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Abstract

This paper shows that in a class of incomplete markets model with large number

of agents that have constant relative risk aversion (CRRA) preferences the lack of

insurance markets for idiosyncratic labor income risk has no effect on the premium

for aggregate risk, if the distribution of idiosyncratic risk is independent of aggregate

shocks. Despite missing markets, the representative agent prices the excess returns

on stocks correctly. As a result, in this class of models there is no link between

the extent of self-insurance against idiosyncratic income risk and risk premia. This

result holds regardless of the persistence of the idiosyncratic shocks (as long as they

are not permanent) and is true even when households face occasionally binding, and

potentially very tight borrowing constraints.

∗We would like to thank Andy Atkeson, Hal Cole, Narayana Kocherlakota, Per Krusell, Eva Carceles
Poveda, Kjetil Storesletten, the UCLA macro lunch participants and seminar participants at SUNY
Stonybrook for comments and the NSF for financial support. Stijn Van Nieuwerburgh and Pierre-Olivier
Weill provided exceptionally detailed and helpful comments. All remaining errors are our own.

†email address: dikruege@wiwi.uni-frankfurt.de. Johann Wolfgang Goethe University Frankfurt am
Main. Mertonstr. 17, PF 81. D-60054 Frankfurt am Main.

‡email address: hlustig@econ.ucla.edu, Dept. of Economics, UCLA, Bunche Hall 8357, Box 951477,
LA, CA 90095.

1

cbeck
AP7/13/061:00 PM



1 Introduction

This paper shows that in a large class of incomplete markets models there is no link

between the extent to which idiosyncratic risk is traded away by households and the size

of the risk premium that stocks command over risk-free bonds in financial markets. In a

standard incomplete markets model populated by a continuum of agents who have CRRA

preferences and can only trade a risk-free bond, the presence of uninsurable idiosyncratic

risk only affects the equilibrium risk-free rate, but it has no effect on the premium for

aggregate risk in equilibrium if the distribution of idiosyncratic shocks is statistically

independent of aggregate shocks. Consequently, in this class of models the representative

agent Consumption-CAPM (CCAPM) developed by Breeden (1979) and Lucas (1978)

prices the excess returns on the stock correctly. Therefore, as long as idiosyncratic shocks

are independent of aggregate shocks, the extent to which households manage to insure

against idiosyncratic income risk is irrelevant for risk premia. These results deepen the

equity premium puzzle, because we show that Mehra and Prescott’s (1985) statement of

the puzzle applies to a much larger class of incomplete market models.1

Our result holds regardless of the persistence of the idiosyncratic shocks, as long as

these shocks are not completely permanent, and it is robust to the introduction of various

borrowing and solvency constraints, regardless of the tightness of these constraints, as long

as these constraints allow for the existence of a stationary equilibrium. Our result also

survives when agents have non-time-additive preferences if the consumption aggregator is

a homogeneous function.

In addition, we show that adding markets does not always lead to more risk sharing.

In particular, if the logarithm of aggregate consumption follows a random walk, allowing

agents to trade claims on payoffs that are contingent on aggregate shocks, in addition to

the risk-free bond, does not help them to smooth their consumption. Introducing these

assets leaves interest rates and asset prices unaltered. However, if there is predictability in

aggregate consumption growth, agents want to hedge their portfolio against interest rate

shocks, creating a role for trade in a richer menu of assets. The risk premium irrelevance

result, however, still applies. Finally, we also show that idiosyncratic uninsurable income

1Weil’s (1989) statement of the risk-free rate puzzle, on the contrary, does not.
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risk does not contribute any variation in the conditional market price of risk, beyond what

is built into aggregate consumption growth.

In the quest towards the resolution of the equity premium puzzle identified by Hansen

and Singleton (1983) and Mehra and Prescott (1985), uninsurable idiosyncratic income

risk has been introduced into standard dynamic general equilibrium models.2 Incomplete

insurance of household consumption against idiosyncratic income risk was believed to

increase the aggregate risk premium. Heaton and Lucas (1996), in their seminal paper,

motivate their analysis as follows:

The motivation for considering the interaction between trading frictions

and asset prices in this environment is best understood by reviewing the find-

ings of a number of recent papers. Telmer (1993) and Lucas (1994) examine a

similar model with transitory idiosyncratic shocks and without trading costs.

Surprisingly, they find that even though agents cannot insure against idio-

syncratic shocks, predicted asset prices are similar to those with complete

markets.’ This occurs because when idiosyncratic shocks are transitory, con-

sumption can be effectively smoothed by accumulating financial assets after

good shocks and selling assets after bad shocks.

Heaton and Lucas (1996) attribute the failure of incomplete market models (or their

partial success) in matching moments of asset prices to the household’s success in smooth-

ing consumption in this class of models. Lucas (1994) concludes that:

agents effectively self-insure by trading to offset the idiosyncratic shocks

when they have limited access to either a stock market or a bond market.

Thus, even limited access to capital markets implies that asset prices will be

similar to those predicted by the representative agent model, a finding that

deepens the equity premium puzzle.

Our paper shows analytically that there is essentially no link between the extent

to which idiosyncratic risk can be traded away by households and the size of the risk

2For examples, see the work of Ayiagari and Gertler (1991), Telmer (1993), Lucas (1994), Heaton and
Lucas (1996), Krusell and Smith (1998), and Marcet and Singleton (1999).

3



premium. The main contribution of our paper is to argue that Telmer (1993), Lucas

(1994), Heaton and Lucas (1996), Marcet and Singleton (1999) and others in this literature

have reached the right conclusions -namely that adding uninsurable idiosyncratic income

risk to standard models does not alter the asset pricing implications of the model - but not

for the right reasons. These authors have argued that households manage to self-insure

quite well by trading a single bond, and as result, the risk premium is not affected by

aggregate risk.3 We show analytically that, as long as the distribution of idiosyncratic

shocks is independent of aggregate shocks, the extent of self-insurance does not matter.

We can make our solvency constraints arbitrarily tight or make the income process highly

persistent, and our theoretical result still goes through.

Recently Krusell and Smith (1997) and Storesletten, Telmer and Yaron (2006) have

argued that models with idiosyncratic income shocks and incomplete markets can gen-

erate an equity premium that is substantially larger than the CCAPM if the variance

of the idiosyncratic shock increases in recessions, a condition that Storesletten, Telmer

and Yaron (2004) argue is present in the data. One way to interpret our findings is

that we demonstrate analytically that such counter-cyclical cross-sectional variance of

individual income shocks is not only sufficient, but necessary to make uninsurable idio-

syncratic income shocks potentially useful for explaining the equity premium. Mankiw

(1986) already showed in his analysis of the standard incomplete markets Euler equa-

tion that if the marginal utility of consumption in convex (a property that CRRA utility

and also CARA utility satisfies) then if the cross-sectional variance of equilibrium house-

hold consumption growth varies over time, this is one recipe for increasing risk premia.

Cross-sectional income variance that varies with the cycle is one way to induce time vari-

ation in the equilibrium consumption growth distribution across households. Our work

shows that solvency constraints and transaction costs in incomplete market models alone,

without cyclical cross-sectional income variance, cannot produce this time variation as an

equilibrium outcome.

3In his survey of the equity premium literature, Kocherlakota (1996) concludes that:

..given this ability to self-insure, the behavior of the risk-free rate and the equity premium
remain largely unaffected by the absence of markets as long as idiosyncratic shocks are not
highly persistent.?
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As a crucial step in our analysis of asset prices we derive a result that may be of

independent theoretical interest. We show that allocations and prices in a class of models

with idiosyncratic and aggregate risk as well as incomplete markets can be backed out

from the allocations and interest rates in a stationary equilibrium of a model with only

idiosyncratic risk (as in Bewley (1986), Huggett (1993) or Aiyagari (1994)). This result

delivers an algorithm for computing equilibria in this model which appears to be simpler

than the auctioneer algorithm devised by Lucas (1994) and its extension to economies with

a continuum of agents. Under a transformed, aggregate-risk-neutral probability measure,

there is a stationary recursive equilibrium for our economy characterized by an invariant

measure over wealth and endowments, despite the presence of aggregate shocks. Hence,

there is no need for computing a law of motion for this measure, or approximating it by

a finite number of moments, as in Krusell and Smith (1997, 1998).

The paper is structured as follows. In section 2, we lay out the physical environment

of our model. This section also demonstrates how to transform the stochastically growing

economy into a stationary economy with a constant endowment. In section 3 we study

this stationary model, called the Bewley model. The next section introduces the Arrow

model, the model with aggregate uncertainty and a full set of Arrow securities whose

payoffs are contingent on the realization of the aggregate shock. We show that a stationary

equilibrium of the Bewley model can be mapped into an equilibrium of the Arrow economy

just by scaling up allocations by the aggregate endowment. In section 5 we derive the

same result for a model where only a one-period risk-free bond can be traded. We call

this the HL model (for highly l imited asset model or H eaton-Lucas model). After briefly

discussing the classic Lucas-Breeden representative agent model (henceforth LB model),

section 6 shows that risk premia in the representative agent model and the Arrow model

(and by implication, in the HL model) are identical. Section 7 investigates the robustness

of our results with respect to the assumptions about the underlying stochastic income

process, and shows in particular that most of our results can be extended to the case

where the aggregate shocks is correlated over time and where preferences are not time-

separable, but rather follow an Epstein-Zin specification. Finally, section 8 concludes; all

proofs are contained in the appendix.
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2 Environment

Our exchange economy is populated by a continuum of individuals of measure 1. There

is a single nonstorable consumption good. The aggregate endowment of this good is

stochastic. Each individual’s endowment depends on the realization of an idiosyncratic

and an aggregate shock. This economy is identical to the one described by Lucas (1994),

except that ours is populated by a continuum of agents (as in Bewley (1986), Aiyagari

and Gertler (1991), Huggett (1993) and Aiyagari (1994)), instead of just two agents.

2.1 Representation of Uncertainty

We denote the current aggregate shock by zt ∈ Z and the current idiosyncratic shock

by yt ∈ Y . For simplicity, both Z and Y are assumed to be finite. Furthermore, let

zt = (z0, . . . , zt) and yt = (y0, . . . , yt) denote the history of aggregate and idiosyncratic

shocks. As shorthand notation, we use st = (yt, zt) and st = (yt, zt). We let the economy

start at initial node z0. Conditional on idiosyncratic shock y0 and thus s0 = (y0, z0), the

probability of a history st is given by πt(s
t|s0). We assume that these shocks follow a first

order Markov process with transition probabilities given by π(s′|s).

2.2 Preferences and Endowments

Consumers rank stochastic consumption streams {ct(s
t)} according to the following ho-

mothetic utility function:

U(c)(s0) =
∞∑

t=0

∑

st≥s0

βtπ(st|s0)
ct(s

t)

1− γ

1−γ

(1)

where γ > 0 is the coefficient of relative risk aversion and β ∈ (0, 1) is the constant time

discount factor. We define U(c)(st) to be the continuation expected lifetime utility from

consumption allocation c = {ct(s
t)} in node st. This utility can be constructed recursively

as follows:

U(c)(st) = u(ct(s
t)) + β

∑
st+1

π(st+1|st)U(c)(st, st+1)
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where we made use of the Markov property the underlying stochastic processes.

The economy’s aggregate endowment process {et} depends only on the aggregate event

history; we let et(z
t) denote the aggregate endowment at node zt. Each agent draws a

‘labor income’ share η(yt, zt) as a fraction of the aggregate endowment in each period.

Her labor income share only depends on the current individual and aggregate event. We

denote the resulting individual labor income process by {ηt}, with

ηt(s
t) = η(yt, zt)et(z

t) (2)

where st = (st−1, yt, zt). We assume η(yt, zt) > 0 in all states of the world.

The stochastic growth rate of the endowment of the economy is denoted λ(zt+1) =

et+1(z
t+1)/et(z

t). We assume that aggregate endowment growth only depends on the cur-

rent aggregate state:

Condition 2.1. Aggregate endowment growth is a function of the current aggregate shock

only:

λ(zt+1) = λ(zt+1)

Furthermore, we assume that a Law of Large Numbers holds4, so that π(st|s0) is not

only a household’s individual probability of receiving income ηt(s
t), but also the fraction

of the population having that income. We do not assume that the idiosyncratic shocks y

are uncorrelated over time.

In addition, there is a Lucas tree that yields a constant share α of the total aggregate

endowment as capital income, so that the total dividends of the tree are given by αet(z
t)

in each period. The remaining fraction of the total endowment accrues to individuals as

labor income, so that 1− α denotes the labor income share. Therefore, by construction,

the labor share of the aggregate endowment equals the sum over all individual labor

income shares: ∑
yt∈Y

Πzt(yt)η(yt, zt) = (1− α), (3)

4See e.g. Hammond and Sun (2003) for conditions under which a LLN holds with a continuum of
random variables.
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for all zt, where Πzt(yt) represents the cross-sectional distribution of idiosyncratic shocks

yt, conditional on the aggregate shock zt. By the law of large numbers, the fraction of

agents who draw y in state z only depends on z. An increase in the capital income share

α translates into proportionally lower individual labor income shares η(y, z) for all (y, z).5

At time 0, the agents are endowed with initial wealth θ0. This wealth represents the

value of an agent’s share of the Lucas tree producing the dividend flow in units of time 0

consumption, as well as the value of her labor endowment at date 0. We use Θ0 to denote

the initial joint distribution of wealth and idiosyncratic shocks (θ0, y0).

This concludes our description of the physical environment. Many of our results are

derived using a de-trended version of our economy, with a constant aggregate endow-

ment and a growth-adjusted transition probability matrix. The agents in this de-trended

economy, discussed now, have stochastic time discount factors.

2.3 Transformation of Growth Economy into a Stationary Econ-

omy

We can transform our growing economy into a stationary economy with a stochastic time

discount rate and a growth-adjusted probability matrix, following Alvarez and Jermann

(2001), who use this transformation in a complete markets economy. First, we define

growth deflated consumption allocations (or consumption shares) as

ĉt(s
t) =

ct(s
t)

et(zt)
for all st. (4)

Next, we define the growth-adjusted probabilities and the growth-adjusted discount factor

as:

π̂(st+1|st) =
π(st+1|st)λ(zt+1)

1−γ

∑
st+1

π(st+1|st)λ(zt+1)1−γ
and β̂(st) = β

∑
st+1

π(st+1|st)λ(zt+1)
1−γ.

