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1. Introduction

There is a consensus among economists that a substantial part of global economic

growth arises from the transfer of ideas from the leading edge countries to those

behind the frontier. But the mechanisms underlying this technology transfer are

poorly understood and micro-econometric evidence on the quantitative impor-

tance of the "international spillover" process remains thin.1 In addition, the

firm level evidence on spillovers that does exist tends to be from single countries

and the bulk of these single country studies are from the United States, which,

as technological leader in most industries, probably has least to gain from other

countries’ innovative efforts.

Case studies and the business press have long emphasized the importance of

"technology sourcing" as a method of gaining access to foreign knowledge2. Under

this view, firms can tap into leading edge knowledge by setting up R&D labs in

the US which act as "listening posts" for new ideas. The main contribution of our

paper is to provide the first rigorous evidence for technology sourcing by exploiting

firm level panel data from the UK and the US. UK firms offer a particularly

good testing ground for these theories because Britain is both less technologically

advanced than the US3 and has historically close linkages to US based inventors4.

1Ses Wolfgang Keller (2004) for a recent survey.
2See for example von Zedtwitz and Gassman (2002) or Serapio and Dalton (1999) and the

references therein.
3In the market sector (i.e. excluding health, education and public administration) output

per person was about 40% higher in the US than in the UK in 1999 (US TFP was about 20%
higher).

4Of all foreign countries, British expenditure on R&D in the US was second in the world
only to Switzerland in 1993. In 1997, of the largest 7 foreign research centres in the US, five
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We examine whether the US R&D stock (conditional on British R&D) had a

stronger impact on the TFP of UK firms who had more of their inventors located

in the US. We use the pre-1990 location patterns of British firms (as revealed in

the patent statistics) to mitigate the endogeneity problem arising from the fact

that British firms may choose to locate R&D in the US in response to the 1990s

technology boom.

We illustrate our identification strategy in Figure 1. The horizontal axis shows

the growth of the US R&D stock by industry between 1990 and 2000. On the

vertical axis we plot the "productivity premium" for UK firms who had a substan-

tial proportion of US inventors (i.e. the difference in productivity growth for UK

firms with a high proportion of their inventors located in the US prior to 1990 vs.

UK firms with zero or low US inventor presence). It is clear that the productivity

premium is larger in those industries where the US had faster R&D growth. Fur-

thermore, the shaded industries are those where the US already had a substantial

technological lead over the UK by 1990 and where, presumably, UK firms had

the most to learn. For this "high gap" sector, the upward sloping relationship is

particularly striking.

[Figure 1 about here]

The graph does not control for many other confounding influences and the

paper uses a variety of econometric methods to deal with input endogeneity, un-

observed heterogeneity and selectivity. Even after controlling for these issues, we

were owned by UK companies (Serapio and Dalton, 1999). In our data almost half of patents
granted to UK firms were produced by inventors located in the US.
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find that UK firms which had more of their inventive activity located in the US

prior to 1990, benefited disproportionately from the burst in US R&D growth

in the 1990s. In fact we find no significant impact of US R&D on British firms

who have no US-based inventors. According to our estimates, TFP in British

manufacturing in 2000 would have been 5% lower (about $14bn)5 in the absence

of the growth of US R&D stock in the 1990s. Needless to say, this is a lower

bound to the full benefits of US R&D to the rest of the world. It is also a salutary

warning to policy makers who seek to boost sluggish European growth through

incentivising multinationals to repatriate US R&D back towards Europe6.

Our research has links to several strands in the literature. First, there is

much work suggesting that knowledge spillovers are partly localised and that

being geographically close to innovators matters.7 We build on this work by

focusing on the location of inventors within firms across geographic boundaries.

Second, except for some aggregate studies8 the work on multinationals focuses on

the benefits to the recipient country of inward FDI.9 By contrast, we examine

whether outward innovative FDI to specific industries in a leading edge country

have beneficial affects on home country productivity. Thirdly, although there

5Value added in UK manufacturing was £154bn in 2000=$277bn at current exchange rates
6The European Union has set itself the target of increasing R&D expenditure to 3% of GDP

by 2010 (this is part of the "Lisbon Agenda").
7For example, Adam Jaffe et al (1993, 2000), Wolfgang Keller (2002), David Audretsch

and Marion Feldman (1996). Adam Jaffe and Manuel Trajtenberg (1998) find that, even after
controlling for other factors, inventors residing in the same country are typically more likely
to cite each other than inventors from other countries, and that these citations tend to come
sooner. They also find that localisation fades over time, but only slowly.

8For example, Frank Lichtenberg and Bruno van Pottelsberghe de la Potterie (2001)
9For example, see Wolfgang Keller and Yeaple (2003) for recent US evidence.
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is some recent research that has examined the evidence for technology sourcing

through patent citations,10 we are aware of no studies that consider empirical

evidence for technology sourcing in terms of its effects on firm-level productivity.11

We also show that cross country patent citations (at the firm level) are consistent

with our results, but we believe that the impact of US technology on foreign firm

performance may not be fully revealed in patent citations as some of the knowledge

created is tacit rather than codified - this is captured in our TFP results.

We contrast our UK production functions with identical specifications based on

US firm level panel data. Although it is possible that US firms technology source

from the UK, it is much less likely to be important, as the UK is generally not at

the technology frontier. This is indeed what we find. The "special relationship"

between the UK and the US is asymmetric: Britain benefits more, at least in

respect of knowledge flows.

The structure of this paper is as follows. Section 2 sketches the empirical

model and Section 3 describes the data. Section 4 presents the empirical results,

10Branstetter (2003) uses patent citations to measure the role of foreign direct investment by
Japanese firms in the USA in mediating flows of knowledge between the two countries. He finds
that knowledge spillovers received by the investing Japanese firms tend to be strongest via R&D
and product development facilities which is consistent with our findings. Iwasi and Odagiri
(2002) claim that Japanese research facilities foster the innovative activity of the investing
parent firm, but they only have cross sectional evidence. Singh (2003) uses patent citations
to investigate the role of multinational subsidiaries in knowledge diffusion. He finds that
greater multinational subsidiary activity increases cross-border knowledge flows between the
host country and the multinational home base.
11Lee Bransetter (2001) enters the US R&D pool in a Japanese production function and finds

a positive, but insignificant coefficient. He does not allow the effect to differ with Japanese
inventor presence in the US, however (a test of technology sourcing). In addition, the author is
not confident in the quality of the Japanese R&D stock data, because of the short time span
(p.72).
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and a final section concludes. The details of the data and econometric methods

are in the Annexes.

2. The empirical model

Our basic approach follows Zvi Griliches (1979) and many subsequent papers by

including measures of the external knowledge stock available to the firm in a firm-

level production function. A firm’s value-added is a function of traditional inputs

as well as knowledge and can be written as follows

Y = F (X,DOMESTIC,FOREIGN) (2.1)

where Y is real value added, X is a vector of the firm’s own inputs including

labour, capital and the firm’s own knowledge stock accumulated by performing

R&D. DOMESTIC is the domestic external knowledge stock available to the

firm and FOREIGN is the foreign external knowledge stock.

The key test in this paper is whether the effect of the external knowledge

stock on productivity depends on the geographical location of the firm’s innovative

activity (denotedW ). In particular we are interested in spillovers from the foreign

external knowledge stock

∂Y

∂FOREIGN
= f(WF ) > 0; (2.2)

and we want to test whether this is increasing in the size of a firms presence in

the foreign location, i.e.

