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Abstract
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1 Introduction

We take it for granted that people understand that the development and im-

plementation of new ideas is one of the major factors underlying economic

performance.1 In this vein, the concept of technology transfer is important

to innovators and entrepreneurs looking to come up with and commercial-

ize new technologies, and also to policy makers seeking to spur economic

development. The issue is this: When innovators come up with new inven-

tions, or projects, or ideas, should they try to implement them themselves,

say through start-up firms? Or should they try to sell them, perhaps to

established firms, or more generally to entrepreneurs who may be better at

implementing these ideas?

If agents are heterogeneous in their abilities to come up with ideas and

to extract their returns, one can imagine that some will specialize in inno-

vation while others will specialize in implementation or commercialization.

A superior allocation of resources will generally emerge when those who

have the ideas are not necessarily those who implement them. Scholars in

the “knowledge transactions field” share the view that the transfer of ideas

from innovators to entrepreneurs leads to a more efficient use of resources,

making all parties better off, and increasing the incentives for investments

1Both the inputs to and outputs of this process are important. On the input side,
research and development expenditures account for 3% of US GDP, and according to a
survey by the Association of University Technology Managers, the licensing of innovations
just by universities, hospitals, research institutions, and patent management firms added
more than $40 billion to the economy in 1999 and supported 270,000 jobs. On the output
side, it is obvious that new ideas and technologies are essential to production and growth,
and going back to Schumpeter (1934) it is often said that the creation of new firms is a
significant mechanism through which new technologies are implemented.
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in research. As Katz and Shapiro (1986) put it, “Inventor-founded startups

are often second-best, as innovators do not have the entrepreneurial skills

to commercialize new ideas or products.”2

Obviously, however, this requires some mechanism — say, some market

— for the exchange of ideas, and the details of how this mechanism works

could in principle have a big impact on outcomes. This is the subject of the

current study.

Our analysis is related to the work of Holmes and Schmitz (1990, 1995),

although we also deviate considerably from their approach. What we share

with them is, in their words, the following: “The model has two key fea-

tures. The first crucial assumption is that opportunities for developing new

products repeatedly arise through time... The second key feature is that we

assume that individuals differ in their abilities to develop emerging oppor-

tunities.” Hence, “There are two tasks in the economy, developing products

and producing products previously developed” (Holmes and Schmitz 1990,

p. 266-7). Where we differ is the way we envision the market where ideas

or projects get traded: they model it as a centralized market in competitive

2As reported in a recent special feature in The Economist (Oct. 2005) on ideas, patents
and related topics, “as the patent system has evolved, it ... leads to a degree of specializa-
tion that makes business more efficient. Patents are transferable assets, and by the early
20th century they had made it possible to separate the person who makes an invention
from the on who commercializes it. This recognized the fact that someone who is good
at coming up with ideas is not necessarily the best person to bring these ideas to market”
(p.6, emphasis added). And they quote Henry Chesbrough as saying “You see people inno-
vating and creating new ideas and technologies, but not taking them all the way through
to the market. They carry it to a certain stage and then hand the baton on to others who
bring it on to commercialization.” Of course, one could imagine innovators trying to buy
implementation expertise from entrepreneurs, but the usual view is that such expertise is
largely tacit and difficult to measure, so it seems more natural for the ideas to be sold to
implementers. See also Teece et al. (1997), Pisano and Mang (1993), and Shane (2002).
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equilibrium, while we take seriously the notion that there are considerable

frictions in this market.

We think it is clear that there is in reality no centralized market for ideas.

Innovators do not simply choose a quantity of ideas to supply to maximize

profit taking as given the competitive price, and entrepreneurs do not simply

choose how many new ideas to buy at a given price. The idea market

is in actuality much more decentralized. Hence, we model it using search

theory, with random matching and bilateral bargaining between innovators

and entrepreneurs. Also, in accordance with a large literature regarding

entrepreneurs and liquidity constraints, as discussed below, we consider the

possibility that the availability of liquid assets may be important for closing

deals. When there are imperfect markets for the exchange of ideas, it is not

only relevant who you meet and what they know, there is also the issue of

how to pay for it. The fact that you are better at implementing a project

means little if you have nothing to offer me in exchange.

This is especially important in highly decentralized markets, where it is

easy to imagine reasons why I might be reluctant to give you my idea for a

promise of future payment — e.g. once I give you the information, you might

decide not to pay, and it can be hard to take an idea back. Hence, it is easy

to imagine that quid pro quo may be the order of the day: “You want my

idea? Show me the money.” Given this, entrepreneurs may choose to keep

liquid assets, in case they come across a potentially profitable opportunity

that could be lost if there is not a quick agreement. Naturally, how much

liquidity they hold depends on the cost, which may be determined at least
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in part by policy. For example, the opportunity cost of carrying the most

liquid asset, cash, is the nominal interest rate; more generally, the cost of

liquidity is a higher return on alternative investment opportunities.

Our view that liquidity broadly speaking matters in this context is by

no means new. Evans and Jovanovic (1989) e.g. find that the decision to

become an entrepreneur depends positively on wealth, and interpret this

as evidence of financial constraints. They conclude that the “liquidity con-

straint is binding for virtually all the individuals who are likely to start a

business.” They predict that if such constraints were removed, the proba-

bility of becoming an entrepreneur would increase by 34%. Many others

come to similar conclusions.3 To be fair, Lusardi and Hurst (2004) provide

a dissenting opinion: while they also find a positive correlation between

wealth and the probability a household subsequently owns a business, they

suggest it is at least partly due to differences between business owners and

non-owners in abilities, preferences or background, rather than liquidity.4

For at least two reasons, this debate is not pivotal for what we want to

say. First, ideas are not only inputs to new businesses, but also existing

3See Evans and Leighton (1989), Holtz-Eakin et al. (1994), Fairlie (1999), Quadrini
(1999, 2000), Gentry and Hubbard (2000), Paulson and Townsend (2000), Guiso, Sapienza
and Zingales (2001), and Lel and Udell (2002).

4They conclude “Our results do not imply that any given household wanting to start
a small business has unlimited access to credit at reasonable borrowing rates. Given
optimal lender behavior, and common sense, such results would be implausible. We do
conclude, however, that even if some households that want to start small businesses are
currently constrained in their borrowing, such constraints are not empirically important in
deterring the majority of small business formation in the United States. This may simply
reflect the fact that the starting capital required for most businesses is sufficiently small.
... Alternatively, even if the required starting capital for some small businesses is high,
existing institutions and lending markets in the United States appear to work sufficiently
well at funnelling funds to households with worthy entrepreneurial projects.”
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enterprises, and liquidity constraints may impinge on the scale of operations

as well as the probability of a start up. Second, we will remain agnostic and

construct a model where by varying parameters we cover the case where

liquidity is critical, the case where it is irrelevant, and anything in between.

Moreover, the way we model liquidity is quite different than previous work

on entrepreneurship, where various credit market imperfections are imposed

in sometimes rather ad hoc ways.5

We also emphasize that liquidity is endogenous here: entrepreneurs

choose how much to hold, depending on factors such as interest rates, mar-

ket frictions, etc. In this sense our model is related to some work in mone-

tary theory, and particular we follow Lagos and Wright (2005) by assuming

agents sometimes trade in centralized markets and sometimes in decentral-

ized markets. But while we adopt that feature, we also extend the framework

in several ways that are important for our purposes. First, to the extent that

ideas are intermediate inputs, we stress that operation of the idea market

can spill over to other markets, and especially to wages and employment.

Second, we take seriously the notion that there may be a public good aspect

at play: the fact that I tell you my idea does not mean that I cannot also

get some value out of it.

Third, mainly because of the previous points, we argue that monetary

policy may be more potent than is commonly understood from existing mod-

5Some people simply assume there is no credit (Lloyd-Ellis and Bernhardt 2000 and
Buera 2005), some assume credit is exogenously limited to a fixed multiple of wealth
(Evans and Jovanovic 1989), some try to model it using moral hazard (Aghion and Bolton
1996), and some using asymmetric information (Fazzari et al. 1988, 2000).
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els where liquidity is only relevant for trading consumption goods. Fourth,

since ideas are indivisible and have random valuations, and since trades may

be liquidity constrained, the bargaining problem may be nonconvex, and as a

technical contribution we show how to deal with this using lotteries. Finally,

in what is perhaps the most interesting innovation, agents with insufficient

liquidity can attempt to put deals on hold and raise additional funds in the

centralized market; the probability this attempt fails is what parameterizes

the extent of the liquidity problem. All of this goes well beyond existing

work in the related literature.

