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Abstract: Recent research suggests that pollution has a very large impact on asthma and 
other respiratory and cardiovascular conditions. But this relationship and its implications 
are not well understood. I use changes in location due to military transfers, which occur 
entirely to satisfy the needs of the army, to identify the causal impact of pollution on 
children’s health outcomes, measured by respiratory hospitalizations. I use individual-
level data of military families and their dependents, matched at the zip code level with 
pollution data, for the major air pollutants for the period 1989-1995. I find that for 
military children only ozone appears to have an adverse effect on health. There are 
several methodological findings of interest. Models that look at the effects of a single 
pollutant at a time can be very misleading. Moreover the data supports the idea that 
interactions between pollutants (which are rarely used) have a statistically significant 
effect on health. I find evidence that measurement error in pollution predictions is not 
random and has large effects on the estimated coefficients. Lastly I look at whether the 
effects of pollution on children’s health vary depending on the socio-economic 
characteristics of their parents, as suggested by previous epidemiological studies. I find 
that the effects of ozone appear to be greater for children of higher SES.  
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I. Introduction 
 

Recent research suggests that pollution has a very large impact on asthma and other 

respiratory and cardiovascular conditions (WHO 2003). But little is known about whether 

these effects are truly causal. Using conventional data sets, it is difficult to separate the 

effects of pollution on health from the effects of socio-economic background; poor and 

disadvantaged families often live in polluted areas whereas wealthier families can afford 

to move to cleaner areas. Polluting factories will also locate in areas where land is cheap 

and constituents have low political leverage. High pollution areas often have higher 

crime, less availability of public services, and different average socio-economic 

characteristics. On the other hand families in worse health are more likely to move away 

from polluted areas (Coffey 2003).  

 

I use changes in location due to military transfers to identify the causal impact of 

pollution on children’s health outcomes, measured by children’s hospitalizations. The 

military ordinarily requires that its members move to different locations in order to 

satisfy the needs of the army. These relocations are frequent, somewhere between 24 and 

48 months, and they affect all enlisted men and their families: about 1/3 of army families 

experience a Permanent Change of Station (PCS) in a given year.1 Families are moved to 

high or low pollution areas in a manner that is independent from their socio-economic 

characteristics: this unusual characteristic of the military provides us with a unique quasi-

natural experiment: 

 

Most military families live on military bases. Bases provide many services, including 

childcare, school, entertainment and health care. Even though there are differences 

among bases (e.g. weather), the variation in the environment that military families 

experience when they move is small (relative to civilian families), so that unobserved 

neighborhood characteristics are not likely to be a large source of bias. There are other 

advantages to studying the military. All enlisted personnel and their dependents are 

                                                 
1 This is about four times the relocation rate of civilians. See Griffith et al (1988). 



covered by military health insurance (Champus/Tricare),2 which is quite generous (no 

premiums, low deductibles3), and is highly rated by its members.4 Therefore, issues of 

access to care due to income are not first-order concerns. Lastly, since information on 

hospitalizations and doctor visits is available for all causes, hospitalizations from causes 

that are unlikely to be correlated to pollution can be used to confirm the findings: they 

should not be affected by pollution levels.  

 

I use individual-level data on military families and their dependents, matched at the zip-

code level, with pollution data for the period 1989-1995. The data contain information on 

children, which are of particular interest. Previous research suggests that children are 

more at risk than adults, and that they tend to develop symptoms faster. The cost of 

pollution associated with detrimental health effects on children is also presumably large 

since they will be experienced over a lifetime.  

 

There is a vast literature in epidemiology that documents strong correlations between 

pollution and mortality (e.g. Pope et al, 2002; Samet et al, 2000), and between pollution 

and other health measures (WHO 2003). Two recent papers in economics (Chay and 

Greenstone, 2003; Currie and Neidell, 2005) look at the effects of pollution on infant 

mortality using plausibly exogenous time-series variation to identify the effects of 

pollution on infant mortality.5 The identification strategy used in this paper uses cross-

sectional (and time-series) variation in pollution, and argues that, in the military, 

individual exposure to pollution is independent of individual- and site-specific 

characteristics. This identification strategy overcomes the two potential issues with these 

previous studies. One is that seasonal variation in pollution may be accompanied by 

changes in other variables that may affect health (for example the decrease in pollution 

studied by Chay and Greenstone was induced by a recession which was accompanied by 

                                                 
2 Eligibility under Tricare as of 2003: The Tricare programs are available to family members of active-duty military service personnel 
and also to military retirees and their dependents. These dependents include spouses, former spouses, children and stepchildren. 
Spouses must not be covered by an employer-sponsored health plan. Former spouses remain eligible unless they remarry. Unmarried 
children under age 21, and unmarried children under age 23 who are full-time students are eligible. Children remain eligible if the 
parents are divorced or remarried. Stepchildren lose eligibility after a divorce unless adopted by the sponsor. Eligibility may extend 
past age 21 if the child is severely disabled and the condition existed prior to age 21, or if the condition occurred between the ages of 
21 and 23 while the child was a full-time student.    
3 See footnote 10 for details on deductibles and co-pays under Champus. 
4 In 1995, 70% of spouses reported being satisfied with the Army Medical System. 
5 Similarly, Jayachandran (2005) looks at the effect of PM on infant mortality using changes in PM induced by fires in Indonesia.  



reductions in income and employment). Second, families may move as a result of high 

pollution levels.  

 

There are several more contributions. I include measures for 5 major pollutants in the US, 

and investigate several specification issues, including the effects of omitting pollutants 

from the model, the effects of measurement error, and the existence of interactions and 

non-linearities. Also I look at children ages 0 to 5, not just infants. 

 

I find that for military children only ozone appears to have an adverse effect on health, 

measured by respiratory hospitalizations. The effect is large: the implied elasticity for the 

probability that a child is hospitalized for a respiratory condition with respect to O3 is 

between 0.7 and 1.14. Alternatively, considering the effects of all pollutants jointly, I find 

that moving from an area where all pollutants are high to a low pollution area reduces the 

percentage of children hospitalized by as much as 77%. Importantly, these effects are 

only significant for children ages 2 to 5, and not for those ages 0 to 1. Furthermore, I find 

that the effects of ozone appear to be greater for children of higher SES. Both of these 

findings are consistent with the idea that ozone only affects those that spend a significant 

amount of time outdoors. 

 

There are a number of additional findings. I used several methods to impute pollution at 

the zip code level, and test the sensitivity of the models to distance from monitors. This is 

important because monitors are not randomly located across the country. I find evidence 

that measurement error in pollution predictions is not random, and that it has large effects 

on the estimated coefficients. I find that models that look at the effects of a single 

pollutant at a time can be misleading. The results strongly suggest that non-linear models, 

and models that include interactions between pollutants (which are rarely used), are 

preferable to linear models. These results suggest reasons why previous studies differ in 

their findings. 

 

The paper proceeds as follows. Section II describes the data used for the empirical 

analysis, and a number of data-related issues. Section III describes the relocation process 



in the military and provides evidence that relocations cannot be predicted using 

individual characteristics of the enlisted men. Section IV presents the empirical strategy 

and the main results. In Section V, I explore the functional form, issues of interpretation, 

and look at the effects of pollution by SES. Section VI concludes.   

 

II. Data description and issues 

 

A. military personnel data 

 

The data were provided by the Defense Manpower Data Center (DMDC) under the 

Freedom of Information Act. It contains annual individual-level information on enlisted 

married men6 and their dependents for the period 1988-1998,7 including the 

characteristics of the enlisted men (age, race, education, occupation, rank, location, date 

of enlistment, date of last enlistment, total number of months of active service) and 

information on all hospitalizations (by condition) of their wives and children. Individuals’ 

location is given by the zip code to which their sponsor is assigned to duty. Only 

information on individuals located in the Continental U.S. (48 contiguous states) was 

obtained. All characteristics are measured as of December 31st. 

 

The data do not contain earnings, but contain almost all the variables that determine 

earnings, including rank, experience, family structure, and location. They do not include 

deployment compensation, performance bonuses, or spousal earnings. However these are 

small relative to household income.8 Appendix A contains more details about the data. 

 

B. Dependents’ health data 

 

                                                 
6 Married Army couples receive special consideration for relocation and therefore are also problematic. Most enlisted moms are 
single-parents and some have suggested they receive special considerations concerning relocations. Finally divorced parents are 
excluded since most likely their dependents do not live when them and are therefore not subject to relocations.  
7 Information on families was available starting in 1988. 
8 Furthermore, as was already mentioned above, there are very small differences in access to health care since all dependents are 
covered by generous insurance plans. 



Military personnel and their dependents have access to care through two separate 

systems.9 Military Treatment Facilities (MTFs) provide free care to all beneficiaries, 

subject to capacity.10 Military families can also obtain care elsewhere through their health 

insurance. Generally beneficiaries are required to obtain care from an MTF if such care is 

available before using alternative care.  The service area of an MTF generally includes 

zip codes within 40 miles of the facility. In 1995 MTFs served about 89% of military 

dependents. The Map in Figure 1 shows the locations of all the military installations 

(most of which are bases) and treatment facilities in my data for the Continental United 

States in 1990. Each circle represents an installation (the size of the circle is proportional 

to the number of observations in my data) and the triangles show the locations of the 

military treatment facilities.  

 

The Civilian Health and Medical Program of the Uniformed Services (Champus) began 

in 1966. Under Champus, beneficiaries paid no premiums and were all subject to a single 

plan.11 Starting in 1995 a new system known as TRICARE was phased in, replacing 

Champus. The main changes included the availability of different insurance plans (one of 

which is identical to Champus), and the introduction of managed care for the provision of 

care. Importantly, the eligibility criteria did not change at all during the 1989-1995 

period.12 

  

Health data are obtained from the administrative claims filed by these two separate 

sources: MTFs and insurance.  MTFs only filed claims for hospitalizations—all other 

services obtained at MTFs are not observed. Starting in 1996 the data from MTF are no 

longer available. Because claims are reported in fiscal years (which begin October), the 

data for MTF hospitalizations in 1995 is incomplete: it is missing a quarter of that year’s 

hospitalizations, which would have been reported in 1996. Thus because of the changes 

                                                 
9 This brief description and the related statistics come from two sources: the 1995 Rand report and Appendix X of  the 1996 
Department of Defense “Military Compensation Background Papers: Compensation Elements and Related Manpower Cost Items—
Their Purposes and Legislative Backgrounds.” 
10 There were about 117 military hospitals and 400 military clinics in 1995. Priority for access is given first to active duty personnel, 
then to their dependents and to others. 
11 The plan included small annual individual and family level deductibles ($100 per family if below E4 grade, $300 otherwise), a 25% 
co-pay for outpatient costs, and a $1000 family stop loss. There was a daily nominal inpatient cost (not exceeding $25 annually in 
1994). 
12 Personal communication with Scott Seggerman at DMDC, September 2003. 



in Champus insurance and the incomplete MTF data, the data for 1995 are to be treated 

with caution. CHAMPUS/Tricare claims exist for hospitalizations and for other services. 

Unfortunately CHAMPUS hospitalization claims do not report the diagnosis for the 

hospitalization.  

 

I construct several outcome measures using these claims. The first measure is whether or 

not the person was hospitalized during the year (regardless or whether the hospitalization 

occurred in a military or private facility). The second is whether the person was 

hospitalized in an MTF.13 For MTF hospitalizations, I construct indicators for whether a 

hospitalization was for a respiratory condition (ICD9 codes 460 to 519, 769-770 and 

78614), an external cause (ICD9 800-999 or starting with “E”), or for any other cause.15  

 

C. Pollution and weather data 

 

Pollution data come from the Environmental Protection Agency (EPA). They contain 

annual summary statistics for the period 1988-1998 of measurements at the monitor level 

of the 6 major environmental pollutants in the US, namely: particulate matter of 10 micro 

meters in diameter (PM10), ozone (O3), lead (Pb), carbon monoxide (CO), sulfur dioxide 

(SO2), and nitrogen dioxide (NO2).16 Only monitors that appear in at least 8 years out 11 

are kept, and the missing values were interpolated within monitors over the year to obtain 

a balanced panel of monitors.17  The final number of monitors is reported in Appendix D. 

Background information on these 6 air pollutants, such as sources of emissions and 

suspected health effects, is given Appendix B. 

 

                                                 
13 I can also calculate the number of hospitalizations. However this measure is somewhat less accurate, because hospitalizations are 
associated with multiple claims. Using the date of admission and of dismissal it is possible to define unique hospitalization events, but 
there are inconsistencies across claims (overlapping dates for example) that possibly reduced the accuracy of hospitalization counts.   
14 Diagnosis codes 769 and 770 are for infants only. Code 786 includes ill-defined conditions of the respiratory system. 
15 In all cases, a hospitalization occurs if the individual was admitted to the hospital and remained for at least one night. 
16 Unfortunately no measurements exist for PM2.5 (smaller particles) during this time period, which recent research suggests may be 
more directly related to health outcomes. It is also worth noting that NO2 concentration is most likely overestimated in these data: 
monitors measure NOX and convert it into NO2, and it is known that the conversion frequently overstates actual concentrations. 
Improved NO2 data is not yet available from the EPA. Personal communication with Kevin A. Cavendier at the EPA.  
17 The data provided by the EPA contains an unbalanced panel of monitors for each pollutant. In calculating pollution levels for any 
given area, the addition and deletion of monitors are problematic, especially if the year-to-year variation within area is to be exploited. 
New monitors are usually added because the EPA learns of a source of emission. This generates a sharp increase in pollution from one 
year to the next at that location that isn’t necessarily real. Conversely, monitors are often removed because the area is compliant 
(pollution levels are low). Predictions for the area that are calculated using remaining adjacent monitors will overestimate the 
pollution level. Therefore, following EPA’s practice, a balanced panel of monitors was created. 



Weather data (temperature, humidity and rain) from the National Climatic Center were 

also merged. Weather conditions are important potential confounders: for example very 

hot weather during the summer raises O3 levels and may also result in more deaths. (See 

appendix A for more details.) 

 

D. Assignment of pollution levels to individuals: some issues 

 

For each individual in the data, we must estimate exposure to each pollutant using the 

pollution measurements obtained from monitors (located at a given longitude and 

latitude). This requires estimation of pollution levels for zip codes for which there are no 

monitors (the vast majority of zip codes). The simplest commonly used procedure is 

Inverse Distance Weighting (IDW), which assigns individuals the weighted pollution 

average of monitors within a given radius, using the inverse of the distance to the point as 

weights (as Currie and Neidell, 2005). Another simple option is to calculate county 

averages by averaging values across monitors in a given county (as Chay and Greenstone, 

2003). Alternatively one can use Kriging. Kriging is a statistical method that estimates a 

model of spatial correlation and uses this model to generate predictions.18 It consists in 

estimating the parameters that describe the spatial correlation between observations (like 

estimating ρ for an AR(1) model) and then using the estimates to find the predictions that 

minimize the sum of squared errors. Covariates may be used as well (in which case the 

method is referred to as co-Kriging). The relevant covariates included annual measures of 

weather19 (rain, temperature, humidity and wind direction), terrain (altitude) and emission 

sources (which are not available for this period and therefore not included).  

 

Kriging has several advantages over the alternative methods previously used by 

economists. (See Appendix C for a brief review of models of spatial correlation.) First, 

Kriging is the best linear unbiased predictor. Second, measures of fit can be obtained. 