∂2Y

(∂FOREIGN)(∂WF )
> 0. (2.3)
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whereWF measures of the amount of the firm’s innovative activity that is located

abroad. Analogously, we allow the domestic R&D spillovers to be more important

if the firm’s inventive activity is mainly located domestically (WD).

To make matters more concrete consider a Cobb-Douglas production function

for firms in the UK with the US being the relevant foreign source of spillovers

Yit = AitL
αl
it K

αk
it R

β
itDOMESTIC

γi1
jt FOREIGN

γi2
jt (2.4)

where i indexes a firm, j indexes the firm’s industry, and t indexes the year.

Yit is real value added, Lit is employment, Kit is a measure of the firm’s capital

stock, Rit is a measure of the firm’s own R&D stock, and DOMESTICjt and

FOREIGNjt are the R&D stocks in the firm’s industry in the UK and the USA

respectively.12 We further assume that the elasticities of value added with respect

to the domestic and external knowledge stocks are a linear function of firm-specific

measures of the location of innovative activity13

γi1 = θ1 + θ2W
UK
i ; γi2 = φ1 + φ2W

US
i ; (2.5)

where we interpret a positive estimate of φ2 as evidence of knowledge spillovers

associated with technology sourcing from the USA. Using lower case letters (x =

lnX, etc.) to denote natural logarithms we obtain:

12We looked at also including other countries R&D stocks (in addition to the US) and their
interactions in FOREIGN , but although usually positive these were not significantly different
from zero. This is not to say that the UK learns only from the US, rather that the US is by a
long way the most important partner. We also consider the measure of spillovers using in Jaffe
(1984) and our results were robust to this.
13We consider more flexible functional forms in the results section, but these do not change

the main qualitative results.
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yit = αllit + αkkit + βrit + φ1foreignjt + φ2(W
US
i ∗ foreignjt)

+θ1domesticjt + θ2(W
UK
i ∗ domesticjt)

+φ3W
US
i + θ3W

UK
i + ait (2.6)

Our baseline equations are for the UK, but we estimate an identically specified

equation for the US to see if technology sourcing from the UK also matters for

US firms. We expect it to matter a lot less as the UK is not at the technological

frontier.

There are a number of econometric issues involved in estimating firm level

production functions such as (2.6), the basic issue being how to deal with the

endogeneity of the firm’s choice variables in the presence of unobserved hetero-

geneity. Our basic approach follows the "System" General Method of Moments

(SYS-GMM) approach of Richard Blundell and Stephen Bond (2000). We also

compare these results with those from OLS and an extension to the Olley-Pakes

(1996) method which allows for endogenous R&D. Econometric details are con-

tained in Appendix B, but we note some features here.

The generic problem of estimating a firm production function is that the

firm’s inputs choices are likely to be correlated with the productivity shock, ait.

Under SYS-GMM we assume that the residual terms can be broken down into

ait = tt + ηi + uit where year dummies (tt) control for common macro effects, the

firm fixed effect (ηi) controls for unobserved heterogeneity and the residual pro-

ductivity shock (uit) may be correlated with the regressors. Assumptions over the
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initial conditions yield moment conditions for the levels equations which can be

combined in a system using the traditional moment conditions for the first differ-

enced equations (generated by assumptions over the serial correlation properties

of the uit term). In both equations we essentially use lagged values to construct

instrumental variables for current variables.

The Olley Pakes (OP) algorithm is based on a structural model which generates

a two step method. In the first step we obtain a consistent estimate of the labour

coefficient (αl) using a non-parametric approach to sweep out with the correlation

of variable inputs with the error term. In the second step we obtain the capital

parameter using non-linear least squares. The routine avoids using instrumental

variables, but does not extend so straightforwardly to endogenous R&D decisions.

We therefore consider an extension to Olley-Pakes which allows for endogenous

R&D following Thomas Buettner (2004). This leaves stage one intact of the

algorithm, but alters the way we draw inferences on the capital coefficient at

stage 2.

Whether we use OLS, GMM or OP we still have the intrinsic problem that

the coefficients on our R&D spillover terms may reflect other correlated shocks to

demand or supply.14 We attempt to control for such biases by including firm (or

industry) fixed effects and other industry variables (such as sector-level demand

terms). We also examine using lags of the spillover terms, which should be less

effected by contemporaneous shocks. Of course the key variable for us is the

14See Charles Manski (1991) for a general discussion. Note that this is more likely to be a
problem for the coefficients on the domestic R&D spillover terms (θ1, θ2) than the foreign R&D
spillover terms since UK firms mainly produce domestically.
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coefficient on the interaction term between foreign R&D and the location weight

(φ2). There is no obvious reason why there would be an upwards bias to this term,

even if there was upwards bias to the linear spillover term (φ1).

A related concern is that WD
i and WF

i are choice variables for the firm (or at

least reflect past R&D locational choices), and may thus be correlated with firm

or industry-level technological shocks in a way that undermines our identification

strategy. Since we have no convincing exogenous instruments for the location of

firms’ innovative activity we use pre-sample information to construct WD
i and

WF
i . This ensures that the locational variables are not affected by shocks that

also directly affect firm-level outcomes during the sample period.15 This strategy

assumes that the firm did not locate R&D in the US in anticipation of positive

shocks to productivity. While we cannot rule out such behaviour, the fact that

the inventor patents are the result of R&D decisions taken often decades prior to

the sample period makes such biases likely to be small.

A final worry is that our empirical measure of WF
i may be proxying for other

non-locational aspects of firm’s activities (e.g. absorptive capacity or unobserved

firm quality) or non-innovation related aspects of the firm (e.g. its US production

activities). We test carefully for these alternative explanations in the results

section by bringing other types of data to bear upon the problem, such as citations

information.
15This has the disadvantage that firms may have moved their inventive activity over time.

This should, however, bias aganist us finding evidence of technology sourcing.
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3. Data

Our main dataset is a panel of manufacturing companies listed on the London

Stock Exchange. We matched information on all the US patents taken out by

these firms since 1968 (using the NBER/Case Western Patents dataset) by name

matching. These firms account for approximately 80% of all UK R&D in 1999.

Table 1 shows that firms in our sample had 63,733 US patents (which made 472,998

citations). 31% of these patents had inventors located in the UK compared to only

3% in the USPTO population as a whole - this is unsurprising. since these are all

firms listed on the London Stock Exchange. A further 45% of the patents taken out

by our UK firms had inventors located in the US - this illustrates the importance

of the US as a home for inventive activity of UK firms. But it also reflects the

fact that we are using US patents rather than UK or European patents. Our US

firm data is based on the match between Compustat and the USPTO conducted

by Bronwyn Hall et al (2001). The distribution of inventors in these firms is

contained in the third column and shows that only 1% of inventors were located

in the UK compared to 92% in the US itself. This illustrates why it would be

hard to examine technology sourcing from US data alone.

Table 2 gives some further descriptive statistics on our UK sample. Since all

these firms perform R&D and are listed on the Stock Exchange they are larger

than typical UK firms (the median employment is 1,750). Compared to the sample

of US firms (see Table A5), however, the UK firms are smaller (median US firm

size is 3,528). UK firms are also less R&D intensive that their US counterparts
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which mirrors the aggregate statistics. The full details of the data construction

are in Appendix A.

