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Abstract

Standard practice for the estimation of dynamic stochastic general equilibrium (DSGE)

models maintains the assumption that economic variables are properly measured by a single

indicator, and that all relevant information for the estimation is adequately summarized by a

small number of data series, whether or not measurement error is allowed for. However, recent

empirical research on factor models has shown that information contained in large data sets is

relevant for the evolution of important macroeconomic series. This suggests that conventional

model estimates and inference based on estimated DSGE models are likely to be distorted. In

this paper, we propose an empirical framework for the estimation of DSGE models that exploits

the relevant information from a data-rich environment. This framework provides an interpre-

tation of all information contained in a large data set through the lenses of a DSGE model.

The estimation involves Bayesian Markov-Chain Monte-Carlo (MCMC) methods extended so

that the estimates can, in some cases, inherit the properties of classical maximum likelihood

estimation. We apply this estimation approach to a state-of-the-art DSGE monetary model.

Treating theoretical concepts of the model � such as output, inßation and employment � as

partially observed, we show that the information from a large set of macroeconomic indicators

is important for accurate estimation of the model. It also allows us to improve the forecasts of

important economic variables.
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1 Introduction

Recent macroeconomic research has devoted considerable e orts to the development and estimation

of dynamic stochastic general equilibrium (DSGE) models that are internally consistent, and based

on Þrst principles.1 Some recent micro-founded DSGEmodels, which involve numerous frictions and

various types of shocks, appear to replicate the data in important dimensions (see, e.g., Christiano,

Eichenbaum and Evans (2005), Smets and Wouters (2003, 2004), Altig, Christiano, Eichenbaum,

and Linde (2003)). For instance, Smets and Wouters (2003, 2004) report that a DSGE model with

a wide range of shocks Þts the data well and performs well in terms of out-of-sample forecasts.

Motivated by these promising results, such models are now increasingly perceived as a valuable

input to policy making.2

In estimating these models, researchers have so far maintained the assumption that all relevant

information for the estimation is adequately summarized by a small number of data series. If the

model is well speciÞed and its key variables are directly observed both by the agents of the model

and the econometrician, this approach can certainly be justiÞed. In fact, in that case, the small set

of model variables contains all the information relevant for estimation.

This is at odds, however, with the fact that central banks and Þnancial market participants

monitor and analyze literally hundreds of data series. Moreover, there is growing empirical evidence

suggesting that a large set of macroeconomic variables may in fact be crucial to properly capture

the economy�s dynamics. In a macroeconomic forecasting context, Stock and Watson (1999, 2002)

and Forni, Hallin, Lippi and Reichlin (2000) among others Þnd that factors estimated from large

data sets of macroeconomic variables lead to considerable improvements over small scale VAR

models.3 Bernanke and Boivin (2003) and Giannone, Reichlin and Sala (2004) show that this large

1Examples are Christiano (1988), Altuùg (1989), Bencivenga (1992), Christiano and Eichenbaum (1992), McGrattan
(1994), Hall (1996), Anderson, Hansen, McGrattan and Sargent (1996), McGrattan, Rogerson and Wright (1997),
Ireland (1997, 2001, 2004), Rotemberg and Woodford (1997), DeJong, Ingram and Whiteman (2000), Schorfheide
(2000), Kim (2000), Christiano, Eichenbaum and Evans (2005), Amato and Laubach (2003), Boivin and Giannoni
(2003), Ruge-Murcia (2003), Edge, Laubach, and Williams (2003), Smets and Wouters (2003, 2004), Altig, Christiano,
Eichenbaum and Linde (2003), Rabanal and Rubio-Ramírez (2003), Giannoni and Woodford (2004), Fernández-
Villaverde and Rubio-Ramírez (2004), and Justiniano and Preston (2004).

2For instance, the Bank of Canada is �completing the development of a new projection model�
a sticky-price dynamic stochastic general-equilibrium (DSGE) model of the Canadian economy� (see
http://www.bankofcanada.ca/en/fellowship/highlights_res.htm).

3Stock and Watson (1999), comparing a wide range of inßation forecasting exercises, found that their best-
performing forecast involves a composite index of aggregate activity based on 168 individual activity measures. They
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information set appears to matter empirically to properly model monetary policy. Bernanke, Boivin

and Eliasz (2005) argue that inference based on small-scale VARs, by omitting relevant information,

may be importantly distorted. Their empirical evidence suggests that the information from a large

set of indicators could indeed be crucial to properly identify the monetary transmission mechanism.

These empirical models with large data sets remain however largely non-structural. This limits our

ability to determine the source of economic ßuctuations, to perform counterfactual experiments, or

to analyze optimal policy.

Why would such information be relevant in the context of available DSGE models? As we now

argue, exploiting a lot more information than has been considered thus far in the estimation of

DSGE models can be important if some of the key concepts of the model are imperfectly observed

or if some exogenous shocks or other state variables are partially observed.

Despite considerable e orts invested in improving the measurement of economic concepts,4 it

is still unlikely that many such concepts are measured perfectly. While real GDP is the most

comprehensive measure of economic activity available, its initial releases are sometimes subject

to important revisions, and the �Þnal� releases are not exempt from revisions or even subsequent

changes in conceptual deÞnition.5 For employment, the systematic discrepancies between its two

main measures � one obtained from the establishment survey and the other from the population

survey � which have received a lot of attention in the aftermath of the 2001 recession,6 underscore

the fact that employment is imperfectly measured.7 Aggregate prices are also notoriously di cult

to measure. One of the most commonly used measure, the Consumer Price Index (CPI), has

undergone various changes in methodology since the 1996 Boskin commission, to mitigate important

argue that the forecasting gains from using this index are economically large and statistically signiÞcant over the
1970-1996 sample period. Similar evidence has been found in Forni et al. (2001), Stock and Watson (2002), Bernanke
and Boivin (2003) and Boivin and Ng (2003), among others.

4Examples include the revision of NIPA accounting involving chained-type adjustments, various e orts made by
statistical agencies in capturing quality adjustments in products, as well as work by the Boskin commission seeking
to estimate biases in inßation measures.

5During the last recession and up until January 2003, GDP data showed negative GDP growth only in the third
quarter of 2001. The January 2003 revisions, however, suggest that GDP growth was already negative in the third
quarter of 2000, as well as in the Þrst three quarters of 2001. Fixler and Grimm (2003) show that Þnal quarterly
estimates of real GDP tend to overstate declines in economic activity and understate the beginnings of recoveries.

6See, e.g., Bernanke (2004).
7The BLS actually reports standard errors for the employment measures based on both surveys in the Employment

Report. The non-farm payroll employment number, being based on a larger sample, is statistically more precise. But
it is also subject to biases, such as the double-counting of jobs.
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shortcomings. But recent research emphasizes that the current CPI might still be subject to

important biases, stemming for instance, from the di culty of measuring quality improvements

or properly adjusting for outlet substitution.8 Ultimately, as measurement errors reßect not only

data collection di culties but also conceptual problems in linking theory to the data, the economic

concepts relevant to macroeconomists might never be directly observed.

Once one acknowledges that a theoretical concept is not directly observed, and that the cor-

responding data is only an imperfect indicator, it is plausible to think that many other variables

carry useful additional information. For instance, while data on hours worked based on the sur-

vey of establishments provides a natural indicator of labor input, data on hours worked form the

household survey may provide another noisy indicator. Given their own idiosyncrasies, properly

exploiting the information from these indicators � rather than from a single one � should help to

better separate hours worked (the signal) from the measurement error (the noise).9 Similarly for

�inßation,� which is generally closely associated with the growth rate of the GDP deßator or CPI,

many indicators such as those based on the personal consumption expenditures (PCE) deßator, the

core CPI or core-PCE deßator may provide important additional information. Multiple, potentially

informative, indicators also exist for output, consumption, investment, real wages. Viewed in this

light, existing estimations of DSGE models appear to be based implicitly on an arbitrary choice of

data.10

Another reason why more information might be important is that some exogenous shocks or

other state variables might be partially observed. One example is the productivity shock underlying

many DSGE models. In existing estimations, it is treated as completely latent, which amounts to

assuming implicitly that no observable measure contains independent information about this shock.

But measures of labor productivity, oil prices, or commodity prices may all be noisy indicators of

productivity containing independent information that could be exploited.11 In principle, since this

8See Hausman (2003), Hausman and Leibtag (2004) and Bils (2004).
9 In the same spirit, Prescott (1986) used these two indicators to calibrate the labor elasticity of output in his RBC

model.
10One could image macroeconomic models to be su ciently detailed so as to specify a separate role for, e.g., each of

the available price indices (such as the CPI, core-CPI, PCE deßator, GDP deßator, and so on). In practice, however,
this disctinction is rarely made so that researchers pick a particular price index in a more or less arbitrary way.
11This is in part the rationale for the inclusion of commodity prices in VARs to �Þx� the price puzzle (see Sims

(1992)).
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could be the case for all exogenous shocks in the model, many more indicators could carry important

information for the estimation.

Failing to account empirically for the imprecise link between theoretical concepts and observable

macroeconomic data can invalidate model estimation and the assessment of whether a particular

theory Þts the facts. Following Sargent (1989), this has led some researchers to recognize explicitly

the presence of measurement error in their empirical framework.12 However, even when they allow

for measurement error, all existing studies that estimate structural models, to our knowledge,

are based on at most a single (and sometimes arbitrary), observable time series corresponding

to each variable of the model. That is, whether or not one considers measurement error in the

model estimation, it is typically assumed that a small number of data series contain all available

information about concepts of the model such as output and inßation. One critique of this treatment

of measurement errors, based on a handful of observed data series, is that it does not impose

enough structure on the measurement error process, thus giving the estimation too much freedom.

In addition, proper estimation in such a context may force researchers to choose either to ignore

measurement error in some of the variables or to constrain a priori the number of exogenous

disturbances. Wrongly omitting measurement error, or structural shocks may however lead to

distorted results.

In this paper, we propose a general empirical framework to estimate DSGE models that exploits

the information from a large panel of data series in a systematic fashion. We relax the common

assumption that theoretical concepts are properly measured by a single data series, and instead

treat them as unobserved common factors for which observed data series are merely imperfect indi-

cators. We also include information from indicators that potentially have an unknown relationship

with the state variables of the model. This framework provides an interpretation of all information

contained in a large data set through the lenses of a DSGE model.

Our framework shares important similarities with the non-structural dynamic factor models

of Stock and Watson (1999, 2002), Forni et al. (2000), Bernanke, Boivin and Eliasz (2005) and

12See, e.g., Altuùg (1989), McGrattan (1994), Anderson, Hansen, McGrattan and Sargent (1996), McGrattan,
Rogerson and Wright (1997), Schorfheide (2000), Rabanal and Rubio-Ramírez (2003) and Fernández-Villaverde and
Rubio-Ramírez (2004). Another practical motivation for adding measurement error is to avoid the stochastic singu-
larity problem that arises when there are fewer theoretical shocks than observable series.
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Giannone, Reichlin and Sala (2004). However a key di erence is that we impose the full structure of

the DSGEmodel on the transition equation of the latent factors in order to interpret the information

provided by the large data set.

The estimation involves Markov-Chain Monte-Carlo (MCMC) techniques which deal e ectively

with the dimensionality problem by working with marginal densities and avoiding gradient methods.

Because of the large dimension of models in a data-rich environment, direct estimation by maximum

likelihood (ML) is usually infeasible in practice. The speciÞc algorithm we use is based on the

MCMCMLE framework of Jacquier, Johannes, and Polson (2004). This approach nests as a special

case, the Bayesian MCMC implementation that has been widely used recently,13 but inherits the

properties of ML estimation in other cases.

The proposed empirical framework has several advantages. First, as a consequence of the factor

structure, the idiosyncratic measurement errors can be consistently identiÞed from the cross-section

of macroeconomic indicators, and not exclusively from the dynamic structure implied by the DSGE

model. Consequently, unlike in the standard treatment described above, allowing for measurement

error does not necessarily help the model Þtting the data. It also implies that we can allow for a large

amount of measurement errors without restricting in any way the number of structural shocks that

can be identiÞed within the model. Rather than taking a stance on whether measurement errors or

structural shocks should be part of the model, we can remain agnostic and determine empirically

their relative importance. A by-product is an empirical assessment of the information content of

each indicator. Second, we can exploit the information from indicators that are not directly and

unambiguously linked to a speciÞc concept of the model. If the additional information we exploit is

relevant, it should make our estimation more e cient. This is particularly important for forecasting

exercises, and for determining more precisely the state of the economy. Third, by imposing the

structure of a DSGE model on a dynamic factor models, we endow the estimated factors with a clear

economic interpretation, which is typically absent in the macroeconomic applications of dynamic

factor models. Fourth, our empirical structural model has predictions for all series included in the

data set. It is thus possible to document to response of any variables to any structural shocks. This

also provides a more stringent test on the �reasonableness� of the estimated model. Finally, the

13See, e.g., Geweke (1999), Schorfheide (2000), Smets and Wouters (2003, 2004), Justiniano and Preston (2004).
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estimation strategy provides a natural way to document the sensitivity of the results to the priors.