5Our setup nests the baseline calibration of Heaton and Lucas (1996), except for the fact that they
allow for variation in the capital share α depending on z.
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Note that π̂ is a well-defined Markov matrix in that
∑

st+1
π̂(st+1|st) = 1 for all st and

that β̂(st) is stochastic as long as the original Markov process is not iid over time. Finally,

let Û(ĉ)(st) denote the lifetime expected continuation utility in node st, under the new

transition probabilities and discount factor, defined over consumption shares {ĉt(s
t)} :

Û(ĉ)(st) = u(ĉt(s
t)) + β̂(st)

∑
st+1

π̂(st+1|st)Û(ĉ)(st, st+1) (5)

In the appendix we prove that this transformation does not alter the agents’ ranking of

different consumption streams.

Proposition 2.1. Households rank consumption share allocations in the de-trended econ-

omy in exactly the same way as they rank the corresponding consumption allocations in

the original growing economy: for any st and any two consumption allocations c, c′

U(c)(st) ≥ U(c′)(st) ⇐⇒ Û(ĉ)(st) ≥ Û(ĉ′)(st)

where the transformation of consumption into consumption shares is given by (4).

This result is crucial for demonstrating that equilibrium allocations c for the sto-

chastically growing economy can be found by solving for equilibrium allocations ĉ in the

transformed economy.

2.4 Independence of Idiosyncratic Shocks from Aggregate Con-

ditions

Next, we assume that idiosyncratic shocks are independent of the aggregate shocks. This

assumption is crucial for most of the results in this paper.

Condition 2.2. Individual endowment shares η(yt, zt) are functions of the current idio-

syncratic state yt only, that is η(yt, zt) = η(yt). Also, transition probabilities of the shocks

can be decomposed as

π(zt+1, yt+1|zt, yt) = ϕ(yt+1|yt)φ(zt+1|zt).
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That is, individual endowment shares and the transition probabilities of the idiosyn-

cratic shocks are independent of the aggregate state of the economy z. In this case, the

growth-adjusted probability matrix π̂ and the re-scaled discount factor is obtained by ad-

justing only the transition probabilities for the aggregate shock, φ, but not the transition

probabilities for the idiosyncratic shocks:

π̂(st+1|st) = ϕ(yt+1|yt)φ̂(zt+1|zt), and φ̂(zt+1|zt) =
φ(zt+1|zt)λ(zt+1)

1−γ

∑
zt+1

φ(zt+1|zt)λ(zt+1)1−γ
.

Furthermore, the growth-adjusted discount factor only depends on the aggregate state zt:

β̂(zt) = β
∑
zt+1

φ(zt+1|zt)λ(zt+1)
1−γ (6)

The first part of our analysis assumes that the aggregate shocks are independent over

time:

Condition 2.3. Aggregate endowment growth is i.i.d.:

φ(zt+1|zt) = φ(zt+1).

In this case the growth rate of aggregate endowment is uncorrelated over time, so that

the logarithm of the aggregate endowment follows a random walk with drift.6 As a result,

the growth-adjusted discount factor is a constant: β̂(zt) = β̂, since φ̂(zt+1|zt) = φ̂(zt+1).

There are two competing effects on the growth-adjusted discount rate: consumption

growth itself makes agents more impatient, while the consumption risk makes them more

patient.7

6In section 7 we show that most of our results survive the introduction of persistence in the growth
rates if a complete set of contingent claims on aggregate shocks is traded.

7This growth-adjusted measure is obviously connected to the risk-neutral measure commonly used in
asset pricing (see e.g. Harrison and Kreps, 1979). Under our hatted measure, agents can evaluate utils
from consumption streams while abstracting from aggregate risk; under a risk-neutral measure, agents
can price payoffs by simply discounting at the risk-free rate.
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2.5 A Quartet of Economies

In order to derive our results, we study four models, whose main characteristics are

summarized in table 1. The first three models are endowment economies with aggregate

shocks. The models differ along two dimensions, namely whether agents can trade a full

set of Arrow securities against aggregate shocks, and whether agents face idiosyncratic

risk, in addition to aggregate risk. Idiosyncratic risk, if there is any, is never directly

insurable.

Table 1: Summary of Four Economies

Model Aggregate Shocks Idiosyncr. Shocks Arrow Securities

HL Yes Yes No

Arrow Yes Yes Yes

BL Yes No Yes

Bewley No Yes N/A

Our primary goal is to understand asset prices in the first model in the table, the HL

model. This model has idiosyncratic and aggregate risk, as well as incomplete markets.

We call this the HL model since besides using stocks agents can only insure against

idiosyncratic and aggregate shocks by trading a single bond.

The standard representative agent complete markets Breeden (1979)-Lucas (1978)

(BL) model lies on the other end of the spectrum, in that there is no idiosyncratic risk and

a full menu of Arrow securities for the representative agent to hedge against aggregate

risk. Through our analysis we will demonstrate that in the HL model the standard

representative agent Euler equation for excess returns is satisfied:

Et

[
β (λt+1)

−γ (Rs
t+1 −Rt)

]
= 0 (7)

where Rs
t+1 is the return on the stock, Rt is the return on the bond and λt+1 is the growth

rate of the aggregate endowment. Hence, the aggregate risk premium is identical in the

HL and the BL model. Constantinides (1982) had already shown that, in the case of

complete markets, even if agents are heterogeneous in wealth, there exists a representative
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agent who satisfies the Euler equation for excess returns (7) and also the Euler equation

for bonds:

Et

[
β (λt+1)

−γ Rt

]
= 1. (8)

The key to Constantinides’ result is that markets are complete. We show that the first

Euler equation in (7) survives market incompleteness and binding solvency constraints.

The second one does not. To show this result, we employ a third model, the Arrow model

(second row in the table). Here, households trade a full set of Arrow securities against

aggregate risk, but not against idiosyncratic risk. The fundamental result underlying our

asset pricing findings is that equilibria in both the HL and the Arrow model can be found

by first determining equilibria in a model with only idiosyncratic risk (the Bewley model,

fourth row in the table) and then by simply scaling consumption allocations in that model

by the stochastic aggregate endowment.

Outline We therefore start in section 3 by characterizing equilibria for the Bewley

model, a stationary economy with a constant aggregate endowment in which agents trade

a single discount bond and a stock.8 This model merely serves as a computational device.

Then we turn to the stochastically growing economy (with different market structures),

the one whose asset pricing implications we are interested in, and we show that equilib-

rium consumption allocations from the Bewley model can be implemented as equilibrium

allocations in the stochastically growing HL and Arrow model.

3 The Bewley Model

In this economy the aggregate endowment is constant. The households face idiosyncratic

shocks y that follow a Markov process with transition probabilities ϕ(y′|y). The house-

hold’s preferences over consumption shares {ĉ(yt)} are as defined in equation (5), with

the time discount factor β̂ as defined in equation (6). The adjusted discount factor is β̂

8One of the two assets will be redundant for the households, so that this model is a standard Bewley
model, as studied by Bewley (1986), Huggett (1993) or Aiyagari (1994). The presence of both assets will
make it easier to demonstrate our equivalence results with respect to the Bond and Arrow model later
on.
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constant, because the aggregate shocks are i.i.d. (see Condition (2.3)).

3.1 Market Structure

Agents trade only a riskless discount bond and shares in a Lucas tree that yields safe

dividends of α in every period. The price of the Lucas tree at time t is denoted by vt.
9

The riskless bond is in zero net supply. Each household is indexed by an initial condition

(θ0, y0), where θ0 denotes its wealth (including period 0 labor income) at time 0.

The household chooses consumption {ĉt(θ0, y
t)}, bond positions {ât(θ0, y

t)} and share

holdings {σ̂t(θ0, y
t)} to maximize its normalized expected utility Û(ĉ)(s0), subject to a

standard budget constraint:10

ĉt(y
t) +

ât(y
t)

R̂t

+ σ̂t(y
t)v̂t = η(yt) + ât−1(y

t−1) + σ̂t−1(y
t−1)(v̂t + α)

Finally, each household faces one of two types of borrowing constraints. The first one

restricts household wealth at the end of the current period. The second one restricts

household wealth at the beginning of the next period:11

ât(y
t)

R̂t

+ σ̂t(y
t)v̂t ≥ K̂t(y

t) for all yt

ât(y
t) + σ̂t(y

t)(v̂t+1 + α) ≥ M̂t(y
t) for all yt

3.2 Equilibrium in the Bewley Model

The definition of equilibrium in this model is standard.

Definition 3.1. For an initial distribution Θ0 over (θ0, y0) , a competitive equilibrium

for the Bewley model consists of trading strategies {ât(θ0, y
t), σ̂t(θ0, y

t)} , consumption

allocations {ĉt(θ0, y
t)} , interest rates and share prices {R̂t, v̂t} such that

1. Given prices, allocations solve the household maximization problem

9The price of the tree is nonstochastic due to the absence of aggregate risk.
10We suppress dependence on θ0 for simplicity whenever there is no room for confusion.
11This distinction is redundant in the Bewley model, but it will become meaningful in our models with

stochastically growing endowment.
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2. The goods markets and asset markets clear in all periods t

∫ ∑

yt

ϕ(yt|y0)ĉt(θ0, y
t)dΘ0 = 1

∫ ∑

yt

ϕ(yt|y0)ât(θ0, y
t)dΘ0 = 0

∫ ∑

yt

ϕ(yt|y0)σ̂t(θ0, y
t)dΘ0 = 1

Without aggregate risk, the risk-free one period bond and the risk-free stock are perfect

substitutes for households, so that the absence of arbitrage implies the following restriction

on equilibrium stock prices and interest rates:

R̂t =
v̂t+1 + α

v̂t

In addition, household portfolios are indeterminate, and without loss of generality we focus

on the case in which households simply trade the stock, not the bond: ât(θ0, y
t) ≡ 0.12

A stationary Bewley equilibrium is a constant interest rate R̂, a share price v̂, optimal

household allocations and a time-invariant measure Φ over income shocks and financial

wealth. We define a stationary recursive competitive equilibrium in section (A.1) of the

appendix, and also outline a (straightforward) algorithm for computing it there.

4 Arrow Economy

We now turn to our main object of interest, the stochastically growing economy. We

start off with the Arrow market structure in which households can trade the stock and

a complete menu of contingent claims on aggregate shocks. Idiosyncratic shocks are still

uninsurable. We demonstrate in this section that the allocations we compute for the

stationary Bewley economy can be mapped into equilibrium allocations and prices in the

12Alternatively, we could have agents simply trade in the bond and adjust the net supply of bonds to
account for the positive capital income α in the aggregate. We only introduce both assets into the Bewley
economy to make the mapping to allocations in the Arrow and HL models simpler.
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stochastically growing Arrow economy.

4.1 Trading

Let at(s
t, zt+1) denote the quantity purchased of a security that pays off one unit of

the consumption good if aggregate shock in the next period is zt+1, irrespective of the

idiosyncratic shock yt+1. Its price today is given by qt(z
t, zt+1). In addition, households

trade shares in the Lucas tree. We use σt(s
t) to denote the number of shares a household

with history st = (yt, zt) purchases today and we let vt(z
t) denote the price of one share.

An agent starting period t with initial wealth θt(s
t) buys consumption commodities

in the spot market and trades securities subject to the usual budget constraint:

ct(s
t) +

∑
zt+1

at(s
t, zt+1)qt(z

t, zt+1) + σt(s
t)vt(z

t) ≤ θt(s
t). (9)

In addition to the budget constraints, the households’ trading strategies are subject to

solvency constraints of one of two types. The first type of constraint imposes a lower

bound on the value of the asset portfolio at the end of the period today,

∑
zt+1

at(s
t, zt+1)qt(z

t, zt+1) + σt(s
t)vt(z

t) ≥ Kt(s
t), (10)

while the second type imposes state-by-state lower bounds on net wealth tomorrow,

at(s
t, zt+1) + σt(s

t)
[
vt+1(z

t+1) + αet+1(zt+1)
] ≥ Mt(s

t, zt+1) for all zt+1. (11)

We assume these solvency constraints are at least as tight as the natural borrowing con-

straints. This is sufficient to prevent Ponzi schemes. In addition, we impose restrictions

on the solvency constraints that make them proportional to the aggregate endowment in

the economy:

Condition 4.1. We assume the borrowing constraints only depend on the aggregate his-
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tory through the level of the aggregate endowment. That is, we assume

Kt(y
t, zt) = K̂t(y

t)et(z
t)

and

Mt(y
t, zt, zt+1) = M̂t(y

t)et+1(z
t+1).

If the constraints did not have this feature in a stochastically growing economy, the

constraints would become more or less binding as the economy grows, clearly not a de-

sirable feature13. The definition of an equilibrium is completely standard (see section A.2

of the Appendix). Instead of working in the growing economy, we immediately transform

the Arrow economy into a stationary economy. We use hatted variables to denote the

variables in the stationary economy. In the next subsection, we deflate allocations by the

aggregate endowment and we demonstrate that the resulting equilibrium allocations are

the same as the allocations in a Bewley equilibrium.

4.2 Equilibrium in the De-trended Arrow Model

Households rank consumption shares {ĉt} in exactly the same way as original consumption

streams {ct}, so we can solve for an equilibrium in the de-trended economy. Dividing

the budget constraint (27) by et(z
t), and using equation (28) yields the deflated budget

constraint:

ĉt(s
t) +

∑
zt+1

ât(s
t, zt+1)q̂t(z

t, zt+1) + σt(s
t)v̂t(z

t)

≤ η(yt) + ât−1(s
t−1, zt) + σt−1(s

t−1)
[
v̂t(z

t) + α
]
, (12)

13It is easy to show that solvency constraints that are not too tight in the sense of Alvarez and Jermann
(2000) satisfy this condition. In the incomplete markets literature, the borrowing constraints usually have
this feature (see e.g. Heaton and Lucas (1996)). If not, one cannot compute a stationary equilibrium. It
is more common in this literature to impose growing short-sale constraints on stocks and bonds separately
instead of total financial wealth, but this is done mostly for computational reasons, to bound the state
space. In fact, the bounds should be directly on total financial wealth instead, if the solvency constraints
are to prevent default (see e.g. Zhang (1996) and Alvarez and Jermann (2000)).
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where we have defined the deflated Arrow positions ât(s
t, zt+1) = at(st,zt+1)

et+1(zt+1)
and prices

q̂t(z
t, zt+1) = qt(z

t, zt+1)λ(zt+1). The deflated stock prices are given by v̂t(z
t) = vt(zt)

et(zt)
.