The rest of the paper is organized as follows. Section 2 lays out our basic

assumptions. Section 3 discusses the centralized market, and Section 4 dis-

cusses the decentralized market where ideas are traded. Section 5 puts things

together to characterize equilibrium. Section 6 takes up various extensions.

Section 7 concludes. Technical results are relegated to the Appendix.6

2 Basic Assumptions

Time is discrete and continues forever. Alternating over time, there are two

types of markets: a centralized market, denoted CM, where agents perform

6We mention some other related work. Several studies consider the transfer of ideas
as a strategic action among firms, including Katz and Shapiro (1986), Gallini and Winter
(1985), and Shepard (1994). Baccara and Razin (2004) consider strategic behavior among
agents forming a team to implement an idea. Anton and Yao (1994, 2002) study markets
where buyers do not know the value of an idea, and sellers are reluctant to reveal it
because buyers may not pay afterwards. Others focus on licensing contracts in terms of
incentives, including Aghion and Tirole (1994) and Arora (1995). There is a literature
that focuses on university inventions, including Lowe (2003), Shane (2002), and Jensen
and Thursby (2001). Chari, Golosov and Tsyvinski (2004) study the effects of taxation,
den Haan, Ramey and Watson (2003) study matching between entrpreneurs and lenders,
and Serrano (2005) studies empirically the market for patent transfers.
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the usual activities of working, consuming and adjusting their assets; and a

decentralized market, denoted DM, where agents meet bilaterally and can

trade ideas. Agents have discount factor β between one DM and the next

CM, and discount factor δ between the CM and the next DM, where δβ < 1.

There are large numbers of two types of agents: innovators, denoted i, who

are relatively good at coming up with ideas, and entrepreneurs, denoted e,

who may be better at implementing them. For now the measures of i and

e, denoted Ni and Ne, are exogenous.

Every time the DM opens, innovator i gets a new idea I that has value

Ri ≥ 0 if he implements it himself, where Ri is drawn from CDF Fi(·), and

is realized in the next CM. To keep things simple, if not implemented in

one CM, the value of I in the following CM is an i.i.d. draw. Hence, if i

finds himself in the CM with idea I, he will always implement it, since he

gets a new Ri in any event. Entrepreneur e does not get ideas on his own,

but if he meets i with an idea I worth Ri to him, it has value Re ≥ 0 to e,

where Re is drawn from Fe(·|Ri). When convenient we sometimes assume

the densities F 0i (Ri) and F 0e(Re|Ri) exist and are continuous, but this is not

strictly necessary.7

One may well ask, what exactly is an idea? One view is that idea I is an

intermediate input into some production process that can be implemented

7As a special case, if Ri and Re are independent, we can say what matters is only the
match between idea I and agent j. Another special case discussed in Section 6.1 is the one
with Ri = R̄i with probability 1, including R̄i = 0, where i is are purely an “idea man”
who cannot implement anything. We could easily allow entrepreneurs to come up with
some of their own ideas, or even reduce the model a single type — all agents get ideas from
F (R), but an idea worth R to you is worth R̂ to me, drawn from F̂ (R̂|R). The reason for
having two types is that it will be interesting to endogenize their numbers.

7



by agent j with technology fj(h, I), where h is a vector of inputs, including

labor. Given I, j solves

Rj(I) = max
h
{fj(h, I)−wh} , (1)

where w is a vector of factor prices, including wages. This is important

because it shows the allocation of ideas can affect employment, wages, and

other variables in general equilibrium, and having the wrong agent imple-

menting I can have a big impact on economic aggregates. However, to ease

the presentation we begin with the case where Rj = fj(I) does not require

additional inputs, and return to the general specification in Section 6.4.

We assume ideas are indivisible: either you tell me or you don’t. We

assume there is no private information: in a meeting, both agents know

(Ri, Re), even though e cannot implement I without i giving him the details.

For example, if your idea is for a restaurant with some new cuisine, you can

let me taste a sample without necessarily giving me the recipe. We abstract

from informational frictions here not because they are uninteresting, but

because we want to focus on different issues; several papers mentioned in

the Introduction already consider private information.

We do take seriously the notion that there may be a public good aspect

involved: the fact that you give me idea I does not mean that you cannot also

use it. One way to capture this is to assume that if agent j is the only one

to implement I he gets Rj , while if another agent also implements it then j

gets λjRj . If λj = 1, e.g., ideas are pure public (nonrival) goods. In general,

if i sells I to e and both implement, they get λiRi and λeRe; if i keeps it
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for himself, they get Ri and 0 respectively. To simplify the presentation we

begin with the case λi = 0 and λe = 1. This can be interpreted as saying

that i does not also implement an idea once he sells it — say, because there

is only room for one new restaurant in town, or more generally, stepping

outside the model, perhaps because of something like an exclusive licensing

agreement. We return to the general case in Section 6.3.

If i and e meet in the CM and there are gains from trade, they bargain

over the price. The price is in terms of money, by which we do not necessarily

mean cash but liquid assets generally, which by definition are assets that can

be accessed from the DM.8 If the price p at which they would trade in the

absence of liquidity considerations is greater than the assets e happens to

have available, several things could happen: i could keep I for himself; he

could settle for a lower price; or they could try to meet again in the next

CM, where e can always raise the funds. However, if they try to meet again,

with probability 1−γ they fail. Rather than take a particular stand on why

this might happen, we simply label the event an exogenous breakdown, as

is common in bargaining theory; or, we say the deal falls through.

This possibility is what generates a demand for liquidity. Clearly, we

need imperfect enforcement of credit for this to work, since otherwise e

could offer i an IOU. The easiest assumption to rule this out is to say that

e can simply renege without fear of repercussions; then i will never give

8For instance, in a related albeit simpler model, He et al. (2005) allow agents to use
interest-bearing checking accounts for payments in the DM. We could do something similar
here, but for focus, we want to avoid these details. Although our notation and some of
our assumptions are suggestive of money and monetary theory, hopefully it is understood
that the general point applies to liquid assets more broadly.
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up his idea on a promise.9 Also, we understand that there are of course

many ways in the real world for innovators to get people who are good at

implementation involved in their projects, including hiring them, forming

partnerships, licensing, etc. We focus the case where they sell the idea.

While this is not the only possibility it is surely an interesting one. Among

other reasons, it captures the notion that innovators prefer not to be involved

in actual operations so that they can concentrate on coming up with new

ideas (again see The Economist Oct. 2005).

3 The CM

Let Wj(m,R) be the the value functions for type j = i, e agents entering

the CM, with liquid assets m and a project in hand with value R (for i this

would be his own idea if he did not sell it in the previous DM, and for e

this would be an idea that he purchased). We use R = 0 to indicate either

a project with 0 return, or no project (for i this would be because he sold

his idea, and for e this would be because he failed to buy one). Let Vj(m)

be the value function for agents entering the DM with m dollars before the

random values of ideas are drawn.

Then for j = i, e the CM problem is

Wj (m,R) = max
X,H,m̂

{U(X)− h+ δVj(m̂)} (2)

s.t. X = X0 + wh+ φ(m− m̂+ πM) +R,

9 It is important for this that we cannot use reputation to enforce payment. One
common way in monetary theory to rule this out formally is to assume some form of
anonymity; see e.g. Kocherlakota (1998), Wallace (2001) or Corbae et al. (2003).
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where X is consumption, h is labor supply, m̂ is liquidity taken out of the

CM, X0 is an endowment, w is the real wage, and φ is the relative price of

liquid assets in term of X. The term πM is a lump sum increase in one’s

liquid assets, withM denoting the aggregate stock at the start of CM. Thus

it evolves over time according to M 0 = (1 + π)M , as in models where M is

interpreted as central bank money. Although the theory is meant to apply

to liquid assets generally, we adopt this specification for M simply because

it is a convenient way to parameterize the cost of liquidity: in steady state

π will be the inflation rate in terms of the liquid asset, and interest rates

will satisfy the Fisher equation (see below).

Assume for now that there is a representative firm with a linear tech-

nology, so the equilibrium wage is pinned down and can be normalized to

w = 1; in Section 6.4 we show how to incorporate a more general labor

market. Then, rewrite (2) as

Wj (m,R) = X0 + φm+ φπM +R+max
X
{U(X)−X} (3)

+max
m̂
{−φm̂+ δVj(m̂)}.