We apply our estimation procedure to a state-of-the-art DSGE model based on microeconomic

foundations. The model is taken from Smets and Wouters (2004), and shares many similarities with

the model of Christiano, Eichenbaum and Evans (2005). One important Þnding is that we are able

to considerably improve the forecasts of important economic indicators of inßation, consumption,

output, and interest rates, by considering information from a larger data set in our model estimation,

and by relaxing the link between some indicators and the model�s concepts. Our results suggest

that the additional information provided by the data-rich environment is highly relevant for the

model estimation. Estimates of important model parameters such as the elasticity of intertemporal

substitution or the degree of indexation to past inßation, as well as estimated variances of exogenous

shocks di er importantly depending on the assumed link between theory and data. This arises

even though the estimated latent variables display patterns generally consistent with the variables

typically assumed to be observed. The di erent estimates also imply widely diverging conclusions

about the sources of economic ßuctuations.

The rest of the paper is structured as follows. Section 2 lays down the formal setup for an

arbitrary linear(ized) DSGE model. It explains how we relate the structural model to the large

data set, and discusses implications of the setup for a canonical real business cycle (RBC) model.

The section then proceeds with a description of the general estimation methodology. Detailed

information about the estimation is left in an appendix. Section 3, presents an application of our

approach in the context of a state-of-the-art DSGE model, the model of Smets and Wouters (2004).

It then provides the estimation results and provides results regarding the source of business cycles

ßuctuations. Section 4 concludes.

2 Data-Rich Environment

We now present a formal framework that merges a general class of dynamic general equilibrium

models with a data-rich empirical model. We then discuss the implications of this framework, both

in general terms and in the context of a canonical RBC model.
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2.1 General Framework

Let us consider a general linear (or linearized) rational expectations model of the form

+1

+1

= + (1)

= 1 + (2)

where [ ] [ |I ] denotes the expectation of some variable conditional on the informa-

tion set I available at date is a vector of non-predetermined endogenous variables, is

a vector containing predetermined endogenous variables or lagged exogenous variables (i.e., sat-

isfying +1 = +1), is a vector of exogenous variables following the process (2), is a

vector of mean-zero unforecastable exogenous disturbances (such that + = 0 for all 0)

with a diagonal variance-covariance matrix , and and are conformable matrices of

coe cients. Below, we will consider examples of dynamic general equilibrium models based on

microeconomic foundations that can be cast in the form (1)�(2). Models with additional lags,

lagged expectations, or expectations of variables father in the future can be written as in (1) by

expanding the vectors and appropriately. We assume that the information set in period is

I = { +1 for ; } so that all agents considered in the model are assumed

to know the model, its parameters, and the realizations of all variables determined in the present

and past.14 We can solve the model using standard numerical techniques,15 and express the solution

as

= (3)

= 1 + (4)

14This can be generalized. We leave the analysis with imperfect information on the part of economic agents for
future work.
15See, e.g., Blanchard and Kahn (1980), King and Watson (1998), Klein (1997), McCallum (1998), Sims (2000).
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where

is the state vector and the matrices are function of the underlying model�s structural

parameters.

In many applications, the system (1) contains identities and includes redundant variables

such as lags of variables in We will be interested in a subset of the variables in (all

known at date ), which refers only to variables characterizing the economy in period The ( × 1)

vector will typically include endogenous variables of interest for which indicators are observable.

SpeciÞcally, we deÞne

where is a matrix that selects the appropriate elements of the vector [ 0 0]0 Given (3), we can

rewrite the variables of interest as a linear combination of the state vector

= (5)

where

(6)

is entirely determined by the model parameters and the selection of variables in The evolution

of is given by (4)�(6).

In order to estimate the model we consider observable macroeconomic variables collected

in a vector We collect in a × 1 subvector =
h
1

i0
the indicators of the

variables of interest =
£
1

¤0
where and assume that the observed indicators

relate to the variables of the model according to

= + (7)
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for = 1 , = 1 where denotes mean-zero measurement error uncorrelated with

the measurement error of other indicators and where are coe cients. This can be rewritten in

matrix form as

= + (8)

where is a × 1 vector of mean-zero measurement errors, and is an ( × ) matrix

of coe cients. As each element of is supposed to be an indicator of one of the elements of

each row of the matrix will have at most one nonzero element. However, to the extent that

each variable in can be imperfectly measured by many indicators, each column of can have

many nonzero elements.

The observation equation (8) is appropriate in the case that several observable indicators relate

directly to the same variable of interest, and that the measurement error in each of the indicators

is uncorrelated with the measurement error of other indicators. For instance, if inßation based on

the GDP deßator and the CPI correspond to the same concept of inßation in the model, then one

may want to include both indicators in However, if these indicators refer actually to di erent

concepts, then at least one of them should probably not be included in In that case, it is still

possible to consider the information provided by such indicators in the model estimation. In fact,

to the extent that the theoretical model is true, all indicators observed must depend on the state

vector We thus assume that the remaining data series of which do not correspond to any

particular variable of are collected in a × 1 vector and let

= + (9)

where is a × 1 vector of mean-zero measurement errors, and is an ( × ) matrix

of coe cients. Equation (9) allows all indicators not associated with any particular variable of the

model to potentially provide information about the state vector . We propose to capture the

information from the data in in a non-structural way, letting the weights in be determined

by the data.

While the weights relating the variables of interest to their indicators can be interpreted

as structural � i.e., policy invariant � the weights relating the state vector to all other in-
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dicators do not need to be so.16 Even though (9) may not be reliable to determine the e ects of

alternative policies on the variables in information about these variables can be very useful

for the estimation of the state vector and model parameters under historical policy. Once the state

vector and model parameters are correctly estimated � using the information provided by (9) �

counterfactual exercises can legitimately be performed for all variables without using

(9) any more.

Combining (8)�(9) and using (5), we obtain the observation equation

= + (10)

where

We let the measurement errors be serially correlated, so that

= 1 + (11)

where the vector is assumed to be normally distributed with mean zero and variance . The

matrices and are diagonal.

Our empirical model consists of the transition equation (4) fully determined by the underlying

DSGE model, the selection equation (5), and the observation equation (10)-(11) which relates the

model�s theoretical concepts to the data. It contains as an important special case the measure-

ment error framework proposed by Sargent (1989). In the latter framework, each variable in

corresponds to a unique observable indicator in , so that the observation equation reduces to

= + = + In this case = 0 = = A further trivial special case is

one in which model variables are assumed to be directly measured, so that the observation equation

reduces to = = .

The key innovation here is to generalize Sargent (1989)�s framework to the case where the vector

16 In fact the weights mix the weights that the variables in would attribute to their theoretical counterpart,
with the coe cients that relate these theoretical concepts to the state vector
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of observables, may be much larger than the vector of variables in the model, i.e. ,

and that their exact relationship, summarized by , may be unknown. The interpretation is that

this large number of macroeconomic variables are noisy indicators of model concepts and thus share

some common sources of ßuctuations. This implies an observation equation with a factor structure

similar to the one assumed in the recent non-structural empirical literature which uses a large panel

of macroeconomic indicators. However, an important di erence with this literature is that, in the

present framework, the evolution of the unobserved common components obeys the structure of a

DSGE model.

The use of large information sets provides our framework with two important advantages over

the existing implementation of DSGE model estimation. First, as the latent variables and the

measurement can be identiÞed from the cross-section of macroeconomic indicators, it allows one

to identify a much richer pattern of measurement errors, even in the presence of many structural

shocks. This reduces the risk of biased estimation. Second, it has the potential to yield a more

e cient estimation procedure. To illustrate these points, consider the following special case of the

framework presented above. Suppose that, according to theory, a variable of interest, satisÞes

= + (12)

where

= 1 + (13)

and the exogenous disturbances and are iid.17 Suppose moreover that we observe an indicator

1 of In the case that 1 constitutes a perfect measure of i.e., that the observation equation

(10) is trivially 1 = the variable of interest is known. This is a standard unobserved

component model in which and can be separately identiÞed only from the restricted dynamics of

the system (12)�(13).18 Suppose instead that 1 is a noisy indicator of and that our observation

equation takes the form

1 = + 1 (14)

17This is a special case of (4)�(5), where = [ ]0, = [ ]0 = = [1 1]
18This is the model considered by Watson (1986) to estimate a stochastic trend in GDP. In his case, is GDP,

a transitory shock, is a stochastic trend and = 1.
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where 1 is iid.
19 In this case, standard techniques such as in Sargent (1989) cannot be applied to

recover the variable of interest . This is easily seen by combining (12) and (14) to eliminate the

latent variable, which yields

1 = + ( + 1 )

Here, only and the sum ( + 1 ) can be estimated.
20 As the measurement error 1 cannot

be distinguished from the true exogenous structural shock the variable of interest cannot be

estimated using (12)�(14). However, if one or more additional indicators

= + (15)

for = 2 are available, then it is possible to estimate the variable of interest, even in the

presence of measurement error. In fact, is a common factor that can be identiÞed on the basis

the observation equations (14)�(15), while the dynamic model (12)�(13) is used for identiÞcation

of the shocks.

More generally, when no more than one indicator is used for any concept of the model � i.e.,

when = as in existing implementations � both the structural shocks and the unobserved

variables have to be identiÞed entirely from the restricted dynamics of the DSGEmodel, summarized

by equations (4)�(5). In that case, having more structural shocks in the model limits the number of

independent sources of measurement errors that can be contemplated and it is di cult to formally

test whether the resulting model is properly identiÞed or not. Typically, researchers avoid these

problems by assuming either no measurement error or few structural shocks. But as argued in the

introduction, measurement errors might be quite prevalent, and if so, ignoring them would lead to

biased inference.

In contrast, one key feature of factor models with multiple indicators is that the factors can

be identiÞed by the cross-section of macroeconomic indicators alone. This implies that in our

framework with a factor structure, the large number ( ) of indicators provides enough

restrictions to identify the latent variables, and hence the measurement errors, from the observation

19This is a special case of (10) where = 1 = 1 = and = 1

20The likelihood function involves the sum of the variances of and 1 . Their variances do not enter separately.
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equation (10). As a result, we can allow for a large amount of measurement errors without restricting

in any way the number of structural shocks that can be identiÞed in the model. Rather than taking

a stance on which source of variations should be part of the model, we can remain agnostic and

determine empirically their importance.

Even when the factors can be identiÞed solely from the model dynamics, as in Sargent (1989),

considering the information from the large data set provides another important advantage, namely

e ciency of the factor estimation. A key property of factor models is that the variances of the

factor estimates are of order 1 where is again the number of indicators in A consistent

estimate of the factors can thus be obtained as (see Forni et al. (2000), and Stock

and Watson (2002), Bai and Ng (2004).) This suggests that exploiting information from a large

number of macroeconomic indicators can reduce considerably the uncertainty in the estimated

latent variables, which in turn implies a more e cient estimation of model parameters. Estimation

e ciency is then important, in particular for forecasting exercises and policy analysis, as forecasting

performance is directly related to precision in model estimates.

2.2 An Illustrative Example: A Simple RBC Model

To clarify how the empirical framework just discussed can be applied to the estimation of a DSGE

model, we Þrst discuss a simple example, the canonical RBC model (see, e.g., King, Plosser and

Rebelo (1988)) augmented with various shocks.21 This model allows us also to relate to much of

the literature on estimated DSGE models which has often considered variants of the basic RBC

model. In section 3, we estimate a more elaborate model that adds numerous frictions to a RBC

model of this kind. In the basic RBC model considered here, households maximize their lifetime

21While Kydland and Prescott (1982) and Prescott (1986) emphasized the importance of technology shocks as
a cause of business cycles ßuctuations, many subsequent estimations of RBC models found evidence for important
additional shocks. Altuùg (1989) Þnds that a single index can explain the variability in the series she considers, but
the behavior of hours worked is not well explained when she identiÞes this index with a technology shock. Christiano
and Eichenbaum (1992) Þnd that allowing for government consumption shocks and productivity shocks impoves the
Þt of the model; Bencivenga (1992) emphasizes the role of preference shocks, McGrattan (1994) the role of Þscal
disturbances, Ingram et al. (1994) focus on shocks to the depreciation rate of capital and to the level of production,
and Ireland (1997), Kim (2000), Schorfheide (2000) add monetary shocks. See also DeJong et al. (2000).
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utility which depends on consumption, and leisure, 1

0

X

=0

[log ( ) + log (1 )] 0 1 0 (16)

subject to the following restrictions

= 1 ( ) 0 1 (17)

= + +1 (1 ) (18)

where the exogenous shocks log log log
¡

¯
¢
follow mean-zero AR(1) processes. Equation

(17) indicates that output is generated using the capital stock (chosen at date 1), hours

worked, , permanent labor-augmenting technological change, assumed to grow at a constant

rate, and temporary ßuctuations in total factor productivity, . The feasibility constraint (18)

states that output is the sum of private consumption and gross investment which corresponds to

the di erence between next period�s capital stock and the current period�s depreciated capital. In

addition to the productivity shock, the model is augmented with a preference shock 0 and a

shock to the depreciation rate 0 (see Ingram et al. (1994)). Solving this household problem

yields a set of Þrst-order necessary conditions which, together with (17)�(18) and a transversality

condition, characterize the equilibrium evolution of the variables and for given

exogenous disturbances and an initial value of the capital stock. As is well known, this model

admits a unique deterministic steady state in which consumption, output, investment and the

capital stock all grow at the growth rate of while employment remains constant. As a closed-

form solution does generally not exist, the model is commonly log-linearized around the steady

state. The model�s approximate dynamics around the steady state can be written in the form (3)�

(4) where =
h
� � �

i0
=
h
� � � �

i0
and the matrices are function only of the

model parameters. Here, the lowercase endogenous variables correspond to the respective uppercase

variables divided by their growth component (e.g., ), and the circumßex denotes

percent deviations from the steady state (e.g., � log ( ¯)).

