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Abstract
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the economy. Private agents rely on an adaptive learning technology to form expectations
and update their beliefs based on incoming data. Policymakers follow an interest rate rule
aiming to maintain price stability and to minimize fluctuations of unemployment around its
natural rate but are uncertain about the economy’s natural rates of interest and unemploy-
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thermore, policies that would be optimal under perfect knowledge can perform very poorly
when knowledge is imperfect. Efficient policies that take account of private learning and
misperceptions of natural rates call for more aggressive responses to inflation that would
be optimal under perfect knowledge. We show that such policies not only improve per-
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private sector learning and the magnitude of variation in natural rates.
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1 Introduction

One of the most basic tenets of modern monetary economics is that systematic monetary

policy—that is policy guided by a rule—has major advantages over discretionary decision-

making in improving economic performance.1 There is also widespread agreement regarding

the objectives of monetary policy. These may broadly be described as the achievement and

maintainance of monetary and economic stability, consistent with maximum sustainable

growth over time.

There is much less agreement, however, about which rule exactly a central bank should

follow in order to attain its objectives, or even what precise considerations should govern

the design process that might determine such a rule. Ideally, a policy rule should foster

expectations of price stability and ensure the stability of a nation’s currency by maintaining

a low and stable rate of inflation. At the same time, an ideal policy rule would adapt to

changing economic conditions so as to avoid or dampen fluctuations in output and employ-

ment, when this is feasible. But what are the tradeoffs involved in the pursuit of price

stability and economic stability? How vigorous could or should countercyclical monetary

policy be in the presence of such tradeoffs before it risks becoming counterproductive?

At some level, this question could be viewed as rather simple. One might argue that

it should not be hard to identify a reasonable approximating model of the economy, and

approximate behavioral descriptions of how economic agents form expectations and take

decisions. On the basis of such a model, then, one could conduct an optimal control ex-

ercise, properly accounting for the interaction of policy and expectations formation, and

thus uncover what an optimal policy rule should be. Indeed, it is not uncommon practice

in policy evaluation exercises to posit that the policymaker and economic agents possess

perfect knowledge of the structure of the economy and of the stochastic processes governing

economic flactuations and then proceed to identify optimal policy rules under these ideal-

ized conditions. This modelling approach may provide useful benchmarks for policy, under

some circumstances.
1Taylor (1993), and McCallum (1999).
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Macroeconomic reality, however, is not quite so simple. Our knowledge about key

aspects of the economy and the nature of agent’s behavior seems highly imperfect. A crucial

issue in the design of monetary policy rules, therefore, is examination of the robustness of

the benchmark policy rules suggested by models based on the simplifying assumption of

perfect knowledge. In this paper, we examine the performance and robustness properties

of monetary policy rules in an estimated macroeconomic model in which the economy

undergoes structural change and the knowledge of private agents and the central bank

about the true structure of the economy is imperfect.

To account for imperfect knowledge on the part of economic agents we pay particular

attention to the role that behavioral assumptions governing the formation of expectations

play in policy evaluations. In standard policy evaluation exercises, expectation formation is

governed by imposing the assumption that the structure of the model is perfectly known by

agents and that expectations correspond to the model-consistent mathematical expectations

implied by the dynamic structure of the model. This, however, pressuposes that agents

within the model have much more information regarding the economy than actual economic

agents are likely to possess, even if the economy were governed by an underlying structure

identical to that assumed in the model. To explore possible robustness issues associated

with this assumption, we follow Orphanides and Williams (2004) and allow for a form of

imperfect knowledge in which economic agents rely on an adaptive learning technology

to form expectations. This form of learning represents a relatively modest deviation from

rational expectations that nests it as a limiting case. In particular, we maintain the standard

assumption that economic agents know the correct structure of the economy and form

expectations accordingly. But, rather than endowing them with complete knowledge of the

parameters of these functions—as would be required by imposing the rational expectations

assumption—we posit that economic agents rely on finite memory least squares estimation

to update these parameter estimates. This setting conveniently nests rational expectations

as a limiting case in our analysis, one that corresponds to infinite memory least squares

estimation. Further, it allows varying degrees of imperfection in expectations formation to
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be characterized by variation in a single model parameter. The resulting process of perpetual

learning on the part of economic agents introduces an additional layer of interaction between

monetary policy and economic outcomes that complicates policy analysis.

We introduce structural change by positing that the economy’s natural rates of unem-

ployment and interest evolve over time and that their precise values are unobserved. This

presents a difficulty for policymakers who follow an interest rate rule aiming to maintain

price stability and to minimize fluctuations of unemployment around its natural rate, and

consequently could take better policy decisions if the economy’s natural rates were known.

As is traditional in policy analysis models, the equilibrium of the economy can be de-

scribed in terms of deviations from natural rates, and, by implication, macroeconomic sta-

bilization is defined as policy that successfully closes natural rate gaps. For inflation, this

is the essence of the Phillips curve, where economic “slack,” defined as deviations of unem-

ployment from its natural rate, is a key determinant of inflation. As a result, expansionary

monetary policy measures are called for when demand falls short of the economy’s natural

supply and contractionary measures are required when the opposite occurs. Furthermore,

the stance of policy, described in terms of the short-term nominal interest rates, is defined

as expansionary or contractionary by examining whether the real short-term interest rate

is below or above the real natural rate of interest.

When policymakers do not know the values of the natural rates of interest and unem-

ployment in real time, when they make policy decisions, they must either rely on imperfect

real-time estimates of these rates for setting the policy instrument or follow policy rules

that do not require such estimates. Although policy should ideally account for the evo-

lution of the economy’s natural rates, reliance on real-time estimates of natural rates is

also a source of possible error in policy settings—the result of the unavoidable policymaker

misperceptions in these real-time estimates.

Indeed, considerable uncertainty regarding the natural rates of unemployment and in-

terest, and ambiguity about how best to model and estimate natural rates remains even

with the benefit of hindsight.2 As a result, substantial misperceptions regarding the econ-
2See, for instance, Staiger, Stock, and Watson (1997), and Orphanides and Williams (2002) for documen-
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omy’s natural rates may persist for some time, before their presence is recognized. In

the meantime, policy intended to be contractionary may actually inadvertently be overly

expansionary, and vice versa.

Persistent policy errors resulting from the evolution of the economy’s natural rates in-

teract with the economic agents’ perpetual learning process that governs the formation of

expectations and feeds back to economic outcomes. This added layer of interaction between

monetary policy and economic outcomes potentially hinders the ability of policymakers to

stabilize the economy with as great precision as would be possible under rational expec-

tations with perfect knowledge of the economy’s natural rates, as pointed out Orphanides

and Williams, (2004, forthcoming) and Gaspar, Smets and Vestin (2005).

We examine the quantitative importance of the potential deterioration in economic per-

formance due to imperfect knowledge, and implications for policy design in a quarterly

model of the U.S. economy estimated over the 1981-2004 period. Our analysis suggests the

scope for economic stabilization in our model with imperfect knowledge is indeed signifi-

cantly reduced relative to the economy under rational expectations with perfect knowledge.

Furthermore, monetary policies that would appear optimal under rational expectations

perform very poorly when knowledge is imperfect. Efficient policies that take account of

private learning and misperceptions of natural rates call for more aggressive responses to

inflation that would be optimal under perfect knowledge. We show that such policies not

only improve performance in our baseline model of the economy, but are also quite robust

to potential misspecification of private sector learning and the magnitude of variation in

natural rates.