Assuming an interior solution, which can be guaranteed by adapting some

assumptions in Lagos and Wright (2005), as well as the strict concavity of

Vj , which we verify below, the following results are immediate:

Lemma 1 (i) Wj is linear in (m,R), with ∂Wj/∂m = φ and ∂Wj/∂R = 1;

(ii) X is given by the solution to ∂U(X)/∂X = 1; (iii) m̂ is given by the

solution to

−φ+ δ
∂Vj(m̂)

∂m̂
≤ 0, = 0 if m̂ > 0, (4)
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and in particular, all agents of a given type j take the same m̂j out of the

CM, regardless of the (m,R) with which they enter.

4 The DM

Let αj be the DM arrival rate (probability of a meeting) for j = i, e. Nor-

malizing the measure of entrepreneurs to Ne = 1, the only restriction on

arrival rates is αe = αiNi, so we can take αj to be exogenous, at least for

now. If an e does not meet anyone, he enters the next CM with his money

but no project, (m̂e, 0). Similarly, if i does not meet anyone, he enters the

next CM with (m̂i, Ri). If an e and i do happen to meet, several things can

happen. If Re ≤ Ri there are no gains from trade and they simply part; if

Re > Ri there are gains from trade, and two cases need to be considered.

On the one hand, suppose m̂e ≥ p, where p is the price they would agree

to if there were no issues of liquidity — e.g. if e had access to the funds he will

have available in the next CM, from his endowment and/or labor supply.

Then they can — an in equilibrium they will — trade immediately at price p.

On the other hand, suppose m̂e < p. In this case the bargaining problem is

nonconvex, and in principle they may want to trade using lotteries. However,

for simplicity we assume in this section that lotteries are not available, and

revisit the issue in Section 6.2 where we show that the main economic results

are similar. Hence, for now they can either settle for m̂e, or put the deal on

hold and try to meet again in the next CM, where e can always raise the

funds. If they do meet again they can renegotiate the price to p0, but we will

see that p0 = p. In any case, meeting again in the next CM only happens
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with probability γ; otherwise the deal falls through. The big question for i

is this: should he settle for m̂e and close the deal right now, or put it on

hold for a chance at p0?

We now analyze the bargaining problems in more detail. We use the

generalized Nash solution, where threat points are given by continuation

values and θ denotes the bargaining power of e. To begin, consider what

happens if they put the deal on hold and meet again in the next CM. Given

the value function next period W 0
j , the bargaining solution is:

max
p0
[W 0

e(m̂e − p0, Re)−W 0
e(m̂e, 0)]

θ[W 0
i (m̂i + p0, 0)−W 0

i (m̂i, Ri)]
1−θ

By Lemma 1, W 0
e(m̂e− p0, Re)−W 0

e(m̂e, 0) = Re−φ0p0 and W 0
i (m̂i+ p0, 0)−

W 0
i (m̂i, Ri) = φ0p0−Ri, so this reduces to maxp0

¡
Re − φ0p0

¢θ ¡
φ0p0 −Ri

¢1−θ
and yields

p0 =
θRi + (1− θ)Re

φ0
. (5)

Now, move back to this period and consider what happens in the current

DM. One difference from CM bargaining is that the threat points are given

by the expected values of putting the deal on hold,

W
0
e = γW 0

e(m̂e − p0, Re) + (1− γ)W 0
e(m̂e, 0)

W
0
i = γW 0

i (m̂i + p0, 0) + (1− γ)W 0
i (m̂i, Ri).

A second difference is that we have a constraint p ≤ m̂e, since e can only

pay out of liquid assets in the DM (by definition). The problem becomes:

max
p≤m̂e

[−φ0p+ γφ0p0 + (1− γ)Re]
θ[φ0p− γφ0p0 − (1− γ)Ri]

1−θ
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Suppose first the constraint does not bind. Then it is simple to show

p = p0, the same as the solution in the next CM. In this case they set-

tle immediately. Suppose instead that m̂e < p0, which is equivalent to

Re > B(Ri) ≡ φ0m̂e−θRi
1−θ (the label B stands for the fact that the liquidity

constraint binds). In this case e always wants to pay m̂e and close the deal

now, but i puts the deal on hold iff W 0
i (m̂i + m̂e, 0) < W

0
i, which simplifies

to Re > H(Ri) ≡ φ0m̂e−Ri(1−γ+θγ)
γ(1−θ) (the label H stands for the fact that he

is prefers putting the deal on hold).

We summarize the bargaining outcome in Lemma 2, the proof of which

follows directly from the above discussion, and illustrate it in Figure 1,

taking z = φ0m̂e as given (it will be determined in equilibrium below).

Figure 1: Possible realizations of (Ri,Re).
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Lemma 2 Assume Re > Ri. In the DM, if Re ≤ B(Ri) they trade now at

p = p0, given by (5); if B(Ri) < Re ≤ H(Ri) they trade now at p = m̂e; and

if Re > H(Ri) the deal is put on hold. In the CM, they trade at p0.

One thing to notice from these results is that it is the best deals that are put

on hold and hence potentially fall through. Intuitively, when Re is high the

CM price p0 is high, so i has a big incentive to put a deal on hold. At the

same time, when Ri is high there is less downside risk, which also provides

incentive to put a deal on hold.

Given the bargaining solution, we now proceed to the DM value function.

For e, this is given by

Ve(m̂) = (1− αe)βW
0
e(m̂, 0) + αeβ

Z
A0

W 0
e(m̂, 0) (6)

+αeβ

Z
A1

W 0
e(m̂− p,Re) + αeβ

Z
A2

W 0
e(0, Re) + αeβ

Z
A3∪A4

W
0
e

where
R
Aj
(·) is the integral over region Aj in Figure 1; e.g.

Z
A1

(·) =
zZ
0

B(Ri)Z
Ri

(·)dFe(Re|Ri)dFi(Ri).

In words, the first term in (6) is the payoff to no meeting; the second is

the payoff to a meeting with no trade; the third is the payoff to trading at

p = [θRi + (1− θ)Re] /φ
0; the fourth is the payoff to trading at p = m̂; and

the fifth is the payoff to a deal on hold.10 Using the linearity of W 0
e (Lemma

10We distinguish between A3 and A4, even though in both regions deals are put on
hold, because the economic interpretation is different. In A4, even if e were to give i all
his money, i is better off keeping I since Ri > m̂eφ

0. In A3, i prefers trading for m̂e over
implementing I himself, but he prefers putting the deal on hold for a chance at p0.
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1) and inserting p, we can simplify (6) to

Ve(m̂) = βW 0
e(m̂, 0) + αeβθ

Z
A1

(Re −Ri) (7)

+αeβ

Z
A2

(Re − φ0m̂) + γαeβθ

Z
A3∪A4

(Re −Ri).

A similar exercise can be performed for i, and it turns out that

Vi(m̂) = βφ0m̂+ v, (8)

where v is a constant that does not depend on m̂. Intuitively, for i neither

the probability of trade nor the terms of trade depend on his own liquidity

— indeed, they depend only on liquidity on the other side of the market.

Therefore, any m̂ he brings to the DM will simply be carried forward to the

next CM.

We also need the derivatives. For i, this is trivially ∂Vi/∂m̂ = βφ0.

For e, we establish in Appendix A the following result, which is somewhat

complicated because we have to consider several cases to avoid dividing by

0.

Lemma 3 ∂Ve/∂m̂ = βφ0
£
1 + c(φ0m̂)

¤
, where for any z, c(z) is defined as

follows: (i) if γ > 0 and θ < 1 then

c(z) =
αe(1− γ)

γ2(1− θ)2

zZ
0

(z −Ri)F
0
e [H(Ri)|Ri] dFi(Ri) (9)

−αe
zZ
0

{Fe [H(Ri)|Ri]− Fe [B(Ri)|Ri]} dFi(Ri);
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(ii) if γ = 0 and θ < 1 then

c(z) = αeF
0
i (z)

∞Z
z

(Re − z)dFe(Re|z) (10)

−αe
zZ
0

{1− Fe [B(Ri)|Ri]} dFi(Ri);

(iii) if θ = 1 then

c(z) = (1− γ)αeF
0
i (z)

∞Z
z

(Re − z)dFe(Re|z). (11)

Notice c(z) is the net marginal benefit of liquidity. Consider e.g. the case

γ = 0. The first term in (10) is the probability of meeting i with Ri = z,

αeF
0
i (z), times the net gain for e, Re − z, integrated over Re. The second

term is the probability of (Ri, Re) ∈ A2 times −1, since in A2 the constraint

binds and the marginal dollar is simply handed over to i.11

5 Equilibrium

We now combine the DM and CM and define equilibrium. The key condition

from the CM is the FOC for m̂, given by (4). All we need to do is insert

the derivative of the DM value function. For j = i this is easy: by (8),

∂Vi/∂m̂ = βφ0, so (4) becomes −φ+δβφ0 ≤ 0, = 0 if m̂ > 0. As is standard,

we only consider equilibria where δβφ0 < φ, because when δβφ0 > φ no

equilibrium exists and when δβφ0 = φ equilibrium is indeterminate. Given

δβφ0 < φ, we have m̂i = 0.