We use several measures of WUK
i and WUS

i . The basic measure is constructed

as the proportion of the firm’s total patents applied for between 1975 and 1989

where the inventor is located in the UK or the USA respectively. They are both

equal to zero if the firm has no patents. Our firm panel runs from 1990 to 2000, so

the location measures are based purely on pre-sample information. As discussed

above, this ensures that the location measures are not affected by shocks that

affect firm-level outcomes during the sample period.

This measure of the geographical location of innovative activity discards two

types of information in the patent data. The first is variation over time, so that the

measure represents an average of the location of the firm’s innovative activity over

the period 1975-1989.16 The second type of information is the total number of the

firm’s patents. While this may be relevant information, normalising the location

measures to a proportion between zero and one helps to deal with difficulties

associated with firm size and differences in propensity to patent across industries.

In the results section we show that the results are robust to adding in extra terms

of the interaction of the spillover terms with functions of the number of patents.

As mentioned above, we also use information on patent citations to refine our

measure of WUK
i and WUS

i . A key theme in the literature is that technology

sourcing is not the only motivation for firms to locate innovative activity abroad.

In particular, firms may do R&D abroad in order to adapt existing technologies

16We also constructed Wi using data only in the 1990s which gave similar results.
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to new markets. Our empirical approach to this issue is to use data on citations

to eliminate patents that are unlikely to represent technology sourcing behaviour.

Consider two extreme cases for a patent that is owned by a UK firm but that was

invented in the US: if the patent only cites patents owned by the same parent

firm and whose inventors were located in the UK then the patent is more likely

to represent activity associated with adapting an existing technology to the US

market. On the other hand, if the patent cites many patents that are not owned

by the parent firm and whose inventors were located in the US then the patent is

more likely to represent technology sourcing behaviour. If we want to investigate

whether there is evidence for technology sourcing behaviour in productivity out-

comes, then we want to focus on the latter and not use the first type of patent

when constructing our location measures.

To implement this approach, our second measure ofWUK
i andWUS

i looks only

at patents that cite patents whose inventors were located in the same country and

were not owned within the same parent firm. This measure of WUS
i is equal to

the proportion of the firm’s total patents where: (1) the inventor is located in the

USA and (2) the patent cites at least one other patent whose inventor was both

located in the US and did not work for the same parent firm.

Our third and most refined measure of WUK
i and WUS

i is the same as the

second measure, except that it also uses information on the time-lag between the

citing and cited patent. Technology sourcing behaviour is likely to be associated

with gaining access to pools of "tacit" knowledge. Given that knowledge that

was created recently is more likely to have tacit characteristics, we include only
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citations to patents whose application date is no more than three years prior to

that of the citing patent. The third measure ofWUS
i is thus equal to the proportion

of the firm’s total patents where: (1) the inventor is located in the USA and (2)

the patent cites at least one other patent that was applied for within the last three

years and whose inventor was both located in the US and did not work for the

same parent firm.

4. Results

4.1. Production Function: Main Results

Table 3 presents our main results on our R&D augmented production functions.

Columns (1) and (2) present the OLS results; column (1) does not impose constant

returns to scale in labour and capital, while column (2) does.17 Columns (3)

through (5) present System-GMM results. Column (3) contains the basic measure

of location (e.g. the proportion of inventors based in the US) whereas the next two

columns present the closer refinements to technology sourcing based on citation

patterns. In all columns the coefficient on the labour-capital ratio is similar to

the OLS case (about 0.65, close to labour’s share in value added). The estimated

elasticity with respect to firm-specific R&D is positive and corresponds to an

private excess rate of return to R&D of about 15% for our average firm, which is

similar to that found in other studies.18 Diagnostic tests are presented for first and

second order serial correlation in the first-differenced residuals. Neither test ever
17CRS is not rejected in the SYS-GMM results and is marginally rejected for OLS.
18For example, Griliches (1992). The private rate of return is calculated as bβ ∗ (YR ) which at

the average UK firm’s R&D stock intensity is 0.025*6 = 0.15
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rejects the hypothesis of no serial correlation. This justifies the use of twice lagged

instruments in the difference equation and once lagged instruments in the levels

equation.19 A Sargan test of the overidentifying restrictions is not significant at

5%, and neither is a Sargan difference test of the extra moment conditions implied

by the levels equation.

Turning to our main variables of interest, the key interaction term (φ2) between

US inventor location (WUS
i ) and the US R&D stock (Foreignjt) is positive and

significant at conventional levels across all the UK specifications. This seems

consistent with our technology sourcing argument. The linear US R&D term is

positive, but insignificant which implies that a UK firm with no inventor activity

in the US would receive no spillovers from US R&D.20 The basic domestic UK

industry R&D term enters positively and significantly, but the interaction with

WUK
i is not significantly different from zero. This may imply that UK firms do

not have to have a significant number of inventors located in the UK in order to

take advantage of domestic R&D spillovers.

Column (4) refines the location weight by only including patents which were

not self-citations and which did cite at least one other US inventors, as discussed

in the previous section. Column (5) further refines the measure by including only

patents that have cited other inventors in the last three years. The two refinements

bring the measure of inventor location closer to the theoretical ideal of technology

19In addition, none of the key results are sensitive to dropping twice-lagged differences and
once-lagged levels from the instrument set.
20This is probably too strong as some spillovers are likely to be captured by the time dummies

and also transferred through non-R&D channels.
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sourcing, although at the cost of using thinner slices of the patents data (see table

A3). It is reassuring that the coefficient on our key interaction (WUS
i ∗Foreignjt)

becomes increasingly strong as we move from column (3) through (5). This is

consistent with the notion that the measures are capturing what we intend rather

than some other spurious relationship.21

Column (6) reports the Olley-Pakes estimates of the production function. The

coefficient on labour is a bit lower relative to the OLS and the coefficient on capital

is a bit higher.22 The OLS bias is what one would expect from endogeneity of

inputs and selectivity.23 The qualitative findings are robust, however, and the

interaction between US R&D and foreign location remaining highly significant.24

Overall, there appears to be strong evidence that the productivity growth

of UK firms is significantly higher in industries with strong US R&D growth if

and only if the UK firms already have an inventive presence in the US. This is

21It is interesting that the linear US location measures WUS
i are usually negative suggesting

that there is some costs to locating inventors outside the home country (although note that this
term enters positively when the interactions are not included). The median marginal effect of
WUS

i on value added remains positive (e.g. in column (3) the median marginal effect is 0.03,
and the median marginal effect is positive in 10 out of 15 industries).
22The coefficient on firm R&D - although positive - is quite a bit lower than the other estimates.

This may be because the methodology already controls for R&D at stage 1 (see Appendix B).
23Endogeneity of input choice generally leads to an upward bias on the labour coefficient

and a downward bias on the capital coefficient as there is generally a higher contemporaneous
correlation between labour and productivity than between capital and productivity (Marschak
and Andrews, 1944; James Levinshohn and Amil Petrin, 2003).
24The OP results are generated by a multi-stage procedure (see Appendix B for details).

