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Abstract

We estimate Taylor (1993) rules and identify monetary policy shocks using no-arbitrage

pricing techniques. Long-term interest rates are risk-adjusted expected values of future short

rates and thus provide strong over-identifying restrictions about the policy rule used by the

Federal Reserve. The no-arbitrage framework also accommodates backward-looking and

forward-looking Taylor rules. We find that inflation and GDP growth account for over half

of the time-variation of time-varying excess bond returns and we attribute almost all of the

movements in the term spread to inflation. Taylor rules estimated with no-arbitrage restrictions

differ significantly from Taylor rules estimated by OLS, and monetary policy shocks identified

with no-arbitrage techniques are less volatile than their OLS counterparts.



1 Introduction

Most central banks, including the U.S. Federal Reserve (Fed), conduct monetary policy to only

influence the short end of the yield curve. However, the entire yield curve responds to the

actions of the Fed because long interest rates are conditional expected values of future short

rates, after adjusting for risk premia. These risk-adjusted expectations of long yields are formed

based on a view of how the Fed conducts monetary policy. Thus, the whole yield curve reflects

the monetary actions of the Fed, so the entire term structure of interest rates can be used to

estimate monetary policy rules and extract estimates of monetary policy shocks.

According to the Taylor (1993) rule, the Fed sets short interest rates by reacting to CPI

inflation and the deviation of GDP from its trend. To exploit the cross-equation restrictions

on yield movements implied by the assumption of no arbitrage, we place the Taylor rule in a

term structure model. The no-arbitrage assumption is reasonable in a world of large investment

banks and active hedge funds, who take positions eliminating arbitrage opportunities arising in

bond prices that are inconsistent with each other in either the cross-section or their expected

movements over time. Moreover, the absence of arbitrage is a necessary condition for an

equilibrium in most macroeconomic models. Imposing no arbitrage, therefore, can be viewed

as a useful first step towards a structural model.

We describe expectations of future short rates by the Taylor rule and a Vector Autoregres-

sion (VAR) for macroeconomic variables. Following the approach taken in many papers in

macro (see, for example, Fuhrer and Moore, 1995), we could infer the values of long yields

from these expectations by imposing the Expectations Hypothesis (EH). However, there is

strong empirical evidence against the EH (see, for example, Fama and Bliss, 1987; Campbell

and Shiller, 1991; Bansal, Tauchen and Zhou, 2004; Cochrane and Piazzesi, 2005, among

many others). Term structure models can account for deviations from the EH by explicitly

incorporating time-varying risk premia (see, for example, Fisher, 1998; Duffee, 2002; Dai and

Singleton, 2002).

We develop a methodology to embed Taylor rules in an affine term structure model with

time-varying risk premia. The structure accommodates standard Taylor rules, backward-

looking Taylor rules that allow multiple lags of inflation and GDP growth to influence the

actions of the Fed, and forward-looking Taylor rules where the Fed responds to anticipated

inflation and GDP growth. The framework also accommodates monetary policy shocks that

are serially correlated but uncorrelated with macro factors. The model specifies standard VAR

dynamics for the macro indicators, inflation and GDP growth, together with an additional
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latent factor that drives interest rates. This latent factor captures other movements in yields

that may be correlated with inflation and GDP growth, including monetary policy shocks. Our

framework also allows risk premia to depend on the state of the macroeconomy.

By combining no-arbitrage pricing with the Fed’s policy rule, we extract information from

the entire term structure about monetary policy, and vice versa, use our knowledge about

monetary policy to model the term structure of interest rates. The model allows us to efficiently

measure how different yields respond to systematic changes in monetary policy, and how they

respond to unsystematic policy shocks. Interestingly, the model implies that a large amount of

interest rate volatility is explained by systematic changes in policy that can be traced back to

movements in macro variables. For example, 41% of the variance of the 1-quarter yield and

33% of the variance of the 5-year yield can be attributed to movements in inflation and GDP

growth. Over 95% of the variance in the 5-year term spread is due to time-varying inflation

and inflation risk. The estimated model also captures the counter-cyclical properties of time-

varying expected excess returns on bonds.

To estimate the model, we use Bayesian techniques that allow us to estimate flexible

dynamics and extract estimates of latent monetary policy shocks. Existing papers that

incorporate macro variables into term structure models make strong – and often arbitrary –

restrictions on the VAR dynamics, risk premia, and measurement errors. For example, Ang

and Piazzesi (2003) assume that macro dynamics do not depend on interest rates. Dewachter

and Lyrio (2004), and Rudebusch and Wu (2005), among others, set arbitrary risk premia

parameters to zero. Hördahl, Tristani, and Vestin (2005), Rudebusch and Wu (2005), and Ang,

Piazzesi, and Wei (2005) assume that only certain yields are measured with error, while others

are observed without error. These restrictions are not motivated from economic theory, but

are only made for reasons of econometric tractability. In contrast, we do not impose these

restrictions and find that the added flexibility helps the performance of the model.

We estimate Taylor rules following the large macro literature that uses low frequencies

(we use quarterly data) at which GDP and inflation are reported. Under the cross-equation

restrictions for yields implied by the no-arbitrage model, we estimate a flexible specification

where the macro and latent factors can Granger-cause each other as well as allow the macro and

latent factors to be conditionally correlated. Other models in the macroeconomics literature are

more restrictive. One standard approach is to assume that the Fed either ignores information

from the bond market (Evans and Marshall 1998, 2001), or that bond markets ignore Fed

announcements (Bagliano and Favero 1998). Both assumptions seem unappealing. Another

approach take by Christiano, Eichenbaum, and Evans (1996), Evans and Marshall (1998,
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2001), and many others, is to assume that macroeconomic variables these macroeconomic

variables react only slowly – not within the same quarter – to monetary policy shocks. While

this assumption seems reasonable, these authors must make additional arbitrary assumptions to

handle bond yields within their VAR systems. Our strategy is to assume that the Fed adopts a

Taylor rule and thus only cares about inflation and output movements. The Fed looks at current

yield data, but only because current yields contain information about future values of these

macro variables.1

Our paper is related to a growing literature on linking the dynamics of the term structure

with macro factors. However, the other papers in this literature are less interested in estimating

various Taylor rules, rather than embedding a particular form of a Taylor rule, sometimes

pre-estimated, in a macroeconomic model. For example, Bekaert, Cho, and Moreno (2003),

Gallmeyer, Hollifield, and Zin (2005), Hördahl, Tristani, and Vestin (2005), and Rudebusch

and Wu (2005) estimate structural models with interest rates and macro variables. In

contrast to these studies, we do not impose any structure in addition to the assumption of

no arbitrage, which makes our approach more closely related to the identified VAR literature

in macroeconomics (for a survey, see Christiano, Eichenbaum and Evans, 1999) and gives us

additional flexibility in matching the dynamics of the term structure. Bernanke, Boivin and

Eliasz (2004), and Diebold, Rudebusch, and Aruoba (2005) estimate latent factor models with

macro variables, but they do not preclude no-arbitrage movements of bond yields. Dai and

Philippon (2005) examine the effect of fiscal shocks on yields with a term structure model,

whereas our focus is embedding monetary policy rules into a no-arbitrage model.

We do not claim that our new no-arbitrage techniques are superior to estimating monetary

policy rules using structural models (see, among others, Bernanke and Mihov, 1998) or using

real-time information sets like central bank forecasts to control for the endogenous effects

of monetary policy taken in response to current economic conditions (see, for example,

Romer and Romer, 2004). Rather, we believe that estimating policy rules using no-arbitrage

restrictions are a useful addition to existing methods. Our framework enables the entire

cross-section and time-series of yields to be modeled and provides a unifying framework to

jointly estimate standard, backward-, and forward-looking Taylor rules in a single, consistent

framework. Indeed, we show that many formulations of policy rules imply term structure

dynamics that are observationally equivalent. Naturally, our methodology can be used in more

structural approaches that effectively constrain the factor dynamics and risk premia, and we

1 An alternative, high-frequency, identification approach is taken by Piazzesi (2005). By assuming that the Fed

reacts to information available right before its policy decision, she identifies the unexpected change in the target

as the monetary policy shock and the expected target as the policy rule.
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can extend our set of instruments to include richer information sets. We intentionally focus on

the most parsimonious set-up where Taylor rules can be identified in a no-arbitrage model.

The rest of the paper is organized as follows. Section 2 outlines the model and develops

the methodology showing how Taylor rules can be identified with no-arbitrage conditions. We

briefly discuss the estimation strategy in Section 3. In Section 4, we lay out the empirical

results. After describing the parameter estimates, we attribute the time-variation of yields and

expected excess holding period returns of long-term bonds to economic sources. We describe in

detail the implied Taylor rule estimates from the model and contrast them with OLS estimates.

We compare the no-arbitrage monetary policy shocks and impulse response functions with

traditional VAR and other identification approaches. Section 5 concludes.

2 The Model

We describe the setup of the model in Section 2.1. Section 2.2 derives closed-form solutions for

bond prices (yields) and expected returns. In Sections 2.3 to 2.8, we explain how to incorporate

various Taylor rules in our setup.

2.1 General Set-up

We denote the 3 × 1 vector of state variables as

Xt = [gt πt fu
t ]� ,

where gt is quarterly GDP growth from t−1 to t, πt is the quarterly inflation rate from t−1 to t,

and fu
t is a latent term structure state variable. Both GDP growth and inflation are continuously

compounded. We use one latent state variable because this is the most parsimonious set-up with

Taylor rule residuals (as the next section makes clear). The latent factor, fu
t , is a standard latent

term structure factor in the tradition of the affine term structure literature. However, we show

below that this factor can be interpreted as a transformation of policy actions taken by the Fed

on the short rate.

We specify that Xt follows a VAR(1):

Xt = µ + ΦXt−1 + Σεt, (1)

where εt ∼ IID N(0, I). The short rate is given by:

rt = δ0 + δ�1 Xt, (2)
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for δ0 a scalar and δ1 a 3 × 1 vector. To complete the model, we specify the pricing kernel to

take the standard form:

mt+1 = exp

(
−rt − 1

2
λ�

t λt − λ�
t εt+1

)
, (3)

with the time-varying prices of risk:

λt = λ0 + λ1Xt, (4)

for the 3 × 1 vector λ0 and the 3 × 3 matrix λ1. The pricing kernel prices all assets in the

economy, which are zero-coupon bonds, from the recursive relation:

P
(n)
t = Et[mt+1P

(n−1)
t+1 ],

where P
(n)
t is the price of a zero-coupon bond of maturity n quarters at time t.

Equivalently, we can solve the price of a zero-coupon bond as:

P
(n)
t = EQ

t

[
exp

(
−

n−1∑
i=0

rt+i

)]
,

where EQ
t denotes the expectation under the risk-neutral probability measure, under which

the dynamics of the state vector Xt are characterized by the risk-neutral constant and

autocorrelation matrix:

µQ = µ − Σλ0

ΦQ = Φ − Σλ1.

If investors are risk-neutral, λ0 = 0 and λ1 = 0, and no risk adjustment is necessary.

This model belongs to the Duffie and Kan (1996) affine class of term structure models, but

uses both latent and observable macro factors. The affine prices of risk specification in equation

(4) has been used by, among others, Constantinides (1992), Fisher (1998), Duffee (2002), Dai

and Singleton (2002), and Brandt and Chapman (2003) in continuous time and by Ang and

Piazzesi (2003), Ang, Piazzesi, and Wei (2005), and Dai and Philippon (2005) in discrete time.

As Dai and Singleton (2002) demonstrate, the flexible affine price of risk specification is able

to capture patterns of expected holding period returns on bonds that we observe in the data.

2.2 Bond Prices and Expected Returns

Ang and Piazzesi (2003) show that the model (1)-(4) implies that bond yields take the form:

y
(n)
t = an + b�n Xt, (5)
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where y
(n)
t is the yield on an n-period zero coupon bond at time t that is implied by the model,

which satisfies P
(n)
t = exp(−ny

(n)
t ).

The scalar an and the 3 × 1 vector bn are given by an = −An/n and bn = −Bn/n, where

An and Bn satisfy the recursive relations:

An+1 = An + B�
n (µ − Σλ0) +

1

2
B�

n ΣΣ�Bn − δ0

B�
n+1 = B�

n (Φ − Σλ1) − δ�1 , (6)

where A1 = −δ0 and B1 = −δ1. In terms of notation, the one-period yield y
(1)
t is the same as

the short rate rt in equation (2).

Since yields take an affine form and the conditional mean of the state vector is affine,

expected holding period returns on bonds are also affine in Xt. We define the one-period

excess holding period return as:

rx
(n)
t+1 = log

(
P

(n−1)
t+1

P
(n)
t

)
− rt

= ny
(n)
t − (n − 1)y

(n−1)
t+1 − rt. (7)

The conditional expected excess holding period return can be computed using:

Et[rx
(n)
t+1] = −1

2
B�

n−1ΣΣ�Bn−1 + B�
n−1Σλ0 + B�

n−1Σλ1Xt

≡ Ax
n + Bx�

n Xt, (8)

which again takes an affine form for the scalar Ax
n = −1

2
B�

n−1ΣΣ�Bn−1 + B�
n−1Σλ0 and

the 3 × 1 vector Bx
n = λ1Σ

�Bn−1. From equation (8), we can see directly that the expected

excess return comprises three terms: (i) a Jensen’s inequality term, (ii) a constant risk premium,

and (iii) a time-varying risk premium. The time variation is governed by the parameters in

the matrix λ1. Since both bond yields and the expected holding period returns of bonds are

affine functions of Xt, we can easily compute variance decompositions following standard

VAR methods.

