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Abstract

In this paper, we analyze the properties of a directed search la-
bor market in which workers choose how many applications to send
simultaneously after observing the firms’ wage offers. The number
of applications can be interpreted as an explicit form of search in-
tensity. Since workers might reject some job offers in favor of better
ones, we allow rejected firms to contact (“recall”) other applicants
which is modeled as a stable assignment on the endogenous network.
The equilibrium is generically unique, all workers choose to send the
same number of applications, and firms offer a discrete number of
wages. The equilibrium is constrained efficient given the workers’ lack
of coordination: entry of firms, number of applications, and number
of matches are efficient. Wage dispersion is necessary for the market
to achieve constrained efficiency despite homogeneity of workers and
firms. For small application costs the equilibrium outcome converges
to the unconstrained efficient competitive outcome.
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1 Introduction

While unemployment is generally viewed as an undesirable phenomenon,
scholars have pointed out its productive purpose in the allocation of labor
in markets with frictions. The productive activity that people pursue during
unemployment is usually called “search”. The idea that the market achieves
a natural rate of unemployment that efficiently (given the frictions) allocates
the productive resources in the economy goes back at least to Friedman
(1968) and Phelps (1967), and has been debated since.

Initial equilibrium models that investigated this contention are Diamond
(1982), Mortensen (1982a, 1982b) and Pissarides (1984, 1985). They assumed
that only a fraction of workers and firms can meet, that those meetings are
random draws, and that wages are set by Nash bargaining. In general they
do not support the view that the market achieves the optimal allocation
given the frictions.1 Efficiency fails essentially because cannot compete to
increase their matching probability, but instead wages are determined non-
competitively after meeting a worker.

The next generation of equilibrium search models allowed firms to directly
compete for labor by publicly posting their wage offers.2 Workers observe
the offers and decide where to apply. Frictions arise because firms only
have a single vacancy, and workers are assumed to use identical application
strategies. Since it cannot be optimal for all workers to apply for the same
job, the equilibrium requires a mixed strategy in which workers randomize
and sometimes miscoordinate. This means that some jobs happen to attract
many applicants, while others attract few or none. Nevertheless, higher wages
induce (or “direct”) workers to apply there with higher probability. In this
class of directed search models, also known as competitive search models,
Moen (1997), Mortensen and Wright (2002), Shi (2002) and Shimer (1996,
2005) show in various degrees of generality that the market interaction is
efficient given the frictions in the market, providing theoretical support for
the efficiency of the natural rate of unemployment.

These results are obtained under the restrictive assumption that each
worker only sends a single application.3 One application does not necessar-

1See also Hosios (1990). A notable exception is Lucas and Prescott (1974), who set up
a very different equilibrium search model that does exhibit efficiency.

2For an overview of both generations of models see Rogerson, Shimer and Wright
(forthcoming).

3In some competitive search models like Moen (1997) and Mortensen and Wright (2002)
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ily lead to employment, and workers have a natural incentive to apply to
multiple firms to improve immediate employment prospects. Albrecht, Gau-
tier and Vroman (forthcoming) and Galenianos and Kircher (2005) introduce
multiple applications per worker. Surprisingly, the competitive forces do not
lead the market to constrained efficiency even under the specification of ho-
mogenous workers and firms. In the former model, entry of firms is too large
compared to the level of unemployment. In the latter, wage dispersion pre-
cludes an efficient allocation of workers to firms. In both models the number
of applications may be too large, i.e. decreasing the number of applications
per worker would improve employment. In their main analysis both papers
assume that a firm can only propose its job to one applicant, and if the
applicant rejects it in favor of a better alternative, the firm remains vacant
independent of the number of additional applications it received. Failure of
constrained efficiency might be due to this assumption. Or it could result
from an inherent externality of multiple applications that cannot be reflected
in market wages and therefore distorts various margins of efficiency.

This analysis presented here has two purposes. First and most impor-
tantly, it explores an alternative assumption on the assignment of workers
to firms once wages are announced and applications sent. The aim is to
investigate the resulting equilibrium properties, and to analyze whether the
failure of efficiency in the above models is due to the assumption about the
assignment or whether it poses a deeper challenge for the efficiency in di-
rected search economies. Second, it models the number of applications as a
choice for the worker so that the endogenous number of applications can be
interpreted as a measure of search intensity, the efficiency of which can then
be assessed.4

While the second aim requires analytical attention, the first provides a
conceptual challenge. Once wages are set and applications are sent, who
should work for whom? Here we interpret the applications as links in a
network between workers and firms, and we assume a stable matching given
the network and the announced wages. This entails that in the final matching

agents choose markets rather than firms. The market structure is not clearly spelled out,
rather some reduced form arrival rates are assumed. Nevertheless, this implicitly limits
the setup to sequential search and rules out any simultaneous choice. Shimer (1996) shows
how this can be recast in a model in which agents apply to individual firms with a single
application.

4Both Albrecht, Gautier and Vroman (forthcoming) and Galenianos and Kircher (2005)
suggest to model search costs but provide little analysis on it.
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no vacant firm has an applicant that is employed at a lower wage. This
specification is based on the idea that employers can call up their applicants
sequentially. If an applicant accepts, the employer is momentarily happy
and stops making additional proposals. Yet if a better job is proposed to
the applicant later on, he can accept the better job and reject the earlier
offer. Rejected firms continue to contact (“recall”) remaining applicants and
propose their jobs to them. That is, we apply a version of Gale and Shapley’s
(1962) deferred acceptance algorithm.5

Apart from these additions, our model uses the standard directed search
setup with homogenous workers and firms. Firms decide whether to enter the
market, and if they do so they publicly post a wage commitment for their sin-
gle vacancy. Workers observe these wages and decide how many applications
to send and where to send them, where we retain the standard assumption
of symmetric strategies that creates the market frictions. Then workers and
firms are matched as explained above. In the (generically) unique equilib-
rium all workers choose to send the same number of applications, and the
number of wages offered in equilibrium is equal to the number of applications
each worker sends.

The equilibrium is constrained efficient given the workers’ coordination
problem. We distinguish three components of efficiency. Search efficiency :
for a given number of applications and a given number of firms the number
of matches is constrained optimal. Equilibrium wage dispersion is essential
for this feature. Entry efficiency : the division of the match surplus is such
that the constrained optimal number of firms enter. Application efficiency :
the number of applications that workers send is constrained efficient despite
the negative externality of an additional application on other workers. All
externalities are reflected in the market wages. Finally we show that for
vanishing application costs the equilibrium converges to the unconstrained
efficient outcome of a frictionless Walrasian economy.

In contrast to the inefficiencies in models without recall, constrained ef-
ficiency obtains here. This is due to a commonality between workers and
firms. Firms only care about applicants who do not obtain better offers. We
call these applicants effective. Workers also only care about rival applicants
that are effective, as the others do not compete for the job. As we will see,
this commonality implies that raising the wage induces more effective ap-

5In a finite economy the process converges in finite time and high wage firms clearly
hire before lower wage firms do. For the continuum case see the appendix.
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plicants, and firms can “price” their applications optimally. Without recall,
firms still only care about effective applicants but workers care about all ri-
val applicants because any applicant who receives a job proposal precludes
others from obtaining the job (even if he rejects it and in the end works at
another firm). This lack of commonality between workers and firms prevents
efficient pricing. A wage raise induces more applications, but potentially
only from people that have an easier time getting other jobs, which can even
mean less effective applicants. We discuss the different implications with and
without recall in section 6.2. Note that this issue has not occurred in the
prior literature because a single application allows the worker no alternative,
and all applications are effective by assumption.

Our analysis also shows that wage dispersion is not merely a sign of fric-
tions, but rather an optimal response to these frictions (even though agents
are homogenous).6 The constrained efficient allocation in the market requires
different hiring probabilities among firms, as different hiring probabilities can
reduce those instances in which one worker does not get a job because it is
occupied by another worker while this other worker could take another job
elsewhere. The market wages internalize this externality, and preferred jobs
are endogenously harder get than back-up (non-preferred) jobs. The pa-
per also adds to the literature on asymptotic efficiency of search markets by
showing convergence to the unconstrained efficient outcome in a simultaneous
search environment.7

To my knowledge this is the first attempt to integrate the two-sided strate-
gic considerations of a frictional search environment with stability concepts
used in matching markets.8 The paper draws on three strands of literature.
We use insights from the directed search literature (e.g. Burdett, Shi and
Wright (2001)) to model the frictions and information flows in the market.

6For homogenous workers and firms such an efficiency role is novel. Models in this
area include Acemoğlu and Shimer (2000); Albrecht, Gautier and Vroman (forthcoming);
Burdett and Judd (1983); Burdett and Mortensen (1998); Butters (1977); Delacroix and
Shi (2005); Galenianos and Kircher (2005); Gautier and Moraga-González (2005).

7Asymptotic efficiency has been established in sequential search e.g. in Gale (1987).
For an overview and quite general specifications see Mortensen and Wright (2002) and
Lauermann (2005). In simultaneous search, Acemoğlu and Shimer (2000) and Albrecht,
Gautier and Vroman (forthcoming) present limit results, yet converge to some constrained
efficient outcomes of a still frictional economies.

8Gautier and Moraga-González (2005) present a three player example with a similar
concept in an environment where wages are unobservable. Their main analysis of a large
market assumes no recall, and also exhibits inefficiencies.
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With multiple applications workers face a simultaneous portfolio choice. For
this type of problem Chade and Smith (2004) consider an individual agent’s
choice and Galenianos and Kircher (2005) derive implications in an equi-
librium framework. To model recall we apply insights from the two-sided
matching literature (Gale and Shapley, 1962) to the network that formed in
the search process in earlier stages. Section 6 provides a further discussion.

In the following, we first present the model. Section 3 then characterizes
the equilibrium. Section 4 analyzes efficiency. Notation and exposition re-
main much more tractable when we consider at most two applications per
worker, therefore sections 2 to 4 are restricted to this case. Section 5 lifts
this restriction and, additionally, discusses convergence for vanishing appli-
cation costs. Section 6 discusses the main modeling assumptions, additional
literature, and concludes. Omitted proofs are gathered in the appendix.

2 The Model

2.1 Environment and Strategies

There is a measure 1 of workers and a large measure V of potential firms.
The measure v of active firms is determined by free entry. Each active firm is
capacity-constrained and can only employ a single worker, each worker can
only work for a single firm. A vacant firm has a productivity normalized
to zero, a firm that employs a worker has a productivity normalized to one
but has to pay the wage bill. All agents are risk neutral. Firms maximize
expected profits. Workers maximize expected wage payments.

The game has three stages. First, potential entrants can become active
by paying a setup cost K < 1, and active firms publicly post a wage. Next,
workers observe all posted wages. Each worker decides on the number i ∈
{0, 1, 2} of applications he wants to send at cost c(i), where c(0) = 0 and the
marginal costs ci = c(i)− c(i− 1) are assumed to be weakly increasing. The
worker also decides on the i active firms to which he applies. In the final
stage workers and firms are matched, the posted wage is paid and matched
pairs start production.

We assume a stable assignment on the network based on the idea that
firms simultaneously make offers to workers. Workers accept the higher offers,
and firms that are not accepted but have additional applicants move to the
next stage to make another offer. Acceptances are deferred in the sense that
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workers can change their mind and accept better but later offers, in which
case the rejected firm can continue to pursue additional applicants in the next
round.9 Such a setup has the property that higher wage firms in effect have
priority in matching over lower wage firms, and the market clears ”top-down”
as if higher wage firms make offers first. This insight will be embedded in the
specification of the relevant matching probabilities in the next subsection.10

The notion of a large, anonymous market is captured by the assump-
tion that agents’ equilibrium strategies are symmetric and anonymous. This
standard assumption of the directed search literature implies that all firms
use the same entry, posting and hiring strategy, and do not condition their
strategy on the identity of the worker. All workers use the same application
strategies, and do not condition on the firms identity.11 The symmetry of
the workers’ application strategies usually requires mixed strategies which
create the market frictions: sometimes multiple workers apply for the same
job, and sometimes none apply at all.

A pure strategy for a firm is its entry decision e ∈ {Enter,Out} and a
wage offer w ∈ [0, 1]. A mixed strategy for a firm is a probability φ of playing
Enter and a cumulative distribution function F on [0, 1]. Throughout the
paper we adopt the law of large numbers convention, which for instance
implies that F is also the realized distribution of wage offers and v = φV
is the realized measure of active firms. A worker observes the distribution
of posted wages and decides on the number of applications i ∈ {0, 1, 2} that
he wants to send. If i = 1 he also decides on a wage w ∈ [0, 1] to which
he applies; if i = 2 he decides on a wage tuple (w1, w2) ∈ [0, 1]2. This fully
characterizes his strategy given the anonymity assumption, which implies
that he randomizes equally over the firms that offer the same wage. A mixed
strategy for a worker is a tuple γ = (γ0, γ1, γ2), where γi is the probability of
sending i applications, and a tuple G = (G1, G2), where Gi is a cumulative
distribution function over [0, 1]i which describes the way the worker sends
his i applications.12 If i = 2 we will throughout assume that w1 ≤ w2, and

9In the appendix we explore the convergence of such an algorithm when the number of
rounds tends to infinity. This paper is only concerned with the allocation in the limit.

10Hiring precedence of higher wage firms yields a weakly stable allocation given the
network and the announced wages. It is also applied in Burlow and Levin (forthcoming).
The matching resembles the process used to assign interns to hospitals in the United
States. See sections 6.1 and 6.2 for details.

11These assumptions are discussed in section 6. We should note that we could purify
the firms’ posting strategy and relax anonymity of the workers’ strategies.

12 It will be convenient to assume that each combination in the support of the random-
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will denote by G2
j(w̃) the marginal distribution over wj and by G2

j(w̃|w) the
conditional distribution over wj when wi = w, i ∈ {1, 2}/{j}.

2.2 Expected Payoffs and Equilibrium Definition

To describe the expected payoffs under mixed strategies, let η(w) denote the
probability that a firm that posts wage w hires a worker. Let p(w) be the
probability that an application to wage w yields an offer sometime during
the matching stage. These are endogenous objects, yet once they are defined,
the profit of a firm posting wage w - omitting entry costs - is

π(w) = η(w)(1− w). (1)

The profits comprise the margin 1−w if a worker is hired, multiplied by the
probability η(w) of hiring.

The utility of a worker who sends no applications is U0 = 0. A worker who
applies with one application to wage w obtains utility U1(w) = p(w)w−c(1),
i.e. the expected profit minus the cost of the application. A worker who
applies to wages (w1, w2) with w1 ≤ w2 obtains utility

U2(w1, w2) = p(w2)w2 + (1− p(w2))p(w1)w1 − c(2). (2)

The worker’s utility is given by the wage w2 if he is made an offer at that wage,
which happens with probability p(w2). With the complementary probability
1−p(w2) he does not receive an offer at the high wage and his utility is w1 if
he gets an offer for his low wage application, which happens with probability
p(w1). He always incurs the cost for the two applications.