Suppose we seek to estimate the model�s parameters as well as the variables of interest in
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if they are not already known. The canonical RBC model considered here has three sources of

exogenous ßuctuations. It is common to use three observed series in the estimation.22 To perform

this estimation, we consider the transition equation (4), a selection equation = � which

corresponds to (5) when we set = � as well as the observation equation (10). Suppose that

we observe a large set of data series collected in the vector =
h

0 0
i0
As before, the ×1

vector contains indicators of the the variables of interest, namely output, consumption,

and hours worked. Let us further decompose 0 as
h

0
1

0
2

i0
where the 3× 1 vector 1

contains real GDP, real consumption, and hours worked, as measures of the variables � � � and

2 contains all remaining indicators of Let us partition the matrix accordingly

=
1

(3×3)

2
( 3)×3

(19)

and deÞne =
h
0
1

0
2

i0
where 1 is now a 3 × 1 vector. In addition, we collect in the

× 1 vector the remaining indicators, such as stock prices, money aggregates, and so on,

which are not indicators of any particular element of We consider several cases which involve

di erent restrictions of the observation equation.

Standard treatment. In the case that the variables � � � are observed perfectly, the observa-

tion equation corresponds to (10) where 1 = 3, the submatrices 2 are zero matrices, and

the measurement error 1 is equal to zero. All series included in 2 and are irrelevant

for the estimation.23 Such series do indeed not provide any additional information about � � �

since the latter are supposed to be observed perfectly.

In the case that the 1 contains only noisy indicators of � � � the standard approach

22While using fewer series may prevent us from identifying the exogenous shocks, using more than three observable
series with only three sources of exogneous ßuctuations would result in the model rejection, in the absence of measure-
ment error. In fact, as Ingram et al. (1994) point out, since the number of exogenous disturbances is smaller than the
number of endogenous variables, one can Þnd particular combinations of endogenous variables that are deterministic,
so that their variance-covariance matrix is singular. As this is not true in the data, the model is sure to be rejected.
The model is said to be stochastically singular.
23 In a ML estimation context, the inclusion of these series in reduces the likelihood by a constant, which has

no e ect on the estimation. These series are implicitely assumed to be pure measurement error, denoted by 2 and
.
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proposed by Sargent (1989) is commonly applied.24 In this case, the matrix involves again

1 = 3 2 and are zero, but all elements of the vector of measurement error are nonzero.

According to this standard approach, the restrictions of the dynamic model are used to estimate

the unobserved variables � � � However, as illustrated in the previous simple example, such

an approach may have trouble disentangling the structural disturbances from the measurement

error, and thus may not be able to identify the latent variables of interest, Unfortunately,

it is di cult to test in practice whether or not the latent variables and the model parameters are

actually identiÞed.

An alternative treatment of measurement error: Relaxing restrictions on 2 Once

one acknowledges the presence of measurement error, the observed series contained in 1 are

merely indicators of the concepts that one seeks to measure. While real GDP, for instance, may

be a good indicator of the concept of output, it is likely to include measurement error that is

uncorrelated with measurement error in other indicators of output such as the index of industrial

production. There is thus scope in using additional indicators to better estimate the concepts that

we are interested in.25

This can be done generally and systematically in our empirical framework. It su ces to include

all relevant indicators in and to let them be related to the respective concepts in . For

instance, if 2 contains other indicators of output, such as the index of industrial production, we

may estimate the latent factor � by letting the Þrst column of 2 have nonzero entries, in addition

to maintaining 1 as a 3× 3 identity matrix. All indicators of output collected in 2 are thus

assumed to have one common factor, � on which they �load� with a particular weight that is

then estimated. Each of these indicators is also assumed to have measurement error uncorrelated

with the measurement error of other indicators. Similarly, if 2 contains indicators of � and �

one can let elements in the corresponding columns of 2 be unrestricted so that the respective

indicators can load on � and � with weights to be estimated.

24See, e.g., Altuùg (1989), McGrattan (1994), Hall (1996), McGrattan, Rogerson and Wright (1997), and Ireland
(1999).
25 In the same spirit, Prescott (1986) used two di erent indicators of hours worked, one based on the employer

survey and the other one based on the population survey to calibrate the labor elasticity of output in his RBC model.
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Using information to estimate the state vector: Relaxing restrictions on So far, we

have assumed that is a zero matrix. We have thus implicitly assumed, as do current estimations

of DSGE models, that the data series in which do not measure any speciÞc variable of the

vector � here output, consumption or hours worked � do not contain any additional information

about the remaining latent variables.26 However, if the theoretical model is true, all data series are

determined by the state vector, in addition to the measurement error. Data on, e.g., stock prices,

commodity prices, monetary aggregates and so on could thus be informative about the current state

of the economy, even though the model does not speciÞcally model such concepts. For instance,

if oil prices or commodity prices are related to the concept of total factor productivity among

other state variables, accounting for the information that these series provide should result in a

more e cient estimation.

2.3 Estimation Procedure

We now discuss the general procedure for the estimation of the parameters and the latent variables

(in ) of the structural model (1). This model results in an equilibrium characterized by

(3)�(5). We suppose that the observation equation takes the form (10)-(11), where we allow

to potentially contain a rich set of macroeconomic indicators, and where involves possibly few a

priori restrictions. Doing so obviously comes at a cost. The high-dimensionality of the problem,

and the presence of unobserved variables, considerably increase the computational burden of the

estimation. In particular, methods that rely on explicitly maximizing the likelihood function or the

posterior distribution appear impractical (see Bernanke, Boivin and Eliasz (2005)).

To circumvent this problem, we consider a variant of a Markov Chain Monte Carlo (MCMC)

algorithm.27 There are two key general features of these simulation-based techniques that help

us in the present context. First, rather than working with the likelihood or posterior directly,

26Several studies, including Christiano (1988), Altuùg (1989) and McGrattan (1994), assume that the capital stock
is observed, so that it would be in They however assume that other variables are latent. McGrattan (1994),
for instance, using a more elaborate variant of the RBC model presented here assumes that output, investment,
government purchases, hours of work, the capital stock and various tax rates are observed, while housing starts and
past hours (weighted) are assumed to be latent.
27See Johannes and Polson (2004) for a survey of these methods and Geweke (1999). Recent applications to the

estimation of DSGE models include Schorfheide (2000), Smets and Wouters (2003, 2004), Rabanal and Rubio-Ramírez
(2003), Fernández-Villaverde and Rubio-Ramírez (2004) and Justiano and Preston (2004).
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these methods approximate the likelihood with empirical densities, thus avoiding gradient methods.

Second, by exploiting the Cli ord-Hammersley theorem, these methods sample iteratively from a

complete set of conditional densities, rather than from the joint density of the parameters and the

latent variables. This is particularly useful when the likelihood is not known in closed form, as it is

the case in our application. Moreover, by judiciously choosing the break up of the joint likelihood

or posterior distribution into the set of conditional densities, the algorithm deals e ectively with

the high dimensionality of the estimation problem.

The particular variant we consider is the MCMCMLE approach recently proposed by Jacquier,

Johannes and Polson (2004). From a mechanical point of view, the distinguishing feature of this

approach, compared to the Bayesian MCMC approach considered so far in the macro literature, is to

rely on a data augmentation technique, that consists of sampling, at each iteration, independent

copies of the unobservable state variables. When is equal to one, so that a single sequence of the

unobservable state variable is drawn, the estimation corresponds to the standard Bayesian MCMC

approach. But for greater than one, the importance of the likelihood is increased relative to

the prior. Jacquier, Johannes and Polson (2004) show that the resulting chain of parameter draws

converges to the Þnite-sample MLE estimate and has all the usual asymptotic properties of MLE.

Incidentally, a particularly nice feature of this approach is that it allows us to compare the results

for di erent values of , and thus to assess the importance of the priors in our results.

Like in existing Bayesian implementations of the MCMC algorithm, the structural parameters

of equation (1) are drawn using a Metropolis step, since their distribution conditional on the

unobservable state variables and the parameters of equations (3)�(4) are not known in closed form.

The unobservable states are drawn using Carter and Kohn (1994) forward-backward algorithm.

The remaining parameters are drawn directly from their known conditional distributions. The

precise description of the algorithm is provided in Appendix A.
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3 Application: Estimating a DSGE Model

3.1 Model

We now apply the data-rich environment just described to a state-of-the-art DSGE model based on

microeconomic foundations. The model that we consider is taken from Smets and Wouters (2004).

It builds on the canonical RBC model presented in the previous section, as well as Rotemberg and

Woodford (1997), Christiano, Eichenbaum and Evans (2005) and others, by adding various frictions

and allowing for ten di erent types of exogenous disturbances. The canonical RBC model can be

viewed as a special case of the Smets and Wouters (2004) model in the case of no frictions. The

Smets and Wouters model has received much attention recently, in part because of its success in

Þtting actual data, both in the U.S. and in the Euro area (see Smets and Wouters, 2003, 2004).

As Smets and Wouters (2004) report, this micro-based model performs also surprisingly well in

terms of out-of-sample predictions, in some cases outperforming standard VAR and Bayesian VAR

models.

A derivation of the non-linear model from Þrst principles can be found in Smets and Wouters

(2004). Here, we merely summarize the important aggregate and log-linearized equilibrium condi-

tions of the model. The model involves optimizing households that consume goods and services,

supply specialized labor on a monopolistically competitive labor market, rent capital services to

Þrms, and decide how much capital to accumulate. Firms choose the desired level of labor and

capital inputs, and supply di erentiated products on a monopolistically competitive goods market.

Prices and wages are re-optimized at random intervals as in the Calvo (1983) model. When they are

not re-optimized, prices and wages are partially indexed to past inßation rates and to the central

bank�s inßation target.

More precisely, the model assumes that there exists a continuum of households who derive

utility from consumption and leisure. The utility function is non separable in consumption and

leisure as in King, Plosser and Rebelo (1988), to allow for a steady state growth path driven by

labor-augmenting technological progress, and involves consumption in excess of an external, time-

varying habit stock. While households may be heterogenous regarding their wage proÞle and hours

worked, there exists a complete set of state-contingent securities which allows households to pool
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their risks, so that they all make the same consumption and investment decisions. The Euler

equation for optimal consumption decisions log-linearized around the deterministic steady state

with constant growth and zero inßation is given by

=
1 +

1 +
1

1 +
+1 +

1

(1 + ) (1 + )
( +1)

(1 )

(1 + )
( +1) + (20)

where and represent percent deviations of consumption and hours worked from their respective

steady state, denotes deviations of the quarterly nominal interest rate from its steady-state level,

and is quarterly inßation. The parameter (0 1) measures the degree of habit formation and

0 indicates the curvature of the utility function with respect to consumption, and (1 + )

is the steady-state markup of the real wage due to market power on the labor market. In the

absence of habit formation, (20) states that consumption depends negatively on the ex-ante real

interest rate with a coe cient 1 (corresponding to the elasticity of intertemporal substitution)

and positively on expected future consumption. When 0 current consumption is also higher

the higher past consumption. When 1 hours worked and consumption are complementary.

Finally the exogenous disturbance is a preference shocks that multiplies the entire utility function

and that is assumed to follow and AR(1) process with degree of serial correlation

On the labor market, households are assumed to re-optimize their wages given the demand

for their labor services, with a probability 1 When choosing their optimal wage they take

into account the probability that wages will not be re-optimized for some periods. Whenever they

cannot re-optimize their wages, they index them to a weighted average of lagged inßation and the

central bank�s inßation objective ¯ The degree of indexation to lagged inßation is (0 1)

Optimal wage setting by households results in the following aggregate linearized equation for the

real wage

=
1 +

+1 +
1

1 +
1 +

1 +
( +1 ¯ )

1 +

1 +
( ¯ ) +

1 +
( 1 ¯ 1)

(1 ) (1 )

(1 + ) ( + (1 + ) ) 1
( 1) +

¸
+ (21)
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where is the percent deviation of the real wage from the steady state path, is a shock to

the disutility of labor, which follows an AR(1) process with degree of serial correlation and

is an iid shock to the wage mark-up. The parameter (0 1) is the subjective discount factor,

1 0 is the elasticity of work e ort with respect to the real wage. The term in square brackets

corresponds to the gap between the actual real wage and the real wage that would prevail in the

case of ßexible prices and ßexible wages. A positive gap tends to reduce the actual real wage, and

the e ect is stronger the smaller the degree of wage rigidity, the lower demand elasticity for

specialized labor, (1 + ) and the higher the elasticity of labor supply with respect to the

real wage, 1

Households choose the capital stock which they rent to Þrms. To increase the supply of capital

services, they can either invest in future capital, or increase the utilization rate of installed capital.