Similarly, by deflating the solvency constraints (10) and (11) using condition (4.1 ) yields:

∑
zt+1

ât(s
t, zt+1)q̂t(z

t, zt+1) + σt(s
t)v̂t(z

t) ≥ K̂t(y
t) (13)

ât(s
t, zt+1) + σt(s

t)
[
v̂t+1(z

t+1) + α
] ≥ M̂t(y

t) for all zt+1. (14)

Finally, the goods market clearing condition is given by14:

∫ ∑

yt

π(yt|y0)ĉt(θ0, s
t)dΘ0 = 1. (15)

The asset market clearing conditions are exactly the same as before. In the stationary

economy, the household maximizes Û(ĉ)(s0) by choosing consumption, Arrow securities

and shares of the Lucas tree, subject to the budget constraint (12) and the solvency

constraint (13) or (14) in each node st. The definition of a competitive equilibrium in the

de-trended Arrow economy is straightforward.

Definition 4.1. For initial aggregate state z0 and distribution Θ0 over (θ0, y0) , a competi-

tive equilibrium for the de-trended Arrow economy consists of trading strategies {ât(θ0, s
t, zt+1)} ,

{σ̂t(θ0, s
t)}, {ĉt(θ0, s

t)} and prices {q̂t(z
t, zt+1)} , {v̂t(z

t)} such that

1. Given prices, allocations solve the household maximization problem

2. The goods market clears, that is, equation (15) holds for all zt.

3. The asset markets clear

∫ ∑

yt

ϕ(yt|y0)σ̂t(θ0, s
t)dΘ0 = 1

∫ ∑

yt

ϕ(yt|y0)ât(θ0, s
t, zt+1)dΘ0 = 0 for all zt+1 ∈ Z

14The conditional probabilities simplify due to condition (2.2).
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The first order conditions and complementary slackness conditions, together with the

appropriate transversality condition, are listed in the appendix in section (A.3). These

are necessary and sufficient conditions for optimality on the household side. Now, we

are ready to establish the equivalence between equilibria in the Bewley model and in the

Arrow model.

4.3 Equivalence Results

Our first result states that if the consumption shares in the de-trended economy do not

depend on the aggregate history zt, then it follows that the interest rates in this economy

are deterministic.

Proposition 4.1. In the de-trended Arrow economy, if there exists a competitive equilib-

rium with equilibrium consumption allocations {ĉt(θ0, y
t)} , then there is a deterministic

interest rate process
{

R̂A
t

}
and equilibrium prices {q̂t(z

t, zt+1)} , that satisfy:

q̂t(z
t, zt+1) =

φ̂(zt+1)

R̂A
t

(16)

The interest rate in the deflated economy can depend on time, but not on the aggregate

state of the economy, simply because nothing else in the Euler equation does:

1 = β̂R̂A
t

∑
zt+1

φ̂(zt+1)

︸ ︷︷ ︸

∑
yt+1

ϕ(yt+1|yt)
u′(ĉt+1(y

t, yt+1))

u′(ĉt(yt))
(17)

drops out (18)

The aggregate shocks z do not affect the transformed discount factor β̂, because of the

i.i.d assumption, and the transition probabilities for the aggregate shocks disappear from

the Euler equation altogether, because they are independent from the y shocks.15 By

summing over aggregate states tomorrow on both sides of equation (16), we can compute

15Finally, the dependence of R̂A
t on time t is not surprising since, for an arbitrary initial distribution

of assets Θ0, we cannot expect the equilibrium to be stationary. In the same way we expect that v̂t(zt)
is only a function of t as well, but not of zt.
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the interest rate:

R̂A
t =

1∑
zt+1

q̂t(zt, zt+1)
.

This interest rate in the Arrow model is also the equilibrium interest rate in the Bewley

model of section (3). Once we have found interest rates for the de-trended economy, R̂A
t ,

we can back out the implied interest rate for the original growing Arrow economy.

Corollary 4.1. Risk-free interest rates in the original Arrow model are given by

RA
t = R̂A

t ∗
∑

zt+1
φ(zt+1|zt)λ(zt+1)

1−γ

∑
zt+1

φ(zt+1|zt)λ(zt+1)−γ
(19)

In the absence of aggregate risk (constant λ), the risk-free rates in the original and

deflated economy are related by RA
t = R̂A

t λt+1where λt+1 is the gross growth rate of

endowment between period t and t + 1.

Trading Strategies The next question is which trading strategies for Arrow se-

curities would support consumption allocations in the de-trended Arrow model that do

not depend on aggregate shocks as well, that is ĉt(θ0, s
t) = ĉt(θ0, y

t). The next corollary

provides the answer.

Corollary 4.2. This equilibrium is supported by aggregate history-invariant Arrow secu-

rity trades, that is ât(θ0, s
t, zt+1) = ât(θ0, y

t) for all zt+1.

This is not surprising, because the consumption shares do not depend on the aggregate

history. This brings us to the main result, the mapping between the stochastically growing

Arrow economy and the Bewley economy.

Theorem 4.1. An equilibrium of the Bewley model {ĉt(θ0, y
t), ât(θ0, y

t), σ̂t(θ0, y
t)} and

{R̂t, v̂t} can be made into an equilibrium for the Arrow economy with growth, {at(θ0, s
t, zt+1)} ,
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{σt(θ0, s
t)}, {ct(θ0, s

t)} and {qt(z
t, zt+1)} , {vt(z

t)}, with

ct(θ0, s
t) = ĉt(θ0, y

t)et(z
t)

σt(θ0, s
t) = σ̂t(θ0, y

t)

at(θ0, s
t, zt+1) = ât(θ0, y

t)et+1(z
t+1)

vt(z
t) = v̂tet(z

t)

qt(z
t, zt+1) =

1

R̂t

∗ φ(zt+1)λ(zt+1)
−γ

∑
zt+1

φ(zt+1)λ(zt+1)1−γ

We can solve for an equilibrium in the Bewley economy (section 3), including the

risk free interest rate R̂t, and we can deduce the equilibrium allocations and prices for

the Arrow economy from those in the Bewley economy. The key to this result is that

households in the Bewley model face exactly the same Euler equations as the households

in the de-trended version of the Arrow economy (as in equation (17)).

This result has several important implications. First, the existence proofs in the liter-

ature for equilibria in Bewley economies directly carry over to the stochastically growing

economy16. Second, the moments of the wealth distribution vary over time but propor-

tionally to the aggregate endowment: e.g. the ratio of the mean to the standard deviation

of the wealth distribution is constant if we start the corresponding Bewley economy off

from its invariant wealth distribution. Third, without loss of generality, we can focus on

equilibria in the Arrow model in which Arrow securities are not traded.

Corollary 4.3. We can support an equilibrium in the Arrow economy without any trade

in the contingent claims market:

ât(θ0, s
t, zt+1) = ât(θ0, y

t) = 0 for all zt+1.

The proof is obvious. In the Bewley model, the bonds are a redundant asset. Therefore

it follows from our equivalence result that we can support the equilibrium allocation in the

16To prove existence, Aiyagari (1994) assumes i.i.d. idiosyncratic shocks but Huggett (1993) does not.
Under regularity conditions, Bewley equilibria are also unique. This implies there is a unique Arrow
equilibrium that corresponds to a Bewley equilibrium in the deflated version of the economy, but we
cannot rule out other Arrow equilibria in general.
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Arrow model with the following Arrow security trades ât(θ0, s
t, zt+1) = ât(θ0, y

t) = 0 for

all zt+1.This no-trade corollary suggests that the equivalence will carry over to economies

with more limited asset structures. That is what we show in the next section.

We will use this equivalence result with the Bewley model to show that asset prices

in the Arrow economy are identical to those in the representative agent economy, except

for the lower interest rate (and a higher price/dividend ratio for stocks). Finally, we

conclude this section by showing that the previous equivalence result does not depend on

the absence of solvency constraints.

Corollary 4.4. If ât(θ0, y
t) and σ̂t(θ0, y

t) satisfy the constraints in the de-trended Arrow

model (equivalently, in the Bewley model), then σt(θ0, s
t) = σ̂t(θ0, y

t) and at(θ0, s
t, zt+1) =

ât(θ0, y
t)et+1(z

t+1) also satisfy the solvency constraints in the stochastically growing Arrow

model.

Importantly, this is the case regardless of the tightness of the solvency constraints.

Even if the borrowing constraints bind, nothing in the Euler equation of the de-trended

Arrow economy depends on z:

1 = β̂R̂A
t

∑
yt+1

ϕ(yt+1|yt)
u′(ĉt+1(y

t, yt+1))

u′(ĉt(yt))

+µt(y
t) + R̂A

t κt(y
t) ∀zt+1,

where µt(y
t) and κt(y

t) are the multipliers on the solvency constraints. These multipliers

are obtained from the computation of the Bewley equilibrium, and hence do not depend

on the aggregate history either.

5 HL Economy

We now turn our attention to the model whose asset pricing implications we are really

interested in, namely the model with a stock and a single uncontingent bond. This

section establishes the equivalence of equilibria in the HL model and the Bewley model

by showing that optimality conditions in the de-trended Arrow and HL economy are
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identical. In addition, we show that agents do not even trade bonds in the benchmark

case with i.i.d. aggregate endowment growth shocks.

5.1 Market Structure

In the HL economy, agents only trade a one-period discount bond and a stock. An agent

who starts period t with initial wealth θt(s
t) buys consumption commodities in the spot

market and trades a one-period bond and the stock, subject to budget constraint:

ct(s
t) +

bt(s
t)

Rt(zt)
+ σt(s

t)vt(z
t) ≤ θt(s

t). (20)

bt(s
t) denotes the amount of bonds purchased and Rt(z

t) is the gross interest rate from

period t to t + 1. As was the case in the Arrow model, short-sales of the bond and the

stock are constrained by a lower bound on the value of the portfolio today,

bt(s
t)

Rt(zt)
+ σt(s

t)vt(z
t) ≥ Kt(s

t), (21)

or a state-by-state constraint on the value of the portfolio tomorrow,

bt(s
t) + σt(s

t)
[
vt+1(z

t+1) + αet+1(zt+1)
] ≥ Mt(s

t, zt+1) for all zt+1. (22)

Since bt(s
t) and σt(s

t) are chosen before zt+1 is realized, at most one of the constraints

(22) will be binding at a given time. The definition of an equilibrium for the HL model

follows directly. (see section (A.4) in the appendix).

We now show that the equilibria in the Arrow and the HL model coincide. As a

corollary, it follows that the asset pricing implications of both models are identical. In

order to do so we first transform the growing economy into a stationary, de-trended

economy.
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5.2 Equilibrium in the De-trended HL Model

Dividing the budget constraint (20) by et(z
t) we obtain, using (32),

ĉt(s
t) +

b̂t(s
t)

Rt(zt)
+ σt(s

t)v̂t(z
t) ≤ η(yt) +

b̂t−1(s
t−1)

λ(zt)
+ σt−1(s

t−1)
[
v̂t(z

t) + α
]
,

where we define the deflated bond position b̂t(s
t) = bt(st)

et(zt)
. Using condition (4.1), the

solvency constraints in the de-trended economy are simply:

b̂t(s
t)

Rt(zt)
+ σt(s

t)v̂t(z
t) ≥ K̂t(y

t), or

b̂t(s
t)

λ(zt+1)
+ σt(s

t)
[
v̂t+1(z

t+1) + α
] ≥ M̂t(y

t) for all zt+1.

The definition of equilibrium in the de-trended HL model is straightforward and hence

omitted17. We now show that equilibrium consumption allocations in the de-trended HL

model coincide with those of the Arrow model. For simplicity we first abstract from

binding borrowing constraints and then extend our results to that case later on.

5.3 Equivalence Results

The Euler equation for bonds in the de-trended HL model for an unconstrained household

is given by:

1 = β̂R̂HL
t

∑
yt+1

ϕ(yt+1|yt)
u′(ĉt+1(y

t, yt+1))

u′(ĉt(yt))
,

It is identical to the de-trended Arrow economy’ Euler equation for bonds, as long as the

equilibrium risk-free rate R̂HL
t in the bond economy is the same as that in the de-trended

Arrow economy. This explains the following proposition.

Proposition 5.1. If borrowing constraints in both models never bind, the Euler equations

in the de-trended HL model are identical to the Euler equations in the de-trended Arrow

model. The equilibrium risk-free rates in both models coincide
{
RHL

t (zt) = RA
t (zt)

}
.

17We list the first order conditions for household optimality and the transversality conditions in section
(A.4) of the appendix.
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Trading Strategies We now investigate the trading strategies that support the

equilibrium consumption allocation in the HL model. Net wealth in the de-trended version

of the HL model can only depend on the idiosyncratic shock history, as does de-trended

consumption ĉt(y
t)

Lemma 5.1. In the de-trended bond economy, net wealth only depends on yt.

This implies that in the growth economy with aggregate uncertainty, wealth at the

beginning of the period,

bt−1(s
t−1) + σt−1(s

t−1)
[
vt(z

t) + αet(z
t)

]
(23)

has to be proportional to et(z
t). From inspecting (23) it is obvious that this is only

possible if vt(z
t) is proportional to aggregate endowment et(z

t) and if bt−1(s
t−1) = 0! In

the appendix we therefore show the following proposition.

Proposition 5.2. In the HL model, the bond market is inoperative: bt−1(s
t−1) = b̂t−1(s

t−1) =

0 for all st−1.

All of the consumption smoothing is done by trading stocks, because agents want to

keep their net wealth proportional to the level of the aggregate endowment. The stock

position of households in the HL model is simply given by the net wealth position in the

Arrow economy θ̂t(y
t−1) deflated by the cum dividend price-dividend ratio,

σIC
t−1(y

t−1) =
θ̂t−1(y

t−1)

[v̂t + α]
=

ât−1(y
t−1)

[v̂t + α]
+ σA

t−1(y
t−1),

where θ̂t−1(y
t−1), as before, denotes the total net wealth position in the deflated Arrow

economy at the start of t:18

ât−1(y
t−1) + σA

t−1(y
t−1) [v̂t + α] = θ̂t−1(y

t−1).

Also, it is important to note that the stock positions in the HL model are not necessarily

equal to the stock positions in the Arrow economy. A household that is long in bonds

18Remember that in the deflated Arrow model households find it optimal to only trade state-
uncontingent assets, see Corollary 4.2
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in the Arrow economy simply has a higher stock position in the HL economy, while a

household that is short in the bond market in the Arrow economy holds less stocks in

the HL economy. The net borrowing and lending in the HL model is done in the stock

market, not in the bond market19. Consequently, we have the following result:20.

