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Abstract

We investigate possible determinants of the increase of household debt since the 1980s in the US.

We use a heterogeneous-agent model, in which labor income is risky and markets are incomplete.

Consumers use durables not only as collateral for their debt but also derive utility from their durable

stock. We �rst assume that all debt is secured. That is, debt is collateralized by durable holdings

and the lowest attainable labor income �ow. In this model �nancial-market development in terms

of lower interest spreads (and lower borrowing rates) or laxer collateral constraints can explain the

increase in household debt whereas the bu¤er-stock saving motive makes higher income risk a less

plausible explanation. We then extend the model to unsecured debt, default and risk-sharing with

competitive �nancial intermediaries.
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1 Introduction

Household debt has increased substantially in developed countries during the last decades. This has

been most dramatic in the US where household debt as a proportion of disposable income has been 46

percentage points higher in 2003 than in 1981; and consumer debt amounted to 113% of households�

disposable income in 2003 (see, for example, Iacoviello, 2005). Household debt has increased also in

many European countries although starting from lower levels (see ECRI, 2000). Thus, it is important

to understand the determinants of households�debt accumulation.

In this paper we want to investigate whether the remarkable increase in household debt since the

1980s in the US can be explained in an incomplete-markets model with consumption-smoothing motives.

We assume that labor income is risky and that this risk cannot be insured.1 In our model consumers

derive utility from non-durable and durable consumption. Durables like housing or cars generate utility

but also provide collateral against which consumers can borrow.2 Since most household debt in the

US (about 90%, Campbell and Hercowitz, 2005) is mortgage debt or other credit that is secured by

collateral and cannot be defaulted upon, we �rst analyze the case in which all credit needs to be

collateralized. We calibrate our model to the US and show how the solution depends on the model�s

parameters in an intuitive way. We �nd that �nancial market development in terms of lower interest

spreads (and lower borrowing rates) or an exogenous relaxation of the collateral constraint can explain

the upward trend in household debt. Instead an increase in income risk reduces average household

debt because of the bu¤er-stock savings motive. Thus, we get di¤erent predictions compared with

general equilibrium models which analyze approximations around the non-stochastic steady state (see,

for example, Iacoviello, 2005).

An important di¤erence of our model compared with the previous literature is that we allow for an

interest spread between the lending and the borrowing rate in �nancial markets. This generates the

empirically realistic �nding that a mass of consumers holds no �nancial assets at all. Such a spread has

been analyzed by Carroll (2001, section 3) in a model without durables. As Carroll (2001) we �nd that

there is only a small e¤ect of the spread on non-durable consumption. We �nd, however, that the e¤ect

on the propensity to purchase durables is sizeable. This is because durables are an alternative vehicle

to transfer resources intertemporally, especially if depreciation rates are low. The e¤ect of the interest

spread on the propensity makes durable expenditure more dispersed as income changes.

Since unsecured debt as a fraction of disposable income also increased substantially, from 5 to 9%

in the period 1983 to 1998 (see Livshits et al., 2005, Figure 3), we extend our model to allow for costly
1See the seminal papers of Deaton (1991), Carroll (1997) and the general equilibrium analysis of Aiyagari (1994) for

models of incomplete markets and non-durable consumption; and Diaz and Luengo-Prado (2005) or Gruber and Martin

(2003) for models with durables.
2 It is well known that durables mitigate the precautionary savings motive because they lower the dependence of

consumption on income �uctuations. Of course, if downpayments need to be made for durable purchases and durables are

illiquid, the precautionary savings motive could be stronger than in our model (see, e.g., Diaz and Luengo-Prado, 2005).
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default with risk-sharing �nancial intermediaries which are perfectly competitive. This allows us to

extend our analysis to the evolution of household debt portfolios in terms of unsecured and secured

debt. Allowing for default in equilibrium is also an attractive additional feature of the model because

consumer bankruptcy has become more important in recent decades in the US. Roughly 1.5% of US

households have �led for personal bankruptcy in each recent year; in 2003 households defaulted on

approximately $120 billion or $1,100 per household each year (see White, forthcoming).

Our analysis of unsecured debt relates to the general equilibrium model of Chaterjee et al. (2005)

and the partial equilibrium model of Athreya (2005).3 Whereas Chaterjee et al. focus on unsecured debt

and do not consider durables and collateralized credit, Athreya does allow for secured debt. However,

in his model consumers do not derive utility from the durable and the durable stock is exogenous. This

is an important di¤erence to our model which results in a di¤erent modelling of bankruptcy.4 Moreover,

both papers are not interested in explaining the trend of debt which we investigate in this paper. More

related in this respect is the work by Livshits et al. (2005) who try to explain the rise in consumer

bankruptcies using a life-cycle model without durables.

The rest of this paper is structured as follows. In Section 2 we present, solve and calibrate the model

with secured debt and discuss possible explanations for the upward trend of household debt. In Section

3 we extend the model to unsecured debt and default. We conclude in Section 4.

2 The model without default

Agents are risk-averse and have an in�nite horizon. They derive utility from a durable good d and

a non-durable good c. The instantaneous utility is given by U(c; d) = u(c) + �w(d) where u(:) and

w(:) are both strictly concave, and � is the weight assigned to utility derived from the durable. We

assume that the marginal utility w0(d) is well de�ned at d = 0 so that our model is able to generate

agents with no durable stock in at least some states of the world, as is realistic. A possible functional

form is w(d) = (d+d)� , with � � 1 and d> 0. The asymmetry in the utility function with respect to

non-durable and durable consumption is justi�ed in the sense that durables are less essential than non-

durable consumption such as food. Note that we implicitly assume that durables can be transformed

into non-durable consumption with a linear technology so that the relative price is unity.

In specifying utility as above we have made a number of simplifying assumptions. We assume d to

be a homogenous, divisible good. Moreover, utility is separable over time and at each point in time

it is separable between durables and non-durables. Both assumptions are made for tractability given

3See also the dynamic models of Athreya (2002) and Kubler and Schmedders (2003), and the two-period general

equilibrium models of Dubey et al. (2005) and Zame (2003). For a life-cycle model of consumer bankruptcy see Livshits

et al. (2004).
4Pavan (2005) studies and estimates a structural model of consumer bankruptcy with an endogenous durable stock.

As in our model, the durable stock is compared with the legally exempt level in case of bankruptcy. One important

di¤erence is that Pavan does not allow for secured and unsecured debt.
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that it is more realistic to assume that durables are a bundle of characteristics and that utility derived

from durables depends on non-durable consumption in non-trivial ways. Instead, as in much of the

literature, we assume that the service �ow derived from durables is proportional to the stock where we

have normalized the factor of proportionality to 1 (see Waldman, 2003, for a critical review of these

common assumptions).

We assume that markets are incomplete so that agents cannot fully diversify their risk. It is well

known that in such an environment, it is necessary to assume that agents are impatient, � < 1=(1+ra),

where ra is the lending rate which is taken as given in our small-open economy model. It follows from

the results by Deaton and Laroque (1992) that agents hold a �nite amount of �nancial assets a. Because

of positive depreciation � and limd!1 w0(d) = 0, also the durable stock d is bounded from above. The

collateral constraint and d � 0 then imply a compact state space so that standard dynamic programming
techniques can be applied (see Araujo et al., 2002, for existence proofs in a general equilibrium context).

We assume that there are transaction costs in the �nancial market so that the lending rate ra is

smaller than the borrowing rate rb: ra < rb. This assumption implies that some agents will hold no

�nancial assets, a = 0. As we will see below this has interesting implications for the consumption

propensities and the shape of the policy functions.

Timing. We specify our model in discrete time so that we have to make assumptions about the timing.

Figure 1 illustrates the time line. First uncertain income yt is drawn. Then agents derive utility from

the durable good dt before the durable depreciates at rate �. The agent then makes his choices based

on the available cash-on-hand

xt � (1 + rj)at + yt + (1� �)dt, j = a; b,

where rb is interest rate on debt and ra is the interest rate on �nancial assets at, with rb > ra . Note

that the durable stock dt is predetermined in period t.

The program. Rearranging the budget constraint,

ct = (1 + r
j)at � at+1 + yt � (dt+1 � (1� �)dt) ,

we can write the value function as

V (xt; dt; yt) = max
at+1;dt+1

264u(xt � at+1 � dt+1| {z }
ct

) + �w(dt) + �EtV (xt+1; dt+1; yt+1)

375
We can further simplify the problem by noting that dt is predetermined in period t and that the

additive separable term �w(dt) does not a¤ect the optimal choices of the consumer. De�ning

eV (xt; yt) � V (xt; dt; yt)� �w (dt)
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Figure 1: Timing in the model with collateral constraint and no default

the transformed maximization problem is

eV (xt; yt) = max
at+1;dt+1

264u(xt � at+1 � dt+1| {z }
ct

) + ��w (dt+1) + �Et eV (xt+1; yt+1)
375 (1)

under the constraints

at+1 =

8<:(1 + rat )at + yt � ct � it if at � 0(1 + rbt )at + yt � ct � it if at < 0

9=;
dt+1 = (1� �)dt + it�

1 + rb
�
at+1 + (1� �)dt+1 + y| {z }
xt+1�xt+1(y)

� 0

dt+1 � 0 .