We first estimate the coefficient on labour using a control function approach. Using this (and a
selection equation) we then estimate the coefficient on capital by non-linear least squares. Given
the estimates of these we then calculate firm level efficiency and relate this to the spillover terms
as shown. An alternative method with introduces the spillovers terms directly into stage 2
(analgously to "plant age" in Olley and Pakes, 1996) gave qualitively similar but less precise
results.
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consistent with the technology sourcing hypothesis.

4.2. Production Function: Further Investigations

4.2.1. US Results

All these results up until now are for UK firms. Given that the US is usually at

the technology frontier and UK firms are generally below the technology frontier

we might expect that technology sourcing is a much less powerful motivation

for US firms locating their R&D labs in the UK. Indeed, the proportion of US

firms’ patents that have a UK inventor is only about 1% (compared to 45% of

UK firms patents with a US inventor). This is why using a sample of UK firms

is a much better test of the technology sourcing hypothesis then using US firms.

In order to investigate this, column (1) of table 4 re-estimates the specification

in column (3) of Table 3 for US firms (see Appendix A for details of the data).

The coefficients on labour and capital are similar to the GMM estimates for the

UK. The domestic US R&D term is positive and significant suggesting domestic

spillovers, but the interaction with the location weight is insignificantly different

from zero. Consistent with our expectations, the interaction between UK presence

and UK R&D (WUK
i ∗Domesticjt) is insignificantly different from zero (although

it is positive).25 Even if the interaction where statistically significant, however,

the economic magnitude of the impact is small. A US firm would have to have

at least half of its inventors in the UK before UK R&D achieved any positive

25These results are robust to dealing with spillovers in many different ways. For example,
constructing a Jaffe (1984) measure of spillovers for the US firms and interacting it with domestic
inventor presence was insignificant.
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productivity impact (only 0.5% of the US sample are in this position).

4.2.2. Location of Productive Activity

Although we have been assuming that production activity is located in the UK,

this is not completely true in practice. It is possible that the location measure

WUS
i is not only proxying for the location of innovative activity, but also for the

location of production. In other words, firms with innovative activity in the USA

may also have productive activity located there. If this is the case, then we may

be picking up not only international spillovers but also domestic spillovers within

the USA. We attempt to control for this by estimating our model on firms with no

(or practically no) US production activities (72% of our firms are in this category)

based on their reported number of domestically and overseas employees.26 Looking

only at firms whose productive activity is located entirely within the UK the

results are very similar - the key interaction of inventor location with US R&D

stock has a coefficient of 0.221 and standard error of 0.063 (see column (2) of

Table 4), actually slightly stronger than in Table 3.27 This suggests that our UK

results are not primarily driven by the location of firms’ production activities.

4.2.3. Industry Heterogeneity
26117 out of 188 firms report domestic employment separately to total employment at least

once during 1990-2000. For those that do not report separately we assume that all employment
is domestic. Of those 117 firms, 53 report total employment greater than domestic employment
at least once. We drop these firms from the sample and re-estimate our model on the remaining
135 firms, which we expect to have little or no foreign production activity.
27This is from a specification identical to that of Table 3 column (5).

18



We examined whether the technology sourcing effect was different across indus-

tries. Since the theory suggests that technology sourcing should be stronger for

UK firms which are furthest behind the technological frontier we divided up indus-

tries into those where the TFP gap with the US was large versus those where the

TFP gap was smaller. We found that the US interaction term was much stronger

in the sectors where the UK firms "had the most to learn" from the US. This is

illustrated in columns (3) and (4) of Table 4: the key coefficient is twice as large

and only significant in the "high TFP gap industries".

4.2.4. Absorptive Capacity

One interpretational difficulty arises if the inventor location term reflects the firm’s

own intensity of knowledge. For example, if firms located in the US are more in-

novative and if innovative firms absorb knowledge more easily, this could account

for the positive interaction. To test this we included further interactions of the

spillover measures with indicators of the firms overall innovativeness. Although

these were generally positive they were less informative than the location inter-

actions. For example, we interacted a binary dummy indicating whether the firm

had ever patented with the industry R&D terms. This is to check that the re-

sults on the location interactions are not driven by patenting firms having higher

"absorptive capacity" than non-patenting firms, since non-patenting firms by de-

finition have values of WUK
i and WUS

i equal to zero. Neither of the interactions

with the patenting dummy is ever significant, and the positive significant interac-

tion with WUS
i remains, suggesting that the results are not driven by absorptive
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capacity.

The concern over absorptive capacity is similar to the concern that the WUS
i

reflects some other form of unobserved heterogeneity28. We conduct a further test

of this using a patents citation equation in the next section.

4.2.5. Other Robustness Tests

We also conducted a large number of other robustness checks. First, we included

industry level value added in the US and in the UK to check that the results are

not driven by industry level shocks correlated with R&D. None of the value added

terms is significant in the UK equations.29 Second, we lagged all the industry

level R&D terms by one period, so that they could be considered pre-determined.

Again the main results are not affected. Thirdly, there is a worry that we have

omitted the human capital composition of the firm as such data is unavailable

from company accounts. To check for this we included the average wage and its

interaction with US R&D to make sure this was not driving the results. Our key

interaction remained significant and positive (although the linear average wage

term was significant).

4.3. Patent Citation Equations

Our interpretation of the results in the previous section is that having inventors

located in the US allows UK firms to access geographically localised spillovers.
28We also interacted a pre-sample measure of firm specific TFP to see if this was driving the

results. It was insignificant.
29US value added was significant in the US firms production function and we keep it in the

Table 4 column (1) results. We also included interactions of value added with the locational
weights - none of these interactions were significant.
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However, it is possible that the firm-level location weights are correlated with some

unobserved firm-level characteristic that allows firms to absorb the information

contained in spillovers from the US. For example, some UK firms may be located in

a technological area in which US firms have a comparative advantage. Recently,

many authors have turned to patent citations as an alternative, direct way of

measuring spillovers.30 We use this alternative source of information as one way

of investigating the possibility that our previous results are driven by unobserved

heterogeneity.

To implement this approach we estimate a patent citation equation of the

following form.

CITESUS
pit = g(USpit, UKpit,W

US
i ,WUK

i , xpit, upit) (4.1)

The dependent variable CITESUS
pit is a count of the number of non-self ci-

tations from patent p of UK firm i at time t to a patent with a US inventor

that was applied for within the previous three years. This is the type of citation

that we consider most likely to be associated with technology sourcing. USpit

and UKpit are dummy variables that are equal to unity if the citing patent is

invented in the US or UK respectively, and zero otherwise. The base category

is all other countries. WUS
i and WUK

i are the basic firm-level location weights

described above. Control variables (xpit) include the total number of cites made

by the patent (TOTALCITES), year dummies, industry dummies, technology

class dummies and all other firm and industry-level variables in the production
30For an early example see Adam Jaffe, Manuel Trajtenberg and Rebecca Henderson (1993).
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function. Finally, upit is a serially uncorrelated error term.

An established result in the citations literature is that patents are more likely

to cite other inventors in the same country than they are to cite foreign inventors,

and these citations tend to come sooner.31 Thus we expect USpit to enter positively

in equation (4.1). However, if our interpretation of the production function results

is correct, we expect the firm-level variable WUS
i not to enter in equation (4.1)

conditional on the location of the citing patent’s inventor. If WUS
i were to enter

positively, even after controlling for USpit, this would suggest the presence of some

firm-level propensity to cite US inventors that was not entirely accounted for by

the presence of individual inventors in the US. In particular, it might be the case

that the firm’s UK-based inventors were also systematically more likely to cite

US inventors. This would suggest that the firm-level location weight WUS
i was

proxying for something more than just the geographical location of inventors.

