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Abstract

In this paper we analyze unemployed workers’ learning during search about the
aggregate matching efficiency in the market. Each worker chooses whether to partic-
ipate in the market and which submarket to search in. A submarket is described by a
wage and a job finding probability, with a higher wage being accompanied by a lower
job finding probability. After each period of search, an unemployed worker updates
his belief about the matching efficiency. We show that, as the number of past search
failures increases, a worker’s potential wage falls and the likelihood for the worker to
exit the market rises. We also find that an increase in the unemployment benefit can
simultaneously account for (i) a lower flow from unemployment to employment; (ii) a
lower flow from unemployment to out of the labor force; (iii) a higher unemployment
duration; and (iv) a lower probability for the workers who are out of the labor force to
re-enter the labor force. These results are useful for explaining the differences in un-
employment and labor force participation between the US and continental European
countries.

∗ Very preliminary. Please do not quote.



1. Introduction

It is well known that continental European countries have significantly higher unemploy-

ment rates and longer unemployment duration than the US. Also, labor market participa-

tion is lower in continental Europe than in the US. These facts are puzzling. If European

workers’ high valuation of leisure accounts for the low participation, then it should also

increase the opportunity cost of job search, thus reducing the unemployment rate and un-

employment duration. If generous unemployment benefits in Europe account for the high

unemployment rate and duration, then they should also induce higher participation. To

understand the facts, it seems important to analyze workers’ job search decisions.

In this paper we focus on unemployed workers’ learning during search about the match-

ing efficiency in the aggregate matching function. Workers are ex ante identical and un-

employment histories are private information. At the beginning of each period, a non-

employed worker receives a shock to the value of leisure. These shocks are iid across

agents and over time. After the shock, a non-employed worker decides whether to search

in the period or to enjoy leisure and stay out of the labor force. A worker who decides to

search chooses the submarket in which to search. A submarket is described by a wage and

a job finding probability, with a higher wage being accompanied with a lower job finding

probability. After each period of search, an unemployed worker updates his belief about

the matching efficiency. Consequently, beliefs will diverge as the workers’ search outcomes

differ. Also, workers who stay out of the labor force do not receive new information about

the matching efficiency, and they do not receive the unemployment benefit.

We show that in the competitive search equilibrium, as the number of past search

failures increases, a worker becomes more pessimistic about the matching efficiency. This

will make the worker more likely to choose to stay out of the labor force in the future.

1



Also, if the worker continues to search in the next period, he will be more likely to search

in a submarket in which the job finding rate will be higher. Because such a submarket

comes with a lower wage, a worker’s permanent income decreases with the duration of

unemployment.

We also find that an increase in the unemployment benefit has the following effects on

workers’ decisions in the labor market. First, a worker is more likely to stay unemployed to

search for a job. Second, a worker will search for higher wages which have lower job finding

probabilities. Third, when workers exit the labor force from unemployment, their beliefs

about the matching efficiency will be lower than if the unemployment benefit is lower,

and hence they will be less likely to re-enter the labor force in the future. These effects

imply that a higher unemployment benefit leads to (i) a lower flow from unemployment to

employment; (ii) a lower flow from unemployment to out of the labor force; (iii) a higher

unemployment duration; and (iv) a lower probability for the workers who are out of the

labor force to re-enter the labor force.

These results are useful for explaining the differences between the US and continental

European countries in unemployment and labor market participation. In particular, the

theory suggests that more generous unemployment benefits in European countries can ac-

count simultaneously for higher unemployment, longer unemployment duration, and lower

labor force participation in these countries. Learning during employment is important

for this theory because, without learning, high unemployment benefits would lead to high

unemployment but also high labor force participation.

There are other theories that also explain why workers’ wages and participation fall dur-

ing non-employment. For example, workers’ skills may deteriorate during non-employment

and, as the skills deteriorate, the workers will obtain lower wages and will be less likely to

participate in the labor force. Although not exclusive to this alternative theory, our the-
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ory’s testable implications are distinguishable. In particular, the alternative theory does

not distinguish an unemployed worker from a worker out of the labor force in the sense

that both workers’ skills deteriorate during non-employment, while the distinction between

the two is important in our theory. Only when a worker searches for a job does he gain

new information about the matching efficiency and only when he fails to find a match will

he become more pessimistic in the future search. Thus, in our theory, a worker who has

been searching for a number of periods will behave very differently from a worker who has

stayed out of the labor force for these periods. Moreover, the unemployment benefit affects

workers’ learning process in our theory by affecting their decisions to participate and to

search in particular submarkets. In the alternative theory, the deterioration of a worker’s

skills does not have any link to the unemployment benefit, provided that the worker is

non-employed.

2. The Model

2.1. Agents, Markets and Matching

Time is discrete and all agents discount the future at a rate r > 0. There are a large

number of workers. A worker is either employed or non-employed. A non-employed worker

is either unemployed or out of the labor force. When employed, a worker produces y > 0

units of goods. When unemployed, a worker gets an unemployment benefit b > 0 and

searches for a job. A worker who is out of the labor force enjoys leisure, which yields a

benefit l > 0. The value of leisure is a random variable whose value lies in [l, l̄], where

0 < l < l̄. At the beginning of each period, a non-employed worker draws a value of l from

the distribution F (.). Assume that the corresponding density function, F 0, is continuously

differentiable over [l, l̄]. The draws are identically and independently distributed across

agents and over time. After observing the value of l, an unemployed decides whether to
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stay unemployed or to get out of the labor force, while a worker out of the labor force

decides whether to stay out of the labor force or to enter unemployment to search.

Let u be the number of unemployed workers and v the total number of vacancies in a

period. The aggregate matching function is muv/(u+ v), where m > 0 is the “efficiency”

of matching. Denote

λ =
1

1 + u/v
.