2.3 The Benchmark Taylor Rule

The Taylor (1993) rule captures the notion that the Fed adjusts short-term interest rates in

response to movements in inflation and real activity. The rule is consistent with a monetary

authority that minimizes a quadratic loss function that tries to stabilize inflation and output
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around a long-run inflation target and the natural output rate (see, for example, Svensson 1997).

Following Taylor’s original specification, we define the benchmark Taylor rule to be:

rt = γ0 + γ1,ggt + γ1,ππt + εMP,T
t , (9)

where the short rate is set by the Federal Reserve in response to current output and inflation.

The basic Taylor rule (9) can be interpreted as the short rate equation (2) in a standard affine

term structure model, where the unobserved monetary policy shock εMP,T
t corresponds to a

latent term structure factor, εMP,T
t = γ1,uf

u
t . This corresponds to the short rate equation (2) in

the term structure model with [δ1,g δ1,π δ1,u] = [γ1,g γ1,π γ1,u].

The Taylor rule (9) can be estimated consistently using OLS under the assumption that

εMP,T
t , or fu

t , is contemporaneously uncorrelated with GDP growth and inflation. This

assumption is satisfied, if GDP and inflation only react slowly to policy shocks. However, there

are several advantages to estimating the policy coefficients, γ1,g and γ1,π, and extracting the

monetary policy shock, εMP,T
t , using no-arbitrage restrictions rather than simply running OLS

on equation (9). First, no-arbitrage restrictions can free up the contemporaneous correlation

between the macro and latent factors. Second, even if the macro and latent factors are

conditionally uncorrelated, OLS is consistent but not efficient. By imposing no arbitrage, we

impose additional restrictions that produce more efficient estimates by exploiting information

contained in the whole term structure in the estimation of the Taylor rule coefficients, while

OLS only uses data on the short rate. Third, the term structure model provides estimates

of the effect of a policy or macro shock on any segment of the yield curve, which an OLS

estimation of equation (9) cannot provide. Finally, our term structure model allows us to trace

the predictability of risk premia in bond yields to macroeconomic or monetary policy sources.

The Taylor rule in equation (9) does not depend on the past level of the short rate. Therefore,

OLS regressions typically find that the implied series of monetary policy shocks from the

benchmark Taylor rule, εMP,T
t , is highly persistent (see, for example, Rudebusch and Svensson,

1999). The statistical reason for this finding is that the short rate is highly autocorrelated, and

its movements are not well explained by the right-hand side variables in equation (9). This

causes the implied shock to inherit the dynamics of the level of the persistent short rate. In

affine term structure models, this finding is reflected by the properties of the implied latent

variables. In particular, εMP,T
t corresponds to δ1,uf

u
t , which is the scaled latent term structure

variable. Ang and Piazzesi (2003) show that the first latent factor implied by an affine model

with both latent factors and observable macro factors closely corresponds to the traditional

first, highly persistent, latent factor in term structure models with only unobservable factors.

This latent variable also corresponds closely to the first principal component of yields, or the
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average level of the yield curve, which is highly autocorrelated.

2.4 Backward-Looking Taylor Rules

Eichenbaum and Evans (1995), Christiano, Eichenbaum, and Evans (1996), Clarida, Galı́, and

Gertler (1998), among others, consider modified Taylor rules that include current as well as

lagged values of macro variables and the previous short rate:

rt = γ0 + γ1,ggt + γ1,ππt + γ2,ggt−1 + γ2,ππt−1 + γ2,rrt−1 + εMP,B
t , (10)

where εMP,B
t is the implied monetary policy shock from the backward-lookingTaylor rule. This

formulation has the statistical advantage that we compute monetary policy shocks recognizing

that the short rate is a highly persistent process. The economic mechanism behind such a

backward-looking rule may be that the objective of the central bank is to smooth interest rates

(see Goodfriend, 1991).

In the setting of our model, we can modify the short rate equation (2) to take the same form

as equation (10). Collecting the macro factors gt and πt into a vector of observable variables

fo
t = [gt πt]

�, we can rewrite the short rate dynamics (2) as:

rt = δ0 + δ�1,of
o
t + δ1,uf

u
t , (11)

where we decompose the vector δ1 into δ1 =
[
δ�1,o δ1,u

]�
= [δ1,g δ1,π δ1,u]

�. We also rewrite

the dynamics of Xt =
[
fo�

t fu
t

]�
in equation (1) as:

(
fo

t

fu
t

)
=

(
µ1

µ2

)
+

(
Φ11 Φ12

Φ21 Φ22

)(
fo

t−1

fu
t−1

)
+

(
vo

t

vu
t

)
, (12)

where vt = (vo�
t vu

t )� ∼ IID N(0, ΣΣ�). Equation (12) is equivalent to equation (1), but the

notation in equation (12) separates the dynamics of the macro variables, f o
t , from the dynamics

of the latent factor, f u
t .

Using equation (12), we can substitute for f u
t in equation (11) to obtain:

rt = (1 − Φ22)δ0 + δ1,uµ2 + δ�1,of
o
t + (δ1,uΦ

�
21 − δ1,oΦ

�
22)

�fo
t−1 + Φ22rt−1 + εMP,B

t , (13)

where we substitute for the dynamics of f u
t and define the backward-looking monetary policy

shock to be εMP,B
t ≡ δ1,uv

u
t . Equation (13) expresses the short rate as a function of current

and lagged macro factors, f o
t and fo

t−1, the lagged short rate, rt−1, and a monetary policy shock

εMP,B
t .
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Interestingly, the response to contemporaneous GDP and inflation captured by the δ1,o

coefficient on f o
t in the backward-looking Taylor rule (13) is identical to the response in the

benchmark Taylor rule (9), because the δ1,o coefficient is unchanged. The intuition behind

this result is that the short rate equation (2) describes the response of the short rate to current

macro factors. The latent factor, however, contains a predictable component that depends on

past values of the short rate and the macro factors. The backward-looking Taylor rule makes

this dependence explicit. Importantly, the backward-looking Taylor rule in equation (13) and

the benchmark Taylor rule (9) lead to observationally equivalent reduced-form dynamics for

interest rates and macro variables.

The implied monetary policy shocks from the backward-looking Taylor rule, εMP,B
t , are

potentially very different from the benchmark shocks, εMP,T
t . In the no-arbitrage model, the

backward-looking monetary policy shock εMP,B
t is identified as the scaled shock to the latent

term structure factor, δ1,uv
u
t . In the set-up of the factor dynamics in equation (1), or equivalently

equation (12), the vu
t shocks are IID. In comparison, the shocks in the standard Taylor rule (9),

εMP,T
t are highly autocorrelated. Note that the coefficients on lagged macro variables in the

extended Taylor rule (13) are equal to zero only if δ1,uΦ
�
21 = δ1,oΦ

�
22. Under this restriction,

the combined movements of the past macro factors must exactly offset the movements in the

lagged term structure latent factor so that the short rate is affected only by unpredictable shocks.

Once our model is estimated, we can easily back out the implied extended Taylor rule (10)

from the estimated coefficients. This is done by using the implied dynamics of f u
t in the factor

dynamics (12):

vu
t = fu

t − µ2 − Φ21f
o
t−1 − Φ22f

u
t−1.

Again, if εMP,B
t = δ1,uv

u
t is unconditionally correlated with the shocks to the macro factors f o

t ,

then OLS does not provide efficient estimates of the monetary policy rule, and may provide

biased estimates of the Taylor rule in small samples.

2.5 Taylor Rules with Serially Correlated Policy Shocks

Backward-looking Taylor rules are observationally equivalent to a policy rule where the Fed

reacts to the entire history of macro variables, but with serially correlated errors. To see this,

we recursively substitute for rt−j , j ≥ 1, in equation (13) and obtain

rt = ct + Ψt(L)fo
t + εMP,AR

t , (14)
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where ct is constant, Ψt(L) is a polynomial of lag operators, and εMP,AR
t is a serially correlated

shock. The variables ct, Ψt(L), and εMP,AR
t are given by:

ct = δ0 + δ1,u

t−2∑
i=0

Φi
22µ,

Ψt(L) = δ1,0 + δ1,u

t−2∑
i=0

Φi
22Φ21L

i+1,

εMP,AR
t =

t−1∑
i=0

Φi
22δ1,uv

u
t−i,

where vu
t are the innovations to the latent factor in the VAR (12). The shock εMP,AR

t is

orthogonal to the macro variables, f o, and follows an AR(1) process: εMP,AR
t = Φ22ε

MP,AR
t−1 +

δ1,uv
u
t . Whereas in the backward-looking Taylor rule (13), the policy shocks are scaled

innovations of the latent factor, εMP,B
t = δ1,uv

u
t , the autocorrelated policy errors εMP,AR

t are

linear combinations of current and past latent factor innovations in equation (14). 2

2.6 Forward-Looking Taylor Rules

Finite-Horizon, Forward-Looking Taylor Rules

Clarida and Gertler (1997) and Clarida, Galı́ and Gertler (2000), among others, propose a

forward-looking Taylor rule, where the Fed sets interest rates based on expected future GDP

growth and expected future inflation over the next few quarters. For example, a forward-

looking Taylor rule using expected GDP growth and inflation over the next quarter takes the

form:

rt = γ0 + γ1,gEt(gt+1) + γ1,πEt(πt+1) + εMP,F
t , (15)

where we define εMP,F
t to be the forward-looking Taylor rule monetary policy shock.

We can map the forward-looking Taylor rule (15) into the framework of an affine term

structure model as follows. The conditional expectations of future GDP growth and inflation

are simply a function of current Xt that can be computed from the state dynamics (1):

Et(Xt+1) = µ + ΦXt.

2 Bikbov and Chernov (2005) use a projection procedure to also decompose latent factors into a macro-related

component and an innovation component with different statistical properties that can apply to models with more

than one latent factor.
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Denoting ei as a vector of zeros with a one in the ith position, we can write equation (15) as:

rt = γ0 + (γ1,ge1 + γ1,πe2)
�µ + (γ1,ge1 + γ1,πe2)

�ΦXt + εMP,F
t , (16)

as gt and πt are ordered as the first and second elements in Xt.

Equation (16) is an affine short rate equation where the short rate coefficients are a function

of the parameters of the dynamics of Xt:

rt = δ̄0 + δ̄�1 Xt, (17)

where

δ̄0 = γ0 + (γ1,ge1 + γ1,πe2)
�µ

δ̄�1 = Φ�(γ1,ge1 + γ1,πe2) + γ1,ue
�
3 ,

and εMP,F
t ≡ γ1,uf

u
t with γ1,u = δ1,u. Hence, we can identify a forward-looking Taylor rule by

redefining the bond price recursions in equation (6) in terms of the new δ̄0 and δ̄1 coefficients.

The complete term structure model is defined by the same set-up as equations (1)-(4), except

we use the new short rate equation (17) that embodies the forward-looking structure in place

of the basic short rate equation (2). The relations involving γ0, γ1, µ, and Φ in equation (17)

show that the forward-looking Taylor rule imposes restrictions on the parameters of an affine

term structure model.

The new no-arbitrage bond recursions using the restricted coefficients δ̄0 and δ̄1 reflect

the conditional expectations of GDP and inflation that enter in the short rate equation (17).

Furthermore, the conditional expectations Et(gt+1) and Et(πt+1) are those implied by the

underlying dynamics of gt and πt in the VAR process (1). Other approaches, like Rudebusch

and Wu (2005), specify the future expectations of macro variables entering the short rate

equation in a manner not necessarily consistent with the underlying dynamics of the macro

variables. The monetary policy shocks in the forward-looking Taylor rule (15) or (16), εMP,F
t ,

can be consistently estimated by OLS only if fu
t is orthogonal to the dynamics of gt and πt.

Since k-period ahead conditional expectations of GDP and inflation remain affine functions

of the current state variables Xt, we can also specify a more general forward-looking Taylor

rule based on expected GDP or inflation over the next k quarters:

rt = γ0 + γ1,gEt(gt+k,k) + γ1,πEt(πt+k,k) + εMP,F
t , (18)

where gt+k,k and πt+k,k represent GDP growth and inflation over the next k periods:

gt+k,k =
1

k

k∑
i=1

gt+i and πt+k,k =
1

k

k∑
i=1

πt+i.
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The forward-looking Taylor rule monetary policy shock εMP,F
t is the scaled latent term

structure factor, εMP,F
t = γ1,uf

u
t . As Clarida, Galı́ and Gertler (2000) note, the general case

(18) also nests the benchmark Taylor rule (9) as a special case by setting k = 0. Appendix

A details the appropriate transformations required to map equation (18) into an affine term

structure model and discusses the estimation procedure for a forward-lookingTaylor rule based

on a k-quarter horizon.

Infinite-Horizon, Forward-Looking Taylor Rules

An alternative approach to fixing some forecasting horizon k is to view the Fed as discounting

the entire expected path of future economic conditions. For simplicity, we assume the Fed

discounts both expected future GDP growth and expected future inflation at the same discount

rate, β. In this formulation, the forward-looking Taylor rule takes the form:

rt = γ0 + γ1,ĝĝt + γ1,π̂π̂t + εMP,F
t , (19)

where ĝt and π̂t are infinite sums of expected future GDP growth and inflation, respectively,

both discounted at rate β per period. Many papers have set β at one, or very close to one,

sometimes motivated by calibrating it to an average real interest rate (see Salemi, 1995;

Rudebusch and Svenson, 1999; Favero and Rovelli, 2003; Collins and Siklos, 2004).