2 Natural Rates, Misperceptions, and Policy Errors

We start our analysis with an illustration of the some of the difficulties presented by the

evolution of the economy’s natural rates. To highlight the role of natural rate misperceptions

tation of the difficulties associated with the measurement of the natural rate of unemployment and real-time
estimates of the unemployment gap; Orphanides and van Norden (2002), and van Norden (2002) for the
related problem regarding the output gap; and Laubach and Williams (2002), Orphanides and Williams
(2002) and Clark and Kozicki (2004) for the errors in real-time estimates of the natural rate of interest.
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and the role of policy in propagating them in the economy, consider a generalization of the

simple policy rule proposed by Taylor (1993). Let it denote the short-term interest rate

employed as the policy instrument, (the federal funds rate in the Unites States), πt the rate

of inflation, and ut the rate of unemployment, all measured in quarter t. The classic Taylor

rule can then be expressed by

it = r̂∗t + πt−1 + θπ(πt−1 − π∗) + θu(ut−1 − û∗t ), (1)

where π∗ is the policymaker’s inflation target and r̂∗t and û∗t are the policymaker’s latest

estimates of the natural rates of interest and unemployment, based on information available

during period t. Note that in this formulation, we restrict attention to the operational

version of the Taylor rule recognizing that, as a result of reporting lags, the latest available

information about actual inflation and economic activity in period t regards the previous

period, t − 1. Note also that here we consider a variant of the Taylor rule that responds

to the unemployment gap instead of the output gap for our analysis, recognizing that the

two are related by Okun’s (1962) law.3 In his 1993 exposition, Taylor examined response

parameters equal to 1/2 for both the inflation gap and the output gap. Using an Okun’s

coefficient of 2, this corresponds to setting θπ = 0.5 and θu = −1.0.

The Taylor rule has been found to perform quite well in terms of stabilizing economic

fluctuations, at least when the natural rates of interest and unemployment are accurately

measured.4 However, historical experience suggests that policy guidance from this family

of rules may be rather sensitive to misperceptions regarding the natural rates of interest

and unemployment. The experience of the 1970s, discussed in Orphanides (2003) and

Orphanides and Williams (forthcoming), offers a particularly stark illustration of policy

errors that may result.

Following Orphanides and Williams (2002), we explore two dimensions along which the

Taylor rule has been generalized that in combination offer the potential to mitigate the
3In what follows, we assume that an Okun’s law coefficient of 2 is appropriate for mapping the output gap

to the unemployment gap. This is significantly lower that Okun’s original suggestion of about 3.3. Recent
views, as reflected in the work by various authors place this coefficient in the 2 to 3 range.

4See, e.g. the contributions in Taylor (1999), which are also reviewed in Taylor (1999b).
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problem of natural rate mismeasurement. The first aims to mitigate the effects of mismea-

surement of the natural rate of unemployment by partially (or even fully) replacing the

response to the unemployment gap with one to the change in the unemployment rate.5 The

second dimension we explore is incorporation of policy inertia, represented by the presence

of the lagged short-term interest rate in the policy rule. Policy rules that exhibit a sub-

stantial degree of inertia typically improve the stabilization performance of the Taylor rule

in forward-looking models.6 As argued by Orphanides and Williams (2002), the presence

of inertia in the policy rule also reduces the influence of the estimate of the natural rate

of interest on the current setting of monetary policy and, therefore, the extent to which

misperceptions regarding the natural rate of interest affect policy decisions. To see this,

consider the generalized Taylor rule of the form

it = θiit−1 + (1− θi)(r̂∗t + πt−1) + θπ(πt−1 − π∗) + θu(ut−1 − û∗t ) + θ∆u(ut−1 − ut−2). (2)

The degree of policy inertia is measured by θi ≥ 0; cases where 0 < θi < 1 are fre-

quently referred to as “partial adjustment”; the case of θi = 1 is termed a “difference rule”

or “derivative control” (Phillips 1954), whereas θi > 1 represents superinertial behavior

(Rotemberg and Woodford 1999). These rules nest the classic Taylor rule as the special

case when θi = θ∆u = 0.7

To see more clearly how misperceptions regarding the natural rates of unemployment

and interest translate to policy errors it is useful to distinguish the real-time estimates of

the natural rates, û∗t and r̂∗t , available to policymakers when policy decisions are made, from

their “true” values u∗ and r∗. If policy follows the generalized rule given by equation (2),
5This parallels a modification of the Taylor rule suggested by numerous researchers who who have argued

in favor of policy rules that respond to the growth rate of output rather than the output gap when real-time
estimates of the natural rate of output are prone to measurement error. See, in particular, McCallum (2001),
Orphanides (2003b), Orphanides et al. (2000), Leitemo and Lonning (2002), and Walsh (2003).

6See e.g. Levin et al. (1999, 2002), Rotemberg and Woodford (1999), Williams (2003), and Woodford
(2003).

7Policy rules that allow for a response to the lagged instrument and the change in the output gap or
unemployment rate have been found to offer a simple characterization of historical monetary policy in
the United States for the past few decades in earlier studies, e.g. Orphanides and Williams (2003) and
Orphanides (2003c).
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then the “policy error” introduced in period t by misperceptions in period t is given by

(1− θi)(r̂∗t − r∗) + θu(û∗t − u∗t ).

Although unintentional, these errors could subsequently induce undesirable fluctuations

in the economy, worsening stabilization performance. The extent to which misperceptions

regarding the natural rates translate into policy induced fluctuations depends on the param-

eters of the policy rule. As is evident from the expression above, policies that are relatively

unresponsive to real-time assessments of the unemployment gap, that is, those with small θu

minimize the impact of misperceptions regarding the natural rate of unemployment. Simi-

larly, inertial policies with θf near unity reduce the direct effect of misperceptions regarding

the natural rate of interest. That said, inertial policies also carry forward the effects of past

misperceptions of the natural rates of interest and unemployment on policy, and one must

take account of this interaction in designing policies robust to natural rate mismeasurement.

A limiting case that is immune to natural rate mismeasurement of the kind considered

here is a “difference” rule, in which θi = 1 and θu = 0:

it = it−1 + θπ(πt − π∗) + θ∆u(ut − ut−1). (3)

As Orphanides and Williams (2002), point out, this policy rule is as simple, in terms of the

number of parameters, as the original formulation of the Taylor rule and is arguably simpler

to implement in practice since does not require knowledge of the natural rates of interest or

unemployment. However, because this type of rule ignores potentially useful information

about the natural rates of interest and unemployment, its performance relative to the classic

“level” Taylor rule and the generalized rule will depend on the degree of mismeasurement

and the structure of the model economy, as we explore below.

3 An Estimated Model of the U.S. Economy

We examine the interaction of natural rate misperceptions, learning, and expectations for

the design of robust monetary policy rules using a simple quarterly model motivated by the

recent literature on micro-founded models incorporating habit formation in consumption
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and indexation in price-setting. (Woodford, 2004). The specification of the model is closely

related to that in Gianonni and Woodford (2004), Smets (2002) and others.

3.1 The Structural Model

The model consists of the following two structural equations:

πt = φππe
t+1 + (1− φπ)πt−1 + απ(ut − u∗t ) + eπ,t, eπ ∼ iid(0, σ2

eπ
), (4)

ut = φuue
t+1 + (1− φu)ut−1 + αu (re

t − r∗) + eu,t, eu ∼ iid(0, σ2
eu

), (5)

where π denotes inflation, u denotes the unemployment rate, u∗ denotes the true natural

rate of unemployment, r denotes the ex ante short-term real interest rate and r∗ the natural

real rate of interest.

The “Phillips curve” in this model (equation 4) relates inflation (measured as the an-

nualized percent change in the GNP or GDP price index, depending on the period) during

quarter t to lagged inflation, expected future inflation, and the unemployment gap during

the current quarter. The parameter φπ measures the importance of expected inflation on

the determination of inflation, with (1 − φπ) capturing the role of indexation. The un-

employment equation (equation 5) relates the unemployment rate during quarter t to the

expected future unemployment rate and one lag of the unemployment rate and the ex ante

real interest rate gap. Here, (1− φu) reflects the role of habit formation.