The �rst two constraints are the accumulation equations for the �nancial wealth a and the durable

stock d. The third constraint is the collateral constraint. This constraint ensures that the lowest

attainable cash-on-hand xt+1 guarantees full repayment (if income takes its smallest possible value y).

The assumption here is that the lender, who lends at the risk-free rate, knows the �nancial position

(at,dt) and the minimum of the support of the income distribution y. The lender does not know

individual income draws. Note that whether and how much the collateral constraint binds in t + 1 is
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entirely determined by the choices in period t. In Section 3 below, we relax this constraint and allow

for risky debt with default.

Problem (1) satis�es Blackwell�s su¢ cient conditions (monotonicity and discounting) for a contrac-

tion mapping so that we can apply standard dynamic programming techniques to solve for the stationary

equilibrium. Because of stationarity, we drop time indexes and use primes � 0 �to denote a one-period

lead (but for u0(:) or w0(:) which denote �rst derivatives of the instantaneous utility functions).

Equilibrium de�nition. A stationary equilibrium is given by the policy functions for non-durable

consumption c(x; y), durable investment i(x; y), the accumulation equations a0(x; y) and d0(x; y), and

the evolution of the state variable x0(x; y) so that for given prices {ra; rb}

(i) the value function eV (x; y) attains its maximal value.
(ii) the collateral constraint is not violated, i.e., x0 � 0.
(iii) the durable stock is weakly positive, d0 � 0.
(iv) the distribution measure �(X;Y ) over the state space X �Y of agents is stationary, so that for

a transition matrix �(y0jy)
�(X;Y ) =

Z
X�Y

Ifx0=x0(x;y)g�(y
0jy)d� ,

where Ifx0=x0(x;y)g is an indicator function which takes the value 1 if the statement in braces is true.5

2.1 Euler equations and analytic results

For later reference, note that in the optimum

u0(c) = �(1 + ra)Eyu
0(c0) ,

if the agent holds positive �nancial assets a, and

u0(c) = �(1 + rb) (Eyu
0(c0) + �)

if the agent holds debt and choices are such that the collateral constraint binds in the following period,

� > 0.6 Because of the interest spread rb > ra, both Euler equations can be slack. In this case

the intertemporal rate of substitution of non-durable consumption is in-between the lending and the

borrowing rate:

1 + ra <
u0(c)

Eyu0(c0)
< 1 + rb .

Then, agents hold zero �nancial assets, a = 0.

In the optimum, durable investment is chosen so that it satis�es the condition

5See Rios-Rull (1999) for further discussion on the restrictions of admissible income processes which satisfy monotone

mixing or the American-dream / American-nightmare condition.
6Note again that whether the collateral constraint binds in period t+ 1 is determined by choices in period t.
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u0(c) = �(1� �)Eyu0(c0)) + �w0(d0) + (1� �)�+ 
 ,

where 
 � 0 is the multiplier associated with the constraint d0 � 0 . As is intuitive, the agent aligns

the marginal utility of foregone non-durable consumption today (resulting from durable investment)

with the discounted marginal utility derived from the durable tomorrow and the additional marginal

utility of non-durable consumption that is a¤orded by re-selling the durable good (taking into account

its depreciation at rate �).

Note that if the collateral constraint binds, � > 0, present consumption is valued less and more re-

sources are transferred to the future period. De�ning �permissible income processes�as those processes

which ensure that non-durable consumption and the durable stock remain in the domain over which

u(:) and w(:) are de�ned (as in Carroll and Kimball, 1996), we can show the following

Remark 1: If utility is separable in the durable d and non-durable consumption c, the instantaneous

utility functions u(:) and w(:) are strictly concave, of the HARA family, and satisfy prudence so

that u000(:) � 0 and w000(:) � 0, we can show:

(i) If the constraints are not binding, c(x; y), d(x; y) are concave, a(x; y) is convex and @c(x; y)=@x > 0,

@d(x; y)=@x > 0. Moreover, @a(x; y)=@x � 0 if � = 1, and under additional restrictions on

concavity also for 0 � � < 1.

(ii) If the collateral constraint binds, @a(x; y)=@x falls and can become negative.

(iii) If the Euler equations for �nancial assets are slack, c(x; y), d(x; y) can be strictly convex and

a(x; y) can be strictly concave over a certain range of x.

Proof: see the Appendix.

Remark 1(i) is an application of Theorem 1 in Carroll and Kimball (1996) to our model with durable

and non-durable consumption. The concavity of the non-durable and durable consumption functions

in models of incomplete markets is very intuitive. Precautionary motives imply that the consumption

propensity falls as agents have more cash-on-hand.

The intuition for Remark 1(ii) is that the possibility of a binding collateral constraint increases the

amount of �nancial wealth a for small values of x so that the slope is �atter. The optimality condition

of borrowing agents

u0(c) = �(1 + rb) (Eyu
0(c0) + �)

illustrates that as � falls with more cash-on-hand x (the collateral constraint is less binding), u0(c)

decreases, ceteris paribus. The same holds for durable investment. The slope @a(x; y)=@x can be

negative if the propensity of non-durable and durable consumption is larger than 1 and the collateral

constraint is relaxed as the durable stock increases.
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The intuition for Remark 1(iii) is that the propensity to consume out of cash-on-hand has to increase

if the Euler equations for non-durable consumption are slack since a0 = 0 and @a0=@x falls so that

@a0=@x = 0. Hence, the consumption propensities increase since @c=@x + @d=@x = 1 if a0 = 0. The

consumption functions are no longer globally concave.

Moreover, the durable stock increases relative to non-durable consumption since the optimality

conditions above (without multipliers for the constraints) imply

1 + ra < �(1� �) + �� w0(d0)

Eyu0(c0)
< 1 + rb .

The expected intra-temporal rate of substitution between durable and non-durable consumption to-

morrow equals [1 + ra � �(1� �)] =(��) if the agent lends and
�
1 + rb � �(1� �)

�
=(��) if the agent

borrows. Thus, as agents accumulate cash-on-hand in the region where a0 = 0, w0(d0)=Eyu0(c0) falls

until the intra-temporal rate of substitution equals 1 + ra .

The larger propensity for durable investment, for values of cash-on-hand x where a0 = 0, is intuitive.

As long as the depreciation rate is not too high, durables are an imperfect way to transfer resources

intertemporally since the rate of transformation is optimally in-between the exogenous interest factors

1 + rb and 1 + ra.

That limited access to funds increases the propensity of durable and non-durable consumption is

supported by empirical evidence (see, for example, Alessie et al., 1997, for estimates using the period of

�nancial deregulation in the UK in the 1980s).7 This feature of the model will be of particular interest

for the e¤ect of the interest spread on consumption volatility. A smaller fraction of agents with �nancial

assets a0 = 0 implies smaller changes of consumption in response to income changes.

2.2 Calibration and numerical results

Numerical algorithm. It is well known that problems like ours do not have a closed-form solution for

the optimal policies. Therefore, we pursue a numerical approach which relies on value function iteration.

While this allows us to conveniently rely on the contraction properties of the Bellman operator, one of

the main challenges for this technique is to �nd a way to get around the curse of dimensionality. This

is where the formulation of the problem that reduces the number of state variables to the minimum

pays o¤ - by subsuming the portfolio positions and the income realization in the single variable cash-

on-hand. Hence, the state variables are cash-on-hand and the state of uncertainty, which is modeled as

a 2-state Markov chain. The range of cash-on-hand, x, is restricted to an interval [0; xmax]. We perform

value function iteration on a grid of 350 points over that interval. The grid is �ner at the origin where

the value function has more curvature. Our choice of xmax guarantees that, for every x and for every

7Bertola et al. (2005) provide alternative microfoundations to explain the higher propensity for durable purchases if

there is an interest spread rb > ra and agents can be liquidity constrained (a = 0). In their model, a monopolist dealer

has an incentive to lower the credit price of a durable good to attract liquidity constrained customers.
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realization of uncertainty, the equilibrium policy will imply a value for x tomorrow that remains within

that interval.8 We use linear interpolation of the value function between these grid points.

A feature of our algorithm that greatly enhances the accuracy of our solutions is the fact that the

maximizing choices for the policy (at each state and each iteration) are not selected from a discretized

set of choices, but rather by solving these maximization problems continuously over portfolio choices.

We rely on a numerical optimization routine9 , which can also handle the collateral constraint and

sign restrictions, to perform this task and to obtain the implicit multipliers on the constraints. The

policy functions over the range [0; xmax] are obtained from the optimal policy choices on the grid by

interpolation, using cubic splines.

As has become standard in the literature (see, e.g., Judd, 1992, and Aruoba et al., 2006), we evaluate

the accuracy of our solutions by the normalized Euler equation errors implied by the policy functions.

These are smaller than 4 � 10�3 over the entire range where the Euler equations apply with equality,
and in fact much smaller for most values that the state variables of our problem can assume.