11Notice ∂Ve/∂m̂ = [1 + c(z)] ∂Vi/∂m̂, which says for e the return on m̂ includes a
liquidity component that is not there for i. See Lagos (2005) for an discussion of similar
equations in a related model of liquidity and asset pricing.
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To understand this, consider the Fisher equation 1 + in = (1 + ir)φ/φ
0,

where in is the nominal interest rate, ir is the real interest rate, and φ/φ0

is the inflation rate in terms of the price of liquid assets between two CM

meetings. In this model 1+ir = 1/βδ, so δβφ0 < φ is equivalent to in > 0. To

restate what we said above in terms of interest rates, in < 0 is inconsistent

with equilibrium and in = 0 implies equilibrium is indeterminate. Hence, we

restrict attention to the case where liquidity is costly, which means in > 0,

although we also consider the limiting case where in → 0. Since i does not

need liquidity, given it is costly, m̂i = 0.

A similar exercise for j = e is more interesting. By Lemma 3, we have

−φ+ δβφ0
£
1 + c(φ0m̂)

¤
≤ 0, = 0 if m̂ > 0. (12)

Given m̂i = 0 and Ne = 1, we could now set m̂e to the exogenous supply

M of liquid assets, and equilibrium could be defined in terms of a path for

φ satisfying (12), plus some side conditions. But to simplify the discussion

we focus on steady state equilibria, where z = φM is constant. Again using

the Fisher equation, in steady state (12) becomes12

c(z) ≤ in, = in if z > 0. (13)

Consider first the generic case γ ∈ (0, 1) and θ ∈ (0, 1). Since c(0) = 0,

an equilibrium with z = 0 always exists. Since this is not interesting, from

now on we ignore it and concentrate on solutions to c(z) = in with z > 0.

12We emphasize that in is an exogenous variable here, and, because of the Fisher
equation, we can either set in directly and let the growth rate of M adjust, or set π to
target in.
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We also require c0(z) = ∂2Ve/∂m̂
2 ≤ 0, which is necessary and sufficient for

the SOC to hold in problem (3). Thus we have:

Definition 1 An equilibrium is a z > 0 such that c(z) = in and c0(z) ≤ 0.

Figure 2: c(z) for independent lognormal distributions.

Given γ ∈ (0, 1) and θ ∈ (0, 1), Appendix B shows that limz→∞ c(z) =

0, and that one can impose simple conditions such as F 0j continuous to

guarantee that c is continuous and c(z) > 0 for some z > 0. Then clearly

there exists a solution to c(z) = in iff in is not too big, and these solutions

generically come in pairs. For each pair of solutions, the higher z constitutes

an equilibrium, while the lower z does not because it violates c0(z) ≤ 0.

Figures 2 and 3 show two examples that illustrate the typical case. The

general result, the proof of which follows from the above discussion and the

technical results in Appendix B, is basically the same:
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Figure 3: c(z) for independent uniform distributions.

Proposition 1 Given γ ∈ (0, 1), θ ∈ (0, 1) and c continuous, there exists

an equilibrium z > 0 iff in is not too big.

For completeness, we discuss what happens when we do not have γ ∈

(0, 1) and θ ∈ (0, 1). If θ = 1 or γ = 0, the results are the same but for minor

details.13 If γ = 1, however, things are very different, since then c(z) = 0 for

all z and there is no equilibrium with z > 0. This is because γ = 1 implies e

can always raise funds in the CM without fear that a deal may fall through,

so he has no demand for liquidity. Finally, we mention that even if θ = 0 it

is still possible to have equilibrium with z > 0, which is not true in related

models.14

13 In this case we may have c(0) > 0, but this is irrelevant for the economics. If c(0) > 0,
we may lose the first solution to c(z) = in, but in any case it violates c0(z) ≤ 0.

14 In Lagos and Wright (2005) e.g., if θ = 0 then e gets no gains from trade, and m̂e = 0.
Here e still gets positive gains from trade in A2 even if θ = 0, because I is indivisible (this
will not be the case when we introduce lotteries in Section 6.2).
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In any equilibrium, when Re > Ri there are gains from trade, but if

γ < 1 then not every deal can get done in the CM. If a deal is put on

hold, with probability 1− γ it falls through. If z is bigger, it is more likely

that deals get done in the DM and less likely that they fall through. The

following obvious result then says that when in is lower, it is less likely that

deals fall through, and therefore the best outcome obtains in the limit when

in is as small as possible.

Proposition 2 (i) ∂z/∂in ≤ 0; (ii) z is maximized and the number of deals

that fall through is minimized when in → 0.

To the extent that policy makers have an impact on the cost of liquid-

ity, this points to a new and potentially important channel through which

policy may matter. It is potentially important because it highlights the idea

that liquidity (money?) may not only be needed for small purchases, like

cigarettes and taxi rides, but perhaps also for bigger things, and recall that

it is the biggest deals that are in the greatest danger of falling through. If

in goes up and agents economize on m̂, this not only leads to less smoking

and more walking, but also to less efficient technology transfer, and due

to spill-over effects (discussed in the next section) this can have important

general equilibrium effects.

Even though the limiting case in → 0 maximizes trade, it does not

generally entail full efficiency. The efficient outcome is for e to have sufficient

liquidity to close the deal in the DM with probability 1 whenever Re > Ri.

When in → 0 we minimize the probability that deals fall through, but for
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efficiency generally we also need θ = 1. This is easy to see from Figure 2

which makes it clear that when θ < 1 the equilibrium z generally does not

allow e to close all profitable deals, and from (11) which makes it clear that

θ = 1 does yield full efficiency when in → 0. This is due to a classic holdup

problem: when e chooses m̂e he makes an investment, but as long as θ < 1

he does not get the full return, which causes him to underinvest.

Proposition 3 Equilibrium is efficient iff in = 0 and θ = 1.

6 Extensions

6.1 One-Sided Uncertainty

Consider the model with Ri = R̄ with probability 1, so I is always the same

for i, but the value to e is still random; because this reduces the algebra

somewhat, it may be useful in applications or extensions. It is easy to check

now that there is no equilibrium with z ∈ (0, R̄), so consider z ≥ R̄. It is

relatively simple in this special case to redo the general analysis to directly

derive

Ve(m̂) = βW 0
e(m̂, 0) + αeβθ

B(R̄)Z
R̄

(Re − R̄)dFe(Re)

+αeβ

H(R̄)Z
B(R̄)

(Re − φ0m̂)dFe(Re) + αeβγθ

∞Z
H(R̄)

(Re − R̄)dFe(Re),

and

c(z) =
αe(1− γ)(z − R̄)

γ2(1− θ)2
F 0e
£
H(R̄)

¤
− αe

©
Fe
£
H(R̄)

¤
− Fe

£
B(R̄)

¤ª
.
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Figure 4: c(z) for Re uniform and Ri degenerate.

Suppose e.g. Re is uniform on [0, 1]. Then

c(z) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
0 z < R̄

αe(1−γ)(1−γ+γθ)(z−R̄)
γ2(1−θ)2 R̄ < z < zH

αe(z−θR̄−1+θ)
1−θ zH < R̄ < zB
0 R̄ > zB

where zH = γ(1−θ)+(1−γ+γθ)R̄ and zB = 1−θ+θR̄. As seen in Figure 4,

c(z) is piece-wise linear with a discontinuity at zH , and for any in below some

upper bound ı̂n there is a unique equilibrium at z = zH .15 This example

is nice because we can solve for everything explicitly, but it does have the

property that the equilibrium z is (locally) insensitive to in. Figure 5 shows

an example with Re log-normal, which does not yield a closed-form solution,

but it is easy to see that c(z) is continuous and z smoothly decreases with

in.

15The discontinuity here is not a problem for existence: at z = zH − ε the marginal
value of additional liquidity exceeds in, and at z = zH + ε marginal value is actually
negative, so e chooses z = zH . For the record, the upper bound is ı̂n = αe(1− γ)(1− θ+
θγ)(1− R̄)/γ(1− θ).
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Figure 5: c(z) for Re lognormal and Ri degenerate.