Investment in capital takes one period to be installed and involves adjustment costs which assumed

to be function of the change in investment, as in Christiano, Eichenbaum and Evans (2005). The

relative e ciency of investment goods is also assumed to be a ected by an exogenous shock which

follows an AR(1) process with degree of serial correlation The log-linearized Euler equation for

optimal investment is given by

=
1

1 +
1 +

1 +
+1 +

1

1 +

¡
+

¢
(22)

where denotes real investment and is the real value of capital, in percent deviations from

steady state, and is a measure of adjustment costs. The real value of capital follows in turn

= ( +1) +
1

1 + ¯
+1 +

¯

1 + ¯ +1 + (23)

so that the real value of capital relates negatively on the ex-ante real rate of interest, and positively

on the expected future real value of capital and the expected future rental rate of capital

The mean rental rate of capital ¯ and the depreciation rate of capital, are assumed to satisfy

= 1
¡
1 + ¯

¢
The exogenous shock assumed to be iid, is meant as a shortcut for changes

in the external Þnance premium. The capital accumulation equation then involves both the ßow of

22



investment, and its relative e ciency

= (1 ) 1 + 1 + 1 (24)

There is a continuum of Þrms that hire aggregates of labor and capital (adjusted for e ective

utilization) as inputs, combine them using a Cobb-Douglas production function with constant re-

turns to scale, and a capital share (0 1) and supply a di erentiated intermediate good on a

monopolistically competitive market. In producing their goods, all intermediate Þrms face a Þx

cost and a common stationary technology shock, assumed to be AR(1) with degree of serial cor-

relation and labor augmenting technological progress growing at a constant rate. Intermediate

goods are then aggregated into a single Þnal good used for consumption or investment. Minimizing

the Þrms� cost of production results in the linearized demand for labor

= + (1 + ) + 1 (25)

This implies that for a given stock of capital, the labor demand depends negatively on the real

wage and positively on the capital stock and the rental rate of capital, where 0 is the inverse

of the elasticity of the capital utilization cost function.

Similarly to households on the labor market, Þrms are assumed to re-optimize their prices given

the demand for their goods, with a probability 1 When they cannot re-optimize their prices,

they index them to a weighted average of lagged inßation and the central bank�s inßation objective

¯ with a degree of indexation to lagged inßation (0 1) Optimal price setting by Þrms results

in the following aggregate linearized equation for inßation

¯ =
1 +

( +1 ¯ ) +
1 +

( 1 ¯ )

+

¡
1

¢ ¡
1

¢
¡
1 +

¢
h

+ (1 )
i
+ (26)

As in the canonical New Keynesian supply equation, actual inßation depends on expected future

inßation and on the marginal cost, here represented by the expression in brackets. The marginal
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cost depends in turn on the real rental rate of capital, the real wage, the productivity shock. Here

it is the deviation of inßation from the central bank�s inßation objective rather then the level of

inßation that enters the equation, due to the assumed price indexing. To the extent that prices are

indexed to lagged inßation, the lagged inßation also a ects current inßation. The exogenous shock

is assumed to be iid and refers to exogenous ßuctuations in the price mark-up.

The linearized goods market equilibrium condition can then be written as

= (1 ) + + + ¯ (27)

=
h

+ 1 + + (1 )
i

(28)

where is the steady-state capital-output ratio, is the steady-state government spending-

output ratio, and is one plus the share of Þxed cost in production, and is again the inverse of

the elasticity of the capital utilization cost function. Government spending (in percent deviation

from steady state, times ), is assumed to evolve exogenously and to follow and AR(1) process

with serial correlation While the Þrst equation corresponds to the aggregate demand side for

output, the second equation results from aggregate production.28

The model is closed with a speciÞcation of an empirical monetary policy reaction function.

Here, we assume that monetary policy follows the generalized Taylor rule

= ¯ + (1 ) [ 0 ( ¯ ) + 1 ( 1 ¯ 1) + 0 + 1 1]

+ ( 1 ¯ 1) + (29)

where is an iid monetary policy shock. The speciÞcation considered here di ers slightly from

the one in Smets and Wouters (2004) in terms of the response to output. While we suppose that

the central bank responds to actual output ßuctuations (in deviations from the steady-state trend),

Smets and Wouters (2004) assume that the central bank responds to deviations of output from the

output that would obtain in the case of ßexible prices and ßexible wages.29

28 In the Þrst equation, we corrected the equilibrium condition indicated in Smets and Wouters (2004), adding the
term ¯ as shown in Onatski and Williams (2004).
29Their �output gap� may be considered more appropriate as it corresponds to the welfare relevant output gap,

in the context of this model. It however di ers substantially from empirical measures of �output gap� or the CBO�s
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The model is thus summarized by the ten equations (20)�(29). It involves ten endogenous

variables and ten exogenous disturbances, six of them auto-

correlated ( , , ¯ ) and four iid ( ) The system can then be written as in

(1), and can be solved using numerical techniques to obtain a solution of the form (3)�(4), where

is a vector of endogenous non-predetermined variables, contains predetermined endogenous

variables as well as lagged exogenous variables, and is the vector of innovations to the 10 shocks.

In the estimation, we will use indicators of the following vector of variables of interest

= [ ]0

This vector is related to the state vector

=
h

1 1 1 1 1 1 1 ¯ 1 ¯ 1

i0

through (5)-(6). This state vector follows a law of motion of the form (4).

3.2 Implementation of the Estimation

We now proceed with the model estimation. We consider several cases each involving di erent

restrictions on the observation equation (10). The Þrst case refers to the standard estimation

with a small set of data series, assuming that there is no measurement error. This case e ectively

attempts to replicate the results of Smets andWouters (2004). In other cases, we apply the proposed

empirical framework using a larger data set, and consider various restrictions on the matrix and

the vector of measurement errors .

3.2.1 Prior distributions of the parameters

In all estimations, we assume the same prior distributions as in Smets and Wouters (2004). The

prior distributions are summarized in Table 1 and are discussed in more details in Smets and

Wouters (2004). As in Smets and Wouters (2004), Þve of the structural parameters are calibrated,

measure. In addition, their measure of output gap requires the speciÞcation of a signiÞcantly larger model, as the
ßexible-price, ßexible-wage counterpart to the equations mentioned above need to be adjoined to the model, to
determine the ßexible-price, ßexible-wage level of output.
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as they are di cult to estimate from percent deviations from the steady state. The discount

rate is set at 0.99, the quarterly depreciation rate is set at 0.025, the share of consumption

(1 ) and investment ( ) are set at 0.65 and 0.17, which implicitly deÞne and .

The capital-income share in the production function, is set at 0.24. One di erence with respect

to Smets and Wouters (2004) involves the parameters of the policy rule which we assume takes the

form of a generalized Taylor rule. The (long-run) response of the (annualized) federal funds rate

to (annualized) inßation is assumed to be normally distributed with a mean of 1.5 and a variance

of 0.5, and the response to detrended output is assumed to have a mean of 0.5 and variance of

0.2. The degree of inertia in monetary policy, or the response to the lagged interest rate is beta

distributed with a mean of 0.75 a standard deviation of 1.

3.2.2 Data

Smets and Wouters (2004) estimate their model using quarterly U.S. data starting in 1957. For

comparability with their results, we also use as long a sample as possible. However, because we

use a much larger data set which includes series that start in 1964, our sample extends from

1964:1 to 2002:3. Our large data set contains 99 macroeconomic indicators broadly divided into 11

categories.30 Details are provided in Appendix B. Seven data series, included in the vector 1

are however worth emphasizing as they are used to normalize the seven concepts of the model

included in the vector They are the series used by Smets and Wouters (2004) for the estimation

of their model. For each of these series, we normalize the corresponding weights in to 1. Output

( ) is normalized to real GDP. Consumption ( ) and investment ( ) are normalized respectively

to personal consumption expenditures and Þxed private domestic investment.31 The labor input

( ) corresponds to hours worked per person.32 All preceding series are expressed in per capita

terms by dividing with the population over 16. The real wage ( ) is normalized with the hourly

30This data set is an updated version of the data set used in Benanke, Boivin and Eliasz (2005) but discards
the series that were discontinued as well as interest-rate spreads. It includes however the series used by Smets and
Wouters (2004). The categories are: real output, compensation and wages, employment and hours, consumption,
investment, stock prices, exchange rates, interest rates, money and credit, prices and some miscellaneous indicators.
31The nominal series for consumption and investment are deßated with the GDP deßator, as in Altig, Christiano,

Eichenbaum and Linde (2003), and Smets and Wouters (2004).
32As in Smets and Wouters (2004), average hours of the nonfarm business sector are multiplied with the civilian

employment to account for the limited coverage of the nonfarm business sector, compared to GDP.
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compensation for the nonfarm business sector, divided by the GDP deßator. We express all these

series in natural logs and remove a linear trend, so that they are expressed in percentage deviations

from the trend, consistently with the model concepts. Inßation ( ) is measured as the quarterly

percentage change in the GDP deßator. The nominal interest rate ( ) is the Federal funds rate.

Both inßation and the interest rate are demeaned, to be consistent with the model�s concepts.

Smets and Wouters (2004) assume that in steady-state, the above series are all growing at the rate

of labor-augmenting technological progress, and they estimate their model imposing the common

trend. This assumption is unfortunately rejected by the data (see Del Negro, Schorfheide, Smets

and Wouters, 2004). To circumvent this issue, we detrend all series before the model estimation,

so that the model parameters are estimated on the basis of deviations from the steady state.

3.2.3 Alternative speciÞcations of the observation equation: Five cases

To assess the importance of adding more information, we consider Þve di erent speciÞcations of the

empirical model, assuming di erent sets of restrictions on the observation equation, i.e., di erent

assumptions on the link between the model and the data.

� Case A corresponds to the standard estimation with a small set of data series, assuming

that there is no measurement error. This case e ectively attempts to replicate the results of

Smets and Wouters (2004).33 The seven key model variables included in are assumed to be

perfectly observed, and only the associated time series mentioned above � included in 1

� are used in the estimation. In terms of our general notation, the observation equation

(10) is restricted such that 1 = 7, the submatrices 2 are zero matrices, and the

measurement error 1 is equal to zero, so that 1 =

In all other cases, we maintain the assumption that the nominal interest rate is perfectly ob-

served, and that the six other indicators collected in 1 are closely related to the concepts of the

model, . That is, we maintain throughout the restriction that 1 = 7 In cases B to E however,

we assume that the elements of except for the interest rate are a ected by measurement errors.

33As mentioned above, our estimation di ers slighlty from the baseline case of Smets and Wouters (2004) for the
following reasons: We consider a slightly di erent policy rule, and we detrend the data before estimating the model
parameters instead of estimating a common trend (the growth rate of technology) with the rest of the model.
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� Case B uses the same small set of data series as in case A, but allows for measurement error.

The observation equation thus involves the same restrictions on the matrix as in case A,

but allows for a nonzero vector of measurement errors 1 (except for the Þrst element,

which corresponds to the interest rate). The observation equation is 1 = + 1 The

estimation corresponds to the procedure proposed in Sargent (1989), where the restrictions

of the dynamic model are used to estimate the latent variables in

As discussed in Section 2, case B is likely to be a ected by identiÞcation problems due to

the di culty to disentangle the structural disturbances from the measurement errors 1 , in

the face of a large number of shocks and measurement errors. Such problems can be addressed

by considering a larger data set which can more easily identify the latent variables of interest by

separating the idiosyncratic measurement errors from the common factors,

� In Case C, we add several other indicators of the imperfectly measured variables. Besides the

seven primary indicators described above and included in 1 , we add thirteen new indica-

tors related to the variables in and which we collect in a vector 2 These additional

indicators are selected on the grounds that they cannot be a priori rejected as indicators of

the variables of interest.34 The observation equation for this second set of indicators is of

the form 2 = 2 + 2 where each element of 2 is allowed to follow an AR(1)

process. The matrix 2 which we estimate, is restricted to have as many nonzero elements

per column as there are new indicators in 2 of the corresponding variable in . It has

however no more than one nonzero element per row as each indicator is assumed to load on

only one variable.

As pointed out in section 2, the case C may be appropriate if the new indicators 2 selected

relate directly to the variable of interest However if some of these indicators correspond to

di erent concepts than the ones considered in the model, they may distort the estimation. To

address this potential problem we consider the following case.

34For consumption, the new indicator is real personal consumption expenditures excluding food and energy, for
investment we add real Þxed investment (i.e., omitting inventory investment), for inßation we add the indicators
based on the deßator for personal consumption expenditures, the CPI, and the CPI less food and energy. For the
real wage, we add indicators based on compensation of employees, personal income, personal income less transfer
payments, average hourly earnings in manufacturing and in construction.
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� In Case D, we use the same variables as in case Case C. This case however generalizes Case

C by leaving the loading matrix for the thirteen new indicators as totally unrestricted. The

idea underlying this case is that the additional indicators considered should be related to the

state vector but are not necessarily linked to a single variable of interest contained in

The observation equation for the new variables can now be written as = +

where each element of is assumed to follow and AR(1) process and the loading matrix

is left unrestricted and is estimated. This setup provides a ßexible way to exploit the

information in the expanded data set about the state of the economy.

