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I. Introduction

Uncertainty is generally viewed as a “bad”. For instance, severe uncertainty affecting future

environmental damages often goes along with the possibility of an environmental catastrophe.

In this paper, we show that uncertainty may have a positive impact in a strategic context.

Uncertainty can lower the incentives to pollute and make risk-averse polluters better-off.1

This result may have interesting implications for the way economists traditionally view in-

surance and risk-sharing institutions. Take the climate change problem. In the summary for

policy-makers, the Intergovernmental Panel of experts on Climate Change argues that “one of

the important potential gains from cooperating in a collective framework (...) is that of risk-

sharing” (IPCC, 1995, p.7). It further promotes the creation of insurance institutions capable

of sharing climate change risks on a global basis. Our analysis suggests that the absence of such

a global insurance system may actually be a good thing. Indeed, the common risk-reduction

that this insurance system would induce may lead countries to increase their emissions. This

is a simple moral hazard effect arising in the absence of a binding international agreement to

abate emissions. The net impact of an insurance mechanism may then be negative. This sug-

gests that the establishment of risk-sharing institutions should generally not predate international

arrangements addressing the pollution problem.

Most global commons problems such as climate change share two main features: strategic

interactions between polluters and uncertainty about the effects of pollution. Either feature has

been extensively studied by economists, but they are usually considered separately. In this paper,

we look at their combined effect. We study a simple model where agents’ actions impose a negative

externality on others and the damages from this externality are subject to uncertainty. In our

analysis, we contrast two polar situations: when polluters cooperate and when they free-ride. We

look at the effect of uncertainty on pollution emissions and on welfare in these two cases.2

1We do not distinguish risk and uncertainty in our framework.
2Some papers have examined through numerical simulations the effect of learning on the optimal emissions path

both in the cooperative and non cooperative case. See, e.g., Hammitt and Adams (1996), Ulph and Maddison (1997)
and Ulph and Ulph (1996). Our paper is aalso related to the growing literature on uncertainty and international
environmental agreements (see, e.g., Kolstad (2003) for a recent reference). This literature usually considers a stock
pollution model where polluters can sign agreements or form coalitions between each other. It typically examines
how the size of the coalitions changes as a result of learning. Here, we consider the simpler question of the effect
of uncertainty on strategic pollution in a static framework, and without coalition formation. See Baker (2004) for
a link between the effect of uncertainty and learning in this context.
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In a first stage, we compare uncertainty to certainty. We find that cooperative pollution

emissions and welfare are always lower under uncertainty. Essentially, reducing emissions pro-

vides a way to lower the variability of everybody’s damage, which is socially desirable under

risk-aversion. This motive also emerges when polluters act non-cooperatively. By lowering his

emissions, a polluter may reduce the variability of his own damage. We show that uncertainty

leads to a decrease of total pollution at the Nash equilibrium. Because of the negative externality,

this has an indirect positive effect on welfare which works against the direct negative effect of

uncertainty. We provide an example where the net effect is positive and welfare in equilibrium is

higher under uncertainty.

In a second stage, we extend the analysis in three different directions. We first look at the

effect of an increase in uncertainty in the sense of Rothschild and Stiglitz (1970). We then study

an Arrow-Pratt increase in risk-aversion. We finally relax the homogeneity assumption and look

at the effect of different risks. Our analysis confirms but somehow qualifies the previous findings.

First, we provide conditions under which more uncertainty leads to lower emissions. Yet, we also

show that an opposite effect comes into play, related to prudence, and which tends to increase

emissions. Second, we show that more risk-aversion always leads to less pollution. Third, we find

that facing uncertainty alone may be a benefit under cooperation, but is a large disadvantage at

the Nash equilibrium.

Few other papers have examined the effect of uncertainty in a strategic context. Gradstein et

al. (1992) argue that the comparative statics of uncertainty is generally ambiguous. Sandler and

Sterbenz (1990) look at the exploitation of a renewable resource. They show that uncertainty on

the resource stock leads risk-averse firms to reduce their exploitation effort compared to certainty,

see also Sandler et al. (1987). More recently, Eso and White (2004) set out a general theory of

uncertainty in auctions and White (2004) introduces uncertainty in a Rubinstein bargaining

model. They study the effect of uncertainty on decisions and welfare and show that uncertainty

may be always beneficial for risk-averse players. Our paper complements these studies. We

provide the first analysis of the effect of uncertainty and risk-aversion in a context of global

pollution.

The paper’s contribution can be viewed from two perspectives. With respect to the external-

ity literature, we show that uncertainty strongly affects agents’ behaviors and welfare. Especially,
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uncertainty can help to alleviate commons problems, both by lowering emissions and increas-

ing welfare. With respect to the uncertainty literature, we find that strategic interactions may

substantively modify the analysis and results compared to situations with a single decision maker.

The paper is organized as follows. In the next section, we introduce the global pollution

model. In section 3, we present the benchmark comparison between uncertainty and certainty.

In section 4, we examine the effect of an increase in uncertainty, while in section 5 we examine

the effect on an increase in risk-aversion. In section 6, we look at risk heterogeneity. The last

section concludes.

II. The Model

Consider the following n-player game. Each agent i emits a level of pollution ei. Agents benefit

from emitting pollution, but suffer from the global level of pollution
Pn
j=1 ej . Damages from

pollution are uncertain, subject to a risk θ̃i > 0. We make the following assumptions regarding

the benefits and costs of pollution. First, the benefits are simply equal to ei in any state of

nature. That is, benefits from polluting are not affected by uncertainty, and the individual level

of pollution emission is identified with its monetary value. Second, there exists a damage function

d such that the individual damage from pollution is equal to θ̃id(
Pn
j=1 ej). The damage function

d is strictly increasing d0 > 0 and convex d00 ≥ 0 with d(0) = 0. Finally, we assume that

the preferences of the agents can be represented by the same von Neumann-Morgenstern utility

function u, which is strictly increasing u0 > 0 and concave u00 ≤ 0. Agent i’s expected utility is
thus equal to

Eθ̃i
u(ei − θ̃id(

nX
j=1

ej)) (II.1)

In this paper, we focus on situations where individual risks are ex-ante identical.3 For instance,

damage may be the same for everybody, eθi = eθ or individual damages eθi may be identically and
independently distributed.4 This assumption allows us to write θ̃i = θ̃ in the former expression.