We will refer to λ as the tightness of the market, where a higher λ means a tighter market

for the firms. Then, the job finding probability is λm, and the probability with which a

vacancy finds a match is (1− λ)m. Let the domain of λ be [0, λ̄], where λ̄ ∈ (0, 1).
The matching efficiency, m, is unknown to individual workers and firms. It has two

possible values, mH and mL, where mH ∈ (0, 1) and mL ∈ (0,mH). One way to interpret

the problem is as follows. The economy consists of a continuum of markets, a fraction

p of which exhibit m = mH and the remaining fraction of which have m = mL. Agents

are assigned to one of these markets at random. They can choose whether or not to

participate in the market, but they cannot switch markets. Accordingly, agents initially

have a common prior on their type. That is, an agent’s initial belief is that he is assigned

to an H market with probability p and to an L market with probability 1− p.1

In each of the markets described above, there are submarkets. A submarket is char-

acterized by a tightness, λ, and a wage level W (λ). The wage function W (.) describes

wages across the submarkets, and it is public knowledge. Firms and workers can choose

which submarket to enter. The equilibrium wage in a submarket clears the submarket in

the sense that the induced entry of firms and workers is consistent with the tightness in

1Note that there is some heterogeneity, ex post, since workers are assigned to one of the two markets.
In this sense, observing equilibrium wage dispersion may not be that surprising. However, the pattern of
wages which a given worker can obtain potentially in different periods is interesting.

4



that submarket. We will determine the equilibrium wage in each submarket later, which

will satisfy the following assumption:

Assumption 1. For all λ ∈ [0, λ̄], the function W (λ) is twice continuously differentiable
and it has the following properties: (i) 0 < W (λ) ≤ y; (ii) W 0(λ) < 0; and (iii) W 00(λ) ≤
2W 0(λ)/(1− λ).

Part (i) of the assumption is evident. Part (ii) requires that the wage in a submarket

that is tighter for firms should have a lower wage. This is necessary in order to induce firms

to enter the submarket. Part (iii) requires that the wage function be sufficiently concave,

and it facilitates some technical aspects of the analysis.

For a worker, entering a submarket (to search) for a period makes the worker entitled to

the unemployment benefit in that period, b > 0. At the same time, the worker foregoes the

benefit of leisure in that period, l. For a firm, entering a submarket for a period requires

the firm to incur the vacancy cost, c > 0, which is the same for all submarkets. As usual,

the expected profit of entry into any submarket is zero.

Matched workers and firms will stay matched forever and they will be replaced by

crones with the initial beliefs.

2.2. Updating Beliefs

Agents update their beliefs on m after observing whether or not they have a match. The

updating depends on the particular submarket into which the agent just searched. To

describe the updating process, it is convenient to express the beliefs in terms of their

expected type. Let the initial prior expectation of m be µ0 ∈ (mL,mH), for all agents

(workers and firms). We examine the updating process of a worker.

Let µ denote a worker’s mean beliefs at the beginning of an arbitrary search period.
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Accordingly, the prior probability distribution of m is (P (mH), 1− P (mH)), where

P (mH) =
µ−mL

mH −mL
.

Note that the prior distribution of m is Bernoulli, and

E(m) = µ,

V ar(m) = (mH − µ)(µ−mL).

Let z ∈ {0, 1} denote a worker’s matching outcome in the current period, where z = 1
if the worker finds a job and z = 0 if he does not find a job. Recall that a worker search in

the submarket with a tightness λ finds a match with probabilitymλ. Then, the conditional

distribution of m is given by

P (m | z = 0) = 1−mλ

1− µλ P (m), m = mL,mH ,

P (m | z = 1) = m

µ
P (m), m = mL,mH .

Because the conditional distribution of m is Bernoulli, then for z ∈ {0, 1}, the mean and
variance of m conditional on z are:

E(m | z) = mHP (mH | z) +mL(1− P (mH | z))

V ar(m | z) = (mH −mL)
2P (mH | z)(1− P (mH | z)).

Note that, since λ ≤ λ̄ < 1 < 1/mH , we have P (mH | z = 0) > 0 for all µ > mL. Thus, if

the initial mean belief µ0 exceeds mL, then E(m|z) > mL for both z = 0 and z = 1.

This updating process has two preliminary properties. First, the sequence {E(m)}
is a Markov process. Second, a worker’s mean beliefs E(m) are a sufficient statistic for a

worker’s unemployment history. One implication of these properties is as follows. Consider
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two unemployed workers who draw the same value of leisure for the current period and who

have the same beliefs, µ. One has switched between unemployment and out of the labor

force many times in the past, while the other worker entered unemployment a few periods

ago and has remained in unemployment continuously in the last few periods. Although

these two workers followed different paths to reach the same beliefs, they will choose the

same submarket to enter and update their beliefs in the same way.

Search is more informative than staying out of the labor market. This is evident

from the fact that search introduces variance in the worker’s posterior beliefs. Moreover,

conditional on search, a higher λ is more informative in the sense that it causes a mean-

preserving spread in the distribution of the posterior expectation E(m | z). To see this,
note that ex ante z is a random variable, and so is the posterior expectation E(m | z).
The mean of this posterior expectation is E(m | z) = E(m) = µ, which is unaffected by λ.

The variance of the posterior expectation is:

V ar(E(m | z)) = (µ−mL)
2

"
λm2

H

µ
+
(1−mHλ)

2

1− µλ − 1
#
.

This variance increases with λ. Thus, conditional on search, a higher λ generates outcomes

that are more informative about the matching efficiency.

The informational content of λ is asymmetric with respect to the matching outcome.

For a worker who succeeds in finding a match, the posterior, P (m | z = 1), is not a function
of λ. The posterior mean belief in this case is E(m|z = 1) = mH +mL −mHmL/µ, which

is also independent of λ. Therefore, a worker’s choice of submarket, λ, does not affect the

information contained in successful search outcomes. In contrast, for a worker who fails

to find a match, the posterior, P (m | z = 0), decreases with λ. That is, the higher λ of

a submarket in which a worker searches for a job, the more the worker will reduce the

posterior on the matching efficiency after he fails to find a match. This is because finding
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a match in a submarket with a higher λ is supposed to be easier, and a failure to find a

match there should induce the worker to revise the beliefs downward sharply.2

Given the above asymmetry, it is useful to separate the updating process of a worker

who fails to find a job. Denote

H(µ,λ) ≡ E(m | z = 0) = mH − 1−mLλ

1− µλ (mH − µ). (2.1)

Then, the updating process of an unemployed worker is µ+1 = H(µ,λ), where the subscript

+1 indicates the next period. We can verify the following lemma:

Lemma 2.1. The function H has the following properties: (i) H1 > 0; (ii) H2 < 0; (iii)

H11 =
2λ
1−µλH1 > 0, H22 =

2µ
1−µλH2 < 0; (iv) µ(1− µλ)H12 −H2 − µ2H1 = −mHmL.

The property (i) states simply that, for any given λ, a worker with higher mean expec-

tations will also have higher posterior expectations. The property (ii) states that a higher

λ reduces the worker’s posterior expectations after the worker fails to find a match, which

is discussed above. Properties (iii) and (iv) will be useful later. Notice that property (ii)

implies that µ+1 < µ for all λ > 0. Thus, a worker’s mean beliefs about the matching

efficiency decreases over time as the number of search failures increases.