We can estimate the discount rate β as part of a standard term structure model by using the

dynamics of Xt in equation (1) to write ĝt as:

ĝt =

∞∑
i=0

βie�1 Et(Xt+i)

= e�1 (Xt + βµ + βΦXt + β2(I + Φ)µ + β2Φ2Xt + · · · )
= e�1 (µβ + (I + Φ)µβ2 + · · · ) + e�1 (I + Φβ + Φ2β2 + · · · )Xt

=
β

(1 − β)
e�1 (I − Φβ)−1µ + e�1 (I −Φβ)−1Xt.

Similarly, we can also write discounted future inflation, π̂t, in a similar fashion as:

π̂t =
β

(1 − β)
e�2 (I − Φβ)−1µ + e�2 (I − Φβ)−1Xt.

To place the forward-looking rule with discounting in a term structure model, we re-write

the short rate equation (2) as:

rt = δ̂0 + δ̂�1 Xt, (20)
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where

δ̂0 = γ0 + [γ1,ge1 γ1,πe2]
�
(

β

(1 − β)
(I − Φβ)−1µ

)
,

δ̂�1 = [γ1,ge1 γ1,πe2]
�(I − Φβ)−1 + γ1,u e�3 .

Similarly, we modify the bond price recursions for the standard affine model in equation (6) by

using the new δ̂0 and δ̂1 coefficients that embody restrictions on β, γ0, γ1, µ, and Φ.

2.7 Forward- and Backward-Looking Taylor Rules

As a final case, we combine the forward- and backward-looking Taylor rules, so that the

monetary policy rule is computed taking into account forward-looking expectations of macro

variables, lagged realizations of macro variables, while also controlling for lagged short rates.

We illustrate the rule considering expectations for inflation and GDP over the next quarter

(k = 1), but similar rules apply for other horizons.

We start with the standard forward-looking Taylor rule in equation (15):

rt = γ0 + γ�
1,oEt(f

o
t+1) + εMP,F

t ,

where Et(f
o
t+1) = [Et(gt+1) Et(πt+1)]

� and εMP,F
t = γ1,uf

u
t . We substitute for fu

t using

equation (12) to obtain:

rt = γ0 + γ1,uµ2 − γ1,uΦ22δ0

δ1,u

+ γ�
1,oEt(f

o
t+1)

+

(
γ1,uΦ

�
21 −

γ1,uΦ22δ1,o

δ1,u

)�
fo

t−1 +
γ1,uΦ22

δ1,u
rt−1 + εMP,FB

t . (21)

Equation (21) expresses the short rate as a function of both expected future macro factors

and lagged macro factors, the lagged short rate, rt−1, and a forward- and backward-looking

monetary policy shock, εMP,FB
t = γ1,uv

u
t . The forward- and backward-looking Taylor rule

(21) is an equivalent representation of the forward-looking Taylor rule in (15). Hence, similar

to how the coefficients on contemporaneous macro variables in the backward-looking Taylor

rule (13) are identical to the coefficients in the benchmark Taylor rule (9), the coefficients δ 1,o

on future expected macro variables are exactly the same as the coefficients in the forward-

looking Taylor rule.
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2.8 Summary of Taylor Rules

The no-arbitrage framework is able to estimate several structural Taylor rule specifications from

the same reduced-form term structure model. Table 1 summarizes the various specifications.

The benchmark, backward-looking Taylor rules, and the Taylor rule with serially correlated

shocks are different structural rules that give rise to the same term structure dynamics.

Similarly, the forward-looking and the backward- and forward-looking Taylor rules produce

observationally equivalent term structure models. In all cases, the monetary policy shocks are

transformations of either levels or innovations of the latent term structure variable. Finally, the

last column of Table 1 reports if the no-arbitrage model requires additional restrictions. Both

the forward-looking specifications require parameter restrictions in the short rate equation to

ensure that we compute the expectations of the macro variables consistent with the dynamics

of the VAR.

3 Data and Econometric Methodology

The objective of this section is to briefly discuss the data and the econometric methodology

used to estimate the model. We relegate all technical issues to Appendix C.

3.1 Data

To estimate the model, we use continuously compounded yields of maturities 1, 4, 8, 12, 16,

and 20 quarters, at a quarterly frequency. The bond yields of one year maturity and longer are

from the CRSP Fama-Bliss discount bond files, while the short rate (one-quarter maturity) is

taken from the CRSP Fama risk-free rate file. The sample period is June 1952 to December

2002. The consumer price index and real GDP numbers are taken from the Federal Reserve

Database (FRED) at Saint Louis.

3.2 Estimation and Identification

We estimate the term structure model using Markov Chain Monte Carlo (MCMC) and Gibbs

sampling methods. There are two main reasons why we choose to use a Bayesian estimation

approach. First, we can avoid the usual assumption that some (arbitrary) yields are observed

without any measurement error, while other yields are observed with error (going back to
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Chen and Scott, 1993). This assumption is clearly ad hoc. Instead, we assume that all yields

are observed with error, so that the equation for each yield is:

ŷ
(n)
t = y

(n)
t + η

(n)
t , (22)

where y
(n)
t is the model-implied yield from equation (5) and η

(n)
t is the zero-mean observation

error is IID across time and yields. We specify η
(n)
t to be normally distributed and denote the

standard deviation of the error term as σ
(n)
η .

Second, the Bayesian estimation method provides a posterior distribution of the time-series

path of fu
t and monetary policy shocks. That is, we can compute the mean of the posterior

distribution of the time-series of f u
t through the sample, and, consequently, we can obtain a

best estimate of implied monetary policy shocks. Importantly, by not assigning one arbitrary

yield to have zero observation error (and the other yields to have non-zero observation error),

we do not bias our estimated monetary policy shocks to have undue influence from only one

particular yield. Instead, the extracted latent factor reflects the dynamics of the entire cross-

section of yields.

The third advantage of our estimation method is tractability. Although the likelihood

function of yields and related variables can be written down (see Ang and Piazzesi, 2003),

the model is high dimensional and non-linear in the parameters. This may cause the likelihood

function to have multiple local optima, some of which may lie in unreasonable or implausible

regions of the parameter space. In a Baysian estimation setting, we can specify priors on

reasonable regions of the parameter space that effectively rule out parameter values that are

economically implausible. In our estimation, the only informative prior we impose is that we

constrain our state-space system to be stationary. Moreover, the maximum likelihood estimator

involves a difficult optimization problem, whereas the Bayesian algorithm is based on a series

of simulations that are computationally much more tractable.

Finally, in models with latent factors, the latent factors can be arbitrarily shifted and scaled

to yield an observationally equivalent model. Dai and Singleton (2000) and Collin-Dufresne,

Goldstein and Jones (2003) discuss some identification issues for affine models with latent

factors. We discuss our identification strategy in Appendix B.

4 Empirical Results

Section 4.1 discusses the parameter estimates and the fit of the model to data. Section 4.2

investigates the driving determinants of the yield curve. We compare benchmark, backward-
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looking and forward-looking Taylor rules in Section 4.3. Sections 4.4 and 4.5 discuss the

implied no-arbitrage monetary policy shocks and impulse responses, respectively.

4.1 Parameter Estimates

Table 2 presents the parameter estimates of the unconstrained term structure model (1)-(4).

The first row of the companion form Φ shows that GDP growth can be forecasted by lagged

inflation and lagged GDP growth. The parameter estimates of the second row of Φ shows that

term structure information helps to forecast inflation. The large coefficient on lagged inflation

reflects the fact that quarterly inflation is persistent. The third row of Φ shows that both inflation

and GDP help forecast the latent term structure factor. This is consistent with results in Ang

and Piazzesi (2003), who show that adding macro variables improves out-of-sample forecasts

of interest rates. The large coefficient on the lagged latent factor indicates the f u
t series is more

persistent that inflation.

Interestingly, the estimated covariance matrix ΣΣ� shows that innovations to inflation and

GDP growth are negatively correlated, whereas high inflation Granger-causes low GDP growth

in the conditional mean. In contrast, the conditional covariances between the latent factor and

the macro factors are not significant. This implies that the common recursive identification

strategy in low-frequency VARs (see, for example, Christiano, Eichenbaum, and Evans, 1996)

– macro factors do not respond contemporaneously to policy shocks – is automatically satisfied

and therefore not restrictive at our parameter estimates. For identification, we impose the

constraint of zero conditional covariances between latent and macro factors when we estimate

the forward-looking Taylor rules.

The short rate coefficients in δ1 are all positive, so higher inflation and GDP growth lead to

increases in the short rate, which is consistent with the basic Taylor-rule intuition. In particular,

a 1% increase in contemporaneous inflation leads to a 28 basis point (bp) increase in the short

rate, while the effect of a 1% increase in GDP growth is small at 5.6bp. Below, we compare

these magnitudes with OLS estimates of the Taylor rule.

The risk premia parameters in λ1 indicate that expected excess returns vary significantly

over time. The diagonal elements of λ1 are all statistically significant. The off-diagonal

elements of λ1 in the third row corresponding to GDP growth and inflation are also statistically

significant. Hence, GDP growth, inflation and the latent factor are all going to drive time-

varying expected excess returns. Below, we will come back to this issue.
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The standard deviations of the observation errors are fairly large. For example, the

observation error standard deviation of the one-quarter yield (20-quarter yield) is 19bp (6bp)

per quarter. For the one-quarter yield, the measurement errors are comparable to, and slightly

smaller than, other estimations containing latent and macro factors (see, for example, Dai and

Phillipon, 2005). This is not surprising, because we only have one latent factor to fit the

entire yield curve. Piazzesi (2005) shows that traditional affine models often produce large

observation errors of the short end of the yield curve relative to other maturities. Indeed, the

largest observation error variance occurs at the short end of the yield curve, which indicates

that treating the short rate as an observable factor may lead to large discrepancies between the

true latent factor and the short rate.3

Latent Factor Dynamics

The monetary policy shocks identified by no arbitrage depend crucially on the behavior of the

latent factor, fu
t . Figure 1 plots the latent factor together with the OLS Taylor rule residual and

the demeaned short rate. We plot the time-series of the latent factor posterior mean produced

from the Gibbs sampler. The plot illustrates the strong relationship between these three series.

The correlation of the time-series of the posterior mean of the latent factor with GDP growth

(inflation) is -0.122 (0.530). The correlations implied by the model point estimates is -0.128

(0.522), very similar to the correlations computed using posterior mean of the latent factor.

These strong correlations suggest that simple OLS estimates of the Taylor rule (9) may be

biased in small samples, which we investigate below. The correlations between fu
t and the

yields range between 93% (the short rate) and 99% (the 16-quarter yield). Hence, f u
t can be

interpreted as level factor, similar to the findings of Ang and Piazzesi (2003). In comparison,

the correlation between f u
t and term spreads is below 20%.

3 We have also estimated the model using only the short rate as an observation equation to draw the latent

factor. The estimation results (not reported) show that we can indeed marginally fit the short rate better, but at

the expense of the other yields. The gain is limited, as the measurement error for the short rate drops slightly to

15bp, compared to 19bp for our benchmark model, while the measurement errors for the other yields deteriorate

significantly. For example, the measurement errors for the 8-quarter yield (20-quarter yield) is 19bp (24bp),

compared to 6bp (6bp) in our benchmark estimates. If we invert the latent factor directly from the short rate and

so assume that the short rate contains zero measurement error, then the measurement errors for the other yields

are even larger.
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Matching Moments of Yields and Macro Variables

Table 3 reports the first and second unconditional moments of yields and macro variables

computed from data and implied by the model. We compute standard errors of the data

estimates using GMM. To test if the model estimates match the data, it is most appropriate

to use standard errors from data. This is because large standard errors of parameters may

result when the data provide little information about the model, while very efficient estimates

produce small standard errors. Nevertheless, we also report posterior standard deviations of the

model-implied moments. The moments computed from the model are well within two standard

deviations from their counterparts in data for macro variables (Panel A), yields (Panel B), and

correlations (Panel C). Panel A shows that the model provides an almost exact match with the

unconditional moments of inflation and GDP.

Panel B shows that the autocorrelations in data increase from 0.925 for the short rate

to 0.959 for the 5-year yield. In comparison, the model-implied autocorrelations exhibit a

smaller range in point estimates from 0.953 for the short rate to 0.963 for the 5-year yield.

However, the model-implied estimates are well within two standard deviations of the data point

estimates. The smaller range of yield autocorrelations implied by the model is due to having

only one latent factor. Since inflation and GDP have lower autocorrelations than yields, the

autocorrelations of the yields are primarily driven by the single latent factor f u
t .

Panel C shows that the model is able to match the correlation of the short rate with GDP and

inflation present in the data. The correlation of the short rate with f u
t implied by the model is

0.962. This implies that using the short rate to identify monetary policy shocks may potentially

lead to different estimates than the no-arbitrage shocks identified through f u
t .