Lastly, Kriging allows prediction for a much larger number of locations in the United 

                                                 
18 Statistical models of spatial correlation are closely related to time series models commonly used in economics. Kriging estimation is 
akin to Feasible Generalized Least Squares Estimation, except that observations are correlated across space (two dimensions) rather 
than time. 
19 Ozone exhibits strong seasonality within the year, increasing during the summer. I am ignoring this potential source of pollution 
variation. Seasonal variation in other pollutants is also ignored because some military data (duty zip code most importantly) could 
only be obtained annually. 



States. Kriging predictions are based on the annual arithmetic mean at each monitor. 

Appendix E contains the details of the models that were used to generate Kriging 

predictions, and Appendix F shows the measures of goodness of fit for each pollutant and 

for every year.  

 

All of these methods assume that distance from monitors is an important predictor of the 

level of pollution (i.e. that there is spatial correlation). I formally test this assumption in 

the data for every pollutant and every year using multiple statistics of spatial correlation 

(Moran’s I, Geary’s C and Getis & Ord’ G; see Appendix C for a review of these 

measures). The results of these tests for 1988 are in Appendix D. In all cases the data 

strongly reject the hypothesis of no spatial correlation, providing support for the methods 

used here.  

 

Maps for the Kriging predictions for each pollutant are in Figure 2. They show that in 

1990, the highest (annual) concentrations of ozone were in California, and the states in 

the Mid-Atlantic, East North Central, and South East regions. For PM10, the highest 

levels are found in California and Arizona. NO2 concentrations are highest in California 

and parts of Texas. SO2 concentrations on the other hand are lowest in California and 

highest in Pennsylvania and New York. CO is highest in the Northwestern and Eastern 

United States. These patterns are similar to those observed today. Overall pollution levels 

tend to be higher in urban areas, but it is worth noting that the density of monitors is 

lower in rural areas. There is a significant amount of variation in pollution levels across 

the country, and this variation is different for each pollutant. Also note that the 

predictions for Pb are poor. (Pb has the fewest monitors and the lowest measures of fit of 

all pollutants; see Appendix F.) 

 

I have also matched individuals to pollution levels using IDW (for both 15 and 30 mile 

radii) and county-level averages using number of observations per year by monitor as 

weights. In all cases, individuals are matched to the predictions in the zip code to which 

their sponsor is assigned to duty. Figure 3 shows national trends for all pollutants from 



1988 to 1995 obtained using the various methods.20 All prediction methods yield trends 

that closely follow the trends obtained from monitor data.21 All pollutants show 

downward trends, with the exception of O3, which decreases until 1992, and starts rising 

thereafter.  

 

Matching individuals to pollution predictions in a precise geographic unit (in this case at 

the zip code level) might result in poor predictions of exposure, since individuals move 

around quite a bit, even given excellent predictions of outdoors pollution levels at the zip 

code level.  I assume that for children this problem is not as important as for adults. 

However personal exposure will also depend on indoor pollution22, as well as on 

individual behavior (mobility and time spent outdoors).  

 

Figure 6 shows the distribution of pollutants for the final sample used in this study. The 

graphs document the variation in pollution that will often be used in the identification of 

pollution effects. Note that most pollutants have long thin right tails—there are very few 

observations for the highest pollution levels. Previous research has also suggested that 

there can be strong correlations between different pollutants, generally because of 

common sources. For example, NO2, CO and PM10 are all generated by automobile 

engines. Table 3 shows the correlations in my data. The largest correlation is about 0.5, 

between PM10 and CO. Also interestingly, there is a negative correlation between O3 and 

CO,23 and between Pb and NO2.24 These correlations are not high enough to generate 

collinearity problems25 but also not small enough so to think of these as independent 

regressors. 

  

                                                 
20 The trends were calculated by averaging over the original monitor data, or alternatively averaging over all zip codes for which 
predictions were available. 
21 Although it is worth noting that Kriging predictions are always below pollution levels at the monitor sites. This is to be expected 
given that monitors are generally located in areas that are (or were) suspected to be polluted (in addition to highly populated areas). 
22 The relationship between outdoor and indoor pollution depends on penetration rates and on whether there are indoor sources of 
pollution, such as smoke. Studies have shown that the correlation between personal exposure and ambient measures is fairly high in 
the case of PM, and low in the case of O3 (indoor concentrations are about half). See WHO (2003). 
23 This has been observed in previous studies as well (e.g. Samet et al 2000).   
24 These correlations are based on spatial predictions and thus might quite different in reality. But since monitors for different 
pollutants do not overlap, the real correlations at particular locations are not known. 
25I also examined whether there was significant multicollinearity by estimating auxiliary regressions predicting one pollutant as a 
function of the others. I did not find evidence of significantly high multicollinearity. Results available upon request. 



Since military installations are more likely to be located in rural areas, it is possible that 

the military’s exposure is not representative of the general population. To gauge this, I 

compute mean exposure for the population, by averaging predictions over zip codes and 

using the population ages 18 and below in the zip code as weights. (The population data 

come from the 1990 census STF 3A tapes.) I compare these averages with averages for 

military children 18 and below in my data. Appendix G presents the means for both 

populations over the entire study period. The military are exposed to lower pollution 

levels on average, although the difference is generally small (less than 1/2 of a standard 

deviation) except for NO2. Overall, however, the exposure appears to be quite similar. 

Appendix H shows the trends in exposure for both populations. These are quite similar, 

although as suggested by the means, NO2-levels are much lower for the military. Also it 

is worth noting that the trends for Pb are very variable, but Pb has the fewest monitors in 

the data and the lowest fit for the Kriging predictions. For this reason I will not look at 

the effects of Pb on health in this paper, although I do use Pb as a control in some 

specifications. 

 

E. Sample and summary statistics 

 

I keep children under age 5, from 1989 to 1995. (Recall there are no claims data from 

MTFs from 1996 forward.) The year 1988 is dropped because the health insurance claims 

data for that year appear to be incomplete (DMDC recommend 1988 be excluded from 

the analysis).  To minimize differences in access to care, I exclude individuals with no 

access to a military hospital. Also I exclude officers, since it appears that they may have a 

greater ability to affect relocations, and stepchildren—they are less likely to live and 

move with their enlisted father. Finally I restrict the estimation sample only to those in 

bases for which the closest monitor is within 50 miles for all pollutants. Individuals with 

missing data were also dropped. 

 

In 1989, there were a total of 769,741military personnel in the Army.26 The final sample 

includes 68,676 married enlisted men with dependents stationed in the continental U.S., 

                                                 
26 Data available online from the Department of defense at http://web1.whs.osd.mil/mmid/mmidhome.htm 



with exactly 20,779 men in 1989, about 2.7% of the Army for that year. This percentage 

is similar or higher (about 3.6% in 1995) in other years, except for 1990 and 1991. In 

these two years the sample is smaller because of deployments for the gulf war (recall that 

the data include only children whose fathers are stationed in the continental U.S.).27  

 

Table 1a shows the summary statistics for the sample. About half of the children are 

male, and 60% are white non-Hispanic. On average, children can be followed for 3.2 

years (if no distance to monitor restriction is made). Of those that are observed in 

consecutive years, about 30% move—the same percentage reported by the military for 

the Army at large. The enlisted sponsors (dads) are about 29 years of age on average, 

have been in active duty for about 9 years and they have between 2 and 3 dependents 

(including their spouse, so about 1.4 children), and 12% have at least some college 

education. For those observe in two consecutive years, about 2% increase their education 

and about 18% move up in rank. 

 

The hospitalization data show that about 11% of children were hospitalized at least once 

in the previous year. This hospitalization rate is higher than that observed for children of 

civilian parents28 but similar to what has been reported elsewhere for dependents of 

military personnel.29 Most of these hospitalizations occur at an MTF. Among MTF 

hospitalizations (for which diagnosis codes are known), 26% are due to respiratory 

conditions. Figures 4 and 5 show the distribution of hospitalizations for all ages. It shows 

that hospitalization rates fall rapidly with age, bottoming out between ages 5 and 15, after 

which they start rising. Because these rates are so low and because young children are 

more susceptible to the immediate effects of pollution, I have restricted the analysis to 

children under age 5. Figure 5 suggests that children ages 0 to 1 exhibit a much larger 

                                                 
27 There were 665,476 troops deployed during 1990-1991 for the desert Shield and Desert Storm operations. 
28 In the NHIS during the same years, the number is approximately 6% for children ages 0-5 of families with annual incomes below 
$40,000. 
29 In the Rand Report MR-407-1-OSD (Hosek et al, 1995), the percentage of dependents that were hospitalized overnight was about 
8.5% in the early 1990s. This includes children over the age of 5, elderly persons, spouses and enlisted personnel (Table B.5). In Table 
3, adjusting for covariates, the predicted percentage of dependents with a hospitalization is about 11.3%. In addition, this study only 
looks at those with the highest priority for MTF (free) care, who are more likely to use care than other dependents. There are several 
reasons including the differences in demographic characteristics of military and civilian families. But this is more likely due to the 
very generous insurance provided by the military, which prompted the introduction of Tricare. Rand (1995) reported that “After 
correcting for demographic differences and other factors (...) the rates at which military beneficiaries used inpatient and outpatient 
services were on the order of 30 to 50 % higher than those of civilians in fee-for-service plans.” 



rate of respiratory hospitalizations than children ages 2 to 5, so I analyze the effects of 

pollution separately for these two age groups.30 

 

The remainder of the table shows the characteristics that are common to a base. There are 

177 bases that appear in the study, although some of them are small and are not in the 

sample every year. Ultimately there are 940 base*year observations. The average base in 

the sample has about 6,100 married fathers, although there is a lot of variation across 

bases. Other base characteristics include distance to cities of varying size, distance to the 

closest MTF, and the number of Army personnel requesting that base in a given year as a 

first choice. These were collected to investigate the nature of relocations (see below). I 

report annual pollution means. I find that 18% of the sample has county predictions for 

all pollutants; 5% has IDW15 predictions for all pollutants, and IDW30 predictions exist 

for about 50% of the sample.  

 

III. Describing relocations of military families 

 

Military regulations require that enlisted personnel be relocated at least every three years, 

but no more than once a year. Moves are indeed frequent: families are relocated every 

two and a half years on average, and every year about 1/3 of all military personnel make 

a permanent change of station (PCS). In a 20-year career individuals are relocated an 

average of 12 times.31 Most soldiers move their families as well: according to the 1987 

Survey of Army families, 92% of the responding spouses said they were living in the 

same location as their spouse; in 1995 in the same survey the percentage was 87.5 (Croan 

et al, 1992).32   

 

                                                 
30 In other data the main difference in hospitalization is between infants and others. However, not that age in my sample is observed as 
of December 31st of the year in question. Therefore many of the children that are 1 years of age and were hospitalized within the last 
year, may have been infants at the time of the hospitalization. 
31 Source: Relocation Assistance Conference, Dallas 2003. 
32 There are different types of PCS. Training moves are short, lasting about 20 weeks, and families do not move with the soldiers. 
They are not part of this analysis. Enlisted personnel also move to military bases overseas, also known as OCONUS (outside 
continental US), for rotation periods of two to three years. Most OCONUS tours are accompanied—soldiers bring their families. Some 
are unaccompanied and shorter. Unfortunately I do not have pollution data for overseas locations, so families that move abroad leave 
my sample. Additionally DMDC did not provide data on dependents whose sponsor was stationed overseas. There are also unit 
moves, which are rare (fewer than 1% of all moves, Rand 1998). Some of these may result in family relocation, if for example a base 
is closed. They may be related to war activities as well. 



In principle the army uses rank and military occupation (MOS) in combination with 

“needs of the Army” to determine relocation. The military entity that decides on PCSs 

was previously known as PERSCOM (personnel command).33 According to Army 

Regulation 614-200, “the primary goal of the enlisted personnel assignment system is to 

satisfy the personnel requirements of the Army. Secondary goals are to: a) equalize 

desirable and undesirable assignments by assigning the most eligible soldier from among 

those of like MOS and grade; b) equalize hardship of military service; c) assign soldiers 

so they will have the greatest opportunities for professional development and promotion 

advancement; and d) meet soldiers’ personal desires.”  This regulation suggests that 

within rank and occupation (PMOS) all men are treated equally; that within a rank and 

occupation class, assignment is “random.” Relocation is not to be based on prior 

performance (Lyle, 2003) nor is it systematically associated with promotions (Tarzier 

1990). 

 

PERSCOM decides relocations by using an automated system that produces target 

numbers by MOS, rank, and location, and then constrains assignments to coincide with 

the targets. Generally, the needs (demand) in a given location within occupation and rank 

are driven by promotion, end of service, and retirement. Supply is also determined by 

these, and it is further constrained by regulations governing frequency of moves, training, 

enlistment, and base-closings, as well as by humanitarian considerations (see below).  

 

Within these constraints, soldiers’ preferences may be taken into account. Soldiers submit 

up to three assignment preferences a few months before their next duty assignment. 

These choices are not totally unconstrained. The Army suggests that “soldiers should 

choose installations or geographic areas where their PMOS, SQIs and additional skill 

identifiers are required”. Furthermore “Preference choices must meet the professional 

development requirement of the soldier’s career and a valid requisition must exist that 

meets the current distribution policy. If both conditions cannot be met, assignments will 

be made to fulfill Army requirements” (AR 614-200 3.3). (Note that in this study 

occupation codes PMOS include skill identifiers.) Individuals learn (and the Army 

                                                 
33 The agency has been renamed and is now called the Human Resources Office. 



encourages them, as the regulations suggest) to “play the system.” The choices they list 

take into account the likelihood of being assigned to the location (so it is a constrained 

choice); it is not clear that location is really chosen even among those assigned their 

choice. For example, if an individual is due for an overseas transfer, he is unlikely to list 

a U.S. base in their choices, even if he does not want to go overseas.34 Below I present 

evidence from other studies and from my data that indeed individual characteristics do 

not predict location. 

 

Angrist and Johnson (2000) report that “The nature of duty assignments varies 

considerably, and families have little control over the timing of moves or the location of 

the next job,” although they do not themselves present evidence to this effect. Several 

(unfortunately non-representative) surveys conducted by the Department of Defense 

suggest that, in general, enlisted personnel are not assigned to their preferred location. 

Hiller (1982), using 1979 survey data, concluded that granting location of choice would 

be as effective as a bonus of 27% of annual pay in increasing reenlistment.35 Among 

those surveyed in 1987, only 35% reported that they were assigned to their preferred 

location (Burnam et al, 1992). Croan et al. (1992) report that in 1989 about 40% of 

soldiers did not want to move to the location where they were assigned at the time 

relocation. Tarzier (1990) reports that “Service Members list constant relocation as one of 

the major reasons for separating from the Service.” This evidence is consistent with the 

idea that individuals have very little choice over their relocations. 

 

Regulations and available evidence suggest that once an individual has received orders to 

relocate, it is very difficult and highly unlikely that the decision be overturned. 