The remainder of the paper is devoted to the analysis of this game. We will especially contrast

properties of cooperative and non-cooperative solutions. In the cooperative case, we suppose that

3This assumption is relaxed in section VI.
4Another example is when one and only one individual can be affected by the total damage, but this individual

is unknown ex-ante.
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agents jointly maximize welfare, defined as the sum of the expected utilities. Since agents are ex-

ante identical and utilities are concave, welfare is always greater when emissions are identical

across agents.5 We therefore define W (e) as the expected utility obtained when all agents emit

e:

W (e) = Eθ̃u(e− θ̃d(ne)).

It is easy to check that our assumptions on u and d imply concavity of W .6 We define the

cooperative level of pollution emissions, eC , as the solution of the maximization of W (e). It is

usually the unique solution to the following first-order condition:7

Eθ̃(1− nθ̃d0(ne))u0(e− θ̃d(ne)) = 0 (II.2)

This is essentially a marginal benefit equals marginal cost condition. At the optimum, the pri-

vate expected marginal benefits from emitting pollution Eθ̃u
0(e− θ̃d(ne)) are equal to the social

expected marginal damages generated by pollution nEθ̃θ̃d
0(ne)u0(e− θ̃d(ne)).

Next, we characterize the symmetric Nash equilibrium of the game. Consider an agent i and

suppose that others’ emission levels e−i are given. Agent i’s expected utility II.1 is a concave

function of ei, which means that best-response is unique.8 We define the non-cooperative level of

pollution emissions, eN , as the level of emissions such that the symmetric profile ∀i, ei = eN is a
Nash equilibrium and solves the following equation:

Eθ̃(1− θ̃d0(ne))u0(e− θ̃d(ne)) = 0 (II.3)

We assume that equation II.3 has a unique solution.9 At the equilibrium, agents set their emissions

by equalizing their private marginal benefits to their private marginal damages generated by

pollution Eθ̃θ̃d
0(ne)u0(e− θ̃d(ne)). They do not account for the effect of their emissions on others,

5Applying Jensen’s inequality, we see that
P

i
Eθ̃u(ei − θ̃d(

Pn

j=1
ej)) ≤ nEθ̃u(

1
n

Pn

j=1
ej − θ̃d(

Pn

j=1
ej))

6Omitting the functions’ arguments for clarity, we see that W 00(e) = Eθ̃[−n2θ̃d00u0 + (1− nθ̃d0)2u00] ≤ 0.
7To insure existence and interiority, we also need that W 0(0) > 0 and W 0(e) < 0 if e is large enough. This holds

for instance if θd0(0) < 1/n and d0(∞) =∞.
8Differentiating the individual payoff II.1 twice with respect to ei yields Eθ̃[−θ̃d00u0 + (1− θ̃d0)2u00] ≤ 0.
9The conditions of footnote 7 also ensure the existence of a symmetric interior equilibrium. Our results can be

easily extended to the case of multiple symmetric equilibria. Comparative statics with multiple equilibria usually
specifies how the minimum and the maximum non-cooperative emission levels vary (see, e.g., Milgrom and Roberts,
1994). This issue is discussed in more detail in the Appendix.
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which explains that the private marginal cost is n times lower than the social marginal cost.

Clearly, this yields overpollution at the equilibrium. (All proofs are given in Appendix).

Proposition 1. eN ≥ eC

III. Certainty and Risk Neutrality

A. Emissions

We begin the analysis of the game by looking at the natural benchmarks of certainty and risk-

neutrality. In our model, the curvature of u only captures risk aversion motives. Uncertainty does

not affect risk-neutral agents’ emissions and the emissions of risk-averse agents under certainty

are identical to the emissions of risk-neutral agents. This is arguably a nice feature that makes

the benchmarks of certainty and risk-neutrality equivalent. Formally, denote by θ̄ the expected

value of θ̃. When damages are certain or when agents are risk neutral, condition II.2 becomes

1− nθ̄d0(ne) = 0

while condition II.3 becomes

1− θ̄d0(ne) = 0

Denote by ēC and ēN the corresponding cooperative and non-cooperative emission levels. Com-

paring these benchmarks with the general case of uncertainty and risk aversion, we obtain the

following result.

Proposition 2. eC ≤ ēC and eN ≤ ēN

Pollution emissions are thus lower under uncertainty (resp. risk-aversion) than under certainty

(risk-neutrality).10 The intuition behind the result is quite simple. Consider first the cooperative

case. Agents’ uncertain payoffs are equal to

π = e− θ̃d(ne).

10A similar result is obtained in Sandler and Sterbenz (1990).
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The benchmark emissions ēC maximize the expected value of the payoff Eθ̃π = e− θ̄d(ne). Hence
decreasing e leads to a reduction in expected payoffs. At the same time, it also reduces the

variance of the payoff var(π) = var(θ̃)d2(ne). Lowering emissions may then be viewed as a form

of insurance for cooperative risk-averse agents. By reducing their emissions, they trade-off some

loss in expected payoff for a reduction in risk.

Next, consider the strategic setting. By the same logic, uncertainty leads a risk-averse agent to

decrease his level of emissions, assuming others’ emissions are fixed. Situation is now complicated

by the fact that others will adjust and may increase their emissions in response. However, since the

whole best-response functions are lower under uncertainty, the intersection of the best-responses

with the 45 degree line is also lower. At the symmetric equilibrium, the uncertainty effect is thus

always greater than possible strategic effects and the non-cooperative level of emissions is lower

under uncertainty.

B. Welfare

The previous result showed that pollution is lower under uncertainty. How does this affect social

welfare? We see now that the cooperative level of welfare is always lower, while the effect of

uncertainty on the non-cooperative level of welfare is ambiguous.

