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Abstract

This paper uses the assumption of expected profit-maximizing bidding behavior in a multi-
unit, multi-period auction where bidders submit non-decreasing step-function bid supply curves to
recover estimates of multi-output behavioral cost functions for electricity generation units. This
estimation framework extends the results in Wolak (2003) to the case of multi-output cost functions
and incorporates significantly more of the implications of expected profit-maximizing bidding
behavior contained in the step-function bid supply curves.  This information is used to derive more
efficient behavioral cost function estimates and a number of tests of the hypothesis of expected
profit-maximizing bidding behavior under a minimal set of assumptions. These techniques are
applied to bid, market outcomes, and financial hedge contract data obtained from the first four
months of operation of the National Electricity Market (NEM1) in Australia.  The empirical analysis
finds statistically significant evidence consistent with the existence of ramping costs.  Various
specification tests of the null hypothesis of the expected profit-maximizing bidding behavior find
no evidence against it. These behavioral cost  function estimates are then used to construct a number
of counterfactual daily output supply scenarios to quantify the magnitude of ramping costs and the
relationship between the level of forward financial contracts held by an electricity supplier and the
magnitude of ramping costs it incurs.  In particular, I find that relative to case of no forward
financial contract holding, the supplier’s existing  forward contract obligations commit it to a
unilateral profit-maximizing pattern of output that causes it to incur average daily production costs
that are on average 9 percent lower.
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1.  Introduction

This paper uses the assumption of expected profit-maximizing bidding behavior in a multi-

unit, multi-period auction where bidders submit non-decreasing step-function bid supply curves to

recover estimates of multi-output behavioral cost functions for electricity generation units. This

estimation framework extends the results in Wolak (2003) to the case of multi-output cost functions

and incorporates significantly more of the implications of expected profit-maximizing bidding

behavior contained in the step-function bid supply curves.  This information is used to derive more

efficient behavioral cost function estimates and a number of tests of the hypothesis of expected

profit-maximizing bidding behavior under a minimal set of assumptions.

These procedures are applied to data from the Australian National Electricity Market 1

(NEM1) to recover multi-output behavioral cost function estimates at the generation unit-level for

a specific market participant.  I find close agreement between the marginal costs implied by these

behavioral cost function estimates and the marginal costs obtained from engineering estimates.

These techniques for recovering muli-output cost functions from bid and market outcome data are

not limited to bid-based wholesale electricity markets.  This procedure can be applied to recover

behavioral cost-function estimates for any participant in a multi-unit auction that uses non-

decreasing step function bid supply curves or non-increasing step-function willingness to purchase

curves.

The primary motivation for estimating this multi-output behavioral cost function is to

quantify the extent to which generation unit-level marginal costs are non-constant within a given

half-hour period and across half-hour periods of the day.  Generation unit owners argue that they

face a “hard” technological operating constraint that limits their ability to increase and decrease the

electricity produced by their generation units within a given time interval, what is typically termed

a generation unit’s ramp rate.   For an example, a generation unit may have a  ramp rate of 10 MW
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per minute, meaning that the generation unit can increase or decrease the amount of its capacity

producing electricity by 10 MW in one minute.  

Although it is difficult to deny the existence of hard technological operating constraints,

generation units are often observed increasing or decreasing their output by more than this “hard”

technological constraint.  This observation suggests that these  “hard” technological constraints can

be violated at a cost.  The purpose of my empirical work is to quantify both the statistical and

economic significant of these ramping costs using the assumption of expected profit-maximizing

bidding behavior to estimate multi-output, generation-unit level behavioral cost functions.

Economically significant ramping costs have important implications for the benefits a

supplier might derive from entering into forward financial hedging arrangements that make it

unilaterally profitable for a supplier to limit the sensitivity of its expected profit-maximizing pattern

of electricity production throughout the day to the behavior of spot prices and this supplier’s ability

to influence the spot price through its spot market bidding behavior.  As shown in Wolak (2000),

a supplier’s fixed-price forward financial contract obligations alter its expected profit-maximizing

bidding behavior, and through the market-clearing mechanism, the supplier’s expected profit-

maximizing pattern of electricity production throughout the day.   Wolak (2000) demonstrates that

the larger a supplier’s forward contract holdings, the less incentive it has to attempt to raise the spot

market price by bidding to exploit the distribution of residual demand curves it faces during each

half-hour of the day. 

This logic implies that, for the same distribution of residual demand curves, by signing

forward financial contracts an expected profit-maximizing supplier can commit to a lower average

cost pattern of production throughout the day.  If ramping costs are economically significant, then

certain patterns of electricity production throughout the day across all of a supplier’s generation

units achieves a significantly lower average cost to produce a pre-specified amount of daily output.
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For example, a supplier may find that a constant level of output from each of its generation units

throughout the day achieves significantly lower daily operating costs than producing less in certain

half-hours of the day and more in other hours of the day.  By signing fixed-price forward financial

contracts a supplier can commit to patterns of production throughout the day that are less responsive

to the half-hourly distribution of residual demand curves throughout the day and therefore closer to

the minimum cost pattern of production to meet a daily total output.

Because signing forward contracts can cause a supplier to find it expected profit maximizing

to produce at a lower daily average cost, even though it faces the same distribution of residual

demand curves, this implies a potential benefit to the supplier from signing a forward contract.  If

the firm is able to obtain the same daily revenue stream for the same total daily output with and

without signing forward contracts, its daily profits will be higher as result of signing these forward

contracts because it produces this daily output at a lower total operating cost.  My generation unit-

level behavioral cost function estimates are used to quantify the daily operating cost reductions that

are possible from forward contracting to limit the amount of ramping costs the supplier expects to

incur.

These behavioral cost functions are first estimated by imposing the moment restrictions

implied by the supplier choosing the vector of daily price bid steps to maximize expected profits.

To investigate the impact of the additional information embodied in the half-hourly quantity bids,

I then estimate the cost function using both the daily price and half-hourly quantity bids.  The

assumption of expected profit-maximizing bidding behavior implies that a number of over-

identifying moments restrictions hold for both behavior cost function estimates.  I find little evidence

against the validity of these over-identifying moment restrictions implied by expected profit-

maximizing behavior for both behavioral cost function estimates.  As a further test of the validity

of the assumption of expected profit-maximizing bidding behavior, I derive a test statistic for the
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null hypothesis that the probability limit of parameters of the behavioral cost function estimated

using just the daily price bids equals the probability limit of the parameters of the behavioral cost

function estimated using both the daily price and half-hourly quantity bids.   I find little evidence

against this implication of the assumption of expected profit-maximizing bidding behavior.  A final

implication of the assumption of expected profit-maximizing bidding behavior is that a set of

moment inequalities should hold for the half-hourly bid quantities.   Using the multivariate

inequality constraints hypothesis testing framework from Wolak (1989), I find little evidence against

the null hypothesis that these moment inequalities implied by expected profit-maximizing bidding

behavior are valid.