Disobeying relocation orders results in court martial. However, interviews with military 

personnel revealed that in reality some individuals may have more control over their 

relocations than others, prior to their receipt of relocation orders. For example, 

                                                 
34 Military personnel suggest that the likelihood that enlisted personnel be relocated to a place of their choice has increased. There are 
various reasons for this. One is the increased use of computer systems that improve the matches between soldiers’ preferences and 
army needs. Soldiers have access to better information about various bases and now can update their location preferences as frequently 
as they like online. The army has made efforts to improve retention (re-enlistment rates); respecting location  choices has been one of 
their instruments. Finally, the Army recently moved from an individual replacement system to a unit base system—the new system 
attempts to keep units intact for at least three years. I thank Robert DeLarouge in the Army’s Human Resource Office for providing 
these details.  
35 Quoted in Vernez and Zellman (1987). 



relocations that occur at the time of re-enlistment may be negotiated.36 According to 

Croan et al., junior ranking soldiers have the least control over where and when they 

move. Segal (1986) also suggests that those early in their military career (which is often 

correlated with but is not the same as rank) have the least control over where and when 

they move.37 Because of this evidence the sample is restricted to enlisted personnel (I 

drop officers).  Below, I formally test whether characteristics other than occupation 

(including skill) and rank predict relocations.38 

 

One important issue for this paper is whether relocations are correlated with family 

health. A relevant point is that the army to some extent does consider family health needs 

in relocation assignments through the Exceptional Family Member Program (EFMP).39  

Soldiers enroll through their local Army MTF. The EFMP program is designed to be an 

assignment consideration, if pre-enrolled, and not an assignment limitation. Soldiers 

could be reassigned to an "all others tour" to meet Army requirements.40 EFMP only 

results in reassignments to locations where needs can be met, not to relocations that 

soldiers prefer. In fact the Air Force advises that “It is very important to remember that 

the EFMP is not a base of preference program”. Anecdotal evidence also suggests that 

this type of consideration is rarely granted. Furthermore, the Army frequently rejects 

EFMP applications.41 For the purpose of this paper it is worth noting that EFMP is not 

granted because of “Climatic conditions or a geographical area adversely affecting a 

                                                 
36 Although there is no information on how frequently this occurs, it may have become a more frequent practice in recent years since 
re-enlistment rates have been dropping, and personnel retention has become a priority in the army.   
37 Among those interviewed, there was no consensus on this issue: some believed that higher ranking officers had more influence, 
whereas others suggested that officers, due to their relative scarcity, but also because of expectations about their behavior, had less 
influence on their relocation. According to Rand (1998) officers experience almost twice as many operational moves as enlisted 
personnel. This may suggest they are more frequently relocated to undesirable locations. 
38 Similarly Lyle (2003) found (using IV approach) that parental absences appear to be orthogonal to factors determining children’s 
academic attainment. 
39 According to Army regulation AR 614-200, EFMP “allows U.S. Total Army Personnel Command (PERSCOM) to consider the 
special education and medical needs of exceptional family members during the assignment process and reassign soldiers, when 
readiness does not require a specific assignment to an area where the needs can be accommodated.” 
40 Governing regulation AR 608-75, dated May 1996. 
41 There were 6 major Medical Centers during this period in the Continental U.S. : Dwight D. Eisenhower Army Medical Center (Fort 
Gordon, Georgia), Womack Army Medical Center (Fort Bragg, North Carolina), Brooke Army Medical Center (Fort Sam Houston, 
Texas), Madigan Army Medical Center (Tacoma, WA), William Beaumont Army Medical Center (El Paso, Texas), and Walter Reed 
Army Medical Center (Washington, DC). I could restrict the sample to families in these locations since the health needs of family 
members would be considered as satisfied for enlisted personnel with access to major medical centers. Unfortunately this would 
severely limit my estimation sample. 



family member’s health, [even if] the problem is of a recurring nature.”42 Below I look 

specifically at whether children’s health measures predict location.  

 

I provide statistical evidence that individual characteristics observed at the time of 

relocation are uncorrelated to base of relocation. Using the sample of individuals that are 

observed moving in two consecutive years, I estimate N equations of the form: 

 
NjyearoccupationrankIXcjlocationP titiititi ,...1,)**(*)( ,,,1, =∀+++== ∑+ εγβ (1) 

 
These are linear probability models that predict the location of individual i in year t+1 

based on individual characteristics X (which include all of the sponsor’s characteristics, 

mother’s hospitalization variables and, importantly, all of the child’s hospitalization 

variables) and a set of dummies for each rank, occupation and year cell.43 The error terms 

are clustered at the sponsor level since a sponsor can have several children and they may 

be observed in more than one year. There are as many equations as bases to which 

individuals are relocated. Conditional on rank and occupation, the Army claims 

relocation is “random”. Thus, aside from rank and occupation, among those who move 

between t and t+1, no other observed characteristics of enlisted men in year t should 

predict their location in year t+1. For each regression, I perform a joint test that β=0. If 

relocation is random, then the vast majority of the tests should not reject the null.   

 

In Table 2a, I present the distribution of the p-values for these tests. First I look at 

relocations to all bases (excluding foreign bases44) from all bases for parents of children 

ages 1 to 5.45 Only in 6.6% of the regressions are individual characteristics predictive of 

relocation. Thus, at the 10% level we cannot reject the hypothesis that relocations are 

uncorrelated with observable characteristics beyond occupation and rank. Then I restrict 

                                                 
42 This information is published online by the Air Force Personnel Center and is available at: http://www.afpc.randolph.af.mil/efmp-
humi/efmp-humi.htm. Although this paper looks at Army, not Air Force personnel, this information is indicative of Army practices in 
general. 
43 The Army suggests that all are treated equally within PMOS and rank groups. I interact these with year since there is no reason to 
believe that these groups are treated equally over time. Deployments to the Gulf War and relocations due to base closures during this 
period make it highly unlikely that this is the case.  
44 Recall that the data I obtained did not include information on most personnel stationed overseas. 
45 For this test in order to maximize the sample size I do not drop individuals without access to MTFs or those in bases far from 
pollution monitors. 



my attention to relocations to the bases used in this study. Again, at the 5% level we 

cannot reject the hypotheses that relocations were quasi-random.46  

 

This evidence suggests that for the vast majority of enlisted personnel, relocations are not 

chosen. A weaker, but relevant test for this study, is to look at whether personal 

characteristics predict pollution at relocation bases. Note that desirable bases in terms of 

relocation need not be low pollution bases. In interviews, bases located closer to cities 

were generally preferred, and they tend to be more polluted on average. Some bases are 

universally thought of as undesirable locations, mostly for their remoteness and weather 

conditions, and due to the lack of availability of some services such as good schools. On 

the other hand, these same rural bases can be desirable from a career perspective because 

of the training opportunities available. (Fort Polk is a frequently cited example.) Overall 

there is no unambiguous way in which individual characteristics would be related to 

pollution levels at the base, even if individuals were able choose their location. To test 

this in the data I estimate the following equations: 

 
,)**(* ,,,1, titiititi yearoccupationrankIXcY εγβ +++= ∑+   (2) 

 
where Y is the pollution level that individual i is exposed to in year t+1, and X includes 

all of the same individual characteristics mentioned above, including year t’s 

hospitalization variables for mother and child. I estimate one equation per pollutant. 

Again the sample is restricted to those that move between two years. The errors are 

clustered at the sponsor level. For each equation I test whether the Xs are jointly 

significant. The results are presented in Table 2b. In all cases, the test does not reject the 

null that the Xs are not significant. In the bottom of the table I re-estimate the equations 

year by year. In only 3 out of 35 equations do we reject the null, suggesting that indeed 

individual characteristics do not predict pollution exposure. 

 

In spite of this evidence I collected additional data to assess whether choice of location 

affects the results. I calculated the distance from each installation to the closest city (for 

                                                 
46 Ideally one would allow for the error term to be correlated across equations, but it was not possible to estimate all equations at once 
for technical reasons. STATA will not estimate SUR with a large number of equations. 



various city sizes) and also obtained aggregate statistics on the frequency with which 

bases are listed as individuals’ top choices for 1991 to 1995 from West Point. These 

measures can be used as proxies for unpopularity in the regressions, or alternatively they 

can be used to restrict the estimation sample.  

 

IV. Main results 

 

A. Empirical approach 

 

For each age group (ages 0 to 1, and ages 2 to 5), I estimate the following individual level 

linear probability model,47  

 

,)**(* ibtibtbtibtibtibt yearoccupationrankIZXPcHosp εγδβµ +++++= ∑  (3) 

 

where the dependent variable Hosp is a dummy variable indicating whether or not the 

child was hospitalized during the year for a respiratory condition; X is a matrix that 

includes age, race and gender of the child, and γs are the coefficients for each possible 

rank*occupation*year cell. Z is a matrix of base-level characteristics. Because weather is 

a potential confounder, rain, temperature and temperature-squared are included in all 

models; some models include additional base controls. The coefficients of interest are the 

estimated µs, which represent the effect of a given pollutant P on the probability the child 

was hospitalized during the year. The errors are clustered at the base level to account for 

the fact that all individuals in the same base are exposed to the same levels of pollution, 

and these levels are likely to be correlated over time within base (Bertrand et al, 2004 ).48  

 

In this baseline regression, estimates of the effects of pollutants are identified from cross-

sectional variation, by simply comparing the (predicted) hospitalization rates of children 

in high pollution areas with those in low pollution areas. If location is indeed not chosen 
                                                 
47 Logit specifications yield very similar results. 
48 In addition the standard errors would need to be corrected because pollution levels are predicted. However this correction is very 
difficult to implement. There are two reasons I did not attempt to make such a correction here. The first is that the effect of 
measurement error on the standard errors is likely to be much larger. Secondly, the asymptotic properties of the predictions are based 
on “infill asymptotics” (Cressie 1993), where the number of pollution monitors increases and fills the space, whereas the asymptotics 
here are based on increased sample size.  



and pollution is uncorrelated to own characteristics, then adding individual characteristics 

should not affect the estimates. Importantly among individual characteristics I can control 

for whether the child was hospitalized for an external cause (which mostly include 

accidents and violence-related episodes). This should capture additional family 

characteristics.  

 

In principle, one of the advantages of the military is that their lifestyle will remain 

relatively stable as they move across the country. However there may be characteristics 

of the location that vary with pollution and also affect health, such as proximity to an 

urban area. In order to separate the effects of pollutants from those of other base 

characteristics I take several approaches. One is to control for a number of base- and 

year-level characteristics such as distance to the closest military treatment facility, 

distance to the closest city, and other base characteristics that were described in the 

appendix, including the percentage of sponsors that requested that base that year, and the 

percentage of children that were hospitalized for external causes. This last variable 

should control for other base characteristics like crime. Lead is also included as a base 

level control, although the predictions for lead are fairly poor. Alternatively, I estimate 

equation 3 using base fixed effects to control for site-specific characteristics that are time 

invariant.  In these regressions, identification comes from changes in pollution overtime 

within bases.   

 

B. Main results 

 

The results from estimating equation 3 for each age group are presented in table 4. The 

first column shows the effects of pollution when only age, gender, race and weather 

(temperature and rain) are included (in addition to rank*occupation*year dummies). The 

results for ages 0 to 1 show a significant negative effect of SO2 on hospitalizations, a 

significant positive effect of NO2 and no significant effects for PM10, CO or O3. The 

pattern is different for children ages 2 to 5. For them there appears to be a significant 

positive effect of O3 and a negative effect of PM10, whereas all other coefficients are 

insignificant.  



 

Column 2 adds all parental controls and a dummy for whether the child was hospitalized 

for an external cause. The sample sizes fall somewhat because some individuals are 

missing some of the parental characteristics, so the last column of the table presents the 

results with the smaller sample and only basic controls. In all three regressions the 

estimated coefficients are very similar, especially for children ages 2 to 5. This is 

consistent with previous results that individual characteristics are uncorrelated with 

pollution levels at the base. 

 

Next I examine the effect of base-level controls. Column 3 adds all base characteristics, 

and column 4 uses base fixed-effects. In column 5 I add parental characteristics and base 

characteristics, and finally column 7 adds all possible controls. The results from adding 

base characteristics and/or base fixed-effects suggest that the basic results for children 

ages 0 to 1 are not robust: when these additional controls are added SO2 becomes positive 

and insignificant and NO2 also becomes insignificant. In fact in these regressions no 

pollutant has a significant effect on hospitalizations. Moreover the test for the joint 

significance of all pollutants does not reject the null at the 5 or 10% level (see results in 

Table 6 explained below). However the sample of children ages 0 to 1 is small. 

 

On the other hand the results for children ages 2 to 5 are different. In all specifications, 

the effect of O3 is positive and significant (although it is somewhat bigger once base 

characteristics or fixed effects are added). The negative and significant effect of PM10 

disappears with the addition of base fixed-effects. All other coefficients remain 

insignificant (although CO is significant at the 10% level in column 4). 

 

In the last column, as a final way to assess whether omitted individual- and base-level 

characteristics are driving the results, I look at whether pollution predicts the probability 

that a child will be hospitalized for an external cause. For children in both age groups, all 

of the coefficients for individual pollutants are statistically insignificant. Neither are they  

jointly significant.49 

                                                 
49 The p-values for the children ages 0 to 1 and 2 to 5 are 0.9724 and 0.6350 respectively. 



 

The results from this table suggest that there are no statistically significant effects of 

pollution for children ages 0 to 1 on respiratory hospitalizations, and that O3, but no other 

pollutant, significantly increases the probability of a respiratory hospitalization for 

children ages 2 to 5.  In terms of magnitude the coefficient on O3, which ranges from 

0.163 to 0.27, implies that an increase of one standard deviation in O3 (0.008) increases 

the probability of a respiratory hospitalization by 0.0013-0.00216 percentage points, or 

about 10-17%, relative to the mean for children ages 2-5 (0.0124). The implied elasticity 

ranges from 0.7 to 1.14, which is fairly large.  

 

C. Specification checks and other estimation issues 

 

Table 5 shows a number of additional specification checks done to gauge the robustness 

of the results. The first column reproduces the results with just the basic controls. In 

column 2 I add dummies for whether the closest monitor for a given pollutant is more 

than 30 miles away. In column 3 pollution variables are interacted with these dummies 

(so the coefficients show the effect of pollution if the monitor is within 30 miles—

interactions are not shown). What these results suggest is that it is the distance to the 

monitor that is responsible for the differences in the estimated coefficients when adding 

base characteristics or fixed effects. Note that the coefficient on SO2 switches sign and 

the coefficient on NO2 becomes insignificant. Also these distance-to-monitor controls 

increase the coefficient of O3, and it remains at that level when we add additional base 

characteristics (column 4) for the older children. These results are important in that they 

suggest that base characteristics do not affect the results, but also that distance to the 

monitors does. This suggests that measurement error in pollution predictions is important. 

Interestingly, the results for children ages 0 to 1 suggest that this measurement error is 

not random, since it does not always result in attenuated coefficients. I explore this issue 

below.50  

 

                                                 
50 In their literature review, Dominici et al (2003) identify the modeling of measurement error as an area in need of further research.  



Columns 5 through 11 re-estimate the model with all controls, dropping one year at a 

time. Recall that years 1990 and 1991 could be problematic because of deployments to 

the first Gulf War. Also 1995 is of concern because it is missing ¼ of that years’ 

hospitalizations, and because of the shift from Champus to Tricare. Nonetheless, the 

results are very consistent. In none of the specifications are the effects of pollution 

significant for ages 0 to 1, whereas the effect of O3 is always positive and significant for 

children ages 2 to 5 (except for the regression that drops 1989, but note that the point 

estimate in this regression is quite similar to that of other regressions).  

 

In columns 12 and 13, I test the sensitivity of the results to pollution outliers in the data. 

In column 12 I drop observations where the value of any pollutant exceeds its 99th 

percentile or is below its 1st percentile. This restriction has very little impact on the 

results. However, Figure 6 suggests that higher values rather than lower values of 

pollution may be problematic. The last column drops all observations where the value of 

the pollutant exceeds its 90th percentile for every pollutant. The results for younger 

children are unchanged. For children ages 2 to 5, the effect of O3 increases in magnitude 

(it is not significant but the sample size has fallen), and interestingly the effect of CO 

increases and becomes marginally significant.  Overall the results from table 5 suggest 

that the estimates are robust to a variety of specification checks.  