Formally, let W̄ denote welfare under certainty. Since agents are risk-averse, by Jensen’s

inequality for any level of emission e,W (e) ≤ W̄ (e). Therefore the maximum ofW is always lower

than the maximum of W̄ , which means that W (eC) ≤ W̄ (ēC). Next, compare the equilibrium
levels of welfare W (eN ) and W̄ (ēN ). It is useful to decompose their difference as the sum of two

terms:

W (eN )− W̄ (ēN) = [W (eN )−W (ēN )] + [W (ēN)− W̄ (ēN)]

Uncertainty has two effects, as captured by the two terms of the right hand side of this equality.

It leads to a decrease in emissions, keeping the risk fixed, (first term) and it changes the risk

faced, keeping pollution emissions constant (second term). The first term is positive by concavity

of W and by Proposition 2, while the second term is negative by risk-aversion. The overall effect

is thus ambiguous. Uncertainty may be socially beneficial, if the indirect positive effect of reduced

emissions is greater than the direct negative effect of uncertainty. This discussion is illustrated

graphically in Figure 1 and by the following numerical example.
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Insert Figure 1 about here

Consider simple quadratic forms

d(e) =
e2

2
;u(π) = 1− (1− π)2

2

with π ≤ 1. Assume that the damage is binary, eθ = 1.5 or 0.5 with equal probability (hence

θ = 1). Consider n = 2 agents. Solving numerically for cooperative emissions yields ēC = 0.25

and eC = 0.2419. In the non-cooperative case, there is a unique symmetric equilibrium. We find

ēN = 0.5 and eN = 0.4517. This illustrates Proposition 2: emissions are lower under uncertainty

than under certainty. Observe that here the difference is more important for non-cooperative

emissions. Next look at the impact on welfare. We find W (eC) = 0.6153 < W̄ (ēC) = 0.6171.

In contrast, W (eN) = 0.5217 > W̄ (ēN ) = 0.5. The indirect positive effect due to emissions

reduction, i.e., W (eN ) − W (ēN ) = 0.053, is larger than the negative effect of uncertainty on

welfare, keeping emissions constant, i.e. W (ēN )− W̄ (ēN ) = −0.0313.
In this section, we have shown that uncertainty reduces pollution, since cooperative and

non-cooperative emission levels are lower under uncertainty. In equilibrium, social welfare may

actually be higher under uncertainty.11 In the following sections, we question the robustness of

these findings and extend our analysis in different directions.

IV. Increase in Uncertainty

We first look at an increase in uncertainty. That is, instead of comparing certainty to uncertainty,

we compare an uncertain risk θ̃ to a risk z̃ that is more uncertain, in the sense of Rothschild and

Stiglitz (1970). Throughout this section, we make explicit the dependence of eC and eN on the

risk faced θ̃ by denoting them eC(eθ) and eN (eθ).
11Hammitt and Adams (1996) found that, under uncertainty, welfare at the non-cooperative solution is very

close (about 98%) to the welfare at the cooperative solution. Our result may potentially explain their numerical
findings.

7



A. Cooperative Emissions

First, how does an increase in risk affect cooperative emissions? We know from the literature

on optimal investments in risky assets that risk-aversion is in general not sufficient to insure

that an increase in uncertainty has a non-ambiguous effect on the agent’s decision. Additional

conditions on the utility function must usually be satisfied (Gollier, 2001). We will see that

a similar conclusion holds in our setting. Especially, considerations of prudence have to be

introduced. Risk-aversion might be sufficient, however, to guarantee a non-ambiguous effect for

specific increases in risk. We will show how this applies to a class of catastrophic risks.

Proposition 3 below gives a sufficient condition on the utility function for an increase in risk

to yield a decrease in emissions. To understand this result, we find useful to present first an

informal analysis of the situation where damages are small. This analysis illustrates the trade-

offs involved in the general case. Specifically, assume that θ̃d(ne) is small compared to e. A

second-order Taylor approximation of the expected utility function yields:

W (e, θ̃) = Eθ̃u(e− θ̃d(ne)) ≈ u(e)− θd(ne)u0(e) +
1

2
Eθ̃θ̃

2
d(ne)2u00(e) (IV.1)

The cooperative level of emission is characterized by the condition We(e
C , θ̃) = 0. Consider z̃

a mean-preserving spread of θ̃ and replace W by its approximate expression. This yields:

We(e, z̃)−We(e, θ̃) =
1

2
(Ez̃ z̃

2 −Eθ̃θ̃
2
)
∂

∂e
[d(ne)2u00(e)]

Since We is decreasing in e and Ez̃ z̃2 > Eθ̃θ̃
2
, the effect of uncertainty on emissions is controlled

by the sign of ∂
∂e [d(ne)

2u00(e)]. Effectively, if this sign is negative, We(e, z̃) < We(e, θ̃) for any e,

which means that eC(z̃) < eC(eθ). In contrast, a positive sign implies that eC(z̃) > eC(eθ). The
derivative is equal to the sum of two terms

∂

∂e
[d(ne)2u00(e)] = nd(ne)d0(ne)u00(e) +

1

2
d(ne)2u000(e) (IV.2)

The first term captures the effect of uncertainty on pollution damage θ̃d(ne) and is always negative

under risk aversion. Greater uncertainty increases the damage’s variance. In compensation, risk-

averse agents have an incentive to reduce their emissions. The second term captures the effect
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of uncertainty on pollution benefits e. Following Kimball (1990), agents are said to be prudent

when u000 ≥ 0. Under prudence, the marginal value of a extra unit of emissions e is higher when
uncertainty is greater.12 Prudent agents have thus an incentive to increase their emissions when

they face more uncertainty. This effect operates as a precautionary savings motive. By polluting

more, the agents increase the portion of their payoff which is not subject to uncertainty.

When is the global effect negative? Observe that since d is convex and d(0) = 0, d0(x) > d(x)/x

for any x, so that expression IV.2 is negative if

2 + e
u000(e)
u00(e)

is positive. Introduce relative prudence as Pr(e) = −eu
000(e)
u00(e) . When damages are relatively small,

a greater risk thus leads to lower cooperative emissions if relative prudence is lower than 2.13 Our

next result shows that this condition in fact plays a role for arbitrary risks and arbitrary damage

functions.