When agents randomize over wages, their payoff is determined by appro-
priately averaging the payoffs at individual wages.

We will now relate η(·) and p(·) to the strategies (φ, F ) and (γ,G). We will
first determine the payoffs under the assumption that all firms and workers
follow this strategy profile. We will then consider individual deviations from
this profile. In the following we will talk about the offer set V , which refers
to the support of the wage offer distribution F , and about the application
set W , which refers to the support of G1(·) if γ1 > 0 joint with the union of
the support of G2

1(·) and G2
2(·) if γ2 > 0.

ization of workers and firms is chosen by a continuum of agents in order to apply the law
of large numbers convention. We assume the set of agents to be sufficiently large.
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We first consider wages that are in the offer and in the application set. Let
λ(w) denote the ratio of applications per firms at wage w. It is characterized
by the following mass balance:13

γ1G
1(w) + γ2G

2
1(w) + γ2G

2
2(w) = v

∫ w

0

λ(w̃) dF (w̃) ∀w ∈ [0, 1]. (3)

The left hand side denotes the expected mass of applications that are sent
to wages up to w. It is given by the probability that workers who send one
application send it below w, and the probability that workers who send two
applications send either their low or their high application below w. It is
the inflow of applications to wages up to w. These are dispersed over the
firms that offer wages up to wage w. This outflow is specified on the right
hand side. It is given by the ratio of applications per firm multiplied with
the number of firms, aggregated over all relevant wages. We refer to λ as the
gross queue length.

The crucial observation is that not all applications are ”effective” in the
sense that the firm can hire the applicant. The applicant cannot be hired
if he receives a strictly better offer, or has already received a weakly better
offer. Denote the fraction of applications that are unavailable for hiring by
ψ(w). Then the ratio of effective applications per firm is given by

µ(w) = (1− ψ(w))λ(w). (4)

We call µ(w) the effective queue length at w.
The probability that a firm with wage w has at least one effective appli-

cation is given by 1 − e−µ(w). This is due to the anonymity of the workers
strategy, which leads to random assignment of applications to firms at a
given wage. In a finite economy this implies that the number of effective ap-
plications is binomially distributed; for a large economy this is approximated
by the Poisson distribution under which the probability that a firm receives
no effective application is e−µ(w). If the firm receives at least one effective
application it will be able to fill its vacancy, because when it successively
makes offers it will eventually make an offer to this application and become
matched. Therefore the hiring probability for a firm is

η(w) = 1− e−µ(w). (5)

13We define λ(·) on R+ ∪{∞} to account for the case that a negligable fraction of firms
might (non-optimally) receive a mass of applications.
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Now consider the probability of a worker to receive an offer at wage
w. His competitors for a job are only those applications that are effective,
since for all others the workers decline even if they are made an offer. Each
individual worker calculates his acceptance probability by considering his own
application effective (because he considers the case where he is unsuccessful
at better wages) but realizes that only a fraction of the other applications
will be effective. Given that there are 1− e−µ(w) matches per firm and µ(w)
effective applications per firm, the probability of an effective application to
yield a match is given by14

p(w) =
1− e−µ(w)

µ(w)
, (6)

with the convention that p(w) = 1 if µ(w) = 0.
Finally, consider the probability ψ(w) that an offer does not lead to a

match because the sender receives and accepts a different offer. ψ(·) is triv-
ially zero if workers send only one application, i.e. if γ2 = 0. Otherwise,
consider some application sent to wage w, and let Ĝ(w̃|w) denote the proba-
bility that the sender had a second application and sent it to a wage weakly
lower then w̃.15 Similarly, let ĝ(w|w) denote the probability that the sender
sent a second application to w, i.e. ĝ(w|w) = Ĝ(w|w) − limw̃↗w Ĝ(w̃|w).
Then ψ(w) is given by

ψ(w) =

∫ 1

w̃>w

p(w̃)dĜ(w̃|w) +
p(w)

2
ĝ(w|w). (7)

That is, ψ(w) is the average probability that the applicant sent two appli-
cations and the other application was strictly higher and successful. If the
other application was sent to the same wage, the probability that it was suc-
cessful is p(w), and in this case the unconditional probability for each firm
to make the offer first is 1/2.16 The system defined by (4), (6) and (7) is

14For a careful but intuitive derivation of (5) and (6) as the limit for a finite but large
economy see Burdett, Shi and Wright (2001).

15There are γ1dG
1(w) single applications, γ2dG

2
1(w) low applications and γ2dG

2
2(w) high

applications at w, adding to a total measure T (w) = γ1dG
1(w) + γ2dG

2
1(w) + γ2dG

2
2(w).

Then Ĝ(w̃|w) =
∑2

j=1[γ2dG
2
j (w)/T (w)]G2

−j(w̃|w), where −j ∈ {1, 2}/{j}.
16Alternatively, one can think about workers that apply twice to the same wage as

randomizing in advance about which offer they would prefer to accept in case they get
both offers. Then an applicant is not available to a firm if the other firm is preferred and
makes this applicant an offer.
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recursive: At the highest offered wage the probabilities p(w), η(w) and ψ(w)
can be determined, and are then used to evaluate the corresponding terms
at lower wages.

To round off the specification, briefly consider the case of a wage in the
offer set that is not in the application set. In this case nobody applies, and
we specify λ(w) = µ(w) = 0. We interpret the polar case of wages in the
application but not in the offer set as free disposal of applications without
the chance of receiving an offer. This covers all possibilities in the support
of the workers and/or firms randomization, and their average ex-ante payoffs
can be calculated.

Now consider deviations. For a firm, any wage in the offer set can be eval-
uated as described above as it arises as a possible realization of F . Yet for
a deviation to wages w /∈ V the firm has to form a belief about the workers
reaction. This problem is common in the directed search literature, and the
most common approach is to assume that the queue length at the deviant is
exactly such that workers are indifferent between applying and not applying.
If it were higher workers should adjust by applying less; if it were lower they
should apply more. We will call the highest utility a worker can obtain at
wages in the offer set as the Market Utility. Let U∗

i = supw∈Vi Ui(w) denote
the highest utility a worker can get by sending i applications. Then we can
define the Market Utility as U∗ = max{U0, U

∗
1 , U

∗
2}.

Now consider some wage w /∈ V and assume the queue length were µ(w) ∈
[0,∞], which defines p(w) as in (6). A worker who applies there with one ap-
plication can at best get U1(w). A worker who sends two applications and ap-
plies there with his low application can at best get Û1,l(w) = supw̃∈V U(w, w̃).

Applying with the high application he can get Û2,h(w) = supw̃∈V U(w̃, w). Let

Û(w) = max{U1(w), Û2,l(w), Û2,h(w)}. We will assume

Definition 2.1 (Market Utility Assumption)
For any w /∈ V, µ(w) > 0 if and only if U∗ = Û(w).

It states that workers are indifferent between obtaining the Market Utility
and applying to the not-offered wage (possibly combined with the most at-
tractive offered wage).17 Only if the wage is too low it is not possible to

17Inspection of the worker’s problem in section 3.1 reveals that even if both wages are
not in the offer set it is impossible to obtain a utility above U∗, given this assumption.
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adjust the effective queue length to obtain indifference, in which case the ef-
fective queue length is set to zero because nobody would apply there. While
the arguments presented here have only intuitively appealed to ”reasonable”
responses of workers to deviating wage offers, papers by Burdett, Shi and
Wright (2001) and Peters (1997, 2000) rigorously establish equivalence of
the Market Utility Assumption and the subgame perfect response in (a limit
of) finite economies in which workers send one application.

Firms also have to evaluate the profit of entering if φ = 0, i.e. no other
firm enters. Assume some firm enters and offers a wage. In the same spirit
of subgame perfection, workers either do not apply at all because the wage
is too low, or they drive the queue length down to a level where they are
indifferent between applying or not applying. Anticipating this response, the
firm will enter if it can find a profitable wage offer. Formally, we assume

Definition 2.2 (Entry Assumption)
φ > 0 if there exist w ∈ [0, 1] and µ(w) ∈ R+ such that U1(w) = c1 and
π(w) > K.

Finally, consider the deviation of an individual worker. All other workers
still use their mixed strategy. The competition for each job is therefore
unchanged, and he still obtains payoff Ui(w) when he applies to wages in
the application set. Wages w ∈ V\W yield an offer for sure. Other wages
cannot provide profitable deviation even if they are offered by some (possibly
deviating) firm when the worker’s belief about the other workers’ behavior
corresponds to the belief summarized in the Market Utility Assumption.

We define an equilibrium as follows.

Definition 2.3 (Equilibrium) An equilibrium is a tuple {φ, F,γ,G} of
strategies for the agents such that there exists π∗, U∗ and µ(·) and

1. (a) π(w) = π∗ ≥ π(w′) for all w ∈ V and w′ ∈ [0, 1] if φ > 0.

(b) π∗ = K if φ > 0.

2. (a) Ui(w) ≥ Ui(w
′) for all w ∈ suppGi and w′ ∈ [0, 1]i, if γi > 0.

(b) U∗
i = U∗ if γi > 0.

3. µ(·) conforms to (3) - (7) and the Market Utility and Entry Assump-
tions hold.
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Condition 1 a) and b) specify profit maximization and free entry.18 Condition
2 a) implies that workers who send i applications send them optimally given
the wage offer distribution and the behavior of other workers. Condition 2 b)
ensures that workers send out the optimal number of applications. Condition
3 reiterates the determination of the effective queue length. The distinction
between a) and b) allows the discussion of an exogenous number of appli-
cations and/or exogenous number of firms using the appropriate subset of
conditions. While the exposition uses the terminology of a game, the def-
inition resembles a competitive equilibrium with a somewhat non-standard
feasibility constraint that embeds the frictions.

3 Equilibrium Characterization

In this section we characterize the equilibrium properties of the model and
show

Summary 3.1 An equilibrium exists. Generically the following holds: The
equilibrium is unique; all workers send the same number of applications;
the number of offered wages equals the number of applications; each worker
applies with one application to each wage.

We will proceed in three subsections: First we analyze the workers’ search
behavior given a distribution of wages and given the number of applications.
Then we analyze the distribution of wages that firms will optimally set.
Finally, we characterize equilibrium play.

3.1 Workers’ Search Decision

To analyze the workers’ search decisions, first consider a single worker who
observes all wages and - given the strategy of the other workers - knows the
probability of success at each wage. That is, he knows all pairs (w, p(w)).
Equilibrium condition 2a) implies that each wage to which workers apply has
to be optimal. For a worker with i = 1 the application choice is trivial. An
application to w′ is optimal if and only if p(w′)w′ = u1 ≡ maxw∈[0,1] p(w)w,
i.e. he chooses a wage with the highest expected return u1. For a worker
with i = 2 the analysis is slightly more involved. Let w̄ be the highest wage
out of all wages that deliver u1, i.e. w̄ = sup{w ∈ [0, 1]|p(w)w = u1}.

18To ensure that entry implies zero profits it is sufficient to assume that V > 1/K.
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Lemma 3.1 Assume that an optimal choice for a worker with i = 2 exists.
The optimal choice involves sending one application to a wage weakly below
w̄ and one application to a wage weakly above w̄.

Proof: The worker maximizes

max
(w1,w2)∈[0,1]2

p(w2)w2 + (1− p(w2))p(w1)w1. (8)

Note that we have set up problem (8) without the restriction that w1 ≤ w2.
Nevertheless it is immediate that a worker who has the choice between two
wages will always accept the higher over the lower. Therefore any solution
to (8) has w1 ≤ w2.

19

Next, note that w1 is only exercised if w2 failed. (8) immediately implies
that for w1 only the expected return p(w)w is important, and his optimal
decision resembles that of workers with a single application. I.e. he chooses
w1 such that

p(w1)w1 = u1. (9)

Taking this into account, any high wage w2 is optimal if it fulfills

p(w2)w2 + (1− p(w2))u1 = u2, (10)

where u2 ≡ supw∈[0,1] p(w)w + (1 − p(w))u1. Clearly any combination of w1

and w2 that satisfies (9) and (10) solves the maximization problem (8). Since
we know that any solution to the latter problem has w2 ≥ w1, it has to hold
that the highest low wage associated with (9) has to be weakly lower than
the lowest high wage associated with (10). The highest low wage is given by
w̄. Q.E.D.

At high wages the worker takes into account the possibility of obtaining a low
wage offer. He is willing to accept a lower expected pay (p(w2)w2 < u1) in
return for a high upside potential if he gets a job (high w2), because if he does
not get the good job the low wage application acts as a form of insurance.20

Since all workers face the same maximization problem we obtain

19Assume a worker would choose (w1, w2). By (8) he gets U(w1, w2) = p(w2)w2 + (1−
p(w2))p(w1)w1. Now assume he reversed the order to get U(w2, w1) = p(w1)w1 + (1 −
p(w1))p(w2)w2. U(w1, w2) ≥ U(w2, w1) if and only if w2 ≥ w1.

20See Chade and Smith (2004) and Galenianos and Kircher (2005) for a longer discussion
of the tradeoffs under simultaneous search.
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Proposition 3.1 Any equilibrium with γ1 +γ2 > 0 fulfills the following con-
ditions for the effective queue length:

p(w) = 1 ∀ w ∈ [0, u1] (11)

p(w)w = u1 ∀ w ∈ [u1, w̄] (12)

p(w)w + (1− p(w))u1 = u2 ∀ w ∈ [w̄, 1], (13)

for some tuple (u1, u2, w̄). It holds that u1 = maxw∈V p(w)w and

i) for γ2 > 0, u2 = maxw∈V p(w)w + (1− p(w))u1 and w̄ = u2
1/(2u1 − u2).

ii) for γ2 = 0, if u2
1/(u1+c2) ∈ (0, 1) then w̄ = u2

1/(u1+c2) and u2 = u1+c2,
otherwise w̄ = 1.

Low wages do not receive applications, wages in the intermediate range re-
ceive the low applications that workers are only willing to send if (9) is
fulfilled, and high wages receive high applications under condition (10). We
should note that even if workers do not send high wage applications, i.e.
γ2 = 0, the queue lengths at high wages might be determined by (10). If
a deviant posts a high wage, the Market Utility Assumption specifies that
workers are indifferent. If the second application is quite costly, indifference
implies that the workers are indifferent between sending their single applica-
tion to the deviant or to the offered wage. Yet if the second application is
not very costly, it might be optimal to continue to send the single application
to some offered wage but to send an additional application to the deviant.
Indifference then implies that the marginal benefit of the additional applica-
tion is zero, i.e. u2 − u1 − c2 = 0, which then determines u2 and governs the
queue length at high wages.