 

To further explore measurement error in the predictions, Table 6 compares the results 

obtained from different predictions methods, and from limiting the sample based on 

distance to monitor.  I do so using the basic model that controls only for gender, race, age 

and weather (in addition to pmos*rank*year dummies). The first column reproduces the 

results using the basic specification. In the next column instead of adding all pollutants at 

once, I enter them one at a time. Because pollutants are correlated, and they can all 

potentially affect health, single-pollutant models (which are the most commonly used in 

the literature) can generate biased estimates of the effects of the pollutant in question. For 

both age-groups, the results are different and mostly insignificant, although the effect of 

O3 remains significant for children ages 2 to 5.   

 



Next I compare Kriging to deterministic predictions (IDW), although it is clear that from 

a theoretical perspective Kriging estimates are to be preferred. In the next two columns I 

present the results that compare IDW30 and Kriging using the same estimation sample 

(i.e. limiting the sample to only those with monitors for all pollutants within 30 miles). 

For children ages 0 to 1 once again we see that limiting the sample based on distance to 

monitor reverses the coefficient on SO2 and on NO2. For children ages 2 to 5 the 

coefficient on O3 becomes larger. Interestingly, although insignificant, the coefficients on 

SO2 and on NO2 also switch sign in the older sample once I make the distance 

restrictions. Overall it would appear that these two pollutants have a significant amount 

of non-random measurement error. Otherwise Kriging and IDW30 yield coefficients of 

about the same magnitude for those coefficients that are significant, although the standard 

errors are quite different.  In the next two columns, I compare IDW15 and Kriging. In 

these specifications the size and sign of the coefficients is quite different although it is 

worth noting that no coefficient is significant (although the sample is now quite small), 

except that CO is positive and significant for the older children.  

 

Lastly I compare Kriging to county-weighted average predictions. The rationale for these 

predictions is not based on spatial correlation, but rather by the idea that county averages 

may be a better measure of exposure than (precise) measures of ambient levels of 

pollution. Although it is well known that ambient levels are not necessarily good 

predictors of exposure, it is also not clear (and not known) that county average are better 

proxies for exposure. So it is difficult to determine which set of estimates is best. These 

two methods produce very different coefficients, although again most coefficients are 

insignificant, so unfortunately it is difficult to draw conclusions. 

 

In summary this section has shown that O3 has a robust positive and significant effect on 

the probability that a child age 2 to 5 is hospitalized for a respiratory condition during the 

year. There are no significant and robust effects of pollutants for younger children. NO2 

and SO2 are very sensitive in both samples to distance from monitors and produce results 

that are unstable in both magnitude and sign. In some specifications CO is sometimes 



positive and significant for older children, but the magnitude of CO estimates (and their 

standard error) also appears to be sensitive to distance to monitors and to outliers. 

 

V. Additional results 

 

A. Exploring the Functional Form 

 

All the models above are linear functions of different pollutants. However it is possible 

the effects of pollution are non-linear. The EPA uses certain cutoffs as thresholds beyond 

which pollution levels are classified as dangerous or very dangerous. (See Appendix B.) 

However there is little scientific evidence for threshold effects; little is known about the 

shape of these relationships generally. Additionally it has been suggested that the 

deleterious health effects of some pollutants can be exacerbated (or diminished) by the 

presence of other pollutants (i.e. there may be more than additive effects).51 This suggests 

that models with interactions between pollutants may be more appropriate. This 

discussion suggests that it is necessary to explore the functional form of the equation of 

interest. 

 

There is no a-priori consensus on how to choose the variables that should be used in a 

regression, in particular higher order terms. The number of higher order terms for 

example has to be chosen somewhat arbitrarily. Additionally the statistical properties of 

models that include terms using pre-testing are not known. Finally in the context of this 

study, there are two additional caveats. Non-linear models will be sensitive to outliers 

which are common for all pollutants examined here. Also these models require more 

variation in pollution since they must identify effects in different regions of support. This 

study uses 940 base*year observations to identify the effect of pollutants (since everyone 

in a given base and year is subject to the same pollution levels). As we add interactions 

and higher order terms the identification becomes less precise.  

                                                 
51 For example PM is suspected to interact with almost all pollutants, in particular O3, and SO2, because O3 and SO2 can inflame the 
lungs, increasing the rate at which PM is absorbed. There are some controlled studies that examine the effects of two-pollutant 
mixtures in humans and animals; these studies suggest there exist more than additive effects, for example between PM and O3 (WHO 
2003). The EPA (1996) reported that “This issue of exposure to copollutants remains poorly understood, especially with regard to 
potential chronic effects.” 



 

In Table 7 I investigate whether the data suggest interactions and higher order terms 

belong in the model. I do so using the model that includes all possible controls (all 

individual and parental characteristics, all base characteristics and base fixed-effects). As 

is commonly done, I arbitrarily choose to start by including up to five level higher order 

terms (x, x2…x5) and up to five level interactions (or combinations of pollution; the fifth 

level interaction is PM*CO*NO2*SO2*O3) and drop the highest order terms 

progressively.52 For each model I report three measures of fit, the adjusted r-squared, the 

Akaike Information Criteria (AIC) and the Bayesian Information Criteria (BIC). I also 

report the p-value for the test of joint significance of all pollution terms, of all 

interactions, and higher order terms (excluding the main linear terms) and for the higher 

order terms. Because the results may be sensitive to outliers, I report these results with 

the entire sample, and also for a sub-sample that excludes all observations where 

pollution exceeded the 90th percentile for each pollutants respectively. 

 

In all of the specifications tested and for both age groups, the models always reject the 

null that the higher order interactions/terms are jointly 0, regardless of which terms are 

included. Additionally, the measures of fit suggest that the models with higher order 

terms and/or interactions are a better fit. Although these non-linear models are sensitive 

to the inclusion of covariates (in particular the magnitudes of the coefficients is quite 

different without all the controls53), these conclusions are not: the models with higher 

order terms and interactions are better fits, and these terms appear to be jointly significant 

in models that include only basic controls.  

 

These models are difficult to interpret. In figures 7a and 7b I report the implied marginal 

effects for each pollutant from models that include all the possible terms, since this is the 

preferred specification when outliers are excluded. For children ages 2 to 5, with or 

without outliers, these graphs suggest that the marginal effects of CO, PM10, and O3 are 

relatively constant, whereas the effects of NO2 and SO2 appear to be increasing. However 

                                                 
52 Ideally one would estimate 250 models (there are 50 possible terms one can include in the regression) and choose the model with the 
highest fit. Instead I present specifications that include all terms, interactions only, or high-order terms only. 
53 Results not shown, available upon request. 



the standard errors (not shown) are very large. For children ages 0 to 1, the conclusions 

are similar, although again it is worth noting that for this group the results are much more 

unstable, most likely because of the smaller sample sizes.  

 

Unfortunately, because of the limited variation in the data and the fact that the variation 

of pollution levels is not independent from one pollutant to another, these models are 

limited in their ability to identify the true underlying shape of the relationships. However 

the data strongly suggest that non-linearities and interactions are important. This is an 

important topic for further research. 

 

B. Some issues in interpreting the results 

 

In the previous sections the effects of pollutants were interpreted by thinking of the 

estimated coefficient as the partial effect of increasing one pollutant while holding all 

other variables constant. However this standard interpretation may not be appropriate 

here for two reasons.54 First, although individual exposure to a particular combination of 

pollutants may be “random”, exposure to a single pollutant is not. Second, it may not be 

physically possible to lower one pollutant while “holding all others constant”: some 

combinations of pollution may not be physically attainable. This is because of the way 

pollutants interact with each other. NO2 and SO2 are precursors of PM10 and O3. So 

reductions in NO2 or SO2 may lower PM10 levels as well. However these interactions are 

complex. For example it is well known that there is an O3-NO2 cycle. Lin (2004) shows 

that emissions of NO2 can either increase or decrease the levels of O3, depending on other 

conditions at the location. Furthermore O3 can degenerate into NO2. This simplified 

example illustrates that it may not be sensible to think of partial effects in our model 

given that these cross-pollutant effects are not known. This is particularly relevant for 

policy exercises since the partial effect will not answer the most basic policy question, 

namely what the effect is of lowering emissions of a particular pollutant.55 It also 

                                                 
54 This problem is noted for example by Dominici et al (2003). This issue is usually ignored in many studies. 
55 To obtain appropriate estimates of the effects on health of policies that regulated single pollutants, it is necessary to combine the 
estimates obtained here, with estimates of how the distribution of all pollutants changes when emissions of one pollutant are decreased 
at particular locations. This type of estimation is beyond the scope of this paper and necessitates additional information not available 
to me at this point. See Dominici et al (2003) for a discussion. 



suggests a reason why some of the estimated coefficients (here and in other studies) can 

sometimes be negative. 

 

An alternative way to interpret results from these multi-pollutant models is to think of 

feasible policy interventions. The one I consider here is to compare the predicted 

percentage hospitalized for respiratory conditions across locations with very low and very 

high levels of pollution for all pollutants, while holding other variables constant (I set 

them equal to the sample mean). This is akin to moving individuals from high to low 

pollution areas, or comparable to reductions over time of all pollutants. This experiment 

lowers all levels of pollution simultaneously to combinations that are feasible (since they 

are observed).  

 

Table 8 presents these results for children ages 2 to 5 (since pollution appears not to be 

significant for the younger children). Panel A shows the results of the experiment using 

the linear model. The actual (and predicted) percentage of children hospitalized for 

respiratory conditions is 1.15%. However the percentage is higher (1.4) for those living in 

bases where all pollutants are high (all above their 70th percentile) and lower (0.7) where 

all are low (all below their 30th percentile).  

 

In order to assess how much of this difference is due to differences in pollution levels 

rather than in other characteristics, I compare the predicted percentages, holding all other 

variables at their mean. In models that include only basic controls, the difference between 

the two groups is 0.0009, so that moving from a high to a low pollution area lowers 

predicted hospitalization by about 8%. If I include all controls, then the difference 

increases to 0.0138, so that the same move from high to low pollution areas reduces the 

percentage hospitalized by 77%. The predictions using the non-linear fully interacted 

model (dropping outliers56) are presented in Panel B. When using only basic controls, 

moving from a high to a low pollution area lowers the percentage hospitalized by 40%. 

When all controls are included the decline is again about 77%. Overall these are very 

                                                 
56 The results using the full sample are similar when adding all controls, but they are quite different when only the basic controls are 
included. As mentioned in the section above, these results are sensitive to the inclusion of controls, especially when the outliers are 
included. Given the number for base*year pollution observations, this is not surprising. Results available upon request. 



large decreases, but the pollution changes that are being considered are also quite large. 

This experiment suggests that pollution levels have large effects on children’s respiratory 

disease, especially since hospitalizations are an infrequent and extreme manifestation of 

such diseases. 

  

C. Heterogeneous treatments effects 

 

Evidence from other studies suggests that the effects of PM10 are larger for individuals 

with low SES (education and income). There appears to be no such effect for O3 or NO2, 

except that the impact of O3 and NO2 appear to be larger for (already) asthmatic children. 

However these estimates are possibly biased because of the non-random exposure to 

pollution across SES groups. On the other hand it is possible that the effects of pollutants 

differ across SES groups since there may be genetic differences by gender or race. These 

groups may be exposed to different levels of pollution (there appear to be non-linearities) 

and they may have different behaviors that may exacerbate the effect of pollution (e.g. 

smoking or differential outdoors exposure).  

 

In order to look at this question I estimate models again stratifying by race, education and 

rank. These results are presented in Table 8 for the older children. (I do not present 

results for children ages 0 to 1 since these results are not robust and mostly insignificant.) 

Rather than interacting pollution with SES, I stratify by SES because I reject the null that 

the coefficients on all variables and on non-pollution variables are the same for all 

groups. (The p-values for these tests are reported in the table.)  

 

Panel A shows the results from estimating the basic model. I find no differences between 

blacks and whites in the effect of O3, CO and PM10. On the other hand effect of O3 

appears to be significantly higher for children of more educated parents and for children 

of higher rank. I ignore the results for NO2 and SO2 since these results are unstable. 

When adding all possible controls (Panel B), I find that none of the coefficients are 

statistically different by race or education (but the sub-sample of children of educated 



fathers is quite small). However the effect of O3 still appears to be higher for those of 

higher rank. 

 

These results are somewhat unintuitive since previous research suggests higher effects for 

low SES individuals. However, recall that in this study there are no differences in the 

pollution levels that high and low SES families are exposed to; these families live in very 

similar environments and they all have access to (almost free) health care. The only 

reason why we might still expect differences by SES are related to families’ behaviors at 

home.  

 

Why would the effect of O3 be higher for higher SES children? The EPA suggests that 

“several groups are particularly sensitive to ozone—especially when they are active 

outdoors—because physical activity causes people to breathe faster and more deeply. 

Active children are the group at the highest risk from ozone exposure because they often 

spend a large fraction of the summer playing outdoors.”57 Previous research documents 

that high SES children are more likely to be physically active (Gordon et al 2000, 

Andersen et al, 1998). In particular in a study of military and civilian children, children of 

officers were found to be more physically fit and to watch fewer hours of television 

compared to children of enlisted personnel (Stephens et al 2003). If indeed higher SES 

children spend more time outdoors, this would explain why the effects of O3 are larger 

for them (recall that indoor levels of O3 are not highly correlated with outdoors levels).  

Outdoor exposure may also explain why there are no significant effects of O3 for children 

ages 0 to 1, since they are much less likely to play and exercise outdoors. 

 

VIII. Conclusion and discussion 

 

This study uses plausibly exogenous variation in pollution induced by military 

relocations to identify the effect of the 5 major air pollutants on children’s respiratory 

hospitalizations. I find that for military children ages 2 to 5, only ozone (O3) appears to 

have an adverse effect on health, measured by respiratory hospitalizations. These effects 

                                                 
57 EPA online brochure “Ozone and your health,” available online at http://www.epa.gov/airnow/ozone-bw.pdf 



are large: the implied elasticity for the probability that a child is hospitalized for a 

respiratory condition with respect to O3 is between 0.7 and 1.14. Furthermore I find that 

the effects of ozone appear to be greater for children of higher SES, consistent with 

previous findings that children that exercise outdoors are at higher risk for ozone. No 

other individual pollutant appears to significantly affect respiratory hospitalizations 

(although there is evidence of complementarities across pollutants). Also I do not find 

any robust and significant effects for children ages 0 to 1, but this may be due to the fact 

that the sample is small. 

 

Because it is not clear that partial effects are meaningful in the multi-pollutant models 

estimated here, I predict the effects of moving from high to low pollution areas. The 

results suggest the effect of such a move is to reduce the percentage of children ages 2 to 

5 hospitalized for respiratory causes by as much as 77%, which again suggests the effects 

of pollution on respiratory diseases in children are large.  

 

The results in this paper differ somewhat from the results in Chay and Greenstone (2003), 

who find a significant effect of PM10 on infant mortality (although they do not include 

any other pollutants); and Currie and Neidell (2005) who find that only CO predicts 

infant mortality (the effects of PM10 and O3 were insignificant). Both of these studies 

look at infant mortality instead of hospitalizations and they have much bigger samples of 

infants in their analysis compared to the sample of infants available here.   