The sample is all patents applied for by our sample of UK firms over 1990-1998.

Restricting our attention to patents applied for after 1989 allows us to use the

same pre-sample firm-level location weights as before.32 We estimate equation

(4.1) by a negative binomial count data model, and as a robustness check we

also estimate a probit regression where the dependent variable is equal to one if

CITESUS
pit is greater than zero.

33

31See Adam Jaffe and Manuel Trajtenberg (2002) for a recent survey of this literature.
32We do not consider patents applied for after 1998 because the patent database only contains

information on granted patents. Since the process of granting a patent can take several years,
this raises the possibility of truncation bias by not including patents that have been applied for
but not yet granted.
33Similar results to the Negative Binomial model emerge from a Poisson specification, although

the Poisson model is strongly rejected in favour of over-dispersion. The data support a hypothesis
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Table 5 presents the results. In column (1) we exclude the individual inven-

tor location indicators USpit and UKpit. The firm-level location variable WUS
i is

strongly associated with the propensity to cite US inventors. This initial result is

reassuring as it corroborates the hypothesis that our firm-level inventor location

weight is picking up knowledge transfers using a completely different methodology

to the production function approach. If the US R&D labs of our UK firms were

not really tapping into localised US knowledge (e.g. if they were just adapting Eu-

ropean knowledge to the US market) we would not expect them to be extensively

citing US patents.

In column (2) we include USpit and UKpit in the specification. The coefficient

on the US inventor dummy is positive and highly significant, confirming the result

found elsewhere in the literature that US inventors are more likely than foreign

inventors to cite other US inventors. This is true even though all the patents in

the sample are owned by UK firms. The reported coefficients on USpit suggests

that the citation rate per patent to US inventors is about 68% higher for patents

invented in the US. More importantly for our purposes, conditioning on the loca-

tion of the patent’s inventor drives the coefficient on the firm-level location weight

WUS
i to zero. So there is no evidence for any firm-level propensity to cite US

inventors that is not entirely accounted for by the presence of individual inventors

in the US. In particular, UK inventors are not more likely to cite US inventors

when their firm’s value of WUS
i is high. Columns (3) and (4) present equivalent

of constant dispersion, with the additional dispersion coefficient, delta, significantly greater than
zero, as shown in Table 4.
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results for the probit specification. As with the negative binomial results the

introduction of USpit drives the coefficient on WUS
i towards zero.

These results from patent citation behaviour tend to support our interpretation

of the earlier production function results. UK firms with inventors located in the

US are more able to benefit from localised US spillovers precisely because of the

presence of those inventors in the US, and not because of some other firm-level

characteristic that is correlated with having inventors located in the US.

5. Summary and Conclusions

The results presented in this paper provide strong evidence for the existence of

knowledge spillovers associated with technology sourcing. The idea that firms

might invest in R&D activity in a technologically advanced country such as the US

in order to gain access to spillovers of new "tacit" knowledge has been suggested

in the business literature but we know of no studies that have attempted to find

evidence for this in observed productivity outcomes.

Our main results suggest that the increase in the US R&D stock in manufac-

turing over 1990-2000 was associated with on average a 5% higher level of TFP

for the UK firms in our sample (about $77bn at 2000 prices). This compares with

an average 6% higher level of TFP associated with the increase in their own R&D

stocks over the same period.34 Thus spillovers from the US contributed about

34These numbers are calculated as the product of the estimated elasticities from Table 3 and
the percentage change in the US and own R&D stocks over the 1990-2000 period. All three
location weights gave similar estimates of the contribution of US R&D to the TFP growth of
our sample of firms.
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two-thirds of the effect of firms’ own R&D. Our results also suggest that for a UK

firm, shifting 10% of its innovative activity (as measured by patent applications)

to the US from the UK while keeping its overall level of R&D stock the same (e.g.

changing WUS
i from 0.30 to 0.40 and WUK

i from 0.70 to 0.60 while keeping Rit

the same) is associated with an increase in its TFP level of about 3%. This effect

is the same order of magnitude as that of a doubling in its R&D stock.

The US innovation boom in 1990s had major benefits for the UK economy (and

by implication for many other countries in the world). An interesting extension

of our methods would be to replicate the findings from other countries. It also

increases the incentives for multinationals to locate R&D in the US, which is

indeed what has occurred. Future research needs to show to what extent this is

driven by technology sourcing rather than other contemporaneous events (such as

the increasing generosity of the US R&D tax credit).

Our result has interesting implications for policy. Governments are generally

keen to promote higher levels of domestic R&D activity, and the Member States

of the European Union have recently expressed an aspiration to raise the level

of R&D spending within the EU to 3% of GDP. Policies which aggressively seek

to achieve this target by artificially inducing multinational European firms to

relocate their existing R&D labs away from the US and towards Europe could

be very counterproductive as they may reduce the ability of European firms to

benefit from US R&D spillovers.
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A. Appendix: Data

In order to implement our empirical strategy we need to measure three types of
information: the location of firms’ innovative activity, firms’ productivity perfor-
mance, and the domestic and foreign spillover pools available to firms. We use
data from the US Patent Office, firm accounts data, and OECD data on industry
level R&D expenditure.

A.1. Innovative activity

The first dataset is the NBER patent citations data file which contains comput-
erised records of over two million patents granted in the USA between 1901 and
1999. This is the largest electronic patent dataset in the world. We restrict our
attention to patents applied for after 1975 as on citations are only available for
patents applied for after this date. This is combined with firm accounting data
from the Datastream on-line service which contains information on output, em-
ployment, investment and R&D.35

35More details of the matching between the datasets can be found in Bloom and Van Reenen
(2000).

28



A.1.1. Inventor location

Patents identify the address (including country) of the inventor(s) listed on the
patent application. Table 1 (in the main text) shows the primary inventor’s coun-
try for the 63,733 patents matched to the 266 UK firms (i.e. those listed on the
London Stock Exchange). For comparison, the final column lists the share of the
primary inventor’s country for the entire patent database of all patents registered
in the USA between 1975 and 1998 (more than 2 million patents). As expected
the share of UK inventors is much higher for the patents owned by the 266 UK
firms (31.0% in column (2)) than for the whole sample of patents (3.0% in column
(3)). Nevertheless, the US has the highest share of inventors even for the patents
owned by the 266 UK firms (45.1%). The high share of patents owned by the 266
UK firms, but invented in the USA, is probably partly due to home-country bias
from using a US dataset, but also reflects the county’s strong innovative perfor-
mance and the location of many UK firms in the USA. An overall bias towards
US based patents should not bias our results as long as it is not different across
firms in a way that is related to other firm characteristics.