6.2 Lotteries

When I is indivisible and p ≤ m̂e binds, the bargaining problem can be

nonconvex, and agents may want to use lotteries.16 To see this, consider the

one-shot version of the model shown in Figure 6, with two panels drawn for

different values of Ri. No trade yields payoffs (Wi,We) = (Ri,m), so the

non-shaded region constitutes the incentive feasible region. Options that do

not throw resources away and satisfy physical, if not incentive, feasibility

are: for any p ∈ [0,m], (Wi,We) = (p,Re +m − p), which means e gets I

and gives up p units of m, as depicted by the lines with slope −1 on the

upper left, and (Wi,We) = (Ri + p,m− p), which means i keeps I but still

gets p, as depicted by the lines with slope −1 on the lower right.

In the upper panel, sinceRi is big, without lotteries there are no incentive

feasible points that dominate no trade; but lotteries that randomize between

16Nonconvex Nash-like bargaining is studied by e.g. Herrero (1989). Our approach of
using lotteries, which makes the problem convex, follows Berentsen et al. (2002), although
they only consider a very special case.
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(m,Re) and (Ri+m, 0) yield expected payoffs on the line joining these points,

and some of these points dominate no trade. In the lower panel, where Ri

is smaller, there are some incentive feasible points that dominate no trade

without lotteries; but randomization allows us to achieve more outcomes

still. Based on this, it should be clear that in general there is a role for

lotteries in nonconvex bargaining situations.

Figure 6: Possibility of Lotteries
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Appendix C shows that lotteries are never used in the CM (even if I

is indivisible, when there is no liquidity constraint the problem is convex).

Lotteries are only useful in the DM when the constraint p ≤ m̂e binds.

Appendix C also shows that deals are never put on hold directly when we

have lotteries: if the constraint binds, first there is a deal where e gives i all

his liquid assets m̂e in exchange for a probability µ ∈ (0, 1) of transferring

I. If e does not win this lottery he does not get I, but they still might

meet in the next CM, where as always e can and does get it for p0. Thus,

e potentially pays twice: once for the lottery, and if that does not pan out,

again in the CM if they manage to meet. Whether or not this is “realistic”

we want to know how it works.

The payoff for e from the lottery is

µW 0
e(m̂e − p,Re) + (1− µ)[γW 0

e(m̂e − p− p0, Re) + (1− γ)W 0
e(m̂e − p, 0)]

and his threat point is γW 0
e(m̂e − p0, Re) + (1− γ)W 0

e(m̂e, 0), and similarly

for i. Simplifying using the linearity of Wj , the bargaining problem is:

max
p≤m̂e,µ≤1

£
−φ0p+ µ(1− γ)Re + µγφ0p0

¤θ £
φ0p− µ(1− γ)Ri − µγφ0p0

¤1−θ
Nonnegativity never binds, but we need to worry about the constraints p ≤

m̂e and µ ≤ 1. If these are both nonbinding, the FOC wrt p and µ are:

0 = θ
£
φ0p− µ(1− γ)Ri − µγφ0p0

¤
(14)

−(1− θ)
£
−φ0p+ µ(1− γ)Re + µγφ0p0

¤
0 = θ

£
φ0p− µ(1− γ)Ri − µγφ0p0

¤ £
(1− γ)Re + γφ0p0

¤
(15)

−(1− θ)
£
−φ0p+ µ(1− γ)Re + µγφ0p0

¤ £
(1− γ)Re + γφ0p0

¤
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Notice that these cannot both hold when Re > Ri; hence we cannot have

both p < m̂e and µ < 1. If µ = 1 and p < m̂e then (14) implies p = p0. If

p = m̂e and µ < 1 then (15) implies µ = Ωφ0m̂e, where

Ω =
(θ + γ − 2γθ)Re + (1− θ − γ + 2γθ)Ri

[(1− θγ)Re + γθRi][γ(1− θ)Re + (1− γ + θγ)Ri]
.

Appendix C verifies that ∂Ω/∂Ri < 0 and ∂Ω/∂Re < 0, and that µ =

Ωφ0m̂e < 1 iff Re > B(Ri), where B is the same as in the model without

lotteries. Appendix C also shows that ∂µ/∂θ > 0 and ∂µ/∂γ < 0.

Figure 7: Lottery outcomes given z and Ri.

All of this implies that the outcome is as depicted in Figure 7, which

shows the bargaining solution (p, µ) as a function of Re for a given Ri. As

Re increases, p increases while µ stays at 1 until p hits m̂e, after which µ

decreases while p stays at m̂e. The main impact of introducing lotteries is
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to allow immediate trade to potentially occur in what was region A3 ∪ A4,

where the deal previously was put on hold. However, the lottery only allows

the idea to be transferred with probability µ in the DM. There is still a

chance it falls through. Also, it is still the best deals that have the greatest

risk of falling through.17

6.3 Nonrival Ideas

In general, if i transfers I to e the returns are λiRi and λeRe, but so far we

assumed λi = 0 and λe = 1. Here we consider the general case. In terms

of interpretation, suppose i gives e an idea for a restaurant, and they both

open for business. Then instead of receiving the full return either would get

if he were a monopolist, they receive only a fraction when they compete.

Now there are gains from trade whenever λeRe > (1− λi)Ri.

The CM bargaining problem is

max
p0
[λeRe − φp]θ[φp0 − (1− λi)Ri]

1−θ

which implies φp0 = θ(1− λi)Ri + (1− θ)λeRe. The DM problem is

max
p≤me

[−φp+ γφp0 + (1− γ)λeRe]
θ[φp− γφp0 − (1− γ)(1− λi)Ri]

1−θ

17 Indeed, notice µ → 0 as Re → ∞. Also, for the record, the liquidity function when
γ > 0 and θ < 1 is:

c(z) ≡ αeθ(1− γ)

(1− θ)2

z]
0

[zγ+Ri(1−γ)−1](z−Ri)
zγ+Ri(1−γ)

F 0
e [B(Ri)|Ri] dFi(Ri)

+αeθ(1− γ)

⎧⎪⎨⎪⎩
z]
0

∞]
B(Ri)

(Re−Ri)dFe (Re|Ri)dFi(Ri)
(1−θ)γRe+(1−γ+θγ)Ri

+

∞]
z

∞]
Ri

(Re−Ri)dFe (Re|Ri)dFi(Ri)
(1−θ)γRe+(1−γ+θγ)Ri

⎫⎪⎬⎪⎭
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and, as in the baseline model, if the constraint does not bind the solution is

p = p0. The constraint binds iff Re > B(Ri) =
φm−θ(1−λi)Ri

(1−θ)λe , and the deal

is put on hold iff Re > H(Ri) =
φm−Ri(1−λi)(1−γ+γθ)

γ(1−θ)λe , generalizing what we

had earlier. See Figure 8.18

Figure 8: Possible realizations for (Ri, Re) in model with 1− λi < λe.

In the baseline model, if a deal falls through the social loss is Re − Ri,

but here it is λeRe + λiRi −Ri. At the extreme, if I is a pure public good

18 In the limiting case where λi = 1, A0 vanishes since all trade is profitable, and B and
H become horizontal. For the record, when γ > 0 and θ < 1,

c(z) ≡ (1− γ)αe
γ2(1− θ)2λe

z
1−λi]
0

[z − (1− λi)Ri]F
0
e [H(Ri)|Ri] dFi(Ri)

−αe

z
1−λi]
0

{Fe [H(Ri)|Ri]− Fe [B(Ri)|Ri]} dFi(Ri).
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(λi = λe = 1) the social loss is Re. Thus the potential benefit from having

the idea market function relatively smoothly — say, because γ is relatively

high or in relatively low — is bigger when there is a public component to

ideas, and the impact of policy may be even greater than the discussion

following Proposition 2 would suggest.

6.4 Ideas as Intermediate Inputs

Here we return to the specification in (1), Rj(I) = maxh {fj(h, I)−wh}

where h is a vector of inputs and w a vector of prices. Since it suffices to

make the point, suppose that the only input other than I is labor, so that

we can write h = h and w = w. From the FOC f 0j(h, I) = w, as long as

f 0j(h, I) is increasing in I, a better match between I and j increases the

maximizing choice of h. Hence, anything that improves the functioning of

the idea market — again, higher γ or lower in e.g. — increases labor demand.

Since we have a general equilibrium model we also need to consider labor

supply. From the CM budget equation, for individual j in state (m,R),

hj(m,R) =
1

w
[X −X0 − φ(m− m̂j + πM)−R] .