3.2 Firms’ Wage Setting

This subsection focuses on the nature of equilibrium wage dispersion. We
first show that wage dispersion is a necessary feature of any equilibrium with
γ2 > 0. We then show that this leads to exactly two wages being offered in
equilibrium.

Consider the case where γ2 > 0, which implies that v > 0 as otherwise
there is no reason to apply. Before we proceed, we will briefly rewrite firms’
profits in a convenient way. Consider some (candidate) equilibrium charac-
terized by u1, u2 and w̄, which by proposition 3.1 characterizes the workers
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application behavior. We will call firms that end up offering wages below w̄
as low wage firms, and those offering wage above w̄ as high wage firms. The
problem for each individual firm is to maximize (1−e−µ(w))(1−w) under the
constraint that µ(w) is given by (11), (12) and (13). This is a standard max-
imization problem. Writing the profit function as π(w) = µ(w)p(w)(1− w),
we can use the constraint to substitute out the wage and write profits as a
function of the effective queue length

π(µ) = 1− e−µ − µu1 ∀ µ ∈ [µ, µ̄], (14)

π(µ) = (1− e−µ)(1− u1)− µ(u2 − u1) ∀ µ ∈ [µ̄, µ(1)], (15)

where µ̄ = µ(w̄) and µ = 0 = µ(u1). We can interpret this as follows. Firms
that offer a wage below u1 “buy” a queue length of zero and make zero profits.
Low wage firms that offer wages in [u1, w̄] “buy” a queue length according to
(12) and obtain profits as in (14), while high wage firms with wages in [w̄, 1]
”buy” a queue length as in (13) and obtain profits as in (15). Since at wages
above u1 there is a one-to-one relation between the wage and the effective
queue length, we can view the individual firm’s problem as simply a choice
regarding the preferred effective queue length.

The profit function is continuous, but has a kink at w̄ (respectively µ̄).
This is due to the fact that workers trade off the effective queue length against
the wage differently for high and low applications. At high wages the queue
length responds stronger to a wage change since workers are more ”risky”
due to the fallback option at low wages. This kink implies immediately that
it cannot be profitable for any individual firm to offer wage w̄, because rais-
ing the wage induces many additional effective applicantions while reducing
the wage induces only a relatively small reduction in effective applications.
Therefore either it is profitable to offer a higher wage, or if that is not prof-
itable then it is profitable to offer a lower wage.

This rules out an equilibrium in which some workers send more than one
application but all firms offer the same wage, because the offered wage would
coincide with the cutoff wage and individual firms would want to deviate.

Proposition 3.2 There does not exist an equilibrium with γ2 > 0 in which
only one wage is offered, i.e. in which V is a singleton.

We should note that the argument that rules out one-wage equilibria is dif-
ferent from those in most other papers on wage dispersion with homogenous
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workers and firms. Usually there is an appeal to a discontinuity of the fol-
lowing kind: If all firms offer the same wage, there is a strictly positive
probability that a firms’ offer is rejected because the worker accepts some
other equally good offer; so if a devianting firm offers a slightly higher wage,
at least as many workers apply, and all applicants accept an offer for sure.
This yields a jump in profits.21 In this model there is no discontinuity de-
spite the fact that workers accept an offer for sure at a slightly higher wage.
This positive jump in profits is offset by the fact that fewer workers apply
to the deviant.22 Workers internalize that only effective applications imply
competition. At the market wage, only a fraction of the (other) applica-
tions are effective, while at the deviant all applications are effective. If the
deviants’ wage is only slightly higher, less workers apply because otherwise
the competition would make an application unattractive. As a consequence
profits change continuously. Nevertheless, the kink in the profit function in-
duced by a different ”risk-return”-tradeoff of workers implies wage dispersion.

Next we show that in an equilibrium in which some workers send two appli-
cations exactly two wages will be offered, one strictly below and one strictly
above w̄. This immediately implies that workers with one application send
it to the low wage, and workers with two applications send one to each of
the wages.

Proposition 3.3 In any equilibrium with γ2 > 0, exactly two distinct wages
will be offered, i.e. V = {w∗1, w∗2}. It holds that w∗1 < w̄ < w∗2.

Proof: Since wage dispersion implies that not all wages are zero, u2 > u1 > 0.
Individual firms take u1, u2 and w̄ as given. For low wage firms we can write
the profits as a function of the queue length as in (14). The function is
strictly concave on [0, µ̄]. Therefore all low wage firms will offer the same
wage. For high wage firms profits can be written as in (15), which is strictly
concave on [µ̄, µ(1)]. Therefore all high wage firms will offer the same wage.
Finally, assume one group, say low wage firms, offered the wage w̄. Since
there is wage dispersion, high wage firms will offer w∗2 > w̄. But since their

21This happens e.g. in Burdett and Judd (1983), Burdett and Mortensen (1998), the
basic version of Acemoğlu and Shimer (2000) and Galenianos and Kircher (2005).

22In the introduction we explained ”directedness” as the ability to attract more applica-
tions when offering higher wages. By this we mean more effective applications. As shown
here, gross applications do not need to be higher.
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problem is strictly concave on [w̄, 1], they make strictly higher profits than
firms at w̄, which yields the desired contradiction. A similar argument rules
out that w̄ is offered by high wage firms. Q.E.D.

Given that only two wages are offered in equilibrium, we will for notational
simplicity index variables referring to low wage firms by 1 and those referring
to high wage firms by 2.23 Let d1 be the equilibrium fraction of firms offering
the low wage, and d2 the fraction offering the high wage. Then vi = vdi
denotes the measure of firms at the respective wage, and equation (3) implies
gross queue lengths λ2 = γ2/v2 and λ1 = (γ1 +γ2)/v1. At high wages workers
only apply strictly lower, so that µ2 = λ2. At low wages, a fraction γ2/(γ1 +
γ2) applies to the high wage, and so by (7)we have ψ2 = p2γ2/(γ1 + γ2),
with p2 = (1− e−µ2)/µ2. Therefore µ1 = (1− p2γ2/(γ1 + γ2))λ1. With these
notational simplifications we establish

Corollary 3.1 In an equilibrium with γ2 > 0 profits and wages for high and
low wage firms respectively are given by

π1 = 1− e−µ1 − µ1e
−µ1 , (16)

w∗1 = µ1e
−µ1/(1− e−µ1), (17)

π2 = (1− e−µ2 − µ1e
−µ1)(1− e−µ1), and (18)

w∗2 = µ2e
−µ2(1− e−µ1)/(1− e−µ2) + e−µ1 . (19)

Proof: We know that neither low wage nor high wage firms are constrained,
because the equilibrium wages are different from w̄, and it is easy to see
that w1 > 0 (otherwise workers would not apply) and w2 < 1 (otherwise
high wage firms would make less profits than low wage firms). Therefore
wages are given by first order conditions. For low wage firms, the first order
condition of (14) with respect to µ leads to

u1 = e−µ = e−µ1 . (20)

The second equality follows since in equilibrium all low wage firms will choose
the same queue length, or rather the wage associated with it. When substi-
tuted into (14) this leads to the expression for the profits. By (12) we know

23That is, let πi be the profit, wi the wage, λi the gross queue length, µi the effective
queue length, ηi the hiring probability, pi the probability of getting an offer when applying
at a type-i firm, and ψi the probability that a worker accepts another offer, where i = 1
when we refer to low wage firms and i = 2 when we refer to high wage firms.
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that w∗1 = u1/p1 and we immediately get the corresponding wage. For high
wage firms, the first order condition of (15) implies

u2 − u1 = e−µ(1− u1) = e−µ2(1− e−µ1). (21)

Substitution back into (15) yields the expression for the profits. By (13) we
know that w∗2 = (u2 − u1)/p2 + u1, and substitution leads to the expression
for the high wage. Q.E.D.

In the case of a single application (γ1 > 0 and γ2 = 0) the arguments above
easily establish that only one wage is offered according to (17), yielding
profits given by (16). Obviously in this case the probability that an offer
leads to a hire is one, i.e. µ1 = λ1. This is also the result obtained in
Burdett, Shi and Wright (2001). The introduction of a second application
essentially establishes two markets. The profits in each are given by (1 −
e−µi − µie

−µi)(1 − ui−1). In the low market u0 is identical to the workers’
true outside option of zero, but there is some connection to the high market
induced by the strictly positive probability that an offer is rejected. In the
high market the rejection probability is zero, but u1 is greater than zero as
it reflects the workers’ endogenous outside option induced by the presence of
the low market. Apart from these spillovers, each market operates essentially
as a single one-application market.

The findings in the last sections are summarized in figure 1. The workers’
indifference curve IC1 for the low wage applications is given by (12). Low
wage firms take this into account and offer a wage w1 such that no individual
firm wants to deviate, which means their isoprofit curve IP1 is tangent to IC1.
The indifference curve IC2 for the high application is by (13) steeper than for
the low application because of the fallback option due to the low application.
The actual queue length that firms expect is the dashed line. High wage
firms take this into account and offer wage w2 in such a way that no firm
wants to deviate, i.e. such that their isoprofit curve IC2 is tangent to IP2.
Note that a single wage w1 = w2 = w̄ cannot be an equilibrium, because at
the kink of the indifference curves it is impossible to place the isoprofit curve
tangent, and therefore firms would want to deviate. The isoprofit curves for
low and high wage firms have to coincide to provide equal profits for firms.
In the next section we prove that this is possible.
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Figure 1: Equilibrium behavior. IC1 and IC2: Worker’s indifference curve for the low and
high wage, respectively. IP1 and IP2: Isoprofit curves for low and high wage
firms.

3.3 Equilibrium Outcome

In this section we derive the equilibrium outcome. Before we turn to the full
equilibrium, it will be a useful first step to exogenously fix the number of
applications that workers send. We will show existence and uniqueness of an
(appropriately adjusted) equilibrium with and without free entry.24

Lemma 3.2 For given (γ0, γ1, γ2) with γ1 + γ2 > 0 it holds that

1. for given v > 0 there exists unique (F,G) such that equilibrium condi-
tions 1a), 2a) and 3 hold;

2. with free entry there exists unique (φ, F,G) such that equilibrium con-
ditions 1a), 1b), 2a) and 3 hold.

24Note that the equilibrium definition does not tie down F in case φ = 0 and Gi in
case γi = 0. For the discussion of uniqueness, assume that in these cases the respective
distribution takes on some unique form. As a technical detail, note that here we fix γ but
in the Market Utility Assumption the costs still show up. To ensure consistency, assume
that when γ2 = 0 only one application plays a role (e.g. c1 = 0 and c2 = ∞) while when
γ2 > 0 both play a role (e.g. c1 = c2 = 0).
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Proof: We will show part 2 here, part 1 is relegated to the appendix. The
effective queue length µ1 at the low market wage is according to (18) deter-
mined by

1− e−µ1 − µ1e
−µ1 = K. (22)

Since the left hand side of (22) is strictly increasing in µ1 and is zero for
µ1 = 0 and one for µ1 →∞, µ1 is unique. The wage is given by (17).

If γ2 > 0, the queue length at high wage firms is by (18) given by

(1− e−µ2 − µ2e
−µ2)(1− e−µ1) = K. (23)

Since µ1 is unique, µ2 is unique. The high wage is given by (19). Since
µ∗1 = (γ1 + γ2 − γ2p2)/v1 and µ∗2 = γ2/v2, both v1 and v2 are uniquely
determined, which characterizes the equilibrium entry and the randomization
over the two wages.

Clearly firms are willing to offer these wages. The wages were determined
by the appropriate first order conditions and therefore no other wage in ei-
ther the high wage or the low wage region can offer a higher profit. Since
(12) and (13) were used as constraints to construct the profits, they remain
valid and workers are indeed willing to apply in the prescribed way. Q.E.D.

Knowing the equilibrium interaction for a fixed number of applications, we
can turn to the analysis of the equilibrium interaction when the number
of applications is endogenous. c1 and c2 may take any non-negative values
as long as c1 ≤ c2. In analogy to the free entry conditions (22) and (23)
we will define the following four numbers µ∗1, µ

∗
2, u

∗
1 and u∗2 recursively as

follows: (1− e−µ∗2 −µ∗2e−µ
∗
2)(1− u∗i−1) = K, where u∗i − u∗i−1 = e−µ

∗
i (1− u∗i−1)

and u∗0 = 0. These numbers are uniquely determined by the exogenous
parameter K. Moreover, (20) established that the marginal utility of the first
application in equilibrium is always u∗1 whenever at least some workers send
out applications, and by (21) the marginal utility of the second application
is u∗2 − u∗1 whenever at least some workers send two applications. This is
independent of the exact structure of γ. We will establish the following
proposition, which is a stronger version of summary 3.1 with which we started
the section.

Proposition 3.4 An equilibrium exists. Furthermore

1. For c1 > u∗1 the unique equilibrium has v = 0 and γ = 0.
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2. For c1 < u∗1 and c2 > u∗2 − u∗1, in the unique equilibrium all workers
send one application and one wage is offered.

3. For c1 < u∗1 and c2 < u∗2 − u∗1, in the unique equilibrium all workers
send two applications, two wages are offered, and each worker applies
to each wage.

Proof: In case 1 the marginal utility is too low to induce any worker to send
the first application. Therefore v = 0 and γ = 0. This is consistent with the
Entry Assumption.

In cases 2 and 3, the marginal utility is strictly higher than the marginal
cost of the first application. By the Entry Assumption there will be positive
entry: At queue length µ′ such that e−µ

′
= c and wage w′ = µ′e−µ

′
/(1−e−µ′),

it holds that U1(w
′) = c and profits π′ = 1−e−µ′−µ′e−µ′ > K. Given positive

entry, clearly each worker will send at least one application.
Now we have to analyze if it can be the case that workers only apply

once, and firms only offer one wage. Assume this is the case. For c2 <
e−µ

∗
1(µ∗1 − 1 + e−µ

∗
1)/µ∗1 it can be shown that we get a contradiction, because

a worker strictly prefers to apply twice at the unique market wage than to
send only one application. Yet even if c2 is not that small, firms might not be
willing to offer only one wage - despite the fact that the wage is determined
by their first order condition. At high (not offered) wages the queue length
might increase fast because workers would send their high application if these
high wages were offered, which is reflected in w̄ < 1 in the second part of
proposition 3.1. Since the queue length is continuous, and the offered wage is
strictly optimal on [u1, w̄], a firm that is looking for a profitable deviation has
to find the optimal wage in the interior of [w̄, 1]. Since u2 = c2 +u1 according
to proposition 3.1, we have by (15) the profit π(µ) = (1−e−µ)(1−e−µ∗1)−µc2
for a deviant that offers a wage in (w̄, 1). If there is a profitable deviation, it
must be profitable to deviate to µ̂ given by the first order condition e−µ̂(1−
e−µ

∗
1) = c2, which implies µ̂ < µ∗2 in case 2 and µ̂ > µ∗2 in case 3. Substitution

leads to an optimal deviation profit of

π(µ̂) = (1− e−µ̂ − µ̂e−µ̂)(1− e−µ
∗
1). (24)

Comparing (24) with (23) establishes that π(µ̂) is strictly smaller than K in
case 2, making a deviation unprofitable, and strictly larger than K in case 3,
yielding a strictly profitable deviation (the wage associated with µ̂ is indeed
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above w̄ in case 3). Therefore an equilibrium with one wage is possible in
case 2 and not in case 3.