 

There are a number of additional methodological findings. I used several methods to 

impute pollution at the zip code level, and test the sensitivity of the models to distance 

from monitors. This is important because monitors are not randomly located across the 

country. I find evidence that measurement error in pollution predictions is not random, 

and that it has large effects on the estimated coefficients. Also, I find that models that 

look at the effects of one pollutant at a time can be very misleading. Moreover the data 

strongly suggest that non-linear models, and models that include interactions between 

pollutants (which are rarely used), are preferable to linear models. However the variation 



in the data is not sufficient to appropriately identify these relationships. This is an 

important area for future research. 

 

This study has a few limitations. First the only outcome analyzed is whether an overnight 

hospitalization occurred. This is a rather extreme outcome, and it is possible that 

pollutants affect the respiratory system without resulting in overnight hospitalizations. 

Previous studies have found that there are about 3 emergency room visits for every 

hospital admission (EPA and HSPH 1995).  

 

Another issue is that pollutant measures are averaged over the year, using measures of 

ambient pollution. It may be that average pollution levels in the year are not what matters 

for health but rather, for example, whether pollution frequently exceeds a certain 

threshold. I experimented with alternative measures, but statistical models to predict 

percentiles or maximums are not well developed and resulted in very poor predictions 

(see Cressie 1993).58 Also, this study uses pollution as measured at non-randomly 

positioned EPA monitors, and uses those measurements to predict pollution levels across 

the country. Military bases may have their own sources of air pollution, which may be 

relatively local and not captured here.  

 

The last issue is whether the results are representative of the effects for the population at 

large. Only the effects for children are analyzed; not considered here are the effects on 

the elderly—another high-risk population—nor on adults. Compared to other children, 

military children are exposed to somewhat lower pollution levels. The demographic 

characteristics of families in the Army differ from that of the average family: they tend to 

be younger, poorer, and are less likely to be white. More importantly, military families 

have benefits that are not common among civilians with the same socio-economic 

background, including for example generous health insurance.  

                                                 
58 I estimated models that predicted the percentage of the year that pollution exceeded a certain threshold using indicator Kriging 
methods. These models had very low measures of fit or could often not be estimated. 
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Appendix A: Data Sources and Description 
 
A. Data Sources for pollution 
 
Through a Freedom of Information Act (FOIA) request, I obtain from the EPA yearly 
statistics at the monitor level for the major 6 pollutants in the US. The latitude and 
longitude of the monitors is reported, as are annual summary statistics, including the 
mean and various percentiles of the distribution for that year. As suggested by the EPA I 
drop exceptional event recordings; also, for PM10, TSP and Pb only daily measurements 
are used. For all other pollutants, only hourly measurements were used.  
 
In principle, data consists of one observation per monitor per year; for some 
pollutants/years this is not the case; the EPA said this is because sometimes agencies 
report measurements using different collection or analysis methods; it is to be expected 
that there are more observations per monitor per year for TSP, Pb and PM10 because part 
58 of federal regulations requires that multiple measures be taken at the same site. 
Although agencies are not required to report multiple measurements, many do. I kept the 
measurements that span the longest period of the year, based on quarter information. If 
there were still multiple measurements by monitor within a year, the average value was 
used. A complete panel of monitors from 1988 to 1988 was constructed following the 
EPA guidelines, by keeping only those monitors for which data exist for 8 out of 11 
years. The missing values were linearly interpolated. 
 
B. Military data 
 
Through a FOIA request, I obtain individual-level data on enlisted married men in the 
military and their families from 1988 through 1998. This data was specially created for 
this project by the DMDC by matching data from multiple sources collected by different 
branches of the military.  
 
Demographic and employment characteristics of the active-duty members come from the 
“Active Duty File.” The data is collected monthly, DMDC matched only the December 
files to other information of the dependents (for feasibility reasons).  
 
Demographic information for spouses and children come from the DEERS (Defense 
Enrollment Eligibility Reporting System) file, some of which is also available in the 
Active Duty Files.  
 
From 1988 until 1995 the majority of the private insurance claims are from the 
CHAMPUS (Civilian Health And Medical Program of the Uniformed Services) insurance 
files. Champus was replaced by a new insurance system in 1995, so claims filed after this 
date come from the Tricare insurance files. (There were demonstrations in Hawaii and 
California from 1988 to 1994, but Tricare was officially implemented in 1995, although it 
was phased in at different rates regionally.) These data (Champus and Tricare) contain 
claims for both hospitalizations and for all other types of claims.  
 



For hospitalizations that occurred at military facilities, the claims come from a file 
labeled the “Biometrics file,” a record from the military treatment facilities. They only 
exist for hospitalizations. 
 
All these files were merged within year and across years using Social security number of 
enlisted men. A scrambled version of this unique identifier is provided in the final data.  
 
West Point provided me with the following additional data:  
1. Annual data from 1991 to 1995 on the number of first-requests for relocation made by 

Army personnel, aggregated to the level of the requests. Requests are made either for 
states, for military installations, or more precisely for specific posts within each 
individual installation.  

2. A list of all military treatment facilities (MTFs) and Major Medical Centers in 
existence between 1991 and 1995, along with their zip codes. 

3. A list of all the zip codes and ARLOCs where enlisted personnel reported being on 
duty after 1991. This list was used to match all duty zip codes in the data provided by 
DMDC with a unique ARLOC number, i.e. a military installation. Large military 
installations can contain more than one zip code, but each zip code was associated 
with a unique installation. Unfortunately West Point did not have readily available a 
cross walk between duty zip code and ARLOCs, which explains why it was necessary 
to use enlisted personnel reports to derive it. 

C. Weather data 

Wind data were provided by the National Climatic Data Center. Annual averages for all 
years in the 1930-1996 period are reported in the document “Climatic Wind Data for the 
United States,” which is available online at http://www.ncdc.noaa.gov.  The document 
reports wind direction and speed. 
 
Annual means for temperature and precipitation come from the “United States Historical 
Climatology Network (HCN) Serial Temperature and Precipitation Data” provided by  
the National Oceanic and Atmospheric Administration of the National Climatic Data 
Center. The data is available online at ftp://ftp.ncdc.noaa.gov/pub/data/ushcn/. 
 
D. Additional data 
 
Distance to cities of various sizes was calculated using data provided with ARCGIS 
software. 



 
Appendix B: Background information on the 6 major air pollutants 

 
Air Pollutant Largest 

source(1) 
 

Other sources(1) Recommended 
threshold for 
annual arithmetic 
mean (2000)(2) 

Air Quality Index thresholds (3) Suspected Health effects(1) 

      
Lead Pb Metal 

processing 
(52%) 

Fuel 
combustion, 
waste disposal 
 

1.5 ug/m3 

QUARTERLY 
AVERAGE 

N/A Children: seizures, mental retardation, 
learning deficits 
Long term: (in adults) high blood pressure, 
hypertension, heart disease 

      
Sulfure 
Dioxide SO2 

Electric 
Utilities (67%) 

Industrial fuel 
combustion 
(coal and oil) 

0.03 ppm  
80 ug/m3 

Good: 0.001-0.034 
Moderate: 0.035-0.144 
Unhealthy for some: 0.145-0.224 
Unhealthy: 0.225-0.304 
Very unhealthy: 0.305-0.604 
Hazardous: 0.605+ 

Short term: Aggravation of asthma in 
children. 
Long term: Respiratory illnesses and 
aggravation of cardiovascular disease 
Outdoor exercise worsens effects 

      
Ground 
Level Ozone 
O3 

NOx and VOC 
are precursors 
of O3. Motor 
vehicle, electric 
ulitities and 
industrial 
emissions are 
sources for 
NOx and VOC. 

Gasoline 
vapors, and 
chemical 
solvents 
 

0.08 ppm 
157 ug/m3 

8 HOUR 
AVERAGE 

Good: 0-0.064 
Moderate: 0.065-0.084 
Unhealthy for some: 0.085-0.104 
Unhealthy: 0.105-0.124 
Very unhealthy: 0.125-0.374 
Hazardous: Not specified 

Short term (up to 8 hours exposure): 
Aggravation of asthma in children 
Respiratory infection, lung inflammation. 
Especially with outdoor activity. 
Long term (repeated exposure): chronic 
respiratory diseases. Cardiovascular disease 
and other symptoms (head cold, sore throat). 

      
Nitrogen 
Dioxide 
NO2 

Motor vehicles 
(49%) 

Utilities; 
industrial, 
commercial and 
residential fuel 
combustion. 

0.053 ppm 
100 ug/m3 

Good: Not specified 
Moderate: Not specified 
Unhealthy for some: Not specified 
Unhealthy: Not specified 
Very unhealthy: 0.650-1.240 
Hazardous: 12.50+ 

Short term (up to 3 hours exposure): 
aggravation of pre-existing respiratory 
illness/asthma, increases in upper respiratory 
illnesses in children ages 5-12 
Long term: respiratory infections, heart 
failure and ischemic heart disease  



Appendix B Continued 
Air Pollutant Largest source 

 
Other sources Recommended 

threshold for 
annual arithmetic 
mean (2000) 

Air Quality Index thresholds  Health effects 

      
PM10 Directly 

emitted into the 
air: motor 
vehicles, 
factories, 
construction, 
tilled fields, 
unpaved roads, 
stone crushing, 
wood burning. 

Indirect 
production: 
gases from 
burning fuels 
react with 
sunlight and 
water vapor.  
SO2 and NO2 
and precursors 
of PM10. 

50 ug/m3 Good: 1-54 ug/m3 
Moderate: 55-154   
Unhealthy for some: 155-254 
Unhealthy: 255-354 
Very unhealthy: 355-424 
Hazardous: 425+ 

Aggravated respiratory conditions, such as 
asthma; children and elderly most at risk 
Long term: lung cancer, cardiovascular 
problems in adults. 

      
Carbon 
Monoxide 
CO 

Motor vehicles 
(56%) 

non-road 
engines and 
vehicles, 
industrial 
processes 
Indoors: 
Woodstoves, 
gas stoves, 
cigarette smoke, 
and unvented 
gas and 
kerosene space 
heaters 

9 ppm 
10 ug/m3 

8 HOUR 
AVERAGE 

Good: 0.1-4.4 ppm 
Moderate: 4.5-9.4 
Unhealthy for some: 9.5-12.4  
Unhealthy: 12.5-15.4 
Very unhealthy: 15.5-30.4 
Hazardous: 30.5+ 

Low levels of exposure: aggravated 
cardiovascular disease, angina pectoris. 
High levels: visual impairment, learning 
disabilities. low birth weight, disabilities, 
mobility disabilities, cardiovascular disease 
(heart failure) 

(1) Sources: Ozone http://www.epa.gov/oar/oaqps/gooduphigh/ozone.html#6, (2) Source: (3) Source: http://www.epa.gov/airnow/aqi/aqi_conc_calc.html  

 



Appendix C: Models of spatial correlation—review 
 
This section draws heavily on Cressie (1993). Kriging is a statistical method that 
estimates a model of spatial correlation and uses that model to generate predictions. 
Statistical models of spatial correlation are closely related to time-series models used in 
economics. The main difference is that in time series models there is only one dimension 
(time) across which observations are allowed to be correlated. Models of spatial 
correlation allow values to be correlated in space. Kriging estimation is akin to Feasible 
Generalized Least Squares Estimation. It consists of estimating the parameters that 
describe the serial correlation between observations (like estimating ρ for an AR(1) 
model—or more generally estimating the variance covariance matrix) and then of using 
the estimates to find the predictions that minimize the sum of squared errors. Although 
the principles of correlation and estimation are similar, there are difficulties that arise in 
spatial correlation models due to the increased dimensionality of the problem.  
 
Kriging 
The model for ordinary Kriging is 

Z s s( ) ( )= +µ ε  
 
where s = (x, y) is a location, and x and y are the coordinates of that location in space; 
Z(s) is the value associated for that location. The pollution data that the EPA collects is of 
this form; longitude and latitude (x and y) of each monitor are known, as well as the 
pollution level Z at that location.  The error term ε(s) are random errors with spatial 
correlation that follow a normal stationary process. Finally µ is a constant term—the data 
is assumed to exhibit no trend. Kriging finds the best linear unbiased predictor for a given 
location that minimizes the mean squared error. Therefore the Kriging estimator at a 
particular location s0 is found as follows:   
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Thus the prediction for the value at a given point s0 is a weighted average of values 
within a certain distance of s0. The weights λi are unknown. They are constrained to sum 
to one to guarantee the predictions are unbiased. Further define the semi-variogram of the 
model as given by 
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where h is the distance between i and j, and the second equality holds because under the 
assumption of stationarity E(z(s + h) - z(s)) = 0.  Another way to write the semi-
variogram between locations si and sj is 
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The Lagrangian for this minimization is given by: 
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where m is the Lagrange multiplier associated with the constraint. The first 
transformation is obtained by transforming the expectation using the constraint. Taking 
derivatives with respect to λ and m we obtain (n+1) equations: 
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This is a constrained linear optimization problem, which can be more generally re-written 
as: 
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The weights are the unknowns, as well as the parameter m. The values of the matrices γij 
are the semi-variogram between two points, and they are equal to ½ of the variance 
between the value at i and all values at distance j. The solution for this problem is given 
by 

λ
∧

−= Γ 1g  
 
In order to construct the weights we need estimates of γij. These are estimated using a 
parametric model of serial correlation. Below are the models that were used in this paper, 
the spherical and the exponential being the most commonly used. 
 
Co-Kriging   
The model for co-Kriging is 



Z Xs s s= +β ε  
The error term εs are random errors with spatial correlation that follow a normal 
stationary process, N(0, Σ). The GLS estimator of β is given by: 
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Parametric models of spatial correlation: Semi-variograms 
Recall that the semi-variogram is given by 
 

( )2 2
γ ( ) var( ( ) ( )) ( ) ( )h z s h z s E z s h z s= + − = + − , 

 
If γ(h) = γ(||h||) then the semi-variogram is isotropic, meaning that it is invariant under 
rotation. Alternatively, the correlation between two points is a function not only of 
distance but of direction. This may be the case, for example, for pollutant-dispersion in a 
narrow valley. When the correlation is a function of direction and distance both, it is said 
to exhibit anisotropy. The empirical semi-variogram can be calculated as: 
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The empirical semi-variograms can be plotted to explore the characteristics of the model 
and to choose a parametric serial correlation model to fit the data.  
 
Parametric models of spatial correlation 
In all the following models, h is the distance between two locations, θ is the semi-
variogram for the data, and a is the “range”—the distance beyond which there is no 
longer any spatial correlation. 
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b. Exponential 
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c. Gaussian 
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d-Rational Quadratic 



γ θ( )h

h
a

h
a

=

⎛
⎝⎜

⎞
⎠⎟

+
⎛
⎝⎜

⎞
⎠⎟

19

1 19

2

2  

 
The previous definitions make clear that some important decisions must be made in order 
to estimate the model in practice: 
1. In order for the problem to be tractable, one must choose a maximum distance. 
2. For the matrix to be finite, it is necessary to group observations into bins; e.g. we 

calculate the variance between s0 and points within 1 mile, between 1 and 2 miles, 2 
and 3 miles, etc. 

3. One must look for anisotropy. 
 
Empirical Estimation 
The estimation consists of several steps 
1. Test data for evidence of spatial correlation. 
2. Data exploration: 

a. Test for normality of z. If z is not normal then transform z using the most 
appropriate transformation. For example a log(z), or box-cox transformation. 

b. Remove trends (if any). 
c. Calculate and plot the empirical semi-variogram as a function of the distance 

3. Fit a parametric model of serial correlation. This involves choosing a model, a lag 
size, the number of lags, and deciding whether to correct for anisotropy. 