Calibration. We normalize average labor income y to 1, and parametrize the instantaneous utility

functions as

u(c) =
c1�� � 1
1� � and w(d) =

(d+ d)
1�� � 1

1� � ,

where, as mentioned above, d > 0 allows the consumer to hold no durable stock. We set risk aversion

for the non-durable and durable good � = 2, which is well within the range of commonly used values,

and assume d= 0:01. It turns out that the parameter d is rather unimportant and can be set to

negligibly small values without changing the quantitative results much. This is because the region of

d close to zero is not important in our simulations. We calibrate the size of the shocks and transition

probabilities of our 2-state Markov chain as 0:4. This implies a coe¢ cient of variation of 0:4 and a

�rst-order autocorrelation of 0:86 which is within the range of reasonable values considered by Aiyagari

(1994).

We calibrate our model to the US, following previous calibrations by Diaz and Luengo-Prado (2005)

and Athreya (2004). Table 1 summarizes the parameters. We calibrate the relative taste for the durable

� and the depreciation rate � so that we match a ratio of the durable stock to disposable income of

1.6 and a ratio of non-durable consumption over durable investment slightly above 6 (see Diaz and

Luengo-Prado, 2005, for the discussion of empirical estimates). This results in � = 0:4 and � = 0:08.

The other parameters are rather standard and their sources are listed in Table 1.

The choice of the depreciation rate merits further discussion. We need a rather high depreciation

8 In our algorithm, we choose the grid for cash-on-hand so that for an upper bound of cash-on-hand x , the optimal

policies imply that the maximal attainable cash-on-hand, x0max (for the highest realization of income ymax) is smaller

than this upper bound: x0max = (1 + r) a
0+ ymax+(1� �) d0 < x. Using x = 0 as a lower bound gives us a compact state

space (this bound is implied by the collateral constraint).
9We are using the Matlab routine fmincon().
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Figure 2: Value and policy functions in the good and bad state

rate so that a durable stock of 1.6, which is realistic empirically, is consistent with a ratio of non-durable

consumption over durable investment of 6. Although a depreciation rate � = 0:08 is less realistic for

housing, the rate is below commonly assumed values for other important durables like cars or computers.

Thus, we view it as a reasonable approximation for the depreciation of a durable composite. We will

also present results for a lower depreciation rate � = 0:04 which is closer to commonly used depreciation

rates as in Campbell and Hercowitz (2005).

Value function and policy functions. Figure 2 displays the solution for the value function and

the policy functions in the bad and good income state. The value function is smooth and concave. Not

surprisingly, the function shifts down in the bad state of the world. The policy functions have a slightly

non-standard shape consistent with the results of Remark 1. Because of the interest spread rb > ra,

�nancial assets a = 0 for an interval of cash-on-hand values. This local concavity of the �nancial policy

implies local convexities in the policy functions for non-durable consumption and the durable stock.

The local convexity is much more pronounced for the durable policy. This depends on whether the

depreciation rate is low enough so that durables are a reasonably attractive vehicle to transfer resources

intertemporally.

Note that the constraint d � 0 is never binding whereas the collateral constraint is expected to bind
for values of cash-on-hand close to zero. We now simulate our economy to �nd out more about the

mean and distribution of the policy variables in the steady state.
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Figure 3: Time-series simulation of the economy without default

Simulations. We simulate our economy for 10,000 periods. Figure 3 displays the results for an

arbitrarily chosen subsample of 300 periods. If the exogenous income process yt implies a long enough

sequence of bad-state incomes, the agent accumulates �nancial debt as he borrows against the durable

stock. If the bad shocks persist, the agent might not have the resources to keep the durable stock at his

current level so that it decumulates. This tightens the collateral constraint and can sometimes imply

that cash-on-hand xt = 0. The collateral constraint xt � 0, however, is also important for behavior if
the realized xt > 0 because of an income larger than y . The value function incorporates the expectation

that the collateral constraint can be become binding in the future with some probability, especially for

low values of x.

Note that without income uncertainty, the impatient consumer would always be at his borrowing

limit. Income uncertainty implies that the agent does not borrow as much and, if income is persistently

good, he even accumulates some bu¤er-stock of assets, at > 0. Finally, we observe that durable

investment is more volatile than consumption also because of the high propensity to invest if �nancial

assets are zero. We return to this point below.

Table 2 displays the averages in the steady-state equilibrium for the main variables of interest.

In column (1) we display the results for our benchmark economy. All values are expressed in average-

income equivalents. On average, the consumer holds 2:3 of average income as cash-on-hand and borrows

a sixth of average income with �nancial assets. The size of the durable stock is 1:64 and the ratio of

non-durable consumption over durable investment is 6:5 which is in line with empirical evidence for the

11



0 0.5 1 1.5
0

500

1000

1500

Non-dur. consumption

D
en

si
ty

0 1 2 3
0

500

1000

1500

2000

Durable holdings

D
en

si
ty

-2 0 2 4
0

1000

2000

3000

Financial assets

D
en

si
ty

0 5 10
0

500

1000

1500

Cash-on-hand

D
en

si
ty

Figure 4: The steady-state distributions

US (see Diaz and Luengo-Prado, 2005).10

Given that the income shocks are purely idiosyncratic, the law of large numbers implies that all

idiosyncratic risk disappears upon aggregation (see Uhlig, 1996) and the time-series distribution can

be used as an approximation of the cross-sectional distribution in the steady state. Figure 4 displays

such distributions for non-durable consumption c, durable holdings d, �nancial assets a, and cash-on-

hand x. The density of cash-on-hand is bell-shaped and is truncated at x = 0, where the collateral

constraint binds. Thus, also the densities of c, d, and a have more mass at their lower bound of the

support than would be the case without the constraint. Moreover, �nancial assets have a mass point at

a = 0 when the (non-durable) consumption Euler equation is slack for both ra and rb. The frequency

of agents with zero �nancial assets in Figure 4 is 11.7%. This is about the same order of magnitude

as the 10% of US consumers between age 25 and 50 which hold net non-housing wealth in the range

from zero to two weeks�of their permanent income11 (see the discussion of these statistics based on the

1995 Survey of Consumer Finances in Carroll, 2001). The higher propensity to consume in the range

where a = 0 implies that both the distribution for non-durable consumption and durable holdings are

bimodal. Consistent with the much stronger change in the propensity to purchase durables observed in

Figure 2, the bimodality is more pronounced for the distribution of durable holdings.

10Note that average disposable income y + rja is nearly equal to average income since rja ' 0 .
11Bu¤er-stock saving behavior should matter for consumers in this age range.
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Changes in parameters. We now investigate how changes of the model�s parameters alter the

steady-state equilibrium. In Table 2, columns (2) and (3), we compute the average equilibrium for

risk-aversion of � = 1 and � = 3, respectively. Not surprisingly, more risk-aversion increases the bu¤er-

stock saving motive so that consumers hold more �nancial assets. For � = 3, the consumer saves a

positive amount on average. Instead, the expenditure for durables decreases. This is interesting since

durables relax the collateral constraint and one could have expected that more risk-averse consumers

hold a larger durable stock. However, �nancial assets are a much more direct and return-dominating

vehicle to self-insure the consumer. Finally, note that a larger � shifts consumption towards non-

durables. This would not occur in the certainty case when constraints are not binding, since then

c=(d+d) = ((1� ��(1� �))=(��))1=� and the term in brackets is larger than 1 for the chosen parameter
values. Under uncertainty more risk aversion reduces the attractiveness of durables as storage device

compared with �nancial assets.

In column (4) we investigate whether the parameter d is important in our benchmark equilibrium.

We set d = 0 and �nd no signi�cant changes. As expected durable holdings increase slightly compared

to non-durable consumption because the marginal utility derived from the durable is higher (for a given

d). Thus, the ratio c=i falls. The larger durable stock also relaxes the collateral constraint. This allows

agents to borrow more so that the average �nancial-asset position is lower. The increase in debt is not

enough, however, to completely o¤set the increase in d so that cash-on-hand increases. The e¤ect of

increasing � from 0:4 to 0:5 is qualitatively the same (see column (5)).

If agents are more impatient (� = 0:9), the consumers borrow more (see column (6)). At the same

time the ratio c=i increases since non-durable consumption generates utility today whereas durable

investment only generates utility tomorrow. Thus, the durable stock falls which also tightens the

collateral constraint. Since consumers borrow more, the collateral constraint binds much more often.

When calibrating the model, we have mentioned that a depreciation rate � = 0:08 is rather high. In

column (7) we lower the depreciation rate to � = 0:04. This increases the durable stock and non-durable

consumption and lowers durable investment which is only a tenth of non-durable consumption. The

larger cash-on-hand relaxes the collateral constraint and allows agents to borrow more in bad times so

that the average �nancial asset position is lower.

2.2.1 On the evolution of household debt

We now apply our model to investigate whether the model can explain the rise in household debt in the

US in the last decades. We consider the following explanations as candidates: (i) a fall of the interest

rate on debt and/or a fall of the interest spread in �nancial markets, (ii) laxer collateral constraints or

(iii) an increase in income risk.