4.2 What Drives the Dynamics of the Yield Curve?

From the yield equation (5), the variables in Xt explain all yield dynamics in our model. To

understand the role of each state variable in Xt, we compute variance decompositions from

the model and the data. These decompositions are based on Cholesky decompositions of the

innovation variance in the following order: [gt πt f
u
t ], which is consistent with the Christiano,

Eichenbaum, and Evans (1996) recursive scheme. We ignore observation error in the yields

when computing variance decompositions.
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Yield Levels

Panel A of Table 4 reports unconditional variance decompositions of yield levels for various

forecasting horizons. The columns under the heading “Risk Premia” report the proportion of

the forecast variance attributable to time-varying risk premia. The remainder is the proportion

of the variance implied by the predictability embedded in the VAR dynamics without risk

premia, under the EH.

To compute the variance of yields due to risk premia, we partition the bond coefficient bn

on Xt in equation (5) into an EH term and into a risk-premia term:

bn = bEH
n + bRP

n ,

where we compute the bEH
n bond pricing coefficient by setting the prices of risk λ1 = 0. We let

ΩF,h represent the forecast variance of the factors Xt at horizon h, where ΩF,h = var(Xt+h −
Et(Xt+h)). Since yields are given by y

(n)
t = bn + b�n Xt, the forecast variance of the n-maturity

yield at horizon h is given by b�n ΩF,hbn. We compute the unconditional forecast variance using

a horizon of h = 100 quarters.

We decompose the forecast variance of yields as follows:

Risk Premia Proportion =
bRP�
n ΩF,hbRP

n

b�n ΩF,hbn
.

Note that this risk premia proportion reports only the pure risk premia term and ignores any

covariances of the risk premia with the state variables. Panel A of Table 4 shows that risk

premia play important roles in explaining the level of yields. Unconditionally, the pure risk

premia proportion of the 20-quarter yield is 18%. As the maturity increases, the importance of

the risk premia increases. Panel B shows that risk premia matter even more for yield spreads.

Roughly 1/2 of the variance of yield spreads is due to time-varying risk premia.

The numbers under the line “Variance Decompositions” report the variance decompositions

for the total forecast variance, b�n ΩF,hbn and the pure risk premia variance, bRP�
n ΩF,hbRP

n ,

respectively. The total variance decompositions reveal that, unconditionally, shocks to macro

variables explain about 30-40% of the total variance of yield levels. Shocks to inflation are

about twice as important as shocks to GDP in explaining the forecast variance of yield levels.

In the pure risk premia term, the proportion of variance attributable to GDP and inflation is

also around 30%.
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Yield Spreads

Panel B of Table 4 reports variance decompositions of yield spreads of maturity n quarters in

excess of the one-quarter yield, y(n)
t − y

(1)
t . The variance decompositions in Panel B document

that shocks to inflation are the main driving force of yield spreads. Shocks to inflation explain

more than 87% of the variance of yield spreads. Inflation shocks are even more important

for long maturity yield spreads. For example, movements in inflation account for 96% of the

unconditional variance of the 5-year spread. These results are consistent with Mishkin (1992)

and Ang and Bekaert (2004), who find that inflation accounts for a large proportion of term

spread changes.

Expected Excess Holding Period Returns

Panel C of Table 4 examines variance decompositions of expected excess holding period

returns. By definition, time-varying expected excess returns must be due only to time-varying

risk premia, which is why the total and pure risk premia variance decompositions are identical.

Panel C shows that the proportion of the expected excess return variance explained by macro

variables significantly increases as the yield maturity increases. At a 4-quarter (20-quarter)

maturity, macro factors account for up to 37% (64%). Inflation is more important for explaining

time-varying excess returns than GDP, with the proportion for inflation reaching close to 50%

for the 20-quarter bond. Thus, inflation and inflation risk impressively account for almost half

of the dynamics of expected excess returns. At a one-quarter forecasting horizon (not reported),

GDP growth and inflation account for even larger proportions of holding period return variance,

at 22% and 64%, respectively.

Table 5 further characterizes conditional expected excess returns. Panel A reports the means

and standard deviations of the approximate excess returns computed from data and implied by

the model. To compute the one-quarter excess returns on holding the, say, 20-quarter bond

from t to t + 1, we would need data on the price of the 19-quarter bond at t + 1. Because of

data availability, we implement the approximation by Campbell and Shiller (1991):

arxt+1 = log
P

(n)
t+1

P
(n)
t

− rt. (23)

Panel A shows that the moments of excess returns computed from the model are nearly identical

to their (approximate) counterparts in data. Hence, our model matches unconditional excess

returns almost exactly.
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Panel B reports regressions of (approximate) excess returns onto macro factors and yield

variables both in data and implied by the model. We choose the 20-quarter yield to be

representative of a level factor. The predictability of one-quarter excess returns is fairly weak,

compared to the results for longer holding periods reported by Cochrane and Piazzesi (2005).

Nevertheless, comparing the model-implied coefficients with the data reveals that the model

is able to closely match the predictability patterns in the data. In particular, for the excess

returns of longer maturity bonds, the significantly negative (positive) coefficients on inflation

(the 20-quarter yield) are well within one standard deviation of their counterparts in data. The

point estimates of the loadings on GDP and inflation both increase in magnitude with maturity,

indicating that long bond excess returns are more affected by macro factor variation.

Panel C reports the coefficients of the conditional (exact) expected excess holding period

return Et(rx
(n)
t+1) = Ax

n + Bx�
n Xt defined in equation (8). The Bx

n coefficients on GDP and

inflation are negative, indicating that conditional expected excess returns are strongly counter-

cyclical. High GDP growth and high inflation rates are more likely to occur during the peaks

of economic expansions, so excess returns of holding bonds are lowest during the peaks of

economic expansions. The exposure to this counter-cyclical risk premium also increases as the

maturity of the bond increases.

Figure 2 plots the time-series of one-period expected excess holding period returns for the

4-quarter and 20-quarter bond. We compute the expected excess returns using the posterior

mean of the latent factors through the sample. Expected excess returns are much more volatile

for the long maturity bond, reaching a high of over 16% per year during the 1982 recession

and drop below -4% during 1953, 1973 and, 1978. In contrast, expected excess returns for

the 4-quarter bond lie in a more narrow range between -0.3% and 2.9% per year. During

every recession, expected excess returns increase. In particular, the increase in expected excess

returns for the 20-quarter bond at the onset of the 1981 recession is dramatic, rising from 4.5%

per year in September 1981 to 16.5% per year in March 1982.4

4 At 1982:Q1, the 16.5% expected excess return for the 20-quarter bond can be broken down into the various

proportions: 35% to the constant term premium, 13% to GDP, -14% to inflation, and 65% to the latent factor.

Note that there is a large exposure, in absolute values, to macro factors. Although the exposure to the latent factor

is large at this date, the implied monetary policy shock is much smaller, as it is the scaled latent factor, δ1,ufu
t .

We discuss this below in further detail.
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4.3 A Comparison of Taylor Rules

We now compare the benchmark, backward-looking, and forward-looking Taylor rules

estimated by no-arbitrage techniques. We first discuss the estimates of each Taylor rule in

turn, and then compare the monetary policy shocks computed from each specification.

The Benchmark Taylor Rule

Panel A of Table 6 contrasts the OLS and model-implied estimates of the benchmark Taylor

rule in equation (9). Over the full sample, the OLS estimate of the output coefficient is small

at 0.036, and is not significant. The model-implied coefficient is similar in magnitude at 0.056.

In contrast, the OLS estimate of the inflation coefficient is 0.643 and strongly significant. The

model-implied coefficient on πt of 0.281 is much smaller. Hence, OLS over-estimates the

response of the Fed on the short rate by approximately half compared to the model-implied

estimate. This indicates that the endogenous fluctuations in inflation and output are important

in estimating the Taylor rule (also see comments by Woodford, 2000).

Moreover, the model estimation extracts information about the policy rule from the entire

panel of yield data and not only the time series of the short rate. This approach increases

efficiency, which we can see from the number in brackets reported below the model and OLS

estimates in Table 6. While these numbers are not directly comparable — OLS regressions

produce classical standard errors, while Bayesian estimations produce posterior standard

deviations — we can still see that the model estimation produces tighter posterior standard

deviations.

To further understand the difference between OLS and model estimates, we compute the

OLS coefficients and the OLS R2 of the benchmark Taylor rule implied by the model, i.e.,

the model-implied OLS coefficients on gt and πt while omitting the latent factor f u
t from the

equation. These coefficients are 0.007 for the constant, 0.041 (0.648) for growth (inflation)

– almost identical to the OLS regression coefficients. Moreover, the model-implied OLS

regression R2 is 54%, very similar to the OLS R2 of 49%. These results suggest that the

larger magnitude of the OLS regression estimate of the inflation coefficient in the benchmark

Taylor rule compared to the model-implied coefficient is due to an omitted variable that is

correlated with GDP growth and inflation.

Our results are based on quarterly growth rates of GDP and the CPI in the Taylor rule. The

advantage of our specification is that we would have to deal with moving average errors in the
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quarterly factor dynamics, if we had used annual growth rates. Moreover, our estimation gives

similar magnitudes for the policy rule coefficients. Specifically, we can re-write the Taylor rule

(9) to use GDP growth and inflation over the past year:

rt = γ0 + γ1,g
1

4
(gt + gt−1 + gt−2 + gt−3) + γ1,π

1

4
(πt + πt−1 + πt−2 + πt−3) + εMP,T

t , (24)

where εMP,T
t ≡ γ1,uf

u
t . In this formulation, bond yields now become affine functions of Xt,

Xt−1, Xt−2, and Xt−3. Using annual GDP growth and inflation, the posterior mean of the

coefficient on GDP growth (inflation) is 0.148 (0.260), with a posterior standard deviation

of 0.018 (0.022). These values are almost identical to the estimates from Table 6 based on

quarterly growth and inflation.

By estimating the model over the full sample, we follow Christiano, Eichenbaum, and

Evans (1996), Cochrane (1998) and others and assume that the Taylor rule relationships

are stable. However, our results are surprisingly stable when we estimate the model across

subsamples. Panel A of Table 6 reports estimates of both OLS Taylor rules and the benchmark

Taylor rule estimated by no-arbitrage restrictions over the pre-1982 and post-1983 monetary

policy regimes.5 For example, the model (OLS) coefficient on inflation is 0.272 (0.677)

over the pre-1982 sample and 0.241 (0.605) over the post-1983 sample, compared with 0.281

(0.643) over the whole sample. The model coefficients on GDP are also fairly stable, at 0.051

(0.032) over the pre-1982 (post-1982) period. In contrast, the OLS coefficient on GDP differs

widely across the samples, ranging from 0.004 in the pre-1982 sample to 0.238 in the post-1982

sample. Hence, the OLS coefficients of GDP are much more dissimilar across the pre-1982

and post-1983 samples compared to the no-arbitrage Taylor rule estimation.

The Backward-Looking Taylor Rule

Panel B of Table 6 reports the estimation results for the backward-looking Taylor rule.

Consistent with equation (13), the model coefficients on gt and πt are unchanged from the

benchmark Taylor rule in Panel A at 0.056 and 0.281, respectively. The corresponding OLS

estimates of the backward-looking Taylor rule coefficients on GDP and inflation are 0.074 and

0.182, respectively. Here, the model-implied rule predicts that the Fed reacts more to inflation

than the OLS estimates suggest. As expected, the coefficients on the lagged short rate in both

5 Several recent studies have emphasized that the linear coefficients γ1 potentially vary over time (see, among

others, Clarida, Galı́, and Gertler, 2000; Cogley and Sargent, 2001; Boivin, 2004). However, other authors like

Bernanke and Mihov (1998), Sims (1999 and 2001), Sims and Zha (2002), and Primiceri (2003) find either little

or no evidence for time-varying policy rules, or negligible effect on the impulse responses of macro variables from

time-varying policy rules.
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the OLS estimates and the model-implied estimates are similar to the autocorrelation of the

short rate (0.925 in Table 3). The large and significant coefficient on the lagged short rate is

often interpreted as reflecting the interest rate smoothing behavior of the Fed. We can rewrite

the backward-lookingTaylor rule into the partial adjustment format used in the macro literature

as follows:

rt = (1− 0.922)(−0.001 +0.714gt +3.607πt − 0.164gt−1 − 2.522πt−1) + 0.922rt−1 + εMP,B
t .

Hence, our model implies a long-run response to inflation of 3.607 − 2.522 = 1.085. This is

consistent with the Taylor principle that the coefficient on inflation should be larger than one.

The Taylor Rule with Serially Correlated Shocks

Figure 3 plots the monetary policy shocks of the Taylor rule with serially correlated errors (see

equation (14)) as well as the OLS Taylor rule residual for comparison. Not surprisingly, the

serially correlated shocks are much smoother. As a measure of how much predictable variation

is contained in the short rate as it responds to contemporaneous and lagged macro variables,

we plot the fitted short rate implied from the serially correlated Taylor rule in the bottom panel.

From equation (14), we can construct a fitted short rate, rAR
t , where

rAR
t = ct + Ψt(L)fo

t

is the predictable variation in the short rate from the entire past history of macro factors. The

fitted short rate bears a very high resemblance to the level of the short rate in data, and the R2

of regressing the short rate in data onto rAR
t is over 80%. Thus, although short rates do not

resemble contemporaneous GDP growth or inflation, in a serially correlated Taylor rule, the

entire past history of GDP growth and inflation contains a lot of information about the level of

the short rate.

The Finite-Horizon, Forward-Looking Taylor Rule

In Panel C of Table 6, we list the estimates of the forward-looking Taylor rule coefficients γ1,g

and γ1,π in equation (18) for various horizons k. For each k, we re-estimate the whole term

structure model, but only report the forward-looking Taylor rule coefficients for comparison.