2.3. The Value of Search

Consider a non-employed worker who enters a period with the mean beliefs, µ. Let J(µ)

be his value function before he observes the value of leisure in the period, l. When l is

low, the worker will search and hence will be unemployed in the period. Because search

foregoes the value of leisure and because the value of leisure is independent over time, the

value function of search is independent of l. Denote this value function as V (µ). Then,

V (µ) = maxλ∈[0,λ̄]U(µ,λ), (2.2)

2This asymmetry of the role of λ in the posterior will remain as long as the job finding probability has
the form λg(m), where g is an increasing function.
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where

U(µ,λ) ≡ b+ µλW (λ)
r

+ (1− µλ)J(H(µ,λ))
1 + r

. (2.3)

In this payoff function, λ is the submarket in which the worker chooses to search in the

period, and µλ is the expected job finding probability. Notice that, if a worker finds a

job, he will stay employed forever, and so the present value is W/r. Denote the worker’s

optimal decision as λ∗ = Λ(µ).

If the worker stays out of the labor force in the period, his value function is l + J(µ)
1+r
.

Thus, the worker chooses to search in the period if and only if l ≤ V (µ)− J(µ)
1+r
. Define l∗

as follows:

l∗ = L(µ) ≡ V (µ)− J(µ)

1 + r
. (2.4)

Then, a non-employed worker chooses to search in the period if and only if l ≤ l∗.
Before observing l in the period, the value function is given as follows:

J(µ) =
Z l̄

l
max

(
l +

J(µ)

1 + r
, V (µ)

)
dF (l). (2.5)

We can define a mapping T as follows:

T (J)(µ) =
Z l̄

l
max

(
l +

J(µ)

1 + r
, V (µ)

)
dF (l). (2.6)

Notice that J appears on the right-hand side in both arguments inside the maximum

operator. Then, the value function J is a fixed point of T . That is,

J(µ) = T (J)(µ). (2.7)

It is easy to verify that T satisfies the sufficient conditions for contraction mapping

(see Theorem 3.3 in Stokey and Lucas, p.54). The standard argument shows that there

is a unique solution J to (2.7) and that J is bounded and continuous on [mL,mH ] (see

Theorem 4.6 in Stokey and Lucas, p.79). Similarly, there is a unique function V satisfying

(2.2) and V is bounded and continuous on [mL,mH ].
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2.4. Firms’ Behavior and the Definition of an Equilibrium

Firms also choose which submarket to enter to post vacancies and, after observing the

matching outcome, they update their beliefs. For simplicity, let us assume that all firms

have the same initial mean belief about the matching efficiency and that this initial belief

is the same as the workers’, µ0. The updating process of a firm is similar to that of the

workers’. Let λv be the submarket which a firm enters. If the firm finds a match, its

posterior expectation of m does not depend on λv. If the firm fails to find a match, then

the posterior expectation of m decreases in λ. Let µv1 denote the firm’s expectations of m

after the firm fails to find a match with one period’s search. Because the firm’s matching

probability is m(1− λv), then

µv1 = H(µ0, 1− λv).

Here, H is defined in (2.1). Because H2 < 0 and H(µ, 0) = µ, then µ
v
1 < µ0 for all λ

v < 1.

Let Jv(µv) be the value function of a vacancy given that the firm’s mean belief at the

beginning of a period is µv. With free entry, Jv(µ0) = 0. Because µ
v
1 < µ0 for all λ

v < 1,

as explained above, then Jv(µv1) < 0. That is, a firm will always exit the market after one

period of search if the search fails to find a match in the period. This result allows us to

simplify a firm’s value function as follows:

Jv(µ0) = max
λv

"
−c+ µ0(1− λv)

y −W (λv)
r

#
.

The first-order condition for the firm’s optimal choice, λv∗, involves the wage function

and its derivative. This can be alternatively viewed as a differential equation for the wage

function. Without an initial condition, there are a continuum of solutions to the differential

equation. This indeterminacy simply says that there are many level of λv that are optimal

for the firm. Put differently, a firm is willing to enter into any submarket, provided that

the wage in the submarket is consistent with the free-entry condition.
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To determine the wage function, we use the free-entry condition, Jv(µ0) = 0. Using

the above expression for the firm’s value function, we can write this condition as follows:

W (λ) = y − rc/µ0
1− λ

. (2.8)

It is easy to verify that this function indeed satisfies Assumption 1. In fact, part (iii) of

the assumption holds as equality.

We can now define the equilibrium.3 An equilibrium consists of workers’ decisions

(l∗,λ∗), firms’ decision λv∗, and a wage function W (λ), that meet the following require-

ments: (i) Given the worker’s belief at the beginning of a period and given the wage

function, a worker’s participation decision obeys the optimal rule l∗ = L(µ) and the choice

of the submarket obeys the optimal rule λ∗ = Λ(µ); (ii) Given the initial belief µ0 and the

wage function, a firm’s choice λv∗ is optimal; (iii) A worker updates the beliefs according

to µ+1 = H(µ,λ
∗) and a firm according to µv1 = H(µ0,λ

v∗); (iv) Consistency: For every λ,

the sum of all workers who choose Λ(µ) = λ divided by the sum of all firms who choose

λv∗ = λ is equal to λ−1 − 1; (v) Free-entry: The wage function satisfies (2.8).

3. Worker’s Decisions

We examine a worker’s decisions in detail. There are two decisions. One is whether to

participate in the labor market and the other is which submarket to search for a match.

To analyze these decisions, we impose the following assumption:

Assumption 2. The condition, W (λ) > r
1+r
J(H(µ,λ)), is satisfied for all µ ∈ [mL,mH ]

and λ ∈ [0, λ̄]. Moreover, workers and firms commit to accepting all successful matches.

The first part of the assumption ensures that accepting a successful match gives the

worker a higher present value of utility than rejecting the match and revising the beliefs

3The steady state conditions on worker flows need to be incorporated here.
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according to H. However, this condition may not be sufficient to guarantee that the worker

will accept the match. This is because a worker who succeeds in finding a match does not

update the beliefs according to H, and so the value of rejecting the match and continuing

to search next period is not given by J(H)/(1 + r). The second part of the assumption

guarantees that the worker and the firm will always accept the match.

