify the demand estimates to reduce the 

dimension of the state space of the model to a feasible range.  For the orange juice data with 

355 consumer “types” and 6 products, one would literally need to solve a dynamic 

programming problem with a  355 ⋅5 = 1,775  dimensional state space.  We simplify the 

problem as follows.  For the orange juice category, we focus only on 64 oz Tropicana and 

Minute Maid.  We also take each household’s posterior mean taste vector and cluster them 

into 5 consumer “types.”  Then our state space is 5 ⋅1 = 5  dimensional.  Similarly, in 

margarine we focus on all 4 products, and we cluster consumers into 2 “types.”  This 

clustering reduces the state space to 2 ⋅3 = 6  dimensions.  Results from the clustering are 

reported in Table 7 for each of the categories.  While these simplifications eliminate some of 

the richness of the true product category, they should not detract from our main objective, 

which is to examine the pricing implications of the estimated switching costs.   

 We begin with the pricing results for the refrigerated orange juice category.  In 

Figure 8, we report the optimal pricing policy functions for the 64 oz Minute Maid and 

Tropicana brands respectively.  The pricing policy is shown as a function of the loyalty states 

of two consumer segments holding the loyalty levels of the other three segments constant.  
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Optimal Minute Maid prices are rising with the fraction of loyals to Minute Maid whereas 

Tropicana prices are falling with the fraction of Minute Maid loyals.  Not surprisingly, prices 

are barely affected by the loyalty of consumers in cluster two, who—despite having a fairly 

high loyalty premium in dollars—represent a small share among all customers (3%).  These 

policy functions are then used to compute the steady-state price levels by simulating 10,000 

weeks of competition.  Figure 9 shows the convergence of prices and states to the steady 

state from a starting point where every consumer is loyal to Tropicana.  Although not 

reported, we obtained convergence to the same steady state from any randomly chosen 

starting value. 

 In Table 8, we report our results relating steady state price and profits levels to the 

magnitude of the state dependence premium/switching costs.  We compute equilibrium 

prices for a range of switching costs achieved by scaling the distribution of cluster 

parameters.  That is, we multiply the loyalty or state dependence parameter in each cluster by 

a scale factor reported in the left margin of Table 8.  We see that prices decline as state 

dependence increases from the zero order case of zero state dependence.  We are able to 

compute equilibrium prices for not just the level of state dependence found in our data but 

for much higher levels corresponding to scale factors greater than one.  We find that even 

with state dependence levels twice that revealed in out data, equilibrium prices are lower in 

the presence of state dependence.  At scale factors of 3, OJ prices start to rise above the zero 

state dependence levels.  State dependence is a source of additional profits to the firms as 

consumer utility increases for  any fixed level of price. 

 We also compute the steady-state prices and profits for the pure switching costs 

model estimates in Table 9.  In both the margarine and orange juice categories, prices fall as 

switching costs increase away from zero.  By comparing the prices for scale factors of zero 
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and one, we see that the estimated level of switching costs in this data result in a fall in 

equilibrium prices.  As expected, this fall is larger in the margarine category than in the 

orange juice category as the estimated dollar value of switching costs relative to prices is 

smaller in the orange juice category.  Even large scale factors of 4 do not reverse this finding.  

We still observe equilibrium prices below the levels without switching costs.  The bottom 

half of Table 9 provides equilibrium profit calculations and show that firms are worse off 

with switching costs and without. 

 

6. Conclusions 

We have demonstrated that equilibrium prices fall as switching costs increase for a variety of 

stylized and more realistic models.   This finding holds for a wide range of switching costs or 

state dependence centered on those obtained from consumer panel data.  Very high levels of 

switching costs must prevail in order to obtain results similar to those conjectured by 

Klemperer, i.e. that switching costs make markets less competitive and provide a source of 

economic rent.   Our switching cost estimates are based on consumer panel data for two 

categories of consumer products, margarine and orange juice.  These switching costs are 

important from a statistical point of view in the sense that models with switching costs 

account for observed behavior better than those without.  Our switching costs distribution 

puts mass on switching costs in the range of 15 to 60 per cent of purchase price.  In 

addition, we have scaled this distribution up by a factor of four and still observe lower prices 

with switching costs.  This means that our basic result applies to situations where switching 

costs are as much as four times purchase price.  We would argue that many classic examples 

of switching costs such as cellular service carriers or airline frequent flyer programs have 

associated switching costs in this region.  
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 Our results can be reversed if switching costs reach very high levels or if, indeed, 

they are infinite as assumed in Beggs and Klemperer.   In a world with the levels of switching 

costs envisaged by much of the theoretical literature, we would not see consumers switching 

brands very often.  The empirical fact that consumers are observed to switch brands  in 

many product categories implies that our results are relevant in many situations.    
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Appendix A.  Existence of Equilibrium in the Simple Model 