Having found little evidence against the assumption of expected profit-maximizing bidding

behavior, I then use the two cost function estimates derived from this assumption to determine the

extent of ramping costs.  Both multi-output, generation unit-level cost function estimation results

find  statistically significant ramping costs.  The joint hypothesis test that all of the coefficients in

the behavioral cost function (besides the linear terms in the vector of half-hourly outputs) are equal

to zero is overwhelmingly rejected for both behavioral cost function estimates.  The parameters of

the generation unit-level cost functions that capture ramping constraints are more precisely estimated

for the case in which both the price and quantity bid moment restrictions are used versus just the

case of price bid moment restrictions.

 To quantify the magnitude of ramping costs and the implied potential benefit to this supplier

from signing forward contracts, I perform two sets of two counterfactuals calculations using the

behavioral cost function estimate derived from the price and quantity bid moment restrictions.  For

each day of the sample period, first I compute both the minimum and maximum daily operating cost,

according to this behavioral cost function, of replicating the actual half-hourly pattern output

produced by that supplier across all generation units that it owns. I also compute  both the minimum
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and maximum daily cost of replicating the total daily output from all of the generation units owned

by that supplier.  Both of these optimization problems impose the restriction that no generation unit

can produce less than its minimum operating level or more than its maximum operating level during

a half-hour period.  If there were no ramping costs and the marginal costs of all generation units

owned by the supplier were equal, then the minimum and maximum daily cost for both scenarios

would equal the actual daily variable operating cost, because the marginal cost of producing

electricity is invariant to which half-hour of the day the energy is produced in and the specific

generation units that produce it.

I find that  the sample average of the daily maximum cost that replicates the supplier’s actual

half-hourly production divided by the sample average of the daily minimum cost that replicates the

supplier’s actual half-hourly production is 1.07.  For the case of replicating the total daily output of

the suppler’s generation units, the ratio of the sample average daily maximum cost to the sample

average daily minimum cost is 1.09.   Comparing the sample average of the daily cost (according

this behavior cost function) of the supplier’s actual pattern of output to these two sets of figures, I

find that average actual daily operating costs are very close to the average minimum daily cost that

replicates the 48 half-hourly values of total output across all of the supplier’s generation units. The

average actual daily cost divided by the average minimum cost that replicates the 48 half-hourly

values of total output all of the supplier’s units is 1.02.   This result demonstrates that by signing

forward contract for a substantial fraction of its capacity a supplier to avoid ramping costs that can

average as high as 9 percent of the average minimum cost of producing the daily pattern of output.

To determine the extent to which a reduction in forward contracting would result in a more

costly pattern of production throughout the day, I use this estimated cost function and the 48 half-

hourly residual demand curves actually faced by that supplier each day of the sample to compute

the profit-maximizing daily pattern of output for each day during the sample period assuming the
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firm has zero forward contract obligations in all half-hours.  This zero-forward-contract daily profit-

maximizing pattern output respects the constraints that each unit cannot produce less than its

minimum operating level or more than its maximum operation level during each a half-hour of the

day.  

Given this zero-contract-profit-maximizing half-hourly pattern of output for each day during

my sample period, I compute the two minimum and maximum daily costs.  The average daily

minimum cost that replicates the 48 half-hourly values of the supplier’s profit-maximizing pattern

output with zero forward contracts divided the average daily maximum cost that replicates the 48

half-hourly values of the supplier’s profit-maximizing pattern of total output with zero forward

contracts is equal 1.09.  The average  daily minimum cost that only replicates the total daily zero-

forward-contracts profit-maximizing output across all units and half-hours divided by the average

daily maximum cost that replicates the zero-forward-contracts profit-maximizing total daily output

across all units and half-hours is equal to 1.12.  These ratios are significantly larger than the

corresponding ratios for the actual value of forward contracts and daily pattern of output.  In

addition, the maximum daily cost that replicates the half-hourly total zero-forward-contracts profit-

maximizing pattern of output across all generation units divided by the average actual profit-

maximizing with zero-forward-contracts daily costs is equal to 1.02.  This result indicates that the

profit-maximizing pattern of production with zero forward contracts is close to the maximum daily

cost pattern of production, providing evidence that profit-maximizing suppliers without significant

forward contract holdings choose more costly patterns of daily production.

By comparing the average cost of daily production with zero forward contract to that figure

with the actual level of forward contracts, demonstrates the magnitude of potential operating average

cost savings from forward contracting.  The sample average of the average cost of the actual pattern

of daily output (at the actual level of forward contracts) is 92 percent of  the sample daily average
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cost of the profit-maximizing pattern of daily output with no forward contracts.  This implies that

for an expected profit-maximizing supplier facing  the same distribution of residual demand curves,

forward contracting can cause it to realize up to an 8 percent reduction in the daily average cost of

production relative to a load shape that is expected profit maximizing for the case of no forward

contracts.

The remainder of the paper proceeds as follows.  In the next section, I present the theoretical

model of optimal bidding behavior for step-function bid supply curves and derive the full set of

moment restrictions that can be used to estimate a behavioral cost function.  The third section

discusses the actual estimation procedure and derives a number of the specification tests that I

implement in the subsequent empirical section.  The fourth section briefly summarizes the NEM1

electricity market and the data necessary for the analysis and presents the cost function estimation

and specification testing results.  This section then describes the various counterfactual scenarios

I used to quantify the economic significance of ramping costs and benefits from forward contracting

in terms of its ability to limit these costs.

2.   Moment Restrictions Implied by Expected Profit-Maximizing Bidding Behavior

This section derives the full set of population moments restrictions implied by expected

profit-maximizing bidding behavior in a multi-unit auction where firms bid step-function willingness

to supply curves.  I then describe how these moment restrictions are used to estimate the parameters

of the supplier’s multi-unit behavioral cost function and derive tests of the null hypothesis of

expected profit-maximizing bidding behavior.

The action space for a supplier in bid-based electricity markets is typically a compact subset

of an extremely high-dimensional Euclidian space.  In the NEM1, for each generation unit, or

genset, a supplier submits 10 daily price bids and 10 half-hour quantity bids to construct the 48 half-

hourly bid supply curves.  These price bids are required to be greater than or equal to an



8

administratively set minimum price and less than or equal to an administratively set maximum price

bid.  Each quantity bid is required to be greater than or equal to zero, and less than the capacity of

the generation unit, and the sum of the 10 half-hourly quantity bids must be less than or equal to the

capacity of the genset.   These market rules imply that a NEM1 supplier has a 490-dimensional daily

action space for each genset that it owns–10 daily price bids and 480 half-hourly quantity bids.

Electricity generation plants are typically composed of multiple gensets at given location.

Moreover, suppliers in wholesale electricity markets typically own multiple plants, so the dimension

of a supplier’s daily strategy space can easily exceed 2,000 to 3,000.

Fixing the10 price bids for a genset for all of the half-hours of the day limits a supplier’s

flexibility to alter its unit-level willingness to supply curve across half hours of the day.  Figure 1

provides an example of how this market rule limits changes in a genset’s willingness to supply curve

across half hours of the day for the case of three bid increments.  The prices, P1, P2, and P3, are the

same for both the off-peak and peak period bid curves.  The quantities associated with each of these

price bids can differ across the two periods.   The assumption used to estimate the behavioral cost

function is that the supplier picks the daily price bids and half-hourly quantity bids to maximize the

profits it expects to earn from participating in the wholesale electricity market subject to the

constraints on the price and quantity bids described above.