A.1.2. Patent Citations

We also use data on patent citations to refine our measures of the location of firms’
innovative activity. We assume that a patent owned by a UK firm, but invented
by an inventor located in the USA, is more likely to be associated with technology
sourcing behaviour if it cites other patents whose inventors were located in the
USA. In particular, if a patent owned by a UK firm but invented by an inventor
located in the USA does not cite any other patents whose inventors were located in
the USA, this suggests that the patent is unlikely to be associated with technology
sourcing. Such a patent is more likely to be associated with other motivations for
locating R&D abroad, such as adapting existing technologies to the local market.
The 63,733 patents matched to our 266 UK firms make 472,998 citations to

other patents, an average of 7.4 citations made by each patent. Of these 472,998
citations, 405,788 have information on the country location of the cited inventor.
Because we are interested in whether firms are benefitting from external knowledge
that has not been generated within the same firm we exclude self-citations, where
a patent cites another patent that is owned by the same firm. 8.7% of all citations
are made to patents owned by the same patenting subsidiary (or “assignee”), while
a further 1.1% of all citations are made to a different assignee that is nevertheless
part of the same parent firm.
Table A1 shows a cross-tab of the location of the citing and cited inventor for
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the 359,265 non-self citations in our sample. It is important to remember that all
of these citations were made by patents that are owned by UK firms, even if the
inventor was located in the US. Only 6.9% of citations made by UK inventors are
made to another UK inventor, while 60.7% are made to a US inventor. In contrast,
71.8% of citations made by US inventors are made to other US inventors, while
only 3.2% are made to UK inventors. This probably illustrates both the fact that
the data is from the US patent office, but also the dominant global position of the
USA in innovation. This provides preliminary evidence that most patents owned
by UK firms but invented by an inventor located in the US are building on other
knowledge created in the USA. When we look at self-citations to a patent that is
owned by the same parent firm (not shown) the percentages in the diagonals (for
example a UK inventor citing another UK inventor) are much higher. We also
see that, even within firms, the transfer of knowledge from the UK to the USA
appears to be small compared to the transfer of knowledge within the USA.

A.1.3. Patent Application dates

Geographic proximity is generally thought to be more important for the flow of
knowledge that is “tacit”, in the sense that it is not easily codified or written
down in manuals. The flow of tacit knowledge is more likely to be mediated
through face-to-face meetings and personal interactions between scientists and/or
engineers. It also seems likely that knowledge that has been created recently is
more “tacit” than knowledge that was created longer ago. Thus, firms that locate
innovative activity in the US in order to gain access to pools of tacit knowledge
are unlikely to be attempting to access knowledge that was created twenty or even
ten years ago. For this reason we also use information on the application dates
of each citing and cited patent in order to refine our measures of the location of
firms’ innovative activity. In particular we look at citations made to patents that
were applied for within the last three years. Table A2 shows the same cross-tab
of the country of the citing and cited inventor for all non self-citations of this
type. The proportions are similar to those in Table A1, although UK inventors
are slightly more likely to cite other UK inventors than before, while US inventors
are less likely than before to cite other US inventors.

A.2. Firm Accounts data

We sought to construct similar types of data in both US and UK, although some
differences were inevitable. The samples were both independently matched to
USPTO data. The samples are based on publicly listed firms, whose primary
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sales are in manufacturing and who report some R&D between 1990 and 2000.
Data relates to the consolidated worldwide accounts. Observations with missing
data, firms with less than five consecutive observations over 1990 - 2000, and firms
for which there were jumps greater than 150% in any of the key variables (capital,
labour, sales) were deleted. R&D capital stocks were constructed by the perpetual
inventory method using a depreciation rate of 15%.

A.2.1. UK firms

The data on value-added, labour (DS Item 182), capital and R&D expenditure
(DS Item 119) comes from the Datastream On-Line service and is a sample of
firms listed on the London Stock Exchange. Although these are “UK firms” in
the sense that they are listed on the London Stock Exchange, a key feature of the
data is that it relates to the firm’s global activities.
Value added is the sum of total employment costs, operating profits, depreci-

ation and interest payments.
The initial sample is all firms existing in 1985 with names starting with the

letters A-L, plus any of the top 100 UK R&D performers not already included.
The sample includes 415 firms, 266 of whom had taken out at least one patent
between 1975 and 1998. All these firms’ subsidiaries were located usingWho Owns
Whom by Dun and Bradstreet in 1985. All the subsidiaries were then matched
by name to the USPTO (see Nick Bloom and John Van Reenen, 2002, for details)
The data does not include intermediate inputs, so value added was constructed

as the sum of total employment costs, operating profit, depreciation and total
interest charges. Most UK firms did not report R&D expenditure before 1989
and so the analysis is restricted to the years 1990-2000.36 An R&D capital stock
was constructed using a perpetual inventory method and an assumed 15% rate of
obsolescence.
After cleaning our data we have a sample with 1794 observations on 188 firms,

141 of which are matched to at least one patent. Table 2 in the main text reports
summary statistics. On average, firms in our sample have applied for 240 patents.
46.2% of these patents are taken out by inventors located in the US, 41.7% are
taken out by inventors located in the US and also cite at least one other US patent,
and 16.2% are taken out by inventors located in the US, cites at least one other
US patent and that has been applied for within the last three years.

36Even after 1989 when a firm reports zero R&D it is not clear that this corresponds to a true
zero, although it is unlikely to perform a large amount of R&D. In the results presented in this
paper, a dummy variable was used to denote reported zero R&D expenditure, but the results
are not sensitive to the exact treatment of reported zeros.

31



A.2.2. US firms

US Data was taken from the match between Compustat and the USPTO con-
ducted by Bronwyn Hall et al (2000). We tried to make the sample and variable
construction as close as possible to the UK sample. We matched in industry level
data by primary SIC code as above (1987 Revision). The book value of capital is
the net stock of property, plant and equipment (CS Item A8 - PPENT). R&D is
CS item A46 - XRD. Unfortunately staff costs are only available for 5% of firms in
the Compustat data so constructing a value added measure is extremely difficult.
Consequently we follow the tradition in the US literature and use real sales as our
output measure (CS Item A12- SALE).
The inventors of US firms are much more localised in the United States than

in UK firms (see Table 1). 95% of all inventors were in the US and only about
1% of inventors were located in the UK. This reflects the innovative strength of
the US and the fact we are using USPTO data, so there is some inevitable home
bias for the US. The industries where there is greater US innovative presence in
the UK are (unsurprisingly) those were the UK has some traditional strengths -
medical equipment, pharmaceuticals, and petroleum refining.
Table A4 describes the data on US firms.

A.3. Industry level data - R&D Spillover pool

The domestic and foreign spillover pools were constructed using the OECD’s An-
alytical Business Expenditure on R&D dataset (ANBERD, 2002). This contains
information on R&D spending at the 2-digit manufacturing industry (ISIC Revi-
sion 3) for all OECD countries. A stock measure was constructed using a perpetual
inventory method and an assumed 15% rate of obsolescence,37 with a starting year
of 1987. Although there are various problems with using industry-level measures,
as discussed above, this data has the crucial advantage for our purposes that it
contains R&D expenditures by geographical location of the R&D activity. This
would be extremely hard to recreate using data on firms’ R&D as they do not
decompose R&D into a foreign and domestic element. Our measure also has the
advantage of including all R&D carried out in each industry in each country, and
not just the R&D of the other sampled firms. We also use data on 2-digit industry
level value-added taken from the OECD’s Structural Analysis database (STAN,
2003). Value added price deflators at the two digit level are also used from this
source.
37We experimented with other depreciation rates but the results were not significantly

changed.
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B. Appendix: Econometric modelling strategy

We present baseline OLS production function of equation (2.6) but there are sev-
eral well known problems with obtaining consistent estimates of the parameters.
These relate to the endogeneity of the inputs, unobserved heterogeneity and sur-
vivor bias/selectivity. We compare results from two alternative approaches to deal
with these problems, a GMMmethod (Richard Blundell and Stephen Bond, 2000)
and the popular "OP" method (Stephen Olley and Ariel Pakes, 1996) adapted for
the presence of endogenous R&D (Thomas Buettner, 2004).