The existence of a Markov perfect equilibrium in our model follows from arguments given 

in Whitt (1980) and Doraszelski and Satterthwaite (2005).  In order to show that the 

equilibrium is in pure strategies, we need to show that the best-reply correspondence is 

single-valued.  Our strategy is to show that in the case of one consumer with logit demand, 

the right-hand side of the Bellman equation is strictly quasi-concave, and hence has a unique 

maximizer.  This strategy has been employed previously by Besanko et al. (1995). 

 Recall the Bellman equation in the simple model: 

 
  
V j (s ) = max

p j ≥0
π j (s , p )+ β Pk(s , p )V j (k)+ P0(s , p )V j (s )

k=1

J∑( ){ } ∀s ∈X .  

Denote the right-hand side of this functional equation by Ψ j (s , p j , p− j ),  such that 

 
  
V j (s ) = max

p j ≥0
Ψ j (s , p j , p− j ), ∀s ∈X .  

This maximization problem has the following first-order condition: 

  

∂Ψ j

∂p j

= αPj (1− Pj )( p j − c j )+ Pj + β (−α )Pj PkV j (k)+αPjV j ( j )−αP0PjV j (s )
k=1

J∑( )
= αPj −Ψ j + ( p j − c j )+

1
α
+ βV j ( j )

⎛
⎝⎜

⎞
⎠⎟

.

Here, 
 
Pj  is shorthand for 

  
Pj (s , p j , p− j ).   Evaluating the second-order condition at a price 

where 
  
∂Ψ j / ∂p j = 0,  we find that 

 

  

∂2Ψ j

∂p j
2 = α 2Pj (1− Pj ) −Ψ j + ( p j − c j )+

1
α
+ βV j ( j )

⎛
⎝⎜

⎞
⎠⎟
+αPj −

∂Ψ j

∂p j

+ 1
⎛

⎝
⎜

⎞

⎠
⎟

= α(1− Pj )
∂Ψ j

∂p j

+αPj −
∂Ψ j

∂p j

+ 1
⎛

⎝
⎜

⎞

⎠
⎟

= αPj < 0.
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Hence, 
 
Ψ j  is strictly quasi-concave in p j ,  and hence it follows that there is a unique price 

that maximizes the right-hand side of the Bellman equation for any state s and price profile 

  
p− j = σ− j (s ).  

 

Appendix B.  Forward-Looking Consumers 

We now extend the model to allow for forward-looking consumers who anticipate the 

consequences of becoming loyal to product j.  In general, the presence of forward-looking 

consumers can complicate the computation of an equilibrium.  For example, Anderson, 

Kumar and Rajiv (2004) show the equilibrium proposed by Padilla (1995) does not in fact 

constitute a Markov perfect equilibrium under forward-looking consumer behavior.  

As before, the current-period utility from choosing product j is 

  
U j =U( j , s , p )+ λε j .  But, now consumers maximize the PDV of current and future 

utilities.  For simplicity, we assume that consumers discount future utilities at the same rate 

as firms, β .  Define the state transition function s ' = φ(s , j ) = j  if   j ≠ 0  and 

  s ' = φ(s ,0) = s .  The value function of the consumer given state s and idiosyncratic utility 

draws 
  
ε = (ε0 , ...,ε J )  is 

  
υ(s ,ε ) = max

j=0,..., J
U(s ,σ(s ), j )+ λε j + β υ(φ(s , j ),ε ') f (ε ')dε '∫{ }.   (A.1) 