Theorem 5.1. An equilibrium of a stationary Bewley economy {ĉt(θ0, y
t), ât(θ0, y

t), σ̂t(θ0, y
t)}

and {R̂t, v̂t} can be made into an equilibrium for the HL economy with growth, {bt(θ0, s
t)} ,

{ct(θ0, s
t)} , {σt(θ0, s

t)} and {Rt(z
t)} and {vt(z

t)} where

ct(θ0, s
t) = ĉt(θ0, y

t)et(z
t)

σIC
t (θ0, s

t) = σ̂IC
t (θ0, y

t) =
ât(θ0, y

t)

[v̂t+1 + α]
+ σA

t (θ0, y
t)

vt(z
t) = v̂tet(z

t)

Rt(z
t) = R̂t(z

t) ∗
∑

zt+1
φ(zt+1|zt)λ(zt+1)

1−γ

∑
zt+1

φ(zt+1|zt)λ(zt+1)−γ

and bond holdings given by bt(θ0, s
t) = 0.

Absent any binding borrowing constraints, we can solve for equilibria in a standard

Bewley model economy and then map this equilibrium into one for both the Arrow econ-

omy and the HL economy with aggregate uncertainty. The risk-free interest rate and

the price of the Lucas tree coincide in the stochastic Arrow and HL economies. Finally,

without loss of generality, we can restrict attention to equilibria in which bonds are not

traded; consequently transaction costs in the bond market would not change our results.

Transaction costs in the stock market of course would (see section (7)).

In the HL economy, households do not have a motive for trading bonds, unless there

are short-sale constraints on stocks. We do not deal with this case. In addition, the

no-trade result depends critically on the i.i.d assumption for aggregate shocks, as we will

show in section (7). If the aggregate shocks are not i.i.d, agents want to hedge against the

interest rate shocks -these show up as aggregate taste shocks in the de-trended economy.

19This explains why net wealth at the start of the period is proportional to et(zt) : all the households
are long or short in the stock.

20Even in the Arrow model, trade in bonds is not needed to implement the equilibrium consumption
allocation, and thus we could consider only equilibria in the Arrow model with ât(yt) = 0.
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Borrowing constraints The next corollary establishes that our previous results

survive the introduction of borrowing constraints.

Corollary 5.1. The asset allocation for the HL model from the previous theorem satis-

fies the borrowing constraints (21) or (22) if and only if the associated asset allocation

at(θ0, s
t, zt+1) and σA

t (θ0, s
t) satisfies the borrowing constraints in the stochastically grow-

ing Arrow economy

This result follows from the fact that the new wealth at the end of the period and the

beginning of the next period coincides in equilibria of both models. As a consequence,

we have established that even with borrowing constraints, the equilibria in the Arrow

and HL model coincide. Since we know that households only trade the stocks in equilib-

rium, our result is robust to the introduction of short-sale constraints on stock and bond

holdings separately, as long as the short-sale constraints are not tighter than the solvency

constraints K(·) or M(·).

We now compare these asset prices to those emerging from the BL (standard repre-

sentative agent) model.

6 Asset Pricing Implications

This section shows that the multiplicative risk premium on a claim to aggregate con-

sumption in the HL economy -and the Arrow economy- equals the risk premium in the

representative agent economy. Idiosyncratic income risk only lowers the risk-free rate.

6.1 Consumption-CAPM

Our benchmark is the BL model. The representative agent owns a claim to the aggregate

‘labor’ income stream {(1− α)et(z
t)} and she can trade a stock (a claim to the dividends

αet(z
t) of the Lucas tree), a bond and a complete set of Arrow securities21.

First, we show that the Breeden-Lucas Consumption-CAPM also prices excess returns

21see section (A.5) in the Appendix for a complete description.
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on the stock in the HL model and the Arrow model. Rs denotes the return on a claim to

aggregate consumption.

Lemma 6.1. The Consumption-CAPM prices excess returns in the Arrow economy and

the HL Economy:

Et

[(
Rs

t+1 −Rt

)
β (λt+1)

−γ] = 0

This result follows directly from the Euler equation in (17). It has important impli-

cations for empirical work in asset pricing. First, in spite of the market incompleteness

and binding solvency constraints, an econometrician can estimate the coefficient of risk

aversion directly from aggregate consumption data and the excess return on stocks, as

in Hansen and Singleton (1982).22 Second, it provides a strong justification for explain-

ing the cross-section of excess returns using the CCAPM, without trying to match the

risk-free rate.

6.2 Risk Premia

Not surprisingly, the equilibrium risk premium is identical to the one in the representative

agent economy.23 Since the risk-free rate is higher than in the Arrow and HL model, the

price of the stock is correspondingly lower. However, the multiplicative risk premium is

the same in all three models and it is constant.

The stochastic discount factors that prices stochastic payoffs in the representative

agent economy and the Arrow economy only differ by a non-random multiplicative term,

equal to the ratio of (growth-deflated) risk-free interest rates in the two models. We use

the superscript RE to denote the Representative Agent economy.

Proposition 6.1. In the Arrow economy, there is a unique SDF given by

mA
t+1 = mRE

t+1κt

22In the bond economy, we can only use return data for a claim to aggregate consumption.
23This does not immediately follow from Lemma 6.1.
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with a non-random multiplicative term given by:

κt =
R̂t

RE

R̂A
t

≥ 1

Note that the term κt is straightforward to compute since R̂A
t equals the interest rate

in the Bewley model discussed in section (3). What about the HL economy? We have

shown, using the equivalence result between the Arrow and the HL model, that the Arrow

economy’s stochastic discount factor mA
t+1 is also a valid stochastic discount factor in the

HL economy. So, our results below carry over to the HL economy as well.

The proof that risk premia are unchanged between the representative agent model and

the Arrow model now follows directly from the previous decomposition of the SDF.24 Let

Rt,j [{dt+k}] denote the j-period holding return on claim to {dt+k} . Consequently Rt,1 [1]

is the gross risk-free rate and Rt,1 [αet+k] is the one-period holding return on a k-period

strip of the aggregate endowment (a claim to α times the aggregate endowment k periods

from now). With this notation in place, we can state our main result.

Theorem 6.1. The multiplicative risk premium in the Arrow economy equals that in the

representative agent economy

1 + νA
t = 1 + νRE

t =
EtRt,1 [{et+k}]

Rt,1 [1]

Thus, the extent to which households smooth idiosyncratic income shocks (in the

Arrow model or in the HL model) amount has absolutely no effect on the size of the

risk premia; it merely lowers the risk-free rate. Exactly the same result applies to the

HL model as well25 The market incompleteness does not generate any dynamics in the

conditional risk premia either: the conditional risk premium is constant.

24The proof strategy follows Alvarez and Jermann (2001) who derive a similar result in the context of
a complete markets model populated by two agents that face endogenous solvency constraints.

25 Cochrane and Hansen (1992) had already established a similar aggregation result for the case in
which households face market wealth constraints, but in a complete markets environment. We show this
result survives even if households trade only a stock and a bond.
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7 Robustness and Extensions of the Main Results

In this section, we investigate how robust our results are, and we demonstrate that our

assumption that the aggregate shocks are i.i.d over time, which means the growth rates

of the aggregate endowment are i.i.d over time, is not crucial for our results. We conclude

by discussing the effects of non-time-separable utility and preference heterogeneity.

7.1 Non-iid Aggregate Shocks

When the aggregate shocks z follow an arbitrary, finite state, Markov chain, the growth-

adjusted time discount factor β̂(z) depends on the current aggregate state, and, as a

result, the aggregate endowment shock acts as an aggregate taste shock in the deflated

economy. This shock renders all households more or less impatient. Of course, households

are not able to insure against this shock at all, since it affects all households in the same

way. As a consequence, non-iid aggregate endowment shocks, acting as taste shocks in

the deflated economy, only affect the price/dividend ratio and the interest rate, but not

the risk premium. However, in this case, there is trade in the Arrow securities market.

Stationary Bewley economy In order to establish these results, as before we use a

stationary Bewley economy as a computational device. Denote by Π̂(z′) the invariant

distribution over the aggregate shock under the hatted measure. Agents in the stationary

economy discount future utility flows using the deterministic time discount factor process{
β̃t

}
, where β̃t is given by the average subjective discount factor:

β̃t =
∑
z0

Π̂(z0)
∑

zt−1

φ̂(zt−1|z0)β̂0,t−1(z
t−1|z0), t ≥ 1, (24)

and where we have used β̂0,τ (z
τ |z0) to denote the product of time discount factors:

β̂0,τ (z
τ |z0) = β̂(z0)β̂(z1) . . . β̂(zτ ).

Given this non-random sequence of subjective time discount factors, we can define an

equilibrium for the Bewley economy in the standard way. In the simplest case of i.i.d
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shocks we obtain β̃t = β̂t, as in the case we discussed in the previous section.

We choose this particular sequence of subjective time discount factors because it en-

sures that the time zero budget constraint in the deflated Arrow economy is satisfied given

the same initial wealth distribution Θ0 as in the stationary Bewley economy. In order to

construct equilibrium allocations, we first determine equilibrium allocations and interest

rates in the Bewley economy with time discount factors
{

β̃t

}
, analogous to the analysis

in section (3). In a second step, we make these allocations and interest rates into an

equilibrium of the actual Arrow economy with time-varying discount factors by adjusting

the risk-free interest rate in proportion to the taste shock β̂(z). We do not change the

allocations, and we back out the implied Arrow securities positions. To understand the

effect of these aggregate taste shocks on the time discount rate in the Bewley economy,

we consider a simple example.

Example 1. If the β̂(z) are lognormal and i.i.d with variance σ2 , then the effective

average time discount rate between time 0 and time t is given by:

ρ̃t

t
= ρ̂− 1

2
σ2 for any t ≥ 1

where β̃t = e−eρt and Eβ̂(z) = e−bρ. As a result, the time discount rate in the Bewley

economy is lower than the actual discount rate, because of the risk associated with the

taste shocks.

We use {ĉt(θ0, y
t), ât(θ0, y

t), σ̂t(θ0, y
t)} and prices

{
R̂t, v̂t

}
to denote the Bewley equi-

librium for given
{

β̃t

}
. Only the total net wealth positions in the Bewley economy are

pinned down (since the bond and the stock, by a no-arbitrage condition, have exactly the

same return, and are both risk-free assets):

b̂t(θ0, y
t) = ât(θ0, y

t) + σ̂t(θ0, y
t)(v̂t + α).

Without loss of generality, we focus on the case where ât(θ0, y
t) = 0 for all yt. Our goal

is to show that the consumption and share allocation {ĉt(θ0, y
t), σ̂t(θ0, y

t)} can be made

into an Arrow equilibrium, and then to argue why we need to choose the specific discount
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factor sequence in (24) for the Bewley model. To fix notation, let

Q̃t,τ =τ−t−1
j=0 R̂−1

t+j =
1

R̂τ,t

denote the price (in the Bewley equilibrium) for one unit of consumption to be delivered

at time τ, in terms of consumption at time t. Also, let us use the convention Q̃τ = Q̃t=0,τ

and Q̃t=τ = 1.

Arrow economy Next, we follow the same recipe as before, by implementing the

Bewley allocations as part of an equilibrium for the deflated Arrow economy, but in this

case, this will inolve trade in the contingent claims market. To start off, we conjecture

that the Arrow-Debreu prices in the deflated Arrow economy are given by:

Q̂(zt|z0) =
β̂0,t−1(z

t−1)φ̂(zt|z0)

β̃tR̂0,t

,

from which we can easily recover the Arrow prices from the usual relationship:

Q̂(zt+1|z0)

Q̂(zt|z0)
= q(zt+1, zt) = β̂(zt)φ̂(zt+1|zt)

1

R̂t

β̃t

β̃t+1

(25)

where 1

R̂t
= R̂0,t

bR0,t+1
. These Arrow prices are Markovian, since R̂t and β̃t are deterministic.

Lemma 7.1. The household Euler equations are satisfied in the Arrow model at the

Bewley allocations {ĉt+1(y
t, yt+1)} and Arrow prices {q(zt+1, zt)} given by (25).

Naturally, this implies that the state-contingent interest rates in the Arrow model are

given by

1

R̂A
t (zt)

= β̂(zt)
β̃t

R̂tβ̃t+1

,

which can easily be verified from equation (25).

Trading Trading starts before the initial aggregate shock z0 is observed. In the Ar-

row economy, there is trade in the contingent claims markets. First, we need to check that
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these contingent claims positions implied by the Bewley allocations clear the securities

markets.

Proposition 7.1. The contingent claims positions implied by the Bewley allocations:

ât−1(y
t−1, zt, θ0) = ĉt(y

t, θ0)− η(yt) +
∞∑

τ=t+1

∑
zτ ,yτ

Q̂t(z
τ |zt) (ĉτ (y

τ , θ0)− η(yτ ))

−σt−1(y
t−1) [v̂t(zt) + α] = ât−1(y

t−1, zt, θ0) (26)

clear the bond market

The contingent claims positions are used to hedge against interest rate shocks, as is

clear from this restatement of the bond position:

ât−1(y
t−1, zt, θ0) =

∞∑
τ=t+1

∑
zτ

(
Q̂τ (z

τ |zt)− Q̃τ

) ∑
ητ

(ĉτ (y
τ , θ0)− η(yτ ))

−σt−1(y
t−1)α

∞∑
τ=t+1

∑
zτ

(
Q̂τ (z

τ |zt)− Q̃τ

)

The difference between Q̂τ (z
τ |zt) and Q̃ is governed by the interest rate shocks. If the

aggregate consumption growth shocks are i.i.d, this gap is zero. Second, to close our

argument, we need to make sure that no wealth transfers are required to implement the

Bewley equilibrium allocations in the deflated Arrow economy. In other words, we need

to make sure that the state contingent bond portfolio at time zero, before the realization

of z0, is worth exactly zero. For this we proceed in two steps. First, we show that at time

zero the state prices in the Arrow and Bewley economy coincide.

Lemma 7.2. As a result of our choice of
{

β̃t

}
in the Bewley economy, on average these

AD prices coincide with the Bewley prices at time 0, before the realization of z0:

∑
z0

Π̂(z0)
∑
zτ

Q̂τ (z
τ |z0) = Q̃0,τ ,

Second, using the result about prices, we show that the cost of the bond portfolio is
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zero.

Lemma 7.3. The cost at time 0 of the time 0 state-contingent claims portfolio is zero:

∑

zt

Π̂(z0)
[
â−1(y

−1, z0, θ0)
]

= 0

Since we know the contingent bond positions are zero cost, the time 0 budget constraint

is satisfied in the deflated Arrow economy for the exact same initial wealth distribution

Θ0 as in the Bewley economy.