Finally, it is immediate that in case 2 an equilibrium with two wages
cannot exist because by u∗2 − u∗1 < c2 the marginal utility of the second ap-
plication is too low, while an equilibrium with two wages can exist in case
3 since u∗2 − u∗1 > c2. Therefore in case 2 everyone sends one application to
the unique wage, while in case 3 every worker sends two applications, one to
each of the two wages. Uniqueness is then ensured by lemma 3.2. Q.E.D.

For the case c2 < u∗2 − u∗1 it is worth emphasizing that two wages are offered
because firms anticipate that workers will send an additional application
when they offer a high wage (this is captured by the Market Utility Assump-
tion). If we consider a candidate equilibrium in which all firms offer a single
wage, it is this feature that leads to a high queue length for a deviant with
a high wage and makes such a deviation profitable.

In the case where c1 = e−µ
∗
1 we have multiplicity of equilibria: for any γ1 ∈

[0, 1] and γ0 = 1−γ1 an equilibrium exists, and workers are exactly indifferent
between applying once and not applying. If c2 = e−µ

∗
2(1−e−µ∗1) an equilibrium

exists in which workers randomize between one and two applications, i.e. it
exists for any γ2 ∈ [0, 1] and γ1 = 1− γ2.

4 Efficiency

To discuss the efficiency properties of the equilibria just characterized, we
will follow Pissarides (2000) and others by using the following notion of con-
strained efficiency: An equilibrium is constrained efficient if it maximizes the
output minus entry and application costs, given the frictions in the market.
The frictions stem from the requirement that workers and firms use some
symmetric strategies (γ,G) and (φ, F ). Denoting by Υi the set of cumula-
tive distribution functions over [0, 1]i and by 43 the three-dimensional unit
simplex, the strategy spaces of workers and firms are G = 43×Υ1×Υ2 and
F = [0, 1] × Υ1. Then an equilibrium {φ, F,γ,G} ∈ F × G is constrained
efficient if it maximizes

max
(φ′,F ′)∈F ,(γ′,G′)∈G

M(φ′, F ′,γ ′,G′)− φ′V K − γ′1c(1)− γ′2c(2), (25)

where M(φ′, F ′,γ ′,G′) = φ′V
∫ 1

0
η(w)dF ′ is the number of matches when

η(w) is determined by (3) - (7) using the relevant parameters {φ′, F ′,γ ′,G′}.
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As discussed in the introduction, efficiency my fail on several dimensions:
(1) Search Inefficiency: For a given vector of applications and a given number
of firms the number of matches is suboptimal. (2) Entry Inefficiency: For a
given vector of applications too many or too few firms enter. (3) Application
Inefficiency: Workers apply too much or too little given the costs. While
these inefficiencies arise without recall, we will show that with recall directed
search balances all these margins.25

Shimer (1996) explains the efficiency property for the one-application case
roughly as follows: The workers’ response to a change in the wage yields an
implicit price for the desired queue length, therefore firms can price the queue
length of applicants exactly at its marginal cost. In this model two variables
matter: The gross queue length λ(·) and the retention probability 1 − ψ(·).
Both have to be adjusted by a single-dimensional wage. This is possible
because for firms and for workers only the combination of both matters.
The workers respond to a change in the wage by changing their applications
such that the effective queue length µ(·) rises to a new level of indifference.
Therefore the same logic holds here. The effective queue length is priced at
marginal cost.

Proposition 4.1 The equilibrium market outcome is constrained efficient.

We will prove the proposition in the next three subsections that are dedi-
cated to different margins. For a given number of firms and a given vector
of applications, we will show that the search outcome M(φ, F,γ,G) is con-
strained optimal. Then we show that for a given vector of applications the
constrained optimal number of firms enter, given that subsequent search is
optimal. And finally we will establish that workers send the constrained
optimal number of applications, taking account of optimal entry and search.

4.1 Search Efficiency

For a given vector of applications γ = (γ0, γ1, γ2) and firms v, we will show
that the search outcome as characterized in the first part of lemma 3.2 is
constrained efficient. As we will see, this depends on the ability of the market
to generate different wages for low and high applications.

For γ2 > 0 we start by analyzing a narrower concept that we will call
2-group-efficiency. We will assume that there are two groups of firms, one

25See section 6.2 for the discussion of restricted recall.
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preferred over the other, and all workers who send at least one application
send one at random to the non-preferred group, and workers who send two
applications send the second one at random to the preferred group. This
setup corresponds to the equilibrium outcome. Let d ∈ [0, 1] be the fraction
of firms in the preferred group. Search is two-group-efficient if d is chosen
optimally given the assumptions just made.

Lemma 4.1 For a given v > 0 and γ = (γ0, γ1, γ2) with γ2 > 0, the strategy
combination implied by equilibrium conditions 1a), 2a) and 3 yields two-
group-efficient search.

Proof: The optimization problem is given by

max
d∈[0,1]

M(d) = vd(1− e−µ2) + v(1− d)(1− e−µ1), (26)

where µ1 = (1 − γ2p2/(γ1 + γ2))λ1, µ2 = λ2 = γ2/(vd), p2 = (1 − e−λ2)/λ2

and λ1 = (γ1 + γ2)/(v(1− d)). The first derivative is given by

∂M/∂d = v

[
1− e−λ2 − (1− e−µ1) + de−λ2 [∂λ2/∂d]

+
e−µ1

vλ1

[
−γ2[∂p2/∂d]λ1 + (γ1 + γ2 − γ2p2)[∂λ1/∂d]

] ]
.

Noting that ∂λ2/∂d = −γ2/(d
2v) = −λ2

2v/γ2, ∂λ1/∂d = λ2
1v/(γ1 + γ2), and

then ∂p2/∂d = (1 − e−λ2 − λ2e
−λ2)v/γ2 we obtain by substitution that the

last expression in the first line equals −λ2e
−λ2 and the second line equals

e−µ1 [−(1− e−λ2 − λ2e
−λ2) + µ1]. This yields

∂M

∂d

1

v
= (1− e−λ2 − λ2e

−λ2)(1− e−µ1)− (1− e−µ1 − µ1e
−µ1) = 0, (27)

where the last equality yields the first order condition. (27) coincides with
the equal profit condition between high and low wage firms. By the proof of
proposition 3.2 part 1 we know that this uniquely determines the measure of
firms in the high and the low group. Boundary solutions cannot be optimal
because one application would be waisted (global concavity follows mathe-
matically from ∂2M/∂d2 = −v[λ2

2e
−λ2(1−e−µ1)/d+e−µ1(1−e−λ2−λ2e

−λ2−
µ1)

2/(1− d)] < 0). Q.E.D.

Next we show that the search outcome is constraint efficient. The proof
relies on establishing that two groups are sufficient to obtain the optimal
allocation.
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Proposition 4.2 For given v = φV and given γ, the search process is con-
strained efficient, i.e. it holds that

M(φ, F,γ,G) = max
F ′∈Υ1,G′∈Υ1×Υ2

M(φ, F ′,γ,G′),

where {G, F} conform to equilibrium conditions 1a), 2a) and 3.

Finally, we show that two groups are indeed necessary to obtain the optimal
allocation when a fraction of workers send two applications. One group of
firms that all have equal hiring probability is not efficient. This implies that
a unique market wage is not able to yield the optimal allocation.

Proposition 4.3 For given v = φV and given γ with γ2 > 0, identi-
cal hiring probabilities for all firms cannot be constrained efficient, i.e. if
F ∈ Υ1 and G ∈ Υ1 × Υ2 such that η(w) = η̄ ∀ w ∈ V then (G, F ) /∈
arg maxF ′∈Υ1,G′∈Υ1×Υ2 M(φ, F ′,γ,G′).

In the proof we show that two groups can achieve the same hiring probabilities
as a random process. But the non-preferred group is too small compared to
the optimum. All workers would take a job from a firm in the preferred
group. For those that end up taking jobs with firms in the non-preferred
group this is their last chance to avoid unemployment. Increasing workers’
matching probability in the non-preferred group at the cost of decreasing
their matching probability in the preferred group improves matching for those
workers for whom it is the last option to avoid unemployment at the expense
of a lower matching probability for those who still might have another option.

This result is surprising because with one application different hiring
probabilities for firms are only warranted when there are productivity dif-
ferences.26 Here the source for different hiring probabilities is a sorting ex-
ternality. Figure 2 illustrates this. At a unique market wage representing a
random application behavior, the indifference curve IC1 for the low and IC2

for the high applications cross at the same point as the firms isoprofit curve
IC. Since the actual (dashed) indifference curve is kinked, it is not possi-
ble to achieve tangency with the isoprofit curve. Area A indicates mutual

26Shimer (2005) analyzes productivity differences when only one application is possible.
If workers and firms are homogenous only one hiring probability would be efficient (similar
to our case for γ1 > 0 but γ2 = 0), and only with heterogeneities of firms or workers
different hiring probabilities are efficient.
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gains for workers and firms from sending the low applications to firms with
different queue length and wage. Similar gains are indicated by area B for
the high applications. The exact choice of w influences which gains are more
prominent, but due to the kink it is never possible to eliminate both. Figure
1 shows that it is possible to achieve tangency with two wages.27

Wage w

Effective 
Queue 

Length µ(w)

w

IC2

IC1

IP

A

B

Figure 2: Inefficiencies at a unique market wage. Areas A and B indicate mutual benefits
for both workers and firms.

4.2 Entry efficiency

We now turn to the efficiency of the entry decision. Let M∗(v,γ) be the
number of matches when there are γ applications and v firms and search is

27 Neither the figure nor the intuition apply to the case without recall. Without recall,
it is not possible to graph all relevant aspects in two dimensions, because next to the wage
both the gross queue length λ(·) and the retention probability ψ(·) remain separately
important. Regarding the intuition, without recall equal hiring probabilities for workers
mean that the number of workers who have their last option in either group is the same.
Only with recall the rejected positions in the low group become available again for yet
unmatched workers, which induces a proportionally larger number of workers employed
without another option in the non-preferred group, yielding a positive externality when
placing relatively more firms in the non-preferred group.
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constrained efficient. For given γ we have determined in the second part of
proposition 3.2 the unique entry in the (appropriately adjusted) equilibrium.
This entry is constrained efficient given the application behavior.

Proposition 4.4 Given γ, entry is constraint efficient. That is

M∗(v,γ)− vK = max
v′∈[0,∞)

M∗(v′,γ)− v′K, (28)

where v arises when equilibrium conditions 1a), 1b), 2a) and 3 are fulfilled.

Proof: The number of matches is given by M∗(v,γ) = 1− γ2

∏2
i=1(1− pi)−

γ1(1 − p1), where p1 and p2 are the probabilities of getting a job at less
preferred and the more preferred group under two-group-efficient search. If
γ0 = 1, then v = 0 arises and is clearly optimal. If γ0 < 1, clearly v = 0 is
not optimal given K < 1. Obviously v → ∞ is also not optimal. The first
order condition to the problem is

K = γ2[∂p1/∂v](1− p2) + γ2[∂p2/∂v](1− p1) + γ1[∂p1/∂v]

= [∂p1/∂v](γ1 + γ2)(1− ψ1) + [∂p2/∂v](1− p1). (29)

pi depends on v directly since the measure div of firms in group i depends
on v directly. It also depends on v indirectly since the two-group-efficient
fraction di is a function of v. Yet by the envelop theorem the indirect effect
is zero and we can neglect the effect on di. Consider the first term on the
right hand side first. We can write ∂p1/∂v = [∂p1/∂µ1][∂µ1/∂v]. One can
show that [∂µ1/∂v](γ1 + γ2)(1 − ψ2) = −d1µ

2
1 − γ2µ1[∂p2/∂v]. Noting that

[∂p1][∂v] = −[(1 − e−µ1 − µ1e
−µ1)/µ2

1][∂µ1/∂v] = −[(p1 − e−µ1)/µ1][∂µ1/∂v]
we obtain

[∂p1/∂v](1− p2) = d1(1− e−µ1 − µ1e
−µ1) + γ2(p1 − e−µ1)[∂p2/∂v].

Then (29) reduces to

K = d1(1− e−µ1 − µ1e
−µ1) + γ2(1− e−µ1)[∂p2/∂v]

= d1(1− e−µ1 − µ1e
−µ1) + d2(1− e−µ1)(1− e−µ2 − µ2e

−µ2)

= 1− e−µ1 − µ1e
−µ1 ,

where the second line follows by taking the appropriate derivative and the last
line follows as a consequence of two-group-efficient search (see (27)). The last
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line also denotes the profits of low wage firms in equilibrium. Applying (27)
again yields a condition equal to the profits of high wage firms. The first order
condition is unique by the same argument that established that a unique v
implies zero profits, and the entry implied by equilibrium conditions 1a), 1b),
2a) and 3 coincides with the entry implied by the first order condition. Since
the first order condition is unique and boundary solutions are not optimal,
it describes the global optimum. Q.E.D.

4.3 Application Efficiency

The number of applications that workers send in equilibrium is also con-
strained efficient. We will account for the associated entry of firms and the
search outcome, and therefore also immediately establish the overall con-
strained efficiency of the equilibrium as in Proposition 4.1.

To gain intuition, consider the case of an individual worker who sends one
application rather than none. By the above analysis his marginal benefit is
e−µ

∗
1 − c1. The benefit for society comprises the cost −c1 and the additional

production of one unit of output in the case that the firm did not have another
effective applicant, the probability of which is e−µ

∗
1 . Therefore private and

social benefits coincide. Similarly, if two wages are offered and a worker
sends a second application rather than only a single one, his private marginal
benefit is e−µ

∗
2(1 − e−µ

∗
1) − c2. Additional production arises only if the high

firm does not have another effective applicant but the low firm does, which
has a probability e−µ

∗
2(1− e−µ

∗
1). Again social and private benefits coincide.

Note that the marginal benefit is essentially independent of γ, and therefore
the decisions of other workers summarized in γ provide no externality on
other workers. This is due to the fact that any positive externality on firms
is dissipated in free entry, and the entry compensates any negative effects on
other workers.28

Let v(γ) be the entry for a given vector γ of applications as implied
by equilibrium conditions 1a), 1b), 2a) and 3. Then M∗∗(γ) = M∗(v(γ),γ)
denotes optimal number of matches for a given vector γ of applications given
optimal entry and optimal search.