3.1. The Participation Decision

As analyzed above, a non-employed worker chooses to search if and only if the value of

leisure in the period satisfies l ≤ l∗ = L(µ). To know how this reservation value of leisure
depends on the beliefs, µ, we first establish the following lemma:

Lemma 3.1. V is strictly increasing and J is non-decreasing. If L(µ) > l for all µ, then

J is strictly increasing.

Proof. Let C 0[mL,mH ] be the set containing all bounded, continuous and non-decreasing

functions on [mL,mH ]. Let J0 be any function in C
0[mL,mH ] and use it to serve the role

of J in (2.3) and (2.6). Because H1 > 0, it is easy to show that V (.) is strictly increasing

under Assumption 2. Thus, T maps functions in C 0[mL,mH ] into functions in C
0[mL,mH ].

By the argument of contraction mapping, the fixed point of T , J , is non-decreasing. Using

this fixed point in the expression of U , we find that V is strictly increasing. Then, we can

write the mapping T as follows:

T (J)(µ) = F (L(µ))V (µ) + [1− F (L(µ))] J(µ)
1 + r

.

Suppose L(µ) > l for all µ, so that F (L(µ)) > 0. Because V is strictly increasing and J is

non-decreasing, then J = T (J) is strictly increasing. QED

Next, we use (2.2) and (2.5) to express the value functions explicitly as follows:

J(µ) =
1 + r

r

"
F (l∗)l∗ +

Z l̄

l∗
ldF (l)

#
, (3.1)
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V (µ) =

"
1 +

F (l∗)
r

#
l∗ +

Z l̄

l∗
ldF (l). (3.2)

Notice that the right-hand side of (3.2) is strictly increasing in l∗. Because V is strictly in-

creasing in µ, (3.2) solves l∗ as a strictly increasing function of µ. The following proposition

is evident:

Proposition 3.2. L(µ) is a strictly increasing function. Moreover, L(µ) is (twice) contin-

uously differentiable if and only if V (µ) is (twice) continuously differentiable.

Because L(µ) is increasing, then a worker will be more likely to choose to search if he

has higher mean beliefs about the matching efficiency in the market. As the number of

periods in which the worker has been unemployed increases, the mean beliefs deteriorate

and so the worker becomes more likely to exit from the labor force.

3.2. The Choice of the Submarket

Once a worker chooses to search in the period, the worker chooses the submarket λ∗ in

which to search. The choice of the submarket involves two considerations. The first is the

familiar trade-off between the wage and the matching probability, because a submarket

with a high λ has a high matching probability but a low wage. The second consideration

is about the information content of the search outcome. To see this, recall that a high λ

induces a mean-preserving spread in the distribution of the worker’s posterior beliefs. In

this sense, a high λ makes the matching outcome more informative about the matching

efficiency. This forthcoming information will be useful for the search decisions in the future

when (and only when) the worker fails to find a match in the current period.

The idea that a more informative search outcome is valuable to the worker can be

captured formally by value functions that are strictly convex in the mean beliefs. The

following lemma establishes the convexity (see Appendix A for a proof):
13



Lemma 3.3. V is strictly convex and J is convex. Thus, both V and J are almost every-

where twice differentiable with almost everywhere continuous first derivative. If L(µ) > l

for all µ ∈ [mL,mH ], then J is strictly convex.

With strictly convex value functions, a worker who chooses to enter a submarket with

a high λ makes a trade-off of the benefits of a higher matching probability and a more

informative search outcome against the low wage. It is not clear, a priori, how the optimal

choice λ∗ depends on the worker’s beliefs. To find this dependence, we need to characterize

the optimal choice explicitly, e.g., using the first-order condition.

However, an explicit characterization may encounter potential difficulties created by the

convexity of the value functions. First, because H is also convex in λ, the function U(µ,λ)

may not necessarily be concave in λ. However, concavity of U in λ is a desirable property

because it ensures that the optimal choice λ∗ is unique for each given µ, and hence that

λ∗ is continuous in µ. Second, although the value functions are twice differentiable almost

everywhere, it is well known in the literature on optimal learning that they may fail to be

differentiable at certain points (e.g., Easley and Kiefer (1988), Kiefer (1989), Balvers and

Cosimano (1993)). To facilitate the analysis, we impose the following assumption:

Assumption 3. For all µ, (i) U(µ,λ) is strictly concave in λ, and (ii) the solution λ∗ is

interior.

Under this assumption, we can establish the following lemma (see Appendix B for a

proof):

Lemma 3.4. Under Assumptions 1, 2 and 3, the functions V (µ), J(µ) and L(µ) are all

differentiable on [mL,mH ]. In particular,

V 0(µ) = U1(µ,λ∗(µ)). (3.3)
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With differentiability of the value functions and Assumption 3, the optimal choice of

λ∗ obeys the first-order condition:

U2(µ,λ
∗) = 0. (3.4)

The following proposition describes how the optimal choice depends on the beliefs:

Proposition 3.5. The optimal choice λ∗ = Λ(µ) is strictly decreasing in µ. As a result,

the wage W (Λ(µ)) is strictly increasing in µ.

Proof. Differentiating (3.4), we have Λ0(µ) = −U12/U22. Because U22 < 0 by Assump-
tion 3, then Λ0(µ) < 0 if and only if U12 < 0. Writing (3.4) explicitly and using it to

substitute for (W + λW 0), we can compute:

U12 =
J 0(H)
1 + r

h
µ(1− µλ)H12 −H2 − µ2H1

i
+ (1− µλ)J

00(H)
1 + r

H1H2.

Because J 0 > 0, J 00 > 0, H1 > 0 and H2 < 0, we can use part (iv) of Lemma 2.1 to verify

U12 < 0. Since W (λ) is strictly decreasing, then W (Λ(µ)) is strictly increasing in µ. QED

Recall that a high λ means that the submarket is tight for the firms, i.e., the ratio of

searching workers to vacancies is low. The above proposition states that, when a worker

is more optimistic about the matching efficiency in the market, he will choose to enter

a submarket which offers a higher wage and which is more congested with workers. As

the number of periods in which the worker has remained in unemployment increases, the

worker will become more pessimistic about the matching efficiency, and hence will search

for lower wages and in less congested submarkets.

3.3. Distributions of Worker’s Search Experiences and Beliefs

We can now characterize the dynamics of a worker’s search and beliefs. Consider an

arbitrary period. Let τ denote the duration of past searches, i.e., the number of periods
15



in which the worker has searched without finding a match up to (but not including) the

current period. Note that the worker may not have searched continuously for τ periods in

the past. Given µ, the worker will choose to search in the period with probability F (L(µ)).