� Finally Case E exploits the information from our entire data set. While the seven primary

indicators contained in 1 remain linked to the model�s concepts as in Case B, all other

indicators are assumed to be related to the state vector in a nonstructural way, and all

of the weights of the corresponding matrix are estimated. Again the motivation for such

a speciÞcation comes from the fact that if the theoretical model is true, all data series are

determined by the state vector, in addition to the measurement error. Accounting for the

information that these series provide should thus result in a more e cient estimation.

3.3 Empirical Results

We now describe brießy the empirical results for cases A to E. We focus on the discussion of the

estimation results for the standard Bayesian estimation (i.e., = 1) and also report the results for

MCMCMLE estimation with = 5 The fact that the results are similar in both cases suggests

that the priors on the model parameters play little role for our main conclusions. [Results for the

case E when = 5 are incomplete and will be provided in a later version].

In case B, we assume the measurement error, 1 to be serially uncorrelated, as this restrictions

is necessary to identify the model parameters. Whenever we let 1 to be serially correlated,

we obtain estimated model parameters that are perfectly aligned with the prior distributions,

suggesting that the data is uninformative, i.e., that the parameters are unidentiÞed. As conjectured

in Section 2, this highlights the fact that for models with a large number of structural shocks, and

using a small set of observable variables, the extent to which measurement error can be allowed

29



is severely limited. For comparison with this standard approach (case B), we assume that the

measurement error in the primary indicators is also iid in cases C, D, and E (even though we can

relax this assumption in these cases, and still be able to identify the model parameters). We however

allow the measurement errors of the secondary indicators ( 2 or ) to be serially correlated.

By restricting measurement errors to be iid, we may understate the amount of measurement error

in the primary indicators 1 as the deviations between these indicators and the estimated latent

factor are by assumption idiosyncratic. This guarantees that the departures from the standard

setups (cases A and B) are relatively small. Nonetheless, as we show below, even for such small

departures, there are important beneÞts from exploiting information from a richer data set.

3.3.1 Measurement errors vs. variations explained by the model

Table 2 reports the fraction of the variance of the seven key time series explained by the model, the

remaining fraction being due to the measurement error. In all cases, the variance of the Federal

funds rate is fully explained by the model, as this rate is assumed throughout to provide a perfect

measure of the short-term interest rate. Similarly, the fraction of the variance explained by the

model is 1 by assumption, for all seven key variables in case A. Once measurement error is allowed

for, i.e., in cases B, C, D and E, we Þnd some evidence of measurement error for all relevant series,

but most notably for the GDP deßator, as a measure of inßation. In fact, we Þnd that at least 17%

of the variations in the quarterly percentage changes in GDP deßator are due to measurement error

(when = 1). As a result, not accounting for measurement error in inßation or in the real wage, as

in case A, may lead to distorted results. This may potentially bias all parameter estimates of the

model. We Þnd little measurement error for the other variables when we focus only on the seven

primary time series (case B). However, when we consider additional indicators (cases C, D, E),

we Þnd that between 6% and 34% of ßuctuations in the real wage series are due to measurement

error.35

Figures 1 and 2 reports the time series of the six variables measured with error in cases B, C,

D and E. The solid lines plot the data, while other lines plot the estimated corresponding latent

35Again, as mentioned above, the relatively small amount of measurement error found in series other than GDP
inßation may be partly due to the assumption of iid measurement errors for these indicators.
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variables on the respective cases. (The 10%-90% standard error bands are not plotted but would

be so tight that they would be almost indistinguishable from the other series) Overall, these plots

conÞrm the results found in Table 2. First, even in case E where we exploit the information from a

large number of indicators in an unrestricted way, the estimated latent variables display behavior

very similar to the variables of reference. As we expect from the results in Table 2, the estimated

inßation measure shows the largest discrepancies with its variable of reference, the GDP deßator.

As Figure 2 reveals, though, while most of the high frequency ßuctuations in the GDP deßator are

attributed to measurement error, the lower frequency ßuctuations in the estimated latent inßation

are similar to those of the measured series.

Based on these results, it is important to stress that the relative performance of the various

cases that we document below will thus be driven by arguably small and reasonable departures

from the standard case.

3.3.2 Forecasting performance

So far, we have provided some evidence of measurement error, and have argued that it is quanti-

tatively important at least in the inßation series. To the extent that there is measurement error,

it is important to consider it in the model estimation. Failing to account for it could distort all

estimated model parameters. However, once one acknowledges the importance of measurement

error, one still has the choice between di erent speciÞcations of the observation equation, such as

in cases B, C, D, and E. As discussed above, estimates of these key variables are similar regardless

of the case considered (see Figures 1 and 2). Nevertheless, these cases may perform di erently in

forecasting various economic variables. One way to evaluate these speciÞcations is thus to compare

their performance in forecasting the key variables of interest.

For each case, using the model estimated over the entire sample, we forecast each variable

for various horizons (1 to 8 quarters ahead) for the 1990:1-2003:2 period.36 Figure 4 reports the

percentage gain in forecasting performance for the cases B, C, D and E, relative to the benchmark

case A. This percentage gain is measured by the percentage reduction in the root mean squared

36Because of the time involved in the estimation of each case, we did not re-estimate the model at each period, as
is often done. The end of sample is in fact 2003:2 minus the forecasting horizon considered.
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error (RMSE) of forecasting relative to the RMSE of case A. For reference, we also report the

forecasting performance of a standard VAR involving the seven key variables,37 relative to the one

of case A.

Figure 4 reveals several key points. First, the forecasting performance of the DSGE model in

case A (i.e., without measurement error, as in Smets and Wouters, 2004), is comparable and in

some cases better than the one of the VAR. This model provides better forecasts than the VAR for

interest rates, inßation after three quarters, consumption at long horizons, and employment and

investment at short horizons (this can be seen by the fact that the solid line lies below 0 in these

cases.) This is consistent with the Þnding of Smets and Wouters (2004) according to which their

model is able to outperform VAR forecasts in some cases.

Second, once we allow for measurement error (case B) and we use standard techniques as in

Sargent (1989), the forecasting performance of the model is overall worse than in case A. In fact,

allowing for measurement error in all series but the federal funds rate results in poorer forecasts

except for inßation. For output, consumption, hours worked, and the real wage, the RMSEs of

forecasts are around 50% (or more) higher than they are in the case that no measurement error is

assumed (case A). Even one to two quarters-ahead forecasts of the Federal funds rate yield RMSEs

of about 40% higher than in case A.

Third, we Þnd that exploiting the information from a larger data set can lead to important

forecasting improvements. The best overall forecasting performance for horizons less than four

quarters is achieved by case D which again allows for measurement error but estimates the model

based on a larger set of indicators (the seven primary indicators plus 13 new indicators) in an

unconstrained way. This speciÞcation achieves a forecasting performance of between 25% and 45%

higher than case A for real consumption. It also provides the best forecasts of the Federal funds

rate at all horizons, and the best short-run forecasts of inßation, with a forecasting performance

of about 35% better than in case A in the Þrst couple of quarters. The fact that in case D, the

short term forecasts of inßation (as measured by the GDP deßator) are so good is quite remarkable,

given that ßuctuations in the GDP deßator have been found to contain important measurement

error. For real GDP, real investment, hours worked and the real wage, the forecasting performance

37The lag lenght of the VAR, selected by BIC, is one.
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of case D is about the same as in case A.

Case E, which contains many more data series than case D does not seem to perform better

than case D in terms of forecasting, except for consumption. The lower-right panel of Figure 5

reports an overall measure of forecasting performance based on the log determinant of the matrix

of RMSEs. It is clear from that Þgure that case D dominates all other cases reported including the

VAR, at short horizons.

Finally the case C, which also allows for measurement error but provides a tighter link between

the model variables and the 13 additional indicators, does generally not forecast as well as case D,

except for output. The ability of case C to forecast the seven benchmark indicators is generally

better than in case B, especially for real GDP, real consumption, hours worked, the real wage, and

better over short horizons for the Federal funds rate. Nevertheless the forecasting performance of

case C is poor for inßation.38 The fact that Case D performs overall better than case C suggests

that some of the restrictions imposed on the matrix 2 in case C may be too restrictive. As a

result, our preferred speciÞcation with measurement error is case D.

Figure 6 reports very similar forecasting performances for cases A, B, C, D in the case of

the MCMCMLE estimation with = 5 As mentioned above, the fact that the results are very

similar in both cases suggests that the priors on the model parameters play little role for our main

conclusions.

Additional information could help forecasting either because it provides better estimates of the

model parameters or because it provides more accurate estimates of the true state of the economy.

To disentangle between these two possible explanations, we compute the forecasting performance

of a VAR in which the 7 macroeconomic series used by Smets and Wouters (2004) are replaced with

the estimates of the corresponding latent variables obtained in case D, i.e., exploiting information

from the larger data set. One way to interpret this VAR is to view it as a factor-augmented VAR in

the sense of Bernanke, Boivin and Eliasz (2005), where the factors have been estimated using the

38The fact that in case C, the forecasts of inßation as measured by the GDP deßator are worse than in other cases
should however not be too surprising. In fact, the latent inßation concept corresponds to the common component to
all indicators of inßation, and thus di ers from the inßation based on the GDP deßator, given that CPI inßation and
other indicators behave somewhat di erently. As a result, even if the model in case C is able to forecast accurately
true inßation, there is no guarantee that it ought to forecast the inßation rate based on the GDP deßator, given that
about 25% of the ßuctuations in the GDP deßator are due to measurement error (see Table 2).
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structure of the DSGE model. Figure 7 reports the forecasting performance of this VAR (denoted

by D-VAR), along with the forecasting performance of the DSGE model in case D, and the standard

VAR with series from Smets and Wouters (2004). As indicated in Figure 7, the D-VAR performs

even better than the other forecasting models, achieving an forecasting performance of about 15%

higher than case A at all horizons considered. The fact that the forecasting performance of the

D-VAR is higher than the one of case D suggests that once the state of the economy has been

properly estimated, the structure of the DSGE model does not help in improving the forecasting

performance. One can thus infer from this that the improvement in forecasts comes primarily from

the use of more information in the estimation of the model and the state of the economy. It is

important to stress, however, that the model is necessary for the estimation and the identiÞcation

of the state of the economy.

Overall, this forecasting exercise leads to some important implications. First, as in Smets and

Wouters (2004), the results suggest that it is possible to obtain a good forecasting performance

from a fully-speciÞed structural model, compared to a VAR. Second it shows that even though

measurement error is estimated to be small for most variables it can have an important inßuence

on the forecasting performance of the model. Third, simply allowing for measurement error as in

Case B is not enough. There is a clear beneÞt from exploiting more information. Overall these

results support our conjecture that there is a scope to exploit more information in the estimation

of DSGE models.

An important remaining question is whether these alternative empirical models, and Case D

in particular, lead to di erent conclusions about the structure of the economy and the source of

business cycles than one obtains in the absence of measurement error.

3.3.3 Implications of model estimates

Table 1 reports the parameter estimates (the median of the posterior distribution) together with

the estimated standard errors. Overall, the estimated structural parameters remain relatively

unchanged in all cases considered.39 There are however some notable exceptions. In case D, the

39The estimated parameters for case A are also similar to those reported in Smets and Wouters (2004) except for
some variances of shocks, which are due to di erences in normalizations of the shocks.
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curvature of the utility function (the inverse of the elasticity of intertemporal substitution in the

case of no habit persistence), is sensibly higher than in the other cases, suggesting that once

more measurement error is accounted for, changes in the real interest rate have a smaller e ect on

consumption. Such a parameter is certainly crucial in particular to assess the e ects of monetary

policy changes on consumption. Moreover, the estimate of the inverse of the labor supply elasticity,

is smaller in case D than in case A, suggesting that once measurement is accounted for, a

change in the real wage has a larger e ect on labor supply. In addition, the estimate of the degree

of price indexing to lagged inßation, is signiÞcantly smaller in cases D and E than in other cases,

including the case in which measurement error is not allowed.

The most important way in which case D (and case E) di ers from the other cases is that the

estimated variances of the exogenous shocks tend to be much smaller, in particular than in case

A. This can be seen further in Figures 3 and 4 which plot the estimated time series for the state

variables such as the capital stock and the exogenous shocks. Again, case D distinguishes itself

from the other cases (especially from case A) by displaying substantially smaller ßuctuations in

exogenous shocks, in particular in the investment shock the equity premium shock the price

markup shock and wage markup shock . Such a Þnding is crucial to assess importance of

particular shocks in driving business cycle ßuctuations. Moreover, it has important implications

concerning the number of structural shocks that are required in DSGE models. In particular,

while Smets and Wouters (2004) argue that 10 shocks are required, our best performing forecasting

model, case D, suggests that there might in fact be too many shocks in the model. For instance,

while Table 3 reports that cost-push shocks to prices are estimated to be responsible for 28% of

the variance in inßation and 22% of the variance in real wages in case A (which is consistent with

the Þndings of Smets and Wouters, 2004), these shocks have insigniÞcant e ects in case D, when

measurement is accounted for. An intuitive explanation for these results is that these additional

shocks might be needed in case A to capture the high frequency movement in inßation that are

identiÞed under case D as measurement error.