Theorem 7.1. An equilibrium of a stationary Bewley economy, populated by house-

holds with constant discount factor β̃, {ĉt(θ0, y
t), ât(θ0, y

t) = 0, σ̂t(θ0, y
t)} and {R̂t, v̂t}

can be made into an equilibrium for the Arrow economy with growth, {at(θ0, s
t, zt+1)} ,

{σt(θ0, s
t)}, {ct(θ0, s

t)} and {qt(z
t, zt+1)} , {vt(z

t)}, with

ct(θ0, s
t) = ĉt(θ0, y

t)

σt(θ0, s
t) = σ̂t(θ0, y

t)

at(θ0, s
t, zt+1) = ât−1(y

t−1, zt, θ0)et(z
t) defined above

vt(zt) =
∑
zt+1

φ̂(zt+1|zt)

λ(zt+1)

[
vt+1(zt+1) + αet+1(zt+1)

R̂A
t (zt)

]

R̂A
t (zt) =

R̂tβ̃t+1

β̂(zt)β̃t

qt(z
t, zt+1) =

1

R̂A
t (zt)

∗ φ(zt+1|zt)λ(zt+1)
−γ

∑
zt+1

φ(zt+1|zt)λ(zt+1)1−γ

Evidently, as before one can back out the Arrow prices for the deflated economy from

the prices in the deflated Bewley economy. The contingent claims positions required to

implement the Bewley allocations where determined above.

Risk Premia Of course, this implies that our baseline irrelevance result for risk

premia survives the introduction of non-i.i.d. aggregate shocks, provided that a complete

menu of aggregate-state-contingent securities is traded. These aggregate taste shocks

only affect interest rates and price/dividend ratios, not risk premia. When agents in the
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transformed economy become more impatient, the interest rises and the price/dividend

ratio decreases, but the conditional expected excess return is unchanged.

Solvency Constraints So far we have abstracted from solvency constraints. Re-

member that we originally assumed that the solvency constraints satisfy Kt(s
t) = K̂t(y

t)et(z
t)

and Mt+1(s
t+1) = M̂t(y

t)et(z
t+1). The allocations computed in the stationary economy

using K̂t(y
t) and M̂t(y

t) as solvency constraints, satisfy a modified version of the solvency

constraints Kt(s
t) and Mt+1(s

t+1).

Lemma 7.4. The allocations from the ergodic economy satisfy the modified solvency con-

straints:

K∗
t (st) = Kt(s

t)−
∑
zt+1

qt(z
t, zt+1)at(s

t, zt+1)

M∗
t+1(s

t+1) = Mt+1(s
t+1)− at(s

t, zt+1)

This means that in the case of non-i.i.d. aggregate shocks our implementation and

asset pricing results is not quite robust to the introduction of binding solvency constraints:

if the allocations satisfy the constraints in the stationary Bewley economy, they satisfy

the modified solvency constraints in the actual Arrow economy, but not the ones we

originally specified, because of the nonzero state-contingent claims positions. However, it

is easy to verify using the result in Corollary (7.3) in the appendix that these modified

solvency constraints coincide with the actual ones on average (averaged across z shocks).

In addition, the violations are likely to be small for plausible calibrations of the aggregate

endowment growth process, because the interest rate would not vary too much over the

business cycle. Furthermore, these deviations are completely due to the impact of interest

rate changes on the value of the portfolio. The risk premia are still constant over the

business cycle.

HL Economy For the HL model, the same equivalence result obviously no longer

holds, because the market for state contingent Arrow securities is now operative in the Ar-

row economy. When there is predictability in aggregate consumption growth, households
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actually find it optimal to trade the state-contingent Arrow securities, but the market

structure in the HL economy prevents them from doing so.

7.2 Preferences

What role do preferences play in our results? Well, it is key to have homogeneous pref-

erences. Time separability is not critical. In section (A.2) of the appendix, we study the

case of Epstein-Zin preferences. In the case of i.i.d. aggregate consumption growth, the

irrelevance result survives.

When different groups of agents have different risk aversion coefficients γ, the Arrow

economy behaves like a complete markets economy with N different agents26, exactly as

analyzed by Dumas (1989). Following Constantinides (1982), we can construct a mongrel

utility function for pricing assets directly off aggregate consumption growth. Preference

heterogeneity does introduce time-variation into risk premia. But, again, the market

incompleteness itself does not contribute anything to the risk premia beyond what one

obtains in the complete markets case. However, there is trade in the contingent claims

markets in equilibrium and the equivalence with the HL economy breaks down.

8 Related Literature and Conclusion

The results of our paper make contact with the literature on aggregation. Constantinides

(1982), building on work by Negishi (1960) and Wilson (1968), derives an aggregation

result for heterogenous agents in complete market models, implying that assets can be

priced off the intertemporal marginal rate of substitution of an agent who consumes the

aggregate endowment. We extend his result to a large class of incomplete market models

with idiosyncratic income shocks.

Most of the work on incomplete markets and risk premia documents the moments

of model-generated data for particular calibrations, but there are few analytical results.

Levine and Zame (2002) show that in economies populated by agents with infinite hori-

26The proof is available upon request.
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zons, the equilibrium allocations in the limit, as their discount factors go to one, con-

verge to the complete markets allocations. Consequently the pricing implications of the

incomplete markets model converge to that of the representative agent model as house-

holds become perfectly patient. We provide a qualitatively similar equivalence result that

applies only to the risk premium. The result, however, does not depend on the time

discount factor of households. For households with CARA utility, closed form solutions

of the individual decision problem in incomplete markets models with idiosyncratic risk

are sometimes available, as Willen (1999) shows.27 We use CRRA preferences for our

results, and we obtain an unambiguous (and negative) result for the impact of uninsur-

able income risk for the equity premium in the case that the distribution of individual

income shocks is independent of aggregate shocks. Finally, Lettau (2006) shows that if

household consumption (in logs) consists of an aggregate and an idiosyncratic part, the

latter does not affect risk premia. We show that this characterization of the household

consumption process is indeed the correct one in equilibrium in a large class of incomplete

market models with potentially binding borrowing constraints.

Most related to our study is the work by Constantinides and Duffie (1996), who

consider an environment in which agents face permanent, idiosyncratic income shocks and

can trade stocks and bonds. Their equilibrium is characterized by no trade in financial

markets. By choosing the right stochastic income process, CD deliver equilibrium asset

prices with all desired properties. Krebs (2005) extends this result to a production

economy. In his world, as in ours, the wealth distribution is not required as a state

variable to characterize equilibria, in spite of the presence of aggregate shocks, but, as in

CD (1996), the equilibrium is autarkic, so that households cannot diversify any of their

risk. In our models households will be able to smooth some of their income shocks, and

the equilibrium features trade in assets, but we can still fully characterize equilibrium

asset prices.

Finally, our paper establishes the existence of a recursive competitive equilibrium with

only asset holdings in the state space, albeit under a transformed probability measure.

Kubler and Schmedders (2002) establish the existence of such an equilibrium, but only

under very strong conditions. Miao (2004) relaxes these conditions, but he includes con-

27Eliminating wealth effects simplifies the analysis.
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tinuation utilities in the state space.

In ongoing work we investigate whether our analytical results can be used to derive

explicit results or bounds for the effect of uninsurable idiosyncratic income risk on the

equity premium if the variance of this risk is allowed to vary over the cycle, as suggested

by Storesletten, Telmer and Yaron (2004). But since an analytical implementation result

that allowed us to construct equilibrium allocations in the Arrow and HL model from

allocations in the Bewley model is not available, the results of this analysis are likely

going to be computational in nature.
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A Additional Definitions

A.1 Recursive Competitive Equilibrium

As stated above, without loss of generality we can abstract from trade in bonds. Let A ⊂ R

denote the set of possible share holdings B(A) the Borel σ−algebra of A. Y is the set of possible

labor income draws and P(Y ) is the power-set of Y. Define the state space as Z = A × Y and

B(Z) = P(Y ) ×B(A). We define the households’ recursive problem for the case of a stationary

recursive equilibrium in which the cross-sectional distribution Φ and prices are constant:

v(σ, y) = max
c≥0,σ′



u(c) + β̂

∑

y′
ϕ(y′|y)v(σ′, y′)





s.t.

c + σ′v̂ = y + σ [v̂ + α]

σ′v̂ ≥ K̂ or σ′ [v̂ + α] ≥ M̂

Definition A.1. A stationary recursive competitive equilibrium (RCE) for the Bewley economy

is a value function v : Z → R, policy functions for the household σ′ : Z → R and c : Z → R, a

stock price v̂ and a measure Φ such that

1. v, σ, c′ are measurable with respect to B(Z), v satisfies the household’s Bellman equation

and σ′, c are the associated policy functions, given v̂

2. Market clearing

∫
cdΦ = 1

∫
σ′dΦ = 1

3. The distribution is stationary

Φ(A,Y) =
∫

Q((a, y), (A,Y))Φ(da× dy)

41



where Q is the Markov transition function induced by the exogenous Markov chain φ̂ and

the decision rule σ′.

Existence of a stationary RCE in the Bewley economy can now be guaranteed under the stan-

dard conditions (see Huggett (1993) and Aiyagari (1994) (Aiyagari 1994)). More importantly,

the standard algorithm to compute stationary equilibria in Bewley models can be applied.

Algorithm A.1. 1. Guess a price v̂.

2. Solve the recursive household problem.

3. Find the stationary measure Φ associated with the household decision rule σ and the

exogenous Markov chain ϕ.

4. Compute the excess demand in the stock market,

d(v̂) =
∫

σ′dΦ− 1

5. If d(v̂) = 0, we are done, if not, adjust the guess for v̂ and repeat 2.-5.

Remark 1. Once the equilibrium stock price v̂ is determined, we can easily derive the equilib-

rium interest rate as

R̂ =
v̂ + α

v̂

A.2 Arrow Economy

A.2.1 Market Structure and Equilibrium

Let at(st, zt+1) denote the quantity purchased of a security that pays off one unit of the con-

sumption good if aggregate shock in the next period is zt+1, irrespective of the idiosyncratic

shock yt+1. Its price today is given by qt(zt, zt+1). In addition, households trade shares in the

Lucas tree. We use σt(st) to denote the number of shares a household with history st = (yt, zt)

purchases today and we let vt(zt) denote the price of one share.
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An agent starting period t with initial wealth θt(st) buys consumption commodities in the

spot market and trades securities subject to the usual budget constraint:

ct(st) +
∑
zt+1

at(st, zt+1)qt(zt, zt+1) + σt(st)vt(zt) ≤ θt(st). (27)

If next period’s state is st+1 = (st, yt+1, zt+1), her wealth is given by her labor income, the payoff

from the contingent claim purchased in the previous period as well as the value of her position

on the stock, including dividends:

θt+1(st+1) = η(yt+1, zt+1)et+1(zt+1)︸ ︷︷ ︸ + at(st, zt+1)︸ ︷︷ ︸ (28)

labor income contingent payoff

+σt(st)
[
vt+1(zt+1) + αet+1(zt+1)

]
︸ ︷︷ ︸

value of shares in Lucas tree

The definition of an equilibrium in this economy is standard. Each household is assigned

a label that consists of its initial financial wealth θ0 and its initial state s0 = (y0, z0). A

household of type (θ0, s0) chooses consumption allocations
{
ct(θ0, s

t)
}

, trading strategies for

Arrow securities
{
at(θ0, s

t, zt+1)
}

and shares {σt(θ0, s
t)} to maximize her expected utility (1),

subject to the budget constraints (27) and subject to solvency constraints (10) or (11). We are

ready to define an Arrow equilibrium.28

Definition A.2. For initial aggregate state z0 and distribution Θ0 over (θ0, y0) , a compet-

itive equilibrium for the Arrow economy consists of household allocations
{
at(θ0, s

t, zt+1)
}

,

{σt(θ0, s
t)}, {

ct(θ0, s
t)

}
and prices

{
qt(zt, zt+1)

}
, {vt(zt)} such that

1. Given prices, household allocations solve the household maximization problem

28Several elements are worth commenting on. First, since there exists a full set of Arrow
securities spanning the aggregate uncertainty, the stock is a redundant asset and we could
have formulated the household problem and thus the equilibrium definition without explicitly
mentioning the stock. Incorporating the stock explicitly, though, will make our asset pricing
and equivalence results to follow clearer. Second, by Walras’ law the goods market clearing
condition (or one of the asset market clearing conditions) is redundant.
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2. The goods market clears for all zt,

∫ ∑

yt

π(yt, zt|y0, z0)
π(zt|z0)

ct(θ0, s
t)dΘ0 = et(zt)

3. The asset markets clear for all zt

∫ ∑

yt

π(yt, zt|y0, z0)
π(zt|z0)

σt(θ0, s
t)dΘ0 = 1

∫ ∑

yt

π(yt, zt|y0, z0)
π(zt|z0)

at(θ0, s
t, zt+1)dΘ0 = 0 for all zt+1 ∈ Z

A.3 Optimality Conditions for Arrow Economy

Finally we list the optimality conditions. Attaching Lagrange multiplier µt(st) ≥ .0 to the

constraint (13) and κt(st, zt+1) ≥ 0 to the constraint (14), the Euler equations of the detrended

Arrow economy are given by:

1 =
β̂(st)

q̂t(zt, zt+1)

∑
st+1

π̂(st+1|st)
u′(ĉt+1(st, st+1))

u′(ĉt(st))
(29)

+µt(st) +
κt(st, zt+1)
q̂t(zt, zt+1)

∀zt+1. (30)

1 = β̂(st)
∑
st+1

π̂(st+1|st)
[
v̂t+1(zt+1) + α

v̂t(zt)

]
u′(ĉt+1(st, st+1))

u′(ĉt(st))

+µt(st) +
∑
zt+1

κt(st, zt+1)
[
v̂t+1(zt+1) + α

v̂t(zt)

]
. (31)

Only one of the two Lagrange multiplier is relevant, depending on which version of the shortsale

constraint we are considering. Finally, the complementary slackness conditions for the Lagrange

multipliers are given by

µt(st)


∑

zt+1

ât(st, zt+1)q̂t(zt, zt+1) + σt(st)v̂t(zt)− K̂t(yt)


 = 0

κt(st, zt+1)
[
ât(st, zt+1) + σt(st)

[
v̂t+1(zt+1) + α

]− M̂t(yt)
]

= 0

The first order conditions and complementary slackness conditions, together with the appropriate
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transversality condition, are necessary and sufficient conditions for optimality on the household

side.