For a one-quarter ahead forward-looking Taylor rule, the coefficient on expected GDP growth

(inflation) is 0.061 (0.401). These are larger than the contemporaneous responses for GDP

growth and inflation over the past quarter in the benchmark Taylor rule, which are 0.056 and
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0.281, respectively. For a one-year (k = 4) horizon, the short interest rate responds quite

aggressively to inflation expectations, with γ1,π = 0.68. In all cases, the response of the

Fed to future inflation expectations is large, whereas the response of the Fed to future GDP

expectations is comparatively small.6

As k increases beyond one year, the coefficients on GDP and inflation expectations

differ widely and the posterior standard deviations become very large. This is due to two

reasons. First, as k becomes large, the conditional expectations approach their unconditional

expectations, or Et(gt+k,k) →E(gt) and Et(πt+k,k) →E(πt). Econometrically, this makes γ1,g

and γ1,π hard to identify for large k, and unidentified in the limit as k → ∞. The intuition

behind this result is that as k → ∞, the only variable driving the dynamics of the short rate in

equation (18) is the latent monetary policy shock:

rt = γ0 + γ1,gE(gt) + γ1,πE(πt) + εMP,F
t ,

and it is impossible to differentiate the (scaled) effect of GDP or inflation expectations from

γ0. Hence, for large k, identification issues cause the coefficients γ1,g and γ1,π to be poorly

estimated.

The second reason is that each estimation for different k tries to capture the same

contemporaneous relation between gt, πt, and rt. Panel C also reports the estimates δ1 =

[δ1,g δ1,π δ1,u]
� of the short rate equation (17) implied by the forward-looking Taylor rules.

These coefficients are very similar across horizons. In particular, the inflation coefficient δ1,π

is almost unchanged at around 0.25 for all k. The coefficients on gt and πt are also very similar

to the coefficients in the benchmark Taylor rule in Panel A. The forward-looking Taylor rule

transforms the same contemporaneous response of the short rate to GDP and inflation as the

benchmark Taylor rule into the loadings on conditional expectations of future macro factors.

The Infinite-Horizon, Forward-Looking Taylor Rule

We report the estimates of the infinite-horizon, forward-looking Taylor rule (21) in Panel D

of Table 6. The coefficient on future discounted GDP growth (inflation) is 0.02 (0.10). The

discount rate β = 0.931, which implies an effective horizon of 1/(1 − 0.939) quarters, or 4.1

years.7 This estimate is much lower than the discount rates above 0.97 used in the literature

6 We compute a Bayes factor test among all the forward-looking rules using the harmonic mean of likelihood

values proposed by Newton and Raftery (1994), and find strong evidence in favor of the rule with a 4-quarter

horizon.
7 We can also allow different discount rates on future expected GDP growth and future expected inflation. The
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(see Salemi, 1995; Rudebusch and Svenson, 1999; Favero and Rovelli, 2003), but still much

higher than the estimate of 0.76 calibrated by Collins and Siklos (2004). The effective horizon

of approximately four years is consistent with transcripts of FOMC meetings, which indicate

that the Fed usually considers forecasts and policy scenarios of up to three to five years ahead.

The Forward- and Backward-Looking Taylor Rule

Finally, Panel E of Table 6, reports the estimates of the forward- and backward-looking Taylor

rule in equation (21) for horizons of k = 1 and k = 4 quarters. These are the same restricted

estimations as the forward-lookingTaylor rules in Panel C for the corresponding horizons and,

hence, have the same coefficients on Et(gt+k,k) and Et(πt+k,k). Naturally, the lagged short rate

continues to play a large role. The estimates show that after taking into account the effect of

forward-looking components of GDP and inflation, the response of the Fed to lagged macro

variables is negligible.

4.4 Monetary Policy Shocks

The no-arbitrage monetary policy shocks are transformations of either levels or innovations

of the latent factor. There are different no-arbitrage policy shocks depending on the chosen

structural specification, like benchmark, forward-looking, or backward-looking Taylor rules.

Note that the implied policy shock is a choice of a particular structural rule, but the same

no-arbitrage model produces several versions of monetary policy shocks (see Table 1).

As an example, we graph the model-implied monetary policy shocks based on the

backward-looking Taylor rule in Figure 4 and contrast them with OLS estimates of the

backward Taylor rule. We plot the OLS estimate in the top panel and the model-implied shocks,

εMP,B
t , from equation (13) in the bottom panel. We compute εMP,B

t using the posterior mean

estimates of the latent factor through time. Figure 4 shows that the model-implied shocks

are much smaller than the shocks estimated by OLS. In particular, during the early 1980s,

the OLS shocks range from below -6% to above 4%. In contrast, the model-implied shocks

lie between -3% and 2% during this period. This indicates that according to the no-arbitrage

estimates, the Volcker-experience was not as big a surprise as suggested by OLS. These results

are consistent with our findings that the pre-1982 and post-1983 estimates of the Taylor rule

using no-arbitrage identification techniques are very similar.

discount rate for the future expected GDP growth is estimated as 0.870 but with a larger standard error (0.050),

while the estimate for the discount rate for future expected inflation is 0.921 with a standard error of 0.005.
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Table 7 characterizes the various model-implied monetary policy shocks in more detail and

explicitly compares them with OLS estimates. We list model-implied estimates of the no-

arbitrage benchmark Taylor rule shock, εMP,T
t , which is the scaled latent factor, fu

t , in equation

(9); the backward-looking Taylor rule shocks εMP,B
t from equation (13); the autocorrelated

shocks εMP,AR from equation (14); the forward-looking Taylor rule shocks εMP,F
t over a

horizon of k = 4 quarters from equation (18); and the no-arbitrage forward- and backward-

looking Taylor policy shock εMP,FB from equation (21), also with a k = 4-quarter horizon.

First, the only difference between the no-arbitrage benchmark shock, εMP,T
t , and the

forward-looking shock, εMP,F
t , are the restrictions imposed on the estimation to take the VAR-

implied expectations of future GDP growth and inflation. These estimations are near identical

(see Panels A and C of Table 6), so εMP,T
t and εMP,F

t have a correlation of over 99%. Similarly,

both the no-arbitrage backward-looking shock, εMP,B
t and the forward- and backward-looking

shock, εMP,FB
t , are both scaled innovations of the latent factor, with the only difference being

the restrictions to take the expectations of future macro factors in the short rate equation. Again,

these estimations are very similar, producing a correlation between εMP,B
t and εMP,FB

t over

99%.

We also compare the no-arbitrage shocks with the Romer and Romer (2004) policy shocks

that are computed using the Fed’s internal forecasts of macro variables and intended changes

of the federal funds rate. The OLS residual from the backward Taylor rule has the highest

correlation with the Romer-Romer shock, at 72%. In comparison, the no-arbitrage backward-

looking shocks have only a 54% correlation with the Romer-Romer series. However, the

volatility of the OLS backward-looking residuals are more volatile, at 0.9% per annum than

either the no-arbitrage εMP,B
t shocks, which have a volatility of 0.6% per annum. Figure 4

clearly illustrates this. The volatility and range of the no-arbitrage εMP,B
t shocks are closer

to the volatility and range of the Romer-Romer shocks. The OLS backward-looking Taylor

residuals are also more negatively autocorrelated (-0.267) than the εMP,B
t series, which has

an autocorrelation of -0.185. This is very similar to the -0.183 autocorrelation of the Romer-

Romer series.

The last two columns of Table 7 report statistics on the one-quarter short rate, r, and the

change in the short rate, ∆r. The OLS backward-looking Taylor rule shocks are more highly

correlated with r, at 32%, than εMP,B
t , which has a correlation of only 26% with r and only

68% with ∆r. Hence, using the short rate as an instrument to estimate monetary policy shocks

produces dissimilar estimates to extracting a no-arbitrage estimate of the Taylor rule shocks

using the whole yield curve.
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4.5 Impulse Responses of Yields

To gauge the effect of the various shocks on the yield curve, we compute impulse response

functions. We obtain the posterior distribution of the impulse responses by computing the

implied impulse response functions in each iteration of the Gibbs sampler. In the plots,

we show the posterior mean of the impulse response functions. These responses are based

on Cholesky decompositions that use the same ordering as the variance decompositions:

[gt πt fu
t ].8

Figure 5 plots the responses of yields and yield spreads to GDP shocks, inflation shocks,

and a short rate shock. A 1% inflation shock produces persistent effects on all yields. The

initial response is highest for the short rate, at 32bp per annum, while the initial response of

the long, 20-quarter yield is approximately 16bp per annum. Hence, the term spread narrows

from an unexpected inflation shock. Shocks to GDP also increase yields, but the effect from

a GDP shock is much smaller. The initial response from a 1% GDP shock is almost the same

across the yield curve, at approximately 10bp. The 1% shock to the short rate is constructed

by shocking all of the state variables in proportion to their Cholesky decomposition so that the

sum of the shock adds up to 1%. This allows us to trace the effect of a change in the short rate

across the yield curve. As expected, the initial shock to a 1% increase in the short rate dies out

gradually across the yield curve. At a five-year maturity, the response reaches approximately

82bp per annum after two quarters.

Figure 6 plots the responses of yields and yield spreads to -1% expected GDP shocks, and

1% expected inflation shocks over the next year. We construct the -1% shock to Et(gt+4,4) by

noting that the conditional expectation can be written as a linear combination of the factors X t.

Similar to the 1% shock to the short rate in Figure 5, we construct the -1% shock to Et(gt+4,4)

by shocking each variable by Xt in proportion to their Cholesky decomposition so that the

sum of the shocks adds up to -1%. The 1% shock to Et(πt+4,4) is constructed the same way.

Note that because Et(gt+4,4) and Et(πt+4,4) are not orthogonal, the effect of the shocks differs

from the initial response of the forward-looking Taylor rule coefficients reported in Panel C of

Table 6.
8 We note that, in common with standard macro VARs, our model has a “price puzzle,” where after a shock to

the short rate, the response of inflation initially increases. However, the no-arbitrage restrictions mitigate the price

puzzle. To fully eliminate the prize puzzle, we would need to add certain state variables to our system, such as

commodity prices (see comments by Sims, 1992; Christiano, Eichenbaum and Evans, 1996, among others). This

is an interesting avenue for future research; the goal of our paper is to illustrate how Taylor rules can be estimated

using no-arbitrage techniques, and so we keep the system as low-dimensional as possible.
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Figure 6 shows that a negative shock to Et(gt+4,4) increases all yields. This is consistent

with the empirical findings that higher interest rates predict lower future GDP growth (see, for

example, Ang, Piazzesi, and Wei 2005). Note that the short rate increases more than longer

term yields, which implies a negative response of term spreads to the -1% shock to Et(gt+4,4).

Thus, the model implies that we are more likely to see inverted yield curves before future

periods of negative GDP growth, consistent with data. When we shock Et(πt+4,4) by 1%, all

yields increase, but the responses are not one-to-one. Thus, the simple real rate implied by the

Fisher hypothesis (not adjusted for real rate risk premia), y
(4)
t − Et(πt+4,4), decreases, so our

model produces real rates that are negatively correlated with expected inflation. The negative

correlation between real rates and expected inflation is termed the Mundell-Tobin effect, and

our model implies a correlation between real rates and expected inflation of -30%.

5 Conclusion

We exploit information from the entire term structure to estimate monetary policy rules. The

framework accommodates original Taylor (1993) rules that describe the Fed as reacting to

current values of GDP growth and inflation; backward-looking Taylor rules where the Fed

reacts to current and lagged macro variables and lagged policy rates; and forward-looking

Taylor rules where the Fed takes into account conditional expectations of future real activity

and inflation. The framework also accommodates Taylor rules with serially correlated policy

shocks. An advantage of the no-arbitrage model is that all these types of Taylor rules are

estimated jointly in a unified system that provides consistent expectations of future interest

rates and macro factors.

Our methodology embeds the Taylor rules in a term structure model with time-varying risk

premia that excludes arbitrage opportunities. The absence of arbitrage implies that long yields

are expected values of future short rates after adjusting for risk. The tractability of the system is

based on flexible VAR dynamics for the macro and latent state variables and by specifying risk

premia that are also linear combinations of the VAR state variables. In our model, monetary

policy shocks are transformations of either levels or innovations to the latent factor, depending

on the Taylor rule specification. The cross-equation restrictions implied by no arbitrage help

us to estimate this shock more efficiently.