I now present the bid price and bid quantity moment restrictions used to estimate the multi-

output, unit-level behavioral cost functions for a NEM1 supplier.  In the NEM1, each day of the

market, d, is divided into half-hour load periods denoted by the subscript i beginning with 4:00 am

to 4:30 am and ending with 3:30 am to 4:00 am the following day.   Suppliers are required to submit

their price and quantity bids for the entire day by 11 am of the day before the energy is produced.

Let Firm A denote the supplier that owns multiple gensets whose expected profit-maximizing

bidding strategy is being computed.   Define
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Qid: Market demand in load period i of day d

SOid(p):  Amount of capacity bid by all other firms besides Firm A into the market in load

period i of day d at price p

DRid(p) = Qid - SOid(p): Residual demand curve faced by Firm A in load period i of day d,

at price p

QCid: Contract quantity for load period i of day d for Firm A

PCid: Quantity-weighted average (over all hedge contracts signed for that load period and

day) contract price for load period i of day d for Firm A. 

Bid(p): Variable profits to Firm A at price p, in load period i of day d

Qij:   Output in load period i from genset j owned by Firm A

Qj:   Vector of half-hourly outputs of genset j, Qj = (Q1j, Q2j, ...,Q48j)

Cj(Qj,$j):  Daily operating cost of producing the output vector Qj for genset j

$j: Parameters of daily operating cost function for genset j

SAid(p): Bid function of Firm A for load period i of day d giving the amount it is willing to

supply as a function of the price p

The market clearing price p is determined by solving for the smallest price such that the equation

SAid(p) = DRid(p) holds.  

The forward contract variables,  QCid and PCid, are set in advance of the day-ahead bidding

process.  Suppliers sign hedge contracts with large consumers or electricity retailers for a pre-

determined pattern of fixed prices or a single fixed price throughout the day, week, or month and

for a pre-determined quantity each half-hour of the day or pattern of quantities throughout the day,

week, or month for an entire year or number of years.  There is a small amount of short-term activity

in the hedge contract market for electricity retailers requiring price certainty for a larger or smaller-

than-planned quantity of electricity at some point during the year, but the vast majority of a
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supplier’s contract position is known far in advance of the dates the contracts settle.  Consequently,

from the perspective of formulating its day-ahead expected profit-maximizing bidding strategy, the

values of QCid and PCid for all half hours of the day are known to the supplier at the time it submits

its vector of price and quantity bids for the following day. 

At the time a supplier submits its bids, there are two sources of stochastic shocks to the

residual demand function the supplier faces each half-hour of the following trading day.  The first

is due to the fact that Firm A does not exactly know the form of SO(p), the bids submitted by all

other market participants.  The second accounts for the fact that the firm does not know what value

of market demand will set the market price at the time it submits bids.  Because I am not solving for

equilibrium outcomes in the multi-unit auction, I do not need to be specific about the sources of

uncertainty in the residual demand that Firm A faces.  Regardless of the source of this uncertainty,

Firm A will attempt to maximize expected profits given the distribution for this uncertainty.

Consequently, I assume that Firm A knows the joint distribution of the uncertainty in the 48 half-

hourly residual demand curves it is bidding against.

Let ,i equal the uncertainty in Firm A’s residual demand function in load period i (i =

1,...,48).  Re-write Firm A’s residual demand in load period i accounting for this demand shock as

DRi(p,,i).  Define  1 = ( p11,..., pJK, q1,11,...,q11,JK, q2,11,...,q2,JK, ...,  q48,11,...,q48,JK ) as the vector of daily

bid prices and quantities submitted by Firm A.  There are K increments for each of the J gensets

owned by firm A.  A noted earlier, NEM1 rules require that the price bid for increment k of unit j,

pkj, is set for each of the k=1,...,K  bid increments for each of the j=1,...,J gensets owned by Firm A

for the entire day.  The quantity bid in load period i, for increment k of unit j, qikj made available to

produce electricity in load period i from each of the k=1,...,K bid increments for the j=1,...,J gensets

owned by Firm A can vary across the i=1,...,48 load periods throughout the day.  The value of K is

10, so the dimension of 1 is 10J + 48×10J.  Firm A operates seven gensets during our sample period,
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so the dimension of 1 is more than several thousand.  Let SAi(p,1) equal Firm A’s bid function in

half-hour period i as parameterized by 1.  Note that by the rules of the market, bid increments are

dispatched based on the order of their bid prices, from lowest to highest, which implies that SAi(p,1)

is non-decreasing in p.

Deriving the moment conditions necessary to estimate generation unit-level behavioral cost

functions requires additional notation to represent SAi(p,1) in terms of the genset-level bid supply

functions.   Let 

SAij(p,1) = the amount bid by genset j at p price during load period i

total amount bid by Firm A at price p during load period i

In terms of this notation, write the realized variable profit for Firm A during day d as:

(2.1)

where , is the vector of realizations of ,i for i=1,...,48.    As discussed above,  pi(,i, 1), the market-

clearing price for load period i for the residual demand shock realization, ,i, and daily bid vector 1,

is the solution in p to the equation DRi(p,,i) = SAi(p,1).   To economize on notation, in the

discussion that follows I abbreviate pi(,i, 1) as  pi.  The (i,j) element of the vector Qj is equal to

SAij(pi ,1), the bid supply curve for genset j in half-hour period  i evaluated at the market-clearing

price in this half-hour period, pi.  

The first term in (2.1) is the daily total revenue received by Firm A for selling energy its

produce in the spot market.  The last  term is the total daily operating cost of producing the

electricity sold.  The middle term is the payments made by Firm A if the spot price exceeds the

contract price, or received by Firm A if the contract price exceeds the spot price.  Forward financial

contracts typically settle through these so-called “difference payments” between the buyer and seller

of the contract once the spot price is known.  Under this forward contract settlement scheme, the

spot market operator can simply pay all energy produced the spot market price and charge all energy
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withdrawn from the network at the spot market price.  In NEM1, as in virtually all other electricity

markets, the market and system operator does not know  the forward financial contract arrangements

between  market participants.

The best-reply bidding strategy maximizes the expected value of Ad(1,,) with respect to 1,

subject to the constraints that all bid quantity increments, qikj, must be greater than or equal to zero

and less than the capacity of the unit for all load periods, i, bid increments, k, and gensets, j, and that

for each genset the sum of bid quantity increments during each half-hour period is less than the

capacity, CAPj
max, of genset j.  All daily price increments must be greater than -$9,9999.99/MWh

and less than $5,000/MWh, where all dollar magnitudes are in Australian dollars.  All of these

constraints can be written as a linear combination of the elements of 1.

In terms of the above notation, the firm’s expected profit-maximizing bidding strategy can

be written as:

(2.2)

The first-order conditions for this optimization problem are:

(2.3)

if (R1 - bl)k > 0, then :k = 0 and (R1 - bu)k < 0, then 8k = 0,

where (X)k is the kth element of the vector X and :k and  8k are the kth elements of the vector of

Kuhn-Tucker multipliers, : and 8.   