One notable exception, however, is the monetary policy shock, which appears to be more im-

portant in data-rich environments (cases D and E) than in cases A and B. While monetary policy

shocks contribute little to the variance of the variables in case A (except for the nominal interest
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rate), they have a much bigger e ect once we account for measurement error (case D). In the latter

case, 17% of the variance in output and 19% of the variance in consumption is due to monetary

policy shocks, eight quarters following the shock.

The state variables displayed in Figures 3 and 4 reveal broadly similar patterns in cases A, B,

C, D and E. They however show some important quantitative di erences that are worth noting.

For example, while the estimated government expenditure shocks are roughly the same for cases

that allow for measurement error, they di er substantially when no measurement error is allowed

for (case A).

Finally, Table 1 shows that most standard error of parameter estimates are much smaller for

the cases D and E than in other cases. As expected, using information from a larger data set in an

unconstrained way allows us to increase the e ciency of the estimation.

4 Conclusion

Recent DSGE models have achieved important successes in terms of their ability to Þt the data

and to forecast. As a result, such models are given more attention for policy analysis. Despite

the sophistication of these models, existing empirical applications have maintained one important

assumption: that a small number of data series is su cient to estimate the model. This is however

at odds both with the fact that market participants and central banks monitor a large number

of data series to assess the state of the economy, and with the growing evidence from empirical

factor models according to which a large set of macroeconomic variables may in fact be needed to

characterize the evolution of the economy.

In this paper, we have proposed a general framework that exploits the information from a

data-rich environment for the estimation of a general class of DSGE models. In this framework,

measurement error provides a scope for using additional indicators in the empirical model. We

apply this estimation strategy to a state-of-the-art DGSE model that has been recognized for its

empirical success.

Our results suggest that important forecasting improvements can be achieved by exploiting

more information in the estimation of the model. Estimating a DSGE model in a data-rich envi-
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ronment is useful for a proper identiÞcation and estimation of the state of the economy. A proper

estimation of the state of the economy appears in turn to be useful to improve forecasts of impor-

tant macroeconomic variables. Moreover, we show that the inference drawn from the estimated

model depends crucially on whether additional information is exploited or not. In particular, by

comparing the standard implementation of the estimation with few observable variables with our

best performing speciÞcation (case D), we reach very di erent conclusions about the sources of

business cycles ßuctuations.

The results in this paper open the way to many interesting avenues for future research, which

we are pursuing. First, while the results reported provide an important scope for using more

information in the estimation of DSGE models, more work needs to be done to determine how to

optimally choose the variables to include in the empirical model. We have proposed one speciÞcation

(case D) that is successful in terms of forecasting. But other speciÞcations within the general

framework proposed here may perform even better.

Second, a real-time implementation of the proposed empirical framework should be of interest

to central bankers, to the extent that it would allow them to process a large amount of information

in real-time, in a systematic fashion, through the lenses of fully-speciÞed structural model. This

would also allow to forecast a large number of economic indicators, conditional on a variety of

scenarii about any given structural disturbances of the model. A particularly attractive feature

of this framework, which we believe is crucial for policy considerations, is that it facilitates the

interpretation of observed economic developments through the use of a structural model.

Finally, many researchers have recently given attention to the development of optimal policy

rules or optimal target criteria for the conduct of monetary policy, in the context of DSGE models.

Such optimal rules often involve forecasts of important macroeconomic variables over the next few

quarters.40 Improved forecasts obtained through better estimates of the state of the economy,

using a rich data set, should thus be a key ingredient for such optimal target criteria. This may

help making the tools available for the conduct of optimal monetary policy more attractive to

policymakers by incorporating their concern for the developments in a large number of data series.

40Giannoni and Woodford (2003, 2004), for instance, characterize such optimal policy rules and target criteria for
simpler models than the one presented here. They show that the most important forecasts needed as inputs for the
implementation of monetary policy are over short horizons.
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A Appendix: MCMCMLE Algorithm

This appendix describes our implementation of the MCMCMLE algorithm of Jacquier, Johannes

and Polson (2004).

The general class of rational expectation models we consider can be represented as follows:

+1

+1

= + (30)

= 1 + (31)

and the general form of the solution is:

= (32)

= 1 + (33)

where [ 0 0 ]0 is the state vector, and the matrices , and are non-linear functions

of the parameters in matrices , and , obtained through a numerical solution techniques.

As explained in the text, the variables of interest, collected in the vector constitute a linear

combination of the state variables

=

and the matrix depends on the model parameters and the selection of variables in The

measurement equation is given by

= + (34)

where

and

= 1 + .

Equations (33) and (34) form a state-space representation of the solution of the model. The vectors
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and are assumed to be normally distributed with mean zero and variance and respectively.

The matrices and are diagonal.

The goal is to estimate jointly the structural parameters of the theoretical model =

{ }, the measurement equation parameters , and , and the unobserved vari-

ables of { } =1. Let = { }, � = ( 1 2 ) and � = ( 1 2 ). Our

problem consists of characterizing the marginal likelihood of , deÞned as:

L ( ) =

Z
( � | � )

³
� |

´
� .

The maximum likelihood estimate is the set of parameter values, � , that maximizes L ( ).

Given the high dimensionality of the problem and the need to integrate out the unobservable states,

directly maximizing L ( ) is di cult and impractical for some of the models we consider in this

paper. Instead, the estimation approach we consider provides an empirical approximation to these

densities, and integrate out the states, using Monte Carlo techniques. Moreover, by judiciously

breaking up L ( ) into the product of conditional densities, and sampling iteratively from the

complete set of conditional densities, it e ectively deals with the high dimensionality of the problem.

As Jacquier, Johannes and Polson (2004) show, empirical distribution of the parameters resulting

from the algorithm, that we describe in more details below, converges to the distribution of the

maximum likelihood estimates, � .

More speciÞcally, provided with an initial value of the parameters, (0), the algorithm proceeds

iteratively as follows. First, copies of � are drawn from

³
� | (0) �

´
= ( � | � (0)) ( � | (0)).

Let ¯
( 1)

=
³
�(1 1) �(2 1) �( 1)

´
denote the collection of these copies. Treating these draws

as extra information, (1) is drawn from

³
| ¯
( 1) �

´ Y

=1

( � | �
( 1)

) ( �
( 1)

| (0)) ( (0))

where ( ) is the subjective prior distribution on the parameter. This complete the Þrst iteration.
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This is repeated for a large number of iterations. Once the algorithm has converged, the empirical

distribution of the subsequent draws converges, as the number of iterations gets large, to the

distribution of the maximum likelihood estimator. Estimates of and � can be obtained as the

mean, median or mode of the converged draws.

In the special case where is equal to 1, the algorithm collapses to the standard MCMC

algorithm. In that case, the marginal distribution of is given by:

( ) =

Z
( � | � ) ( � | ) � ( )

For greater than 1, the algorithm augments the conditioning information set with more draws of

the unobserved variables. In that case, the marginal distribution of is given by

( ) =
Y

=1

Z
( � | � ) ( � | ) � ( )

= L ( ) ( )

Intuitively, this has the e ect of increasing the importance of the likelihood relative to the prior in

the posterior distribution. By comparing results from di erent , we are thus able to document

the inßuence of the prior on the results.

We now provide more details on each step of the algorithm.

A.1 Step 1: Drawing from the conditional distribution
³
� | �

´

We use the forward-backward algorithm of Carter and Kohn (1994). As in Nelson and Kim (1999,

p. 191), the conditional distribution of the whole history of factors can be expressed as the product

of conditional distributions of factors at each date as follows:

³
� | �

´
=

³
| �

´ 1Y

=1

³
| +1

�
´

This relies on the Markov property of , which implies that
³

| +1 +2
�
´
=

³
| +1

�
´
.

46



Because the state-space model (33)�(34) is linear and Gaussian, we have

| �
¡

| |

¢

| +1
�

¡
| +1 | +1

¢

where

| =
³

| �
´

(35)

| = ( | � )

| +1
=

³
| +1

�
´

| +1
=

³
| +1

�
´

where the notation | refers to the expectation of conditional on information dated or earlier.

To obtain these, we Þrst calculate | and | , = 1 2 , by Kalman Þlter, conditional on

and the data through period , � , with starting values of zeros for the factors and the identity

matrix for the covariance matrix (Hamilton, 1994). The last iteration of the Þlter yields | and

| , which together with the Þrst line of (35) allows us to draw a value for . Treating this drawn

value as extra information, we can move �backwards in time� through the sample, using the Kalman

Þlter to obtain updated values of 1| 1 and 1| 1 ; drawing a value of 1 using the

third line of (35); and continuing in similar manner to draw values for , = 2 3 1.

This constitutes one draw of � . To generate the independent copies of � , ¯
( )
, the same steps

are repeated times.41

A.2 Step 2: Drawing from the conditional distribution
³

| ¯( ) �

´

Conditional on the observed data and the estimated factors from the previous iteration, a new

iteration is begun by drawing a new value of the parameters. With known factors, (34) amounts to

41The Kalman Þlter is implemented to handle the serial correlation in . In particular, in the Kalman Þlter
iterations, the observation equation is rearranged as:

= ( ) 1 + +

with = 1.
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a set of regressions with autoregressive errors. We can thus apply the algorithm proposed by Chib

(1993).

This conditional model is non-linear in the parameters. However, since conditional on or

, the model is linear, we can characterize this distribution through a complete set of conditional

distributions that are linear in the parameters. More precisely, we assume that a priori and

are independent of . Conditional on and since is diagonal, we can apply OLS equation by

equation to obtain �
( )
and �

( )
. We deÞne = 1 and

( )
=

( ) ( )
1,

set = 0, 6= , and assume a proper (conjugate) but di use Inverse-Gamma (3, 0.001) prior for

. Standard Bayesian results (see Bauwens, Lubrano and Richard, 1999, p. 58) deliver posterior

of the form:

| � ¯( )
¡
¯ × + 0 001

¢

where ¯ = 3 +
P

=1 �
( )0
�
( )
+
P

=1
�( )0

³
� ( )0 � ( )

´ 1
�( ) ¯ 0 ¯ 1¯ . Here 1

0 denotes

variance parameter in the prior on the coe cients of the -th equation, , which, conditional on

the drawn value of , is (0 1
0 ). We set 0 = . We draw values for from the posterior

¡
¯ ¯ 1

¢
, where ¯ = ¯ 1

³P
=1
� ( )0 � ( )� ( )

´
and ¯ 1 = 0 +

P
=1
� ( )0 � ( )

.

Conditional on and since is diagonal, we can apply OLS equation by equation to obtain

� ( ). Letting
( )
be the vector whose elements are given by

( )
=

( )
, and its lagged

version
( )

1, and assuming that the prior on is (0 1), the posterior distribution of is

( ¯ , ¯ 1) where ¯ = ¯ 1
³

1P
=1

( )0
1
( )

1
� ( )

´
and ¯ =

³
1 + 1P

=1
( )0

1
( )

1

´
.

A.3 Step 3: Drawing from the conditional distribution
³

| ¯( ) �

´

The elements of the matrices are individually drawn from a proposal scalar Student -distribution,

with mean centered around the previous draws of the parameters, i.e. the corresponding elements

of
( )

and a variance calibrated to yield appropriate acceptance rates.42 Let be the resulting

draws. Based on the solution of the model obtained from this last draw, the following ratio is

42See Johannes and Polson (2004) for practical recommendations on the choice of the proposal density and the
desired acceptance rate.
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computed:

=

³
| ¯( ) �

´

³
( )
| ¯( ) �

´

With probability min(1 ),
( +1)

= , and otherwise
( +1)

=
( )
.