We find that shocks to GDP growth and inflation account for over 60% of the time-variation

of time-varying expected excess returns on long-term bonds, while inflation shocks are mostly

responsible for driving yield spreads. Macro factors induce a counter-cyclical risk premium for
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holding long-term bonds. We find that monetary policy shocks identified by no-arbitrage are

significantly less volatile than Taylor rule residuals estimated by OLS. Interesting extensions

of our approach are to impose more structure on the VAR dynamics or to expand the state space

to include other macro factors.
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Appendix

A Forward-Looking Taylor Rules

In this appendix, we describe how to compute δ0, δ1 in equation (17) of a forward looking Taylor rule without
discounting for a k-quarter horizon. From the dynamics of X t in equation (1), the conditional expectation of
k-quarter ahead GDP growth and inflation can be written as:

Et(gt+k,k) = Et

(
1
k

k∑
i=1

gt+i

)
=

1
k

e�1

(
k∑

i=1

Φ̃iµ + Φ̃kΦXt

)

Et(πt+k,k) = Et

(
1
k

k∑
i=1

πt+i

)
=

1
k

e�2

(
k∑

i=1

Φ̃iµ + Φ̃kΦXt

)
, (A-1)

where ei is a vector of zeros with a 1 in the ith position, and Φ̃i is given by:

Φ̃i =
i−1∑
j=0

Φj = (I − Φ)−1(I − Φi). (A-2)

The bond price recursions for the standard affine model in equation (6) are thus based on the short rate equation
rt = δ̄0 + δ̄�1 Xt, where:

δ̄0 = γ0 +
1
k

[γ1,ge1 γ1,πe2]�
(

k∑
i=1

Φ̃i

)
µ,

δ�1 =
1
k

[γ1,ge1 γ1,πe2]�Φ̃kΦ + γ1,ue�3 . (A-3)

As k → ∞, both Et(gt+k,k) and Et(πt+k,k) approach their unconditional means and there is no state-
dependence. Hence, the limit of the short rate equation in equation (18) as k → ∞ is:

rt = γ0 + [γ1,ge1 γ1,πe2]�(I − Φ)−1µ + γ1,ufu
t , (A-4)

which implies that when k is large, the short rate effectively becomes a function only of f u
t , and gt and πt can only

indirectly affect the term structure through the feedback in the VAR equation (1). In the limiting case k = ∞, the
coefficients γ1,g and γ1,π are unidentified because they act exactly like the constant term γ0.

B Econometric Identification

For our benchmark model, our identification strategy is to set the mean of f u
t to be zero and to pin down δ1,u

while the conditional variance matrix ΣΣ� is unconstrained. To ensure that fu
t is mean zero, we parameterize

µ = [µg µπ µf ]� so that µf solves the equation:

e�3 (I − Φ)−1µ = 0,

where e3 is a vector of zeros with a one in the third position. We set δ1,u = 1. We find that fixing δ1,u to other
values does not change the estimates of δ1,o because the latent factor can be arbitrarily scaled. We estimate the
most fully flexible parameterization that is fully identified.

For the models with forward-looking Taylor rules, certain parameters associated with the horizon are
unidentified. Note that the finite-horizon forward-looking rule nests the benchmark model for a horizon of k = 0
in equation (18). Similarly, the infinite-horizon forward-looking rule nests the benchmark model for a discount
rate of β = 0 in equation (20). Because we estimate the most flexible model as the benchmark case, the forward-
looking rules cannot be identified without additional parameter restrictions.
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For the forward-lookingrules, we impose the identifyingassumption that the conditional correlations between
the latent and macro factors are zero in the ΣΣ� matrix. This is the same restriction that Christiano, Eichenbaum,
and Evans (1996), Evans and Marshall (1998, 2001), among others, employ in estimating policy rules in VARs.
The small conditional correlations between the latent and macro factors in the full estimation (see Table 2) indicate
that this is a reasonable restriction to impose. For the forward-looking rules, the identifying restriction is:

ΣΣ� =

(Σ11 Σ12 0
Σ12 Σ22 0
0 0 c

)
. (B-1)

Note that while the conditional shocks to the latent factor are uncorrelated with g t and πt, because the matrix
Φ has full feed-back, all three variables are potentially unconditionally correlated with each other. We set c =
0.233×10−5, the estimated value in the benchmark model in which ΣΣ� is a free parameter, so that the coefficient
δ1,u in the short rate equation (2) is of the same magnitude as the benchmark model in the forward-looking
systems. Naturally, by fixing c, we draw δ1,u as the latent factor can be arbitrarily scaled.

In the finite-horizon forward-looking rule, it is theoretically possible to estimate a full covariance matrix
while holding the horizon k constant. We find the estimates are very close to those in the covariance matrix of our
benchmark model, in which ΣΣ� is unconstrained. However, since the discounting factor, β, is not identified in
the full model, we choose to report all the forward-looking rules with the identifying restriction in equation (B-1)
so that all the forward-looking rules are comparable with each other.

To match the mean of the short rate in the sample, we set δ0 in each Gibbs iteration so that:

δ0 = r̄ − δ�1 X̄, (B-2)

where r̄ is the average short rate from data and X̄ is the time-series average of the factors Xt, which change
because fu

t is drawn in each iteration. This means that δ0 is not individually drawn as a separate parameter, but
δ0 changes its value in each Gibbs iteration because it is a function of δ1 and the draws of the latent factor fu

t .

C Estimating the Model

We estimate the model by MCMC with a Gibbs sampling algorithm. Lamoureux and Witte (2002), Mikkelsen
(2002), Bester (2003), and Johannes and Polson (2005) develop similar Bayesian methods for estimating term
structure models, but their settings do not have macro variables or time-varying prices of risk.

The parameters of the model are Θ = (µ, Φ, Σ, δ0, δ1 , µQ, ΦQ, ση), where µQ and ΦQ are parameters
governing the state variable process under the risk neutral probability measure, σ η denotes the vector of

observation error volatilities {σ (n)
η }. We draw µQ and ΦQ, but invert λ0 and λ1 using λ0 = Σ−1(µ − µQ),

and λ1 = Σ−1(Φ − ΦQ). The latent factor fu = {fu
t } is also generated in each iteration of the Gibbs sampler.

We simulate 50,000 iterations of the Gibbs sampler after an initial burn-in period of 10,000 observations.

We now detail the procedure for drawing each of these variables. We denote the factors X = {Xt} and the

set of yields for all maturities in data as Ŷ = {ŷ(n)
t }. Note that the model-implied yields Y = {y (n)

t } differ from
the yields in data, Ŷ by observation error. Note that observing X is equivalent to observing the term structure Y
through the bond recursions in equation (6).

Drawing the Latent Factor fu

The factor dynamics (1), together with the yield equations (22), imply that the term structure model can be written
as a state-space system. The state and observation equations for the system are linear in fu

t , but also involve the
macro variables gt and πt. To generate fu , we use the Carter and Kohn (1994) forward-backward algorithm (see
also Kim and Nelson, 1999). We first run the Kalman filter forward taking the macro variables (g t, πt) to be
exogenous variables, and then sample fu backwards. We use a Kalman filter algorithm that includes time-varying
exogenous variables in the state equation following Harvey (1989). Since we specify the mean of f u to be zero
for identification, we set each generated draw of fu to have a mean of zero.

Drawing µ and Φ

We follow Johannes and Polson (2005) and explicitly differentiate between {µ, Φ} and {µ Q, ΦQ}. As Xt follows
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a VAR in equation (1), the draw of µ and Φ is standard Gibbs sampling with conjugate normal priors and
posteriors. We note that the posterior of µ and Φ conditional on X, Ŷ and the other parameters is:

P (µ, Φ | Θ−, X, Ŷ ) ∝ P (Ŷ | Θ, X)P (X | µ, Φ, Σ)P (µ, Φ) (C-1)

∝ P (Ŷ | Σ, δ0, δ1, µ
Q, ΦQ, ση, X)P (X | µ, Φ, Σ)P (µ, Φ)

∝ P (X | µ, Φ, Σ)P (µ, Φ),

where Θ− denotes the set of all parameters except µ and Φ. P (X|µ, Φ, Σ) is the likelihood function, which is
normally distributed from the assumption of normality for the errors in the VAR. The validity of going from the
first line to the second line is ensured by the bond recursion in equation (6): given µ Q and ΦQ, the bond price is
independent of µ and Φ. We specify the prior P (µ, Φ) to be N(0, 1000), so, consequently, the posterior of (µ, Φ)
is a natural conjugate normal distribution and the draw of µ and Φ is standard Gibbs sampling. We draw µ and Φ
separately for each equation in the VAR system (1).

We impose the restriction that f u
t is mean zero for identification. We set µ3 to satisfy e�3 (I − Φ)−1µ = 0 to

ensure that the factor fu
t has mean zero. Hence µ3 is simply a function of the other parameters in the factor VAR

in equation (1).

Drawing ΣΣ�

To draw ΣΣ�, we note that the posterior of ΣΣ� conditional on X, Ŷ and the other parameters is:

P (ΣΣ� | Θ−, X, Ŷ ) ∝ P (Ŷ | Θ, X)P (X | µ, Φ, Σ)P (ΣΣ�), (C-2)

where Θ− denotes the set of all parameters except Σ. This posterior suggests an Independence Metropolis draw.
We draw ΣΣ� from the proposal density q(ΣΣ�) = P (X | µ, Φ, Σ)P (ΣΣ�), which is an Inverse Wishart (IW )
distribution if we specify the prior P (ΣΣ�) to be IW , so that q(ΣΣ�) is an IW natural conjugate. The proposal
draw (ΣΣ�)m+1 for the (m + 1)th draw is then accepted with probability α, where

α = min

{
P ((ΣΣ�)m+1 | Θ−, X, Ŷ )
P ((ΣΣ�)m | Θ−, X, Ŷ )

q((ΣΣ�)m)
q((ΣΣ�)m+1)

, 1

}

= min

{
P (Ŷ | (ΣΣ�)m+1 , Θ−, X)
P (Ŷ | (ΣΣ�)m, Θ−, X)

, 1

}
, (C-3)

where P (Ŷ |µ, Φ, Θ−, X) is the likelihood function, which is normally distributed from the assumption of
normality for the observation errors η (n). From equation (C-3), α is just the ratio of the likelihoods of the new
draw of ΣΣ� relative to the old draw.

Drawing δ1

We draw δ1 using a Random Walk Metropolis step:

δm+1
1 = δm

1 + ζδ1v (C-4)

where v ∼ N(0, 1) and ζδ1 is the scaling factor used to adjust the acceptance rate. The acceptance probability α
for δ1 is given by:

α = min

{
P (δm+1

1 | Θ−, X, Ŷ )
P (δm

1 | Θ−, X, Ŷ )
q(δm

1 | δm+1
1 )

q(δm+1
1 | δm

1

, 1

}

= min

{
P (δm+1

1 | Θ−, X, Ŷ )
P (δm

1 | Θ−, X, Ŷ )
, 1

}
, (C-5)

where the posterior P (δ1|Θ−, X, Ŷ ) is given by:

P (δ1|Θ−, X, Ŷ ) ∝ P (Ŷ |δ1, Θ−, X)P (δ1).

33



Thus, in the case of the draw for δ1, α is the posterior ratio of the new and old draws of δ1. We set δ0 to match the
sample mean of the short rate.

To draw γ1 in the forward-looking Taylor rule system, we rewrite the short rate in data as a regression:

ŷ
(1)
t = γ0 + γ�

1 X̄t + η
(1)
t ,

where X̄t = [Et(gt+k,k Et(πt+k,k) fu
t ]�, and we can compute the conditional expectations for GDP growth and

inflation implied from the VAR parameters at every date t. We generate a proposal draw from the regression for
γ1, and then accept/reject based on the likelihood of the bond yields. We first draw a proposal for the (m + 1)th
value of γ1 from the proposal density:

q(γ1) ∝ P (ŷ(1)
t | γ0, γ1, X, η(1))P (γ1),

where we specify the prior P (γ1) to be normally distributed, so, consequently, q(γ1) is a natural conjugate normal
distribution. The proposal draw γm+1

1 , is then accepted with probability α, where

α = min

{
P (γm+1

1 | Θ−, X, Ŷ )
P (γm

1 | Θ−, X, Ŷ )
q(γm

1 )
q(γm+1

1 )
, 1

}

= min

{
P (Ŷ− | γm+1

1 , Θ−, X)
P (Ŷ− | γm

1 , Θ−, X)
, 1

}
, (C-6)

where P (Ŷ−|γ1, Θ−, X) is the likelihood function of yields other than the short rate r̂, which is normally
distributed from the assumption of normality for the observation errors η (n). We set γ0 to match the sample
mean of the short rate.

Drawing µQ and ΦQ

We draw µQ and ΦQ with a Random Walk Metropolis algorithm. We assume a flat prior. We draw each parameter
separately in µQ, and each row in ΦQ. The accept/reject probability for the draws of µQ and ΦQ is similar to
equation (C-5). In each iteration, we invert λ0 and λ1 and report the estimates of the prices of risk instead of µQ

and ΦQ, as it is easier to interpret market prices of risk than parameters under the risk-neutral measure.

Drawing ση

Drawing the variance of the observation errors, σ2
η, is straightforward, because we can view the observation errors

η as regression residuals from equation (22). We draw the observation variance (σ(n)
η )2 separately from each yield.

We specify a conjugate prior IG(0, 0.00001), so that the posterior distribution of σ 2
η is a natural conjugate Inverse

Gamma distribution. The prior information roughly translates into a 30bp bid ask spread in Treasury securities,
which is consistent with studies on the liquidity of spot Treasury market yields(see, for example, Fleming, 2000).

Drawing β

For the case of the forward-looking Taylor rule over an infinite horizon with discounting, we augment the
parameter space to include the discount rate, β. To draw β, we use an Independence Metropolis-Hastings step.
The candidate draw, βm+1 , is drawn from a proposal density, q(βm+1 | βm) = q(βm+1), which we specify to
be a doubly truncated normal distribution, with mean 0.95 and standard deviation 0.03 but truncated at 0.8 from
below and at 0.99 from above.

Assuming a flat prior, the acceptance probability α for βm+1 is given by:

α = min

{
P (βm+1 | Θ−, X, Ŷ )
P (βm | Θ−, X, y)

q(βm)
q(βm+1)

, 1

}

= min

{
P (Ŷ | βm+1 , Θ−, X)
P (Ŷ | βm, Θ−, X)

q(βm)
q(βm+1)

, 1

}
, (C-7)

where Θ− represents all the parameters except the β parameter that is being drawn and P (Ŷ |β, Θ−, X) is the
likelihood function.
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Scaling Factors and Accept Ratios

The table below lists the scaling factors and acceptance ratios used in the Random Walk Metropolis steps for the
benchmark Taylor rule and backward-looking Taylor rule estimation.