A fall of the interest rate on debt. If we lower the borrowing rate rb to 0:02, not surprisingly

agents borrow more (see Table 2, column (8)). Cheaper borrowing also allows consumers to a¤ord a

13



larger durable stock. Total cash-on-hand decreases, however, because of more consumer debt. The fall

in the borrowing rate also reduces the spread in the �nancial market so that agents hold zero �nancial

assets less frequently and the kinks in the policy functions of durables and �nancial assets become

less pronounced. This implies that the frequency of consumers with �nancial assets a = 0 is 2.3%

which is similar to the empirically observed frequency of 2.5% for consumers holding precisely zero net

non-housing worth in the 1995 Survey of Consumer Finances in the US (see Carroll, 2001). The lower

frequency implies in our model that the distribution of durable holdings becomes less bimodal (the

�gures are not reported but are available upon request).

A fall of the interest spread. In order to distinguish between changes in the average interest rate

(lending and borrowing rate) and changes in the spread, we try to disentangle both e¤ects in columns

(9) and (10). We �rst lower the interest spread but keep the average interest rate constant (see column

(9)). Decreasing the spread by 50% has a very small e¤ect on the steady-sate averages. Alternatively,

we keep the spread constant but increase both the lending and borrowing rate so that the average

interest rate increases (see column (10)). The results in column (10) di¤er from the benchmark in

the opposite way as in column (8) where we decreased the borrowing rate. There is only one subtle

di¤erence. The durable stock increases in column (8) because of cheaper borrowing rates. Instead in

column (10), higher average interest rates imply that the distribution of �nancial assets shifts upwards

so that the wealth e¤ect allows consumers to a¤ord more expenditure.

An increase in income risk. We �nd that an increase in income risk cannot explain the increase

in debt. The reason is that higher risk (in terms of shock size or persistence) increases the bu¤er-stock

saving motive and thus decreases the debt holdings of agents. The results are in Table 2, columns

(11)-(13). In column (11) we increase the size of shocks from 0:4 to 0:5, which implies an increase of

the standard deviation of log-income by 12 percentage points. This is about the increase of the cross-

sectional standard deviation of log-earnings in the US (15 basis points) in the period between 1981 and

2003. As can be seen in column (11), consumers hold more �nancial assets as bu¤er stock and also,

conditional on holding debt, average debt decreases from �0:35 to �0:22. The average durable stock
increases slightly. The results are qualitatively the same if the shocks are more persistent (see column

(12) where the transition probability falls from p = 0:4 to p = 0:2).

Laxer collateral constraint. Institutional �nancial market reforms that allow consumers to collat-

eralize more of their debt are a more plausible explanation for the higher debt levels in our model.

We tighten the collateral constraint exogenously in column (13) where we no longer allow consumers

to collateralize their durable stock. This implies qualitatively similar changes as an increase of income

risk. Thus, relaxing collateral constraints, does increase consumer debt. Lower collateral requirements

are thus a possible explanation for higher consumer debt. See Campbell and Hercowitz (2005) for a
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discussion on how market innovations that followed the Monetary Control Act of 1980 and the Garn-

St.Germain Act of 1982 relaxed collateral constraints on household debt in the US.12

2.2.2 Steady state dispersion

Since agents are heterogenous we are not only interested in the mean but also in the dispersion in the

steady state. Thus, we display the coe¢ cient of variation for the main variables of interest in Table 3. In

the benchmark calibration (see column (1)), durable investment is most dispersed, followed by �nancial

assets and cash-on-hand. The durable stock and non-durable consumption have the smallest variation

since the agents try to smooth out the income �uctuations. The durable stock is slightly more dispersed

than non-durable consumption because the interest spread makes the propensity to accumulate durables

much higher than the propensity for non-durable consumption if �nancial assets a = 0 (see Figure 2

above). If we reduce the interest spread as in column (2) or (3), the volatilities of d and c are much

more alike. The variation of c increases slightly in column (2) since more debt and less cash-on-hand

make the collateral constraint binding more often. This e¤ect is outweighed by the smaller non-linearity

of the policy function for durable expenditure. Thus, �nancial market development that results in a

reduction of the spread reduces variation in consumption mostly for durables (see column (3)). But if

also the borrowing rate falls, higher consumer debt of impatient consumers increases the importance

of the collateral constraint with an opposite e¤ect on dispersion. Thus, it is important for the results

on dispersion to allow the collateral constraint to become more or less binding in equilibrium. This is

not always done in general equilibrium models where a �xed share of agents is assumed to be at the

constraint for tractability (see Campbell and Hercowitz, 2005, or Iacoviello, 2005).

Higher average interest rates reduce the variation of consumption and the durable stock because

a higher �nancial asset position implies that the collateral constraint binds less often (see column

(4)). Interestingly also the dispersion of durable expenditure falls. Consumers make smaller durable

adjustments as they do not need to postpone investment due to binding constraints. Indeed, if we

exogenously tighten the collateral constraint in column (7), where consumers can no longer collateralize

durables, the dispersion of the durable stock and expenditure increases. Interestingly, the variation

of non-durable consumption remains nearly unchanged as agents accumulate more cash-on-hand to

self-insure.

Not surprisingly, a larger size of the income shock increases the variation of all variables (see column

(5)). The variation of non-durable consumption increases by 20% compared with the 25% increase of

income variation. If shocks are more persistent, this is qualitatively similar but for durable investment

(see column (6)). The dispersion of the durable stock occurs at a higher level, however, so that it is less

12Financial market development, in terms of a lower spread, and more income risk are both consistent with the empirical

upward trend in the US of durable expenditure compared with non-durable consumption. The ratio c=i falls in columns

(8)-(10) compared with the benchmark. Instead for a laxer collateral constraint the opposite is the case for our parameter

values (since c=i decreases slightly for a tighter constraint in column (11)).
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costly in marginal utility terms.

The main message of our results has been so far that income risk alone cannot explain the increase

in household debt in our model. Financial market development in terms of lower interest spreads

(and lower borrowing rates) or exogenous relaxation of the collateral constraint can explain the larger

household debt. However, we cannot fully dismiss the hypothesis that more idiosyncratic income risk

increased consumer debt for at least two reasons:

(i) In our small-open economy model interest rates are exogenous. A general equilibrium e¤ect in a

closed economy as in Aiyagari (1994) would imply that interest rates have to fall until the asset market

clears. This would reduce the strength of the bu¤er-stock saving motive. We are currently investigating

how sensitive our results are to the small-open economy assumption.

(ii) The access to borrowing and idiosyncratic risk maybe endogenously related. For example in

Krueger and Perri (2005), limited enforcement of credit contracts implies that �nancial market develop-

ment interacts with income volatility. If more volatile income makes the exclusion from credit markets in

case of default more costly, this might foster �nancial market development. In this case, more volatile

income will induce a higher bu¤er-stock but with respect to a laxer borrowing limit. Whether this

implies more or less debt depends on which e¤ect dominates quantitatively and is a priori unclear.

We now extend our model in this direction and allow for limited commitment in credit contracts

and costly default. This is particularly interesting because unsecured debt has increased substantially

over the 1990s in the US. Thus, a joint analysis of secured and unsecured debt and their determinants

is warranted. We now introduce unsecured debt, default and risk-sharing intermediaries which are

perfectly competitive.

3 The model with default

As before agents have access to risk-free secured debt as � 0, which is backed by collateral and bears
interest rate rb, and risk-free positive assets au � 0 which bear interest ra (rb > ra). Creditors of

secured debt have priority for the payment of their debt principal and interest. The new feature of the

model with default is that agents can also borrow unsecured debt au < 0.13 This debt does not need to

be backed by collateral so that agents possibly default on that debt depending on their income draw.

Unsecured debt is priced actuarially fairly by a risk-neutral intermediary which perfectly diversi�es the

idiosyncratic risk applying the law of large numbers. We will derive the price of unsecured debt below.

13Modeling risk-free savings as au � 0 and unsecured debt as au < 0 has the advantage that this structure abstracts

from strategic default. If we modelled risk-free savings as as � 0, agents would have an incentive to accumulate risk-

free assets before they default and we would need a more complicated speci�cation of exemption levels and bankruptcy

procedures to prevent this from happening (as is done in reality).
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Figure 5: Timing for the model with default

Timing. Figure 5 illustrates the time line. We assume that agents �rst derive utility from the durable

good before the durable depreciates. Agents then make choices about their �nancial asset portfolio

( ast
1+rbt

, a
u
t

1+rjt
),14 where rjt = rat if a

u
t > 0 and r

j
t = rut otherwise. The interest rate of unsecured debt, r

u
t ,

is determined below. The agents also choose the durable stock target d�t+1 and non-durable consumption

ct. After the consumption and portfolio decisions, the interest for the �nancial assets accrues. Then the

uncertain income is drawn. After this draw, agents decide whether to declare bankruptcy. The timing

implies that the collateral constraint for secured debt is

ast � �(1� �)d�t+1 � y . (2)

Bankruptcy. We model consumer bankruptcy assuming that consumers can keep no resources but

durables up to an exemption level dy. This level is motivated by real-world bankruptcy legislation for

US households (chapter 7 and 11 of the federal bankruptcy act). The US law de�nes the value of

the property that is protected from creditors that claim unsecured debt. The property collateralizing

secured debt cannot be used to service unsecured debt. Only the remaining property (net of secured-

debt claims) which is above the exemption level can then be used to service unsecured debt (see, for

example, Athreya, 2005, or Grant and Koeniger, 2005, for more information on the US legislation).