4. Generate predictions and measures of fit. 
5. Repeat steps 3 and 4 until there is no longer an improvement in the fit.  
 
IDW versus Kriging 
The Inverse Distance Weighting (IDW) value for a location Z is the weighted average of 
values within a given diameter of Z, where the weight is given by 1/distance. IDW is 
calculated as follows: 
 

 
where hij is the distance from location j to i. In the applications here β was always set to 
1. Note that IDW makes an assumption about the type of serial correlation in the data, 
and that assumption is that serial correlation decays inversely proportionally to distance. 
Kriging estimates the serial correlation instead. 
 
Testing for spatial correlation 
There are several tests for spatial correlation. The following three tests are well known 
and commonly used. Their properties are slightly different. For all test statistics, N refers 
to the number of observations in the data, and the subscripts refer to the location. The 
weights wij are chosen by the researcher and are generally some inverse function of the 



distance between points. The variance is not reported here, but it depends on whether it is 
assumed that the underlying data follow a normal process or a random process.   
 
A. Moran’s I 
The formula for Moran’s I is given by: 
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The expected value of Moran’s I under the assumption of no global correlation is given 
by: 
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Values greater than E(I) indicate positive spatial correlation; values les than E(I) indicate 
negative spatial correlation. The hypothesis of random distribution is rejected if  
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B. Geary’s C 
The formula for Geary’s C is given by: 
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The expected value for Geary’s C is 1. Values less than 1 indicate positive spatial 
correlation, and values greater than one indicate negative spatial correlation. The 
hypothesis of random distribution is rejected if  
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C. Getis and Ord’s G 
The formula for Getis and Ord’s G is given by: 
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The weights are either 0 or 1, depending on distance. All the values of x are positive. 



The expected value under the assumption of no global correlation is: 
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The hypothesis of random distribution is rejected if  
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Appendix Table D: Tests of global spatial correlation, 1988 
Pollutant  interval  Moran’s I  Geary’s C  Getis and Ord’s G 

     I E(I) sd(I) Z(I)  C sd(C) Z(C)  G E(G) sd(G) Z(G) 
CO  0 3218  1.05 -0.0024 0.32 3.27  0.69 0.55 -0.56  0.002 0.001 0.00 8.115 
  0 8046  0.90 -0.0024 0.24 3.76  0.69 0.41 -0.76  0.004 0.002 0.00 7.294 
  0 24139  0.72 -0.0024 0.18 4.03  0.70 0.31 -0.97  0.009 0.008 0.00 4.077 
  0 48278  0.65 -0.0024 0.16 4.13  0.71 0.27 -1.08  0.018 0.016 0.00 3.664 
                  
NO2  0 3218  1.22 -0.0035 0.22 5.52  0.13 0.43 -1.99  0.001 0.001 0.00 -0.075 
   0 8046  1.18 -0.0035 0.16 7.50  0.14 0.32 -2.71  0.002 0.002 0.00 2.846 
   0 24139  1.17 -0.0035 0.09 12.76  0.21 0.19 -4.06  0.014 0.009 0.00 8.821 
   0 48278  1.20 -0.0035 0.07 16.54  0.28 0.16 -4.58  0.031 0.019 0.00 12.158 
                    
O3  0 3218  0.23 -0.0014 0.40 0.58  1.07 0.81 0.09  0.000 0.000 0.00 -1.598 
   0 8046  0.22 -0.0014 0.19 1.18  0.88 0.39 -0.31  0.000 0.000 0.00 -0.337 
   0 24139  0.39 -0.0014 0.06 6.02  0.68 0.15 -2.18  0.004 0.004 0.00 3.565 
   0 48278  0.40 -0.0014 0.04 10.11  0.70 0.10 -2.99  0.013 0.012 0.00 6.688 
                    
Pb  0 3218  0.64 -0.0038 0.22 2.87  0.88 1.39 -0.09  0.030 0.003 0.00 10.737 
   0 8046  0.60 -0.0038 0.21 2.90  0.87 1.29 -0.10  0.034 0.005 0.00 8.596 
   0 24139  0.55 -0.0038 0.19 2.90  0.83 1.20 -0.14  0.037 0.013 0.01 4.746 
   0 48278  0.53 -0.0038 0.18 2.91  0.85 1.15 -0.13  0.051 0.022 0.01 4.010 
                    
PM10  0 3218  0.57 -0.0010 0.20 2.85  0.28 0.41 -1.78  0.000 0.000 0.00 1.374 
   0 8046  0.45 -0.0010 0.16 2.80  0.27 0.33 -2.25  0.001 0.001 0.00 3.484 
   0 24139  0.36 -0.0010 0.11 3.13  0.38 0.23 -2.65  0.005 0.004 0.00 3.512 
   0 48278  0.34 -0.0010 0.09 3.70  0.44 0.19 -2.99  0.012 0.011 0.00 3.423 
                    
SO2  0 3218  1.45 -0.0018 0.27 5.29  0.40 0.47 -1.26  0.001 0.001 0.00 9.894 
   0 8046  1.29 -0.0018 0.21 6.21  0.39 0.36 -1.68  0.004 0.002 0.00 11.862 
   0 24139  1.17 -0.0018 0.16 7.38  0.44 0.28 -2.04  0.012 0.007 0.00 14.545 
  0 48278  1.09 -0.0018 0.13 8.23  0.49 0.23 -2.23  0.030 0.016 0.00 16.967 

Figures in bold are significant at the 5% level (two tailed test). For Moran's I and Geary's C, the weights are always the inverse distance ( friction parameter =1) if the observation is within the distance interval, and 0 otherwise. For 
Getis and Ord's statistic, weights are either 0 or 1 (1 if the observation is within interval). Coordinates are expressed in Universal Transverse Mercators, (UTMs, rectangular metric mapping coordinate system used instead of latitude 
and longitude, where x and y are expressed in meters). Therefore distances are expressed in meters (3,218 meters = 2.5 miles; 8,046 meters = 5 miles; 24,139 meters = 15 miles and 48, 278 meters = 30 miles).                                  



Appendix E Table: Models of spatial correlation used for each pollutant 

Variable(1) Method(2) Transformation 
Declustering 

method/ trend 
Approxi- 
mation Anisotropy Model Lags(3) 

Neighbor- 
hood(3) 

         
CO 
 
 
 

simple co-Kriging using 
temperature, precipitation 
and elevation (elevation 

not used in 2000) 

Normal score/declust Polygonal Linear Yes Exponential .3/9 (.125/9 in 2000) 5/2 X 

         
NO2 Ordinary Kriging None None n/a No   Spherical 0.318/12 to.485/12 2/1 X 

         
O3 
 
 

ordinary co-Kriging using 
temperature, precipitation 

and wind direction 

None 2nd 60% No Gaussian 0.023/13 to 0.071/13 1/1 open 

         

PB 

Ordinary Kriging None None n/a yes 
(90,91,95,96,00) 

no otherwise 

Spherical .00619/12 to 4.7/9 5/2X, 22/XX, 6/6 open, 
5/3X 

         
PM10 
 
 

ordinary co-Kriging using 
temperature, precipitation 

and wind direction 

Log 1st 50% No Exponential 2.3/7 5/2 X 

         
SO2 ordinary Kriging None None n/a Yes  Exponential 1.103 to 1.897/12 5/2 X 

         
TSP ordinary Kriging None None n/a No  Exponential 0.144/12 to .718/12 1/1 X 

         
Temperature ordinary Kriging Log 1st  100% Yes  Spherical .3/7 5/2 X 

         
Precipitation 
 

ordinary Kriging None 1st 100% Yes Rational  
quadratic 

.3/19 7/2 open 

1. When more than one measurement was available at a given location, the mean of the measurements was assigned to the location and used in the predictions. 
2. Covariates were transformed as follows:  Temperature with log transformation and with first order trend; precipitation without transformation and with first order trend; elevation without 
transformation (order of trend not applicable in simple co-Kriging); wind direction without transformation and with second order trend.  
3. When a range is specified, it means that the lag/neighborhood was chosen differently each year to obtain the best fit. 



 

Appendix F: Goodness of fit measures for spatial predictions 

Variable Year 

  1988 1989 1990 1991 1992 1993 1994 1995 1996 2000 

CO   
Coefficient 0.2 0.2 0.23 0.3 0.29 0.27 0.29 0.31 0.34 0.41 
Mean 0.03 0.06 0.03 0.04 0.04 0.05 0.04 0.05 0.04 0.04 
RMSE 0.57 0.55 0.48 0.46 0.45 0.43 0.39 0.37 0.34 0.28 
Av. Std error 0.59 0.62 0.54 0.53 0.49 0.49 0.42 0.39 0.32 0.29 
Mean stndized 0.05 0.1 0.05 0.06 0.06 0.07 0.07 0.12 0.11 0.11 
RMSE stndized 0.95 0.87 0.9 0.89 0.94 0.91 0.94 0.92 1.07 1.00 
# of monitors 416 527 
NO2   
Coefficient 0.75 0.73 0.75 0.75 0.73 0.73 0.73 0.73 0.72 0.62 
Mean 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 
RMSE 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 
Av. Std error 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 
Mean stndized 0.04 0.04 0.04 0.04 0.04 0.04 0.03 0.04 0.04 0.05 
RMSE stndized 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 
# of monitors 284  443 
O3   
Coefficient 0.69 0.7 0.72 0.75 0.69 0.82 0.78 0.8 0.78 0.77 
Mean 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 
RMSE 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 
Av. Std error 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 
Mean stndized 0.00 -0.03 -0.01 -0.02 -0.04 -0.05 -0.05 -0.05 -0.04 -0.04 
RMSE stndized 1.00 1.00 1.00 1.00 0.93 0.93 0.90 0.90 0.93 1.01 
# of monitors 716  1137 
PB   
Coefficient 0.32 0.33 0.32 0.43 0.09 0.27 0.21 0.25 0.37 0.43 
Mean 0.01 0.01 0.01 0.00 0.05 0.01 0.00 0.01 0.01 0.01 
RMSE 0.78 0.85 0.73 0.71 0.85 0.58 0.60 0.62 0.69 0.37 
Av. Std error 0.84 1.14 0.80 0.78 0.86 0.65 0.60 0.73 0.78 0.39 
Mean stndized 0.00 0.00 0.00 0.00 0.06 0.01 0.00 0.01 0.01 0.03 
RMSE stndized 1.00 1.00 1.01 1.02 0.99 1.00 1.01 1.00 1.00 0.97 
# of monitors 263  201 
PM10   
Coefficient 0.36 0.39 0.43 0.45 0.4 0.43 0.41 0.42 0.36 0.33 
Mean -0.15 -0.2 -0.13 -0.1 -0.12 -0.09 -0.05 -0.06 -0.08 -0.43 
RMSE 9.20 9.43 7.88 7.29 6.44 6.35 6.19 6.16 5.94 11.07 
Av. Std error 9.05 8.59 7.44 7.24 6.32 6.37 6.71 6.36 5.90 8.70 
Mean stndized -0.03 -0.03 -0.03 -0.03 -0.03 -0.03 -0.02 -0.03 -0.03 -0.04 
RMSE stndized 1.00 1.10 1.05 1.04 1.04 1.05 0.96 1.02 1.02 1.06 

# of monitors 1053 1190 
 

 
 
 
 
 
 



Appendix F continued 

 

 

Variable Year 

  1988 1989 1990 1991 1992 1993 1994 1995 1996 2000 

SO2   
Coefficient 0.62 0.67 0.64 0.69 0.69 0.71 0.70 0.61 0.61 0.67 
Mean 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 
RMSE 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 
Av. Std error 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 
Mean stndized 0.01 0.01 0.01 0.01 0.01 0.02 0.01 0.01 0.01 0.01 
RMSE stndized 1.00 1.00 1.00 1.00 1.00 1.01 1.00 1.00 1.00 0.91 
# of monitors 563  607 
TSP   
Coefficient 0.55 0.6 0.53 0.54 0.55 0.56 0.6 0.57 0.53 n/a 
Mean 0.16 0.02 -0.03 0.08 0.08 0.16 0.31 0.08 0.14 n/a 
RMSE 15.15 14.57 13.54 13.34 12.35 12.7 12.84 12.71 12.97 n/a 
Av. Std error 15.22 14.66 13.59 13.46 12.37 12.82 13.03 12.79 12.76 n/a 
Mean stndized 0.00 -0.01 -0.01 0.00 -0.01 0.00 0.01 0.00 0.00 n/a 
RMSE stndized 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.02 n/a 
# of monitors 416   
Temperature   
Coefficient 0.96 0.97 0.97 0.97 0.96 0.97 0.97 0.97 0.97 0.97 
Mean 0.00 0.00 0.01 0.01 0.00 0.00 0.00 0.00 0.01 0.00 
RMSE 2.06 2.03 2.07 2.05 2.06 2.06 2.05 2.03 2.00 2.04 
Av. Std error 2.07 2.02 2.06 2.03 2.07 2.07 2.03 2.02 1.98 2.06 
Mean stndized 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 
RMSE stndized 1.00 1.00 1.01 1.02 1.00 1.00 1.00 1.00 0.99 0.99 
# of monitors 1219 1120 1218 1218 1219 1219 1219 1219 1220 1217 
Precipitation   
Coefficient 0.90 0.92 0.93 0.91 0.92 0.88 0.90 0.87 0.91 0.86 
Mean -0.03 0.06 0.06 -0.02 0.03 0.05 -0.01 0.00 0.10 0.04 
RMSE 5.89 5.92 6.44 6.30 5.91 5.94 6.31 7.21 7.12 5.70 
Av. Std error 5.78 6.53 7.16 6.45 5.92 5.66 6.04 6.38 6.95 5.30 
Mean stndized 0.00 0.01 0.01 0.00 0.00 0.01 0.00 0.00 0.01 0.01 
RMSE stndized 1.00 0.91 0.90 0.96 0.99 1.02 1.02 1.09 1.00 1.05 

# of monitors 952 948 938 938 935 928 920 915 912 876 



Appendix G: Comparing pollution exposure of children under 18 in the military 
and in the general population 
 

 Mean S.D. Min. Max. 
     
Panel A: Pollution means weighted by US population ages 18 or 
younger, 1989-1995  
CO 1.152 0.116 0.987 1.352 
NO2 0.020 0.001 0.019 0.021 
O3 0.053 0.002 0.050 0.054 
PM10 28.462 2.526 25.832 32.651 
SO2 0.006 0.001 0.005 0.007 
Pb 0.150 0.020 0.112 0.175 
     
Panel B: Pollution means for military children ages 18 or younger, 
1989-1995 
CO 1.107 0.207 0.514 2.270 
NO2 0.017 0.005 0.005 0.049 
O3 0.052 0.008 0.012 0.147 
PM10 26.898 3.752 13.094 61.292 
SO2 0.005 0.002 0.001 0.019 
Pb 0.142 0.192 0.006 2.281 
     

Notes: population counts for ages 18 or younger come from the 1990 Census (Summary Tape files 3C) at the zip-code level. Pollution 
means for the US Population were created by averaging Kriging predictions at the zip-code level, using the 1990 population as 
weights.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 



Appendix H: Comparing pollution trends in the population and in the 
military (ages 18 and under) 
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Figure 1 

 
Base sizes calculated from sample provided by DMDC (includes all dependents, including dependents of officers and stepchildren). 