If all of the inequality constraints associated with an element of 1, say pkj, are slack, then the

first-order condition reduces to 

: . (2.4)
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All of the daily price bids associated with Firm A’s gensets over the sample period lie in the interior

of the interval (-9,999.99,5,000), which implies that all price bids satisfy the first-order conditions

given in (2.4) for all  days d, gensets, j and daily bid increments, k.  Because Firm A operates 7 units

during my sample and each of them has bid 10 increments, this implies 70 daily price moment

restrictions. These first-order conditions for daily expected profit-maximization with respect to Firm

A’s choice of the vector of daily price increments are used to estimate the parameters of the genset-

level cost functions.

The first-order conditions with respect to qikj, the bid quantity increments can also be used

to estimate the behavioral cost function.  There are two conditions that must hold for the quantity

bid associated with bid increment k from unit j in load period i, qijk, to yield a first-order condition

of the form:

(2.5)

These conditions are: (1) the value of qikj is strictly greater than zero and (2) the sum of the qikj over

all bid increments k for unit j in load period i is less than the capacity of the unit.  The constraint that

the bid increment is less than the capacity of the genset is not binding for any half-hourly quantity

bid increment for any genset owned by Firm A, so this constraint can be ignored for the purposes

of our estimation procedure.

To implement this approach, define the following two indicator variables:

yikj = 1 if qikj > 0 and zero otherwise (2.6)

zij = 1 if and zero otherwise. (2.7)

Because suppliers can and often do produce more than the nameplate capacity of their generation

unit, I assume that CAPj
max of the generation unit is the sample maximum half-hourly amount of

energy produced from that unit over all half-hours in the sampled  period.  This definition of the
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indicator variables yrst and zrt implies the following quantity bid increment moment restriction for

all JK quantity bid increments:

(2.8)

Consequently, we have 70 additional moment restrictions from the first-order conditions for the 70

quantity increments, as long as population means of yrst and zrt are non-zero. 

There are also moment  inequality constraints implied by expected profit-maximizing

bidding behavior.  These will form the basis for a specification test of the assumption of expected

profit-maximizing bidding behavior given our unit-level behavioral cost function estimates.  Recall

the definitions of yikj and zij.  If qikj is such that yikj = 0 and zij = 1, then the following moment

equality restriction holds:

(2.9).

If qikj is such that yikj = 1 and zij = 0, then the following moment equality restriction holds:

. (2.10)

This implies the following inequality constraints moment restriction for all bid 70 quantity bid

increments on a daily basis:

, (2.11)

which should be greater than or equal to zero if the quantity increments are choosen to maximize

expected daily profits.  Given a consistent estimate of the behavioral cost function, I  will construct

a test of the null hypothesis that the population value of this moment restriction is greater than or

equal to zero.
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3.  Implementation of Estimation and Testing Procedures

Deriving a procedure to recover the genset-level daily operating cost function from the first-

order conditions from expected profit-maximizing bidding behavior is complicated by the fact that

even though E,(Ad(1,,)) is differentiable with respect to 1, the daily realized profit function,

Ad(1,,), is not.  The bid functions in the NEM1 are step functions, which implies that the residual

demand curve each supplier faces is non-differentiable, because DRid(p) = Qid - SOid(p). 

Using an approximation to Ad(1,,) that is differentiable with respect to 1, the order of

integration and differentiation can be switched in the first-order conditions for expected profit-

maximizing bidding behavior to produce the equality

. (3.1)

For the elements of 1 that are unconstrained, the corresponding element of the vector on the right-

hand side of (3.1) is equal to zero, so the value of  for each day in the sample period can

be used to form a sample moment condition.  Solving for the cost function parameters that make

these sample moment restrictions as close to zero as possible yields a consistent estimate these

parameters.

I use a flexible smoothing procedure to construct a differentiable approximation to Ad(1,,),

that is indexed by the smoothing parameter, h.   Let  equal the differentiable version of Firm

A’s daily variable profit function.  When h = 0, there is no approximation because,  =

Ad(1,,).

A differentiable residual demand function facing Firm A that allows for both sources of

residual demand uncertainty is constructed as follows:

DRh(p,,) = Qd(,) - SOh(p,,) , (3.2)
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where the smoothed aggregate bid supply function of all other market participants besides Firm A

in load period i is equal to

(3.3)

qoink is the kth bid increment of genset n in load period i and ponk is bid price for increment k of

genset n, where N is the total number of gensets in the market excluding those owned by Firm A.

M(t) is the standard normal cumulative distribution function and h is the smoothing parameter.  This

parameter smooths the corners on the step-function bid curves of all other market participants

besides Firm A.   Smaller values of h introduce less smoothing.  For h = 0,  the procedure reproduces

the original step function residual demand curve as is required for,  = Ad(1,,) to hold.

This smoothing technique results in the following expression for derivative of Firm A’s residual

demand function with respect to the market price in load period i: 

(3.4)

where N(t) is the standard normal density function. 

This same procedure is followed to make SAij(p,1) differentiable with respect to both the

market price and the price and quantity bid parameters that make up this willingness-to-supply

function.   Define  as:

(3.5)

which implies

(3.6)

This definition of SAij(p,1) yields the following three partial derivatives:

(3.7)

The final partial derivatives required to construct the elements of  can be

computed by applying the implicit function theorem to the equation used to determine the market-

clearing price  This yields the expression:
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(3.8)

where the derivative of residual demand curve with respect to price used in this expression is

given in equation (3.4) and the other partial derivatives are given in (3.7).  For the case of

quantity bids, the analogous expression is:

(3.9)

These expressions quantify, respectively, how the market-clearing price changes in response

to changes in the supplier’s daily price bids and half-hourly quantity bids.  By inspection, the

sign of the right-hand side (3.8) is positive and the sign of the right-hand side of (3.9) is

negative.

Given data on market-clearing prices and the bids for all market participants, I can

compute all of the inputs into equations (3.2) to (3.9).  I only need to choose a value for h, the

smoothing parameter that enters the smoothed residual demand function and Firm A’s

smoothed bid functions.  Once this smoothing parameter has been selected, the magnitudes

given in equations (3.2) to (3.9) remain constant for the entire estimation procedure.

The sample moment restriction for bid price increment k of genset j, is:

(3.10)

where pi is shorthand for the market-clearing price in load period i.  By the assumption of

expected profit-maximizing choice of the price bid increments:

(3.11)
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Let Rd($,h) denote the 70-dimensional vector of partial derivatives given in (3.10), where

$ is the vector composed of $j for j=1,...,J.  Assuming that the functional form for Cj(Qj,$j) is

correct for all gensets, the first-order conditions for expected profit-maximization with respect

to the 70 daily bid prices imply that E(Rd($0,h))h=0 = 0, where $0 is the true value of $.