Proposition 3. Let z̃ be a mean-preserving spread of θ̃. Suppose that u000 ≥ 0 and Pr ≤ 2, then
for any damage function d, eC(z̃) ≤ eC(θ̃).

This result says that if agents are prudent, but not too prudent, an increase in risk always

lowers cooperative emissions. The condition Pr ≤ 2 puts a limit on the magnitude of prudence
effects. It is satisfied, for example, for quadratic utility functions (u000 = 0) and for CRRA utility

function u(π) = 1
1−γπ

1−γ where 0 ≤ γ ≤ 1.
By imposing certain conditions on the preferences, we could thus obtain a comparative statics

result valid for any increase in risk. An alternative approach consists in restricting the type of

risk in order to obtain results valid for any risk-averse agents. We next illustrate this approach

for a class of catastrophic risks.

We introduce and define catastrophic risks as follows. Damages may only be low or high (a

catastrophe occurs). We denote by θL the risk associated with low damages, by θ̄ the expected

value of the risk, and by 1/k (with k > 1) the catastrophe’s probability. Thus, θ̃ is equal to

12Formally, prudence implies that Ez̃u0(e− z̃d(ne)) ≥ Eθ̃u
0(e− θ̃d(ne)).

13The same condition appears in the comparative statics of an increase in uncertainty on the optimal investment
in risky assets (see, Hadar and Seo, 1990).
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θL with probability 1 − 1
k and to θL + k(θ̄ − θL) with probability 1/k. We define an increase

in catastrophic risk as an increase in k, keeping θL and θ̄ constant. An increase in catastrophic

risk is a particular case of Rothschild and Stiglitz’s increase in uncertainty. As k increases, the

catastrophe becomes less probable but more damaging. We can then show the following result.

Proposition 4. For any utility function u and any damage function d, an increase in catastrophic

risk always leads to lower cooperative emissions.

In this case, risk-aversion is sufficient to obtain non-ambiguous comparative statics. Overall,

we draw two lessons from this section. First, we find that an increase in uncertainty often leads to

lower cooperative emissions. Second, we find that effects related to prudence might push towards

increasing emissions; this makes the comparative statics analysis quite complicated. We show

that these prudence effects may be dominated, however, for specific classes of risks. Finally,

observe that no matter how cooperative emissions vary, welfare is always lower when uncertainty

is greater.

B. Non-cooperative Emissions

Next, turn to the equilibrium analysis. How does an increase in uncertainty affect the non-

cooperative level of pollution? To answer this question, we find useful to look at the small

damages heuristics again. Consider the expected utility’s approximation:

Eθ̃u(ei − θ̃d(ei + e−i)) ≈ u(ei)− θd(ei + e−i)u0(ei) +
1

2
Eθ̃θ̃

2
d(ei + e−i)2u00(ei)

Through a similar reasoning as above, we find that non-cooperative emissions are lower under z̃

if and only if the following expression is negative

d(ne)d0(ne)u00(e) +
1

2
d2(ne)u000(e)

This expression is still the sum of a damage effect (first term) and a benefit effect (second term).

While the benefit effect is unchanged, the damage effect is now n times lower. This arises from

the negative externality. Agents do not take into account the effect of uncertainty on others’

damages. We thus expect conditions leading to a decrease in non-cooperative emissions to be
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more demanding than those leading to a decrease in cooperative emissions. For instance, when

damages are relatively small, a greater risk leads to a fall in non-cooperative emissions as soon

as Pr ≤ 2
n .

This shows that the analysis of an increase in uncertainty is strongly affected by strategic

interactions. Especially, we could not find a counterpart of Proposition 3. Computations presented

in the Appendix show that the effect of an increase in uncertainty on non-cooperative emissions

depend in a complex way on the risk and on properties of the utility function and the damage

function. An exception is provided by quadratic utility functions, however.

Proposition 5. Let z̃ be a mean-preserving spread of θ̃. If u000 = 0, then for any damage function

d, eN(z̃) ≤ eN (θ̃).

For quadratic utility functions, an increase in risk always lowers non-cooperative emissions.

In contrast when the utility function is not quadratic, effects due to prudence might come into

play and the comparative statics analysis is in general ambiguous. In the non-cooperative setting,

restricting the type of risk turns out to be a more fruitful approach. The following result shows

that an increase in catastrophic risks has unambiguous effects on non-cooperative emissions.

Proposition 6. For any utility function u and damage function d, an increase in catastrophic

risk always leads to lower non-cooperative emissions

Thus, an increase in catastrophic risks also leads to lower emissions when polluters act strate-

gically. Observe that our previous welfare analysis carries on. When uncertainty increases and

non-cooperative emissions decrease, welfare might increase if the indirect positive effect of less pol-

lution is greater than the direct negative effect of more uncertainty. We illustrate this possibility

with the following simple example.

Suppose that d is linear and u is quadratic, i.e. d(e) = e;u(π) = − (1−π)22 with π ≤ 1. Also,
suppose that the risk is catastrophic with θL = 0, θ̄ = 1

3 , and k > 3. Thus, θ̃ is equal to 0 with

probability 1− 1
k and

1
3k with probability

1
k . Finally, consider n = 2 agents. Direct computations

yield:

eC =
3

4k − 3; e
N =

3

k
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for cooperative and non-cooperative emissions. An increase in k lowers both levels of emissions,

consistently with Propositions 4 and 6. Next, examine welfare. We obtain:

W (eC) =
2− 2k
−3 + 4k ;W (e

N) ≡ 3− 2k − k
2

2k2

the cooperative level of welfare decrease in k while the non-cooperative level of welfare always

increase in k. In this example, more uncertainty is socially beneficial in the non-cooperative

setting. Moreover, W (eC) and W (eN) both tend asymptotically towards −0.5 when k is large.