14Writing the asset choices in this discounted way (see also Athreya, 2005), allows us to express cash-on-hand in the

next period without any interest factor. This is very helpful for technical reasons since the contraction mapping needs to

be applied only to the value function and not also to the unknown interest rate factor of unsecured debt (which depends

on the agent�s asset position).
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The most important value items that are de�ned as exempt in the US legislation are durables such as

housing, cars and other household durable goods.

At the time of bankruptcy the agent needs to reveal information on d�t+1, a
�
t+1 and yt+1 to the

bankruptcy judge, where

d�t+1 = (1� �)dt + it ,

a�t+1 = ast + a
u
t ,

and

aut < 0

if agents default. In particular, the judge will know the composition of �nancial assets ast and a
u
t , the

minimum of the support of the income distribution y and the exemption level dy. The judge then

secures the durable stock for all secured debt ast= (1� �). He computes the remaining durable stock
available for honoring the unsecured debt as

dst+1 = max
�
d�t+1 � ast= (1� �) ; 0

	
,

where ast � 0.15 Thus, all secured assets ast are carried forward into the next period.
The bankruptcy judge then continues to satisfy the outstanding unsecured debt where the remaining

resources are dst+1 and

eyt+1 � yt+1 � y +maxfy +min
�
ast + (1� �)d�t+1; 0

	
; 0g .

The last expression consists of the labor income which remains after the collateralizable income has

been (partly) used to repay secured debt. The bankruptcy judge then uses dst+1 and eyt+1 to honor
unsecured debt. The remaining durable stock after doing that is

d+t+1 = max
�
minfdy; dst+1g; dst+1 + aut

	
,

where aut < 0 . If d
s
t+1 � dy, nothing of the durable stock can be used to honor unsecured debt. If

dst+1 > dy, the durable stock above the exemption level is used to repay unsecured debt.

The cash-on-hand in the next period is then given by

x+t+1 = (1� �)d+t+1 +maxfeyt+1 +minfaut + dst+1 � dy; 0g; 0g+ ast ,
where the claims of unsecured debt that cannot be honored with durables have to be repaid with

the remaining resources eyt+1, if possible. After the judge has satis�ed creditors as much as possible
according to these rules, he sets aut = 0 .

15Note that secured debt collateralizes the durable target net of the depreciation rate since payments are due after the

depreciation realizes (see the discussion of the timing above and the collateral constraint (2)). Moreover, the minimum

of the support of the income distribution y is only used to service secured debt if the durable stock does not su¢ ce. The

maximum operator is necessary because also y can be collateralized.

18



Evolution of state variables. For completeness we summarize the evolution of the state variables

which depend on the bankruptcy decision. The timing implies that the targeted durable stock d�t+1 =

(1� �)dt+ it is predetermined after the investment decision it. Of course, the realized durable stock in
the next period dt+1 depends on the default decision and thus is uncertain:

dt+1 =

8<: d�t+1 = (1� �)dt + it if no default
d+t+1 = max

�
minfdy; dst+1g; dst+1 + aut

	
if default (aut < 0)

. (3)

Financial assets evolve according to

at+1 =

8<: a�t+1 � ast + a
u
t if no default

ast if default
. (4)

In words, agents default on unsecured debt (principal and accrued interest). The accumulation of

cash-on-hand is then de�ned as

xt+1 =

8<: x�t+1 � a�t+1 + yt+1 + (1� �)d�t+1 if no default
x+t+1 � (1� �)d+t+1 +maxfeyt+1 +minfaut + dst+1 � dy; 0g; 0g+ ast if default . (5)

The pricing of unsecured debt. We assume that the lender knows y and observes the portfolio

(aut ; a
s
t ; d

�
t+1) before the income draw yt+1 (Note that d�t+1 is predetermined in period t). The lender is

not able to observe the income draw. Denoting �t as the vector of the portfolio (aut ; a
s
t ; d

�
t+1), we de�ne

the interest factor for unsecured debt as Ru(�t) � 1 + ru . Thus, the �nancial intermediary computes

a price-schedule conditional on the portfolio position. This is because the portfolio choice changes the

probability of default. Since we assume perfectly competitive �nancial intermediaries (as in Chaterjee

et al., 2005), there is no cross-subsidization and consumers with di¤erent portfolios receive a di¤erent

interest quote for unsecured debt.

Since we introduce a random utility cost of default, as discussed below, the agent will possibly repay

in each income state. The lender takes this into account when pricing the loan. We de�ne the probability

of default for a given portfolio �t, conditional on the income state s with yt+1(s), as �(�tjs). We denote
the unconditional probability for each income state as �(yt+1(s)). Then the zero-pro�t condition implies

that for an additional unit of unsecured debt, aut < 0,

(1� �(�t))Ru(�t)

+
�s �(yt+1(s))�(�tjs)min

�
�aut ;maxfdst+1 � dy; 0g+ eyt+1(s)	��� aut
1+ru

���
= 1 + rs .

Hence,

Ru(�t) =
1 + rs

1� �(�t) +
�s �(yt+1(s))�(�tjs)minf�aut ;maxfdst+1�dy;0g+eyt+1(s)g

jaut j

. (6)
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The minimum operator does compare the amount of outstanding unsecured debt (transformed into

a positive number) with the resources that unsecured creditors receive from the durable sales dst+1� dy

and the other available resources eyt+1(s) which depend on the realized value of labor income. Of course,
the creditors receive at most all their outstanding debt and accrued interest aut .

The program. If the consumer has not declared bankruptcy in the last period, the budget con-

straint16 is
ast

1 + rjt
+

aut
1 + rut

+ ct + d
�
t+1 � x�t = a�t + yt + (1� �)d�t .

We can rewrite the value function, if the agent has not defaulted in the last period, as

V (x�t ; d
�
t ; yt) = max

ast ;a
u
t ;d

�
t+1

26664
u(x�t �

ast

1 + rjt
� aut
1 + rut

� d�t+1)| {z }
ct

) + �w(d�t )

+�E�;ymax[V (x
�
t+1; d

�
t+1; yt+1); V (x

+
t+1; d

+
t+1; yt+1)]

37775 .

If the agent has defaulted in the last period, the budget constraint is

ast

1 + rjt
+

aut
1 + rut

+ ct + d
�
t+1 � x+t

and

V (x+t ; d
+
t ; yt) = max

ast ;a
u
t ;d

�
t+1

26664
u(x+t �

ast

1 + rjt
� aut
1 + rut

� d�t+1)| {z }
ct

) + �w(d+t )

+�E�;ymax[V (x
�
t+1; d

�
t+1; yt+1); V (x

+
t+1; d

+
t+1; yt+1)]

37775 .

We can further simplify the problem by noting that dnt , n 2 f�;+g, is predetermined in period t
and that the additive separable term �w(dnt ) does not a¤ect the optimal choices of the consumer. We

de�ne eV (x�t ) � V (x�t ; d
�
t )� �w (d�t )

and eV �x+t � � V
�
x+t ; d

+
t

�
� �w

�
d+
�
.

Note that the functions are the same and we only need to keep track of default for the evolution of x and

d, which reduces the computational burden. Thus, the value function of the transformed maximization

problem is

eV (xnt ; yt) = max
ast ;a

u
t ;d

�
t+1

26664
u(xnt �

ast

1 + rjt
� aut
1 + rut

� d�t+1| {z }
ct

)

+�E�;ymax[eV (x�t+1; yt+1) + �w �d�t+1� ; eV (x+t+1; yt+1) + �w �d+t+1�]

37775 ,

16Writing the budget constraint this way has the advantage that x is not a direct function of Ru. Since Ru is unknown

until the optimal portfolio is determined, we would otherwise need convergence over both V and Ru in our algorithm. In

the current formulation instead standard contraction mapping over V can be employed.
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where n 2 f�;+g. Note that the bankruptcy decision has a utility cost since w
�
d+t+1

�
� w

�
d�t+1

�
.17

Since the durable stock cannot be adjusted after the default decision and choices in the next period are

made after utility is derived from the durable, consumers who have a taste for durable consumption will

�nd default costly. The cost of default varies according to how long it takes until the durable can be

readjusted. In reality, this depends on the length of court procedures and legally set time spans after

which consumers can deviate from their exemption levels. In our model, the cost depends on how we

calibrate the length of one discrete period.

In most of the literature the cost of bankruptcy is either modelled as an exogenous utility cost (see,

for example, Athreya, 2005) or by assuming that defaulting consumers are excluded from the credit

market for a certain number of periods (see, for example, Chaterjee et al., 2005). Since the empirical

evidence for such exclusion is not overwhelming (see Musto, 1999, or Staten, 1993), and consumers that

just have defaulted should be attractive for lenders because they cannot default again for some years,

we �nd our alternative modeling of the cost of bankruptcy on the �durable-side�worth studying. As we

will discuss now, we also need a random bankruptcy cost in terms of utility for computational reasons.