Consequently, solving for the value of b that minimizes:

(3.12)

will yield a consistent estimate of $ as both D tends to infinity and h tends to zero.  Let b(I)

denote this consistent estimate of $, where “I” denotes the fact that the identity matrix is used

as the generalized method of moments (GMM) weighting matrix.  I can construct a consistent

estimate of the optimal GMM weighting matrix that accounts for potential heteroscedasticity

in the covariance matrices of Rd($0,h) across observations using this consistent estimate of $ as

follows:

(3.13)

The optimal GMM estimator finds the value of b that minimizes

(3.14)

as h tends to zero.  Let b(O) denote this estimator, where “O” denotes the fact this estimator is

based on  a consistent estimate of the optimal weighting matrix.

To incorporate the quantity bid moment restrictions, take the partial derivative of the

smoothed realized profit function, , with respect to the quantity increment s for unit t

in half-hour r, qrst: 

(3.15)
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where pr is the market-clearing price in load period r.  Compute the following daily observation

for each quantity increment:

(3.16)

By definition of the indicator variables yrst and zrt following result holds:

(3.17)

Consequently, we have 70 additional moment restrictions from the first-order conditions for the

70 quantity increments, as long as population means of yrst and zrt are non-zero.  Define ‹d($,h)

as the 140-dimensional vector of daily price and quantity moments.  Equations (3.11) and (3.17)

imply that  E(‹d($0),h)h=0 = 0.  Repeating the logic given in equation (3.12) to (3.14), the

optimal GMM estimator of the parameters of the behavioral cost functions that incorporates

both the price and quantity moment conditions can be derived.

To examine the empirical validity of the inequality constraint moment restrictions

implied by the expected profit-maximizing choice of the 70 quantity bids, compute the

following magnitude for each quantity increment:

(3.18)

Given a consistent estimate of the elements of the cost function we can construct a test of the

null hypothesis that the population value of this moment restriction is greater than or equal to

zero.  Define ød($,h) as 70-dimensional vector of composed of the values of  for

genset t (t=1,...,7) and bid increment s (s=1,...,10).  The expected profit-maximizing choice of

the quality bids implies  E( ød($0,h))h=0 $0.

Using a consistent estimate of the parameters of the behavioral cost functions, compute

 (3.19)
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b(O) is the optimal GMM estimator of the parameter of the behavioral cost functions.  Using

Z(D,h) and V(b(O),h), multivariate inequality constraints testing results from Wolak (1989) can

be used to derive a test that  (which is implied by the hypothesis of

expected profit-maximizing bidding behavior) against an unrestricted alternative. The

multivariate inequality constraints test statistic is the solution to the following quadratic

program:

(3.20)

An asymptotic size " critical value for this statistic is the solution in c to the following

equation:

, (3.21)

where  is the probability a chi-square random variable with k degrees of freedom

is greater than c, the weights, , are computed as described in Wolak (1989),

and M is equal to number of inequality constraints being tested, which is equal to 70 in this

case.  The p-value for this hypothesis test can be computed using this same expression as: 

(3.22)

This gives the probability of rejecting the null hypothesis given the realized value of the test

statistic.  If this p-value is less than the size of the test, ", then the data does not provide

sufficient evidence against the validity of the null hypothesis at a " =0.05 level of significance.

4.  Estimation and Hypothesis Testing Results

The final step necessary to implement this estimation technique is the choice of the

functional form for the marginal cost function for each genset.  Firm A owns two power plants.

One power plant has four identical gensets that the firm operates during the sample period.  I

refer to this facility as Plant 1.  Two of the gensets at Plant 1 have a CAPj
max of 680 MW and

the other two have a value 690 MW. Recall that CAPj
max is the sample maximum half-hourly
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output from that generation unit.  The lower operating limit of all of these units is 200 MW.

The other power plant has three identical gensets that the firm operates during the sample

period.   I will refer to this facility as Plant 2.  All three gensets at Plant 2 have a CAPj
max of 500

MW and a lower operating limit of 180 MW.

There are an enormous number of parameters that could be estimated for the 48-

dimensional daily cost function for unit j.   Because I would like to capture ramping constraints

across and within half hours of the days, I specify the unit-level variable cost function as a

cubic function of the vector of 48 half-hourly outputs for the day.  For Plant 1, define 

Qij* = max(0,Qij  - 200) (4.1)

where Qij is the output in half hour i from unit j and Qj* is the 48-dimensional vector of the Qij*

for all 48 half hours of the day.  The behavioral cost function for the four identical units

associated with Plant 1 is assumed to take the form:

, (4.2)

where a1 is a scalar to denote the fact that without ramping costs the marginal cost would be the

same for all hours of the day.  4 is a 48-dimensional vector of 1's, A1 is a (48 x48) symmetric

matrix, and B1 is a 482 x 48 matrix that is composed of 48 symmetric (48 x 48) matrices, E1,

stacked as:

. (4.3)

To make the estimation manageable, I restrict A1 to be a band symmetric matrix, that depends

on three parameters, A1(diag), A1(one) and A1(two).  A1(diag) is the value of the diagonal

elements,  A1(one) is the value of all of the elements above and below the diagonal elements,

and  A1(two) is the value of all of the elements two above and two below the diagonal elements.

The matrix E1 is a diagonal matrix with the single element B1(diag) along the diagonal.  These

restrictions reduce the number of parameters in the daily operating cost function from
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½(48)(49)2 + 1 to 5.  The parameters, A1(diag), A1(one), A1(two), and B1(diag) quantify the

extent to which marginal costs are not constant across half hours of the day because of

production in previous half hours and in the present half-hour.  Consequently, a joint test that

these four coefficients are zero is a test of the null hypothesis of constant marginal cost. The

parameter vector for the behavioral cost function for the four identical units at Plant 1 is $1 =

(a1,A1(diag), A1(one), A1(two),B1(diag)). 

The unit-level cost function for the three units at Plant 2 are defined in a similar manner.

In this case  

Qij* = max(0,Qij  - 180). (4.4)

The cost function takes the form:

(4.5)

where a2,A2,B2 and E2 are defined analogously to a1,A1, B1, and E2.  A2(diag), A2(one), A2(two)

and B2(diag) are defined in the same manner as A1(diag),A1(one), A1(two) and B1(diag),

respectively. The parameter vector of associated with these three units is $2 = (a2,A2(diag),

A2(one), A2(two),B2(diag)). 

These functional forms are substituted into the moments restrictions for price bids in

equation (3.10) and quantity bid moment restrictions in equation (3.15) to construct the sample

moment restrictions necessary to construct the objective function.  The parameter vector is $

= ($1,N$2N)N, where $1 is the parameter vector associated with the behavioral cost function for

the four units at Plant 1 and $2 is the parameter vector associated with the behavioral cost

function for the three units at Plant 2.

Section 6 of Wolak (2003) summarizes the relevant features of the NEM1 market in

Australia.  Our sample period is from May 15, 1997 to August 24, 1997, so that D = 102.  All

half-hourly unit level bid data and output data can be downloaded from the web-site of the
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NEM1 operator.  Forward contract data, the half-hourly values of PC and QC, is confidential.

Consequently, the constraint on my sample size is that I only have the half-hourly forward

contract values for Firm A for the period May 15, 1997 to August 24, 1997.