Proposition 4.5 The equilibrium vector γ of applications is constrained ef-
ficient, i.e. γ ∈ arg maxγ′∈43 M

∗∗(γ ′)−Kv(γ ′)− γ′1c(1)− γ′2c(2).

28This argument applies equilibrium conditions 1a), 1b), 2a) and 3 for different γ, i.e.
we compare partial equilibria for different γ.
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Proof: For a given γ we know that equilibrium conditions 1a), 1b), 2a) and 3
yield the optimal entry and the optimal number of matches. Moreover, under
these conditions firms always receive zero profits and all surplus accrues to
workers. Comparing different γ, it is immediate that each worker always
attains a marginal utility of u∗1−c1 for his first application, and u∗2−u∗1−c2 for
his second application. Clearly the equilibrium conditions in Proposition 3.4
specify the socially optimal entry. For the case where c1 = u∗1 (or c2 = u∗2−u∗1)
the privat and social benefits of the first (or second) application are zero, and
therefore every equilibrium for this case is constrained efficient. Q.E.D.

5 Generalization to N > 2 applications

In this section consider the case where workers can send any number i ∈ N

of applications, at a cost c(i). We retain the assumption that c(0) = 0 and
that marginal costs ci = c(i)−c(i−1) are weakly increasing. We also assume
c(i) > 0 for some i ∈ N. We will establish existence, (generically) uniqueness
and constrained efficiency of the equilibrium. The analysis in the preceding
sections is a special case for c(i) = ∞ for all i > 2. Since many arguments
are straightforward generalizations of that special case, we focus mainly on
the changes that are necessary to adapt the prior setup. At the end of this
section we show convergence to the outcome of a competitive economy when
the costs for applications vanish.

5.1 Extended Setup and Main Result

The extension mainly requires adaptations of the workers’ setup, while it
remains essentially unchanged for firms. Define N as the largest integer such
that c(N) ≤ 1. Clearly, it is neither individually nor socially optimal to send
more than N applications. Then the workers strategy is a tuple (γ,G), where
γ = (γ0, γ1, ..., γN) ∈ 4N and G = (G1, G2, ..., GN) ∈ ×N

i=1Υ
i. γi denotes

the probability of sending i applications, and Gi denotes the cumulative dis-
tribution function over [0, 1]i that describes to which wages the applications
are sent. Let again (w1, ..., wi) satisfy w1 ≤ w2 ≤ ... ≤ wi and let Gi

j denote
the marginal distribution of Gi over wj. Then we can define W as the union
of the support of all Gi

j with γi > 0. A worker who applies to (w1, ..., wi)
attains in analogy to (2) the utility
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Ui(w1, ..., wi) =
i∑

j=1

[ i∏
k=j+1

(1− p(wk))

]
p(wj)wj − c(i). (2′)

A worker who applies nowhere attains U0 = 0. Instead of (3) the relevant
condition is now

N∑
i=1

[
γi

i∑
j=1

Gi
j(w)

]
= v

∫ w

0

λ(w̃) dF (w̃). (3′)

To specify ψ(w) in the extended setup, consider a firm at wage w that receives
an application and let Ĝ(w̃|w) denote probability that the sender applied
with his other N−1 applications to wages weakly below w̃. If the sender only
sent i < N − 1 other applications, then we code (only for this definition) the
additionalN−1−i applications as going to wage−1. So w̃ = (w̃1, ..., w̃N−1) ∈
([0, 1]∪{−1})N−1. Let h(w̃|w) count the number of applications sent to wage
w when the worker applies to w̃ and w. Replacing (7) we now specify

ψ(w) =

∫ [
1− 1− (1− p(w))h(w̃|w)

p(w)h(w̃|w)

∏
w̃j>w

[1− p(w̃j)]

]
dĜ(w̃|w). (7′)

The product
∏

w̃j>w
[1 − p(w̃j)] describes the probability that the applicant

will not take a job at a strictly better wage. Its multiplier gives the probabil-
ity that a worker will not turn down a job offer because of a job at another
firm with the same wage, conditional on failing at higher wages (see the ap-
pendix for a derivation). Then the integrand gives the probability that the
worker takes the job at a different firm, which is integrated over the relevant
wages to which workers apply.

The definitions for all other variables, i.e. µ, p and η and π remain un-
changed. The definition of the Market Utility Assumption now has to take
into account the expanded possibilities of workers. Let U∗

i = supw∈Vi Ui(w).
Then U∗ = maxi∈{0,...,N} U

∗
i denotes the Market Utility. Let Xi(w) ⊂ [0, 1]i

denote the set of i-tuples (w1, ..., wi) with wj = w for some j ∈ {0, ..., i} and

wk ∈ V for all k 6= j. Then we can define Ûi(w) = supw∈Xi(w) Ui(w) as the
optimal utility if the worker applies to wage w and to i − 1 other offered
wages. The Market Utility assumption then states that for w /∈ V

⋃
W we

have µ(w) > 0 if and only if U∗ = maxi∈{1,...,N} Ûi(w). With these adjust-
ments the equilibrium definition extends to this section.
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We are now in the position to extend the result from the previous section.
Again we recursively define µ∗i and u∗i as functions of the exogenous parameter
K. Let u∗0 = 0. For all i ∈ N let (1 − e−µ

∗
i − µ∗i e

−µ∗i )(1 − u∗i−1) = K and
u∗i = e−µ

∗
i (1 − u∗i−1) + u∗i−1. Note that u∗i − u∗i−1 is strictly decreasing in i,

while ci is weakly increasing. We will show

Proposition 5.1 An equilibrium exists. It is constrained efficient. Generi-
cally it is unique: if ci∗ < u∗i∗ − u∗i∗−1 and ci∗+1 > u∗i∗+1 − u∗i∗, every workers
sends i∗ applications, i∗ wages will be offered, and every worker applies to
each wage.

The proof relies essentially on an induction of the arguments presented in sec-
tions 3 and 4 to higher numbers of applications. The workers again partition
the wages into intervals relevant to each of their applications. The equilib-
rium interaction in each interval corresponds to that in the one application
case, again with the adjustment that the workers ”outside option” incorpo-
rates the expected utility that can be obtained at lower wages, while the
queue length incorporates the fact that some applicants are lost to higher
wage firms. Efficiency obtains again for similar reasons, only that now i∗

wages are necessary to obtain the optimal allocation in the search process.

5.2 Convergence to the Competitive Outcome

We will now show that the equilibrium allocation converges to the uncon-
strained efficient allocation of a competitive economy when application costs
become small. For K < 1 the competitive outcome has an equal number
of workers and active firms, i.e. v = 1, each active firm and each worker is
matched, and the market wage is 1−K and coincides with the utility of each
worker.

We will consider a sequence of cost functions such that the marginal cost
of the i’th application converges to zero for all i ∈ N. Rather than looking at
these functions directly, it will be convenient to simply consider the associated
equilibrium number i∗ of applications that each worker sends.29 Vanishing
costs amounts to i∗ → ∞. Let v(i∗) denote the equilibrium measure of
active firms, η(i∗) =

∫
η(w)dF and %(i∗) = v(i∗)η(i∗) the average probability

of being matched for a firm and a worker in the economy. Let w(i∗) denote

29For the case of multiple equilibria, consider for simplicity the case where all workers
send the same number of applications.
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the average wage conditional on being matched and U∗(i∗) = u∗i∗−ci
∗
(i∗) the

equilibrium utility when i∗ applications are sent, where ci
∗
(·) denotes some

cost function that supports an equilibrium with i∗ applications per worker.
We will show that

Proposition 5.2 The equilibrium outcome converges to the competitive out-
come, i.e. limi∗→∞ v(i

∗) = 1, limi∗→∞ η(i
∗) = limi∗→∞ %(i

∗) = 1 and
limi∗→∞w(i∗) = limi∗→∞ U

∗(i∗) = 1−K.

The structure of the proof uses the intuition for the competitive economy: For
a given measure v of active firms the competitive economy implies that (only)
the long side of the market gets rationed and the short side appropriates
all surplus. We will show that for small frictions (i∗ large) this still holds
approximately. Then it trivially follows that v(i∗) → 1 because otherwise
the firms either generate to much or too little profits to cover entry. Since
nearly all agents get matched, zero profits imply a wage of 1−K.

6 Discussion and Outlook

6.1 Discussion of Main Assumptions

The paper builds on a micro-foundation of frictional markets based on coor-
dination problems between agents. One underlying assumption is that firms
treat similar workers alike and do not condition on applicants’ names, which
seems plausible in larger markets. The other assumption is that workers
cannot coordinate to each apply to a different firm. This is modeled by the
requirement that in equilibrium workers use symmetric strategies, which has
the advantage that a worker does not need to know his ”role” in the applica-
tion process and can deploy the same strategy as everybody else. That such
coordination problems actually arise even in small groups has been shown
experimentally by Ochs (1990) and Cason and Noussair (2003). A deeper
discussion can be found e.g. in Shimer (2005). It is worth mentioning that
anonymity of the worker’s strategy is not a crucial restriction. If firms do not
condition their hiring on workers’ names and workers use symmetric strate-
gies, than all firms with the same wage have to have the same effective queue
length (otherwise workers could get a higher utility by applying to those
firms with the lower queue lengths). This arises in essentially all papers in
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this field, and the anonymity assumption saves some notational complexities
in making the point precise.30

When we allow workers to choose their search intensity by sending multi-
ple applications, new modeling choices arise that are absent in one-application
models. After the application stage every worker is ”linked” to the multiple
firms to which he applied. A firm might be ”linked” to multiple workers who
applied to it (others might only have one worker or no worker at all). Since
each firm can only hire one worker, and each worker can only work for one
firm, any multiple application model has to specify how matches between
firms and workers are formed given those links. It also has to specify the
division of surplus for a given match.

For the allocation the main novelty in this paper is to allow firms to
contact additional applicants when their offer is rejected. The analysis of
this recall process remains tractable because of the assumption that workers
can reconsider their options when they receive a better offer. This is the
case for example when workers receive a job contract and have a certain time
period to sign and return that contract. If they get a better offer during this
time period, they can switch their future employer essentially costlessly. This
has the convenient feature that it takes most strategic considerations out of
the worker’s acceptance decision in the extensive form matching process.

For the division of the surplus this paper assumes wage commitments.
That is, the wage paid in the final period is the posted wage, and firms can-
not counter the proposals of other firms. This again has the advantage of
keeping the matching process tractable.31 It might be a good approximation
in environments in which firms are able to make their offers non-verifiable to
other firms in order to avoid counter-proposals. It might also be reasonable
if individual company (or university) rules do not allow more than the allo-
cated budget for hiring decisions. A final case for this assumption arises in
environments in which market rules require binding job and wage descrip-
tions ahead of the final matching. One example of such an environment is the
market for hospital interns in the United States. Roth (1984) shows that the
algorithm used to match interns with hospitals coincides with the Deferred
Acceptance Algorithm by Gale and Shapley (1962), on which the allocation
in this paper is based. He points out that participating hospitals have to

30See e.g. Shimer (2005) for the infinite economy case. Burdett, Shi and Wright (2001)
demonstrate this property nicely in a finite economy.

31Burlow and Levin (forthcoming) make similar assumptions. See section 6.2.
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specify wages and job descriptions way in advance of the actual matching.
Similar to the assumption in this model, the algorithm only matches those
hospitals and interns that have established contact in a preceding application
and interview process.

6.2 Relation to the Literature

Equilibrium directed search models resemble competitive economies in their
assumption that prices (or wages) are observable to everybody. Yet instead
of a Walrasian Auctioneer that facilitates trade, the agents have to individ-
ually try to find a trading partner. This leads to frictions if agents cannot
coordinate their strategies. Coordination frictions were introduced by Mont-
gommery (1991) and Peters (1991) through the assumption that workers use
symmetric application strategies. The symmetry assumption creates coexis-
tence of unemployment and unfilled vacancies; the wage offers direct more
applications to higher offers. Most models are restricted to one application
per worker. For this case Montgommery already provides an argument for
constrained efficiency induced by the wage announcements, which has been
substantiated in subsequent contributions.32 Burdett, Shi and Wright (2001)
provide a detailed derivation of the equilibrium properties in a finite economy
with homogenous workers and firms. With one application recall is not an
issue because every job offer generates a match due to the workers’ lack of
alternatives. When costs in the model presented here are such that work-
ers apply only once, our equilibrium reduces to the (limit) equilibrium in
Burdett, Shi and Wright. Even with multiple applications the equilibrium
interaction within each segment induced by the workers’ response resembles
the interaction in the one application model, with some adjustments for the
spillovers of one segment onto the other (see section 3.2).

The only other directed search models that allow for multiple applica-
tions are Albrecht, Gautier and Vroman (forthcoming) and Galenianos and
Kircher (2005). Both models consider a fixed number of applications per
worker. The main difference arises in the allocation of workers to firms on
the given network. Both models restrict recall. If a firm has at least one
applicant, it makes exactly one job offer to one applicant. If that applicant
takes another job the firm remains vacant.33 This has the immediate feature

32See the introduction.
33No recall corresponds to T = 1 in the matching stage of this paper.
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that in both models too many applications lead to congestion because too
often several firms offer a job to the same worker and one of the firms re-
mains vacant. Therefore these models cannot converge to the (unconstrained
efficient) competitive outcome with increasing numbers of applications.

Albrecht, Gautier and Vroman also differ in their assumption regarding
the division of surplus. They assume that firms pay at least the posted wage,
but engage in Bertrand competition if two of them offer a job to the same
worker. They consider equilibria with a single posted wage, and show that
the equilibrium wage offer equals the workers’ outside option. This arises
because a higher posted wage does not yield any advantage if the worker
gets two offers. While paid wages are in part higher due to the Betrand
competition, the low offered wage nevertheless leads to excessive entry. This
remains even in an extension in which firms can recall one additional worker.

Galenianos and Kircher is closer to the model considered here in assuming
commitment to the offered wage. Firms make a single offer, and workers take
the highest one. Despite the difference in recall, the equilibrium interaction
also features wage dispersion with the number of wages corresponding to
the number of applications. While the worker’s problem is quite different
in the way that strategies of other agents translate into the relevant hiring
probabilities, the structural trade-offs for each worker are in fact similar,
implying the separation property (lemma 3.1) in both models. This suggests
a robustness of the equilibrium structure to the specifics of the recall process.
The search process in Galenianos and Kircher is inefficient because wage
dispersion leads to different hiring probabilities, but efficient search would
equalize the hiring probabilities. That is, one wage would be optimal.34

This paper incorporates search costs from the outstart, and introduces a
tractable recall process for models with multiple applications. Constrained
efficiency obtains because firms can ”price” their productive input, which
is the queue of effective applications. As explained in section 4, this arises
because workers also care about the effective queue length and adjust it in
response to the wage announcements.