For our simulation analysis, we imposed the coefficients φπ = φu = 0.5 on the lead-

lag structure of the two equations. We opted to concentrate attention on this case to

ensure that expectations are of comparable importance for the determination of inflation

and unempployment in the structure of the model. These values for φπ and φu are the largest

allowable by the micro-founded theory developed in Woodford (2003), but are consistent

with the empirical findings of Giannoni and Woodford (2004) and others.8 To estimate the

remaining parameters, as in Orphanides and Williams, (2002) we rely on survey forecasts as

proxies for the expectations variable which allows estimation of equations (4) and (5) with
8We note that in the speficication shown in equations (4) and (5), the data do not reject the value 0.5

for either φπ or φu. The unrestricted point estimate of φπ is in fact close to 0.5. However the unrestricted
estimate of φu is noticeably lower.
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ordinary least squares. Specifically, we rely on the mean values of the forecasts provided

in the Survey of Professional Forecasters. From this survey, we use the forecasts of the

unemployment rate and three-month treasury bill rate as reported. For inflation, we rely

on annualized log difference of the GNP or GDP price deflator, which we construct from

the forecasts of real and nominal GNP or GDP which are reported in the survey. We posit

that the relevant expectations are those formed in the previous quarter; that is, we assume

that the expectations determining πt and ut are those collected in quarter t − 1. This

matches the informational structure in the theoretical models (Giannoni and Woodford,

2004 and Woodford, 2003). Finally, to match the inflation and unemployment data as

best as possible with these forecasts, we use first announced estimates of these series. Our

primary sources for these data are the Real-Time Dataset for Macroeconomists and the

Survey of Professional Forecasters, both currently maintained by the Federal Reserve Bank

of Philadelphia (Zarnowitz and Braun (1993), Croushore (1993) and Croushore and Stark

(2001)).

Using ordinary least squares, we obtain the following estimates for our model between

1981:4 and 2004:2, where the starting point of this sample reflects the availability of the

Survey of Professional Forecasters data for the short-term interest rate.

πt = 0.5πe
t+1 + 0.5πt−1 − 0.192

(0.084)

(ue
t − u∗t ) + eπ,t, σ̂eπ = 1.11 (6)

ut = 0.5ue
t+1 + 0.5ut−1 +0.036

(0.017)

(r̃e
t − r∗) + eu,t, σ̂eu = 0.29 (7)

The numbers in parentheses are the estimated standard errors of the corresponding regres-

sion coefficients. The estimated unemployment equation also includes a constant term that

provides an estimate of the natural real interest rate, which is assumed to constant in es-

timating this equation. The estimated residuals show no signs of serial correlation in the

price equation. Some serial correlation is suggested by the residuals of the unemploymet

equation, but for simplicity we ignore this serial correlation in evaluating the performance

of monetary policies.
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We model the natural rates as exogenous AR(1) processes independent of all other

variables. We assume these processes are stationary based on the finding using the standard

ADF test that one can reject the null of nonstationarity of both the unemployment rate and

real federal funds rate over 1950–2003 at the 5 percent level. However to capture the near-

nonstationarity of the series, we set the AR(1) coefficient to 0.99 and and then calibrate the

innovation variances to be consistent with estimates of time variation in the natural rates

in postwar U.S. data. In particular, we set the innovation standard deviation of the natural

rate of unemployment to 0.07 and that of the natural rate of interest to 0.085. These values

imply an unconditional standard deviation of the natural rate of unemployment (interest)

of 0.50 (0.60), in the low end of the range of standard deviations of smoothed estimates of

these natural rates suggested by various estimation methods (see Orphanides and Williams

2002 for details).

4 Monetary Policy

We complete the structural model by specifying a monetary policy rule according to which

the federal funds rate is determined by a generalized Taylor Rule of the form:

it = θiit−1 + (1− θi)(r̂∗t + πt−1) + θπ(πt−1 − π∗) + θu(ut−1 − û∗t ) + θ∆u(ut−1 − ut−2), (8)

where r̂∗t−1 is the policymaker’s real-time estimate of the natural rate of interest and û∗t is

the real-time estimate of the natural rate of unemployment. We describe the policymaker’s

estimation of natural rates in the next section. As mentioned earlier, we used lagged data

in the policy rule reflecting the lag in data releases. In the following we focus on different

versions of this policy rule. In one, all four parameters are freely chosen. We also examine

the two alternative simpler, 2-parameter rules that are nested by the generalized rule: The

“level” variant, where we constrain θi and θ∆u to be zero, and which is closer to the original

Taylor rule; and the “difference” variant, where we impose the constraints θi = 1 and θu = 0.

We evaluate the performance of monetary policies rules using a loss equal to the weighted

sum of the unconditional variances of the inflation rate, the unemployment gap, and the
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change in the nominal federal funds rate:

L = V ar(π) + λV ar(ũ) + νV ar(∆(i)), (9)

where V ar(x) denotes the unconditional variance of variable x.9 We assume an inflation

target of zero percent. As a benchmark for our analysis, we assume λ = 4 and ν = 0.25.

Based on an Okun’s gap type relationship, the variance of the unemployment gap is about

1/4 that of the output gap, so this choice of λ corresponds to equal weights on inflation and

output gap variability. We consider the sensitivity of our results to alternative specifications.

5 Learning

We assume that private agents form expectations using an estimated forecasting model, and

that the central bank forms estimates of the natural rates of interest and unemployment

using simple time-series methods. Each period, both private agents and the the central bank

reestimate their respective models using constant-gain least squares that weighs recent data

more heavily than past data. In this way, these estimates allow for time variation in the

economy.

Following Orphanides and Williams (2004), private agents reestimate their forecasting

models each period using a constant gain algorithm that places more weight on recent

observations.10 Given the structure of the model, agents need to forecast inflation, the

unemployment rate, and the federal funds rate for up to two quarters into the future.

5.1 Perpetual Learning with Least Squares

Under perfect knowledge with no shocks to the natural rate of unemployment, the pre-

dictable components of inflation, the unemployment rate, and the funds rate each depend

on a constant, one lag each of the inflation and the ex post real funds rate (the differ-

ence between the nominal funds rate and the inflation rate), and one or two two lags of
9Taken literally, the structural model implies a second-order approximation to consumer welfare that is

related to the weighted and discounted sum of expected variances of the change in the inflation rate and the
change in the unemployment rate. For the present purposes, we use a standard specification of the loss used
in the literature.

10See also Sargent (1999), Cogley and Sargent (2001), Evans and Honkapohja (2001), Gaspar and Smets
(2002), and Gaspar, Smets and Vestin (2005) for related treatments of learning.
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the unemployment rate, depending on whether the policy rule responds to just the lagged

unemployment gap or also the change in the unemployment rate. We assume that agents

estimate forecasting equations for the three variables using a restricted VAR of the form

corresponding to the reduced form of the RE equilibrium with constant natural rates. They

then construct multi-period forecasts from the estimated VAR.

Consider the case where policy is described by the Taylor rule. To fix notation, let Yt

denote the 1 × 3 vector consisting of the inflation rate, the unemployment rate, and the

federal funds rate, each measured at time t: Yt = (πt, ut, it); let Xt be the 5 × 1 vector of

regressors in the forecast model: Xt = (1, πt−1, ut−1, it−1−πt−1); let ct be the 4×3 vector of

coefficients of the forecasting model. This corresponds to the case of the Taylor rule. In the

case of the generalized policy rule, the second lag of the unemployment rate also appears

in Xt.