Note that this value function depends on the consumer’s expectation that the firms choose 

prices according to p j = σ j (s ) .  Following arguments given in Rust (1987), the consumer’s 

decision problem can be reformulated in the following way.  Let the expected future value 

from choosing alternative j in state s be 
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W (s , j ) = max

k=0,..., J
U(s ',σ(s '),k)+ λεk + βW (s ',k){ }f ε( )dε ,∫  

where   s ' = φ(s , j ) .  Since ε  has the Type I extreme value distribution,   W (s , j )  has the 

closed form expression 

  
W s , j( )= λ γ + log exp 1

λ
U(s ',σ(s '),k)+ βW (s ',k)( )⎛

⎝⎜
⎞
⎠⎟k=0

J

∑
⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

⎛

⎝
⎜⎜

⎞

⎠
⎟⎟

.  (A.2) 

Here,  γ ≈ 0.57722  is Euler’s constant.  The consumer then chooses the alternative 

  j = 0,..., J  that yields the highest utility index 

  
U(s ,σ(s ), j )+ βW (s ,φ(s , j ))+ λε j . 

Conditional on the consumer’s choice behavior, which is now also described by the 

consumer’s value function, W, the firm’s problem remains the same under forward-looking 

consumer behavior.  A Markov perfect equilibrium now consists of pricing strategies and 

value functions for each firm j and the consumer’s consumption strategy, which is fully 

described by the value function W, such that (i) each firm’s pricing strategy is optimal given 

the consumer’s strategy and given the competitors’ strategies, and (ii) given the firms’ pricing 

strategies, the consumers value function satisfies equation (A.2). 

In Section 2, we explored the predictions of the simple model for the symmetric case 

with a symmetric equilibrium.  In this case, myopic and forward-looking consumer behavior 

is identical.  This can be seen from equation (A.2):  W actually depends only on   s ' = φ(s , j ) , 

the product that the consumer is loyal to in the next period.  Due to symmetry, the identity 

of this product does not matter.  Therefore, W is exactly the same for all   s '∈X , and 

therefore adds the same constant to each utility index.  Thus, the choice probabilities are not 

affected by the presence of W. 
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Appendix C.  Numerical Solution to the Dynamic Program 

We use numerical methods to solve for the equilibrium of the pricing game.  We first 

discretize each axis of the state space using a finite number of 

points,  0 < xi 0 < xi1 < ... < xiL = 1 .  We then form a grid representing the whole state space 

from the Cartesian product of these points.  For each point in the grid, we store the value 

and policy functions of each competitor in the computer memory.  For states outside the 

grid, we calculate the value and policy functions using bilinear interpolation.  To solve for 

the equilibrium, we employ the following algorithm, which is an adaptation of policy 

iteration applied to the case of the games:  start with some initial guess of the strategy 

profile, 
  
σ0 = (σ1

0 , ...,σ J
0 ), and then proceed along the following steps: 

1. For the strategy profile   σ
n ,  calculate the corresponding value functions for each of 

the J firms.  These value function are defined by the Bellman equation <equation 

reference>, where the right hand side of the Bellman equation is not maximized, but 

instead evaluated using the current strategy profile σn .  

2. If   n > 0,  check whether the value functions and policy functions satisfy the 

convergence criteria, 
  
V j

n −V j
n−1 < εV and σ j

n − σ j
n−1 < εσ  for all firms j.  If so, 

stop. 

Update each firm’s strategy using the Bellman equation <reference>.  In contrast to step 1, 

the maximization on the right hand side is now carried out. Denote the resulting new 

policies and value functions by 
  
σ j

n+1  andV j
n+1 , and return to step 1. 
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Table 1  
Equilibrium prices under different switching cost levels 

 

Switching 
Cost   p1

 p
2
 pa  Purchase 

Prob. 1 
Purchase 
Prob. 2 

Prob. 
Stay 

Loyal 

0.00 1.808 1.808 1.808 0.236 0.236 0.764 
0.25 1.825 1.679 1.756 0.272 0.245 0.755 
0.50 1.840 1.542 1.706 0.310 0.254 0.746 
0.75 1.855 1.397 1.659 0.350 0.261 0.739 
1.00 1.867 1.244 1.613 0.390 0.268 0.732 
1.25 1.877 1.083 1.569 0.431 0.273 0.727 
1.50 1.883 0.915 1.525 0.470 0.276 0.724 
1.75 1.887 0.741 1.482 0.508 0.278 0.722 
2.00 1.887 0.560 1.438 0.544 0.278 0.723 
3.00 1.931 0.000 1.437 0.681 0.234 0.766 
4.00 2.153 0.000 1.860 0.823 0.130 0.870 
5.00 2.335 0.000 2.183 0.913 0.064 0.936 
6.00 2.475 0.000 2.404 0.961 0.028 0.972 
7.00 2.616 0.000 2.584 0.983 0.012 0.988 
8.00 2.829 0.000 2.813 0.992 0.006 0.994 