Without recall, firms and workers care about different things. Firms are
interested in effective applications. But workers now care about all appli-
cations, no matter if these are effective or non-effective: If another worker
applies and gets an offer, the job is lost even if that worker takes a better
position. If a firm raises the wage (keeping the other wages constant), work-

34See footnote 27 for the difference in terms of search efficiency.
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ers adjust their applications such that the gross queue length reaches a new
level of indifference. Therefore firms can only ”price” the gross queue length,
but not the effective queue length that they really care about.35 The model
considered here shows that a more efficient allocation on the given network
translates into efficient market interaction in earlier stages of entry, wage
setting and applying.

The recall process that we specify is a limit version of the deferred ac-
ceptance algorithm, introduced by Gale and Shapley (1962) to obtain stable
matchings in the marriage market. Bulow and Levin (forthcoming) also
study non-cooperative wage commitments prior to non-transferable utility
matching. Like most papers on the marriage market, they allow for het-
erogeneities but neglect limited ”links”. Exceptions are Roth and Perason
(1999) and Immorlica and Mahdian (2005), who consider a random network
of links. This study neglects heterogeneities other than through wages, but
treats link formation as an active choice. The equilibrium wage dispersion
leads to a structure on the network that strictly improves the number of
matches over a fully random network.

6.3 Conclusion

This paper incorporates a micro-foundation for search intensity into a di-
rected search framework. Directed search can here be interpreted as strate-
gic but frictional link formation between workers and firms. Search intensity
can be viewed as a choice on the number of links that the worker wants to
obtain. We consider a stable allocation on the network arising from a process
in which firms contact (“recall”) additional applicants if their offer gets re-
jected. Firms’ wage announcements price the network efficiently, given the
workers’ coordination problem. Equilibrium wage dispersion turns out to
be the optimal response of the market to the presence of frictions, since it
allows for a network structure that minimizes coordination failure. While
other work has shown that multiple applications lead to inefficiencies in a
directed search setting when recall is restricted, we show that constrained
efficiency prevails in the presence of strategic search intensity when recall is
allowed.

35This is likely to arise with any finite recall, i.e. finite T : In the final period T , the
firm cares about effective applicants while the workers’ care about all applicants. Since
only few firms make offers in the final period as T becomes large, this effect disappears in
the limit.
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While we focused our attention on efficiency properties, the relative ease
with which search intensity and recall can be incorporated suggests that the
model can be applied to answer wider questions. In a first step we considered
the connection between productivity and search intensity: Lower search costs
(or equivalently higher productivity) imply more search and in the limit the
equilibrium outcome approximates the unconstrained efficient competitive
allocation. Additional interesting questions concern the interaction between
simultaneous and sequential search in a repeated labor market interaction.36

We expect simultaneous search to dominate in markets with long time-frames
between applications and final hiring decisions. The introduction of hetero-
geneity is also left for future research. If only firms are heterogeneous in
terms of productivity, it seems likely that higher productivity firms will of-
fer higher wages, and we expect firms’ wage offers to be clustered with the
number of clusters equal to the number of applications (similar to the mass
points in this analysis). For two-sided heterogeneity the matching process
will have to be adapted to account for the firms preferences over different
workers.

7 Appendix

Properties of the extensive form matching process:
We consider the following matching process. There are T substages. In

the first substage, all firms that have at least one applicant choose one and
make an offer. We assume firms choose their applicant at random. Workers
can accept at most one offer and reject the others. We assume they accept
the most attractive offer weakly larger than zero. In every subsequent period,
any firm who do not have an offer that is currently accepted can make a new
offer. We assume that only those firms that have at least one applicant whom
they did not yet make an offer choose one of these applicants at random and
make them an offer (the others remain vacant). Workers can accept either
one of the new offers or keep accepting a non-rejected offer from an earlier
period. We assume they accept the highest offer weakly greater zero.

First observe that the assumed behavior about the firm’s decision to make
an offer and the worker’s decision to accept or reject is individually optimal

36By an approach similar to the extension in Galenianos and Kircher (2005) one can
show that with exogenous separations the steady-state of a repeated interaction looks
similar to the one-shot interaction analyzed here.
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given the other agents’ behavior. Since workers are identical and we have
assumed that workers use symmetric application strategies, choosing at ran-
dom about whom to make an offer next is an optimal strategy for firms. It
is also optimal for workers to always accept higher offers over lower offers:
It does not affect the offer decisions of firms with even higher wages, and so
does not preclude any chance of receiving an even better offer in the future.

To discuss convergence for T → ∞, consider some network that formed
from the agents strategies {φ, F,γ,G} (for this notation see section 2.2 and
section 5.1). Let N be the maximum number of applications that workers
send (N = 2 in the basic setup, some finite N ∈ N in the extended setup).
The focus on workers strategies that are symmetric and anonymous signifi-
cantly simplifies the analysis. It implies that gross applications are randomly
distributed to firms at a given wage. Together with the assumption that the
agent space is sufficiently large such that each choice is undertaken by a con-
tinuum of agents leads in our specification to a Poisson distribution of gross
applications to firms at each wage level. It also allows us to apply the law
of large number convention to each wage level, i.e. at each wage the popu-
lation share of currently matched and unmatched firms and workers develop
deterministically. Moreover, note that the process ”rolls forward”, i.e. the
exact end date does not influence the evolution of the system.

We will show that the process converges to a solution in which almost
all agents are matched stably. We call a firm stable at the beginning of a
given period if one of two conditions holds: Either it is currently matched to a
worker whose other applications are with firms that offer a weakly lower wage
or that offer a higher wage but are currently matched; or it is unmatched and
already offered the job to all its applicants. We call the measure of stable
firms at the beginning of subperiod t st. Similarly, we call workers stable if
they have not applied to any firm with a strictly higher wage that is currently
vacant (unemployment is coded as wage zero), and call their measure at the
beginning of period t swt . We will show convergence in the following sense:
st → v = φV and sw

t → 1. Note that our notion of stability is a local
concept involving only the immediate partners in the interaction. Yet the
convergence implies that we attain (weak) stability globally if we remove a
small (and in the limit measure zero) set of agents from the economy.

To provide some intuition, consider first the case where only a discrete set
of wages is offered by workers. At the highest wage let λH be the ratio of gross
applications to firms. Then the fraction of highest wage firms that are stable
at the beginning of the first period is 1 − e−λH , as they did not receive any
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applications. The other highest wage firms make an offer. They either get
matched (and then stay matched), run out of applicants or keep proposing
the job to additional applicants. If each worker only sends one application
to the highest wage, all high wage firms are stable after the first subperiod.
Even if not, the fraction of highest wage firms that are not stable in period
t is bounded above by 1 −

∑t
τ=1(λ

τ
He

−λH/τ !) by Poisson matching (as this
is the fraction that has applicants left even if no worker ever accepts). This
fraction converges to zero. Since for t large nearly all firms at the highest
wage are stable, at the second highest wage those firms that are matched
are with very high probability stable (because only the highest wage firms
could attract the worker away, and most of them are stable). And those
second-highest-wage firms that are unmatched propose until they run out
of applicants or get matched themselves. If each worker sends at most one
application to each of the highest two wages, all firms at the second highest
wage are matched after the second subperiod. In any case the fraction of non-
stable firms at this wage goes to zero because they exhaust their applicants
or get matched with a stable worker. By induction this applies to all offered
wages.

Induction does not work with a continuum of offered wages. Nevertheless
we can show convergence. It is still straightforward to show that the measure
of proposals per period converges to zero. Let S̄t be the set of currently
unmatched firms at the beginning of period t that still have applicants to
whom they did not propose yet, i.e. the set of firms that propose in period t.
Denote its measure by γt. Since there are less applications than proposals,
i.e.

∑∞
τ=1 γτ ≤ N , we have

∑∞
τ=t γτ →t→∞ 0 and γt → 0. Let at denote the

measure of new acceptance in period t. Since there are less new acceptances
than offers, we also have

∑∞
τ=t aτ →t→∞ 0 and at → 0.

That means that almost all unmatched firms have no applicants left to
propose to when t becomes large. We will show that this implies st → v.
Assume not, i.e. st 9 v. Then there exists δ > 0 and subsequence {tm}∞m=1

such that sm := v− stm > δ ∀m ∈ N, where we denote by sm the measure of
unstable firms. Of these firms only the subset S̄tm is unmatched. Since their
measure γtm converges to zero, the measure of unstable but matched firms
has to be greater than δ for all m > M for some M ∈ N, and all these firms
have positions filled with unstable workers who also applied to firms in S̄tm
and would rather take a job there. Call the set of these workers S̄1

m. We will
show a contradiction because all these workers apply to the few firms in S̄tm ,
therefore firms in S̄tm get matched quickly and therefore a large fraction of
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the S̄1
m workers (who were unstable before) then become permanently stable.

Call the set of applications which make the S̄1
m workers unstable ”un-

stable applications (in tm)”. The measure of unstable applications in tm is
obviously larger than δ for all m > M . Let S̄2

m ⊆ S̄tm denote the subset
of firms that hold at least one of the unstable applications (in tm). These
firms hold on average some number, say xm, of unstable applications. Let
S̄3
m ⊆ S̄2

m be the subset of firms that hold at least xm/2 unstable applica-
tions. Note that any fraction α of the firms in S̄3

m receives at least αδ/2
unstable applications. Of these S̄3

m firms, we consider the half which have
the least gross applications and call it S̄4

m. They receive at least δ/4 unstable
applications. Of these S̄4

m firms, we consider the half which have the highest
probability of hiring an S̄1

m worker permanently, conditional on making an
offer to him, and call it S̄5

m. Firms in S̄4
m (and thus in S̄5

m) have a proba-
bility of making an offer to an S̄1

m worker of at least (δ/4)/(2N), since each
fraction α′ of these firms have at least (δ/4)α′ unstable applications and at
most 2Nα′ other applications (otherwise the firms in S̄3

m\S̄4
m would hold a

measure of unstable applications greater than N , but at most a measure of
N applications is sent). Let M satisfy

∑∞
τ=M aτ ≤ δ/8. A firm in S̄5

m that
makes an offer to a worker in S̄1

m has a probability larger than 1/2 that its
offer is accepted permanently. Therefore at least a fraction δ/(16N) of S̄5

m

firms gets matched permanently in period tm. Since each fraction α′′ of S̄5
m

firms receives at least (δ/8)α′′ unstable applications, at least (δ/8)(δ/(16N))
unstable applications are no longer unstable because they are now with firms
that are permanently matched. Since in each period tm, m > M , we perma-
nently ”loose” a strictly positive measure of unstable applications, we would
need an infinite measure of unstable applications to sustain stm > δ ∀m > M ,
yielding the desired contradiction. Therefore st → v.

Similarly, swt → 1, because otherwise we would again have a set of unsta-
ble workers similar to S̄1

m that applies to the few firms in S̄tm , and the same
argument applies.

This establishes convergence. In the limit this implies that almost all
firms get matched only when the higher wage firms to which their applicants
applied are matched, i.e. we can remove firms ”top-down” from the market.
Since the random application and offer process at each wage implies that all
firms at a given wage have equal chance of being the first to propose to a
worker that applied to both, the process works as if we select one at random
to make the offer first.
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Proof of Proposition 3.1:
For wages strictly below u1 the result is immediate because the Market

Utility cannot be obtained. At wage w = u1 µ(w) > 0 would imply that the
Market Utility cannot be reached. Wages strictly above u1 have µ(w) > 0, as
otherwise p(w)w = w > u1 and workers would receive more than the Market
Utility when applying there.

We have shown that it is optimal to send low applications to wages below
w̄, which implies that (9) has to hold for all wages in (u1, w̄] in order to
provide the Market Utility. u1 ≡ supw∈V p(w)w since the optimum has to be
obtained at some wage that is actually offered.

For γ2 > 0, it is optimal to apply with the high application to wages above
w̄, and the effective queue length is therefore governed by (10). Again the
optimum is attained for wages that are actually offered. The effective queue
length has to be continuous at w̄, as otherwise the job finding probability
p(w) for workers would be discontinuous and some wage in the neighborhood
of w̄ would offer a utility different from the Market Utility. Therefore w̄ is
determined as the wage where both (9) and (10) hold.

For γ2 = 0, all wages above u1 that are in the offer set V have to con-
form to (9) because they receive single applications. So w̄ ≥ supV . But
if a higher (not offered) wage would be offered, workers might prefer to
send a second application there rather than relocating their first one. As-
sume the queue length would be governed by (9) for all wages in (u1, 1]. If
p(w)w+(1−p(w))u1− c2 ≥ u1, workers would like to send a second applica-
tion. Therefore w̄ is the smallest wage for which that inequality holds (but at
most 1). At higher wages the inequality would be strict, i.e. workers would
get a utility higher than the Market Utility by sending a second application.
To fulfill the Market Utility Assumption the additional utility of the second
application has to equal its cost, so u2 − u1 = c2 has to hold at high wages
and the effective queue length is again governed by (10). Q.E.D.

Proof of Proposition 3.2:
Proof: Consider a (candidate) equilibrium in which all active firms offer

wage w∗ ∈ (0, 1). Almost all applications are sent to w∗ because of (3) and
worker optimality 2b). w∗ > 0 then implies u1 = p(w∗)w∗ > 0. Moreover
w∗ = w̄. If not, i.e. w̄ > w∗ or w̄ < w∗, then a mass of applications would be
sent strictly above or below the offered wage, yielding a contradiction. Then
profits for wages above w∗ are given by (15), for wages in [p(w∗)w∗, w∗] by
(14), and for wages below p(w∗)w∗ profits are zero.
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The left derivative of the profits with respect to the queue length at
µ̄ = µ(w∗) is obtained by the differentiating (14) to get π′−(µ̄) = e−µ̄ − u1,
and the right derivative by differentiating (15) which yields π′+(µ̄) = e−µ̄(1−
u1)− (u2 − u1). In equilibrium it needs to hold that firms will neither want
to increase their wage nor decrease their wage. This leads to π′+(µ̄) ≤ 0 ≤
π′−(µ̄). But π′+(µ̄) ≤ π′−(µ̄) implies

−e−µ̄u1 − (u2 − u1) ≤ −u1. (30)

For a single market wage it holds that u2 = u1 + (1 − p̄)u1 with p̄ = 1−e−µ̄

µ̄
.

We can therefore write u2 − u1 = (1− p̄)u1. Then (30) reduces to

(1− e−µ̄ − µ̄e−µ̄)u1 ≤ 0. (31)

We know that u1 > 0. It is easily shown that the term in brackets is strictly
positive for any µ̄ > 0, yielding the desired contradiction.

For the extremes, consider w∗ = 1 first. At w∗ = 1 firms make zero
profits. Since the effective queue length at wages close to 1 is positive by
(12), wages below one provide profitable deviations. Now consider w∗ = 0.
Equilibrium profits are strictly smaller than one because not all firms get
matched. (13) implies that at wages w′ > 0 firms can hire for sure, i.e. the
effective queue length at wages above zero is infinity. Therefore, small in-
creases in the wage are profitable. Q.E.D.