If he chooses to search, then he will enter the submarket λ = Λ(µ) and will find a match

with probability 1− µλ. Thus, τ+1 will be distributed as follows:

τ+1 =

(
τ + 1, with prob. F (L(µ)) [1− µΛ(µ)]
τ, with prob. 1− F (L(µ)) [1− µΛ(µ)] .

Similarly, the distribution of µ+1, conditional on the outcome that the worker fails to

find a match in the current period, will be:

µ+1 =


H(µ,Λ(µ)), with prob. F (L(µ))[1−µΛ(µ)]

1−F (L(µ))µΛ(µ)

µ, with prob. 1−F (L(µ))
1−F (L(µ))µΛ(µ) .

Starting with a given µ0 and τ0 = 0, the above processes induce the distribution of (τ, µ)

in any period.

4. The Effects of the Unemployment Benefit

The unemployment benefit, b, affects the unemployment duration and labor force partici-

pation. To do so, let us modify the notation U(µ,λ) to U(µ,λ, b), J(µ) to J(µ, b), and V (µ)

to V (µ, b). Notice that the unemployment benefit does not directly affect the updating

process of the beliefs, which is still described by µ+1 = H(µ,λ). Modifying (2.3), (2.5) and

(2.2), we have:

U(µ,λ, b) = b+ µλ
W (λ)

r
+ (1− µλ)J(H(µ,λ), b)

1 + r
, (4.1)

V (µ, b) = maxλU(µ,λ, b), (4.2)

J(µ, b) =
Z l̄

l
max

(
l +

J(µ, b)

1 + r
, V (µ, b)

)
dF (l). (4.3)
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Similarly, we can modify (2.4) to obtain the reservation value of leisure as l∗ = L(µ, b).

A worker’s optimal choice of the submarket is λ∗ = Λ(µ, b), which satisfies the following

first-order condition:

U2(µ,λ
∗, b) = 0. (4.4)

Let us first examine how the unemployment benefit affects a worker’s decision on partic-

ipation. An increase in the unemployment benefit increases the likelihood of participation

if the reservation value of leisure increases in the unemployment benefit, i.e., if L2(µ, b) > 0.

Because (3.1) and (3.2) are valid after obvious modifications of the notation, differentiating

those conditions yields:

L2(µ, b) =
∂l∗

∂b
=

r

r + F ∗
V2(µ, b) =

r/F ∗

1 + r
J2(µ, b), (4.5)

where F ∗ = F (l∗). Thus, the reservation value of leisure increases in the unemployment

benefit if and only if the value functions do. The following proposition states the intuitive

result on participation:

Proposition 4.1. V2(µ, b) > 0, L2(µ, b) > 0, and so an increase in the unemployment

benefit increases a worker’s likelihood of participation in the labor force. Also, J2(µ, b) ≥ 0,
with strict inequality if L(µ, b) > l for all µ.

Proof. From (4.2) we have:

V2(µ, b) = 1 + (1− µλ∗) F ∗

r + F ∗
V2(H, b). (4.6)

Here we have used (4.5) to substitute J2(H, b) with a function of V2(H, b). The above

equation implies that, if V2(H, b) ≥ 0, then V2(µ, b) > 0. By induction, V2(µ, b) > 0. Then,
(4.5) implies L2(µ, b) > 0 and J2(µ, b) ≥ 0. Moreover, if F ∗ > 0, then J2(µ, b) > 0. QED

17



The unemployment benefit also affects the submarket in which a worker searches for

a job. An intuitive outcome is that an increase in the unemployment benefit encourages

a worker to enter a submarket with a high wage and a low job finding probability. That

is, the optimal choice, λ∗ = Λ(µ, b), decreases in b for given beliefs. To see whether this

intuitive outcome occurs in the model, differentiate the first-order condition (4.4) to obtain:

Λ2(µ, b) = −U23/U22.

Under Assumption 3, U22 < 0. Thus, λ
∗ decreases in b if and only if U23 < 0. We verify

this feature in Appendix C and summarize the result as follows:

Proposition 4.2. Λ2(µ, b) < 0. Thus, for given beliefs, an increase in the unemployment

benefit induces workers to search for high wages.

In the above analysis, we have fixed the worker’s beliefs. In equilibrium, however, a

worker’s beliefs are also affected by the unemployment benefit. To account for the total

effects of the unemployment benefit on a worker’s decisions of search and participation, let

us index (µ,λ∗, l∗) by τ — the number of past periods in which an individual worker has

searched without finding a match. Starting with a fixed µ0, we can compute the sequence

of (µ,λ∗, l∗) for the worker as follows:

µτ(b) = H(µτ−1(b),λ∗τ−1(b)),

λ∗τ(b) = Λ(µτ(b), b), l∗τ (b) = L(µτ(b), b).

We describe the total effects of the unemployment benefit on the above sequence in the

following proposition:

Proposition 4.3. µ0τ(b) > 0 for all τ ≥ 1. Also, λ∗0τ (b) < 0 and l∗0τ (b) > 0 for all τ ≥ 0.

Proof. Start with τ = 0. Using Propositions 4.1 and 4.2, we have:

λ∗00 (b) = Λ1µ
0
0(b) + Λ2 = Λ2 < 0,

l∗00 (b) = L1µ
0
0(b) + L2 = L2 > 0.

µ01(b) = H1µ
0
0(b) +H2λ

∗0
0 (b) = H2λ

∗0
0 (b) > 0.
18



Thus, the proposition holds for τ = 0. Suppose that it holds for an arbitrary τ ≥ 0.

Because Λ1 < 0, Λ2 < 0, L1 > 0, L2 > 0, H1 > 0 and H2 < 0, we have:

λ∗0τ+1(b) = Λ1µ
0
τ(b) + Λ2 < 0,

l∗0τ+1(b) = L1µ
0
τ(b) + L2 > 0.

µ0τ+1(b) = H1µ
0
τ(b) +H2λ

∗0
τ (b) > 0.

That is, the proposition holds for τ + 1. By induction, the proposition holds for all τ ≥ 0.
QED

To phrase the effects in the above proposition in a different way, consider two economies,

A and B, that differ only in the unemployment benefit. Suppose bA > bB. Take two

workers, one from each economy, who have had the same number of past search failures.