Hence, individual labor supply depends on (m,R) as well as w. Aggregating

and using money market clearing,

H(w) =

Z
j
hj(m,R) =

1

w
[X(w)−X0 −ER] ,

where X(w) solves U 0(X) = 1/w. Notice X 0(w) = −1/w2U 00 > 0, and

H 0(w) =
wX 0(w)−X(w)

w2
' −1−XU 00/U 0,
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where ' means “is equal in sign.” Thus, H 0(w) > 0 iff the coefficient of

relative risk aversion exceeds 1, which we assume for the purpose of this

discussion.

Observe that H is decreasing in ER, since higher ER means agents do

not have to work as hard to finance X. Therefore, anything that makes

the DM function better reduces labor supply (a pure wealth effect), at the

same time it increases demand. The net effect is to unambiguously increase

the equilibrium wage w and consumption X(w), while employment could go

either way. The general point is that anything that affects the market for

ideas can have potentially important general equilibrium consequences.19

6.5 Endogenous γ

Suppose e can choose his γ, in the CM, at the same time as he chooses m̂.

On the one hand, having γ big is desirable because then fewer profitable

deals fall through. On the other hand, having γ small has the advantage

that it makes i reluctant to put deals on hold, and hence e may get the

idea for m̂ rather than p0. We look for symmetric equilibrium in the game

where e chooses (γ̂, m̂). To make the point in a stark way, assume that e can

choose any γ̂ ∈ [0, 1] for free, and can commit to this choice. Then it is easy

to check that there is always an equilibrium with (γ̂, m̂) = (1, 0); what we

want to investigate is the possibility of equilibrium with γ < 1, even though

19An alternative version of the model that is equivalent for most purposes but simpler
for this extension is to assume utility is linear in X rather than h: U = X − v(h), with
v0 > 0 and v00 > 0. This yields the same FOC for m̂, but now H(w) solves w = v0(h), so
H0(w) = 1/v00 > 0. Hence labor supply is increasing in w and independent of wealth. In
this model, any improvement in the DM unambiguously increases H, as well as w and X.
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γ = 1 is free.

In Appendix D we show that F 00e ≥ 0 implies Ve is a convex function

γ̂. This implies that any best response and therefore any Nash equilibrium

must have γ ∈ {0, 1}. We already know γ = 1 is an equilibrium, so consider

γ = 0. Let z0 be the solution to c(z0) = in that gives us the equilibrium

when γ = 0. Suppose e in the CM contemplates a one-shot (without loss of

generality) deviation to (γ̂, m̂). Since Ve is convex in γ̂, if such a deviation

is to be profitable we may as well consider the best deviation, which is

(γ̂, m̂) = (1, 0) (it is clear that γ̂ = 1 implies m̂ = 0).

Let Ve(γ̂, m̂) denote the DM payoff when e chooses (γ̂, m̂), given others

choose γ = 0, and given z0. Then in the CM, after some algebra, e gains

from the contemplated deviation iff ∆ = z0+δVe(1, 0)−δVe(0, z0) > 0, since

he saves on acquiring liquidity but also must weigh the consequences for DM

trade. After more algebra,

∆ ' z0in + αeθ

∞Z
z0

∞Z
Ri

(Re −Ri)dFe(Re|Ri)dFi(Ri) (16)

−αe
z0Z
0

∞Z
B0(Ri)

[(1− θ)Re + θRi − z0]dFe(Re|Ri)dFi(Ri)

where B0(Ri) =
z0−θRi
1−θ . Intuitively, a deviation to (γ̂, m̂) = (1, 0) saves e

the interest cost z0in and allows trade at p0 in region A4 (the first integral),

but also leads to trade a higher price in A2 (the last integral).

If in is high, it is apparent that ∆ > 0 and the deviation is profitable.

Consider in ≈ 0, so that we can ignore this effect. Then ∆ depends on θ.

Clearly if θ is sufficiently low then ∆ < 0 and the deviation is not profitable;
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Figure 9: Deviation payoff for Re and Ri independent lognormal.

intuitively, when θ ≈ 0 e gets very no surplus from trade at the CM price p0

and so he may as well take a shot trading in the DM. Hence, when θ is low

γ = 0 is an equilibrium. If θ is big, however, then ∆ > 0, and the deviation

is profitable. See Figure 9. We summarize the results as follows.

Proposition 4 There is always an equilibrium with γ = 1 and z = 0. There

is an equilibrium with and z > 0 = γ iff in and θ are not too big.

7 Conclusion

We developed a framework to analyze the market for ideas when there are

arguably realistic frictions, including matching, bargaining, and liquidity

problems. We think the model generates interesting predictions about the

trading outcomes in bilateral meetings, given liquidity z. It also yields strong
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predictions when liquidity is determined endogenously: equilibrium with

z > 0 exists iff the interest rate in is not too big. It implies z is decreasing

in in and, hence the amount of trade is maximized when in → 0. Also,

when in → 0 equilibrium is socially efficient iff entrepreneurs have all the

bargaining power (θ = 1) due to a classic holdup problem. A result we find

particularly interesting is that it is the best deals that are in the greatest

danger of falling through.

In terms of more technical contributions, we showed how to introduce

lotteries when the bargaining problem is nonconvex, which it may well be,

due to a combination of indivisibilities and liquidity constraints. In terms of

more substantive contributions, we showed some simple ways to model ideas

as at least partially nonrival goods, and as intermediate inputs, which indi-

cates how outcomes in the idea market can spill over in general equilibrium

and affect wages, employment and other variables. We also showed that

when agents get to endogenously choose γ, parameterizing the ease with

which they can get around the liquidity problem, there can be equilibrium

where they choose γ = 0.

The way we focus on liquidity in this market is not inconsistent with the

papers discussed in the Introduction that conclude it is empirically relevant.

But the precise way we model liquidity may generate some different impli-

cations from existing theories. For instance, if the problem in this market

is simply borrowing constraints, high interest rates can help by increasing

savings or at least making savings less painful; our approach suggests high

interest rates make things worse by raising the cost of liquidity. This remains
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to be studied carefully, but it is clear at least that bargaining and liquidity

interact in interesting ways. For example, with price taking, one can get over

liquidity constraints by holding enough assets. Although of course this is

costly, under bargaining there is a new cost that arises because the amount

you pay can depend on your assets.

An obvious extension is to endogenize the number of innovators by a

free entry condition and determine arrival rates endogenously (as Pissarides

2000 does for the labor market). Another is to make innovators pay ex ante

to come up with ideas. Both of these extensions introduce two-sided holdup

problems. Another generalization is to assume ideas have returns that are

not i.i.d. across periods, introducing speculative considerations: e.g. inno-

vators must decide whether to sell ideas to entrepreneurs with moderately

high Re, or hold out for even higher Re. Another extension is to introduce

richer financial institutions (Chiu and Meh 2006 have already made some

progress on this). An explicit growth version of the model may also be worth

pursuing. And, of course, adding private information seems worthwhile — to

repeat what we said earlier, we abstract from private information here not

because it is uninteresting, but to focus on other issues. All of this is left

for future work.
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Appendix A: Derivation of c

Inserting the correct limits for the various regions, we can write (7) explicitly

as

Ve(m̂) = βW 0
e(m̂, 0) + αeβθ

φ0m̂Z
0

B(Ri)Z
Ri

(Re −Ri)dFe(Re|Ri)dFi(Ri)

+αeβ

φ0m̂Z
0

H(Ri)Z
B(Ri)

(Re − φ0m̂)dFe(Re|Ri)dFi(Ri)

+αeβγθ

φ0m̂Z
0

∞Z
H(Ri)

(Re −Ri)dFe(Re|Ri)dFi(Ri)

+αeβγθ

∞Z
φ0m̂

∞Z
Ri

(Re −Ri)dFe(Re|Ri)dFi(Ri).

We now show how to differentiate this to get c(·) in the various cases.