In addition, we list the appropriate transversality conditions:

lim
t→∞

∑

st

β̂tπ̂(st|s0)u′(ct+1(yt+1, zt+1))[ât(st, zt+1)− M̂t(yt)] = 0,

and

lim
t→∞

∑

st

β̂tπ̂(st|s0)u′(ct(yt, zt))[ât(st)− K̂t(yt)] = 0.

A.4 HL Economy

Wealth tomorrow in state st+1 = (st, yt+1, zt+1) is given by

θt+1(st+1) = η(yt+1)et+1(zt+1)︸ ︷︷ ︸+ bt(st)︸ ︷︷ ︸
labor income bond payoff

+σt(st)
[
vt+1(zt+1) + αet+1(zt+1)

]
︸ ︷︷ ︸ .

value of shares in Lucas tree (32)

Definition A.3. For initial aggregate state z0 and distribution Θ0 over (θ0, y0) , a compet-

itive equilibrium for the HL economy consists of trading strategies
{
bt(θ0, s

t)
}

,
{
ct(θ0, s

t)
}

,
{
σt(θ0, s

t)
}

and interest rates
{
Rt(zt)

}
and share prices

{
vt(zt)

}
such that

1. Given prices, allocations solve the household maximization problem

2. The goods market clears

∫ ∑

yt

π(yt, zt|y0, z0)
π(zt|z0)

ct(θ0, s
t)dΘ0 = et(zt)
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3. The asset markets clear for all zt

∫ ∑

yt

π(yt, zt|y0, z0)
π(zt|z0)

σt(θ0, s
t)dΘ0 = 1

∫ ∑

yt

π(yt, zt|y0, z0)
π(zt|z0)

bt(θ0, s
t)dΘ0 = 0.

In the detrended HL economy the Euler equations read as

1 = β̂(st)
∑
st+1

π̂(st+1|st)
[

Rt(zt)
λ(zt+1)

]
u′(ĉt+1(st, st+1))

u′(ĉt(st))

+µt(st) +
∑
zt+1

κt(st, zt+1)
[

Rt(zt)
λ(zt+1)

]
(33)

= β̂(st)
∑
st+1

π̂(st+1|st)
[
v̂t+1(zt+1) + α

v̂t(zt)

]
u′(ĉt+1(st, st+1))

u′(ĉt(st))

+µt(st) +
∑
zt+1

κt(st, zt+1)
[
v̂t+1(zt+1) + α

v̂t(zt)

]
, (34)

with complementary slackness conditions given by:

µt(st)

[
b̂t(st)
Rt(zt)

+ σt(st)v̂t(zt)− K̂t(st)

]
= 0

κt(st, zt+1)

[
b̂t(st)

λ(zt+1)
+ σt(st)

[
v̂t+1(zt+1) + α

]− M̂t(st, zt+1)

]
= 0

In addition, we list the appropriate transversality conditions:

lim
t→∞

∑

st

β̂tπ̂(st|s0)u′(ĉt(yt, zt))

[
b̂t(st)
Rt(zt)

]
= 0.

lim
t→∞

∑

st

β̂tπ̂(st|s0)u′(ĉt(yt, zt))σt−1(st−1)
[
v̂t(zt) + α

]
= 0.
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A.5 Representative Agent Model

The budget constraint reads as

ct(zt) +
∑
zt+1

at(zt, zt+1)qt(zt, zt+1) + σt(zt)vt(zt)

≤ et(zt) + at−1(zt−1, zt) + σt−1(zt−1)
[
vt(zt) + αet(zt)

]

After deflating by the aggregate endowment et(zt), the budget constraint reads as

ĉt(zt) +
∑
zt+1

ât(zt, zt+1)q̂t(zt, zt+1) + σt(zt)v̂t(zt)

≤ 1 + ât−1(zt−1, zt) + σt−1(zt−1)
[
v̂t(zt) + α

]
,

where ât(zt, zt+1) = at(zt,zt+1)
et+1(zt+1)

and q̂t(zt, zt+1) = qt(zt, zt+1)λ(zt+1) as well as v̂t(zt) = vt(zt)
et(zt) , as

before in the Arrow model. Obviously, in an equilibrium of this model the representative agent

consumes the aggregate endowment. Asset pricing in this economy is very simple.

Lemma A.1. Equilibrium asset prices are given by

q̂t(zt, zt+1) = β̂φ̂(zt+1) for all zt+1

v̂t(zt) = β̂
∑
zt+1

φ̂(zt+1)
[
v̂t+1(zt+1) + α

]
(35)

A.6 Recursive Utility

We consider the class of preferences due to Epstein and Zin (1989) . Let V (ci) denote the utility

derived from consuming ci :

V (ci) =
[
(1− β)c1−ρ

t + β(RtV1)1−ρ
] 1

1−ρ
, (36)

where the risk-adjusted expectation operator is defined as:

RtVt+1 =
(
EtV

1−α
t+1

)1/1−α
.

α governs risk aversion and ρ governs the willingness to substitute consumption intertemporally.

These preferences impute a concern for the timing of the resolution of uncertainty to agents. In
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the special case where ρ = 1
α , these preferences collapse to standard power utility preferences

with CRRA coefficient α. As before, we can define growth-adjusted probabilities and the growth-

adjusted discount factor as:

π̂(st+1|st) =
π(st+1|st)λ(zt+1)1−α

∑
st+1

π(st+1|st)λ(zt+1)1−α

and β̂(st) = β


∑

st+1

π(st+1|st)λ(zt+1)1−α




1−ρ
1−α

As before, β̂(st) is stochastic as long as the original Markov process is not iid over time. Note

that the adjustment of the discount rate is affected by both ρ and α. If ρ = 1
α , this transformation

reduces to the case we discussed in section (2).

Finally, let V̂t(ĉ)(st) denote the lifetime expected continuation utility in node st, under the

new transition probabilities and discount factor, defined over consumption shares
{
ĉt(st)

}
:

V̂t(ĉ)(st) =
[
(1− β)ĉ1−ρ

t + β̂(st)(R̂tV̂t+1(st+1))1−ρ
] 1

1−ρ
,

where R denotes the following operator:

R̂tVt+1 =
(
ÊtV̂

1−α
t+1

)1/1−α
.

and Ê denotes the expectation operator under the hatted measure π̂.

Proposition A.1. Households rank consumption share allocations in the de-trended economy

in exactly the same way as they rank the corresponding consumption allocations in the original

growing economy: for any st and any two consumption allocations c, c′

V (c)(st) ≥ V (c′)(st) ⇐⇒ V̂ (ĉ)(st) ≥ V̂ (ĉ′)(st)

where the transformation of consumption into consumption shares is given by (4).

Detrended Arrow Economy We proceed as before, by conjecturing that the equilibrium

consumption shares only depend on yt. Our first result states that if the consumption shares

in the de-trended economy do not depend on the aggregate history zt, then it follows that the

interest rates in this economy are deterministic.
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Proposition A.2. In the de-trended Arrow economy, if there exists a competitive equilibrium

with equilibrium consumption allocations
{
ĉt(θ0, y

t)
}

, then there is a deterministic interest rate

process
{

R̂A
t

}
and equilibrium prices

{
q̂t(zt, zt+1)

}
, that satisfy:

q̂t(zt, zt+1) =
φ̂(zt+1)

R̂A
t

(37)

All the results basically go through. We can map an equilibrium of the Bewley economy

into an equilibrium of the detrended Arrow economy.

Theorem A.1. An equilibrium of the Bewley model {ĉt(θ0, y
t), ât(θ0, y

t), σ̂t(θ0, y
t)} and {R̂t, v̂t}

can be made into an equilibrium for the Arrow economy with growth,
{
at(θ0, s

t, zt+1)
}

, {σt(θ0, s
t)},

{
ct(θ0, s

t)
}

and
{
qt(zt, zt+1)

}
, {vt(zt)}, with

ct(θ0, s
t) = ĉt(θ0, y

t)et(zt)

σt(θ0, s
t) = σ̂t(θ0, y

t)

at(θ0, s
t, zt+1) = ât(θ0, y

t)et+1(zt+1)

vt(zt) = v̂tet(zt)

qt(zt, zt+1) =
1
R̂t

∗ φ(zt+1)λ(zt+1)−α

∑
zt+1

φ(zt+1)λ(zt+1)1−α

As a result, even for an economy with agents who have these Epstein-Zin preferences, the

risk premium is not affected29.

B Proofs

Proof of Proposition 2.1:

Proof. First, we show that households rank consumption streams {ct(st)} in the original econ-

omy in exactly the same way as they rank growth-deflated consumption streams

ĉt(st) =
ct(st)
et(zt)

.

29However, the extension to non-i.i.d. aggregate consumption growth is non-trivial, because
the taste shocks affect continuation utilities, and simply adjusting the interest rate may not be
sufficient.
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where st = (zt, yt). Denote U(c)(st) as continuation utility of an agent from consumption stream

c, starting at history st. This continuation utility follows the simple recursion

U(c)(st) = u(ct(st)) + β
∑
st+1

π(st+1|st)U(c)(st, st+1),

where it is understood that (st, st+1) = (zt, zt+1, y
t, yt+1). Divide both sides by et(st)1−γ to

obtain
U(c)(st)
et(zt)1−γ

= u(ĉt(st)) + β
∑
st+1

π(st+1|st)
et+1(zt+1)1−γ

et(zt)1−γ

U(c)(st, st+1)
et+1(zt+1)1−γ

.

Define a new utility index Û(·) as follows:

Û(ĉ)(st) =
U(c)(st)
et(zt)1−γ

,

it follows that

Û(ĉ)(st) = u(ĉt(st)) + β
∑
st+1

π(st+1|st)λ(zt+1)1−γÛ(ĉ)(st, st+1)

= u(ĉt(st)) + β̂(st)
∑
st+1

π̂(st+1|st)Û(ĉ)(st, st+1)

Thus it follows, for two consumption streams c and c′, that

U(c)(st) ≥ U(c′)(st) if and only if Û(ĉ)(st) ≥ Û(ĉ′)(st)

i.e. the household orders original and growth-deflated consumption streams in exactly the same

way.

Proof of Proposition 4.1:

Proof. First, we suppose the borrowing constraints are not binding, which is the easiest case.

Assume the equilibrium allocations only depend on yt, not on zt. Then conditions 2.2 and 2.3

imply that the Euler equations of the Arrow economy, for the contingent claim and the stock

50



respectively, read as follows:

1 =
β̂φ̂(zt+1)

q̂t(zt, zt+1)

∑
yt+1

ϕ(yt+1|yt)
u′(ĉt+1(yt, yt+1))

u′(ĉt(yt))
∀zt+1 (38)

1 = β̂
∑
zt+1

φ̂(zt+1)
[
v̂t+1(zt+1) + α

v̂t(zt)

]
∗

∑
yt+1

ϕ(yt+1|yt)
u′(ĉt+1(yt, yt+1))

u′(ĉt(yt))
. (39)

In the first Euler equation, the only part that depends on zt+1 is φ̂(zt+1)
q̂t(zt,zt+1)

which therefore implies

that φ̂(zt+1)
q̂t(zt,zt+1)

cannot depend on zt+1 : q̂t(zt, zt+1) is proportional to φ̂(zt+1). Thus define R̂A
t (zt)

by

q̂t(zt, zt+1) =
φ̂(zt+1)
R̂A

t (zt)
(40)

as the risk-free interest rate in the stationary Arrow economy. Using this condition, the Euler

equation in (38) simplifies to the following expression:

1 = β̂R̂A
t (zt)

∑
yt+1

ϕ(yt+1|yt)
u′(ĉt+1(yt, yt+1))

u′(ĉt(yt))
(41)

First, notice that apart from R̂A
t (zt) noting in this condition depends on zt, so we can choose

R̂A
t (zt) = R̂A

t .

Proof of Corollary 4.1 :

Proof. The prices for Arrow securities in the original economy are given by

qt(zt, zt+1) =
q̂t(zt, zt+1)

λ(zt+1)
=

φ̂(zt+1)
R̂A

t λ(zt+1)

and using the definition of the growth-adjusted transition probability φ̂(zt+1) :

qt(zt, zt+1) =
1

R̂A
t

∗ φ(zt+1|zt)λ(zt+1)−γ

∑
zt+1

φ(zt+1|zt)λ(zt+1)1−γ
(42)

Note that qt(zt, zt+1) is proportional to φ(zt+1|zt)λ(zt+1)−γ , but not to φ(zt+1|zt).

If we denote by RA
t = 1P

zt+1
qt(zt,zt+1)

the implied risk-free interest rate in the original
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economy, we can easily back it out from the risk-free rate in the detrended Arrow economy:

RA
t (zt) = R̂A

t (zt) ∗
∑

zt+1
φ(zt+1|zt)λ(zt+1)1−γ

∑
zt+1

φ(zt+1|zt)λ(zt+1)−γ
(43)

And, obviously, RA
t (zt) = RA

t , the risk-free rate in the Arrow economy does not depend on time

either.

Proof of Corollary 4.2:

Proof. Then (also using the conjecture above and the form of q̂t(zt, zt+1)) consider the budget

constraint in the detrended Arrow economy:

ĉt(yt) +
∑
zt+1

ât(yt, zt, zt+1)q̂t(zt, zt+1) + σt(yt)v̂t

= η(yt) + ât−1(yt−1, zt) + σt−1(yt−1) [v̂t + α]

ĉt(yt) +

∑
zt+1

ât(yt, zt, zt+1)φ̂(zt+1)

R̂A
t

+ σt(yt)v̂t

= η(yt) + ât−1(yt−1, zt) + σt−1(yt−1) [v̂t + α]

Note that only the contingent claims quantities themselves depend on aggregate histories. So,

it is obvious we can simply choose ât(st, zt+1) = at(st,zt+1)
et+1(zt+1)

= ât(yt),that is, holdings of Arrow

securities in the transformed economy also only depend on the idiosyncratic shock history.