Then, relative to the worker in economy B, the worker in economy A has more optimistic

beliefs about the matching efficiency, is more likely to participate in the labor market, and

is more likely to search in a submarket with a high wage and a low job finding probability.

This comparison has several implications. First, an increase in the unemployment

benefit reduces the flow from unemployment to out of the labor force. In the two economies

described above, workers who are searching for jobs in economy A are less likely to choose

to stay out of the labor market. Second, an increase in the unemployment benefit reduces

the flow from unemployment to employment. This is because workers who search for

jobs in economy A choose to search for higher wages which necessarily come with lower

job finding probabilities. Third, the unemployment benefit increases the unemployment

duration. This is a consequence of the first two effects, because unemployed workers in

economy A are more likely to stay unemployed than in economy B, and because they

choose to search for jobs that are more difficult to find. More precisely, the distribution

of τ in economy A dominates the distribution in economy B in the sense of the first-order

stochastic dominance.
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However, the economy with a higher unemployment benefit (i.e., economy A) does

not necessarily have a higher rate of labor force participation in the steady state, despite

the fact that the flow from unemployment to out of the labor force is lower in such an

economy. The reason is that the probability of re-entering the labor force in economy

A is not necessarily higher than in economy B. In fact, the opposite may be true. To

explain this feature, notice that the worker’s beliefs are indexed by τ and that these beliefs

deteriorate as τ increases. Because the distribution of τ in economy A dominates that

in economy B, the workers in economy A who are out of the labor force have had, on

average, a longer unemployment duration than those in economy B, and hence they are

more pessimistic about the matching efficiency. These pessimistic beliefs discourage such

workers in economy A to re-enter the labor force, despite the higher unemployment benefit.

We summarize the above discussions as follows:

Theorem 4.4. (Conjectured) Consider two economies that differ only in the unemploy-

ment benefit. Then the economy with a higher benefit will exhibit (i) a lower flow from

unemployment to employment; (ii) a lower flow from unemployment to out of the labor

force; (iii) a higher unemployment duration; and (iv) a lower probability for the workers

who are out of the labor force to re-enter the labor force.

These effects indicate the difference in the unemployment benefit between continental

European countries and the US may explain the differences in the labor market perfor-

mances between these countries. In particular, higher unemployment benefits may be

important for explaining why continental European countries have both a higher duration

of unemployment and lower labor force participation.

It is important to emphasize the role of information in our analysis. If the matching

efficiency were public knowledge, then a high unemployment benefit would increase, rather
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than decrease, the probability with which workers who are out of the labor force choose to

re-enter the labor force. In this case, labor force participation, as well as unemployment,

would be higher in an economy with a high unemployment benefit. In contrast, when the

matching efficiency is unknown and workers update their beliefs about it, workers will be

more likely to search for a long time but, once they get out of the labor force, they will

also be more pessimistic and hence more reluctant to re-enter.

5. Conclusions

In this paper we analyze unemployed workers’ learning during search about the aggregate

matching efficiency in the market. Workers are ex ante identical and unemployment his-

tories are private information. Each worker decides whether to participate in the market

and to choose the submarket in which to search. A submarket is described by a wage and

a job finding probability, with a higher wage being accompanied with a lower job finding

probability. After each period of search, an unemployed worker updates his belief about

the matching efficiency. We show that, as the number of past search failures increases, a

worker becomes more pessimistic about the matching efficiency and will be more likely to

search for low wages in the future.

We also find that an increase in the unemployment benefit leads to (i) a lower flow from

unemployment to employment; (ii) a lower flow from unemployment to out of the labor

force; (iii) a higher unemployment duration; and (iv) a lower probability for the workers who

are out of the labor force to re-enter the labor force. Thus, more generous unemployment

benefits in European countries can account simultaneously for higher unemployment, longer

unemployment duration, and lower labor force participation in these countries.
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Appendix

A. Proof of Lemma 3.3

We first prove the following lemmas.

Lemma A.1. If J is strictly convex, then U(µ,λ) is strictly convex in µ for any given λ.

Proof. Let µ1 and µ2 be two arbitrarily values in [mL,mH ], with µ1 < µ2. Let θ ∈ (0, 1)
be a number. Denote µθ = θµ1 + (1− θ)µ2. We show that

U(µθ,λ) < θU(µ1,λ) + (1− θ)U(µ2,λ).

Because ∂H/∂µ > 0, then H(µ1,λ) < H(µθ,λ) < H(µ2,λ). Let

σ =
H(µ2,λ)−H(µθ,λ)
H(µ2,λ)−H(µ1,λ) .

Then, σ ∈ (0, 1) and σH(µ1,λ) + (1− σ)H(µ2,λ) = H(µθ,λ). If J is strictly convex, then

J(H(µθ,λ)) < σJ(H(µ1,λ)) + (1− σ)J(H(µ2,λ)).

By the definition of U in (2.3), we have:

U(µθ,λ) < b+ µθλ
W (λ)
r
+ 1−µθλ

1+r
[σJ(H(µ1,λ)) + (1− σ)J(H(µ2,λ))]

= θU(µ1,λ) + (1− θ)U(µ2,λ) +
J(H(µ1))
1+r

∆1 +
J(H(µ2))
1+r

∆2,

where

∆1 = (1− µθλ)σ − θ(1− µ1λ),
∆2 = (1− µθλ)(1− σ)− (1− θ)(1− µ2λ).

For i, j ∈ {1, 2, θ}, we use (2.1) to compute:

σ =
(µ2 − µθ)(1− µ1λ)
(µ2 − µ1)(1− µθλ) =

θ(1− µ1λ)
(1− µθλ) .

Now it is easy to see that ∆1 = 0 = ∆2. Therefore, U is strictly convex. QED

Lemma A.2. If J is convex (not necessarily strict), then V is strictly convex.

Proof. We prove the lemma separately for the case where J is strictly convex and for

the case where J is weakly convex. For both cases, let µ1 and µ2 be two arbitrarily values

in [mL,mH ], with µ1 < µ2. Let θ ∈ (0, 1) be a number. Denote µθ = θµ1 + (1− θ)µ2. We

need to show that

V (µθ) < θV (µ1) + (1− θ)V (µ2).
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To simplify notation, denote Ji = J(µi) and Vi = V (µi), where i ∈ {1, 2, θ}.
Suppose first that J is strictly convex. By the above lemma, U(µ,λ) is strictly convex

in µ for given λ. Let λ∗i be the solution to maxλU(µi,λ), i ∈ {1, 2, θ}. That is, V (µi) =
U(µi,λ

∗
i ). We have:

V (µθ) = U(µθ,λ
∗
θ)

< θU(µ1,λ
∗
θ) + (1− θ)U(µ2,λ

∗
θ)

≤ θU(µ1,λ
∗
1) + (1− θ)U(µ2,λ

∗
2)

= θV (µ1) + (1− θ)V (µ2).