Scaling Acceptance Scaling Acceptance
Parameter Factor Ratio Parameter Factor Ratio

δ1 0.00100 0.150 µQ
1 0.00050 0.133

µQ
2 0.00005 0.379 µQ

3 0.00002 0.141
ΦQ

1,. 0.00500 0.413 ΦQ
2,. 0.00100 0.582

ΦQ
3,. 0.00050 0.168

where µQ = (µQ
1 µQ

2 µQ
3 )� and ΦQ

i,. denotes the element of ΦQ in the ith row.

Checks for Convergence

To check the reliability of our estimation approach, we perform several exercises. First, we tried starting the chain
from many different initial values on real data and we obtained almost exactly the same results for the posterior
means and standard deviations of the parameters. We also check that the posterior distributions for the parameters
Θ are unimodal.

Second, we compute the Raftery and Lewis (1992) minimum burn-in and the minimum number of runs
required to estimate the 0.025 quantile to within ±0.025 with probability 0.95, using every draw in the MCMC-
Gibbs algorithm, which is conservative. For all the parameters (with one exception) and the complete time-series
of the latent factors fu , the minimum required burn-in is only several hundred and the minimum number of runs
is several thousand. This is substantially below the burn-in sample (10,000) and the number of iterations (50,000)
for our estimation.

The third, and probably most compelling check of the estimation method is that the MCMC-Gibbs sampler
works very well on simulated data. We perform Monte Carlo simulations, similar to the experiments performed by
Eraker, Johannes and Polson (2003). We take the posterior means of the parameters in Table 2 as the population
values and simulate a small sample of 203 quarterly observations, which is the same length as our data. Applying
our MCMC algorithm to the simulated small sample, we find that the draws of the VAR parameters (µ, Φ, Σ),
the short rate parameters (δ0, δ1), the constant prices of risk (λ0), and the observation error standard deviations
(σ(n)

η ) converge extremely fast. After our estimation procedure, the posterior means for these parameters are
all well within one posterior standard deviation of the population parameters. We find that a burn-in sample of
only 1,000 observations is sufficient to start drawing values for these parameters that closely correspond to the
population distributions. The time-varying prices of risk (λ 1) were estimated less precisely on the simulated data,
but the posterior means of eight out of nine prices of risk were also within one posterior standard deviation of the
population parameters. The algorithm is also successful in estimating the time-series of the latent factor f u, where
the true series of fu in the simulated sample lies within one posterior standard deviation bound of the posterior
mean of the generated fu from the Gibbs sampler.

In summary, these results verify that we can reliably estimate the parameters of the term structure model
given our sample size and, thus, we are very confident about the convergence of our algorithm.

35



References
[1] Ang, A., and G. Bekaert, 2004, “The Term Structure of Real Rates and Expected Inflation,” working paper,

Columbia University.

[2] Ang, A., and M. Piazzesi, 2003, “A No-Arbitrage Vector Autoregression of Term Structure Dynamics with
Macroeconomic and Latent Variables,” Journal of Monetary Economics, 50, 4, 745-787.

[3] Ang, A., M. Piazzesi, and M. Wei, 2005, “What does the Yield Curve Tell us about GDP Growth?”
forthcoming Journal of Econometrics.

[4] Bagliano, F. C., and C. A. Favero, 1998, “Measuring Monetary Policy with VAR Models: An Evaluation,”
European Economic Review, 42, 1069-112.

[5] Bansal, R., G. Tauchen, and H. Zhou, 2004, “Regime Shifts, Risk Premiums in the Term Structure, and the
Business Cycle,” Journal of Business and Economic Statistics, 22, 4, 396-409.

[6] Bekaert, G., S. Cho, and A. Moreno, 2003, “New-Keynesian Macroeconomics and the Term Structure,”
working paper, Columbia University.

[7] Bernanke, B. S., and I. Mihov, 1998, “Measuring Monetary Policy,” Quarterly Journal of Economics, 113,
3, 869-902.

[8] Bester, A., 2003, “Random Fields and Affine Models of Interest Rates,” working paper, Duke University.

[9] Bikbov, R., and M. Chernov, 2005, “No-Arbitrage Macroeconomic Determinants of the Yield Curve,”
working paper, Columbia University.

[10] Boivin, J., 2004, “Has U.S. Monetary Policy Changed? Evidence from Drifting Coefficients and Real-Time
Data,” working paper, Columbia University.

[11] Boivin, J., B. Bernanke, and P. Eliasz, 2004, “Measuring Monetary Policy: A Factor Augmented Vector
Autoregressive (FAVAR) Approach,” forthcoming Quarterly Journal of Economics.

[12] Brandt, M., and D. Chapman, 2003, “Comparing Multifactor Models of the Term Structure,” working paper,
Duke University.

[13] Campbell, J. Y., and R. J. Shiller, 1991, “Yield Spreads and Interest Rate Movements: A Bird’s Eye View,”
Review of Economic Studies, 58, 495-514.

[14] Carter, C. K., and R. Kohn, 1994, “On Gibbs Sampling for State Space Models,” Biometrika, 81, 541-553.

[15] Chen, R. R., and L. Scott, 1993, “Maximum Likelihood Estimation for a Multi-factor Equilibrium Model of
the Term Structure of Interest Rates,” Journal of Fixed Income, 3, 14-31.

[16] Christiano, L. J., M. Eichenbaum, and C. Evans, 1996, “The Effects of Monetary Policy Shocks: Evidence
from the Flow of Funds,” Review of Economics and Statistics, 78, 16-34.

[17] Christiano, L. J., M. Eichenbaum, M., and C. Evans, 1999, “Monetary Policy Shocks: What have we
Learned and to what End?” in J. B. Taylor, and M. Woodford, ed., Handbook of Macroeconomics, Elsevier
Science, North Holland.

[18] Clarida, R., and M. Gertler, 1997, “How the Bundesbank Conducts Monetary Policy,” in Reducing Inflation:
Motivation and Strategy, Romer, C. D., and D. H. Romer, eds., University of Chicago Press, Chicago, 363-
406.

[19] Clarida, R., Galı́, J., and M. Gertler, 1998, “Monetary Policy Rules in Practice: Some International
Evidence,” European Economic review, 42, 6, 1033-1067.

[20] Clarida, R., Galı́, J., and M. Gertler, 2000, “Monetary Policy Rules and Macroeconomic Stability: Evidence
and Some Theory,” Quarterly Journal of Economics, 115, 147-80.

[21] Cochrane, J. H., 1998, “What Do The VARs Mean? Measuring The Output Effects Of Monetary Policy,”
Journal of Monetary Economics, 41, 2, 277-300.

[22] Cochrane, J. H., and M. Piazzesi, 2005, “Bond Risk Premia,” American Economic Review 95, 1, pp. 138-
160.

[23] Cogley, T., and T. J. Sargent, 2001, “Evolving Post World War II U.S. Inflation Dynamics,” NBER
Macroeconomics Annual, 16, 331-373.

36



[24] Collin-Dufresne, P., R. S. Goldstein, and C. S. Jones, 2003, “Identification and Estimation of ‘Maximal’
Affine Term Structure Models: An Application to Stochastic Volatility,” working paper, USC.

[25] Collins, S., and P. L. Siklos, 2004, “ ‘Discounting’ Optimal Taylor Rules: Can the Policy Horizon
Masquerade as Interest Rate Smoothing?” working paper, Investment Company Institute, Washington DC.

[26] Constantinides, G. M., 1992, “A Theory of the Nominal Term Structure of Interest Rates,” Review of
Financial Studies, 5, 531-553.

[27] Dai, Q., and T. Philippon, 2005, “Government Deficits and Interest Rates: A No-Arbitrage Structural VAR
Approach,” working paper, NYU.

[28] Dai, Q., and K. J. Singleton, 2000, “Specification Analysis of Affine Term Structure Models,” Journal of
Finance, 55, 5, 1943-1978.

[29] Dai, Q., and K. J. Singleton, 2002, “Expectation Puzzles, Time-Varying Risk Premia, and Affine Models of
the Term Structure,” Journal of Financial Economics, 63, 415-41.

[30] Dewachter, H., and M. Lyrio, 2004, “Macro Factors and the Term Structure of Interest Rates,” forthcoming
Journal of Money, Credit and Banking.

[31] Diebold, F. X., G. D. Rudebusch, and S. B. Aruoba, 2005, “The Macroeconomy and the Yield Curve: A
Dynamic Latent Factor Approach,” forthcoming Journal of Econometrics.

[32] Duffee, G. R., 2002, “Term Premia and Interest Rate Forecasts in Affine Models,” Journal of Finance, 57,
405443.

[33] Evans, C. L. and D. Marshall, 1998, “Monetary Policy and the Term Structure of Nominal Interest rates:
Evidence and Theory,” Carnegie-Rochester Conference Series on Public Policy, 49, 53-111.

[34] Evans, C. L. and D. Marshall, 2001, “Economic Determinants of the Term Structure of Interst Rates,”
working paper, Federal Reserve Bank of Chicago.

[35] Eichenbaum, M., and C. L. Evans, 1995, “Some Empirical Evidence on the Effects of Shocks to Monetary
Policy on Exchange Rates,” Quarterly Journal of Economics, 110, 4, 975-1009.

[36] Eraker, B., M. Johannes, and N. Polson, 2003, “The Impact of Jumps in Volatility and Returns,” Journal of
Finance, 58, 3, 1269-1300.

[37] Favero, C., and R. Rovelli, 2003, “Macroeconomic Stability and the Preferences of the Fed: A Formal
Analysis,” Journal of Money, Credit and Banking, 35, 4, 545-556.

[38] Fisher, M., 1998, “A Simple Model of the Failure of the Expectations Hypothesis, working paper, Federal
Reserve Bank of Atlanta.

[39] Fleming, M. J., 2003, “Measuring Treasury Market Liquidity”, Federal Reserve Bank of New York Economic
Policy Review, 9, 3, 83-108.

[40] Fuhrer, J. C., and G. R. Moore, 1995, “Monetary Policy Trade-Offs and the Correlation between Nominal
Interest Rates and Real Output,” American Economic Review, 85, 1, 219-239.

[41] Gallmeyer, Michael F., Burton Hollifield, and Stanley E. Zin, 2005, “Taylor Rules, McCallum Rules, and
the Term Structure of Interest rates,” NBER working paper 11276.

[42] Goodfriend, M., 1991, “Interest-Rate Smoothing in the Conduct of Monetary Policy,” Carnegie-Rochester
Conference Series on Public Policy, 34, 7-30.

[43] Harvey, A. C., 1989, Forecasting Structural Time Series Models and the Kalman Filter, Cambridge
University Press, U.K.
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Table 2: PARAMETER ESTIMATES

Factor Dynamics
Companion Form Φ ΣΣ′ × 10000

µ g π fu g π fu

g 0.008 0.301 -0.240 -0.019 0.828 -0.011 0.007
(0.001) (0.068) (0.095) (0.132) (0.086) (0.034) (0.014)

π 0.002 0.048 0.700 0.198 -0.011 0.265 0.001
(0.001) (0.038) (0.055) (0.075) (0.034) (0.027) (0.009)

fu -0.001 0.039 0.063 0.922 0.007 0.001 0.023
(0.001) (0.014) (0.018) (0.022) (0.014) (0.009) (0.003)

Short Rate Equation
δ1

δ0 g π fu

0.010 0.056 0.281 1.000
(0.001) (0.013) (0.029) —

Risk Premia Parameters
λ1

λ0 g π fu

g 0.945 -45.674 -48.621 -32.501
(0.551) (16.913) (34.717) (23.072)

π -0.240 2.404 -22.405 -1.023
(0.193) (10.360) (13.034) (17.444)

fu -0.669 22.390 48.335 -34.369
(0.202) (9.337) (14.545) (15.771)

Observation Error Standard Deviation

n = 1 n = 4 n = 8 n = 12 n = 16 n = 20

σ
(n)
η 0.189 0.128 0.063 0.035 0.046 0.064

(0.010) (0.007) (0.004) (0.002) (0.003) (0.004)

Note: The table lists parameter values for the model in equations (1)-(4) and observation error standard
deviations in equation (22) for yields of maturity n quarters. We use 50,000 simulations after a burn-in
sample of 10,000 for the Gibbs sampler. We report the posterior mean and posterior standard deviation (in
parentheses) of each parameter. The sample period is June 1952 to December 2002 and the data frequency is
quarterly.
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Table 3: SUMMARY STATISTICS

PANEL A: MOMENTS OF MACRO FACTORS

Means % Standard Deviations % Autocorrelations

Data Model Data Model Data Model

g 0.803 0.809 0.964 1.007 0.340 0.356
(0.088) (0.204) (0.067) (0.073) (0.068) (0.077)

π 0.950 0.949 0.792 0.879 0.762 0.776
(0.110) (0.643) (0.097) (0.225) (0.057) (0.064)

PANEL B: MOMENTS OF YIELDS

n = 1 n = 4 n = 8 n = 12 n = 16 n = 20

Means

Data 1.334 1.438 1.488 1.528 1.558 1.576
(0.107) (0.108) (0.107) (0.105) (0.105) (0.104)