Note:  The results were calculated for product intercepts = 1.0, price coefficient = 
1.0, and mean outside good utility = 0.0.  The discount factor is β = 0.998 .  The 
table shows the prices of firm 1 and firm 2 in state 1, and the average transaction 
price paid by the customer.  The table also shows the purchase probabilities for the 
products in state 1, and the probability that the customer stays loyal. 
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 Table 2 
  Equilibrium prices versus random utility scale factors 

 

 Lambda (Random Utility Component Scale Factor) 

  0.2   0.4   0.6   1.0  
Switching 

Cost   p1
   p2

  p
a    p1

 p
2
 pa  p

1
 p

2
 pa    p1

   p2
 pa  

0.00 0.84 0.84 0.84 1.08 1.08 1.08 1.32 1.32 1.32 1.81 1.81 1.81 
0.25 0.82 0.65 0.75 1.09 0.93 1.02 1.34 1.19 1.27 1.83 1.68 1.76 
0.50 0.79 0.45 0.68 1.09 0.77 0.96 1.35 1.04 1.22 1.84 1.54 1.71 
0.75 0.77 0.24 0.63 1.08 0.58 0.91 1.35 0.87 1.17 1.86 1.40 1.66 
1.00 0.75 0.02 0.60 1.07 0.38 0.85 1.35 0.70 1.12 1.87 1.24 1.61 
1.25 0.82 0.00 0.73 1.05 0.18 0.81 1.35 0.51 1.07 1.88 1.08 1.57 
1.50 0.87 0.00 0.84 1.04 0.00 0.79 1.34 0.32 1.02 1.88 0.92 1.53 
1.75 0.91 0.00 0.90 1.11 0.00 0.92 1.33 0.12 0.98 1.89 0.74 1.48 
2.00 0.96 0.00 0.96 1.17 0.00 1.04 1.34 0.00 1.01 1.89 0.56 1.44 
3.00 1.53 0.00 1.53 1.33 0.00 1.31 1.57 0.00 1.44 1.93 0.00 1.44 
4.00 2.36 0.00 2.36 1.61 0.00 1.61 1.71 0.00 1.67 2.15 0.00 1.86 
5.00 3.26 0.00 3.26 2.19 0.00 2.19 1.90 0.00 1.89 2.34 0.00 2.18 
6.00 4.20 0.00 4.20 2.95 0.00 2.95 2.28 0.00 2.28 2.48 0.00 2.40 
7.00 5.15 0.00 5.15 3.78 0.00 3.78 2.87 0.00 2.87 2.62 0.00 2.58 
8.00 6.11 0.00 6.11 4.66 0.00 4.66 3.58 0.00 3.58 2.83 0.00 2.81 

Note:  The results were calculated for product intercepts = 1.0, price coefficient = 1.0, and mean outside good utility = 
0.0.  The discount factor is  β = 0.998 .   The table shows the prices of firm 1 and firm 2 in state 1, and the average 
transaction price paid by the customer. 
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Table 3 

 Equilibrium prices in the OLG model 
 

 
 Lambda (Random Utility Component Scale Factor) 