Note that we impose that the forecasting model include only the variables that appear

with non-zero coefficients in the reduced form of the rational expectations solution of the

model with constant natural rates. In principle, these zero restrictions may help or hinder

the forecasting performance of agents in the model. In practice, allowing agents to include

additional lags of variables in the forecasting model worsens macroeconomic outcomes.

Thus, by imposing this structure, we are likely erring on the side of understating the costs

of learning on macroeconomic performance.

Using data through period t, the least squares regression parameters for the forecasting

model can be written in recursive form:

ct = ct−1 + κtR
−1
t Xt(Yt −X ′

tct−1), (10)

Rt = Rt−1 + κt(XtX
′
t −Rt−1), (11)

where κt is the gain.

Under the assumption of least squares learning with infinite memory, κt = 1/t, so as t

increases, κt converges to zero. Assuming a constant natural rate of unemployment, as the

data accumulate this mechanism converges to the correct expectations functions and the

economy converges to the perfect knowledge rational expectations equilibrium. That is, in
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our model the perceived law of motion that agents employ for forecasting corresponds to

the correct specification of the equilibrium law of motion under rational expectations.

As noted above, to formalize perpetual learning we replace the decreasing gain implied

by the infinite memory recursion with a small constant gain, κ > 0.11 With imperfect

knowledge, expectations are based on the perceived law of motion of the inflation process,

governed by the perpetual learning algorithm described above.

5.2 Calibrating the Learning Rate

A key parameter for the constant-gain-learning algorithm is the updating rate κ. To cali-

brate the relevant range for parameter we examined how well different values of κ fit either

the expectations data from the Survey of Professional Forecasters, following Orphanides

and Williams (forthcoming). To examine the fit of the Survey of Professional Forecasters

(SPF), we generated a time series of forecasts using a recursively estimated VAR for the

inflation rate, the unemployment rate, and the federal funds rate. In each quarter we rees-

timated the model using all historical data available during that quarter (generally from

1948 through the most recent observation). We allowed for discounting of past observations

by using geometrically declining weights. This procedure resulted in reasonably accurate

forecasts of inflation and unemployment, with root mean squared errors (RMSE) compa-

rable to the residual standard errors from the estimated structural equations, (6) and (7).

We found that discounting past data with values corresponding to κ in the range 0.01 to

0.04 yielded forecasts closest on average to the SPF than the forecasts obtained with lower

or higher values of κ. In light of these results, we consider κ = 0.02 as a baseline value

for our simulations, but also examine the robustness of policies to alternative values of this

parameter.12

11In terms of forecasting performance, the “optimal” choice of κ depends on the relative variances of the
transitory and permanent shocks, as in the relationship between the Kalman gain and the signal-to-noise
ratio in the case of the Kalman filter.

12The value κ = 0.02 is also in line with the discounting reported by Sheridan (2003) as best for explaining
the inflation expectations data reported in the Livingston Survey.
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5.3 Policymaker’s estimation of natural rates

Given the time variation in the natural rates, policymakers need to continuously reestimate

these variables in real time. Based on the results of Williams (2004) that found that such a

procedure performed well and was reasonably robust to model misspecification, we assume

that policymakers use a simple constant gain method to update their natural rates based

on the observed rates of unemployment and ex post real interest rates. Thus, policymakers

update their estimates of the natural rates of unemployment and interest as follows:

r̂∗t = r̂∗t−1 + ζr(it−1 − πt−1 − r̂∗t−1), (12)

û∗t = û∗t−1 + ζu(ut−1 − û∗t−1), (13)

where ζr and ζu are the updating parameters. We set ζr = ζu = ζ = 0.005, a lower value

would imply far greater history of usable data than we possess while a higher value reduces

natural rate estimate accuracy. We specify the updating equation for the perceived natural

rate of unemployment exactly the same.

The model under imperfect knowledge consists of the structural equations for inflation,

the unemployment gap, the federal funds rate (the monetary policy rule), the forecasting

model, and the updating rule for the natural rates of interest and unemployment.

6 Simulation Methodology

As noted above, we measure the performance of alternative policies rules based on the

central bank loss equal to the weighted sum of unconditional variances of inflation, the

unemployment gap, and the change in the funds rate. In the case of rational expectations

with constant and known natural rates, we compute the unconditional variances numerically

as described in Levin, Wieland, and Williams (1999). In all other cases, we compute

approximations of the unconditional moments using stochastic simulations of the model.

6.1 Stochastic Simulations

For stochastic simulations, the initial conditions for each simulation are given by the rational

expectations equilibrium with known and constant natural rates. Specifically, all model
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variables are initialized to their steady-state values, assumed without loss of generality to

be zero. The central bank’s initial perceived levels of the natural rates are set to their

true values, likewise equal to zero. Finally, the initial values of the C and R matrices

describing the private agents’ forecasting model are initialized to their respective values

corresponding to reduced-form of the rational equilibrium solution to he structural model

assuming constant and known natural rates.

Each period, innovations are generated from Gaussian distributions with variances re-

ported above. The innovations are assumed to be serially and contemporaneously uncor-

related. For each period, the structural model is simulated, the private agent’s forecasting

model is updated and a new set of forecasts computed, and the central bank’s natural rate

estimate is updated. We simulate the model for 41,000 periods and discard the first 1000

periods to mitigate the effects of initial conditions. We compute the unconditional mo-

ments from sample root mean squares from the remaining 40,000 periods (10,000 years) of

simulation data.13

Private agents’ learning process injects a nonlinear structure into the model that may

generate explosive behavior in a stochastic simulation of sufficient length for some policy

rules that would have been stable under rational expectations. One source of instability

is due to the possibility that the forecasting model itself may become unstable. We take

the view that in practice private forecasters reject unstable models. Each period of the

simulation, we compute the maximum root of the forecasting VAR excluding the constants.

If this root falls below the critical value of 0.995, the forecast model is updated as described

above; if not, we assume that the forecast model is not updated and the matrices C and R

are held at their respective previous period values.14

Stability of the forecasting model is not sufficient to assure stability in all simulations.

For this reason, we impose a second condition that restrains explosive behavior. In partic-
13Based on simulations under rational expectatons in which we can compute the moments directly, this

sample size is sufficient to yield very accurate estimates of the unconditional variances. In addition, testing
indicates that 1000 periods is sufficient to remove the effects of initial conditions on simulated second
moments.

14We chose this critical value so that the test would have a small effect on model simulation behavior
while eliminating explosive behavior in the forecasting model.
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ular, if the inflation rate, nominal interest rate, or unemployment gap exceed in absolute

value six times their respective unconditional standard deviations (computed under the

assumption of rational expectations and known and constant natural rates), then the vari-

ables that exceeds this bound is constrained to equal the corresponding limit in that period.

These constraints on the model are sufficient to avoid explosive behavior for the exercises

that we consider in this paper and are rarely invoked for most of the policy rules we study,

particularly for optimized policy rules. An illustrative example is the benchmark calibration

of the model with monetary policy given by the Taylor Rule with θπ = 0.5 and θu = −1,

for which the limit on the forecasting model is binding less than 0.1 percent of the time,

and that on the endogenous variables, only about 0.4 percent of the time.

7 Monetary Policy and Learning

We first consider the design of optimal monetary policy in the presence of learning by private

agents but assuming that natural rates are constant and known by the policymaker. In this

way we can more easily identify the private sector effects of learning in isolation. In the

next section, we analyze the case of private learning with time varying natural rates that

are unobserved by the policymaker.