Model 1.334 1.419 1.488 1.530 1.557 1.575
– (0.005) (0.003) (0.002) (0.002) (0.004)

Standard Deviations

Data 0.720 0.721 0.713 0.697 0.693 0.684
(0.092) (0.083) (0.082) (0.080) (0.080) (0.076)

Model 0.707 0.707 0.705 0.699 0.691 0.680
(0.011) (0.006) (0.003) (0.003) (0.003) (0.005)

Autocorrelations

Data 0.925 0.932 0.943 0.949 0.955 0.959
(0.032) (0.031) (0.029) (0.028) (0.028) (0.026)

Model 0.953 0.958 0.961 0.963 0.963 0.963
(0.002) (0.001) (0.001) (0.001) (0.001) (0.001)

PANEL C: SHORT RATE CORRELATIONS

g π fu

Data -0.090 0.695 –
(0.100) (0.063)

r -0.103 0.735 0.962
(0.125) (0.087) (0.021)

Note: Panel A lists moments of GDP and inflation in data and implied by the model.For the model, we
construct the posterior distribution of unconditional moments by computing the unconditional moments
implied from the parameters in each iteration of the Gibbs sampler. Panel B reports data and model
unconditional moments of n-quarter maturity yields. We compute the posterior distribution of the model-
implied yields using the generated latent factors in each iteration. In Panel C, we report correlations of the
short rate with various factors. For the model, we compute the posterior distribution of the correlations of
the model-implied short rate r in equation (2). In all the panels, the data standard errors (in parentheses) are
computed using GMM and all moments are computed at a quarterly frequency. For the model, we report
posterior means and standard deviations (in parentheses) of each moment. The sample period is June 1952 to
December 2002 and the data frequency is quarterly.
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Table 4: VARIANCE DECOMPOSITIONS

Variance Decompositions

Total Risk Premia

Maturity (qtrs) Risk Premia g π f u g π fu

PANEL A: YIELD LEVELS y
(n)
t

1 0.0 12.5 28.7 58.8 – – –
4 0.7 12.9 25.1 62.0 12.7 17.7 69.6
8 3.4 13.0 22.6 64.4 11.4 17.6 71.0
12 7.6 13.0 21.2 65.8 11.3 17.4 71.3
16 12.5 13.0 20.3 66.7 11.3 17.2 71.5
20 17.8 13.0 19.8 67.2 11.4 17.0 71.6

PANEL B: YIELD SPREADS y
(n)
t − y

(1)
t

4 49.4 0.5 87.3 12.2 12.7 17.7 69.6
8 49.9 0.3 89.7 10.0 11.4 17.6 71.0
12 48.7 0.2 92.4 7.4 11.3 17.4 71.3
16 46.9 0.3 94.7 5.0 11.3 17.2 71.5
20 44.8 0.6 96.0 3.4 11.4 17.0 71.6

PANEL C: EXPECTED EXCESS HOLDING PERIOD RETURNS Et(rx
(n)
t+1)

4 100 16.2 20.7 63.1 16.3 20.7 63.0
8 100 15.8 30.4 53.8 15.8 30.4 53.8
12 100 15.6 38.9 45.5 15.6 38.9 45.5
16 100 15.5 44.9 39.6 15.5 44.9 39.6
20 100 15.5 49.0 35.5 15.5 49.0 35.5

Note: The table reports unconditional variance decompositions of forecast variance (in percentages) for yield
levels y

(n)
t in Panel A; yield spreads y

(n)
t −y

(1)
t in Panel B; and unconditional expected excess holdingperiod

returns E(rx(n)
t+1) = E(ny

(n)
t − (n − 1)y(n−1)

t+1 − rt) in Panel C. In each panel, we also examine the variance
decomposition due to time-varying risk premia. By definition, the variance decompositions of time-varying
expected excess holding period returns must be due only to time-varying risk premia. All maturities are
in quarters. We ignore observation error for computing variance decompositions for yield levels and yield
spreads. All the variance decompositions are computed using the posterior mean of the parameters listed in
Table 2.
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Table 5: CHARACTERIZING EXCESS RETURNS

PANEL A: MOMENTS OF EXCESS RETURN

n = 4 n = 8 n = 12 n = 16 n = 20

Means

Data 0.107 0.157 0.193 0.213 0.222
(0.048) (0.104) (0.152) (0.200) (0.234)

Model 0.085 0.154 0.196 0.224 0.242
(0.018) (0.028) (0.032) (0.036) (0.043)

Standard Deviations

Data 0.755 1.558 2.204 2.796 3.310
(0.129) (0.222) (0.262) (0.295) (0.339)

Model 0.629 1.410 2.167 2.904 3.619
(0.034) (0.075) (0.115) (0.154) (0.194)

PANEL B: PREDICTABILITY REGRESSIONS

Data Estimates Model-Implied Estimates

g π y(20) R2 g π y(20) R2

n = 4 -0.072 -0.078 0.223 0.036 -0.044 -0.039 0.164 0.040
(0.064) (0.090) (0.096) (0.047) (0.069) (0.077)

n = 12 -0.193 -0.461 0.752 0.040 -0.194 -0.449 0.743 0.053
(0.184) (0.240) (0.296) (0.159) (0.236) (0.262)

n = 20 -0.237 -0.719 1.129 0.039 -0.362 -0.957 1.331 0.061
(0.266) (0.366) (0.450) (0.265) (0.393) (0.434)

PANEL C: FACTOR COEFFICIENTS

Maturity (qtrs)

4 8 12 16 20

Ax
n 0.002 0.006 0.009 0.012 0.015

Bx
n g -0.039 -0.102 -0.176 -0.255 -0.334

π -0.066 -0.239 -0.462 -0.703 -0.946
fu 0.228 0.549 0.868 1.176 1.470
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Note: Panel A lists moments of one-quarter approximate excess holding period returns, arx
(n)
t+1, in the

data and implied by the model (see equation (7)). For the model, we construct the posterior distribution
of unconditional moments by computing the unconditional moments implied from the parameters in each
iteration of the Gibbs sampler. Panel B regresses one-quarter approximate excess holdingperiod returns for an
n-period bond, arx

(n)
t+1 onto GDP, inflation, and a bond yield. The standard errors for the OLS estimates from

data (in parentheses) are computed using robust standard errors. We compute the model-implied coefficients
and R2 as follows. We construct the posterior distributions of the model-implied estimates by computing the
implied coefficients from the model parameters in each iteration of the Gibbs sampler. We report posterior
means and standard deviations (in parentheses) of each coefficient. Panel C reports the coefficients of the
conditional expected excess holding period return E t(rx

(n)
t+1) = Ax

n + Bx�
n Xt defined in equation (8) on the

factors Xt = [gt πt fu
t ]�. The data frequency is quarterly and the sample period is June 1952 to December

2002.
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Table 6: TAYLOR RULES

PANEL A: BENCHMARK TAYLOR RULE

Full Sample Pre-82:Q4 Post-83:Q1

OLS Model OLS Model OLS Model

const 0.007 0.010 0.006 0.010 0.007 0.012
(0.001) (0.001) (0.001) (0.001) (0.002) (0.001)

gt 0.036 0.056 0.004 0.051 0.238 0.032
(0.071) (0.012) (0.080) (0.017) (0.104) (0.035)

πt 0.643 0.281 0.677 0.272 0.605 0.241
(0.080) (0.029) (0.082) (0.031) (0.130) (0.052)

PANEL B: BACKWARD-LOOKING TAYLOR RULE

const gt πt gt−1 πt−1 rt−1 R2

OLS 0.000 0.074 0.182 -0.005 -0.077 0.879 0.895
(0.000) (0.027) (0.046) (0.029) (0.041) (0.035)

Model -0.000 0.056 0.281 -0.013 -0.197 0.922 0.955
(0.001) (0.013) (0.029) (0.015) (0.028) (0.022)

PANEL C: FINITE-HORIZON, FORWARD-LOOKING TAYLOR RULE

Forward-Looking Taylor Rule Implied Short Rate

const Et(gt+k,k) Et(πt+k,k) δ1,g δ1,π δ1,u

k = 1 0.009 0.061 0.401 0.036 0.259 0.897
(0.001) (0.081) (0.154) (0.017) (0.019) (0.054)

k = 4 0.006 0.157 0.676 0.044 0.265 0.918
(0.003) (0.221) (0.138) (0.014) (0.018) (0.029)

k = 8 0.005 0.042 0.883 0.035 0.235 0.868
(0.005) (0.385) (0.204) (0.001) (0.019) (0.026)

k = 20 0.005 -0.546 1.385 0.021 0.248 0.863
(0.010) (0.843) (0.459) (0.003) (0.015) (0.032)
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Table 6 Continued

PANEL D: INFINITE-HORIZON, FORWARD-LOOKING TAYLOR RULE

Forward-Looking Taylor Rule Coefficients Implied Short Rate Coefficients

const ĝt π̂t β δ1,g δ1,π δ1,u

k = ∞ -0.003 0.020 0.096 0.939 0.038 0.275 1.078
(0.002) (0.010) (0.008) (0.007) (0.015) (0.021) (0.116)

PANEL E: FORWARD- AND BACKWARD-LOOKING TAYLOR RULE

const Et(gt+k,k) Et(πt+k,k) gt−1 πt−1 rt−1 R2

k = 1 -0.001 0.061 0.401 0.001 -0.054 0.846 0.962
(0.001) (0.081) (0.051) (0.016) (0.051) (0.039)

k = 4 -0.003 0.157 0.676 -0.008 -0.073 0.726 0.971
(0.003) (0.221) (0.138) (0.012) (0.045) (0.091)

Note: Panel A reports the OLS and model-implied estimates of the benchmark Taylor (1993) rule in equation
(9) over the full sample and over subperiods; Panel B reports the backward-looking Taylor rule (10); Panel C
reports the finite-horizon, forward-looking Taylor rule without discounting in equation (18); Panel D reports
the infinite-horizon, forward-looking Taylor rule with discounting in equation (19); and Panel E reports the
forward- and backward-lookingTaylor rule in equation (21). Panels C and D also report the implied short rate
coefficients corresponding to the forward-looking Taylor rules without discounting in equation (17) for each
horizon k and equation (20) for the forward-looking Taylor rule with discounting. For the model-implied
coefficients, we construct the posterior distribution of Taylor rule coefficients by computing the implied
coefficients from the model parameters in each iteration of the Gibbs sampler. We report posterior means
and standard deviations (in parentheses) of each coefficient. The standard errors for the OLS estimates (in
parentheses) are computed using robust standard errors. In each panel, the data frequency is quarterly and the
full sample period is from June 1952 to December 2002.
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Figure 1: LATENT FACTOR, SHORT RATE, AND THE OLS BENCHMARK TAYLOR RULE
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We plot the posterior mean of the latent factor f u
t , the demeaned short rate from data, and the residuals from

the OLS estimate of the basic Taylor Rule, which is computed by running OLS on equation (9). The latent
factor, short rate, and OLS residuals are all annualized.
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Figure 2: EXPECTED EXCESS BOND RETURNS
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We plot the conditional expected excess holding period return E t[rx
(n)
t+1] of a 4-quarter and 20-quarter bond

implied by the posterior mean of the latent factors through time. The numbers on the y-axis are in percentage
terms per annum.
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Figure 3: SERIALLY CORRELATED MONETARY POLICY SHOCKS
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In the top panel, we plot the residuals from the OLS estimate of the basic Taylor Rule, which is computed
by running OLS on equation (9) and the posterior mean estimates of monetary policy shocks from a Taylor
rule with serially correlated shocks (εMP,AR

t in equation (14)). The bottom panel plots the short rate data
and rAR, which is the fitted short rate using equation (14), r AR

t = ct + Ψt(L)fo
t . In both the top and bottom

panels, we plot annualized numbers.
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Figure 4: BACKWARD-LOOKING MONETARY POLICY SHOCKS
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In the top panel, we plot the OLS estimates of the residuals of the backwards-looking Taylor rule (10). The
bottom panel plots the corresponding model-implied monetary policy shocks, which are the posterior mean
estimates of εMP,B

t = δ12v
u
t from equation (13). In both the top and bottom panels, we plot annualized

monetary policy shocks. NBER recessions are shown as shaded bars.
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Figure 5: IMPULSE RESPONSES OF YIELDS I
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The panels show responses of the one-, four- and twenty-quarter yield, and the term spread between the
twenty- and one-quarter yields to 1% shocks to GDP growth g t and inflation πt. We also plot the response of
a 1% shock in the short rate, which is computed by constructing a shock to the state variables proportional
to their Cholesky decomposition that sums to a 1% short rate shock. Yields on the y-axis are annualized and
we show quarters on the x-axis. The impulse responses are computed using a Cholesky decomposition that
orders the variables (gt, πt, f

u
t ).
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Figure 6: IMPULSE RESPONSES OF YIELDS II
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We plot the responses of yields of 1, 4, and 20 quarter maturities, and the corresponding term spreads to -1%
shocks to expected GDP growth Et(gt+4,4) and inflation Et(πt,t+4) over the next year. We compute the 1%
shocks to expected GDP growth or inflation by constructing a shock to the state variables proportional to their
Cholesky decomposition that sums to a -1% E t(gt+4,4) or a 1% Et(πt+4,4) shock. Yields on the y-axis are
annualized and we show quarters on the x-axis. We use a Cholesky decomposition that orders the variables
(gt, πt, f

u
t ).
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