Proof of Lemma 3.2, part 1:
Instead of equations (22) and (23), we now have

1− e−µ1 − µ1e
−µ1 = π∗, (32)

(1− e−µ2 − µ2e
−µ2)(1− e−µ1) = π∗, (33)

for some endogenous profit π∗. Consider π∗ as a free parameter. For a given
π∗ (32) and (33) uniquely determine the measure v̂1 and v̂2 of firms in the
low and high group. That is, π∗ is supported by a unique measure v̂ = v̂1+ v̂2

of firms. We want to show that there is only a single π∗ that is supported by
v̂ = v, which then establishes uniqueness v1 and v2 (and thus of F as in part
2). By (32) µ1 strictly increases in π∗. Equal profits at high and low wage
firms implies

1− e−µ2 − µ2e
−µ2 = 1− µ1e

−µ1/(1− e−µ1), (34)
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which implies that µ2 is strictly increasing in π∗, since µ1e
−µ1/(1 − e−µ1) is

strictly decreasing in µ1. Since µ2 = γ2/v̂2, v̂2 is strictly decreasing in π∗.
We have proven the lemma if we can show that also v̂1 + v̂2 is decreasing in
π∗. Since µ1 = (γ1 + γ2 − γ2p2)/v̂1 we get ∂µ1/∂π

∗ = −[µ1/v̂1][∂v̂1/∂π
∗] −

(1/v̂1)(1 − e−µ2 − µ2e
−µ2)[∂v̂2/∂π

∗]. By the prior argument this derivative
has to be strictly positive, which together with µ1 > 1 − e−µ2 − µ2e

−µ2 im-
plies ∂v̂1/∂π

∗ + ∂v̂2/∂π
∗ < 0. µ1 > 1 − e−µ2 − µ2e

−µ2 holds because it is
by (34) equivalent to µ1 > 1 − µ1e

−µ1/(1 − e−µ1), which is equivalent to
1 > (1−e−µ1)/µ1. The latter is true for all µ1 > 0. Since for π∗ → 0 we have
v̂ →∞ and for π∗ → 1 we have v̂ → 0, there is exactly one π∗ supported by
a measure v̂ = v of firms. Q.E.D.

Proof of Proposition 4.2:
For γ0 = 1 or v = 0, the result is trivial as matches are always zero. When

workers send one application (γ2 = 0), one group of firms with equal hiring
probability is optimal because of strict concavity of the matching probability
1− e−λ (this is a special case of Shimer (2005)).

For γ2 > 0 we will prove that two groups of firms of which one receives
all high applications and the other all low applications will be sufficient to
achieve the same number of matches as any other optimal wage setting and
application behavior {F,G}.

Take {F,G} as a starting point. Consider some wage w ∈ V ∪ W with
queue length µ(w) (other wages do not contribute to the matching). By
assumption a continuum of firms offer this wage, and all face the same queue
length. We will split the firms at this wage into two subgroups, and reshuffle
the application behavior of the workers that send applications to this wage,
such that their high application is randomly sent to some firm in the first
and their low applications to some firm in the second subgroup. Workers
that send both applications to w send one to each group, and accept offers
from the first over offers from the second. We leave the application behavior
towards other wages unchanged. We will show that for an appropriate choice
of the relative size of the subgroups the overall matching is unchanged. Let
λh(w) denote the ratio of workers that only send their high application to
wage w to firms offering w under {F,G}. Let λb(w) denote the worker/firm
ratio for workers that send both applications to w. Let (1− ψ̄)λl(w) be the
ratio of worker/firm ratio for workers who send their low or single application
to w and do not get a strictly better offer. If {F,G} is optimal, then neither of
these ratios is infinity, and not all of them are zero (except possibly for some
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wages that attract a zero measure of agents, which we can neglect without loss
of optimality). If only λh(w) (respectively (1− ψ̄)λl(w)) is strictly positive,
then we can trivially avoid to change the matching by having a zero fraction
of the firms in the second (resp. first) subgroup. Therefore consider the case
where at least two of the ratios are strictly positive.

First, we will show that if the two subgroups of firms face some identical
effective queue length µ′, then µ′ = µ(w). In this case we clearly have not
changed the overall matching in the economy. The prove is by contraposition:
Assume µ′ > µ(w). That means that strictly more firms then before get
matched at wage w. On the other hand it becomes strictly harder for workers
to get an offer, and since we did not change the application behavior at
other wages, strictly less workers get matched at wage w. Since workers and
firms are matched in pairs, this yields the desired contradiction. Similarly
µ′ < µ(w) can be ruled out.

Next, we will show that we can indeed equalize the effective queue lengths
for both subgroups. Let the fraction of firms in the first subgroup be d.
Then the effective queue length for these firms is µh(d) = λh(w)+λm(w)/2

d
,

because all applications are effective. For those firms in the second group

it is µl(d) = (1−ψ̄)λl(w)
1−d + 1

2
1−e−µh(d)

µh(d)
λb(w)
1−d . For d close to zero µh(d) > µl(d),

while for d close to 1 µh(d) < µl(d). By the intermediate value theorem it is
possible to equalize both at some d(w).

This shows that for any wage we can conceptually split the firms into some
that only receive high and some that only receive low applications without
altering the overall matching. Doing this for all wages, we are left with a
group of firms comprising all subgroups that only receive high applications
(and have d(w) > 0), and a group of firms comprising all subgroups that
only receive low applications (and have d(w) < 1). This resembles two-group
matching except for the fact that firms in the same group but from different
subgroups may still face different ψ’s and λ’s.

Consider low (or single) application firms first. Consider two subgroups,
one with matching probability 1 − e−(1−ψ)λ, and one with 1 − e−(1−ψ′)λ′ .
From the larger of the subgroups select a subset of firms with equal size to
the smaller subgroup. We will show that in an optimal allocation both have
the same queue length by shifting firms from one group to the other while
leaving the applications that each group receives the same. Let d be the
fraction of firms in the first subgroup, and γ and γ′ the gross queue length

44



per group. Then the average matchings across both groups is given by

d(1− e−(1−ψ) γ
νd ) + (1− d)(1− e−(1−ψ′) γ′

ν(1−d) ). (35)

Since both subgroups have a strictly positive effective queue length, it cannot
be optimal to place all firms in only one subgroup (as otherwise few firms
placed in the other would be matched nearly for certain). Therefore, to
achieve optimal matching d is characterized by the first order condition

ν[(1− e−µ)− (1− e−µ
′
)− µe−µ + µ′e−µ

′
] = 0, (36)

where µ = (1−ψ) γ
νd

and µ′ = (1−ψ′) γ′

ν(1−d) . Since 1− e−µ−µe−µ is strictly

increasing in µ (and similar for µ′), we have µ = µ′ in the optimal allocation
of firms. That means that almost all low or single application firms have the
same effective queue length. Reshuffling all effective applications randomly
over all firms in the group that receive low or single applications without
changing the applications to other firms does therefore not change the overall
matching, and we have for this group matching as for the non-preferred group
under two-group search.

By this construction, for low and single application firms only the average
matching probability at high application firms matters. If we keep the size
of low and single application firms constant and leave the gross queue length
for them unchanged, but match more workers already at high wage firms,
this clearly improves the matching (despite some negative externality on
the low or single application firms). By the strict concavity of 1 − e−λ the
average matching probability at high wage firms is maximized if the gross
queue length (and thus the effective queue length) is identical for all of them.
Therefore the optimal allocation can be achieved by having one group of high
wage firms to which workers randomly send their high application, which
corresponds to the preferred group in two-group-search.

By the two-group-efficiency of the equilibrium matching, the equilibrium
matching is constrained efficient. Q.E.D.

Proof of Proposition 4.3:
Given v and γ with γ2 > 0, consider two tuples {F ′,G′} and {F ′′,G′′}

that lead to equal hiring probabilities η′ respectively η′′ for all firms. Similar
to the argument in the previous lemma η′ = η′′ = η̄, since otherwise one
tuple would match more workers but fewer firms than the other.
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We can again split the firms into two groups, called first and second, all
workers send their high application to the second and their low or single appli-
cation to the first, and accept offers from the second over those from the first.
Let d be the fraction of firms in the second group. Again µ2 = λ2 = γ2/(vd)
and µ1 = [1 − γ2p2/(γ1 + γ2)]λ1 = [γ1 + γ2 − γ2(1 − e−λ2)/λ2]/(v(1 − d)).
Since for d ≈ 0 clearly µ2 > µ1 and for d ≈ 1 µ2 < µ1, there exists a d̂ such
that effective queue length and thus the hiring probability of both groups is
equalized. It is easy to show that µ1 − µ2 is strictly increasing in d around
µ2 ≈ µ1, so that d̂ is unique. This two-group process has µ1 = µ2, but the
optimal two group process fullfils (27), which requires µ1 < µ2, i.e. a strictly
smaller preferred group. Q.E.D.

Explanation to equation (7′):
Consider a particular worker who applies to h firms that offer wage w. For

simplicity assume he applies to no other firms. Conditional on the fact that a
firm makes an offer to the worker sometime during the recall process, we want
to determine the probability σ that this firm hires the worker. The uncondi-
tional probability that the worker does not get any offer is (1− p(w))h, and
so the unconditional probability that he gets an offer is ς = 1− (1− p(w))h.
The unconditional probability of getting an offer from any specific firm is ς/h.
This unconditional probability can also be written as the probability of hiring
conditional on making an offer multiplied by the unconditional probability of
making an offer. So we have σp(w) = ς/h, or σ = [1− (1− p(w))h]/[hp(w)],
which explains the formula used for equation (7′). The argument is based on
insights from Burdett, Shi and Wright (2001).

Proof of Proposition 5.1:
We start out by fixing γ and denote by î the highest integer for which

γi > 0; i.e. î is the maximum number of applications that workers send.
By straightforward extension of the analysis of the workers’ best response
in section 3 it can be established that the workers’ best response to a wage
offer distribution is now given by î intervals such that every worker sends ex-
actly one application to each interval. More specific, let the utility from
sending the first i applications optimally be defined recursively by ui ≡
maxw∈[0,1] p(w)w + (1 − p(w))ui−1 for all i ∈ {1, 2, ...̂i}, with u0 ≡ 0. Then
for any wage offer distribution the effective queue length is characterized by
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(u1, .., un, w̄0, ..., w̄N) such that

p(w) = 1 ∀w ∈ [0, w̄0], and (37)

p(w)w + (1− p(w))ui−1 = ui ∀w ∈ [w̄i−1, w̄i] ∀i ∈ {1, ..., N}, (38)

where w̄0 = u1 and w̄N = 1. The indifference implies w̄i = ui−1 + [ui −
ui−1]

2/(2ui − ui−1 − ui+1) for intermediate i ∈ {1, ..., î}. Clearly w̄î ≥ supV ,
because any wages that are actually offered receive applications from workers
that at most send î applications. At higher (not offered) wages, workers
might start sending additional applications. The Market Utility Assumption
implies that they cannot receive more than the Market Utility, which implies
that ui − ui−1 = ci for i > î. The indifference then yields w̄i = ui−1 + [ui −
ui−1]

2/(ui − ui−1 − ci+1). If this is in [0, 1] then this gives the appropriate
boundary, otherwise w̄i = 1 and workers would strictly refrain from sending
this many applications.

Using (38), we can rewrite the profit function for a firm who offers a wage
w ∈ [w̄i−1, w̄i] with w̄i−1 < 1 as

π(µ) = (1− e−µ)(1− ui−1)− µ(ui − ui−1), (39)

where µ = µ(w). The logic is similar to (15). If w̄i−1 = 1 the profit is trivially
zero. Proposition 3.2, stating that there exists no equilibrium in which only
one wage is offered, can now easily be shown with similar techniques whenever
γi > 0 for some i > 1. By a similar argument it is straightforward that at
least i wages have to be offered in equilibrium whenever γi > 0. Given that
(39) is strictly concave, it is also immediate that all firms within the same
interval will offer the same wage, yielding exactly î wages when workers send
at most î applications.

We call the group of firms that ends up offering the i’th highest wage as
group i and will index all their variables accordingly. It will be convenient

to denote by Γi =
∑î

k=i γk the fraction of workers who apply to at least
i firms. Then at wage i the probability of retaining an applicant is (1 −
ψi) =

∑î
j=i

γj

Γi
[
∏j

k=i+1(1 − pk)], since a fraction γj/Γi of applicants sends j

applications and does not get a better job with probability
∏j

k=i+1(1 − pk).
The effective queue length at wage i is given by µi = (1 − ψi)λi, where
λi = Γi/vi is the gross queue length. For i < î the unique offered wage in
[w̄i−1, w̄i] is obtained by the first-order-conditions of (39), which are given by

ui − ui−1 = e−µi(1− ui−1). (40)
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Therefore (39) can be rewritten as

πi = (1− e−µi − µie
−µi)(1− ui−1). (41)

Free entry implies that πi = K, which together with (40) implies that µi = µ∗i
and ui = u∗i as defined above. By a similar argument as for (22) and (23)
the condition πi = K defines for a given vector γ of applications the unique
measure vi of firms in each group, and the wage wi = u∗i−1 + (u∗i − u∗i−1)/pi
that each group of firms offers (when i < î). Note that the equal profit
condition πi = πi−1 together with (40) implies

1− e−µi − µie
−µi = 1− µi−1e

−µi−1

1− e−µi−1
, (42)

which corresponds to (34).
To determine the equilibrium, only γ has to still be determined. Recall

that i∗ denotes the number of applications for which ci∗ < u∗i∗ − u∗i∗−1 and

ci∗+1 > u∗i∗+1 − u∗i∗ . Consider first the case where γ is such that î < i∗.
Since profits are determined by first order conditions, there cannot be any
wage in [0, w̄î] that offers higher profits. Therefore a deviating firm has to
consider a deviation within (w̄î, 1). In this region the effective queue length
is (at least) given according to p(w)w + (1 − p(w))u∗

î
= u∗

î
+ cî+1 (it may

even be larger if workers send two or more additional applications to not-
offered high wages). Therefore the profit for a deviating firm is (at least)
π(µ̂) = (1−e−µ̂− µ̂e−µ̂)(1−u∗

î
), where µ̂ is given by the first order condition

cî+1 = e−µ̂(1−u∗
î
). Since cî+1 < e

−µ∗
î+1(1−u∗

î
), we have µ̂ > µî. This implies

π(µ̂) > (1−e−µ
∗
î+1−µ∗

î+1
e
−µ∗

î+1)(1−u∗
î
) = K, where the equality follows from

the definition of µ∗
î+1

. The optimal deviating wage can indeed be shown to
lie above w̄î and therefore the deviation is profitable.

Clearly also î > i∗ cannot be an equilibrium, because for workers who
send î applications the marginal costs of the last application do not cover its
marginal benefit.