7.1 The Effects of Learning under the Taylor Rule

To gauge the effects of learning for a given monetary policy rule, we consider macroeconomic

performance under the Taylor Rule under alternative assumptions regarding the public’s

updating rate, κ. For these exercises, we assume that the policymaker knows the rue values

of the natural rates of interest and unemployment. Table 1 reports the performance of

the Taylor Rule given by θπ = 0.4 and θũ. The coefficient on the unemployment gap has

the reverse sign is twice the size of the coefficient of 0.5 on the output gap in the standard

Taylor rule, the latter modification reflecting the smaller variation in the unemployment gap

relative to the output gap. The first row shows the outcomes under rational expectations.

The second through fifth rows show the outcomes under learning for values of κ ranging

from 0.01 to 0.04 (recall that 0.02 is our benchmark value).
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The time variation in the coefficients of the forecasting model determining expectations

induces greater variability and persistence in inflation and the unemployment gap. As

shown in Table 1, the variability in these variables rises with the learning rate, κ, as does

their first-order unconditional autocorrelation.

In this model, the introduction of learning with constant natural rates induces nearly

proportional increases in the variability of inflation and the unemployment gap. For ex-

ample, in the case of κ = 0.02, the standard deviation of inflation is 32 percent higher

than under rational expectations, and that of the unemployment gap is 33 percent higher.

This holds true for other values of κ and stems from the fact that the model equations for

inflation and the unemployment rate have identical lead-lag structures. It is worth noting

that in other models, the two variables may be affected differently by learning.

The rise in persistence results from the effects of shocks on the estimated parameters

of the forecasting model. Consider, for example, a positive shock to inflation. Upon reesti-

mation of the forecasting model, a portion of the shock will pass through to the intercept

of the inflation forecasting equation. This raises in the next period the value of expected

inflation, which boosts inflation, and so on. If by chance another positive shock arrives, the

estimated coefficient on lagged inflation in the forecasting model will be elevated, further

raising the persistence of inflation.

A key aspect of learning is that its effects are especially felt in episodes when partic-

ularly large shocks or a series of positively correlated shocks occurs. Indeed, the impulse

responses to iid shocks in this model are quantitatively little different from those in the

model under rational expectations. However, with large or serially correlated shocks, the

nonlinear nature of the learning process has profound effects. The unconditional moments

thus represent an average of periods in which the behavior of the economy is approximately

that described by the rational expectations equilibrium and relatively infrequent episodes in

which expectations deviate significantly from that implied by rational expectations. Such

“problem” episodes contribute importantly to the deterioration in macroeconomic perfor-

mance reported in the table.
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7.2 Optimized Taylor-style Rules

We now consider the optimal coefficients of the Taylor-style Rule under different assump-

tions regarding learning. As noted above, for this exercise we assume weights of four on

unemployment gap variability and 0.25 on interest rate variability. Figure 1 and Table 2

report summary results. The first two columns in the table report the optimized coefficients

of the policy rules, the third through fifth columns report the standard deviations of the

target variables, and the sixth column reports the associated loss, denoted by L∗. The

final column reports the loss under the policy rule optimized under rational expectations,

denoted by LRE , evaluated under the alternative specifications of learning.

In the figure, each panel shows the loss associated with policies for a range of alternative

parameters θπ and θu, as shown in the two axes. The top left panel shows the loss under

rational expectations. The remaning three panels show the corresponding loss for the same

policies under learning.

As can be seen from the figure and table, the optimized Taylor-style rule under rational

expectations performs very poorly when the public in fact is learning. If policy is given by

the optimal policy assuming rational expectations, the loss under the benchmark value of

κ = 0.02 is nearly 60 percent higher than under the optimized Taylor-style rule policy given

in the third row of the table. The problem with the policy rule coefficients chosen assuming

rational expectations is the relatively weak response to inflation. This mild response to

inflation allows inflation fluctuations to feed into inflation expectations and back to inflation,

driving the standard deviation of inflation to 2.8 percent for κ = 0.02.

A particular problem with the policy optimized assuming rational expectations is that it

allows the autocorrelation of inflation to rise, prolonging the response of inflation expecta-

tions to any shock. For example, under the optimal policy assuming rational expectations,

the first-order autocorrelation of inflation rises from 0.71 under rational expectations to 0.90

under learning with κ = 0.02 and to 0.93 with κ = 0.04. Interestingly, the autocorrelation

of the unemployment gap is about the same under the policy optimized assuming rational

expectations as it is for policies that take account of learning.
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The efficient policy response with learning responds more aggressively to inflation rel-

ative to the optimal response under rational expectations. In contrast, under learning the

response to the unemployment gap is less than or about equal to that under rational ex-

pectations. The stronger response to inflation dampens inflation variability and lowers the

autocorrelation of inflation. Indeed, focussing on the outcomes under the optimal policies,

the resulting autocorrelation of inflation is only modestly higher under learning than it is

under rational expectations. Together, these effects reduce damaging fluctuation is the co-

efficients of agents’ forecasting model. The loss under the optimized Taylor-style rule is 37

percent below that under the Taylor-style rule optimized under the assumption of rational

expectations for κ = 0.02 and 46 percent lower for κ = 0.04.

The figure also highlights the robustness of the responsiveness to inflation in the rule

exhibits an important asymmetry. While near the RE optimal policy the loss is extremely

sensitive to θπ under learning, a similar sensitivity is not evident for the higher values of θπ

that are optimal under learning.

We conducted the same experiments for a number of alternative parameterizations of

the loss function and the results are qualitatively the same as for the benchmark parame-

terization reported here.

8 Interaction of Learning and Time-varying Natural Rates

We now introduce time variation in natural rates to the model. The learning model of the

agents is unchanged. We add the innovations to the natural rates and the central bank’s

equations for updating their natural rate estimates. Otherwise, the simulation experiments

are conducted as above.

8.1 The Effects of Learning and Natural Rate Variation

Table 3 reports the results where monetary policy follows the Taylor Rule. The first set of

rows under the heading “s = 0” reports the results where both natural rates are assumed

to be constant and known by the policymaker; these results are identical to those reported

in Table 1 and provide a point of reference for the results that incorporate time variation in
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the natural rates. The second set of rows under the heading “s=1” reports the results for

are main calibration of the innovation variances. The third set of rows under the heading

“s = 2” reports the results where we have doubled the standard deviation of the natural

rate innovations. The layout of the table is the same as Table 1 except that we have added

columns reporting the standard deviations of natural rate misperceptions.

Under the benchmark calibration of the innovation variances, the standard deviation of

central bank misperceptions of the natural rate of unemployment is 0.6 percentage points,

while that of the natural rate of interest ranges between 0.9 and 1.2 percentage points.

With higher innovation variances given by s = 2, the standard deviation of misperceptions

of the natural rate of unemployment increases to about 1.1 percentage point, and of the

natural rate of interest rises to between 1.4 to 1.7 percentage points. In all cases, these

misperceptions are highly persistent, with first-order autocorrelation of about 0.99. Time

varying natural rates inject serially correlated errors to the processes driving inflation, the

unemployment rate, and the interest rate. The coefficients of private agents’ forecasting

model only gradually adjust to changes in the natural rates. Moreover, policymakers them-

selves are confused about the true level of natural rates and these misperceptions feed back

into the coefficient estimates of agents’ forecasting model. As a result, these shocks and

the feedback through policy back into expectations cause a deterioration in macroeconomic

performance. For a given rate of learning, the inclusion of time varying natural rates af-

fects the standard deviations of inflation and the unemployment gap in about the same

proportion. The introduction of time-varying natural rates also raises the autocorrelations

of inflation and the unemployment rate. Under the Taylor Rule, the persistence of these

series exceeds 0.85 for our benchmark calibration and exceeds 0.90 for the calibrations with

greater natural rate variation and higher learning rates.