V. Increase in Risk Aversion

In this section, we extend our analysis in another direction. Keeping the risk constant, we now

look at the effect of an Arrow-Pratt increase in risk aversion. More precisely, individuals with

utility function v are more risk-averse than those with utility u if there exists a function Φ

satisfying Φ0 > 0 and Φ00 ≤ 0 and such that v = Φ(u) (Pratt, 1964). We question whether more
risk-averse agents emit more or less pollution. Throughout this section we denote by eC(u), eN(u)

the cooperative and non-cooperative emission levels for the utility function u.

A. Cooperative Emissions

Proposition 7. Suppose that individuals with utility v are more risk-averse than those with

utility u. Then eC(v) ≤ eC(u).

When agents are more risk averse, the socially optimal level of emissions is always lower. This

result is quite intuitive. Less emissions leads to a reduction in the variability of the future payoffs.

Such a reduction is more and more desirable as risk-aversion increases. This result extends our

benchmark comparison with risk-neutrality, Proposition 2. Comparing Propositions 7 and 3, we

see that the comparative statics of an increase in risk-aversion is less ambiguous, and easier to

work out, than for an increase in uncertainty.14 This is similar to the results obtained in other

14As agents become more risk-averse, they might also become more prudent. The analysis of the previous section
suggests that it could lead to an increase in emissions. Our result shows that this never happens. Here, the
negative effect on emissions due to more risk-aversion is always greater than potentially positive effects due to more
prudence.
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contexts with single decision makers, such as optimal investments in risky assets, see Gollier

(2001). We next question whether these findings hold for non-cooperative emissions.

B. Non-cooperative Emissions

Proposition 8. Suppose that individuals with utility v are more risk-averse than those with

utility u. Then eN (v) ≤ eN(u).

Thus, the non-cooperative level of emissions also decreases when agents become more risk-

averse. As in the cooperative case, a more risk-averse agent has an additional incentive to reduce

emissions, keeping others’ emissions constant. However, others will adjust and might well increase

their emissions in response to the initial decrease. This would happen when emissions are strategic

substitutes. Proposition 8 shows that this strategic effect is never strong enough to compensate

for the risk-aversion effect.

Overall, this section has shown that more risk-averse agents always emit less pollution.

VI. Risk Heterogeneity

In this section, we relax the assumption that the agents are homogeneous. In order to focus

on the effect of uncertainty, we consider two agents who only differ in the risk they face: One

faces uncertain damage eθ while the other faces certain damage θ̄ = Eeθ.15 We study how this

asymmetry affects cooperative and non-cooperative emissions. We especially ask: Which agent

is going to emit the most? Is uncertainty detrimental or an advantage? As before we examine

cooperative and non-cooperative levels of emissions.

A. Cooperative Case

Let agent 1 be the agent who faces no uncertainty, and agent 2 the one who faces uncertainty.

Recall, social welfare is defined as the sum of both agents’ payoffs. Thus, the cooperative levels

of emission solves the following maximization program

max
e1,e2

u(e1 − θd(e1 + e2)) +Eθ̃u(e2 − eθd(e1 + e2))
15This analysis also covers the case of heterogeneity in the preferences, i.e., when both agents face the same risk,

one agent is risk-averse and the other is risk neutral.
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After simple manipulations, the condition for an interior cooperative solution (eC1 , e
C
2 ) may be

written

u0(eC1 − θd(eC1 + e
C
2 )) = Eθ̃u

0(eC2 − eθd(eC1 + eC2 )), (VI.1)

which is the standard equalization of expected marginal utilities. Observe that if the marginal

utility is convex, Eθ̃u
0(e2−eθd(e1+e2)) ≥ u0(e2−θd(e1+e2)) for any e1, e2. Hence under prudence,

we obtain that agent 2 emits more than agent 1 at the optimum.16 The intuition for this result is

simple. Under prudence, agent 2 values more an extra unit of emissions than agent 1. Allowing

him to emit more is therefore socially efficient.

Proposition 9. Consider two identical agents, except that agent 1 faces no uncertainty θ while

agent 2 faces uncertainty eθ. If u000 ≥ 0, then eC2 ≥ eC1 .
How does uncertainty affect welfare? Since the objective is concave in the risk variable eθ,

uncertainty clearly reduces aggregate expected utilities compared to the certainty case. We

further question the distribution of this welfare reduction. Does agent 1 end up with more or less

utility than agent 2? The answer depends again on the shape of the utility function. We show in

the Appendix that when u displays decreasing absolute risk aversion (DARA), agent 2’s expected

utility is higher at the social optimum. This is because under DARA −u0 is more concave than
u. As a result, the increase in emissions that make agent 2’s marginal utility equal to agent 1’s

marginal utility is larger than the increase in emissions needed to equate both expected utilities.

All in all, these results thus suggest that, under the usual DARA assumption (which implies

prudence), uncertainty may be viewed as an advantage at the optimum.

B. Non-cooperative Case

We now examine the Nash equilibria in this economy. We first show that equilibria cannot be

interior. Consider the first-order conditions

1− θd0(eN1 + e
N
2 ) = 0 (VI.2)

E(1− eθd0(eN1 + eN2 ))u0(eN2 − eθd(eN1 + eN2 )) = 0, (VI.3)

16 It can be shown that this result holds as well for corner solutions. Namely suppose that one of the two agents
emits zero emissions, eCi = 0. Then, when u

000 > 0, it must be agent i = 1.
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where eN1 is the equilibrium level of emissions of the agent 1 while eN2 is the equilibrium level of

emissions of the agent 2. Through (VI.2), we obtain

E(1− eθd0(eN1 + eN2 ))u0(eN2 − eθd(eN1 + eN2 )) = cov[1− eθd0(eN1 + eN2 ), u0(eN2 − eθd(eN1 + eN2 ))]
This covariance is strictly negative when u is strictly concave, which contradicts (VI.3). This

means that, in equilibrium, one agent must emit no emissions at all. We then show that it can

only be agent 2, and that this indeed constitutes an equilibrium.

Proposition 10. Consider two identical agents, except that agent 1 faces no uncertainty θ while

agent 2 faces uncertainty eθ. There is a unique equilibrium where eN2 = 0 and eN1 solves 1 −
θd0(eN1 ) = 0.