For the case where î = i∗ all workers want to send exactly i∗ applications.
We will show that w̄i∗ = 1, which implies that firms do not have a profitable
deviation, which establishes the existence and uniqueness result. If w̄i∗ = 1,
it means that the queue length in [w̄i∗−1, 1] is determined by p(w)w + (1 −
p(w))u∗i∗−1 = u∗i∗ . Note that is implies p(1) = [u∗i∗−u∗i∗−1]/[1−u∗i∗−1] = e−µ

∗
i∗ ,

where the second equality follows from the definition of µ∗i∗ . Determining
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the effective queue length this way is in accordance with the Market Utility
Assumption if and only if it is not profitable to send an additional application.
If an additional application is sent, by a logic similar to lemma 3.1 it is
optimal to send it to the highest wage. The marginal benefit would be
p(1) + (1− p(1))u∗i∗ − u∗i∗ , or e−µ

∗
i∗ [1− u∗i∗ ]. Since ci∗+1 < e−µ

∗
i∗+1 [1− u∗i∗ ] and

µ∗i∗+1 > µ∗i∗ it is not profitable for workers to send another application to a
deviant firm. Therefore w̄i∗ = 1 is indeed the correct specification.

By similar arguments it is easy to see that for ci∗ = u∗i − u∗i−1 equilibria
exist if and only if γ has γi∗ + γi∗−1 = 1, γi∗ ∈ [0, 1]; i.e. workers randomize
over i∗ and i∗ − 1 applications.

To show constrained efficiency, we will first consider search efficiency for given
γ and v. Let î still denote the maximum number of applications that workers
send. Consider î groups of firms, with div firms in each groups, which are
ordered by their attractiveness for workers. That is, a worker who applies
to i firms applies once to each of the lowest i groups and accepts an offer
from a higher group over an offer from a lower group. We call an allocation
of firms across groups that leads to the maximum number of matches î-
group-efficient. Compare two adjacent groups i and i− 1 with total measure
ν = vi + vi−1. We show that the only efficient way of dividing this measure
up between the two groups is the equilibrium division. The maximal total
number of matches within these groups is given by

max
d∈[0,1]

M(d) = νd(1− e−µi) + ν(1− d)(1− e−µi−1). (43)

It can be shown that a boundary solution cannot be optimal, as it means
that one application is waisted. Noting that (1 − ψi−1) = γi−1/Γi−1 + (1 −
ψi)(1− pi)Γi/Γi−1 we can write µi = (1−ψi)λi and µi−1 = [γi−1/Γi−1 + (1−
ψi)(1− pi)Γi/Γi−1]λi−1. The first derivative is then

∂M(d)

∂d

1

ν
= 1− e−µi − (1− e−µi−1) + e−µid(1− ψi)

∂λi
∂d

+ e−µi−1(1− d)

[
(1− ψi−1)

∂λi−1

∂d
− Γi

Γi−1

(1− ψi)
∂pi
∂d

λi−1

]
We can use similar substitutions as for (27), with the adjustment that now
∂µi/∂d = −µi/d = −νµ2

i /[(1− ψi)Γi], to show that the last term in the first
line equals −µie−µi , and the second line reduces to e−µi−1 [µi−1 − (1− e−µi −
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µie
−µi ]. Therefore we again have

∂M(d)

ν∂d
= (1− e−µi − µie

−µi)(1− e−µi−1)− (1− e−µi−1 − µi−1e
−µi−1) = 0.(44)

The first order condition implies equality with zero. For given ν this uniquely
characterizes the optimal interior d, since similar substitutions as above yield
∂2M/∂d2 = −ν[µ2

2e
−µ2(1−e−µ1)/d+e−µ1(1−e−µ2−µ2e

−µ2−µ1)
2/(1−d)] < 0.

It is straightforward to show that for a given measure v of firms there exists
an î-group efficient allocation across all î groups. A similar construction as in
the proof of proposition 4.2 shows that î groups are sufficient to achieve the
constrained optimal search outcome. A similar construction as in proposition
4.3 shows that the outcome of a random process (i.e. one wage) could also
be achieved with î groups, but the division of firms across groups would not
be optimal. More generally, such an argument establishes that the optimal
allocation cannot be achieved with less than î wages given the number of
applications summarized in γ.

It is very tedious to analyze whether (44) - which coincides with profit
equality as in (42) - determines the allocation of firms to the î groups uniquely
for any v. Therefore we will not consider the efficiency of search in the case
without free entry. We will establish that the overall entry of firms and
the measure of firms in each group under equilibrium conditions 1a), 1b),
2a) and 3) yields optimal entry and optimal search simultaneously, taking γ
as given. The important insight from the previous analysis of constrained
optimal search is that (44) has to hold in the optimal search outcome for
all i ∈ {2, ..., î}, and that we can apply the envelop theorem. Let d(v) =
(d1(v), d2(v), .., dî(v)) be the fraction of firms in each of the î groups under
constrained optimal search given v and γ. Again let M∗(γ, v,d(v)) denote
the constrained efficient number of matches given v and γ. Similar to (28)
the objective function is given by maxv≥0M

∗(γ, v,d(v))− vK. When î > 0,
then K < 1 ensures that the optimal solution is in the interior of [0, V ]. We
will show that the first order condition uniquely determines the solution and
corresponds to the free entry condition.

By the envelope theorem the impact of a change of the fraction di(v)
of firms in each group on the measure of matches can be neglected, i.e.
∂M∗

∂di

∂di

∂v
= 0 at the î-efficient di. We get as first order condition

∂M∗(γ, v,d)/∂v = K, (45)
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where d = d(v). Writing M∗(γ, v,d) = [1−
∑î

i=1[γi
∏i

j=1(1− pj)] we have

∂M∗(γ, v)

∂v
=

î∑
i=1

[
γi

i∑
j=1

[∂pj
∂v

∏
k≤i
k 6=j

(1− pk)
]]

=
î∑
i=1

[
∂pi
∂v

Γi(1− ψi)
∏
k<i

(1− pk)

]
, (46)

where the second line is obtained by rearranging the terms for each ∂pi/∂v.
To simplify notation, define the partial sum

ξi′ =
N∑
i≥i′

[
∂pi
∂v

Γi(1− ψi)
∏
k<i

(1− pk)]. (47)

Since pî = (1−e−µî)/µî we have ∂pî/∂v = −(1/µ2
î
)(1−e−µî−µîe−µî)(∂µî/∂v).

Since µî = γî/(dîv), we have ∂µî/∂v = −γî/(dîv2) = −dîµî/γî. So we get
∂pî/∂v = −dî(1 − e−µî − µîe

−µî)/γî. Noting that Γî(1 − ψî) = γî, we have
established that

ξî = dî(1− e−µî − µîe
−µî)

∏
k<î

(1− pk). (48)

By induction we can establish the following lemma, which we will prove sub-
sequently because it would distract from the argument at this point.

Lemma A1 For all i it holds that

ξi = (
N∑
k=i

dk)(1− e−µi − µie
−µi)

∏
j<i

(1− pk). (49)

This implies that ξ1 = 1 − eµ1 − µ1e
−µ1 . The first order condition ξ1 = K

uniquely defines µ1, and corresponds to the free entry condition of the lowest
wage firms. By (44) (or respectively by (42)) it also determines µi uniquely
for all i ∈ 2, ..., î, which in turn determines vi uniquely for all i ∈ 1, ..., î.
Thus, the measure of firms in each group under equilibrium conditions 1a),
1b), 2a) and 3) coincides with the measure of firms in each group implied by
the first order conditions for optimal entry (incorporating optimal subsequent
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search). Since there is only one allocation fulfilling the first order conditions,
and boundary solutions are not optimal, this again characterizes the global
maximum. Thus equilibrium entry and search is constrained optimal given
γ.

Finally, when we endogenize γ, again note that the number of applications
of other workers in equilibrium is not important for the marginal benefits of
each individual worker, which are always u∗i − u∗i−1. Therefore again the
decision on the number of applications is constrained efficient, establishing
constrained efficiency overall. Q.E.D.

Proof of Lemma A1:
We are left to show that the following holds for all i ∈ {1, ..., î− 1}:

ξi+1 = (
î∑

k=i+1

dk)(1− e−µi+1 − µi+1e
−µi+1)

∏
j<i+1

(1− pk). (50)

It clearly holds for i = î − 1 by (48). Now assume it holds for some i. We
will consider ξi. We know that

ξi = ξi+1 + Γi(1− ψi)
∂pi
∂v

∏
k<i

(1− pk). (51)

The second summand can be written as

∂pi
∂v

∏
k<i

(1− pk) = −1− e−µi − µie
−µi

µ2
i

[
∂µi
∂v

∏
k<i

(1− pk)] (52)

Since µi = λi(1 − ψi) = λi(
∑î

j=i
γj

Γi
(
∏j

k=i+1(1 − pk))) we can write the term
in square brackets in (52) as

∂µi
∂v

∏
k<i

(1− pk) = −Γi(1− ψi)

div2

[∏
k<i

(1− pk)

]
+ ξi+1

λi
Γi(1− pi)

= − diµ
2
i

Γi(1− ψi)

[∏
k<i

(1− pk)

]
+ ξi+1

λi
Γi(1− pi)

.

Observing that 1
µi

(1− e−µi −µie−µi) = pi− e−µi , we can substitute the prior

equation into (52) and multiply by Γi(1− ψi) to get

Γi(1− ψi)
∂pi
∂v

∏
k<i

(1− pk) =
pi − e−µi

1− pi
ξi+1 + di(1− e−µi − µie

−µi)
∏
j<i

(1− pj).
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We can substitute this into (51), and use (50) and the property of î-group-
efficient search in (42) to obtain

ξi = (
N∑
k=i

dk)(1− e−µi − µie
−µi)

∏
j<i

(1− pk). (53)

Q.E.D.

Proof of Proposition 5.2:
First we show that for i∗ →∞ the (weakly) shorter side of the market gets

matched with probability approaching 1. Since equilibrium search is always
more efficient than a process of random applications and acceptances, we
will show this for the latter. As i∗ → ∞ it cannot happen that workers
and firms both are matched with probabilities bounded away from one. If
that were the case, than some fraction α > 0 of firms would always remain
unmatched. But then the chance that a worker applies to such a firm with any
given application is α, so that the probability that he applies to such a firm
with at least one of his applications converges to 1, yielding a contradiction.
With unequal sizes it is obviously the shorter side whose probability of being
matched converges to one; with equal sizes the probability of being matched is
the same and agents from both sides get matched with probability converging
to one.

For the next arguments, recall that the marginal utility gain (excluding
the marginal application cost) of the i∗’th application, given by u∗i∗ − u∗i∗−1,
converges to zero as i∗ → ∞. We will use this to establish the limit for the
average wage if firms are either on the long or on the short side of the market.

Case 1: We will show that w(i∗) → 0 if firms are strictly on the short
side of the market. Assume there exists a subsequence of i∗’s such that
v(i∗) < 1 − ε for all i∗ and some ε > 0. That implies %(i∗) < α for some
α < 1. If w(i∗) 9 0, then there exists a subsequence such that w(i∗) → ω > 0
and π(i∗) → 1 − ω (since η(i∗) → 1). Now consider a deviant firm that
always offers wage w′ = ω/2. As workers send more applications, the hiring
probability for the deviant has to converge to 1. This is due to the fact that
for workers the marginal utility of sending the last application converges to
zero, which implies that the probability of getting the job at the deviant firm
has to become negligible as otherwise each worker would like to send his last
application there to insure against the 1− α probability of not being hired.
With the hiring probability approaching 1 the profit of the deviant converges
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to 1− ω/2, i.e. the deviation is profitable. Thus it has hold that w(i∗) → 0.
Case 2: We will show that w(i∗) → 1 if firms are strictly on the long

side of the market. Assume there exists a subsequence of i∗’s such that
v(i∗) > 1 + ε for all i∗ and some ε > 0. In this case η(i∗) < α for some
α < 1 and all i∗. If w(i∗) 9 1, then there exists a subsequence such that
w(i∗) → ω < 1 and π(i∗) → π < α(1−ω). Consider a firm that always offers
wage w′ ∈ (ω, 1) such that 1 − w′ > α(1 − ω). Again the hiring probability
of the deviant converges to 1, because if there were a non-negligible chance
of getting the job at w′ worker’s would rather send there last application to
this higher than average wage. But then the deviant’s profit converges to
1− w′ and the deviation is profitable. So w(i∗) → 1.

This immediately implies that v(i∗) → 1. Otherwise a subsequence of
i∗’s according either to case 1 or to case 2 has to exist, but in case 1 profits
are above entry costs and in case 2 they are below entry costs, violating the
free entry condition. Finally, since v(i∗) → 1 and firms get matched with
probability close to one, π = K implies that the average paid wage w(i∗) has
to converge to 1−K. This directly implies that u∗i∗ → 1−K.

To show that the individual search effort converges to zero, i.e. that also
U∗(i∗) = u∗i∗ − ci

∗
(i∗) → 1 − K, rewrite the workers’ utility as U∗(i∗) =∑i∗

i=1[u
∗
i − u∗i−1 − ci

∗
i ] =

∑I
i=1[u

∗
i − u∗i−1 − ci

∗
i ] +

∑i∗

i=I+1[u
∗
i − u∗i−1 − ci

∗
i ] for

some I ≤ i∗, where ci
∗
i = ci

∗
(i)−ci∗(i−1) again denotes marginal costs. For a

given i the difference u∗i −u∗i−1 is simply a number independent of i∗ (and the
associated cost function). It converges to zero for large i, which entails that
u∗i∗ − u∗i∗−1 →i∗→∞ 0. Moreover ci

∗
i ≤ ci

∗
i∗ ≤ u∗i∗ − u∗i∗−1 for all i ≤ i∗, which

only restates that that we consider changing cost functions with ci
∗
i →i∗→∞ 0.

Therefore the partial sum
∑I

i=1[u
∗
i − u∗i−1 − ci

∗
i ] →i∗→∞

∑I
i=1[u

∗
i − u∗i−1] for

any fixed I ∈ N. On the other hand we have 0 ≤
∑i∗

i=I+1[u
∗
i − u∗i−1 −

ci
∗
i ] ≤

∑∞
i=I+1[u

∗
i − u∗i−1], but

∑∞
i=I+1[u

∗
i − u∗i−1] →I→∞ 0 since

∑∞
i=1[u

∗
i −

u∗i−1] ≤ 1. Therefore limi∗→∞ U(i∗) = limI→∞ limi∗→∞[
∑I

i=1[u
∗
i −u∗i−1−ci

∗
i ]+∑i∗

i=I+1[u
∗
i − u∗i−1 − ci

∗
i ]] =

∑∞
i=1[u

∗
i − u∗i−1] = limi∗→∞ u

∗
i∗ = 1−K. Q.E.D.
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