Steps 1 to 3 are repeated for each iteration . Inference is based on the distribution of
©

( )
ª
=
,

where is large enough to guarantee convergence of the algorithm. As noted, the empirical dis-

tribution from the sampling procedure should well approximate the joint posterior or normalized

joint likelihood, and for 1, the distribution of the MLE estimator, � . Calculating medians

and quantiles of { } = provides estimates of the model parameters and the associated conÞdence

regions.
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1 2 NIA REAL GROSS DOMESTIC PRODUCT (CHAINED-2000) - UNITED STATES
2 2 Real Gross Domestic Product by Major Type of Product - Goods, Billions of Chained (2000) Dollars , SAAR
3 2 Real Gross Domestic Product by Major Type of Product - Services, Billions of Chained (2000) Dollars , SAAR

4 2 Real Gross Domestic Product by Major Type of Product - Structures, Billions of Chained (2000) Dollars , SAAR

5 2 INDUSTRIAL PRODUCTION INDEX -  PRODUCTS, TOTAL
6 2 INDUSTRIAL PRODUCTION  INDEX -  FINAL PRODUCTS
7 2 INDUSTRIAL PRODUCTION INDEX -  CONSUMER GOODS
8 2 INDUSTRIAL PRODUCTION INDEX -  DURABLE CONSUMER GOODS
9 2 INDUSTRIAL PRODUCTION INDEX -  NONDURABLE CONSUMER GOODS
10 2 INDUSTRIAL PRODUCTION INDEX -  BUSINESS EQUIPMENT
11 2 INDUSTRIAL PRODUCTION INDEX -  MATERIALS
12 2 INDUSTRIAL PRODUCTION INDEX -  DURABLE GOODS MATERIALS
13 2 INDUSTRIAL PRODUCTION INDEX -  NONDURABLE GOODS MATERIALS
14 2 INDUSTRIAL PRODUCTION INDEX -  TOTAL INDEX
15 1 CAPACITY UTILIZATION -  MANUFACTURING (SIC)
16 1 PURCHASING MANAGERS' INDEX (SA)
17 1 NAPM PRODUCTION INDEX (PERCENT)

18 2* NIA NOMINAL TOTAL COMPENSATION OF EMPLOYEES - UNITED STATES
19 2 PERSONAL INCOME CHAINED 2000 DOLLARS (BCI)
20 2 PERSONAL INCOME LESS TRANSFER PAYMENTS (CHAINED) (#51) (BIL 92$,SAAR)
21 6* AVERAGE HOURLY EARNINGS, PRODUCTION WORKERS: MANUFACTURING,
22 6* AVERAGE HOURLY EARNINGS, PRODUCTION WORKERS: CONSTRUCTION,

23 6

24 6 AVERAGE WEEKLY HOURS, PRODUCTION WORKERS: MANUFACTURING,
25 6 AVERAGE WEEKLY OVERTIME, PRODUCTION WORKERS: DURABLE GOODS,
26 2 INDEX OF HELP-WANTED ADVERTISING IN NEWSPAPERS (1967=100;SA)
27 2 EMPLOYMENT: RATIO; HELP-WANTED ADS:NO. UNEMPLOYED CLF
28 1 UNEMPLOYMENT RATE: ALL WORKERS, 16 YEARS & OVER (%,SA)
29 1 UNEMPLOY.BY DURATION: AVERAGE(MEAN)DURATION IN WEEKS (SA)
30 2 UNEMPLOY.BY DURATION: PERSONS UNEMPL.LESS THAN 5 WKS (THOUS.,SA)
31 2 UNEMPLOY.BY DURATION: PERSONS UNEMPL.5 TO 14 WKS (THOUS.,SA)
32 2 UNEMPLOY.BY DURATION: PERSONS UNEMPL.15 WKS + (THOUS.,SA)
33 2 UNEMPLOY.BY DURATION: PERSONS UNEMPL.15 TO 26 WKS (THOUS.,SA)
34 2 EMPLOYEES, NONFARM - TOTAL NONFARM
35 2 EMPLOYEES, NONFARM - TOTAL PRIVATE
36 2 EMPLOYEES, NONFARM - GOODS-PRODUCING
37 2 EMPLOYEES, NONFARM - MINING
38 2 EMPLOYEES, NONFARM - CONSTRUCTION
39 2 EMPLOYEES, NONFARM - MFG
40 2 EMPLOYEES, NONFARM - DURABLE GOODS
41 2 EMPLOYEES, NONFARM - NONDURABLE GOODS
42 2 EMPLOYEES, NONFARM - SERVICE-PROVIDING
43 2 EMPLOYEES, NONFARM - TRADE, TRANSPORT, UTILITIES
44 2 EMPLOYEES, NONFARM - WHOLESALE TRADE

All series were taken from DRI/McGraw Hill Basic Economics Database or directly from the Bureau 
of Labor Statistics. The format is: series number; transformation code and series description as 
appears in the database. The transformation codes are: 1 – no transformation; 2 – Detrended log 
per capita; 3 – detrended logarithm level 4 – logarithm; 5 – first difference of logarithm; 6 – 
Adjustement specific to average hours and hourly earnings; 0 – variable not used in the estimation 
(only used for transforming other variables). A * indicate a series that is deflated with the GDP 
deflator (series #85).

Appendix B  -  Data Description

Real Output

Income, Compensation and Wages

Employment and Hours



45 2 EMPLOYEES, NONFARM - RETAIL TRADE
46 2 EMPLOYEES, NONFARM - GOVERNMENT

47 2 REAL PERSONAL CONSUMPTION EXPENDITURES (CHAINED-2000) - UNITED STATES (NIPA)
48 2 REAL PERSONAL CONSUMPTION EXPENDITURES (Index 2000=100):  Durable goods (NIPA Table 2.3.3)
49 2 Nondurable goods
50 2 Services

51 2* Gross Private Domestic Investment, Billions of Dollars , SAAR
52 2* Gross Private Domestic Investment - Fixed Investment, Billions of Dollars , SAAR
53 2* Gross Private Domestic Investment - Fixed Nonresidential , Billions of Dollars , SAAR
54 4 HOUSING STARTS:NONFARM(1947-58);TOTAL FARM&NONFARM(1959-)(THOUS.,SA
55 1 NAPM INVENTORIES INDEX (PERCENT)
56 1 NAPM NEW ORDERS INDEX (PERCENT)
57 1 NAPM VENDOR DELIVERIES INDEX (PERCENT)
58 2 NEW ORDERS (NET) - CONSUMER GOODS & MATERIALS, 1996 DOLLARS (BCI)

59 5 S&P'S COMMON STOCK PRICE INDEX: COMPOSITE (1941-43=10)
60 5 S&P'S COMMON STOCK PRICE INDEX: INDUSTRIALS (1941-43=10)
61 1 S&P'S COMPOSITE COMMON STOCK: DIVIDEND YIELD (% PER ANNUM)
62 1 S&P'S COMPOSITE COMMON STOCK: PRICE-EARNINGS RATIO (%,NSA)

63 5 FOREIGN EXCHANGE RATE: SWITZERLAND (SWISS FRANC PER U.S.$)
64 5 FOREIGN EXCHANGE RATE: JAPAN (YEN PER U.S.$)
65 5 FOREIGN EXCHANGE RATE: UNITED KINGDOM (CENTS PER POUND)
66 5 FOREIGN EXCHANGE RATE: CANADA (CANADIAN $ PER U.S.$)

67 1 INTEREST RATE: FEDERAL FUNDS (EFFECTIVE) (% PER ANNUM,NSA)
68 1 INTEREST RATE: U.S.TREASURY BILLS,SEC MKT,3-MO.(% PER ANN,NSA)
69 1 INTEREST RATE: U.S.TREASURY BILLS,SEC MKT,6-MO.(% PER ANN,NSA)
70 1 INTEREST RATE: U.S.TREASURY CONST MATURITIES,1-YR.(% PER ANN,NSA)
71 1 INTEREST RATE: U.S.TREASURY CONST MATURITIES,5-YR.(% PER ANN,NSA)
72 1 INTEREST RATE: U.S.TREASURY CONST MATURITIES,10-YR.(% PER ANN,NSA)
73 1 BOND YIELD: MOODY'S AAA CORPORATE (% PER ANNUM)
74 1 BOND YIELD: MOODY'S BAA CORPORATE (% PER ANNUM)

75 2 MONEY STOCK: M1(CURR,TRAV.CKS,DEM DEP,OTHER CK'ABLE DEP)(BIL$,SA)
76 2 MONEY STOCK:M2(M1+O'NITE RPS,EURO$,G/P&B/D MMMFS&SAV&SM TIME DEP(BIL$,
77 2 MONEY STOCK: M3(M2+LG TIME DEP,TERM RP'S&INST ONLY MMMFS)(BIL$,SA)
78 2 MONEY SUPPLY - M2 IN 1996 DOLLARS (BCI)
79 2 MONETARY BASE, ADJ FOR RESERVE REQUIREMENT CHANGES(MIL$,SA)
80 2 DEPOSITORY INST RESERVES:TOTAL,ADJ FOR RESERVE REQ CHGS(MIL$,SA)
81 2 DEPOSITORY INST RESERVES:NONBORROWED,ADJ RES REQ CHGS(MIL$,SA)
82 2 COMMERCIAL & INDUSTRIAL LOANS OUSTANDING IN 1996 DOLLARS (BCI)
83 1 WKLY RP LG COM'L BANKS:NET CHANGE COM'L & INDUS LOANS(BIL$,SAAR)
84 2 CONSUMER CREDIT OUTSTANDING - NONREVOLVING(G19)

85 5 NIA PRICE DEFLATOR - GROSS DOMESTIC PRODUCT - UNITED STATES
86 5 NIA PRICE DEFLATOR - PRIVATE CONSUMPTION EXPENDITURE - UNITED STATES
87 5 Gross Private Domestic Investment, Price Deflators (2000=100) , SAAR
88 5 Personal Consumption Expenditures - Durable Goods, Price Index (2000=100) , SAAR
89 5 Personal Consumption Expenditures - Nondurable Goods, Price Index (2000=100) , SAAR
90 5 Personal Consumption Expenditures - Services, Price Index (2000=100) , SAAR
91 5 CPI-U: ALL ITEMS LESS MIDICAL CARE (82-84=100,SA)
92 5 CPI-U: ALL ITEMS LESS FOOD (82-84=100,SA)
93 5 CPI-U: SERVICES (82-84=100,SA)

Consumption

Investment,  Housing Starts and New Orders

Prices

Stock Prices

Exchange Rates

Interest Rates

Money and Credit Quantity Aggregates



94 5 CPI-U: DURABLES (82-84=100,SA)
95 1 NAPM COMMODITY PRICES INDEX (PERCENT)

96 1 U. OF MICH. INDEX OF CONSUMER EXPECTATIONS(BCD-83)
97 3 COMPOSITE CYCLICAL INDICATOR (1996) - LEADING - UNITED STATES
98 3 COMPOSITE CYCLICAL INDICATOR (1996) - LAGGING - UNITED STATES
99 3 COMPOSITE CYCLICAL INDICATOR (1996) - COINCIDENT - UNITED STATES

Miscellaneous



Table 1a: Parameter Estimates, = 1 (Median of posterior distribution)

Prior Distribution Case A Case B Case C Case D Case E
Type Mean St.Err.
Normal 4 1.5 6.36 6.15 3.98 3.28 12.53

( 0.96) ( 1.03) ( 1.50) ( 0.85) ( 0.96)
Normal 1 0.375 1.59 1.57 1.00 2.06 2.17

( 0.17) ( 0.15) ( 0.37) ( 0.11) ( 0.06)
Beta 0.7 1.5 0.70 0.70 0.70 0.70 0.69

( 0.00) ( 0.00) ( 0.01) ( 0.00) ( 0.00)
Normal 2 1.5 1.98 1.62 2.02 0.84 1.67

( 0.69) ( 0.60) ( 0.72) ( 0.29) ( 0.09)
Normal 1.25 1.5 1.68 1.46 1.25 1.56 1.65

( 0.07) ( 0.06) ( 0.12) ( 0.04) ( 0.03)
1 Normal 0.2 1.5 0.31 0.29 0.19 0.29 0.47

( 0.06) ( 0.06) ( 0.06) ( 0.05) ( 0.04)
Beta 0.75 1.5 0.80 0.77 0.75 0.71 0.69

( 0.04) ( 0.03) ( 0.05) ( 0.03) ( 0.01)
Beta 0.75 1.5 0.87 0.88 0.74 0.82 0.85

( 0.01) ( 0.01) ( 0.05) ( 0.02) ( 0.01)
Beta 0.5 1.5 0.39 0.53 0.50 0.50 0.29

( 0.11) ( 0.14) ( 0.14) ( 0.16) ( 0.12)
Beta 0.5 1.5 0.59 0.73 0.49 0.10 0.21

( 0.09) ( 0.09) ( 0.15) ( 0.03) ( 0.06)
Beta 0.75 1.5 0.79 0.73 0.75 0.86 0.86

( 0.02) ( 0.03) ( 0.09) ( 0.00) ( 0.00)

0 Normal 1.5 0.5 1.79 1.86 1.80 1.87 1.68
( 0.09) ( 0.09) ( 0.09) ( 0.02) ( 0.00)

1 Normal 0 0.2 -0.25 -0.25 -0.30 -0.30 -0.28
( 0.09) ( 0.09) ( 0.09) ( 0.04) ( 0.02)

0 Normal 0.5 0.2 0.20 0.18 0.19 0.28 0.29
( 0.03) ( 0.03) ( 0.04) ( 0.00) ( 0.00)

1 Normal 0 0.2 -0.16 -0.17 -0.06 -0.23 -0.22
( 0.03) ( 0.03) ( 0.04) ( 0.00) ( 0.00)
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Table 1a (Continued): Parameter Estimates, = 1 (Median of posterior distribution)

Prior Distribution Case A Case B Case C Case D Case E
Type Mean St.Err.
Beta 0.85 1.5 0.93 0.96 0.86 0.99 0.99

( 0.03) ( 0.01) ( 0.10) ( 0.00) ( 0.00)
Beta 0.85 1.5 0.39 0.53 0.85 0.54 0.56

( 0.07) ( 0.07) ( 0.10) ( 0.05) ( 0.01)
Beta 0.85 1.5 0.95 0.97 0.86 0.99 0.99

( 0.02) ( 0.00) ( 0.10) ( 0.00) ( 0.00)
Beta 0.85 1.5 0.95 0.89 0.85 0.98 0.99

( 0.02) ( 0.03) ( 0.09) ( 0.00) ( 0.00)
Beta 0.85 1.5 0.71 0.75 0.85 0.85 0.64

( 0.07) ( 0.06) ( 0.09) ( 0.03) ( 0.01)
2 invGam 0.25 1.5 0.19 0.08 0.31 0.10 0.07

( 0.02) ( 0.01) ( 0.55) ( 0.01) ( 0.01)
2 invGam 0.25 1.5 0.04 0.01 0.01 0.01 0.01