It remains to address one technical issue which complicates the numerical solution. As we mentioned

above when discussing our numerical algorithm in Section 3, the accuracy and speed rely on solving

maximization problems continuously over portfolio choices. Given that income only varies between 2

states, the probability of default is no longer continuous. This translates into discontinuities of the

interest factor Ru(�t) and thus the right-hand side of the Bellman equation. Hence, we introduce some

additional �randomness� to make the probability of default �(�t) continuous. We assume a random

cost  which can be interpreted as uncertain lawyer cost, psychological pain or stigma (see Athreya,

2005, for a deterministic utility cost). Thus, we rewrite the program as

bV (xnt ; yt) = max
ast ;a

u
t ;d

�
t+1

26664
u(xnt �

ast

1 + rjt
� aut
1 + rut

� d�t+1| {z }
ct

)

+�E�;ymax[bV (x�t+1; yt+1) + �w �d�t+1� ; bV (x+t+1; yt+1)�  + �w �d+t+1�]

37775 .

Together with the equations for the evolution of the state variables (3), (4), (5) and the constraints

dt � 0 and aut � 0, this completes the set-up of the program.
Note that for a given portfolio �t and for each realization of yt+1, we compute the critical  �(�t; yt+1)

at which the consumer is indi¤erent between declaring bankruptcy or not. Assuming that the additive

separable random cost is exponentially distributed allows us to compute the expected value of the cost

(conditional on defaulting) in closed form. Importantly, the default probability is higher for low values

17 In the literature often two value functions need to be computed: one for case of default and another for the case of

no default. This is because dynamic costs of default, such as the exclusion from the credit market for n periods, imply

di¤erent present discounted values. In our model default �only�matters for the level of x and d once and for all so that

we do not need to distinguish two value functions.
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Figure 6: The default probability for two di¤erent income states (without durables, � = 0).

of income as illustrated in Figure 6, where we set � = 0. The probability mass below the functionbV (x+; y(s = 1)) is larger than the mass below the function bV (x+; y(s = 2)) (both are marked with

dashed lines in the �gure). The critical value  �(�t; yt+1(s)), for income state s, at which the consumer

would refrain from bankruptcy is  � = bV (x+; y(s))� bV (x�; y(s)).
Equilibrium de�nition. A stationary equilibrium is given by the policy functions for non-durable

consumption c(x; y), durable investment i(x; y), the accumulation equations a0(x; y) and d0(x; y), and

the evolution of the state variable x0(x; y) so that for given prices {ra; rb} for secured debt and deposits:

(i) the value function bV �xi; y�, i 2 f�;+g, attains its maximal value.
(ii) the price for unsecured debt Ru(�) satis�es the arbitrage equation (6).

(iii) the accumulation equations (3), (4) and (5) for d; a and x are satis�ed.

(iv) the collateral constraint for secured assets is not violated, and d0 � 0, au � 0.
(v) the distribution measure �(X;Y ) over the state space X � Y of agents is stationary, so that for

a transition matrix �(y0jy)
�(X;Y ) =

Z
X�Y

Ifx0=x0(x;y)g�(y
0jy)d� .

In the Appendix we derive the optimality conditions for the consumer�s portfolio choice for the

problem without random cost  . The main change, compared with Section 3, is that portfolio choices

a¤ect the interest factor Ru. Thus, accumulation of durables can be more attractive if this makes default

less likely and unsecured debt becomes �cheaper�. Moreover, the e¤ect of today�s portfolio choice on
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tomorrow�s cash-on-hand depends on the bankruptcy decision. Thus, the implicit rate of return for

each asset changes as soon as the probability of default is larger than zero.

3.1 Calibration and numerical results

Numerical algorithm. [To be completed]

Calibration. [To be completed]

4 Conclusion

We have studied and solved heterogenous agent models where income risk cannot be insured and con-

sumers derive utility from non-durable and durable consumption. We �rst study a version of the model

in which consumers only have access to secured debt that is collateralized by durables. We apply this

model to investigate the determinants of the increase in household debt in the US since the 1980s. We

�nd that income risk alone cannot explain the increase in household debt in our model. Financial mar-

ket development in terms of lower interest spreads (and lower borrowing rates) or exogenous relaxation

of the collateral constraint can explain the larger household debt. Finally, we extend our model to

unsecured debt and consumer bankruptcy. [To be completed]

Appendix

I. Proof of Remark 1

The proof is based on results of Carroll and Kimball (1996). In order to simplify notation we drop

income yt as an argument of the functions.

Claim (i): If the constraints are not binding, c(x), d(x) are concave and a(x) is convex and

@c(x)=@x > 0, @d(x)=@x > 0, @a(x)=@x � 0 .
Proof: We want to show that if u(:) and w(:) are HARA utility functions and u0(:) > 0, u00(:) < 0,

u000(:) � 0, and w0(:) > 0, w00(:) < 0, w000(:) � 0, then c(x), d(x) are concave and a(x) is convex and

@c(x)=@x > 0, @d(x)=@x > 0, @a(x)=@x � 0 .
Our problem is

eVt (xt) = max
at+1;dt+1

264u(xt � at+1 � dt+1| {z }
ct

) + ��w (dt+1) + �Et eVt+1 (xt+1)
375

where xt � (1 + rj)at + yt + (1� �)dt so that the budget constraint

ct = xt � at+1 � dt+1 .
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To start we also assume a �nite horizon so that we have the terminal condition

cT = xT .

We then proceed analogously as in Carroll and Kimball and prove Lemmas 1-3. For this we de�ne

as �t((1 + rj)at+1(xt) + (1� �)dt+1(xt)) � �Et eVt+1 (xt+1), where
xt+1 � (1 + rj)at+1 + yt+1 + (1� �)dt+1.

Note that �t(:) is written as a function of choice variables.

The �rst lemma shows that the property of prudence is conserved when aggregating across states of

nature.

Lemma 1: If eV 000t+1 eV 0t+1= heV 00t+1i2 � k, then �000t �
0
t= [�

00
t ]
2 � k .

Proof: see Carroll and Kimball, p. 985.

The second lemma shows that the property of prudence is conserved when aggregating intertempo-

rally.

Lemma 2: If �000t �
0
t= [�

00
t ]
2 � k and u000u0= [u00]2 � k, w000w0= [w00]2 = k, then eV 000t eV 0t = heV 00t i2 � k .

Proof: Following Carroll and Kimball, p. 985/986, we denote the marginal utility of non-durable

consumption at the optimal consumption level with zt = u0(c�t (xt). Neglecting the collateral constraint

and interest spread, we know that in our problem the following equations hold in the optimum:

zt = u0(c�t (xt)) ,

u0(c�t (xt)) = eV 0t (xt) ,
u0(c�t (xt)) = �(1 + rj)Et eV 0t+1 (xt+1) = (1 + rj)�0t ,
u0(c�t (xt)) = ��w0(dt+1) + (1� �)�0t ,

where �t((1 + rj)at+1(xt) + (1� �)dt+1(xt)) . We then de�ne the functions ft(zt), gt(zt), ht(zt), lt(zt)

as

ft(zt) = u0�1(zt) = ct ,

ht(zt) = eV 0�1t (zt) = xt ,

lt(zt) = w0�1
�
zt � (1� �)�0t(:)

��

�
= dt+1 ,

gt(zt) = �0�1t

�
zt

1 + rj

�
� (1� �)lt(zt) = (1 + rj)at+1 .

Noting from the last equation that

(1 + rj)at+1 + (1� �)dt+1 = �0�1t

�
zt

1 + rj

�
,
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we use this expression in as the argument of �0t(:) in the second equation which then simpli�es to

lt(zt) = w0�1
�

rj + �

�� (1 + rj)
zt

�
= dt+1

Dropping time indexes for functions f , g, l, h, we have

f 0(z) =
1

u00(c(z))
,

f 00 = � u000(c)

[u00(c)]
2 f 0|{z}
@c=@z

= � u000

[u00]
3 ,

so that

�zf
00

f 0
=
u000u0

[u00]
2 � k .

Similarly,

�zh
00

h0
=
eV 000t eV 0theV 00t i2 .

Furthermore,

l0 =
rj + �

�� (1 + rj)w00
,

l00 = �
�
rj + �

�
w000

�� (1 + rj) [w00]
2 l
0 ,

so that

�zl
00

l0
=
w000w0

[w00]
2 � k ,

where we use that
rj + �

�� (1 + rj)
zt = w0(dt+1) .

Finally,

g0 =
1

(1 + rj)�00
�
�0�1t

�
zt

1+rj

�� � (1� �) rj + �

�� (1 + rj)w00
,

g00 = � �000

(1 + rj)2 [�00]
3 + (1� �)

�
rj + �

�
w000

�� (1 + rj) [w00]
2 l
0 .

Thus,

�zg
00

g0
=

�000�0

(1+rj)[�00]3
� (1� �)w000w0

[w00]2
l0

1
(1+rj)�00 � (1� �)l0

.