The intuition for this result may be presented as follows. Start with a situation where both

agents face no uncertainty. Suppose then that agent 2 faces some degree of uncertainty about his

own damage. This leads agent 2 to reduce his emissions, for a given level of emissions of agent

1. Since emissions are perfect strategic substitutes under certainty, this leads agent 1 to increase

his own emissions. This increase in emissions of agent 1 gives a further incentive to agent 2 to

reduce his emissions, and so on. The process continues until agent 2 emits no more and agent 1

emits as much as if he were alone in the economy.

Note also that agent 1’s level of emissions is actually equal to the total emissions obtained in

equilibrium under certainty, and that total pollution is the same in the economy. Therefore, it is

immediate that agent 1 is better-off compared to the full certainty case and agent 2 is worse-off.

This raises the question of whether the increase in agent 1’s expected utility may compensate

agent 2’s decrease. That is, how does heterogeneous uncertainty affects welfare in equilibrium

compared to certainty? It is actually easy to see that it always reduces welfare.17

In this section, we have shown that when agents are heterogeneous in the risk they face, the

effect of uncertainty goes in opposite directions in the cooperative and the non-cooperative case.

Facing uncertainty is generally beneficial at the social optimum. In contrast, facing uncertainty is

17Let e be the level of emissions of agent 1 in equilibrium, which satisfies 1− θd0(e) = 0. Welfare in equilibrium
equals u(e − θd(e)) + Eu(0 − eθd(e)). Under risk aversion, this is lower than u(e − θd(e)) + u(0 − θd(e)) which is
itself lower than 2u( 1

2
e− θd(e)) by Jensen’s inequality. This last quantity is simply the aggregate expected utility

that is reached at the symmetric equilibrum under certainty .
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always detrimental in equilibrium. In both cases, uncertainty reduces aggregate expected utility.

VII. Conclusion

Uncertainty and free-riding are both primary concerns for environmental issues. Most of the

existing literature has examined one or the other of these concerns, but not the two combined. It

is, however, natural to ask whether uncertainty can alleviate the commons problem or whether

both problems are mutually aggravating.

To think about this question, we have introduced a simple model with both uncertainty

and strategic interactions between polluters. Within this model, we have shown that uncertainty

always leads to reduce emissions compared to certainty. Similarly, we have shown that an increase

in risk-aversion always leads to reduce emissions. The intuition for these results is quite simple. In

our model, polluters face more risk when they emit more. The introduction of uncertainty gives

an incentive for every risk-averse polluter to reduce emissions. Importantly, this effect may be

strong enough so that uncertainty actually increases welfare at the non-cooperative equilibrium,

even though uncertainty always lowers welfare under cooperation. By reducing the incentives to

free-ride, uncertainty may increase the welfare of risk-averse polluters.

The previous set of results arguably supports the idea that uncertainty alleviates the commons

problem. This idea needs to be qualified, however. In particular, we have shown that another

effect takes place in face of an increase in uncertainty. Prudence may lead polluters to increase

their emissions, in order to increase the risk-free portion of their payoffs. This would tend to

aggravate the commons problem. Also, an heterogeneous increase in uncertainty has different

implications. Being the only agent to face uncertainty is an important disadvantage in equilibrium

in our setting.

Our analysis sheds new light on the effect of uncertainty on the incentives to reach an agree-

ment. A classical argument is that reaching an agreement may be easier under a “veil of uncer-

tainty”, see Young (1994) and Na and Shin (1998) for a formal analysis. In this view, cooperation

is compared ex ante, before uncertainty is resolved, and ex post, once uncertainty is resolved.

Cooperation is more likely to emerge ex-ante than ex-post, because more agents potentially gain

from the agreement before the uncertainty is resolved. In contrast our results show that, from

an ex ante perspective, cooperation may be less likely under uncertainty. The reason is that the
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difference in social welfare between cooperation and non-cooperation may be lower under uncer-

tainty and that this difference exactly measures the collective gain to reach an agreement. By

partly alleviating the commons problem, uncertainty also reduces the incentives to fully solve it.

More work is certainly needed to better understand the effect of uncertainty in a strategic

context. Our results are likely sensitive to the specificities of the model. For instance, the fact

that uncertainty affects damages but not benefits clearly plays an important role in our analysis.

Uncertain benefits would probably limit the risk-reducing incentives to lower emissions. Also,

we have studied a static model. A number of dynamic features could be fruitfully added to

the model, such as stock pollution, irreversibilities, learning, or sequentiality in decision-making.

Still, we believe that the basic insights presented here are robust and will likely carry on to

more complicated settings. In addition, they should apply to similar strategic contexts, typically

models of voluntary contribution to a public good (Bergstrom et al., 1986). Our model offers

simple predictions as to the effect of uncertainty on individual decisions. Testing these theoretical

predictions experimentally provides another direction for future research.
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Appendix.

Two functions play an important role in our analysis of the game. The first one isW 0(e, u, (θ̃)) =

Eθ̃(1−nθ̃d0(ne))u0(e− θ̃d(ne)) and the second one is F (e, u, (θ̃)) = Eθ̃(1− θ̃d0(ne))u0(e− θ̃d(ne)).
Dependence of W 0and F with respect to u or θ̃ will be explicitly stated only when needed.

The zeros of these functions characterize the cooperative and non-cooperative emissions profiles:

W 0(eC) = 0 and F (eN) = 0. Note that W 0 is non-increasing in e since W 00 ≤ 0. Unicity of the
symmetric equilibrium would be insured by the property that F is decreasing in e, or by the

weaker property that F (eN) = 0 =⇒ F 0(eN) < 0. The derivative of F has a non-trivial expression

of possibly ambiguous sign:

F 0(e) = Eθ̃[(−nθ̃d00(ne))u0(e− θ̃d(ne)) + (1− θ̃d0(ne))((1− nθ̃d0(ne))u00(e− θ̃d(ne))]

One can see that ∂F/∂e = ∂2Π/∂e2i + (n − 1)∂2Π/∂ei∂ej where Π is the objective function

Eθ̃u(ei − θ̃d(
Pn
j=1 ej)) and the derivatives are computed at ei = e. Since ∂2Π/∂e2i ≤ 0, F is

decreasing as soon as emissions are strategic substitutes ∂2Π/∂ei∂ej ≤ 0.
Observe that our results directly extend to situations with multiple symmetric equilibria.