B.1. System GMM

Consider a simplified form of the production function

yit = αxit + ait (B.1)

where xit is an endogenous input and the residual productivity term takes the
form

ait = tt + ηi + uit. (B.2)

Year dummies (tt) control for common macro effects and the firm fixed effect
(ηi) and stochastic productivity shock (uit) may be correlated with the regressors.
Assuming no serial correlation in the uit process yields the following moment
conditions

E[xi,t−s∆uit] = 0 (B.3)

for s ≥ 238. This allows the use of suitably lagged levels of the variables to
be used as instruments after the equation has been first differenced. We test for
the problem of serial correlation through LM tests at the base of all the GMM
columns. If there is higher order (but finite) serial correlation in the uit process
longer lags can still be used as instruments.
Unfortunately, the first differenced GMM estimator has been found to have

poor finite sample properties when the endogenous variables are highly persistent
because the lagged instruments are weakly correlated with the first differences
of the endogenous variables. If we are prepared to make an initial conditions

38If there is serial correlation in the error term this can be dealt with by using longer lags as
instruments. For example, if uit ∼MA(1) lags dated t−3 and earlier will be valid instruments.
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assumption E[∆yi2ηi] = 0 and E[∆xitηi] = 0 then additional moment conditions
become available39. The additional moment conditions take the form:

E[∆xi,t−s(ηi + uit)] = 0 (B.4)

for s = 1 when uit ∼ MA(0). This means that the lagged difference of x
can be used as instruments in the levels equations. We test the validity of the
additional moment conditions using a Sargan difference test. The levels equa-
tions and differenced equations are stacked in a system each with its appropriate
instruments.
We assume that all firm-level variables are endogenous, whereas all industry-

level variables are treated as exogenous. We examine specifications where the
industry-level R&D stocks are treated as endogenous and the results are not sig-
nificantly affected. The results are also robust to lagging the industry-level vari-
ables by one period, in which case they can be treated as pre-determined. We
instrument firm-level variables in the differenced equation with their levels lagged
from two to five times inclusive, and in the levels equation by their first-differences
lagged once, as well as by all time and industry dummies and all exogenous vari-
ables.
The standard errors we present allows for arbitrary heteroskedasticity and

arbitrary serial correlation. They are the "One-Step robust" results from the
DPD package written in GAUSS40 (i.e. we do not iterate on the GMM weight
matrix because of the Monte Carlo evidence of underestimation of the second step
standard errors). We include full sets of time dummies and industry dummies in
all regressions.

B.2. Olley Pakes with endogenous R&D

Olley and Pakes (1996) essentially assume that the production function can be
written

yit = α0 + αllit + αkkit + ωit + υit (B.5)

where ωit is the productivity state and υit is a serially uncorrelated additional
productivity shock or measurement error (which can be serially correlated). This

39Stationarity of yit and xit is sufficient (but not necessary) for these conditions to hold. What
is essential is that teh first moments of the endogenous variables are time invariant conditional
on the time dummies. The higher order moments are unrestricted.
40Available from: http://www.ifs.org.uk/econometindex.shtml
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is equation (2.4) with β = γi1 = γi2 = 0 and ait = ωit + υit.Capital is quasi-
fixed and labour completely variable. The bones of the Olley Pakes model is as
follows. At the beginning of the period t, firm i observes its productivity state ω
and capital k. The key difference between ω and υ is that ω is a state variable
and affects invetsment decisions whereas υ does not. The firm decides whether
to stay in business based on its expectations of net present value value compared
to a critical cut off. Denote χt = 1 if the firm chooses to stay in business and
χt = 0 if the firm chooses to exit. If the firm decides to continue operations it sets
labour and chooses the level of investment in physical capital. Physical capital
evolves in a deterministic process based on investment according to the standard
perpetual inventory formula. The additional shock υ is then realized after these
choices are made. The key insight of OP algorithm is to use the monotonicity of
the investment policy function in unobserved productivity (conditional on current
capital). This can be used to get consistent estimates of the parameter on variable
inputs at stage 1 and then use these (at stage 2) to obtain the capital coefficient.
We take two approached to dealing with firm R&D. First, we consider esti-

mates of the standard OP algorithm and include R&D as an exogenous variable41.
Secondly, we follow Thomas Buettner’s (2004) extension of the OP structural
model to include endogenous R&D chosen at the same time as fixed investment.
Unlike fixed investment, however, R&D is stochastic. The productivity state ω
still evolves stochastically over time according to a controlled Markov process,
but the distribution of next period’s productivity is increasing (in a first order
stochastic dominance sense) not only in the current productivity state but also
in the amount of R&D expenditure. We can think of this as the firm "buying"
an improved probability distribution of ωt+1 through spending more on R&D this
period. We assume that the distribution of ωt+1 is governed by a parameter ψt, a
single index. The distribution of next period’s productivity ωt+1 is a member of
the family of distributions.42

zψt+1 = {F (ωt+1|ψt+1), ψt+1 ∈ Ψ}
An important contribution of Buettner is to show that (in the context of this

extended structural model) the invertibility of the investment policy function still
holds. Consequently stage 1 of the OP algorithm does not need to be changed.

41Analagously to plant age in the original Olley Pakes (1996) application.
42This is an important restriction as it implies that R&D and ωit affects ωit+1 only through

ψit+1. Thus productivity shocks and R&D are not allowed to have a qualitively different impact
on the distribution of future productivity.
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B.2.1. Stage One: Estimation of the coefficient of the variable input.

The estimation strategy is to control for the unobserved productivity shock non-
parametrically by exploiting the monotonicity of the investment policy function.
Unobserved productivity can be written as43

ωit = eω(iit,kit)
Substituting this into the production function (B.5) gives

yit = α0 + αllit + φ(iit,kit) + υit (B.6)

where
φt = φ(iit,kit) ≡ α0 + αkkit + eω(iit,kit)

We do not know the functional form of φt so we use a series estimator to
approximate it 44. Estimation of equation (B.6) gives a consistent estimate of αl

and estimates of the unknown function φt.

B.2.2. Stage Two: Estimation of the coefficient of the quasi-fixed input.