For � = 1, this simpli�es to

�zg
00

g0
=
�000�0

[�00]
2 � k ,

For 0 < � < 1,

�zg
00

g0
=

g0

g0 � (1� �)l0
�000�0

[�00]
2 �

(1� �)l0
g0 � (1� �)l0

w000w0

[w00]
2 .
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If we assume HARA utility so that w000w0= [w00]2 = k, then �000t �
0
t= [�

00
t ]
2 � k implies that

�zg
00

g0
� g0

g0 � (1� �)l0 k �
(1� �)l0

g0 � (1� �)l0 k = k .

Now note that since

ct = xt � at+1 � dt+1

and

at+1 =
g

(1 + rj)
� (1� �)l ,

we have

h = f +
g

(1 + rj)
� (1� �)l + l

= f +
g

(1 + rj)
+ �l .

That is, h is an additive function of f , g and l, so that

h0 = f 0 +
g0

(1 + rj)
+ �l0

and

h00 = f 00 +
g00

(1 + rj)
+ �l00 .

This implies that

�zh
00

h0
= �z

f 00 + g00

(1+rj) + �l
00

f 0 + g0

(1+rj) + �l
0

=
f 0

f 0 + g0

(1+rj) + �l
0| {z }

>0

�
�zf

00

f 0

�
| {z }

�k

+

g0

(1+rj)

f 0 + g0

(1+rj) + �l
0| {z }

>0

�
�zg

00

g0

�
| {z }

�k

+
�l0

f 0 + g0

(1+rj) + �l
0| {z }

>0

�
�zl

00

l0

�
| {z }

�k

� k ,

since this is a weighted average of expressions that are larger or equal than k.

As in Carroll and Kimball we move on to show Lemma 3, where we exploit again that HARA utility

implies w000w0= [w00]2 = k and u000u0= [u00]2 = k with equality.

Lemma 3: If eV 000t eV 0t = heV 00t i2 � k, w000w0= [w00]2 = k and u000u0= [u00]2 = k, then the optimal consumption

policy rules c(x) and d(x) are concave and liquid assets a(x) are convex.

Proof: Note that

ct(x) = ft(h
�1
t (x)) .
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Thus,
@c

@x
=
f 0(h�1)

h0(h�1)
=
eV 00
u00

> 0

if u00 < 0, eV 00 < 0 and
@2c

@x2
=

�
f 00(h�1)=h0(h�1)

� �
h0(h�1)

�
�
�
f 0(h�1)

� �
h00(h�1)=h0(h�1)

�
[h0(h�1)]

2

=
f 0(h�1)

[h0(h�1)]
2

�
f 00(h�1)

f 0(h�1)
� h00(h�1)

h0(h�1)

�
.

Applying Lemma 2 we �nd

@2c

@x2
=

f 0(h�1)

[h0(h�1)]
2

1

z

26664�zh00(h�1)h0(h�1)| {z }
�k

� �zf
00(h�1)

f 0(h�1)| {z }
=k

37775 .

The sign of this derivative is smaller or equal than zero if sgn(f 0(h�1)) < 0. Recalling that f 0(h�1) =

f 0(z) = 1=u00 < 0, this is the case for a strictly concave utility function. Analogous manipulations for

dt(x) = lt(h
�1
t (x)) prove @d(x)=@x > 0 and @2d(x)= (@x)2 � 0.

Since at+1(x) = xt � ct(x)� dt+1(x),

@a

@x
= 1� @c(x)

@x
� @d(x)

@x

and
@2a

@x2
= �@

2c(x)

@x2
� @2d(x)

@x2
� 0.

Thus, �nancial wealth increases or decreases with x, depending on whether the marginal propensity to

consume @c(x)=@x+ @d(x)=@x R 1. The second derivative is certainly positive so that a(x) is convex.

We now investigate the properties of the consumption propensities further. In particular, do we

know whether @c(x)=@x+ @d(x)=@x > 1?

Noting that

h0 = f 0 +
g0

(1 + rj)
+ �l0

we can write
@c

@x
=

f 0(h�1)

f 0(h�1) + g0(h�1)
(1+rj) + �l

0(h�1)

and
@d

@x
=

l0(h�1)

f 0(h�1) + g0(h�1)
(1+rj) + �l

0(h�1)
.

Thus,
@c

@x
+
@d

@x
=

f 0(h�1) + l0(h�1)

f 0(h�1) + g0(h�1)
(1+rj) + �l

0(h�1)
< 1 ,
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if � = 1 and g0(h�1) > 0 .

We now compute the derivative of a(x) = g(h�1(x))=
�
1 + rj

�
:

@a

@x
=

1

1 + rj
g0(h�1(x))=h0(h�1(x))

=
eV 00t

1 + rj

�
1

(1 + rj)�00
� (1� �) rj + �

�� (1 + rj)w00

�
,

which is certainly positive if � = 1 since eV 00t < 0; �00 < 0. For � < 1, we need to impose an additional

condition on the curvature

1

(1 + rj)�00
� (1� �) rj + �

�� (1 + rj)w00
< 0 or

�00

��w00
<
rj + �

1� � .

In general the sign of @a=@x depends on the relative curvature of the value function expected tomorrow,

�00t , and instantaneous utility derived from the durable, w00. Intuitively, a larger � makes durables

less useful to transfer utility and thus increase the marginal propensity of �nancial assets to transfer

resources.

The lemmas derived above imply Theorem 1 as in Carroll and Kimball (1996). Note that the

second-order derivatives for the policy functions hold with strict equality if k > 0 and there is some

labor income uncertainty.

Carroll and Kimball show results for a �nite horizon. In a �nite horizon, we have that in the last

period VT = u(c) + �w(d) so that prudence of u(:) and w(:) trivially also apply to VT . Then one

iterates forward using Lemma 1 and 2. To extend these results to the in�nite horizon one needs to

apply the contraction property of V , for T ! 1. Since cash on hand is �nite, agents discount and V
satis�es monotonicity, limT!1 Vt(x) = V (x) for all x (see Lucas and Stokey, 1989, ch. 3). Pointwise

convergence implies that the properties of Vt are conserved as Vt converges towards V . �

Claim (ii): If the collateral constraint binds, @a(x)=@x falls and can become negative.

Proof: Intuitively, the value function will be more concave if the collateral constraint holds. The

expression for the propensities derived above, then imply that @c(x)=@x+@d(x)=@x increases if eV 00 falls
(i.e., increases in absolute value). This can imply @a(x)=@x < 0, which we now want to derive more

formally. Adding the multiplier � for the collateral constraint and 
 for the constraint d > 0, the four
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equations used in Lemma 2 change to

zt = u0(c�t (xt) ,

u0(c�t (xt) = eV 0t (xt) ,
u0(c�t (xt) = (1 + r

j) (�0t + �) ,

u0(c�t (xt) = ��w0(dt+1) + (1� �) (�0t + �) + 
 ,

so that

ft(zt) = u0�1(zt) = ct ,

ht(zt) = eV 0�1t (zt) = xt ,

lt(zt) = w0�1
�
zt � (1� �) (�0t(:) + �)� 


��

�
= dt+1 ,

gt(zt) = �0�1t

�
zt

1 + rj
� �
�
� (1� �)lt(zt) = (1 + rj)at+1 .

Observing that

(1 + rj)at+1 + dt+1 = �0�1t

�
zt

1 + rj
� �
�
,

the third equation can be rewritten as

lt(zt) = w0�1

 
rj+�
1+rj zt � 


��

!
= dt+1 .

Thus, a binding collateral constraint does not directly a¤ect dt+1 . Instead if the constraint d = 0 is

expected to bind this lowers w0(dt+1) and thus induces a larger dt+1, ceteris paribus.

More interestingly, let us investigate how the marginal propensity of a(x) changes if the collat-

eral constraint is binding (we neglect the constraint d � 0 for simplicity). Recall that a(x) =

g(h�1(x))=
�
1 + rj

�
:

@a

@x
=

1

1 + rj
g0(h�1(x))=h0(h�1(x))

=
eV 00t

1 + rj

 
1

1+rj �
@�
@z

�00
� (1� �) rj + �

�� (1 + rj)w00

!
.

Since a larger z = u0(c�(x)) means a smaller c and x, @�=@z > 0, i.e. the collateral constraint is more

binding for smaller x and thus larger z. Then, this derivative shows that the propensity @a=@x falls

if the collateral constraint binds in the next period. In particular, the propensity need no longer be

positive. The intuition is that the binding collateral constraint increases the amount of �nancial wealth

for small values of x so that the slope is �atter. �

Claim (iii): If the Euler equations for non-durable consumption are slack, c(x), d(x) can be locally

strictly convex and a(x) can be locally strictly concave.
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Proof: We show that c(x), d(x) are locally strictly convex and a(x) is locally strictly concave in the

range where a = 0. In particular, @c(x)=@xja=0 > @c(x)=@x and @d(x)=@xja=0 > @d(x)=@x for given x,

and w0(d0)=Ey�0 falls.

If at+1(x) = 0,

ct = xt � dt+1

and thus

h = f + l .