Consider, for example, Proposition 8: If utility function v is more risk-averse than utility function

u, eN (v) ≤ eN (u) . In order to show this result, we show in the proof below that for any level
of emissions e, F (e, v) ≤ F (e, u). Thus, if F (., v) and F (., u) both have a unique zero, our result
follows. If they have multiple zeros, this property ensures that the lowest and the highest zeros of

F (., v) are lower, respectively, than the lowest and highest zero of F (., u). Denoting by eNmin(u)

and eNmax(u) the lowest and highest symmetric equilibrium, it means that e
N
min(v) ≤ eNmin(u) and

eNmax(v) ≤ eNmax(u). The other results extend in a similar fashion.

Proof of Proposition 1: For any θ, we have 1− θd0(ne) ≥ 1− nθd0(ne), hence F (e) ≥ W 0(e).

Since W 0 is decreasing, we know that the zero of F must be greater than the zero of W 0. Hence

eN ≥ eC .

Proof of Proposition 2: We make use of the following result: If X(θ) is non-increasing in θ

and Y (θ) is non-decreasing in θ, then covθ̃(X(θ̃), Y (θ̃)) ≤ 0.
First, consider the first-best. Introduce X(θ) = 1− nθd0(neC) and Y (θ) = u0(eC − θd(neC)).

It is easy to check that X is non increasing and Y is non decreasing in θ (because u is concave).
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This implies that covθ̃(X(θ̃), Y (θ̃)) ≤ 0. We have covθ̃(X(θ̃), Y (θ̃)) = EX(θ̃)Y (θ̃)−EX(θ̃)EY (θ̃).
Then, EX(θ̃)Y (θ̃) = W 0(eC) = 0 and EY (θ̃) > 0. Therefore, EX(θ̃) ≥ 0, which is equivalent to
1− nθ̄d0(neC) ≥ 0. Since the function 1− nθ̄d0(ne) is non increasing and 1− nθ̄d0(neC) = 0, we
obtain eC ≤ eC .

Second, consider the symmetric Nash equilibrium. Introduce now X(θ) = 1 − θd0(neN) and

Y (θ) = u0(eN − θd(neN)). Again, we have covθ̃(X(θ̃), Y (θ̃)) ≤ 0, EX(θ̃)Y (θ̃) = F (eN) = 0 and
EY (θ̃) > 0. Therefore EX(θ̃) = 1− θ̄d0(neN) ≥ 0. Since the function 1− θ̄d0(ne) is non increasing
and 1− θ̄d0(neN) = 0 we obtain eN ≤ eN .

Proof of Proposition 3: Recall, when z̃ is a mean preserving spread of θ̃, for any con-

cave function ϕ, Eϕ(z̃) ≤ Eϕ(θ̃). Introduce ϕ(e, θ) = (1 − nθd0(ne))u0(e − θd(ne)) such that

W 0(e, (θ̃)) = Eθ̃ϕ(e, θ̃). If ϕ is concave in θ, we have W 0(e, (z̃)) ≤ W 0(e, (θ̃)) and since W 0 is

decreasing, eC(z) ≤ eC(θ). Thus, it is sufficient to show that ϕ is concave in θ. Compute the

second-order derivative of ϕ with respect to θ :

∂2ϕ/∂θ2 = 2nd(ne)d0(ne)u00(e− θd(ne)) + d2(ne)(1− θnd0(ne))u000(e− θd(ne))

Next, suppose that u000 ≥ 0 and Pr ≤ 2. It means that ∀x,−xu
000(x)
u00(x) ≤ 2 hence 2u00(x) ≤ −xu000(x).

Applying in x = e− θd(ne), we obtain

∂2ϕ/∂θ2 ≤ d(ne)d0(ne)u000(e− θd(ne))[−n(e− θd(ne)) + (1− θnd0(ne))
d(ne)

d0(ne)
]

∂2ϕ/∂θ2 ≤ d(ne)d0(ne)u000(e− θd(ne))[
d(ne)

d0(ne)
− ne]

The right hand side is negative since u000 ≥ 0 and d0(x) ≥ d(x)
x for any x when d is convex and

d(0) = 0.

Proof of Proposition 4: We have here

W (e) = (1− 1
k
)u(e− θLd(ne)) +

1

k
u(e− (θL + k(θ − θL))d(ne))
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Define πL = e− θLd(ne) and πH = e− (θL+ k(θ− θL))d(ne). The first-order condition becomes:

(1− 1
k
)(1− θLnd

0(ne))u0(πL) +
1

k
(1− (θL + k(θ − θL)nd

0(ne))u0(πH) = 0

It is sufficient to show that

HC(e, k) = (k − 1)(1− θLnd
0(ne))u0(πL) + (1− (θL + k(θ − θL)nd

0(ne))u0(πH)

decreases in k. ∂HC(e,k)
∂k equals

(1−θLnd0(ne))u0(πL)− (θ−θL)nd0(ne)u0(πH)− (1− (θL+k(θ−θL)nd0(ne))(θ− θL)d(ne)u00(πH)

By the first-order condition, observe that (1 − θLnd
0(ne))u0(πL) =

u0(πH)
1−k (1 − (θL + k(θ −

θL))nd
0(ne)). After some simplifications, ∂HC(e,k)

∂k reduces to

u0(πH)
1− k (1− θnd0(ne))− (1− (θL + k(θ − θL)nd

0(ne))(θ − θL)d(ne)u
00(πH)

From Proposition 2, 1 − θnd0(ne) > 0. Hence the left member of the previous expression is

negative since k > 1. Observe also that, since θ > θL, then 1 − θLnd
0(ne) > 0. From the first-

order condition, this implies (1 − (θL + k(θ − θL)nd
0(ne)) < 0. Therefore, the right member of

the previous expression is negative as well under risk aversion, hence ∂HC(e,k)
∂k < 0.