(A.1)

The first (strict) inequality follows from the fact that U is strictly convex in µ and the

second inequality from the fact that U(µi,λ) ≤ U(µi,λ
∗
i ) for all λ. Thus, V is strictly

convex.

Now suppose that J is only weakly convex, i.e., J has some linear segments. If any two

of J(H(µθ,λ
∗
θ)), J(H(µ1,λ

∗
θ)) and J(H(µ2,λ

∗
θ)) do not lie on the same linear segment of

J , then the first inequality in (A.1) is still strict. Suppose that J(H(µθ,λ
∗
θ)), J(H(µ1,λ

∗
θ))

and J(H(µ2,λ
∗
θ)) all lie on the same linear segment of J . Temporarily denote this linear

segment as J(H) = A+BH, where B > 0 by Lemma 3.1. Using (2.1), we can see compute:

(1− µλ)J(H) = (1− µλ)(A+BmH)−B(1−mLλ)(mH − µ).
This is linear in µ and λ. It is also differentiable in µ and λ. Restricting the values of µ

to such that J(H(µ,λ)) lies on the linear segment described above, then U(µ,λ) is strictly

concave in λ under Assumption 1. Thus, the solution λ∗ is unique and satisfies the following
first-order condition:

0 = U2(µ,λ) = µ

"
W + λW 0

r
−A−BmH

#
+BmL(mH − µ).

Furthermore, we can differentiate this first-order condition to find that the solution, λ∗ =
Λ(µ), satisfies

Λ0(µ) = − mH

mH − µ < 0.

Thus, λ∗1 6= λ∗θ and λ∗2 6= λ∗θ. Because the solutions are unique, then U(µ1,λ
∗
θ) < U(µ1,λ

∗
1)

and U(µ2,λ
∗
θ) < U(µ2,λ

∗
2). The second inequality in (A.1) is strict, and so V is strictly

convex. QED

Now we prove Lemma 3.3. Let C 00[mL,mH ] contain the functions in C
0[mL,mH ] which

are convex (not necessarily strict). For any J0 ∈ C 00[mL,mH ], V is strictly convex. Because

the maximum of two convex functions is convex, then T (J0) is convex. The contraction

mapping argument shows that the fixed point of T is convex, i.e., J is convex. By the

previous lemma, V is strictly convex. Because a convex function is almost everywhere
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twice differentiable with almost everywhere continuous first derivative (see Lemma 3.2 in

Rader, 1973), then V and J have these properties.

For strict convexity of J , it suffices to show that T maps convex functions into strictly

convex functions. Let J ∈ C 00[mL,mH ]. Using L(µ) defined in (2.4), we rewrite (2.6) as

follows:

T (J)(µ) = F (L(µ))V (µ) +
Z l̄

L(µ)
ldF (l),

Let µ1, µ2 and µθ be described in the proofs of the above two lemmas. If L(µ) > l, then

strict convexity of V and convexity of J imply:

T (J)(µθ)

< F (L(µθ)) [θV1 + (1− θ)V2] +
R l̄
L(µθ)

h
l + 1

1+r
(θJ1 + (1− θ)J2)

i
dF (l)

= θT (J)(µ1) + (1− θ)T (J)(µ2) + θ∆1 + (1− θ)∆2,

where

∆i = [F (L(µθ))− F (L(µi))]Vi +
Z L(µi)

L(µθ)

µ
l +

Ji
1 + r

¶
dF (l), i = 1, 2.

Using the definition of L(µ), we can rewrite ∆i as follows:

∆i =
Z L(µi)

L(µθ)

µ
l +

Ji
1 + r

− Vi
¶
dF (l) =

Z L(µi)

L(µθ)
[l − L(µi)] dF (l).

Because L(µ) is increasing, ∆i < 0 for both i = 1, 2. Thus, T (J) is strictly convex. QED

B. Proof of Lemma 3.4

To establish the differentiability of V , we apply the Benveniste-Scheinkman Theorem (see

Stokey and Lucas, Theorem 4.10, p84). However, that theorem cannot be directly applied

to (2.2) because U(µ,λ) is convex in µ for any given λ (see the proof of Lemma 3.3). To

circumvent this problem, let us change the state variable in (2.2) from µ to x where x is

defined as follows:

x = x(µ) ≡ µ−mL

mH − µ .

This is well defined for all m < mH . We write µ = µ(x). Then, µ0(x) > 0 and µ00 =
−2µ0/(1 + x) < 0. Moreover, the level of x in the next period can be written as:

H(µ(x),λ) = x
1− λmH

1− λmL
.

Inverting this relationship to express λ as follows:

λ = g(H/x) ≡ 1−H/x
mH −mLH/x

.
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We change the choice variable from λ to H. The domain of H is [H(x), x], where

H(x) = H(µ(x), λ̄). Define

bU(x,H) = U(µ(x), g(H/x))bV (x) = maxH bU(x,H).
Then, V (µ) = bV (x(µ)). The function V (µ) is differentiable if and only if bV (x) is.
To show that bV is differentiable, we show that it is concave. In turn, we show thatbU(x,H) is concave in x for any given H. We start with the following claim:

Claim 1. [2µ0gx + µgxx] < 0, and so [µ(x)g(H/x)] is concave in x for any given H. Also,
under Assumption 1, W (g(H/x)) is concave in x.

Proof. Compute:

[µ(x)g(H/x)]xx = µ
00g + [2µ0gx + µgxx],

where the subscript x indicates the derivative with respect to x. Because µ00 < 0, then the
condition [2µ0gx + µgxx] < 0 is sufficient for [µ(x)g(H/x)] to be concave in x. Notice that
g0 < 0 and g00 < 0. Also,

gx ≡ ∂g
∂x
= −H

x2
g0 > 0,

gxx ≡ ∂2g
∂x2

= − 2mH

xmH−HmL
gx < 0.

Then, the condition [2µ0gx + µgxx] < 0 can be verified as follows:

2µ0gx + µgxx = −2µ0gx (xmH +mL)
2 + (H + 1)mL(mH −mL)

(mH −mL)(xmH −HmL)
< 0.