Figure 2a and 2b present smoothed values of residual demand curves for Firm A during

a low  aggregate demand and a high aggregate demand half-hour period on July 28, 1997 for

a value of h=1.  At all prices Firm A has a higher demand for its output in the high system-

demand period versus the low system-demand period.  If suppliers bid in their entire capacity

into the spot market during all half-hours with roughly the same quantity bids at the same bid

prices, I would expect to observe this relationship between the half-hourly aggregate demand

and the half-hourly residual demand that a supplier faces.

Table 1 contains the parameter estimates for the two genset-level behavioral cost

function estimates for the two sets of moment conditions used to estimate these parameters.  All

parameter estimates use a value h = 0.01, where the prices are reported in units of $/MWh. 

The standard error estimates for the elements of $ are computed using the GMM covariance

matrix estimate given in Hansen (1982) using a consistent estimate of the optimal weighting

matrix.  The GMM coefficient estimate covariance matrix  for the case of the price moment

restrictions only is equal to:

(4.6)

where b(I) is the initial consistent estimate of $ and b(O) is the estimate of $ using a consistent

estimate of the optimal weighting matrix.

For both sets of moment restrictions, a Wald test of the null hypothesis that all elements

of $, besides a1 and a2, are jointly zero is overwhelmingly rejected at a " = 0.01 level of

significance.  This hypothesis testing result is consistent with the existence of genset-level

ramping costs for both estimation methods.  However, focusing on each genset-level cost
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function individually, the null hypothesis that all of the genset-level parameters, besides ai,are

zero is rejected at a " = 0.01 level of significance for both gensets individually for  the price

and quantity bid moments restrictions, but only for the gensets at Plant 1 only for the case of

the price moment restrictions only.

Figures 3a to 3c presents plots of the estimated genset-level marginal cost function for

units at Plant 1 for various values of output in the previous half-hour period and the half-hour

period immediately following the current period, given the value of output two half-hour

periods ago and two half-hourly periods into the future.  The differences in marginal costs due

to differences in the level of production in previous periods are economically significant in the

sense that the marginal cost is approximately $0.50/MWh higher if the unit is producing 100

MWh less in period t-1and the marginal cost is approximately $0.20/MWh higher if the unit’s

output in period t-2 100 MW higher. 

These behavioral cost function estimates can be used to examine the validity of the

assumption of expected profit-maximizing bidding  behavior.  Because 70 moments restrictions

are used to estimate 10 parameters in the case of the price bid moments, this leaves 60 over-

identifying moment restrictions implied by the assumption of expected profit-maximizing

bidding behavior. For the case of the price and quantity bid moments, 140 moment restrictions

are used to estimate 10 parameters, which leaves 130 over-identifying moments restrictions

implied by the assumption of expected profit-maximizing bidding. The test statistic for both of

these null hypotheses is the optimized value of the GMM objective function times the number

of observations, D.  For the case of the price bid moment restrictions, this statistic takes the

following form

(4.7)
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Under the null hypothesis that these over-identifying moment restrictions implied by expected

profit-maximizing bidding behavior hold as population moment restrictions, S$(b(O),h), is

asymptotically distributed as a chi-squared random variable with degrees of freedom equal to

the number of over-identifying restrictions.  The value of this test statistic for the case of the

price bid moment restrictions is equal to 47.62, which less than the " = 0.05 critical value from

a chi-squared distribution with 60 degrees of freedom.  The value of this test statistic for the

case of the price and quantity bid moments is 84.11, which less than the " = 0.05 critical value

from a chi-squared distribution with 130 degrees of freedom.  Both of these hypothesis testing

results provide no evidence against the null hypothesis that Firm A chooses its price and

quantity bids to maximize expected profits.

Another way to examine the validity of the moment restrictions implied by expected

profit-maximizing bidding behavior is to test the null hypothesis that the probability limit of

the difference between the GMM estimate of $ that imposes the price bid moment restrictions

only, bp(O), and the GMM estimate of $ that imposes both the price and quantity bid moment

restrictions, bpq(O), is equal to zero.  It is possible to show that under the null hypothesis that

the plim of this  difference is zero, the following result holds:

(4.8)

where V(diff,h) = V$(bp(O),h) + V$(bpq(O),h) - C(bpq(O),bp(O)) - C(bpq(O),bp(O))’.  The matrix

V$(bp(O),h) is defined in equation (4.6) and V$(bpq(O),h) is defined in an analogous manner

with Rd(b,h) replaced by ‹d(b,h).  The matrix accounting for the correlation between the

asymptotic distributions of the two estimates of $ is defined as:

(4.9)
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The test statistic of the null hypothesis plim(bp(O) - bpq(O)) = 0 is 

.

The asymptotic distribution of this statistic under the null hypothesis is a chi-squared random

variable with degrees of freedom equal to the dimension of $, which is equal 10.  The value of

this test statistic is J = 1.045, which smaller than the " = 0.05 critical value of a chi-squared

random variable with 10 degrees of freedom, indicating that the data provides no evidence

against the null hypothesis that the price bid moment restrictions and price and quantity bid

moment restrictions yield the same estimates of the two unit-level behavioral cost functions.

The 70-dimensional population moment inequality constraints associated with the

quantity bids,  , where Z(D,h) is defined in equation (3.19), is an

additional implication of expected profit-maximizing bidding behavior.   Using the optimal

GMM estimator of $ that uses both the price and quantity bid moments, I compute   

 (4.10)

In Wolak (2004), I derive the asymptotic distribution of Z(D,h) for the least favorable value of

moment restriction under the null hypothesis .  Let VI(b(O),h) denote a

consistent estimate of the asymptotic covariance matrix of Z(D,h).  This asymptotic covariance

depends on both V(b(O),h), asymptotic covariance matrix of the GMM estimate of $, and the

asymptotic covariance of the inequality moment restrictions with the equality moment

restrictions. Applying results from Wolak (1989), the multivariate inequality constraints

distance test given in for this null hypothesis against an unrestricted alternative is the solution

to the following quadratic programming problem:

(4.11)
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I find that W = 39.49.  Using the expression for the least-favorable distribution of the test

statistic under the null hypothesis , I use equation (3.22) to compute a

probability value for this test statistic equal to 0.736.  This probability value implies that the

probability of obtaining a value from least favorable the null asymptotic distribution of the test

statistic greater than 25.97, the value of W computed using my unit-level behavioral cost

function estimates, is 0.736.  This hypothesis testing result implies that the data provides little

evidence against the validity of the moment inequality restrictions implied by expected profit-

maximizing bidding behavior.   Performing this same test for the estimate of $ that only

imposes the moment restrictions implied by the price bids, yields the same conclusion of no

evidence against the validity of the null hypothesis.

These specification testing results find no evidence against the null hypothesis of

expected profit-maximizing bidding behavior, no evidence against  the consistency of the unit-

level cost function estimates using the price and quantity bid moment restrictions and those

obtained using only the price bid moment restrictions, and overwhelming evidence against the

null hypothesis of no ramping costs for both genset unit-level cost functions for the case of

price and quantity bid moment restrictions.  