Hence,

�zh
00

h0
=

f 0

f 0 + l0| {z }
>0

�
�zf

00

f 0

�
| {z }

�k

+
l0

f 0 + l0| {z }
>0

�
�zl

00

l0

�
| {z }

�k

so that the curvature of w(:) becomes much more important for the curvature of the value function.

Also
@c

@x
+
@d

@x
=
f 0(h�1) + l0(h�1)

f 0(h�1) + l0(h�1)
= 1 ,

so that the propensities increase since @a(x)=@x > 0 to the left of the range where a(x) = 0. The

local increase of the propensities implies local convexity of the consumption functions. Moreover,

@a(x)=@x > 0 is locally concave.

More formally, if @a(x)=@x = 0, the collateral constraint is certainly not binding and

zt = u0(c�t (xt) ,

u0(c�t (xt) = eV 0t (xt) ,
(1 + ra)�0t < u0(c�t (xt) < (1 + r

b)�0t

u0(c�t (xt) = ��w0(dt+1) + (1� �)�0t ,

so that

ft(zt) = u0�1(zt) = ct ,

ht(zt) = eV 0�1t (zt) = xt ,

lt(zt) = w0�1
�
zt � (1� �)�0t(:))

��

�
= dt+1 ,

gt(zt) = �0�1t (zt + �
b)� (1� �)lt(zt) = (1 + rb)at+1

or

gt(zt) = �0�1t (zt � �a)� (1� �)lt(zt) = (1 + ra)at+1
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with �a > 0 and �b > 0.

This implies

@a

@x
=

1

1 + rb
g0(h�1(x))=h0(h�1(x))

=
eV 00t

1 + rb

 
1 + @�b

@z

(1 + rb)�00
� (1� �) rb + �

�� (1 + rb)w00

!
.

For the range at+1(x) = 0 , @�b=@z < 0 so that @a=@x = 0 (Note that @�b=@x > 0.). Similarly, for the

lending Euler-equation,

@a

@x
=

eV 00t
1 + rb

 
1� @�a

@z

(1 + rb)�00
� (1� �) rb + �

�� (1 + rb)w00

!
,

with @�a=@z > 0 (Note that @�a=@x < 0.). �

II: Derivations of optimality conditions for model with default

Note that we need to take into account that the interest rate ru changes with the portfolio decision

(au,as,i) in each period. Instead within the expectation operator E�;y, the change of the probability of

default �(�) does not a¤ect choices because of the envelope theorem. Recall that the portfolio choice

(as,au,i) is done before the income shock realizes and the decision whether to declare bankruptcy.

Moreover, the budget constraint implies that @c=@as = �1=(1 + rj), j = a; b, @c=@au = �1=(1 + ru)

and @c=@i = �1; and the evolution of x implies that @x0=@ak = 1 and @x0=@i = 1 � �, k = s; u, if

there is no default. If agents default, @x0=@as = 1 if as � 0, since secured debt cannot be defaulted

upon. Moreover, @x0=@as = 1, if as > 0, since agents never default if they hold positive risk-free assets.

Instead, 1 � @x0=@au � 0 and 1 � @x0=@i � 0. The latter two derivatives are zero if default is complete
and all investment is seized. For simplicity, let us assume that there are only two income states where

one implies default and the other does not. Then,

@

@as
: � u0(c)

 
(Ru)

2 � @Ru

@as a
u
�
1 + rj

�
(1 + rj) (Ru)

2

!

+ �Ey

 
(1� �(�))@

eV (x0)
@x0

j[x0=(x�)0] + �(�)
@ eV (x0)
@x0

j[x0=(x+)0]

!
= 0,

@

@au
: � u0(c)

 
Ru � @Ru

@au

(Ru)
2

!

+ �Ey

 
(1� �(�))@

eV (x0)
@x0

j[x0=(x�)0] + �(�)
@x0

@au
@ eV (x0)
@x0

j[x0=(x+)0]

!
= 0,
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@

@i
: � u0(c)

 
(Ru)

2 � @Ru

@i a
u

(Ru)
2

!

+ �Ey

0@ (1� �(�))
�
�w0(d0)j[d0=(d�)0] + (1� �)@

eV (x0)
@x0 j[x0=(x�)0]

�
+�(�)

�
�w0(d0)j[d0=(d+)0] + @x0

@i
@ eV (x0)
@x0 j[x0=(x+)0]

� 1A
= 0 .

Since
@ eV (x)
@x

j[x=x+] = u0(c0(
�
x+
�0
)) and

@ eV (x)
@x

j[x=x�] = u0(c0((x�)
0
)),

we can de�ne

E�;yu(c
0) � (1� �(�))u0(c0((x�)0)) + �(�)u0(c0(

�
x+
�0
))

and

E�;yw
0(d0) � (1� �(�))w0(d0((x�)0)) + �(�)w0(d0(

�
x+
�0
))

so that the optimality conditions are

u0(c) = �E�;yu
0(c0)

 �
1 + rj

�
(Ru)

2

(Ru)
2 � @Ru

@as a
u (1 + rj)

!
,

u0(c) = �

�
E�;yu

0(c0) + �(�)Ey

��
@x0

@au
� 1
�
u0(c0(

�
x+
�0
)

�� 
(Ru)

2

Ru � @Ru

@au

!
and

u0(c) = �

�
E�;y fu0(c0)(1� �) + �w0(d0)g+ �(�)Ey

��
@x0

@i
� (1� �)

�
u0(c0(

�
x+
�0
)

�� 
(Ru)

2

(Ru)
2 � @Ru

@i a
u

!
.

Note that if @Ru=@k = 0, k 2 fas; au; ig and @x0=@au = 1 and @x0=@i = 1� �, we would be back to
the optimality conditions for the no-default case (note that Ru = 1 + rs in this case).

If the collateral constraint for secured debt is binding we have to add �� on the right-hand-side

of the Euler equation for secured debt and replace u0(:) with (u0(:) + �) on the right-hand-side of the

Euler equation for investment.
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Parameters Values Sources / Targets

lending rate: ra = 0:01 Mehra and Prescott (1985)

borrowing rate: rb = 0:044 Athreya (2004)

discount factor: � = 0:96 Aiyagari (1994)

risk aversion: � = 2 for example, Aiyagari (1994)

transition probability p = 0:4 ! coe¢ cient of variation of 0:4, e.g. Aiyagari (1994)

size of the shock 0:4 ! 1st order autocorrelation 0:86, e.g. Aiyagari (1994)

minimum durable: d= 0:01 -

depreciation rate: � = 0:08 ! ratio c=i 2 6� 6:5 , Diaz and Luengo-Prado (2005)
weight of durable utility: � = 0:4 ! durable stock d 2 1:4� 1:6, DLP (2005)

Table 1: Parameter values for the calibration.

Variables Benchmark � = 3 � = 1 d = 0 � = 0:5 � = 0:9

(1) (2) (3) (4) (5) (6)

cash-on-hand x 2.330 2.524 2.794 2.335 2.417 1.207

�nancial assets a -0.170 0.250 -0.585 -0.172 -0.227 -1.085

durable stock d 1.641 1.386 2.610 1.649 1.799 1.453

durabl. inv. i 0.131 0.111 0.208 0.132 0.144 0.116

non-d. cons. c 0.859 0.888 0.769 0.858 0.845 0.840

ratio c=i 6.541 8.006 3.682 6.501 5.869 7.228

� = 0:04 rb = 0:02
ra = 0:02

rb = 0:034

ra = 0:03

rb = 0:064

shock size

0:5
p = 0:2

no collat.

d

(7) (8) (9) (10) (11) (12) (13)

cash-on-hand x 2.684 1.789 2.299 3.633 2.799 2.886 2.671

�nancial assets a -0.358 -0.755 -0.204 1.069 0.239 0.295 0.132

durable stock d 2.142 1.691 1.641 1.664 1.696 1.717 1.673

durabl. inv. i 0.086 0.135 0.131 0.133 0.136 0.137 0.134

non-d. cons. c 0.900 0.853 0.862 0.900 0.864 0.873 0.866

ratio c=i 10.499 6.304 6.568 6.758 6.366 6.359 6.476

Table 2: Steady-state averages for the model without default
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Benchmark rb = 0:02
ra = 0:02

rb = 0:034

ra = 0:03

rb = 0:064

shock size

0:5
p = 0:2

no collat.

d

(1) (2) (3) (4) (5) (6) (7)

cash-on-hand x 0.4686 0.5701 0.5208 0.4578 0.4861 0.5456 0.3721

�nancial assets a 0.8450 0.5845 0.7287 0.9759 0.8987 0.8256 0.9612

durable stock d 0.1913 0.1549 0.1534 0.1482 0.2149 0.2359 0.2121

durabl. inv. i 1.0839 0.9533 0.8033 0.6763 1.2171 1.0068 1.3013

non-d. cons. c 0.1309 0.1435 0.1303 0.1152 0.1595 0.1817 0.1304

Table 3: Steady-state coe¢ cients of variation for the model without default (NB: variation of absolute

value for �nancial assets)
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