Table 4 reports the optimized Taylor-style rules with learning and time-varying natural

rates. The format of the table parallels that of Tables 2 and 3. For comparison, the case of

constant natural rates reported in Table 2 is given in the upper part of the table.

For a given rate of learning, time variation in natural rates raises the optimal policy
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response to inflation and lowers that to the perceived unemployment gap. For example, for

κ = 0.02, the optimal coefficient on inflation rises from 0.53 to 1.07 to 1.21 for s = 0, 1,

and 2, respectively, and that on the unemployment gap falls from 1.20 to 0.99 to 0.67. The

performance of the optimal Taylor-style rule assuming rational expectations, given in the

final column, is truly abysmal in the model with both learning and time-varying natural

rates.

Interestingly, for a given positive natural rate innovation variance, the optimal coef-

ficients both on inflation and the unemployment gap are higher the greater is κ. With

time-varying natural rates but a low rate of learning, the optimal policy is to dampen the

response to the mismeasured unemployment gap and to concentrate on inflation. In this

case, expectations help stabilize the unemployment gap even with a modest direct policy

response to the gap, as discussed in Orphanides and Williams (2002). But, with a higher

rate of learning, noise in the economy, including that related to time-varying natural rates,

interferes with the public’s understanding of the economy and expectations formation may

no longer act as a stabilizing influence. In these circumstances, policy needs to respond rela-

tively strongly to the perceived unemployment gap, even recognizing that this may amplify

policy errors owing to natural rate misperceptions. Doing so helps stabilize unemployment

expectations and avoids situations where private expectations of unemployment veer away

from fundamentals.

Figure 2 presents a graphical summary of the role of time-varying natural rates under

learning. The structure is similar to that in Figure 1. The top left panel shows the loss

under rational expectations. The remaning three panels show the loss under learning with

κ = 0.02 for different degrees of variation in the natural rates, s = {0, 1, 2}.

8.2 Optimized Difference Rule

The Taylor-style rule implicitly places a coefficients of one on the perceived natural rate

of interest and −θu on the perceived natural rate of unemployment. As discussed in Or-

phanides et al (2000) and Orphanides and Williams (2002) in forward-looking models with

natural rate misperceptions, an alternative specification of a policy rule that does not re-
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spond directly to perceived natural rates may perform better than the Taylor-style rule

specification. In this subsection, we consider one such specification of a two-parameter

policy rule in which θi is constrained to equal one, θu is constrained to equal zero, and

thetaπ and θ∆u are freely chosen to minimize the policymaker loss. We refer to policy rules

with this specification as “difference” rules. Because the policy rule responds to the lagged

first-difference of the unemployment rate, we expand private agents’ forecasting model to

include the second lag on the unemployment rate. With this specification, the learning

model is identical to the reduced form rational expectations solution of the model with con-

stant natural rates. Table 5 reports the results. The losses resulting under the optimized

difference rules are reported in the sixth column under the heading L∗D; for comparison, the

loss under the optimized Taylor-style rule is given in the final column of the table.

With time-varying natural rates, the optimized first-difference rule outperforms the op-

timized Taylor-style rules. The more volatile the natural rates are, the greater the perfor-

mance advantage of the difference rules over the Taylor-style rules. With constant natural

rates, the Taylor-style rules perform better than the difference rules, reflecting the fact

that when policymakers have perfect knowledge of the natural rates of interest and un-

employment, it pays to use this information in the setting of policy. We conclude that

in an environment of imperfect knowledge, difference rules may provide a better simple

benchmark for policy than the Taylor-style rule.

As in the case of the Taylor-style rule, both the existence of private sector learning

and time variation in natural rates imply stronger optimal responses to inflation relative

to rational expectations. The optimal coefficient on the change in the unemployment rate,

however, is relatively insensitive to the learning rate and the degree of natural rate variation.

8.3 Optimized Generalized Rules

We now consider a more generalized form of the policy rule that combines elements of

both the Taylor rule and the difference rule studied above. The specification is the same

as in Orphanides and Williams (2002). The interest rate depends on the lagged interest

rate, the lagged inflation rate and perceived unemployment gap, and the lagged changed in
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the unemployment rate. We repeat the experiments described above. Table 6 reports the

results. The loss from the optimal generalized policy rule is denoted by L∗4; for comparison,

the loss resulting from the optimized difference rule, denoted by L∗D, and the optimized

Taylor-style rule, denoted by L∗2, are reported in the final two columns of the table.

The optimized four-parameter rules perform significantly better than the optimized

Taylor-style rules, especially in the presence of time varying natural rates, and outperforms

the simple difference rule, particularly when natural rates are constant. This superior per-

formance is related to three factors. First, this class of rule responds to more information,

in particular the lagged funds rate, and thus has an advantage over the simple Taylor rule.

Second, by incorporating a near-unity response to the lagged funds rate, the optimal gener-

alized rules nearly completely remove the perceived natural rate of interest from influencing

policy. Movements in the true natural rate of interest affect the economy, but there is no

direct feedback of central bank misperceptions of the natural rate of interest to the econ-

omy. Third, by responding to the change in the unemployment rate as a proxy for the

unemployment gap, this specification allows for a strong response to utilization variables

without relying exclusively on imperfect measures of the gap.

9 Robust Policy

A striking feature of the results from the generalized policy rule is that the optimal coef-

ficients of the generalized rule do not appear to be very sensitive to the rates of learning

that we consider or the magnitude of variation in natural rates, as long as both elements ar

present. In all cases, the optimal coefficient on the lagged funds rate is near one. The coef-

ficients on inflation and the unemployment gap vary, but are generally of approximately the

same size. And the coefficient on the change in the unemployment rate is relatively similar

across the different cases. These findings suggest that a single policy should be relatively

robust to the alternative specification of the economy considered here.

To examine this more closely, we turn to an examination of robustness of a benchmark

policy rule following the methodology in Levin, Wieland, and Williams (1999). An infor-
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mative benchmark rule may be identified with the optimal policy rule corresponding to an

agnostic Bayesian prior when the policymaker does not know which among a range range

of models is a better representation of te economy. For our benchmark, we assume that

the policymaker is unsure about both the degree of structural change in the economy, as

reflected in variation in natural rates, as well as about how expectations formed, that is

whether they are rational or based on adaptive learning. Thus, we assume the policymaker

has a flat prior on three possible values of s = {0, 1, 2}), and on four possible models for

expectations, rational and learning with values κ = {0.01, 0.02, 0.03}. The policymaker’s

objective, then, is to identify the policy rule (8) that minimizes the expected loss (9) ac-

counting for his agnostic prior over the correct model. Note that since he is uncertain about

the presence of structural change, the policymaker updates his estimates of natural rates

using his updating rules (12) and (13) to set policy.

The optimal Bayesian policy is:

it = 0.96it−1 +(1− 0.96)(r̂∗t +πt−1)+ 0.69(πt−1−π∗)− 0.75(ut−1− û∗t )− 2.58(ut−1−ut−2).

Note that this is rather similar to the optimal policy corresponding to the optimized rule

for κ = 0.02 and s = 1 reported in table 6. Table 7 reports the performance of the economy

when this benchmark policy rule is followed for the various alternative specifications of

expectations formation and natural rate variation. The last two columns present a summary

comparison. The fifth column L, reports the loss associated with the specification listed in

he first column when the optimal Bayesian rule is followed. The last column, L∗4 reports the

best-obtainable loss from a four-parameter rule optimized to that particular specification

of the model, as given in Table 6.