Proof of Theorem 4.1:

Proof. The crucial observation is that at the prices
{
qt(zt, zt+1)

}
, {vt(zt)} the consumption

allocation
{
ct(θ0, s

t)
}

satisfies the Euler equations of the original problem, because

β̂(st)
q̂t(zt, zt+1)

∑
yt+1

π̂(st+1|st)
u′(ĉt+1(st, st+1))

u′(ĉt(st))

=
β

∑
yt+1

π(st+1|st)
(

et+1(zt+1)
et(zt)

)1−γ

qt(zt, zt+1)
et+1(zt+1)

et(zt)

(
ct+1(st, st+1)

ct(st)

)−γ (
et+1(zt+1)

et(zt)

)γ

=
β

qt(zt, zt+1)

∑
yt+1

π(st+1|st)
(

ct+1(st, st+1)
ct(st)

)−γ
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and

β̂(st)
∑
st+1

π̂(st+1|st)
[
v̂t+1(zt+1) + α

v̂t(zt)

]
u′(ĉt+1(st, st+1))

u′(ĉt(st))

= β
∑
st+1

π(st+1|st)
(

et+1(zt+1)
et(zt)

)1−γ [
vt+1(zt+1) + αet+1(zt+1)

vt(zt)

](
et+1(zt+1)

et(zt)

)−1

∗
(

ct+1(st, st+1)
ct(st)

)−γ (
et+1(zt+1)

et(zt)

)γ

= β
∑
st+1

π(st+1|st)
[
vt+1(zt+1) + αet+1(zt+1)

vt(zt)

](
ct+1(st, st+1)

ct(st)

)−γ

,

which shows that the non-detrended variables satisfy the Euler equations of the non-detrended

economy without borrowing constraints. Especially it shows that it was suitable to define

q̂t(zt, zt+1) and v̂t(zt) in the way we have above.

Proof of Corollary 4.4:

Proof. Suppose the stationary Bewley allocation {ât(yt), σ̂t(yt)} satisfies the constraint

ât(yt)
R̂t

+ σ̂t(yt)v̂t ≥ K̂t(yt)

which seems the natural constraint to impose on the stationary Bewley economy. We want to

show that the allocation for the stochastic Arrow economy satisfies the borrowing constraint if

the allocation for the stationary Bewley economy does. Multiply both sides by et(zt)φ̂(zt+1) to

obtain
at(st, zt+1)φ̂(zt+1)

R̂tλ(zt+1)
+ σt(st)vt(zt)φ̂(zt+1) ≥ Kt(st)φ̂(zt+1)

Using the fact that

qt(zt, zt+1) =
φ̂(zt+1)

R̂tλ(zt+1)

and summing over all zt+1 yields

∑
zt+1

qt(zt, zt+1)at(st, zt+1) + σt(st)vt(zt) ≥ Kt(st),

exactly the constraint of the stochastic Arrow economy. So for this borrowing constraint and

the Arrow economy the above Theorem goes through unchanged. Next consider the state-by
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state wealth constraint. In the stationary Bewley economy we may impose

ât(yt) + σ̂t(yt) [v̂t+1 + α] ≥ M̂t(yt)

Multiplying by et+1(zt+1) yields

at(st, zt+1) + σt(st)
[
vt+1(zt+1) + αet+1(zt+1)

] ≥ Mt(st, zt+1) for all zt+1

and thus also for this constraint the Theorem above goes through, because, if the borrowing

constraints are binding, we now know that the detrended version of the Arrow economy and the

Bewley economy have the same Euler equations, even if the constraints bind: the Lagrangian

multipliers µt(yt) and κt(yt) from the Bewley economy, together with the allocations
{
ĉt(θ0, y

t)
}

,

are also the right multipliers for the detrended Arrow economy. Proposition (4.1) is still valid

in the case of binding constraints.

Proof of Proposition 5.1:

Proof. Again suppose the borrowing constraints are not binding. Conditions 2.2 and 2.3, and

our conjecture that the allocations only depend on yt imply that the Euler equations of the HL

economy read as

1 = β̂Rt(zt)
∑
zt+1

φ̂(zt+1)
λ(zt+1)

∗
∑
yt+1

ϕ(yt+1|yt)
u′(ĉt+1(yt, yt+1))

u′(ĉt(yt))
(44)

1 = β̂
∑
st+1

φ̂(zt+1)
[
v̂t+1(zt+1) + α

v̂t(zt)

]
∗

∑
yt+1

ϕ(yt+1|yt)
u′(ĉt+1(yt, yt+1))

u′(ĉt(yt))
(45)

Define

R̂IC
t (zt) = Rt(zt) ∗

∑
zt+1

φ(zt+1|zt)λ(zt+1)−γ

∑
zt+1

φ(zt+1|zt)λ(zt+1)1−γ
(46)

as the risk-free interest rate in the transformed HL economy. It is immediate that equation (44)

becomes

1 = β̂R̂HL
t (zt)

∑
yt+1

ϕ(yt+1|yt)
u′(ĉt+1(yt, yt+1))

u′(ĉt(yt))
(47)

which is identical to the Euler equation (41) in the Arrow economy. This suggests (since the
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Euler equations are identical in both economies) that we have

R̂HL
t (zt) = R̂A

t (zt) (48)

Notice that since

Rt(zt) ≡ RHL
t (zt) = R̂HL

t (zt) ∗
∑

zt+1
φ(zt+1|zt)λ(zt+1)1−γ

∑
zt+1

φ(zt+1|zt)λ(zt+1)−γ
(49)

it then follows that

RHL
t (zt) = RA

t (zt) (50)

that is, the implied risk-free rates in the original Arrow and HL economies are identical.

Proof of Lemma 5.1

Proof. Recall that the budget constraint for the transformed HL economy is

ĉt(st) +
b̂t(st)
Rt(zt)

+ σt(st)v̂t(zt) ≤ η(yt) +
b̂t−1(st−1)

λ(zt)
+ σt−1(st−1)

[
v̂t(zt) + α

]

Using the results from above

ĉt(yt) +
b̂t(st)
Rt

+ σt(yt)v̂t ≤ η(yt) +
b̂t−1(st−1)

λ(zt)
+ σt−1(yt−1) [v̂t + α]

The budget constraint reads as

ĉt(yt)− η(yt) +
b̂t(st)
Rt

+ σt(st)v̂t =
b̂t−1(st−1)

λ(zt)
+ σt−1(st−1) [v̂t + α]

and from the absence of arbitrage
Rt

λt+1
=

v̂t+1 + α

v̂t

Next period’s budget constraint reads as

ĉt+1(yt+1)− η(yt+1) +
b̂t+1(st+1)

Rt+1
+ σt+1(st+1)v̂t+1 =

b̂t(st)
λ(zt+1)

+ σt(st) [v̂t+1 + α]
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Multiplying both sides by φ̂(zt+1) and then summing with respect to zt+1 yields

ĉt+1(yt+1)− η(yt+1) +
∑
zt+1

φ̂(zt+1)

(
b̂t+1(st+1)

Rt+1
+ σt+1(st+1)v̂t+1

)

= b̂t(st)
∑
zt+1

φ̂(zt+1)
λ(zt+1)

+ σt(st) [v̂t+1 + α]

= R̂t

[
b̂t(st)
Rt

+ σt(st)v̂t

]

(the last step requires the use of the definition of R̂t and a little algebra). Thus

b̂t(st)
Rt

+ σt(st)v̂t =
ĉt+1(yt+1)− η(yt+1)

R̂t

+
1
R̂t

∑
zt+1

φ̂(zt+1)

(
b̂t+1(st+1)

Rt+1
+ σt+1(st+1)v̂t+1

)

Repeating this and noting that by assumption future ĉ’s do not depend on zt+τ ’s suggests

ĉt(yt)− η(yt) +
∞∑

τ=t+1

ĉτ (yτ )− η(yτ )
τ−1
j=t R̂j

=
b̂t−1(st−1)

λ(zt)
+ σt−1(st−1) [v̂t + α]

which simply says that if consumption in the detrended bond economy only depends on idio-

syncratic shocks, then the wealth households come into the period with can only depend on this

as well, that is,
b̂t−1(st−1)

λ(zt)
+ σt−1(st−1) [v̂t + α]

cannot depend on zt.

Proof of Proposition 5.2:

Proof. Let us start with the case of 2 aggregate states. We consider the agent’s wealth at the

start of period t in the IC economy, for the case with two aggregate states:

bt−1(st−1) + σt−1(st−1)
[
vt(zt) + αet(zt)

]
= θt−1(st−1, hi),

and, similarly, in the low state:

bt−1(st−1) + σt−1(st−1)
[
vt(zt) + αet(zt)

]
et−1(zt−1) = θt−1(st−1, lo),

where the θt−1(st−1, zt) are the contingent claim positions (total, including stocks) in the Arrow
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economy at the start of t. We deflate the wealth positions of our agent in each aggregate state,

to obtain:

b̂t−1(st−1) + σHL
t−1(s

t−1)
[
v̂t(zt) + α

]
λ(hi) = θ̂t−1(st−1, hi)λ(hi)

and, similarly, in the low state:

b̂t−1(st−1) + σHL
t−1(s

t−1)
[
v̂t(zt) + α

]
λ(lo) = θ̂t−1(st−1, lo)λ(lo)

This implies that the stock position of the agent is given by:

σHL
t−1(s

t−1)
[
v̂t(zt) + α

]
=

[
θ̂t−1(st−1, hi)λ(hi)− θ̂t−1(st−1, lo)λ(lo)

]

[λ(hi)− λ(lo)]

If we impose that θ̂t−1(st−1, lo) = θ̂t−1(st−1, hi) = θ̂t−1(st−1), we simply obtain the following

expression for the stock position:

σIC
t−1(s

t−1) =
θ̂t−1(st−1)
[v̂t + α]

where I have assumed that v̂t(zt) = v̂t, while the bond position is given by;

b̂t−1(st−1) +
θ̂t−1(st−1)
[v̂t(zt) + α]

[
v̂t(zt) + α

]
λ(zt) = θ̂t−1(st−1)λ(zt),

which implies the bond position is b̂t−1(st−1) = 0 for all st−1. So all of the state-contingency is

obtained by going long or short in the stock, depending on whether you’re borrowing or lending

in the deflated economy. In the two-state case, the bond is redundant, it seems. The only way

to get some trade in bonds is by imposing a short-sales constraint on the stock. This argument

generalizes to the case of N aggregate states quite easily. We just set the stock position equal

to:

σHL
t−1(s

t−1) =
θ̂t−1(st−1)
[v̂t + α]

and we simply let b̂t−1(st−1) = 0. This immediately implies that the wealth position at the start

of t in the HL economy coincides with that in the Arrow economy for all zt :

bt−1(st−1) + σHL
t−1(s

t−1)
[
vt(zt) + αet(zt)

]
= θA

t−1(s
t−1, zt),
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Proof of Corollary 5.1

Proof. We constructed the same net wealth positions at the start of each period in the HL

economy as in the Arrow economy. As a result, the solvency constraints imposed in the Arrow

economy will be satisfied in the HL economy. In the stationary Arrow economy the constraints

were

ât(yt)
R̂t

+ σ̂A
t (yt)v̂t ≥ K̂t(yt)

ât(yt) + σ̂t(yt) [v̂t+1 + α] ≥ M̂t(yt)

But from (??) we have

b̂t(st)
Rt(zt)

+ σ̂IC
t (yt)v̂t =

ât(yt)
R̂t

+ σ̂A
t (yt)v̂t ≥ K̂t(yt)

b̂t(st)
λ(zt+1)

+ σIC
t (yt) [v̂t+1 + α] = ât(yt) + σ̂A

t (yt) [v̂t+1 + α] ≥ M̂t(yt)

and thus we know that the asset position for the bond economy satisfy the shortsale constraint,

which bind if and only if they bind in the stationary Arrow (or Bewley) economy. So we can

indeed use the same Lagrange multipliers.

Proof of :A.1

Proof. The first order conditions for the representative agent are given by:

1 =
β̂φ̂(zt+1)

q̂t(zt, zt+1)
u′(ĉt+1(zt, zt+1))

u′(ĉt(zt))
∀zt+1

1 = β̂
∑
zt+1

φ̂(zt+1)
[
v̂t+1(zt+1) + α

v̂t(zt)

]
u′(ĉt+1(zt, zt+1))

u′(ĉt(zt))
(51)

Proof of Lemma 6.1:

Proof. First, consider a household whose borrowing constraints do not bind. The Euler equation
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of the Arrow/HL economy for the stock respectively reads as follows:

1 = β̂
∑
zt+1

φ̂(zt+1)
[
v̂t+1(zt+1) + α

v̂t(zt)

]
∗

∑
yt+1

ϕ(yt+1|yt)
u′(ĉt+1(yt, yt+1))

u′(ĉt(yt))
.

The Euler equation in the Arrow/HL economy for the bond reads as follows:

1 = β̂R̂t

∑
yt+1

ϕ(yt+1|yt)
u′(ĉt+1(yt, yt+1))

u′(ĉt(yt))

This implies that

β̂
∑
zt+1

φ̂(zt+1)
[
v̂t+1(zt+1) + α

v̂t(zt)
− R̂t

]
= 0

which then also holds if we replace β̂ by β. This immediately implies that

Et[
(
Rs

t+1 −Rt

)
β

(
et+1

et

)−γ

] = 0.

In the Arrow economy, the Consumption-CAPM prices any excess return Ri
t+1 − Rt as long as

the returns only depend on the aggregate state zt+1. In the HL model, it only prices a claim to

aggregate consumption.

Proof of Proposition 6.1:

Proof. Let us define

1/R̂RE
τ = 1/R̂RE =

∑
zt+1

q̂t(zt, zt+1) =
∑
zt+1

β̂φ̂(zt+1) = β̂.

We know that in the Arrow economy, the equilibrium Arrow prices are given by:

qA
t (zt, zt+1) =

q̂A
t (zt, zt+1)
λ(zt+1)

=
φ̂(zt+1)

λ(zt+1)R̂A
t (zt)

whereas in the representative agent economy Arrow prices are given as

qt(zt, zt+1) =
q̂t(zt, zt+1)

λ(zt+1)
= β̂

φ̂(zt+1)
λ(zt+1)
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This implies that the stochastic discount factor in the Arrow economy equals the SDF in the

representative agent economy multiplied by a non-random number κt :

mA
t+1 = mRE

t+1κt

with κt = R̂E
t

R̂A
t

and
(
R̂E

)−1
= β̂.