( 0.01) ( 0.00) ( 0.10) ( 0.00) ( 0.00)
2 invGam 0.25 1.5 0.33 0.12 0.23 0.12 0.11

( 0.03) ( 0.02) ( 0.13) ( 0.02) ( 0.02)
2 invGam 0.25 1.5 26.63 45.51 32.93 7.83 7.93

( 13.77) ( 29.47) ( 13.09) ( 2.35) ( 2.28)
2 invGam 0.25 1.5 20.37 13.72 8.29 6.88 84.96

( 14.13) ( 10.69) ( 4.13) ( 3.15) ( 14.36)
2 invGam 0.25 1.5 0.00 0.00 0.03 0.02 0.01

( 0.00) ( 0.00) ( 0.01) ( 0.00) ( 0.00)
2 invGam 0.25 1.5 29.69 14.61 14.35 0.43 0.63

( 34.95) ( 16.67) ( 12.20) ( 0.48) ( 0.23)
2 invGam 0.25 1.5 0.02 0.01 0.04 0.00 0.02

( 0.00) ( 0.00) ( 0.02) ( 0.00) ( 0.00)
2 invGam 0.25 1.5 0.06 0.03 0.09 0.00 0.00

( 0.01) ( 0.01) ( 0.04) ( 0.00) ( 0.00)
2 invGam 0.05 1.5 0.06 0.05 0.05 0.03 0.05

( 0.00) ( 0.00) ( 0.02) ( 0.00) ( 0.00)

Results are based on 20000 replications. Standard errors are reported in ().
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Table 1b: Parameter Estimates, = 5 (Median of posterior distribution)

Prior Distribution Case A Case B Case C Case D Case E
Type Mean St.Err.
Normal 4 1.5 6.36 8.74 4.13 5.83 �

( 0.96) ( 1.02) ( 1.49) ( 0.78) (�)
Normal 1 0.375 1.59 1.97 1.00 1.84 �

( 0.17) ( 0.12) ( 0.37) ( 0.07) (�)
Beta 0.7 1.5 0.70 0.69 0.69 0.69 �

( 0.00) ( 0.01) ( 0.00) ( 0.01) (�)
Normal 2 1.5 1.98 0.07 1.95 1.60 �

( 0.69) ( 0.11) ( 0.72) ( 0.02) (�)
Normal 1.25 1.5 1.68 1.88 1.24 1.82 �

( 0.07) ( 0.05) ( 0.12) ( 0.05) (�)
1 Normal 0.2 1.5 0.31 0.41 0.19 0.33 �

( 0.06) ( 0.05) ( 0.06) ( 0.04) (�)
Beta 0.75 1.5 0.80 0.71 0.74 0.81 �

( 0.04) ( 0.03) ( 0.05) ( 0.00) (�)
Beta 0.75 1.5 0.87 0.89 0.74 0.86 �

( 0.01) ( 0.00) ( 0.04) ( 0.00) (�)
Beta 0.5 1.5 0.39 0.76 0.51 0.60 �

( 0.11) ( 0.10) ( 0.15) ( 0.15) (�)
Beta 0.5 1.5 0.59 0.84 0.49 0.20 �

( 0.09) ( 0.03) ( 0.14) ( 0.06) (�)
Beta 0.75 1.5 0.79 0.74 0.76 0.87 �

( 0.02) ( 0.01) ( 0.09) ( 0.00) (�)

0 Normal 1.5 0.5 1.79 2.10 1.80 1.68 �
( 0.09) ( 0.08) ( 0.10) ( 0.00) (�)

1 Normal 0 0.2 -0.25 -0.08 -0.30 -0.21 �
( 0.09) ( 0.08) ( 0.10) ( 0.01) (�)

0 Normal 0.5 0.2 0.20 0.33 0.18 0.29 �
( 0.03) ( 0.03) ( 0.04) ( 0.00) (�)

1 Normal 0 0.2 -0.16 -0.26 -0.05 -0.23 �
( 0.03) ( 0.03) ( 0.05) ( 0.00) (�)
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Table 1b (Continued): Parameter Estimates, = 5 (Median of posterior distribution)

Prior Distribution Case A Case B Case C Case D Case E
Type Mean St.Err.
Beta 0.85 1.5 0.93 0.99 0.85 0.99 �

( 0.03) ( 0.00) ( 0.09) ( 0.00) (�)
Beta 0.85 1.5 0.39 0.31 0.84 0.47 �

( 0.07) ( 0.03) ( 0.10) ( 0.02) (�)
Beta 0.85 1.5 0.95 0.97 0.85 0.99 �

( 0.02) ( 0.00) ( 0.10) ( 0.00) (�)
Beta 0.85 1.5 0.95 0.94 0.87 0.98 �

( 0.02) ( 0.01) ( 0.08) ( 0.00) (�)
Beta 0.85 1.5 0.71 0.66 0.86 0.82 �

( 0.07) ( 0.03) ( 0.09) ( 0.01) (�)
2 invGam 0.25 1.5 0.19 0.22 0.51 0.12 �

( 0.02) ( 0.01) ( 0.53) ( 0.01) (�)
2 invGam 0.25 1.5 0.04 0.05 0.02 0.02 �

( 0.01) ( 0.00) ( 0.07) ( 0.00) (�)
2 invGam 0.25 1.5 0.33 0.18 0.26 0.17 �

( 0.03) ( 0.01) ( 0.12) ( 0.03) (�)
2 invGam 0.25 1.5 26.63 6.55 25.86 9.68 �

( 13.77) ( 1.18) ( 5.15) ( 2.49) (�)
2 invGam 0.25 1.5 20.37 46.04 8.40 12.93 �

( 14.13) ( 15.41) ( 4.27) ( 3.33) (�)
2 invGam 0.25 1.5 0.00 0.00 0.03 0.02 �

( 0.00) ( 0.00) ( 0.01) ( 0.00) (�)
2 invGam 0.25 1.5 29.69 14.86 28.75 15.40 �

( 34.95) ( 22.80) ( 9.36) ( 7.90) (�)
2 invGam 0.25 1.5 0.02 0.00 0.04 0.01 �

( 0.00) ( 0.00) ( 0.02) ( 0.00) (�)
2 invGam 0.25 1.5 0.06 0.06 0.20 0.07 �

( 0.01) ( 0.01) ( 0.04) ( 0.01) (�)
2 invGam 0.05 1.5 0.06 0.05 0.05 0.04 �

( 0.00) ( 0.00) ( 0.02) ( 0.00) (�)

Results are based on 8000 replications. Standard errors are reported in ().
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Table 2: Fraction of variance of key time series explained by the model

Case A Case B Case C Case D Case E
= 1

Fed funds rate (120) 1.00 1.00 1.00 1.00 1.00
Real GDP (1) 1.00 0.98 0.98 0.98 0.97

Real Consumption (49) 1.00 0.98 0.99 0.98 0.98
Real Investment (74) 1.00 0.99 0.99 0.99 0.97

GDP deß. inßation (145) 1.00 0.80 0.74 0.77 0.83
Real wage (18) 1.00 0.98 0.94 0.87 0.66

Hours worked (23) 1.00 0.98 0.98 0.99 0.98
= 5

Fed funds rate (120) 1.00 1.00 1.00 1.00 1.00
Real GDP (1) 1.00 0.99 0.99 0.99 �

Real Consumption (49) 1.00 0.99 0.99 0.99 �
Real Investment (74) 1.00 0.99 0.99 0.99 �

GDP deß. inßation (145) 1.00 0.88 0.79 0.90 �
Real wage (18) 1.00 0.99 0.96 0.98 �

Hours worked (23) 1.00 0.99 0.99 0.99 �
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Table 3: Variance decompositions for the 8-quarter horizon ( = 1)

Shock
Case A

Productivity 0.12 0.04 0.01 0.11 0.17 0.10 0.20 0.02
Preference 0.01 0.09 0.32 0.00 0.00 0.01 0.07 0.00
Govt. Expenditures 0.01 0.15 0.00 0.04 0.00 0.00 0.13 0.01
Labor supply 0.17 0.26 0.40 0.10 0.32 0.26 0.28 0.02
Investment 0.07 0.27 0.03 0.66 0.02 0.06 0.18 0.91
Inßation target 0.12 0.00 0.00 0.00 0.15 0.00 0.00 0.00
Equity premium 0.00 0.01 0.00 0.02 0.00 0.00 0.00 0.01
Cost-push prices 0.08 0.03 0.03 0.00 0.28 0.23 0.01 0.00
Cost-push wages 0.01 0.01 0.02 0.00 0.02 0.28 0.01 0.00
Monetary policy 0.36 0.11 0.15 0.02 0.02 0.03 0.08 0.01

Case B
Productivity 0.04 0.06 0.04 0.07 0.06 0.11 0.07 0.01
Preference 0.02 0.07 0.27 0.00 0.01 0.03 0.06 0.00
Govt. Expenditures 0.01 0.08 0.00 0.01 0.00 0.00 0.08 0.00
Labor supply 0.11 0.34 0.48 0.17 0.19 0.44 0.44 0.04
Investment 0.19 0.31 0.03 0.69 0.14 0.12 0.24 0.91
Inßation target 0.16 0.00 0.00 0.00 0.30 0.00 0.00 0.00
Equity premium 0.00 0.00 0.00 0.01 0.00 0.00 0.00 0.00
Cost-push prices 0.09 0.03 0.03 0.00 0.21 0.13 0.01 0.00
Cost-push wages 0.00 0.00 0.01 0.00 0.00 0.10 0.01 0.00
Monetary policy 0.33 0.06 0.09 0.01 0.02 0.03 0.05 0.00

Case C
Productivity 0.08 0.10 0.01 0.02 0.12 0.26 0.13 0.01
Preference 0.32 0.29 0.84 0.43 0.18 0.12 0.25 0.23
Govt. Expenditures 0.00 0.06 0.00 0.00 0.00 0.00 0.06 0.00
Labor supply 0.13 0.21 0.02 0.04 0.21 0.17 0.24 0.02
Investment 0.05 0.22 0.07 0.48 0.01 0.00 0.19 0.71
Inßation target 0.27 0.00 0.00 0.00 0.33 0.00 0.00 0.00
Equity premium 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
Cost-push prices 0.02 0.01 0.00 0.00 0.08 0.10 0.00 0.00
Cost-push wages 0.02 0.03 0.00 0.00 0.04 0.30 0.04 0.00
Monetary policy 0.07 0.04 0.01 0.00 0.00 0.00 0.04 0.00
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Table 3 (Continued): Variance decompositions for the 8-quarter horizon ( = 1)

Shock
Case D

Productivity 0.01 0.03 0.08 0.00 0.03 0.24 0.17 0.00
Preference 0.01 0.05 0.22 0.02 0.00 0.06 0.03 0.00
Govt. Expenditures 0.00 0.07 0.02 0.00 0.02 0.00 0.08 0.00
Labor supply 0.11 0.19 0.40 0.03 0.23 0.21 0.24 0.00
Investment 0.19 0.47 0.06 0.88 0.11 0.23 0.34 0.96
Inßation target 0.53 0.00 0.00 0.00 0.48 0.00 0.00 0.00
Equity premium 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
Cost-push prices 0.00 0.00 0.00 0.00 0.01 0.00 0.00 0.00
Cost-push wages 0.00 0.00 0.00 0.00 0.00 0.01 0.00 0.00
Monetary policy 0.12 0.17 0.19 0.04 0.09 0.20 0.11 0.02

Case E
Productivity 0.03 0.02 0.05 0.00 0.07 0.10 0.23 0.00
Preference 0.02 0.12 0.30 0.01 0.01 0.10 0.09 0.00
Govt. Expenditures 0.01 0.08 0.04 0.00 0.03 0.00 0.09 0.00
Labor supply 0.21 0.12 0.25 0.00 0.41 0.25 0.18 0.00
Investment 0.08 0.42 0.10 0.93 0.03 0.24 0.24 0.99
Inßation target 0.32 0.00 0.00 0.00 0.27 0.00 0.00 0.00
Equity premium 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
Cost-push prices 0.00 0.00 0.00 0.00 0.06 0.03 0.00 0.00
Cost-push wages 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
Monetary policy 0.29 0.21 0.22 0.03 0.10 0.24 0.13 0.00
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Figure 1: Estimated endogenous variables ( = 1).
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Figure 2: Estimated inßation ( = 1).
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Figure 3: Estimated time series of capital ( ) and exogenous shocks ( = 1).
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Figure 4: Estimated time series of exogenous shocks (continued, = 1).
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Figure 5: Percentage gain in forecasting performance relative to case A for di erent forcasting
horizons ( = 1). Percentage gain is measured by the percentage reduction in the root mean
squared errors (RMSE) of forecasting relative to RMSE of case A. The overall measure corresponds
to the log determinant of the forecast-error covariance matrix. The percentage gain in the overall
measure is 100 times the di erence in overall measure (improvement in forecast performance relative
to case A) divided by the number of variables and divided by 2 to convert the variance to standard
errors.
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Figure 6: Percentage gain in forecasting performance relative to case A for di erent forcasting
horizons ( = 5). See Figure 5 for explanations.
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Figure 7: Percentage gain in forecasting performance relative to case A for di erent forcasting
horizons ( = 1). See Figure 5 for explanations.
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