The benchmark Bayesian rule performs very well across all different combinations of

parameterizations of learning and natural rate fluctuations. In the parlance of Levin and

Williams (2003), the model is reasonably fault tolerant once policy has accounted for some

degree of learning and natural rate variation. The relative performance of this rule is

actually poorest in the cases of little or no learning and constant natural rates. But,

these are states of the world that are associated with the lowest loss so from a robustness
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perspective, the loss in efficiency in such situations is less worrisome than the outcomes

corresponding to the larger losses that might occur under substantial variation in natural

rates and learning. Remarkably, the relative performance of the benchmark rule is excellent

for all values of κ for both s = 1 and s = 2.

To examine the robustness of simpler policies than the generalized rule which has four

parameters, we also compute the optimal Bayesian level and difference rules which have only

two parameters. In each case we employ the same flat prior over the alternative models of

learning and natural rates. The resulting optimal Bayesian rules are:

it = r̂∗t + πt−1 + 1.05(πt−1 − π∗)− 0.75(ut−1 − û∗t )

it = it−1 + 0.65(πt−1 − π∗)− 4.12(ut−1 − ut−2).

In Table 8, we present a summary comparison of these two rules and the optimal generalized

rule. The optimal level rule performs uniformly worse than the optimal difference rule

in this comparison. Given a choice among these simple alternatives, the difference rule

proves clearly more robust in protecting against the uncertainties regarding expectations

formation and natural rates. But the generalized rule, with its added flexibility, delivers

better performance especially when s is small.

10 Conclusion

In an environment of imperfect knowledge regarding the potential for structural change in

the economy and the formation of expectations, the scope for economic stabilization may

be significantly reduced relative to an economy under rational expectations with perfect

knowledge. Policies that appear to be optimal under perfect knowledge can perform very

poorly if they are implemented in such an environment. In our model economy, the presence

of imperfect knowledge tends to raise the persistence of inflation, partly as a result of the

persistent policy errors due to misperceptions of the natural rates and partly as a result of

the learning process agents may rely upon to form expectations. This leads to a deterioration

in economic performance, especially with regard to a policymaker’s price stability objective.
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Policymakers who recognize the presence of these imperfections in the economy can adjust

their policies and protect against this deterioration in economic outcomes. Efficient policies

that take account of private learning and misperceptions of natural rates appear to have

two important characteristics. First, and arguably most important, these policies call for

more aggressive responses to inflation that would be optimal under perfect knowledge. This

tends to confirm the conventional wisdom that associates good central bank policy practice

with policies that may appear to stress the role of maintaining price stability more than

might appear warranted in simple models of the economy under perfect knowledge. Second,

efficient policies exhibit a high degree of inertia in the setting of the interest rate. Indeed,

simple difference rules which circumvent the need to rely on uncertain estimates of natural

rates in setting policy, appear to be robust to potential misspecification of private sector

learning and the magnitude of variation in natural rates. Importantly, it seems possible to

design a simple policy rule that can deliver reasonably good macroeconomic performance

even in an environment of imperfect knowledge.
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Table 1
Performance of the Taylor Rule with Learning

(constant natural rates)

First-order
Standard Deviation Autocorrelation

κ π u− u∗ ∆i π u− u∗ i

RE 1.48 0.54 1.96 0.64 0.77 0.60
0.01 1.68 0.63 1.97 0.72 0.83 0.67
0.02 1.95 0.72 1.99 0.79 0.86 0.75
0.03 2.13 0.79 2.03 0.81 0.88 0.78
0.04 2.30 0.83 2.06 0.84 0.89 0.81

Notes: it = r̂∗t + πt−1 + 0.5× (πt−1 − π∗)− 1× (ut−1 − û∗t )
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Table 2
Optimized Taylor-style Rule with Learning

(constant natural rates)

Policy Rule Standard First-order
Coefficient Deviation Autocorrelation Loss

κ π u− u∗ π u− u∗ ∆i π u− u∗ L∗ LRE

RE 0.16 -1.37 1.61 0.48 1.52 0.71 0.75 4.0 4.0
0.01 0.53 -1.21 1.69 0.61 2.02 0.73 0.82 5.4 7.0
0.02 0.77 -1.20 1.73 0.72 2.34 0.74 0.85 6.4 10.2
0.03 0.89 -1.38 1.81 0.77 2.52 0.75 0.86 7.3 12.5
0.04 0.99 -1.39 1.90 0.84 2.68 0.77 0.87 8.2 15.2

Notes: it = r̂∗t + πt−1 + θπ(πt−1 − π∗) + θu(ut−1 − û∗t )

31



Table 3
The Taylor Rule with Learning

(time-varying natural rates)

Standard First-order
Deviation Autocorrelation

κ π u− u∗ ∆i u∗ − û∗ r∗ − r̂∗ π u− u∗ i

s = 0
RE 1.48 0.54 1.96 — — 0.64 0.77 0.60
0.01 1.68 0.63 1.97 — — 0.72 0.83 0.67
0.02 1.95 0.72 1.99 — — 0.79 0.86 0.75
0.03 2.13 0.79 2.03 — — 0.81 0.88 0.78
0.04 2.30 0.83 2.06 — — 0.84 0.89 0.81
s = 1
RE 1.91 0.56 1.96 0.42 0.50 0.78 0.78 0.74
0.01 2.12 0.84 1.99 0.60 1.17 0.82 0.90 0.82
0.02 2.46 0.90 2.01 0.60 0.96 0.86 0.91 0.85
0.03 2.61 0.94 2.03 0.60 0.92 0.88 0.91 0.86
0.04 2.76 0.98 2.06 0.60 0.88 0.89 0.92 0.87
s = 2
RE 2.82 0.60 1.99 0.83 1.00 0.89 0.78 0.87
0.01 2.72 1.14 1.99 1.07 1.71 0.89 0.94 0.89
0.02 3.14 1.18 2.01 1.09 1.52 0.92 0.94 0.91
0.03 3.34 1.20 2.03 1.09 1.46 0.92 0.94 0.91
0.04 3.48 1.22 2.09 1.08 1.42 0.93 0.94 0.92

Notes: it = r̂∗t + πt−1 + 0.5× (πt−1 − π∗)− 1× (ut−1 − û∗t )
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Table 4
Optimized Taylor-style Rule with Learning

(time-varying natural rates)

Policy Rule Standard
Coefficient Deviation Loss

κ π u− û∗ π u− u∗ ∆i L∗2 LRE
2

s = 0
RE 0.16 -1.37 1.60 0.47 1.52 4.0 4.0
0.01 0.53 -1.21 1.69 0.61 2.02 5.4 7.0
0.02 0.77 -1.20 1.73 0.72 2.34 6.4 10.2
0.03 0.88 -1.38 1.81 0.77 2.52 7.3 12.5
0.04 0.98 -1.39 1.90 0.84 2.68 8.2 15.2
s = 1
RE 0.72 -0.65 1.62 0.60 2.23 5.3 20.4
0.01 0.72 -0.57 1.81 0.89 2.27 7.8 14.0
0.02 1.07 -0.99 1.82 0.93 2.75 8.7 21.3
0.03 1.14 -0.97 1.89 0.98 2.87 9.5 24.7
0.04 1.21 -1.18 1.97 1.00 2.99 10.1 28.0
s = 2
RE 1.02 -0.39 1.72 0.68 2.64 6.5 69.5
0.01 1.04 -0.32 1.88 1.23 2.71 11.4 25.9
0.02 1.21 -0.67 1.98 1.23 2.94 12.1 34.2
0.03 1.42 -0.89 2.02 1.23 3.26 12.8 39.1
0.04 1.39 -1.02 2.15 1.23 3.24 13.3 40.6

Notes: it = r̂∗t + πt−1 + θπ(πt−1 − π∗) + θu(ut−1 − û∗t )
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Table 5
Optimized Difference Rule with Learning

(time-varying natural rates)