(i) γ > 0 and θ < 1. The derivative of the first term wrt m̂ is βφ0. By

Leibniz Rule, the derivatives of the four integral terms are:

D1 = φ0
φ0m̂Z
0

¡
φ0m̂−Ri

¢
(1− θ)2

F 0e[B(Ri)|Ri]dFi(Ri)

D2 = φ0
φ0m̂Z
0

(φ0m̂−Ri)(1− γ + θγ)

γ2(1− θ)2
F 0e[H(Ri)|Ri]dFi(Ri)

−φ0
φ0m̂Z
0

θ(φ0m̂−Ri)

(1− θ)2
F 0e[B(Ri)|Ri]dFi(Ri)

−φ0
φ0m̂Z
0

H(Ri)Z
B(Ri)

dFe(Re|Ri)dFi(Ri)
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D3 = φ0F 0i (φ
0m̂)

∞Z
φ0m̂

(Re − φ0m̂)dFe(Re|φ0m̂)

−φ0
φ0m̂Z
0

φ0m̂−Ri

γ2(1− θ)2
F 0e[H(Ri)|Ri]dFi(Ri)

D4 = −φ0F 0i (φ0m̂)
∞Z

φ0m̂

(Re − φ0m̂)dFe(Re|φ0m̂)

Summing these and simplifying yields (9).

(ii) γ = 0 and θ < 1. The results similar except for two things. First,

H(Ri) = ∞ becomes vertical at Ri = z, so region A3 vanishes and we can

ignore D3. Second, the derivative D2 is not correct since we divided by

γ = 0. The correct derivative in this case over region A2 is

D2 = φ0F 0i (φ
0m̂)

∞Z
B(Ri)

(Re − φ0m̂)dFe(Re|φ0m̂)

−
φ0m̂Z
0

θ(φ0m̂−Ri)

(1− θ)2
F 0e[B(Ri)|Ri]dFi(Ri)

−φ0 θ(φ
0m̂−Ri)

(1− θ)2

φ0m̂Z
0

∞Z
B(Ri)

dFe(Re|Ri)dFi(Ri).

Summing now leads to (10).

(iii) θ = 1. In this case B(Ri) = H(Ri) =∞ both become vertical at z,

and A2 as well as A3 vanish. Also, in this case the correct derivatives over

regions A1 and A4 are

D1 = φ0F 0i (Ri)

∞Z
0

¡
Re − φ0m̂

¢
dFe(Re|φ0m̂)
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D4 = −φ0F 0i (Ri)

∞Z
0

¡
Re − φ0m̂

¢
dFe(Re|φ0m̂)

Summing now leads to (11). ¥

Appendix B: Existence

Here we derive some properties of c(z) and use them to verify the results in

Proposition 1, assuming to simplify the presentation differentiable densities,

and ERj < ∞. Also, we focus on the generic case γ > 0 and θ < 1, and

leave the rest as exercises. We claim first that limz→∞ c(z) = 0. Begin by

rewriting (9) as c(z) = αe
P4

j=1 Ij(z), where

I1(z) ≡ 1−γ
γ2(1−θ)2

zZ
0

zF 0e [H(Ri)|Ri] dFi(Ri)

I2(z) ≡ − 1−γ
γ2(1−θ)2

zZ
0

RiF
0
e [H(Ri)|Ri] dFi(Ri)

I3(z) ≡ −
zZ
0

Fe [H(Ri)|Ri] dFi(Ri)

I4(z) ≡
zZ
0

Fe [B(Ri)|Ri] dFi(Ri).

The claim is Ij(z)→ 0 as z →∞.

Consider I1(z), and suppose that
R∞
0 zF 0e [H(Ri)|Ri] dFi(Ri)9 0 as z →

∞. Making a change of variable using Re =
z−Ri(1−γ+θγ)

γ(1−θ) = H(Ri) = H,

this is equivalent to

∞Z
0

[γ(1− θ)H +Ri(1− γ + γθ)]F 0e(H|Ri)dFi(Ri)9 0 as H →∞.
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Integrating with respect to H over (0,∞), this implies

∞ =

∞Z
0

∞Z
0

[γ(1− θ)H +Ri(1− γ + γθ)]F 0e(H|Ri)dFi(Ri)dH

= γ(1− θ)

∞Z
0

∞Z
0

HF 0e(H|Ri)dFi(Ri)dH

+(1− γ + γθ)

∞Z
0

∞Z
0

RiF
0
e(H|Ri)dFi(Ri)dH,

and hence either ERe = ∞ or ERi = ∞. Therefore, I1(z) → 0 as z → ∞.

Similar arguments show Ij(z) → 0 as z → ∞, j = 2, ...4, and we conclude

c(z)→ 0 as z →∞.

Next we show c(R) = 0, and c(z) > 0 for some z in the neighborhood of

R, where R = inf{R|F 0i (R)F 0e(R|R) > 0} R <∞. First,

c(R) = 1−γ
γ2(1−θ)2

RZ
0

(R−Ri)F
0
e[H(Ri)|Ri]dFi(Ri)

−
RZ
0

{Fe[H(Ri)|Ri]− Fe[B(Ri)|Ri]} dFi(Ri)

= 1−γ
γ2(1−θ)2 (R−R)F 0e[H(R)|R]F 0i (R)

− {Fe[H(R)|R]− Fe[B(R)|R]}F 0i (R) = 0.

Now consider

c0(R) = 1−γ
γ2(1−θ)2

RZ
0

n
F 0e[H(Ri)|Ri] +

R−Ri

γ(1−θ)F
00
e [H(Ri)|Ri]

o
dFi(Ri)

− 1
γ(1−θ)

RZ
0

©
F 0e[H(Ri)|Ri]− γF 0e[B(Ri)|Ri]

ª
dFi(Ri).
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After simplification

c0(R) = 1−γ
γ2(1−θ)2F

0
e(R|R)F 0i (R) [1− γ(1− θ)] .

By definition of R, c0(R + ε) > 0 for some ε > 0. Hence, c(z) > 0 for some

z near R. The combination of the results in this Appendix, c(z) > 0 for z

near R and limz→∞ c(z) = 0, tells us that for small in there always exist

solutions to c(z) = in, and for big in there does not, which is what we need

for Proposition 1.

Appendix C: Lotteries

First, we verify that agents need not use lotteries in the CM. Assume e pays

some amount p0 to i in exchange for getting I with probability µ0. The

payoff to e is µ0W 0
e(m̂e − p0, Re) + (1− µ0)W 0

e(m̂e − p0, 0) and the payoff to

i is µ0W 0
i (p

0, 0) + (1 − µ0)W 0
i (p

0, Ri), while the threat points are as before.

Hence the bargaining problem is:

max
p0,µ0

¡
µ0Re − φ0p0

¢θ ¡
φ0p0 − µ0Ri

¢1−θ
Maximizing wrt p0, we get φ0p0 = µ0 [θRi + (1− θ)Re]. Using this, we can

reduce the derivative wrt µ0 to (1 − θ)(Re − Ri)(µ
0Re − φ0p0). As long as

Re > Ri and µ0Re > φ0p0, both of which are necessary for trade, this is

strictly positive for all µ0 > 0. Hence, for a maximum µ0 = 1.

Returning to the DM, the next claim is that profitable deals are never

directly put on hold when we use lotteries. The usual calculation indicates

that i puts a deal on hold iff Re > H(Ri), but now we have H(Ri) =
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φ0m̂−Riµ(1−γ+θγ)
µγ(1−θ) . Substituting µ from the bargaining solution into H, it is

easy to show Re > Ri implies Re < H(Ri), establishing the claim.

Next we verify ∂Ω/∂Rj < 0, j = i, e. Considering i (the other case is

symmetric), straightforward algebra yields ∂Ω/∂Ri ' −c1R2e − c2RiRe −

c3R
2
i , where c1, c2 and c3 are functions of (θ, γ). One can show c1, c2 and c3

are positive, the only tricky case being c1 which is a complicated polynomial

in θ and γ. Consider minimizing c1 over (θ, γ). One can check that c1 > 0

on the boundary of [0, 1]2, and then that c1 > 0 at every possible critical

point in [0, 1]2. So c1 > 0 for all (θ, γ) ∈ [0, 1]2, which establishes the claim.

Next we verify µ < 1 iff Re > B(Ri). This follows from inspection of

Figure 7. Suppose we fix Ri and increase Re starting at Re = Ri. Then

we switch from µ = 1 to µ < 1 at some point, say R̃e = R̃e(Ri). Since

this is the same point at which switch from p = [θRi + (1− θ)Re] /φ
0 < m̂

to [θRi + (1− θ)Re] /φ
0 > m̂, this point is R̃e(Ri) =

φm̂−θRi
1−θ , which tells us

that R̃e = B(Ri). This completes the argument.

Finally, we verify ∂µ/∂θ > 0 and ∂µ/∂γ < 0. The first derivative is

simple, the second less so. Calculation yields ∂µ/∂γ ' Υ, where

Υ ≡ −(1− γ + 2γθ)R3i + (1− 3γ + 6γθ)ReR
2
i

+(1 + 3γ − 6γθ)R2eRi − (1− γ + 2γθ)R3e.