I now proceed to investigate the economic significance of these ramping costs and

quantify magnitude of potential average daily production cost reductions that Firm A achieves

as a result of signing forward financial contracts to commit itself to a smoother pattern of output

throughout the day.  The following notation is required to define a number of counterfactual

patterns of output throughout the day for Firm A that quantify the magnitude of ramping costs

that it faces:

= actual output of genset j in half hour i

= the actual output from all gensets in half hour i 
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= actual output from all gensets owned by Firm A during all half-

hour periods of the day

= minimum level of output that can be produced by unit j in a half-hour

As noted earlier, there are four identical units at Plant 1 and three identical units at Plant 2

operating during my sample period, so that J=7.  The value of  is 200 MW for the units

at Plant 1 and 180 MW for the units at Plant 2.   , defined earlier, is the maximum half-

hourly output observed from that unit during the sample period.

For each day during the sample I solved the following two optimization problems using

the unit-level behavioral cost function estimates based on the price and quantity bid moments:

(4.12)

and

(4.13)

The first optimization problem solves for the daily pattern of output throughout the day that

minimizes daily operating costs subject to the constraints that it replicates the half-hourly actual

pattern of total output (across all J units) owned by Firm A, and that no unit can produce more

or less than its minimum or maximum capacity during any half-hour of the day.  Call the

optimized value of the objective function from (4.12) for day d, Min_Cost_Half_Hour(d).  The

second optimization problem solves for the daily pattern of output throughout the day that

maximizes daily operating costs subject to the constraints that it replicates the half-hourly

actual pattern of total output (across all J units) owned by Firm A and that no unit can produce

more or less than its minimum or maximum capacity during any half-hour of the day. Call the
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optimized value of the objective function from (4.13) for day d, Max_Cost_Half_Hour(d).  Let

Actual_Cost(d) equal the value of operating costs during day d, based on the estimated genset

level cost functions, based on values of Qij
act for all half-hours of the day.  If there were no

ramping costs and all units had the same marginal cost of production then

Min_Cost_Half_Hour(d) = Actual_Cost(d) = Max_Cost_Half_Hour(d).

With ramping costs

Min_Cost_Half_Hour(d) # Actual_Cost(d) # Max_Cost_Half_Hour(d).

Consequently, one measure of the magnitude of ramping costs is the ratio of the sample mean

of Max_Cost_Half_Hour(d) to the sample mean of Min_Cost_Half_Hour(d).

To allow greater flexibility to substitute across gensets within the day, I also compute

the following two counterfactual daily minimum and maximum patterns of output using the

behavioral cost function estimates obtained from the price and quantity bid moment restrictions.

(4.14)

and

(4.15)

Optimization problem (4.14) solves for the daily pattern of output throughout the day that

minimizes daily operating costs subject to the constraints that it replicates the total daily output

(across all J units and 48 half-hours) produced by Firm A and that none of Firm A’s units can

produce more or less than its minimum or maximum capacity during any half-hour of the day.

Call the optimized value of the objective function from (4.14) for day d  Min_Cost_Day(d).
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The second optimization problem solves for the daily pattern of output throughout the day that

maximizes daily operating costs subject to the constraints that it replicates the total daily output

(across all J units and 48 half-hours) produced  by Firm A and that none of Firm A’s units can

produce more or less than its minimum or maximum capacity during any half-hour of the day.

Call the optimized value of the objective function from (4.15) for day d, Max_Cost_Day(d). 

Because (4.14) and (4.15)  impose one constraint on the pattern of output throughout

the day and (4.12) and (4.13) imposes 48 constraints, the following inequalities hold:

Min_Cost_Day(d) # Min_Cost_Half_Hour(d)

Max_Cost_Half_Hour(d) # Max_Cost_Day(d).

The sample mean of Max_Cost_Day(d) divided by the sample mean of Min_Cost_Day(d) is

equal to 1.09.  The sample mean of Max_Cost_Half_Hour(d) divided by the sample mean of

Min_Cost_Half_Hour(d) is equal 1.07.   The sample mean of Actual_Cost(d) divided by the

sample mean of Min_Cost_Half_Hour(d) is 1.02.  These results indicate that ramping costs can

increase the average daily cost necessary to meet Firm A’s actual daily output obligations by

as much as 7 to 9 percent.   The sample mean of Actual_Cost(d) divided by the sample mean

of Min_Cost_Half_Hour(d) is 1.02 and the ratio of the sample mean of Actual_Cost(d) divided

by the sample mean of Min_Cost_Day(d) is 1.03.  These calculations indicate the Firm A’s

present level of forward contracting implies that Firm A finds it expected profit-maximizing

to produce close to the minimum daily cost pattern of output rather than the maximum daily

cost pattern of output.

One way to quantify the benefits to Firm A from its current level of forward contracting,

is to assume that without forward contracting Firm A would find it profit-maximizing to

produce closer to the daily-cost-maximizing pattern of output that arises from solving for

Max_Cost_Day(d) or Max_Cost_Half_Hour(d).   This logic implies that forward contracting
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is causing to Firm A to produce its daily output at a lower daily average cost than it would if

it did not sign a forward contract.  The ratios of the sample means reported above are

informative about the extent of potential benefits, in terms of reduced daily average production

costs, accruing to Firm A from its current level of forward contracting.  However, at a reduced

level of forward contracts, it is unlikely that Firm A would produce the same total daily output

and is certainly very unlikely to produce the same total amount of output in each half-hour of

the day because of the increased incentives it would have to exploit the distribution of residual

demand curves that it faces in constructing its expected profit-maximizing bids that entail

bidding in an attempt to raise market prices.  Thus, comparing the sample means of the two

Max_Cost and Min_Cost figures does not account for the fact that the profit-maximizing

pattern of daily output would change as a result of Firm A having significantly less or no

forward contract obligations.

To address the impact of a reduced level of forward contracting on the profit-

maximizing daily pattern of production, I compute the solution to the following optimization

problem for each day of the sample period:

(4.16)

DRi(p) is the actual residual demand curve faced by Firm A during load period i.  QCi* is the

assumed counterfactual value of forward contracts held by Firm A during load period i.  PCi

is the actual forward contract price in period i.  The solution to (4.16) yields the profit-

maximizing pattern of output for Firm A given the actual residual demand curve that it faced
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during each half-hour over the sample period for a half-hourly level of forward contracts equal

to QCi*. 

To determine the profit-maximizing pattern of daily production with no forward contract

holding by Firm A, I solve (4.16) assuming that QCi* = 0 for all half-hours i and for all days

during the sample period.  Let Qij
QC=0 equal the optimized value of Qij from solving (4.16).  I

then compute the value Max_Cost_Half_Hour(d) and Min_Cost_Half_Hour(d) by solving

(4.12) and (4.13) replacing the actual value of Qij with Qij
QC=0.   I also compute

Max_Cost_Day(d) and Min_Cost_Day(d) by solving (4.14) and (4.15) replacing the actual

value of Qij with Qij
QC=0.   Denote this Min_Cost and Max_Cost with a “*”.