Figure 2: Predicted distribution for the 6 major air pollutants in 1990 

 



 
Figure 3: Comparing trends from different prediction methods 
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Figure 4 
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Figure 5  
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Figure 6  
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Figure 7a: Implied Marginal Effects from non-linear and interacted model, children ages 

2 to 5. 
Full sample 
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Dropping pollutant values above the 90th percentile 
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Figure 7b: Implied Marginal Effects from non-linear and interacted model, children ages 
0 to 1. 
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Dropping pollutants values above the 90th percentile 
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Table 1: Summary Statistics for Children ages 0 to 5 

 
Variable Obs Mean Std. Dev. Min Max 
      
Children's characteristics (N=95,909)      
Year  165411 92.08 1.98 89 95 
Male=1 165411 0.51 0.50 0 1 
Age  165411 2.66 1.61 0 5 
White, non Hispanic=1  165411 0.60 0.49 0 1 
Number of years observed in sample 165411 3.20 1.60 1 8 
Moved in year =1 (observed consecutively) 101284 0.29 0.46 0 1 
Moved in year =1 (not observed consecutively) 111117 0.32 0.47 0 1 
Gone next year =1 165411 0.26 0.44 0 1 
Hospitalized at least once during year 165411 0.11 0.31 0 1 
Hospitalized in MTF 165411 0.07 0.25 0 1 
Hospitalized in MTF for respiratory condition 165411 0.02 0.13 0 1 
Hospitalized in MTF for external cause 165411 0.0038 0.0615 0 1 
Hospitalized in MTF for non-respiratory condition 165411 0.05 0.21 0 1 
Father and mother characteristics (N=68,676)      
Number of dependents (including wife) 165411 2.43 1.20 1 15 
Some college or higher 164309 0.12 0.32 0 1 
Father’s age 165352 29.27 5.27 17 55 
Mother hospitalized at least once during year 165411 0.21 0.40 0 1 
Mother hospitalized in MTF 165411 0.14 0.35 0 1 
Mother hospitalized in MTF for pregnancy 165411 0.11 0.31 0 1 
Total active military service in months  165311 106.75 61.74 1 417 
Number of months since reenlistment  160343 30.07 26.75 0 438 
Has been in the military fewer than 6 years =1 165411 0.25 0.43 0 1 
Increased rank (observed consecutively) =1 122543 0.18 0.39 0 1 
Increased education (observed consecutively) =1 122543 0.02 0.14 0 1 
      
      
      
Sample: children ages 0 to 5 of married men enlisted in the army and stationed in the Continental US 
between 1989 and 1995, excluding stepchildren, children of officers, and those without access to an MTF. 
The sample is further restricted to individuals in bases with at least one monitor for each pollutant within 
50 miles. Observations with missing values for age, gender, occupation (PMOS), rank, and duty base 
identifier were also dropped.  



Table 1 continued: Summary Statistics 
 

Variable Obs Mean Std. Dev. Min Max 
      
Base characteristics (N=177)      
Temperature (F) 165411 56.317 5.638 45.09 67.51 
Rain (inches) 165411 35.208 13.667 11.72 71.91 
Number of fathers at base  165411 6166.603 4477.597 1 14990.00 
Percent of enlisted personnel requesting this base 165411 2.877 2.713 0 8.40 
Distance to closest city (miles) 165411 3.686 4.399 0.11 34.42 
Distance to closest city with pop 50K (miles)  165411 13.995 11.952 0.11 54.98 
Distance to closest city with pop 100K (miles) 165411 19.136 19.156 0.239 103.22 
Distance to MTF (miles) 165411 0.056 0.112 0 0.58 
Pollution      
Average annual mean       
Carbon Monoxide (CO) (ppm) 165411 1.028 0.187 0.722 1.934 
Nitrogen Dioxide (NO2 ) (ppm) 165411 0.019 0.006 0.005 0.049 
Ozone (O3) (ppm) 165411 0.053 0.008 0.024 0.125 
Particulate matter (PM10, particles with diameter <=10 
micrometers) (ug/m3) 165411 27.241 4.162 16.387 54.606 
Sulfur Dioxide (SO2) (ppm) 165411 0.006 0.003 0.002 0.013 
Lead (Pb) (ug/m3) 165411 0.097 0.125 0.008 2.281 
Monitor information      
% with county predictions for all pollutants 165411 0.1841111 0.3875759 0 1 
% with IDW15 predictions for all pollutants 165411 0.0522275 0.2224861 0 1 
% with IDW30 predictions for all pollutants 165411 0.4977843 0.4999966 0 1 
Average characteristics at base (from largest possible 
sample, includes children of all ages)      
% officers at base 165411 0.180 0.153 0 0.98 
% stepchildren at base 165411 0.105 0.026 0 0.80 
Average total active months in service at base 165411 155.549 18.713 27 279.52 
Average number of dependents at base 165411 2.817 0.128 1 8.00 
Average dad age at base 165411 34.210 1.783 25 45.34 
Average children age at base 165411 8.810 0.964 1 15 
% white at base 165411 0.625 0.093 0 1 
% college at base 165411 0.312 0.159 0 1 
% newly enlisted at base 165411 0.112 0.054 0 1 
% gone next year at base 165411 0.269 0.101 0 1 
% children hospitalized at base  165411 0.058 0.017 0 1 
% children hospitalized at MTF at base  165411 0.037 0.016 0 1 
% children hospitalized at MTF at base for respiratory 
condition 165411 0.010 0.005 0 0.250 
% children hospitalized at MTF at base for external 
causes 165411 0.004 0.002 0 0.071 
      

Notes: ug/m3 stands for micrograms per cubic meter; ppm stands for parts per million. 
Sample: children ages 0 to 5 of married men enlisted in the army and stationed in the continental US 
between 1989 and 1995, excluding stepchildren, children of officers and those without access to a MTF. 
The sample is further restricted to individuals in bases with at least one monitor for each pollutant within 
50 miles. Observations with missing values for age, gender, occupation (PMOS), rank, and duty base 
identifier were also dropped.  



Table 2a: Testing Random Relocations, conditional on rank and occupation interactions 
Sample: Children ages 0 to 5 who moved  

 

Variable Obs Mean 
Std. 
Dev. 

    
Relocation to any base (excluding foreign), regardless of current base(*)  
    
One equation per base,  
control for rank*pmos*year    
D=1 if p<0.05 380 0.066 0.248 
   
Relocation to bases in study, regardless of current base   
    
One equation per base,  
control for rank*pmos*year    
D=1 if p<0.05 118 0.017 0.130 
        

Linear probability models. Errors clustered at the sponsor level. 
 
Control variables tested include age, gender, health variables (whether hospitalized, hospitalized in MTF, 
hospitalized in MTF for respiratory condition), father/sponsor's controls (number of months since last 
enlistment, total active months in the military, age, white dummy, college degree, number of dependents, 
enlisted in the last five years), and mother's health (whether hospitalized, hospitalized in MTF, hospitalized 
for pregnancy).  
 
(*) Sample restrictions are identical to those for the estimation sample, except that individuals living in all 
bases are included (in the final estimation sample, only those living in bases with monitors within 50 miles 
for all pollutants and those living within 40 miles of an MTF are included. No such sample restriction is 
done here.) 



Table 2b: Testing whether characteristics at time t predict pollution levels at time t+1 
Sample: Children ages 0 to 5 who moved 

 
  CO PM10 SO2 NO2 O3 
       
All years 
(1989-1995) 

 
     

 p-value 0.667 0.414 0.836 0.340 0.433 
By year       
1989       
 p-value 0.570 0.652 0.598 0.961 0.875 
1990       
 p-value 0.942 0.207 0.695 0.177 0.788 
1991       
 p-value 0.866 0.584 0.902 0.417 0.533 
1992       
 p-value 0.534 0.001 0.392 0.543 0.093 
1993       
 p-value 0.552 0.512 0.599 0.465 0.022 
1994       
 p-value 0.142 0.973 0.659 0.127 0.432 
1995       
 p-value 0.383 0.805 0.891 0.337 0.613 
       

Control variables tested include age, gender, health variables (whether hospitalized, hospitalized in MTF, 
hospitalized in MTF for respiratory condition), father/sponsor's controls (number of months since last 
enlistment, total active months in the military, age, white, college degree, number of dependents, enlisted in 
the last five years), and mother's health (whether hospitalized, hospitalized in MTF, hospitalized for 
pregnancy).  
 
(*) Sample restrictions are identical to those for the sample, except that individuals living in all bases are 
included (in the final estimation sample, only those living in bases with monitors within 50 miles for all 
pollutants and those living within 40 miles of an MTF are included. No such sample restriction is done 
here.) 
 



Table 3: Correlations between pollutants,  
using Kriging estimates at the base  

 
 CO NO2 O3 Pb PM10 SO2 
Across bases 
(N=940 base*year 
observations)       
CO 1.00      
NO2 0.51 1.00     
O3 -0.02 0.14 1.00    
Pb 0.04 -0.10 0.20 1.00   
PM10 0.53 0.40 0.23 0.04 1.00  
SO2 0.08 0.24 0.36 0.17 0.07 1.00 
In sample 
(weighted by 
population in base 
N=165,411)       
CO 1.00      
NO2 0.20 1.00     
O3 -0.03 0.12 1.00    
Pb 0.03 -0.14 0.19 1.00   
PM10 0.55 0.09 0.14 0.12 1.00  
SO2 0.28 0.42 0.27 0.29 0.34 1.00 
  

 



Table 4: Effect of pollutants on respiratory hospitalizations, main results 
 (1) (2) (3) (4) (5) (6) (7) (8) 

Dependent variable: 
Child hospitalized last 
year for a respiratory 
condition (=1) 

Basic 
regression 

 
 

Add all parental 
controls, 

and external 
hospitalizations 

only 

Add all base 
characteristics 

only 
 
 

 Add base 
fixed 

effects 
only 

 

Add parental 
controls and 

base 
characteristics 

only 

Add parental 
controls, base 
characteristics 
and base fixed 

effects 

Basic regression, 
sample with no 

missing variables 
 

External 
hospitalizations 

used as dependent 
variable, 

all controls 
Ages 0 to 1         
CO -0.01 -0.009 -0.016 0.005 -0.011 0 -0.012 0 
 [0.014] [0.012] [0.014] [0.018] [0.013] [0.019] [0.013] [0.005] 
PM10 0 0 0 0.001 0 0 0 0 
 [0.001] [0.001] [0.001] [0.001] [0.001] [0.001] [0.001] [0.000] 
SO2 -1.402** -1.950*** 1.323 -0.256 1.438 0.459 -1.296** -0.416 
 [0.596] [0.579] [1.267] [1.651] [1.194] [1.575] [0.612] [0.569] 
NO2 0.829** 0.916** 0.578 1.249 0.211 -0.265 0.794** 0.062 
 [0.399] [0.385] [0.693] [1.091] [0.661] [1.341] [0.392] [0.327] 
O3 0.07 0.085 0.061 -0.149 0.083 -0.215 0.035 0.056 
 [0.250] [0.183] [0.197] [0.326] [0.233] [0.287] [0.213] [0.096] 
Observations 46851 44663 46851 46851 44663 44663 44663 44663 
R-squared 0.37 0.38 0.37 0.37 0.38 0.38 0.37 0.31 
Ages 2 to 5         
CO 0.003 0.002 0.006 0.011* 0.002 0.008 0.002 -0.002 
 [0.006] [0.005] [0.004] [0.006] [0.004] [0.006] [0.005] [0.004] 
PM10 -0.000** -0.000** -0.000* 0 -0.000* 0 -0.000** 0 
 [0.000] [0.000] [0.000] [0.000] [0.000] [0.000] [0.000] [0.000] 
SO2 -0.275 -0.266 -0.245 -0.005 -0.217 0.198 -0.236 0.179 
 [0.248] [0.249] [0.333] [0.625] [0.364] [0.544] [0.247] [0.343] 
NO2 0.11 0.12 0.109 0.453 0.158 0.093 0.112 0.057 
 [0.101] [0.098] [0.134] [0.418] [0.128] [0.300] [0.097] [0.186] 
O3 0.192*** 0.166** 0.270*** 0.248** 0.225*** 0.244** 0.163** -0.034 
 [0.071] [0.073] [0.077] [0.098] [0.077] [0.100] [0.074] [0.062] 
Observations 118560 114612 118560 118560 114612 114612 114612 114612 
R-squared 0.28 0.28 0.28 0.28 0.28 0.28 0.28 0.26 

Basic regression controls for age dummies, female dummy, race dummy and pmos*rank*year interactions as well as rain, temperature and temperature squared.  Father/sponsor's controls  include number of months since 
last enlistment, total active months in the military, age, college degree, number of dependents, enlisted in the last five years, and a dummy  for whether mother was hospitalized for pregnancy. Base characteristics include 
distance to closest city, distance to closest city with 50,000 inhabitants, distance to closest city with 100,000 inhabitants, distance to MTF, dummies for whether closest monitor is within 30 miles, number of sponsors at the 
base, percent of sponsors that requested base for relocation, Pb, percent officer, percent stepchildren, average number of months in service, average number of dependents, mean ages of sponsors at base, mean age of 
children at base, percent White non-Hispanic at base, percent of sponsors with some college, percent enlisted within the last 5 years, percent gone in the next year, percent of children hospitalized for external causes. 
Standard errors (in parenthesis) are clustered at the base level. * significant at 10%; ** significant at 5%; *** significant at 1% 



Table 5: specification checks 
(1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11) (12) (13) Dependent 

variable: 
Child 
hospitalize
d last year 
for 
respiratory 
condition 
(=1) Basic 

Basic 
model. 

Add 
dummies 

for distance 
to 

monitor>30 
miles 

Basic 
model. 
Interact 

pollution 
and 

distance 
dummies 

All 
controls 

(individual 
controls,  

base 
controls, 
base fe) 

All 
controls. 

Drop 
year 89 

All 
controls. 

Drop 
year 90 

All 
controls. 

Drop 
year 91 

All 
controls. 

Drop 
year 92 

All 
controls. 

Drop year 
93 

All 
controls. 

Drop year 
94 

All 
controls. 