Policy Rule Standard
Coefficient Deviation Loss

κ π ∆u π u− u∗ ∆i L∗D L∗2
s = 0
RE 0.31 -3.76 1.75 0.58 1.34 4.9 4.0
0.01 0.49 -4.04 1.79 0.72 1.54 5.9 5.4
0.02 0.55 -4.07 1.86 0.81 1.59 6.7 6.4
0.03 0.76 -4.51 1.85 0.92 1.88 7.7 7.3
0.04 0.69 -4.79 2.01 0.96 1.92 8.6 8.2
s = 1
RE 0.39 -3.72 1.74 0.63 1.37 5.0 5.3
0.01 0.54 -3.94 1.78 0.87 1.54 6.8 7.8
0.02 0.66 -4.20 1.83 0.94 1.70 7.6 8.7
0.03 0.85 -4.54 1.83 1.02 1.95 8.5 9.5
0.04 0.95 -4.92 1.88 1.08 2.14 9.4 10.1
s = 2
RE 0.52 -3.63 1.74 0.72 1.43 5.6 6.5
0.01 0.68 -3.82 1.78 1.15 1.59 9.1 11.4
0.02 0.84 -4.15 1.81 1.19 1.82 9.8 12.1
0.03 0.93 -4.18 1.85 1.24 1.91 10.5 12.8
0.04 1.02 -4.38 1.87 1.28 2.05 11.2 13.3

Notes: it = it−1 + θπ(πt−1 − π∗) + θ∆u(ut−1 − ut−2)
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Table 6
Optimized Generalized Rule with Learning

(time-varying natural rates)

Policy Rule Standard
Coefficient Deviation Loss

κ i π u− u∗ ∆u π u− u∗ ∆i L∗4 L∗D L∗2
s = 0
RE 0.76 0.18 -0.97 -0.43 1.51 0.47 0.77 3.3 4.9 4.0
0.01 0.85 0.42 -1.01 -1.23 1.60 0.61 1.12 4.4 5.9 5.4
0.02 0.87 0.61 -1.09 -1.78 1.64 0.71 1.43 5.2 6.7 6.4
0.03 0.86 0.64 -1.15 -2.19 1.77 0.75 1.59 6.0 7.7 7.3
0.04 0.92 0.76 -1.36 -2.23 1.83 0.82 1.74 6.8 8.6 8.2
s = 1
RE 0.92 0.45 -0.66 -1.72 1.58 0.61 1.08 4.2 5.0 5.3
0.01 0.95 0.52 -0.74 -1.89 1.60 0.83 1.21 5.7 6.8 7.8
0.02 0.95 0.66 -0.78 -2.43 1.66 0.89 1.47 6.5 7.6 8.7
0.03 0.99 0.84 -0.95 -3.01 1.71 0.95 1.80 7.3 8.5 9.5
0.04 0.97 1.00 -1.25 -2.92 1.77 0.99 2.04 8.1 9.4 10.1
s = 2
RE 0.92 0.56 -0.41 -2.28 1.64 0.71 1.27 5.0 5.6 6.5
0.01 1.00 0.68 -0.62 -2.50 1.64 1.12 1.41 8.2 9.1 11.4
0.02 1.00 0.85 -0.60 -3.04 1.67 1.17 1.70 9.0 9.8 12.1
0.03 1.00 0.97 -0.71 -3.27 1.74 1.21 1.91 9.8 10.5 12.8
0.04 1.00 0.96 -0.76 -3.35 1.82 1.23 1.94 10.3 11.2 13.3

Notes: it = θiit−1 + (1− θi)(r̂∗t + πt−1) + θπ(πt−1 − π∗) + θu(ut−1 − û∗t ) + θ∆u(ut−1 − ut−2)
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Table 7
Robustness of Optimal Bayesian Generalized Rule

Standard Deviation Loss
κ π u− u∗ ∆i LB

4 L∗4
s = 0
RE 1.43 0.62 1.48 4.1 3.3
0.01 1.51 0.71 1.50 4.8 4.4
0.02 1.59 0.78 1.52 5.5 5.2
0.03 1.70 0.85 1.54 6.4 6.0
s = 1
RE 1.51 0.64 1.48 4.4 4.2
0.01 1.55 0.85 1.50 5.8 5.7
0.02 1.64 0.90 1.52 6.4 6.5
0.03 1.77 0.96 1.55 7.3 7.3
s = 2
RE 1.71 0.67 1.49 5.2 5.0
0.01 1.70 1.11 1.51 8.4 8.2
0.02 1.84 1.14 1.53 9.1 9.0
0.03 1.99 1.18 1.57 10.0 9.8

Notes: Each row shows the performance of the economy under alternative assumptions
regarding the true mechanism for the formation of expectations (RE and learning with
κ = {0.01, 0.02, 0.03}) and variation in natural rates (s = {0, 1, 2}) when the policymaker
follows the optimal Bayesian policy:

it = 0.96it−1 +(1− 0.96)(r̂∗t +πt−1)+ 0.69(πt−1−π∗)− 0.75(ut−1− û∗t )− 2.58(ut−1−ut−2).

The parameters in this rule minimize the expected loss associated with the alternative
assumptions shown under a uniform prior.
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Table 8
Robustness of Alternative Bayesian Rules

Loss LB
T LB

D LB
4 L∗4

s = 0
RE 5.3 5.2 4.1 3.3
0.01 6.6 6.0 4.8 4.4
0.02 7.2 6.8 5.5 5.2
0.03 8.1 7.7 6.4 6.0
s = 1
RE 5.6 5.3 4.4 4.2
0.01 8.1 6.8 5.8 5.7
0.02 8.8 7.6 6.4 6.5
0.03 10.1 8.5 7.3 7.3
s = 2
RE 6.6 5.7 5.2 5.0
0.01 12.2 9.1 8.4 8.2
0.02 12.9 9.9 9.1 9.0
0.03 13.3 10.7 10.0 9.8

Notes: Each row compares the loss incurred under alternative assumptions regarding the
true mechanism for the formation of expectations and variation in natural rates for the
optimal generalized Bayesian policy (LB

4 ):

it = 0.96it−1 +(1− 0.96)(r̂∗t +πt−1)+ 0.69(πt−1−π∗)− 0.75(ut−1− û∗t )− 2.58(ut−1−ut−2),

and the restricted-optimal 2-parameter rules (Taylor, LB
T , and difference specifications, LB

D):

it = r̂∗t + πt−1 + 1.05(πt−1 − π∗)− 0.75(ut−1 − û∗t )

it = it−1 + 0.65(πt−1 − π∗)− 4.12(ut−1 − ut−2).
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Figure 1

The Taylor Rule Under Learning
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Notes: Each panel shows contours of the loss associated with the Taylor-style policy rule
it = r̂∗t +πt−1+θπ(πt−1−π∗)+θu(ut−1−û∗t ) for the parameters θπ and θπ shown in the axes.
The four panels correspond to alternative assumptions regarding expectations formation by
the public. The top left panel corresponds to rational expectations with perfect knowledge.
In all cases it is assumed that natural rates are constant.
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Figure 2

The Taylor Rule Under Learning with Time-Varying Natural Rates
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Notes: Each panel shows contours of the loss associated with the Taylor-style policy rule
it = r̂∗t +πt−1+θπ(πt−1−π∗)+θu(ut−1−û∗t ) for the parameters θπ and θπ shown in the axes.
The four panels correspond to alternative assumptions regarding expectations formation by
the public and the true process of time-variation of the natural rates. The top left panel
corresponds to rational expectations with perfect knowledge and no variation in natural
rates. Remaining panels show economic outcomes when natural rates exhibit alternative
degrees of time-variation and the public engages in learning with a fixed gain κ = 0.02.
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