 0.2 0.4 0.6 0.8 1.0 
Switching 

Cost   pyoung

a    pold

a    pyoung

a  p
old

a  p
young

a  p
old

a  p
young

a  p
old

a    pyoung

a    pold

a  

0.00 0.84 0.84 1.08 1.08 1.32 1.32 1.56 1.56 1.81 1.81 
0.25 0.80 0.82 1.05 1.06 1.29 1.30 1.54 1.54 1.78 1.78 
0.50 0.76 0.86 1.02 1.05 1.27 1.28 1.51 1.52 1.76 1.76 
0.75 0.69 0.88 0.99 1.06 1.24 1.28 1.49 1.51 1.74 1.75 
1.00 0.62 0.90 0.95 1.08 1.21 1.28 1.46 1.51 1.71 1.74 
1.25 0.54 0.93 0.89 1.11 1.18 1.30 1.43 1.51 1.69 1.74 
1.50 0.47 0.97 0.83 1.13 1.13 1.31 1.40 1.52 1.66 1.74 
1.75 0.39 1.02 0.76 1.16 1.08 1.33 1.37 1.53 1.63 1.74 
2.00 0.31 1.08 0.70 1.18 1.03 1.35 1.32 1.54 1.59 1.75 
3.00 0.07 1.21 0.42 1.34 0.77 1.46 1.10 1.62 1.41 1.80 
4.00 0.00 1.30 0.17 1.55 0.50 1.59 0.85 1.69 1.19 1.83 
5.00 0.00 1.31 0.13 1.57 0.31 1.73 0.66 1.76 1.01 1.85 
6.00 0.00 1.31 0.13 1.58 0.30 1.75 0.56 1.82 0.90 1.89 
7.00 0.00 1.31 0.13 1.58 0.29 1.76 0.51 1.84 0.83 1.91 
8.00 0.00 1.31 0.13 1.58 0.29 1.76 0.50 1.85 0.81 1.92 

Note:  The results were calculated for product intercepts = 1.0, price coefficient = 1.0, and mean 
outside good utility = 0.0.  The customers are forward-looking, and discount the future at the same 
rate as the firm ( β = 0.998 ).  The table shows the average transaction prices paid by the “young” and 
the “old” customer. 
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Table 4 

Description of Data 

Refrigerated Orange Juice 

 

 

 

 

 

 

 

 

 

 

Margarine  

 

 

 

 

 

Product Retail 
Price 

Wholesale 
Price 

% 
trips 

 64 oz MM 2.21 1.36 1.52 
premium 64oz MM 2.62 1.88 0.96 
96 oz MM 3.41 2.12 2.01 
premium 64oz TR 2.73 2.07 3.96 
64 oz TR 2.26 1.29 0.93 
premium 96 oz TR 4.27 2.73 1.09 
no-purchase (% trips) 89.53   

# households 355   

# trips per household 89.51   

# purchases per 
household 

9.37   

Product Retail 
Price 

Wholesale 
Price 

% 
trips 

Promise 1.69 1.22 2.93 
Parkay 1.63 1.02 1.11 
Shedd's 1.07 0.83 2.83 
ICBINB 1.55 1.11 5.26 
no-purchase (% trips) 87.86   
# households 429   
# trips per household 81.02   
# purchases per 
household 

9.89   
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Table 5 
Purchase versus re-purchase rates 

 
 

Category Refrigerated Orange Juice Tub Margarine 
Brand Minute Maid Tropicana Promise Parkay Shedd’s ICBINB
Sample 

purchase 
frequencies 

0.449 0.551 0.241 0.091 0.233 0.433 

Sample re-
purchase 

frequencies 

0.841 0.837 0.735 0.83 0.719 0.8001 
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Table 6 
Fit and the Role of Heterogeneity and State-dependence 

 
 

  Log Marginal Density 

Model # Components Margarine Orange Juice 

w/o Switching  
Costs No heterogeneity -18302.52 -15888.78 

  5-component -13126.00 -11622.32 
with Switching  
Costs No heterogeneity -16170.00 -14330.43 

 1-component -13237.49 -11503.13 

  2-component -13217.10 -11510.86 

  5-component -13107.69 -11505.56 

  10-component -13099.00 -11478.65 
with State 
Dependence No heterogeneity -15735.04 -14330.43 

 1-component -13182.76 -13284.55 

  2-component -13155.41 -13250.65 

  5-component -13027.58 -13147.53 

  10-component -12994.88 -13147.33 
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Table 7 
Clusters Used In Equilibrium Pricing Computations 

 
 

Refrigerated Orange Juice  
 

segment 
 64 oz 
MM 

premium 
64oz MM 

96 oz 
MM 

premium 
64oz TR 64 oz TR

premium 
96 oz TR price loyalty loyalty ($) size 

1 -2.88 -2.57 -2.50 -0.25 -2.59 -0.31 -1.19 0.69 0.59 0.26 
2 -2.62 -3.79 -1.79 -2.88 -3.72 -3.59 -0.91 1.23 1.36 0.25 
3 -13.09 -12.20 -9.54 -1.22 -9.53 -3.19 -0.31 -0.03 -0.10 0.02 
4 -0.37 0.32 0.01 1.53 -0.43 1.73 -2.08 0.23 0.11 0.18 
5 -1.30 -1.59 -0.50 -0.71 -1.92 -0.82 -1.65 0.61 0.37 0.29 