Dividing the sample mean of Max_Cost_Half_Hour(d)* by the sample mean of

Min_Cost_Half_Hour(d)* yields 1.09.  The sample mean of Max_Cost_Day(d)* divided by the

sample mean of Min_Cost_Day(d)* yields 1.12.  These ratios are both higher than the same

ratios computed using the actual (rather than the zero-forward-contract profit-maximizing

pattern of output by Firm A).  This result demonstrates that the profit-maximizing pattern of

output within the day with no forward contracts is significantly more variable than the actual

pattern of output within the day. 

 Define Actual_Cost(d)* as the daily operating cost computed using Qij
QC=0 instead of

the actual output of Firm A.  The dividing the sample mean of Max_Cost_Half_Hour(d)* by

the sample mean of Actual_Cost(d)* yields a value of 1.02.  The sample mean of

Max_Cost_Day(d)* divided by the sample mean of Actual_Cost(d)* is 1.03.  These results

imply that the profit-maximizing pattern of production with zero forward contracts is much

closer to the maximum daily cost pattern of production than the minimum daily cost pattern of

production, which is exactly the opposite result from what I obtained for the case for Firm A’s

actual level of forward contracts.
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To further quantify the benefits of forward contracting, I perform the following

computation for 

AC(d) = Actual_Cost(d)/Qact and AC(d)* = Actual_Cost(d)*/QCQC=0 , where

 for each day of the sample period.   I find that even though the sample

mean of Actual_Cost(d) is greater than the sample mean of Actual_Cost(d)*, the sample mean

of AC(d)* greater than AC(d).  The ratio of the sample mean of AC(d)* divided by the sample

mean of AC(d) is 1.08, implying that sample mean daily average cost of producing power

according to the profit-maximizing pattern of daily output for QC = 0 for all half-hours of the

sample is 8 percent higher than the sample mean daily average cost of producing power

according to profit-maximizing pattern of daily output at the actual level of forward contracting.

This computation implies significant benefits from forward contracting in terms of committing

suppliers to a lower daily average cost pattern of production.

5.  Conclusions and Directions for Future Research

The estimation framework presented in this paper for recovering multi-output, genset-

level behavioral cost functions from the assumption of expected profit-maximizing bidding

behavior in a multi-unit auction where bidders submit non-decreasing step-function bid supply

curves can be applied any multi-unit auction that uses step-function bid curves.  Because this

estimation procedure only relies on the assumption of best-reply behavior on the part of an

individual market participant, it is unnecessary to solve for the market equilibrium to apply this

estimation procedure,  so that it can be applied to pay-as bid as well as uniform market-clearing

price auctions.  Because step-function bid curves, rather than continuous bid functions appear

to be the rule rather than the exception in actual multi-unit auctions, this estimation framework

should have wide empirical application.
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Several tests of the null hypothesis of expected profit-maximizing bidding behavior are

proposed and implemented.  There is little empirical evidence against the validity of the over-

identifying moment restrictions implied by the null hypothesis of expected profit-maximizing

bidding behavior for both the price bid  moments alone and the combination of price and

quantity bid moments estimators.   I also propose and implement a test of the null hypothesis

that behavioral cost function implied by the expected profit-maximizing choice of the price and

quantity bids of the step function supply curves  is the same as the behavioral cost function

implied by the expected profit-maximizing choice of only the price bids of this supply curve.

I find little evidence against this null hypothesis as well.  Finally, expected profit-maximizing

choice of the quantity-bids also implies that certain moment inequalities hold for the true

behavioral cost function.  Using results from Wolak (1989), I test and fail to reject these

population moment inequality constraints.

These genset-level behavioral cost function estimates provide statistically significant

evidence consistent with the existence of ramping costs. These ramping costs are quantified by

comparing the minimum and maximum daily cost of producing the supplier’s actual half-hour

pattern of daily output across all gensets it owns using these cost function estimates and the

minimum and maximum daily cost of producing the supplier’s actual daily output.  These

computations reveal the ramping costs can raise the average daily cost of producing the

supplier’s actual pattern of output by as much 10 percent.

To quantify the impact of forward contracting on the supplier’s daily cost of producing

it output, I use the actual bids submitted by the supplier’s competitors and these behavioral cost

function estimates to compute a counterfactual profit-maximizing pattern of production

throughout the day for the supplier assuming it holds no forward contracts for each day in the
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sample.  I then repeat the two daily cost minimum and maximum computations for this pattern

of output.  

I find that the profit-maximizing pattern of output throughout the daily assuming the

supplier has zero forward contracts is very close to the maximum cost way to supply this

pattern of daily production.  In contrast, the supplier’s actual pattern of daily production with

its current forward contract holdings is very close to the minimum cost way to supply this

pattern of daily production.  Comparing the actual daily average cost and the daily average cost

of producing the zero-contract profit-maximizing pattern of production, I find that on average,

the average daily cost of producing in a profit-maximizing manner with no forward contracts

is approximately 8 percent higher, which provides strong evidence for the operating cost

reduction benefits to suppliers of signing forward financial contracts.

There are a number of other potential uses for these behavioral cost function estimates.

Realistic genset-level marginal cost estimates are a key ingredient for computing competitive

benchmark pricing to assess the extent of market inefficiencies in wholesale electricity markets.

 Borenstein, Bushnell, and Wolak (2002) , Joskow and Kahn (2002), Mansur (2003), and

Bushnell, Mansur, and Saravia (2003) all use engineering-based estimates of these operational

cost functions that assume no ramping constraints.  These multi-output, genset-level cost

functions can be used in place of the engineering estimates to capture the impact of ramping

constraints in computing these counterfactual competitive benchmark prices.  Mansur (2003),

among others, has argued that taking these constraints into account may have important

implications for the values of these competitive benchmark prices.  He proposes and

implements a regression-based procedure that suggests accounting for ramping constraints will

yield an economically significant difference in the resulting competitive benchmark prices

relative to the standard approach that ignores ramping constraints.
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Table 1: Parameter Estimates

Price and Quantity Moments Price Moments Only

Coefficient Standard Error Coefficient Standard Error

Units from Plant 1 (Nameplate Capacity = 660)

a1 10.706 0.354 10.677 0.555

A1(diag) 0.01139 0.00181 0.01197 0.00294

A1(one) -0.005232 0.00041 -0.00553 0.000835

A1(two) 0.001709 0.00056 -0.001268 0.001072

B1(diag) -0.00000517 0.0000019 -0.00000575 0.00000308

Units from Plant 2 (Nameplate Capacity = 500)

a2 14.456 0.3859 13.961 0.6555

A2(diag) 0.0160 0.00796 0.01039 0.04515

A2(one) -0.005762 0.00158 -0.00692 0.02923

A2(two) 0.04266 0.00341 0.01031 0.01678

B2(diag) -0.000056 0.000025 -0.000109 0.000108
Standard errors of coefficient estimates computed using asymptotic covariance matrix
estimate given in Hansen (1982).
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Figure 1:   Sample Bid Functions for Australian Electricity Market
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Figure 2a

Figure 2a
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Figure 3a

Figure 3b
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Figure 3c