To show that W (g(H/x)) is concave in x, compute:

[W (g(H/x))]xx =W
0gx

"
gxx
gx
+
W 00

W 0 gx

#
.

Because W 0 < 0 by Assumption 1, and gx > 0, then W (g(H/x)) is concave in x if and only
if gxx

gx
+ W 00

W 0 gx ≥ 0. By part (iii) of Assumption 1, we have W 00/W 0 ≥ 2/(1− g). Then, it
can be verified that

gxx
gx
+
W 00

W 0 gx ≥
gxx
gx
+

2

1− ggx =
2(1−mH)

(1− g)(xmH −HmL)
> 0.

This completes the proof of the claim. QED

We continue the proof of Lemma 3.4. For any given H, the function bU(x,H) is twice
differentiable in x. Computing the second-order derivative, we have:

bUxx = ·
µ(x)g(

H

x
)
¸
xx

Ã
W

r
− J(H)
1 + r

!
+
W 0gx
r

"
2(µg)x + µg

Ã
gxx
gx
+
W 00

W 0 gx

!#
.
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It is easy to verify that (µg)x > 0. Under Assumption 2, W > rJ(H)/(1 + r). Then, the

above claim implies bUxx < 0. That is, bU(x,H) is strictly concave in x.
We now show that bV (x) is strictly concave. Let x1 and x2 be two arbitrary values of x

that are admissible, with x1 < x2. Let θ ∈ (0, 1) be a number, and xθ = θx1+(1−θ)x2. Let

H∗
i be the solution for H when x = xi, where i ∈ {1, 2, θ}. We have bV (xθ) = bU(xθ, H∗

θ ),

and so bV (xθ) ≥ θ bU(xθ, H∗
1 ) + (1− θ) bU(xθ, H∗

2)

> θ
h
θ bU(x1,H∗

1) + (1− θ) bU(x2, H∗
1)
i

+(1− θ)
h
θ bU(x1, H∗

2) + (1− θ) bU(x2,H∗
2)
i

= θ bV (x1) + (1− θ) bV (x2)− θ(1− θ)∆

where

∆ =
h bU(x1, H∗

1)− bU(x1,H2)i+ h bU(x2,H2)− bU(x2,H1)i .
The first inequality follows from the fact that H∗

θ is the optimal choice under xθ, the second

inequality from the fact that bU is strictly concave in x, and the equality from re-arranging
the terms. It is easy to see that ∆ ≥ 0. Thus, bV is strictly concave.
Under Assumption 3, the solution λ∗ is interior, and so is the solution H∗. BecausebV (x) and bU(x,H) are concave in x, the Benveniste-Scheinkman theorem applies, which

shows that bV is differentiable. Moreover, bV 0(x) = bU1(x,H∗).
As stated above, because V (µ) = bV (x(µ)), then differentiability of bV implies that V

is differentiable. By (3.1) and (3.2), J(µ) and L(µ) are also differentiable. These facts

and Assumption 3 imply that the optimal choice λ∗ is given by the first order condition,
U2(µ,λ

∗) = 0. Moreover, the envelope theorem implies V 0(µ) = U1(µ,λ∗(µ)). QED

C. Proof of Proposition 4.2

As stated in the main text, Λ2(µ, b) < 0 iff U23 < 0. We prove U23 < 0 by induction.

That is, supposing U23 ≤ 0, we show U23(−1) < 0, where the subscript (−1) indicates the
previous period. Then, induction shows that U23 < 0 for all periods. Compute:

U23 =
1

1 + r
[−µJ2(µ, b) + (1− µλ)H2J12(H, b)] .

Suppose U23 ≤ 0. Because H2 < 0, then
J12(H, b) ≥ µ

(1− µλ)H2J2(µ, b). (C.1)

To show U23(−1) < 0, use (4.5) to obtain:

J2(µ, b)

1 + r
=

F ∗

r + F ∗
V2(µ, b) =

F ∗

r + F ∗

"
1 + (1− µλ∗)J2(H, b)

1 + r

#
. (C.2)
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Differentiating the first equation with respect to µ and using (4.5) to substitute L2(µ, b),

we have:

J12(µ, b)

1 + r
=

F ∗

r + F ∗
V12(µ, b) +

r2F ∗0

(r + F ∗)3
[V2(µ, b)]

2 . (C.3)

Differentiating (4.6) with respect to µ yields:

V12(µ, b) = −(λ∗ + µΛ1)J2(H, b)
1 + r

+ (1− µλ∗)J12(H, b)
1 + r

(H1 +H2Λ1) .

Because H1 > 0, H2 < 0 and Λ1 < 0, we can use (C.1) and the above equation to obtain:

V12(µ, b) ≥
µ
µH1
H2

− λ∗
¶
J2(H, b)

1 + r
.

Then, (C.3) implies:

J12(µ, b)

1 + r
≥ F ∗

r + F ∗

µ
µH1
H2

− λ∗
¶
J2(H, b)

1 + r
+

r2F ∗0

(r + F ∗)3
[V2(µ, b)]

2 .

Substituting this result and (C.2) into the formula of U23(−1) and noting H2(−1) < 0, we

get:

U23(−1) ≤ F∗
r+F∗

h
(1− µλ∗) (∆− µ−1) J2(H,b)1+r

− µ−1
i

+(1− µ−1λ∗−1)H2(−1) r2F∗0
(r+F∗)3 [V2(µ, b)]

2 ,
(C.4)

where

∆ = H2(−1)
1− µ−1λ∗−1
1− µλ∗

µ
µH1
H2

− λ∗
¶
.

Recall that Λ1(µ, b) < 0. Because H(µ,λ
∗) ≤ µ, then λ∗ ≥ λ∗−1. Computing H1 and

H2, we get:

µH1
H2

− λ = −(1− µλ
∗)(µ− λ∗mHmL)

(mH − µ)(µ−mL)
≥ −(1− µλ

∗)(µ− λ∗−1mHmL)

(mH − µ)(µ−mL)
.

Because H2(−1) < 0, then

∆ ≤ −H2(−1) (1−µ−1λ
∗
−1)(µ−λ∗−1mHmL)

(mH−µ)(µ−mL)

= (mH−µ−1)(µ−1−mL)(µ−λ−1mHmL)
(1−µ−1λ−1)(mH−µ)(µ−mL)

= µ−1.

The first equality follows from substitutingH2(−1) and the second equality from substituting
µ = H(µ−1,λ∗−1). Using the above result in (C.4) and noting H2(−1) < 0, we have U23(−1) <
0. QED
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