Proof of Theorem 6.1:

Proof. First, note that the multiplicative risk premium can be stated as a weighted sum of risk

premia on strips ((Alvarez and Jermann 2001)):

1 + νt = Etmt+1Et

(∑∞
k=1 Et+1mt+1,t+kαet+k∑∞

k=1 Etmt,t+kαet+k

)

=
∞∑

k=1

Et+1mt,t+ket+k

Etmt,t+ket+k

1/Etmt+1

Etmt,t+ket+k∑∞
k=1 Etmt,t+ket+k

=
∞∑

k=1

ωk
EtRt,1 [et+k]

Rt,1 [1]
,

where the weights are

ωk =
Etmt,t+ket+k(zt+k)∑∞
l=1 Etmt,t+let+l(zt+k)

(52)

The multiplicative risk premium on a one-period strip ( a claim to the Lucas tree’s dividend next

period only, not the entire stream) is the same in the Arrow economy as in the representative

agent economy. First, we show that the one-period ahead conditional strip risk premia are

identical:
Et

αet+1(zt+1)

Et[mA
t+1αet+1(zt+1)]

1
Et[mA

t+1]

=
Et

λt+1(zt+1)

Et[mA
t+1λt+1(zt+1)]

1
Et[mA

t+1]

=
Et

λt+1(zt+1)

Et[mRE
t+1λt+1(zt+1)]

1
Et[mRE

t+1]

Next, we follow Alvarez and Jermann’s proof strategy (in a different setting), and we show that

the risk premia on k-period strips are identical. Here is the risk premium on a k−period strip:

EtRt,t+1 [αet+k]
EtRt,t+1 [1]

=
Et

Et+1[mA
t+1,t+kαet+k(zt+k)]

Et[mA
t,t+kαet+k(zt+k)]

1
Et[mA

t+1]

Now, since the aggregate shocks are iid, the term structure of the risk premia in the representative
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agent economy is flat (i.e. the risk premia does not depend on k) :

EtR
RE
t,t+1 [αet+k]

EtRRE
t,t+1 [1]

=
Et

[Eλ(z)1−γ ]k−1

[Eλ(z)1−γ ]k

1
Et[mRE

t+1]

=
1

E[λ(z)1−γ ]

1
E[λ(z)−γ ]

=
E[λ(z)−γ ]
E[λ(z)1−γ ]

(same proof by Alvarez and Jermann on page 37.) Now, to keep things simple, assume the

RA
t = RRE for all t, and κt is constant as a result, then this implies that then the term structure

of risk premia in the Arrow economy is flat as well.

EtR
RE
t,t+1 [αet+k]

EtRRE
t,t+1 [1]

=
Et

[Eλ(z)1−γκ]k−1

[Eλ(z)1−γκ]k

1
Et[m

rep
t+1]

=
1

E[λ(z)1−γκ]

1
E[λ(z)−γκ]

=
E[λ(z)−γ ]
E[λ(z)1−γ ]

But this implies that the multiplicative risk premia is unchanged since the risk premia on the

consumption strips are invariant in k and the one-period ahead .This means the multiplicative

risk premium is unchanged. The proof goes through for time-varying κt, but the algebra is a

little messier.

Proof of Lemma 7.1:

Proof. By construction, the Euler equations of the Arrow model with these prices and the con-

sumption allocations from the Bewley model are satisfied. We start by assuming the borrowing

constraint does not bind. First, note that the Euler equation in the Bewley economy is given

by:

1 =
β̃t+1

β̃t

R̂t

∑
yt+1

ϕ(yt+1|yt)
u′(ĉt+1(yt, yt+1))

u′(ĉt(yt))
.

The Euler equation in the detrended Arrow economy implies that:

∑
zt+1

q̂t(zt, zt+1) = β̂(zt)
∑
yt+1

ϕ(yt+1|yt)
u′(ĉt+1(yt, yt+1))

u′(ĉt(yt))
∀zt+1,

which in turn implies that:

1
R̂t

β̃t

β̃t+1

=
∑
yt+1

ϕ(yt+1|yt)
u′(ĉt+1(yt, yt+1))

u′(ĉt(yt))
∀zt+1

This is exactly the same Euler equation as in the Bewley economy.
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The state-contingent interest rate in this economy is given by:

1
R̂A

t (zt)
= β̂(zt)

β̃t

R̂tβ̃t+1

which can easily be verified from equation (25).

Proof of Proposition 7.1:

Proof. We need to check that these allocations satisfy the budget constraint in the economy with

time-varying discount factors. Let us take {ĉt(θ0, y
t), ât(θ0, y

t) = 0, σ̂t(θ0, y
t)} from the Bewley

model and let us back out the implied state-contingent Arrow securities positions recursively,

for each yt, zt, from the budget constraint of the Arrow model

ât−1(yt−1, zt, θ0) = ĉt(yt, θ0)− η(yt) +
∞∑

τ=t+1

∑
zτ ,yτ

Q̂t(zτ |zt) (ĉτ (yτ , θ0)− η(yτ )) (53)

−σt−1(yt−1) [v̂t(zt) + α] = ât−1(yt−1, zt, θ0)

This ensures that
{
ât−1(yt−1, zt, θ0), σt−1(yt−1, θ0)

}
finance the consumption allocations {ĉt(θ0, y

t)}.
Next, we need to check that the market for each Arrow security clears. That is, we have to check

that

∫ ∑

yt−1

π(yt−1|y0)ât−1(yt−1, zt, θ0)dΘ0 =

∑

yt|yt−1

π(yt|yt−1)
∫ ∑

yt−1

π(yt−1|y0)ât−1(yt−1, zt, θ0)dΘ0 =

∫ ∑

yt

π(yt|y0)ât−1(yt−1, zt, θ0)dΘ0 = 0

for each zt. We now multiply equation (53) by π(yt|y0) and then sum over all yt. For the first

term we obtain, using the aggregate resource constraint,

∫ ∑

yt−1

π(yt−1|y0)
∑

yt

π(yt|yt−1)
(
ĉt(yt, θ0)− η(yt)

)
dΘ0

=
∫ ∑

yt

π(yt|y0)
(
ĉt(yt, θ0)− η(yt)

)
dΘ0 = α. (54)
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By the same token we obtain

∫ ∑

yt−1

π(yt−1|y0)
∞∑

τ=t+1

∑
zτ

Q̂t(zτ |zt) (ĉτ (yτ , θ0)− η(yτ )) dΘ0 (55)

=
∞∑

τ=t+1

∑
zτ

Q̂t(zτ |zt)α.

Furthermore we know from the market clearing in the market for shares that

∫ ∑

yt−1

π(yt−1|y0)σt−1(yt−1, θ0) [v̂t(zt) + α] dΘ0 = [v̂t(zt) + α] , (56)

and finally we know that the share price can be written as follows:

[v̂t(zt) + α] =
∞∑

τ=t+1

∑
zτ

Q̂t(zτ |zt)α + α, (57)

which in turn implies, substituting (54), (55) and (56) into (53) that

1
λ(zt)

∫ ∑

yt−1

π(yt−1|y0)ât−1(yt−1, zt)dΘ0 = 0

Thus, each of the Arrow securities markets clears for the new trading strategies.

Proof of Lemma 7.2:

Proof. From the definition of
{

β̃t

}
, it follows that the Arrow-Debreu prices at time 0 before

the realization of z0:

Q̂0,τ =
∑
z0

Π̂(z0)
∑
zτ

Q̂τ (zτ |z0) =
∑
z0

Π̂(z0)
∑

zτ−1

φ̂(zτ |z0)β̂0,τ−1(zτ−1|z0)

β̃τ R̂0,τ

=
1

β̃τ
τ R̂0,τ

∑
z0

Π̂(z0)
∑
zτ

φ̂(zτ |z0)β̂0,τ−1(zτ−1|z0)

=
β̃τ

τ

β̃τ
τ R̂0,τ

= Q̃0,τ

where we have used the result in equation (24).

Proof of Corollary 7.3:
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Proof.

∑
z0

Π̂(z0)â−1(z0, θ0) =
∑
z0

Π̂(z0)
∞∑

τ=1

∑
zτ

(
Q̂τ (zτ |z0)− Q̃τ

)∑
yτ

(ĉτ (yτ , θ0)− η(yτ ))

−σ−1

∑
z0

Π̂(z0)
[
v̂t(zt)− ν̃t(zt)

]
.

=
∑
z0

Π̂(z0)
∞∑

τ=1

∑
zτ

(
Q̂τ (zτ |z0)− Q̃τ

)∑
yτ

(ĉτ (yτ , θ0)− η(yτ ))

−σ−1α
∑
z0

Π̂(z0)
∞∑

τ=1

∑
zτ

(
Q̂τ (zτ |z0)− Q̃τ

)
= 0,

because we know that:

∑
z0

Π̂(z0)
∑

zt

Q̂t(zt|z0)
∞∑

τ=t+1

∑
zτ

(
Q̂τ (zτ |zt)− Q̃τ

)
= 0

Proof. of Lemma 7.4: Suppose the stationary Bewley allocation {˜̂at(yt), σ̂t(yt)} satisfies the

constraint ˜̂at(yt)
R̂t

+ σ̂t(yt)v̂t ≥ K̂t(yt)

which seems the natural constraint to impose on the stationary Bewley economy. We want to

show that the allocation for the stochastic Arrow economy satisfies the borrowing constraint if

the allocation for the stationary Bewley economy does. Multiply both sides by et(zt)φ̂(zt+1) to

obtain
ãt(st, zt+1)φ̂(zt+1)

R̂tλ(zt+1)
+ σt(st)vt(zt)φ̂(zt+1) ≥ Kt(st)φ̂(zt+1)

Using the fact that

qt(zt, zt+1) =
φ̂(zt+1)

R̂tλ(zt+1)

and summing over all zt+1 yields

∑
zt+1

qt(zt, zt+1)ãt(st, zt+1) + σt(st)vt(zt) ≥ Kt(st),

exactly the constraint of the stochastic Arrow economy, but the actual bond position differs
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from ãt(st, zt+1), because

ât−1(yt−1, zt, θ0)
λ(zt)

− ãt−1(yt−1, zt, θ0)
λ(zt)

=
∞∑

τ=t+1

∑
zτ

(
Q̂τ (zτ |zt)− Q̃τ

)∑
ητ

(ĉτ (yτ , θ0)− η(yτ ))

−σt−1(yt−1)α
∞∑

τ=t+1

∑
zτ

(
Q̂τ (zτ |zt)− Q̃τ

)

So, we know that

∑
zt+1

qt(zt, zt+1)at(st, zt+1) + σt(st)vt(zt) ≥ Kt(st) +
∑
zt+1

qt(zt, zt+1)


 ãt(st, zt+1)

−at(st, zt+1)


 ,

So, we can simply re-define the solvency constraints as :

K∗
t (st) = Kt(st) +

∑
zt+1

qt(zt, zt+1)


 ãt(st, zt+1)

−at(st, zt+1)




Next consider the state-by state wealth constraint. In the stationary Bewley economy we

may impose

ât(yt) + σ̂t(yt) [v̂t+1 + α] ≥ M̂t(yt)

Multiplying by et+1(zt+1) yields

ãt(st, zt+1) + σt(st)
[
vt+1(zt+1) + αet+1(zt+1)

] ≥ Mt(st, zt+1) for all zt+1

By the same token, we can redefine:

M∗
t+1(s

t+1) = Mt+1(st+1) + ãt(st, zt+1)− at(st, zt+1)

Proof of Proposition A.1:
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Proof. First, we divided through by et(zt) on both sides in equation (36):

Vt(st)
et(zt)

=

[
(1− β)

c1−ρ
t

e1−ρ
t

+ β
(RtVt+1)1−ρ

e1−ρ
t

] 1
1−ρ

V̂t(st) =
[
(1− β)ĉ1−ρ

t + β(
RtVt+1

et
)1−ρ

] 1
1−ρ

. (58)

Note that the risk-adjusted continuation utility can be stated as:

RtVt+1

et(zt)
=

(
Et

(
et+1

et

)1−α V 1−α
t+1

e1−α
t+1

)1/1−α

=


∑

st+1

π(st+1|st)λ(zt+1)1−αV̂ 1−α
t+1 (st+1)




1/1−α

Next, we define growth-adjusted probabilities and the growth-adjusted discount factor as:

π̂(st+1|st) =
π(st+1|st)λ(zt+1)1−α

∑
st+1

π(st+1|st)λ(zt+1)1−α
and β̂(st) = β

∑
st+1

π(st+1|st)λ(zt+1)1−α.

and note that:

RtVt+1

et(zt)
=


∑

st+1

π(st+1|st)λ(zt+1)1−αV̂ 1−α
t+1 (st+1)




1/1−α

=


∑

st+1

π(st+1|st)λ(zt+1)1−α




1/1−α

R̂tV̂t+1(st+1)

Using the definition of β̂(st) :

β̂(st) = β


∑

st+1

π(st+1|st)λ(zt+1)1−α




1−ρ
1−α

,

we finally obtain the desired result:

V̂t(st) =
[
(1− β)ĉ1−ρ

t + β̂(st)(R̂tV̂t+1(st+1))1−ρ
] 1

1−ρ

As before, if the z shocks are ii.d, then β̂ is constant.
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Proof of Proposition A.2:

Proof. First, we suppose the borrowing constraints are not binding, which is the easiest case.

Assume the equilibrium allocations only depend on yt, not on zt. Then conditions 2.2 and 2.3

imply that the Euler equations of the Arrow economy, for the contingent claim and the stock

respectively, read as follows:

1 =
β̂φ̂(zt+1)

q̂t(zt, zt+1)

∑
yt+1

ϕ(yt+1|yt)
(

ĉt+1(yt, yt+1)
ĉt(yt)

)−ρ
(

V̂t+1(yt+1)
V̂t(yt)

)ρ−α

∀zt+1

1 = β̂
∑
zt+1

φ̂(zt+1)
[
v̂t+1(zt+1) + α

v̂t(zt)

]
(59)

∗
∑
yt+1

ϕ(yt+1|yt)
(

ĉt+1(yt, yt+1)
ĉt(yt)

)−ρ
(

V̂t+1(yt+1)
V̂t(yt)

)ρ−α

allzt+1. (60)

In the first Euler equation, the only part that depends on zt+1 is φ̂(zt+1)
q̂t(zt,zt+1)

which therefore implies

that φ̂(zt+1)
q̂t(zt,zt+1)

cannot depend on zt+1 : q̂t(zt, zt+1) is proportional to φ̂(zt+1). Thus define R̂A
t (zt)

by

q̂t(zt, zt+1) =
φ̂(zt+1)
R̂A

t (zt)
(61)

as the risk-free interest rate in the stationary Arrow economy. Using this condition, the Euler

equation in (38) simplifies to the following expression:

1 = β̂R̂A
t (zt)

∑
yt+1

ϕ(yt+1|yt)
(

ĉt+1(yt, yt+1)
ĉt(yt)

)−ρ

(62)

(
V̂t+1(yt+1)

V̂t(yt)

)ρ−α

(63)

First, notice that apart from R̂A
t (zt) noting in this condition depends on zt, so we can choose

R̂A
t (zt) = R̂A

t .
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