Proof of Proposition 5: Introduce the auxiliary function ψ(e, θ) = (1− θd0(ne))u0(e− θd(ne))

such that F (e, (θ̃)) = Eθ̃ψ(e, θ̃). Let z̃ be a mean preserving spread of θ̃. We know that if ψ is

concave in θ, F (e, (z̃)) ≤ F (e, (θ̃)), while if ψ is convex in θ, F (e, (z̃)) ≥ F (e, (θ̃)). The second-
order derivative of ψ with respect to θ is as follows:

∂2ψ/∂θ2 = 2d(ne)d0(ne)u00(e− θd(ne)) + d2(ne)(1− θd0(ne))u000(e− θd(ne))

The first term of the right hand side is negative, while the second term is ambiguous. However,

∂2ψ/∂θ2 is negative if u000 = 0.
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Proof of Proposition 6: The proof is similar to the proof for the cooperative case. Define

HN(e, k) = (k − 1)(1− θLd
0(ne))u0(πL) + (1− (θL + k(θ − θL)d

0(ne))u0(πH)

It is sufficient to show that ∂HN (e,k)
∂k is negative. After some simplifications, ∂HN (e,k)

∂k is equal to

u0(πH)
1− k (1− θd0(ne))− (1− (θL + k(θ − θL)d

0(ne))(θ − θL)d(ne)u
00(πH)

The result then easily follows from 1− θd0(ne) > 0.

Proof of Proposition 7: Denote W 0(e, u) = Eθ̃(1−nθ̃d0(ne))u0(e− θ̃d(ne)). We will show that

W 0(eC(u), v) ≤ 0. Since W 0 is non increasing in e and W 0(eC(v), v) ≤ 0, we will then conclude
that eC(v) ≥ eC(u). Take θ and consider two cases. Either 1 − θnd0(ne) ≤ 0, in which case

e− θd(ne) ≤ e− d(ne)
nd0(ne) and Φ

0[u(e− θd(ne))] ≥ Φ0[u(e− d(ne)
nd0(ne))] since u is increasing and Φ

0 is

decreasing. Finally

[1− θnd0(ne)]Φ0[u(e− θd(ne))] ≤ [1− θnd0(ne)]Φ0[u(e− d(ne)

nd0(ne)
)]

Or 1−θnd0(ne) ≤ 0, and Φ0[u(e−θd(ne))] ≤ Φ0[u(e− d(ne)
nd0(ne))] which yields the same inequality as

above. This shows that this inequality is actually valid for any θ. Multiplying by u0(e− θd(ne))

and taking the expectation over θ leads to

W 0(e, v) ≤ Φ0[u(e− d(ne)

nd0(ne)
)]W 0(e, u)

At e = eC(u), W 0(e, u) = 0 and W 0(e, v) ≤ 0.

Proof of Proposition 8: Denote F (e, u) = Eθ̃(1 − θ̃d0(ne))u0(e − θ̃d(ne)). By a technique

similar to the one applied in the previous proof, we can show that F (eN (u), v) ≤ 0. Actually, we
can also show that F (eN (v), u) ≥ 0. To see this, note that Ψ = Φ−1 is increasing and convex and
that u = Ψv. The previous technique can then be applied and eventually yields F (eN(v), u) ≥ 0.
If eN (u) is the unique zero of F (e, u) and eN(v) is the unique zero of F (e, v), then the previous

inequalities imply that eN(v) ≤ eN(u).

Proof of the statement below Proposition 9: u is DARA implies that there exists T
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increasing and convex such that is u = T (−u0). This yields

u(eC1 − θd(eC1 + e
C
2 )) = T (−u0(eC1 − θd(eC1 + e

C
2 )))

= T (−Eu0(eC2 − eθd(eC1 + eC2 ))) by VI.1
≤ E(T (−u0(eC2 − eθd(eC1 + eC2 ))) by T convex
= Eu(eC2 − eθd(eC1 + eC2 )).

Hence, agent 2’s expected utility is higher.

Proof of Proposition 10: Assume first that agent 1 does not emit, eN1 = 0. Then agent 2

chooses eN2 such that

E(1− eθd0(eN2 ))u0(eN2 − eθd(eN2 )) = 0 (VII.1)

To examine whether this can be an equilibrium let us examine agent 1’s best response. Agent 1

then simply chooses e1 to maximize u(e1 − θd(e1 + e
N
2 )) where e

N
2 is characterized by VII.1. So

eN1 = 0 would be a best-response if and only if

1− θd0(eN2 ) ≤ 0. (VII.2)

Yet E(1− eθd0(eN2 ))u0(eN2 − eθd(eN2 )) is equal to
covθ̃[1− eθd0(eN2 ), u0(eN2 − eθd(eN2 ))] +E(1− eθd0(eN2 ))Eu0(eN2 − eθd(eN2 ))

which is strictly negative under u0 strictly decreasing and VII.2. This contradicts VII.1. As a

result, there is no equilibrium with eN1 = 0. Let us finally assume that the agent facing uncertainty

does not emit at all, eN2 = 0. In that case, agent 1 chooses e
N
1 such that

1− θd0(eN1 ) = 0 (VII.3)

Agent 2 then chooses e2 to maximize WN (e2) ≡ Eu(e2 − eθd(eN1 + e2)) where eN1 is characterized
by VII.3. Since WN is concave, a necessary and sufficient condition for eN2 = 0 to be a best
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response consists in showing that W 0
N(0) ≤ 0. We get

W 0
N(0) = E(1− eθd0(eN1 ))u0(0− eθd(eN1 )) = covθ̃[1− eθd0(eN1 ), u0(0− eθd(eN1 )]

which is indeed negative under u0 strictly decreasing.
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Figure 1:

Welfare as a function of emissions under certainty (W ) and uncertainty (W ). Uncertainty

always reduces welfare under cooperation, but may increase welfare in the non-cooperative case,

as shown on the figure.
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