Notice γ = 0 implies Υ < 0. Now consider trying to maximize Υ. Since

∂Υ/∂θ = 2γ(Re − Ri)
3 > 0, as long as γ > 0, which it need be if we have

any hope of Υ > 0, we must set θ = 1. Then ∂Υ/∂γ = (Re −Ri)
3(2θ − 1),

which is also positive given θ = 1, and we must also set γ = 1. Hence,
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the maximum occurs at γ = θ = 1, where Υ = −2Ri(Re − Ri)
2 < 0. This

completes the argument. ¥

Appendix D: Ve Convex in γ

The first partial of Ve wrt γ is

∂Ve
∂γ

= −αeβ
zZ
0

(Ri−z)2(1−γ)
γ3(1−θ)2 F 0e [H(Ri)|Ri] dFi(Ri)

+αeβθ

zZ
0

∞Z
H(Ri)

(Re −Ri)dFe(Re|Ri)dFi(Ri)

+αeβθ

∞Z
z

∞Z
Ri

(Re −Ri)dFe(Re|Ri)dFi(Ri).

Hence the second derivative satisfies

∂2Ve
∂γ2

'
(1− γ)

£
γ(1− γ) + 3(1− θ)2

¤
γ3(1− θ)3

zZ
0

(Ri − z)2F 0e [H(Ri)|Ri] dFi(Ri)

− (1− γ)

3γ5(1− θ)

zZ
0

(Ri − z)3 F 00e (H(Ri)|Ri)dFi(Ri)

+
θ

γ3(1− θ)2

zZ
0

(z −Ri)
2 dFi(Ri)

The first and third terms are unambiguously positive. As long as F 00e ≥ 0,

the middle term is also positive. ¥

42



REFERENCES

Aghion, P. and Bolton, P., 1996. A trickle-down theory of growth and

development with debt overhang. Review of Economic Studies 64,

151— 172.

Aghion, P. and Tirole, J., 1994. The management of innovation. Quarterly

Journal of Economics 109 (4), 1185-1209.

Anton, J., and Yao, D., 1994. Expropriation and inventions: appropriable

rents in the absence of property rights. American Economic Review

84 (1), 190-209.

Anton, J., and Yao, D., 2002. The sale of ideas: strategic disclosure,

property rights and contracting. Review of Economics Studies 69,

513-531.

Arora, A., 1995. Licensing tacit knowledge: intellectual property rights

and the market for know-how. Economics of New Technology and

Innovation 4, 41-59.

Aruoba, B. and Wright, R., 2003. Search, money, and capital: a neoclassi-

cal dichotomy. Journal of Money, Credit and Banking 35, 1085-1105.

Berentsen, A. Molico, M. and Wright, R., 2002, Indivisibilities, lotteries,

and monetary exchange, Journal of Economic Theory 107, 70-94.

Baccara, M. and Razin, R., 2004. From thought to practice. Working

paper, New York University and London School of Economics.

Buera, F., 2005. A dynamic model of entrepreneurship with borrowing

constraint: theory and evidence. Mimeo, Northwestern University.

Chari, V.V., Golosov, Mikhail and Tsyvinski, Aleh 2004. Business start-

ups, the lock-in effect, and capital gains taxation. Mimeo, Harvard

University.

Chiu, J. and Meh, C. 2006. Banking in the Market for Ideas. Mimeo, Bank

of Canada.

43



Corbae, D., Temzelides, T. and Wright, R., 2003. Directed matching and

monetary exchange. Econometrica 71 (3), 731-756.

den Haan, W. J., Ramey, G. and Watson, J., 2003. Liquidity flows and

fragility of business enterprizes. Journal of Monetary Economics 30,

1215-1241.

Evans, D. S. and Jovanovic, B., 1989. An estimated model of entrepreneur-

ial choice under liquidity constraints. Journal of Political Economy 97

(4), 808.827.

Evans, D. S. and Leighton, S. L., 1989. Some empirical aspects of entre-

preneurship. American Economic Review 79 (3), 519-535.

Fairlie, R., 1999. The absence of African-American owned business: an

analysis of the dynamics of self-employment. Journal of Labor Eco-

nomics 17, 80-108.

Fazzari, S. M., Hubbard, R. G. and Petersen, B. C., 1988. Financing

constraints and corporate investment. Brookings Papers on Economic

Activity 88 (1), 141-195.

Fazzari, S., Hubbard, R. G. and Petersen, B., 2000. Investment-cash flow

sensitivities are useful: a comment on Kaplan and Zingales. Quarterly

Journal of Economics 115, 695-705.

Gallini, N. and Winter, R., 1985. Licensing in the theory of innovation.

Rand Journal of Economics 16 (2), 237-252.

Gentry, W. and R. Hubbard, 2000. Tax policy and entrepreneurial entry.

American Economic Review 90, 283-287.

Guiso, L., Sapienza, P. and Zingales, L., 2001. The real effects of local

financial development. Mimeo, Chicago Business School.

He, P., Huang, L. and Wright, R., 2005. Money and banking in search

equilibrium. International Economic Review 46 (2), 637-670.

44



Herrero, M.J., 1989. The Nash Program: Non-convex Bargaining Problems.

Journal of Economic Theory 49, 266-277.

Holmes, T. and Schimtz, J., 1990. A theory of entrepreneurship and its

application to the study of business transfers. Journal of Political

Economics 98 (2), 265-294.

Holmes, T. and Schimtz, J., 1995. On the turnover of business firms and

business managers. Journal of Political Economy 103 (5), 1005 - 1038.

Holtz-Eakin, D., Joulfaian, D. and Rosen, H. S., 1994. Sticking it out:

entrepreneurial survival and liquidity constraints. Journal of Political

Economy 102 (1), 53-75.

Jensen, R., and Thursby, M., 2001. Proofs and prototypes for sale: the

licensing of university inventions. American Economic Review 91 (1),

240-259.

Katz, M., Shapiro, C., 1986. How to license intangible property. Quarterly

Journal of Economics 91 (1), 240-259.

Kocherlakota, N., 1998. Money is memory. Journal of Economic Theory

81 (2), 232-251.

Lagos, R., 2005, Liquidity and Asset Prices. Mimeo, New York University.

Lagos, R., Wright, R., 2005. A unified framework for monetary theory and

policy evaluation. Journal of Political Economy 113, 463-484.

Lel, U. and Udell, G., 2002. Financial constraints, start-up firms and per-

sonal commitments. Mimeo, Kelly School of Business, Indiana Uni-

versity.

Lloyd-Ellis, H. and Bernhardt, D., 2000. Enterprize, inequality and eco-

nomic development. Review of Economic Studies 67, 147— 168.

Lowe, R., 2003. Entrepreneurship and information asymmetry: theory and

evidence from the University of California. Working Paper, Carnegie

Mellon University.

45



Lusardi, A. and Hurst, E., 2004. Liquidity constraints, household wealth

and entrepreneurship. Journal of Political Economy 112 (2), 319-347.

Paulson, A. and Townsend, R., 2000. Entrepreneurship and financial con-

straints in Thailand. Journal of Corporate Finance 10, 229—262.

Pisano, G. and Mang, P., 1993. Collaborative product development and the

market for knowhow: strategies and structures in the biotechnology

industry. Res. Tech. Innovation, Management Policy 5, 109-136.

Pissarides, C., 2000. Equilibrium unemployment theory, 2nd edition. Cam-

bridge, MIT Press.

Quadrini, V., 1999. The importance of entrepreneurship for wealth con-

centration and mobility. Review of Income and Wealth 45 (1), 1-19.

Quadrini, V., 2000. Entrepreneurship, saving, and social mobility. Review

of Economic Dynamics 3, 1-40

Schumpeter, J., 1934. The theory of economic development. Harvard

University Press, Cambridge.

Serrano, C., 2005. The market for intellectual property: evidence from the

transfer of patents. Mimeo, University of Minnesota.

Shane, S., 2002. Selling university technology: patterns from MIT. Man-

agement Science 48 (1), 122-138.

Shepard, A., 1994. Licensing to enhance the demand for new technologies.

Rand Journal of Economics 18 (3), 360-368.

Teece, D., Pisano, G. and Shuen, A., 1997. Dynamic capabilities and

strategic management. Strategic Management Journal 18 (7), 509-

533.

The Economist, October 2005. A Market for Ideas.

Wallace, N., 2001. Whither monetary economics? International Economics

Review 42 (4), 847-870.

46