Drop year 
95 

All 
controls. 
Dropped 
1st and 

99th 
percentil

es 

All 
controls. 
Drop if 

pollutant  
value > 

90th 
percentile 

Ages 0 to 1             
CO -0.01 -0.018 -0.019 0 0.007 -0.001 0 -0.004 0.005 -0.002 -0.013 -0.007 0.032 
 [0.014] [0.012] [0.012] [0.019] [0.019] [0.020] [0.023] [0.022] [0.023] [0.020] [0.029] [0.023] [0.028] 
PM10 0 0 0 0 0 0.001 0 0 0 0 0.001 0 0.001 
 [0.001] [0.000] [0.000] [0.001] [0.001] [0.001] [0.001] [0.001] [0.001] [0.001] [0.001] [0.001] [0.001] 
SO2 -1.402** 1.264 1.413 0.459 0.719 0.543 -0.378 0.959 0.871 -0.474 0.105 0.186 -4.55 
 [0.596] [1.069] [1.034] [1.575] [1.863] [1.716] [1.404] [2.280] [1.905] [1.689] [2.217] [2.006] [2.911] 
NO2 0.829** 0.07 0.109 -0.265 0.043 -0.301 1.031 1.552 -1.187 -0.453 -1.113 0.297 -0.467 
 [0.399] [0.480] [0.465] [1.341] [1.874] [1.612] [1.181] [1.317] [1.245] [1.204] [1.439] [1.510] [1.606] 
O3 0.07 -0.202 -0.037 -0.215 -0.209 0.216 0.113 -0.602 -0.27 -0.363 -0.219 0.385 1.728 
 [0.250] [0.204] [0.195] [0.287] [0.370] [0.530] [0.234] [0.372] [0.357] [0.305] [0.282] [0.701] [1.050] 
Obs 46851 46851 46851 44663 38630 40872 39497 35307 37474 37511 38687 39057 30401 
R2 0.37 0.37 0.37 0.38 0.39 0.37 0.39 0.4 0.36 0.39 0.39 0.39 0.41 
Ages 2 to 5             
CO 0.003 0.003 0.003 0.008 0.005 0.009 0.009 0.007 0.007 0.01 0.003 0.009 0.014* 
 [0.006] [0.004] [0.004] [0.006] [0.007] [0.006] [0.005] [0.007] [0.007] [0.007] [0.008] [0.008] [0.008] 
PM10 -0.000** -0.000** -0.000** 0 0 0 0 0 0 0 0 0 0 
 [0.000] [0.000] [0.000] [0.000] [0.000] [0.000] [0.000] [0.000] [0.000] [0.000] [0.000] [0.000] [0.000] 
SO2 -0.275 -0.375 -0.363 0.198 0.132 0.357 -0.041 0.498 0.224 0.044 -0.077 0.492 -0.451 
 [0.248] [0.351] [0.383] [0.544] [0.679] [0.569] [0.570] [0.679] [0.513] [0.646] [0.623] [0.769] [0.679] 
NO2 0.11 0.044 0.057 0.093 0.171 0.031 0.065 0.406 0.082 0.197 -0.424 0.05 0.187 
 [0.101] [0.152] [0.147] [0.300] [0.301] [0.349] [0.336] [0.378] [0.328] [0.399] [0.356] [0.447] [0.241] 
O3 0.192*** 0.204*** 0.247*** 0.244** 0.22 0.322** 0.305*** 0.273*** 0.210* 0.183* 0.238** 0.299* 0.337 
 [0.071] [0.076] [0.083] [0.100] [0.140] [0.153] [0.106] [0.104] [0.111] [0.094] [0.109] [0.175] [0.233] 
Obs 118560 118560 118560 114612 95318 102407 102206 95814 96116 97004 98807 100466 79114 
R-2 0.28 0.28 0.28 0.28 0.3 0.27 0.29 0.28 0.27 0.29 0.29 0.29 0.32 

See notes in Table 4. * significant at 10%; ** significant at 5%; *** significant at 1% 



Table 6: Comparing results from alternative predictions 
 

Dependent variable: Child 
hospitalized in last year for 
respiratory condition (=1) 

 
Monitors within 50 miles for 

all pollutants(1) 
Monitors within 30 miles for 

all pollutants  
 

 
Monitors within 15 miles for 

all pollutants 

 
At least one monitor in county for 

all pollutants 

 
All at once One at a time IDW 30 

 
(co) Kriging 

 
IDW15 

 
(co) Kriging 

 
County weighted 

average 
(co) Kriging 

 
Ages 0 to 1         
CO -0.01 -0.009 0.006 -0.008 3.3 -0.014 -0.039 0 
 [0.014] [0.011] [0.018] [0.020] [2.418] [0.066] [0.581] [0.027] 
PM10 0 0 -0.001 0 -5.628 0.004 -0.26 0 
 [0.001] [0.001] [0.001] [0.001] [4.905] [0.004] [1.037] [0.000] 
SO2 -1.402** -0.303 2.723** 2.027 1.981 -2.193 1.508 2.167 
 [0.596] [0.775] [1.214] [1.707] [8.248] [10.145] [1.704] [1.738] 
NO2 0.829** 0.492 -0.644 -0.144 0 -0.151 -0.001 0.656 
 [0.399] [0.413] [0.901] [0.945] [0.004] [4.127] [0.001] [1.286] 
O3 0.07 0.151 0.366 0.144 0.068 0.736 0.006 0.141 
 [0.250] [0.234] [0.487] [0.295] [0.088] [1.654] [0.018] [0.261] 
Observations 46851 46851 25609 25609 4251 4251 21392 21392 
R-squared 0.37  0.43 0.43 0.66 0.66 0.42 0.42 
Ages 2 to 5         
CO 0.003 0 0.005 0.005 -0.105 0.020** 0.049 -0.001 
 [0.006] [0.005] [0.006] [0.007] [0.678] [0.009] [0.103] [0.004] 
PM10 -0.000** 0 -0.001*** -0.001** -0.447 0 -0.157 0 
 [0.000] [0.000] [0.000] [0.000] [0.901] [0.001] [0.295] [0.000] 
SO2 -0.275 -0.155 0.46 0.262 3.109 3.2 0.285 -0.028 
 [0.248] [0.198] [0.374] [0.544] [3.033] [4.104] [0.312] [0.387] 
NO2 0.11 0.077 0.016 0.146 0 -1.167 0 0.397* 
 [0.101] [0.096] [0.253] [0.261] [0.001] [1.052] [0.000] [0.219] 
O3 0.192*** 0.131* 0.239* 0.239*** 0.001 0.587 0.002 -0.019 
 [0.071] [0.067] [0.133] [0.080] [0.010] [0.548] [0.003] [0.116] 
Observations 118560 118560 66762 66762 12431 12431 49351 49351 
R-squared 0.28  0.35 0.35 0.56 0.56 0.35 0.35 

(1) the sample includes bases for which the closest monitor for each of the 5 pollutants is within 50 miles of the base.   
All models include basic controls as described in the notes for Table 4. 
* significant at 10%; ** significant at 5%; *** significant at 1% 



Table 7: Functional form test: checking for significant interactions 
 interactions and higher order terms interactions only higher order terms only  

 5 level 4 level 3 level 2 level 5 level 4 level 3 level 2 level 5 level 4 level 3 level 2 level 1 level 
Panel A: Ages 2-5               
All controls, full sample (N=114,612)            
Adjusted R2 0.0343 0.0343 0.0343 0.0344 0.0343 0.0343 0.0344 0.0344 0.0344 0.0344 0.0344 0.0344 0.0344 
AIC -225540.10 -225490.40 -225509.00 -225515.40 -225535.30 -225498.90 -225505.40 -225527.20 -225549.40 -225522.30 -225520.40 -225527.10 -225548.70 
BIC -224642.70 -224371.10 -224544.10 -224618.00 -224705.50 -224495.40 -224559.80 -224707.00 -224816.10 -224692.50 -224709.90 -224755.10 -224892.50 
P-value for test of joint significance             
all pollution terms 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0062 0.0226 0.0673 
all higher order terms 0.0000 0.0000 0.0150 0.0178 0.0000 0.0009 0.0597 0.0497 0.0002 0.1077 0.8977 0.7544 0.0673 
highest order terms 0.1782 0.0003 0.7988 0.0178 0.4575 0.1247 0.6875 0.0497 0.0130 0.0846 0.6763 0.7544 0.0673 
All controls, drop high outliers (N=79,114)            
Adjusted R2 0.0411 0.0411 0.0412 0.0414 0.0413 0.0413 0.0413 0.0414 0.0414 0.0414 0.0415 0.0415 0.0415 
AIC -158905.20 -158764.90 -158753.50 -158741.00 -158879.10 -158762.50 -158743.10 -158737.90 -158790.80 -158748.50 -158738.60 -158734.20 -158728.30 
BIC -158432.00 -157660.70 -157630.80 -157599.70 -158340.90 -157695.50 -157601.90 -157596.60 -157872.30 -157635.00 -157588.00 -157583.60 -157577.80 
P-value for test of joint significance             
all pollution terms 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0020 0.0031 0.0000 0.0000 0.0001 0.0019 0.4601 
all higher order terms 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0096 0.0012 0.0044 0.0001 0.0000 0.0022 0.4601 
highest order terms 0.0890 0.3080 0.3192 0.0000 0.0338 0.3864 0.1021 0.0012 0.3462 0.5066 0.1539 0.0022 0.4601 
              
Panel B: Ages 0-1               
All controls, full sample (N=44,663)            
Adjusted R2 0.0144 0.0145 0.0146 0.0147 0.0145 0.0146 0.0147 0.0147 0.0143 0.0143 0.0144 0.0145 0.0143 
AIC -55536.87 -55505.41 -55498.21 -55476.85 -55503.67 -55491.42 -55486.05 -55465.68 -55467.83 -55463.46 -55458.75 -55451.64 -55430.57 
BIC -54674.89 -54521.53 -54523.04 -54492.97 -54598.16 -54533.66 -54510.88 -54481.80 -54501.37 -54496.99 -54492.28 -54476.47 -54437.99 
P-values for test of joint significance             
all pollution terms 0.0000 0.0000 0.0000 0.0012 0.0000 0.0000 0.0010 0.0215 0.0000 0.0000 0.0030 0.0132 0.9542 
all higher order terms 0.0000 0.0000 0.0000 0.0003 0.0000 0.0000 0.0004 0.0270 0.0000 0.0002 0.0009 0.0016 0.9542 
highest order terms 0.5996 0.4230 0.5951 0.0003 0.6340 0.9535 0.2454 0.0270 0.3346 0.2585 0.2324 0.0016 0.9542 
All controls, drop high outliers (N=30,401)            
Adjusted R2 0.0137 0.0138 0.0139 0.0137 0.0140 0.0139 0.0140 0.0137 0.0142 0.0143 0.0140 0.0139 0.0139 
AIC -38234.72 -38177.34 -38145.45 -38114.89 -38184.37 -38141.55 -38136.86 -38109.31 -38260.07 -38143.98 -38116.50 -38105.86 -38097.69 
BIC -37810.29 -37519.89 -37413.09 -37382.54 -37618.45 -37425.84 -37421.15 -37385.28 -38052.01 -37453.23 -37384.15 -37373.51 -37373.65 
P-values for test of joint significance             
all pollution terms 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0016 0.0000 0.0000 0.0000 0.0351 0.2151 
all higher order terms 0.0000 0.0000 0.0000 0.0426 0.0000 0.0000 0.0000 0.1023 0.0000 0.0000 0.0035 0.0338 0.2151 
highest order terms 0.1285 0.6282 0.0002 0.0426 0.0521 0.4491 0.0001 0.1023 0.9737 0.0061 0.0637 0.0338 0.2151 

Yellow: best fit (lowest AIC, BIC; highest adjusted r-squared); green: second best fit (second lowest AIC, BIC, second highest adjusted r-squared).



Table 8: Interpreting the results from multi-pollutant models, children ages 2 to 5 
Policy exercise 

 
 Model controls Obs Mean Std. Dev.
     
Panel A: Linear model, full sample     
actual hospitalizations  114612 0.0115 0.1067 
     
70th percentile and above for all pollutants    
actual hospitalizations  3147 0.0140 0.1174 
predicted hospitalizations, at mean X all controls 3147 0.0178 0.0010 
 basic controls 3147 0.0114 0.0010 
30th percentile and below for all pollutants    
actual hospitalizations  567 0.0071 0.0838 
predicted hospitalizations, at mean X all controls 567 0.0040 0.0002 
 basic controls 567 0.0105 0.0007 
    
Panel B: Non-linear models, dropping outliers    
actual hospitalizations  79114 0.0116 0.1073 
     
70th percentile and below for all pollutants    
actual hospitalizations  749 0.0147 0.1204 
predicted hospitalizations, at mean X all controls 749 0.0297 0.0003 
 basic controls 749 0.0129 0.0001 
30th percentile and below for all pollutants    
actual hospitalizations  567 0.0071 0.0838 
predicted hospitalizations, at mean X all controls 567 0.0066 0.0006 
 basic controls 567 0.0077 0.0005 
     
Predictions made at the mean of all other explanatory variables.  
See notes in Table 4 for a description of the sample and of the variables included as controls. Non-linear 
models include higher order terms and interactions up to 5 levels.  



 
Table 9: Results by SES, Children ages 2 to 5 

Dependent variable: Child 
hospitalized last year for 
respiratory condition  

All 
 

Non-
white 

  
White 

  

High 
school 
or less  

Some 
college 
or more  

Low 
rank  

High rank 
  

Mean of dependent variable  0.012 0.011 0.012 0.011 0.011 0.012 
Panel A: basic controls        
CO 0.002 -0.005 0.005 0.004 -0.006 0.001 0.001 
 [0.005] [0.005] [0.008] [0.005] [0.019] [0.006] [0.007] 
PM10 -0.000** -0.001** 0 -0.000** 0 0 -0.001*** 
 [0.000] [0.000] [0.000] [0.000] [0.001] [0.000] [0.000] 
SO2 -0.236 0.229 -0.56 -0.203 -1.578* 0.255 -1.076** 
 [0.247] [0.297] [0.363] [0.244] [0.841] [0.385] [0.448] 
NO2 0.112 -0.027 0.241* 0.098 0.146 0.185 0.071 
 [0.097] [0.143] [0.139] [0.098] [0.372] [0.118] [0.169] 
O3 0.163** 0.199** 0.144 0.145* 0.565* 0.006 0.359*** 
 [0.074] [0.091] [0.150] [0.085] [0.308] [0.077] [0.137] 
Observations 114612 47184 67428 100377 14235 63460 51152 
R-squared 0.28 0.37 0.33 0.27 0.61 0.2 0.37 
P-value, F-test of significance        
All interactions with Xs  0.000  0.000  0.000  
All interactions with Xs, except 
pollution  0.034  0.003  0.062  
Interactions with pollutants 
only  0.001  0.195  0.001  
CO interaction  0.117  0.143  0.999  
PM10 interaction  0.673  0.529  0.271  
O3 interaction  0.881  0.634  0.017  
NO2 interaction  0.001  0.757  0.594  
SO2 interaction  0.012  0.920  0.042  
Panel B: All controls        
CO 0.008 -0.006 0.014 0.007 -0.026 0.016** -0.001 
 [0.006] [0.010] [0.008] [0.006] [0.035] [0.006] [0.011] 
PM10 0 0 0 0 0 0.000* 0 
 [0.000] [0.000] [0.000] [0.000] [0.001] [0.000] [0.001] 
SO2 0.202 -0.115 0.954 0.214 -0.307 -0.489 1.352 
 [0.544] [1.142] [0.757] [0.633] [2.192] [0.887] [0.927] 
NO2 0.081 0.194 0.027 0.038 -1.088 -0.104 0.118 
 [0.297] [0.630] [0.404] [0.292] [1.944] [0.459] [0.812] 
O3 0.244** 0.095 0.374 0.310*** -0.092 0.017 0.556*** 
 [0.100] [0.100] [0.265] [0.115] [0.499] [0.118] [0.171] 
Observations 114612 47184 67428 100377 14235 63460 51152 
R-squared 0.28 0.38 0.33 0.28 0.62 0.21 0.38 
P-value, F-test of significance        
All interactions with Xs  0.000  0.000  0.000  
All interactions with Xs, except 
pollution  0.000  0.000  0.000  
Interactions with pollutants 
only  0.487  0.852  0.001  
CO interaction  0.227  0.638  0.150  
PM10 interaction  0.381  0.660  0.165  
O3 interaction  0.930  0.261  0.002  
NO2 interaction  0.674  0.876  0.839  
SO2 interaction  0.880  0.795  0.230  
        

See notes in Table 4.  
* significant at 10%; ** significant at 5%; *** significant at 1% 