 
 
 
 
 
 

16 oz Tub Margarine 
 

segment Promise Parkay Shedd's ICBINB price loyalty loyalty ($) size 
1 -1.95 -3.47 -1.22 -2.67 -2.46 0.17 0.07 0.50 
2 -2.88 -6.87 -6.49 -2.97 -0.87 0.19 0.22 0.50 
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Table 8 
Equilibrium Prices and Profits for the State Dependence Model 

 
Steady State Prices  

Scale 
Factor Prices 

 16-oz Tub Margarine Refrigerated Orange Juice
  Promise Parkay Shedd's IBNINB Minute Maid Tropicana 

0 1.44 0.91 0.82 1.42 1.51 1.79 
1 1.42 0.91 0.81 1.39 1.49 1.77 
2 1.41 0.91 0.81 1.37 1.48 1.79 
3 1.39 0.91 0.81 1.35 1.50 1.84 
4     1.54 1.94 

 
 

 
Steady State per Period Profits 

 
Scale 

Factor Profits 
  16-oz Tub Margarine Refrigerated Orange Juice

  Promise Parkay Shedd's IBNINB Minute Maid Tropicana
0 3.74 0.16 3.39 3.50 1.42 9.11 
1 4.07 0.16 3.93 3.81 1.74 14.8 
2 4.47 0.16 4.57 4.17 2.58 26.63 
3 4.94 0.16 5.31 4.61 4.90 51.71 
4     11.03 101.1 
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Table 9 
Equilibrium Prices and Profits for the Pure Switching Cost Model 

 
Steady State Prices  

Scale 
Factor Prices 

 16-oz Tub Margarine Refrigerated Orange Juice
  Promise Parkay Shedd's IBNINB Minute Maid Tropicana 

0 1.16 0.92 0.82 1.20 1.53 1.82 
1 1.11 0.88 0.76 1.16 1.49 1.80 
2 0.95 0.84 0.70 1.08 1.47 1.79 
3 0.93 0.77 0.72 1.13 1.45 1.79 
4 0.94 0.72 0.72 1.18 1.44 1.79 

 
 

 
Steady State per Period Profits 

 
Scale 

Factor Profits 
  16-oz Tub Margarine Refrigerated Orange Juice

  Promise Parkay Shedd's IBNINB Minute Maid Tropicana
0 4.23 0.38 2.90 10.09 1.66 15.48 
1 2.31 0.18 1.91 8.08 1.33 15.01 
2 1.56 0.08 1.29 6.88 1.12 14.68 
3 1.36 0.05 1.13 6.84 0.98 14.45 
4 1.31 0.03 1.08 7.01 0.89 14.29 
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Figure 1 

Average transaction price paid for different switching cost levels 
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Figure 2 
Transaction prices under the “pure switching cost” and “state dependence” 

 versions of the model 
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 Figure 3 
Fitted Densities for Shedd’s and ICBINB Brand coefficients (Margarine) 
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Figure 4 
Fitted Densities for Price and State Dependence Coefficients (Margarine) 
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Figure 5 
Fitted Densities for 96 oz Minute Maid and 64 oz Tropicana Brand coefficients (Orange 

Juice) 
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Figure 6 
Fitted Densities and 95% Posterior Credibility Regions for the Money-metric State 

Dependence Premium in dollars (Margarine) 
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Figure 7 
Fitted Densities and 95% Posterior Credibility Regions for the Money-metric State 

Dependence Premium in dollars (Orange Juice) 
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Figure 8 
Optimal Pricing Policy Functions for Refrigerated Orange Juice 

 



 56

0 50 100 150 200
1.35

1.4

1.45

1.5

1.55

1.6

1.65

1.7

1.75

1.8

Week

Pr
ic

e

0 50 100 150 200
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

Week

Pe
rc

en
ta

ge
 L

oy
al

 to
 M

in
ut

e 
M

ai
d

Minute Maid
Tropicana

Segment 1
Segment 2
Segment 3
Segment 4
Segment 5

Figure 9 
Convergence of Orange Juice Prices to their Stationary Levels 

 

 
 

 
 