Rearranging (B.6) after we have an estimate of the coefficient on the variable
input (αl) gives

y∗it = yit − αllit = α0 + αkkit + υit

The expectation of y∗it conditional on information at t− 1 and survival until t
is then

E[y∗it|It−1, χit = 1] = α0 + αkkit +E[ωit|ψit,χit = 1]

where It−1 is the information set in t−1,the distribution of productivity states
is ψit, (which is influenced by the firm’s R&D choice). Under the Markov as-
sumption for productivity, we can re-write productivity conditional on survival
as:

ωit = E[ωit|ψit,χit = 1] + ξit

The second stage estimation becomes

43Or equivalently eω(kit+1,kit) since capital is formed deterministically: kit+1 = (1− δ)kit.
44Olley and Pakes find that the fully non-parametric estimator of φt gives similar results to the

series estimator. We found that fourth or sixth order series expansions (instead of our preferred
fifth order) made little difference to the results.
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y∗it = α0 + αkkit +E[ωit|ψit,χit = 1] + ξit + υit

where the productivity innovation ξit is uncorrelated with kit.To control for
selectivity we will take a similar approach to stage 1 and control for the expectation
non-parametrically.
In the absence of selection and R&D the second stage becomes simply

y∗it = α0 + αkkit + g(ωit−1) + ξit + ηit (B.7)

Since ωit−1 = φt−1 − αkkit−1 − α0, equation (B.7) can be estimated by non-
linear least squares where the unknown function g(ωit−1) can be approximated by
a nonparametric function in φt−1−αkkit−1.The key difference between Buettner’s
model and the original OPmodel is that ψit, depends on both ωit−1 and kit−1 in the
model with endogenous R&D whereas it only depends on ωit−1 in the original OP
set-up. This means that there is a difference in the method in which we estimate
stage 2. We use the fact that the R&D function can be written r(ψit,ωit−1) and
invert this to obtain

ψit = r−1(rit−1,ωit−1) (B.8)

where rit−1, denotes the observed R&D spend at t-1.Using equation (B.8) to
control for the distribution in period t, the second stage estimation equation be-
comes

y∗it = αkkit + g(r−1(rit−1,ωit−1)) + ξit + υit (B.9)
= αkkit + eg(rit−1,φt−1 − αkkit−1) + ξit + υit

Equation (B.8) can be used to obtain estimates for αk replacing g(r−1(., .))
with a nonparametric function eg(.,.) in rit−1 and φt−1 − αkkit−1.
Armed with these estimates for the parameters of the production function we

can then construct the productivity term ωit. These estimates of the productivity
term are then related to the spillover terms in a final stage regression.
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Figure 1: US R&D growth and “productivity growth premium” for UK firms with a 
high proportion of US inventors 
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Notes: 

Vertical axis is the “productivity premium” for UK firms with strong inventor presence in the US 
between 1990 and 2000 (i.e. the differential in annual average labour productivity growth for our 
UK firms with above median US inventor presence versus those with below median US inventor 
presence). The horizontal axis is total growth in US R&D stock. Shaded industries are those with 
largest US-UK TFP gap in 1990 (i.e. where UK firms had the “most to learn”). Industry points are 
weighted by number of firms in our sample. Although there is a positive relationship across all 
industries, it is strongest in the “high gap” sector. 
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Table 1: Country of inventor 

 

Country of 
Inventor 
 

(1) 
Number of  

Patents matched 
to our 

UK firms  

(2) 
% Share of 

patents matched 
to our 

UK firms  

(3) 
% Share of 

patents matched 
to our US firms  

(4) 
% Share of all 

USPTO patents 

   UK 19,745 31.0 1.1 3.0 

   USA 28,731 45.1 92.3 55.7 

   Japan 4,411 6.9 1.5 18.8 

   Germany 2,481 3.9 1.3 7.9 

   France 1,457 2.3 0.9 3.0 

   Other 6,908 10.8 2.9 11.6 

   Total 63,733 100 100 100 

 

Notes: First two columns give inventor location from the matching of UK firms to USPTO. Column (3) 
from matching of US firms to USPTO. Final column refers to all patents registered at the US Patent Office 
between 1975 and 1998  

 

Table 2: Descriptive Statistics for UK firms 

 
 Mean Median Standard 

Deviation 
    

Employees 10,711 1,750 27,564 

Value added (£m) 372 48 914 

Capital stock per worker 
(£) 

38,700 30,000 31,900 

Value added per 
employee (£) 

31,404 50,201 12,438 

R&D expenditure/value 
added 

0.029 0.010 0.044 

R&D stock/value added 0.158 0.046 0.272 

 
 

Notes: 188 firms, 1990-2000; all monetary amounts are in 1995 currency, deflated using OECD 2 digit 
industry price deflator; value added is constructed as the sum of total employment costs, operating profit, 
depreciation and interest payments; capital stock and R&D stock  are constructed using a perpetual 
inventory method as described in the text  
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Table 3: R&D-Augmented Production Functions  
 
 (1) (2) (3) (4) (5) (6) 

Estimation Method OLS OLS GMM GMM GMM Olley-Pakes 

Dependent variable ln (Y) it ln (Y/K) it ln (Y/K) it ln (Y/K) it ln (Y/K) it ln (Y) it 

Company listed in: UK UK UK UK UK UK 

Location weight: iW  Location Location Location Location & 
Citation 

Location & 
Citation within 3 

years 

Location & 
Citation within 3 

years 
       
ln (L/K) it 
labour-capital  - 

0.657 

(0.046) 

0.648 

(0.065) 

0.647 

(0.065) 

0.642 

(0.067) 
- 

ln (L) it 
labour 

0.620 
(0.057) 

- - - - 
0.575 

(0.041) 
Ln(K) it 

capital 
0.343 

(0.042) 
- - - - 

0.432 
(0.045) 

ln (R&D) it, 
firm R&D stock 

0.029 

(0.008) 

0.012 

(0.007) 

0.026 

(0.011) 

0.025 

(0.010) 

0.022 

(0.010) 

0.008 

(0.004) 
US

iW * ln (US R&D) jt 

 
- 

0.076 
(0.024) 

0.066 
(0.035) 

0.084 
(0.031) 

0.173 
(0.054) 

0.115 
(0.045) 

UK
iW * ln (UK R&D) jt 

 
- 

0.035 
(0.022) 

0.026 
(0.028) 

0.092 
(0.095) 

0.400 
(0.291) 

0.147 
(0.338) 

ln (US R&D) jt 
US industry R&D stock  - 

0.050 
(0.118) 

0.065 
(0.067) 

0.059 
(0.065) 

0.063 
(0.066) 

-0.050 
(0.030) 

ln (UK R&D) jt 
UK industry R&D stock  - 

0.273 
(0.165) 

0.221 
(0.101) 

0.219 
(0.101) 

0.206 
(0.096) 

0.120 
(0.053) 
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US
iW  

% inventors in US 
- 

-0.696 
(0.240) 

-0.602 
(0.336) 

-0.765 
(0.313) 

-1.658 
(0.543) 

-1.097 
(0.439) 

UK
iW  

% inventors in UK 
- 

-0.296 
(0.156) 

-0.254 
(0.193) 

-0.760 
(0.683) 

-3.270 
(2.533) 

-1.280 
(2.506) 

       

Firms  188 188 188 188 188 188 
Observations 1794 1794 1794 1794 1794 1794 

1st order serial 
 correlation test (p-value) 

- - 
-1.212 

(0.226) 
-1.212 

(0.226) 
-1.212 

(0.225) 
- 

2nd order serial 
 correlation (p-value) 

- - 
-1.788 

(0.074) 
-1.769 

(0.077) 
-1.719 

(0.086) 
- 

Sargan Difference Test  
(p-value) 

  
17.52 

(0.562) 
17.90 

(0.534) 
18.81 

(0.456) 
- 

Sargan Test of  
Over-identifying restrictions  
(p-value) 

- - 
86.39 

(0.217) 
86.18 

(0.222) 
86.52 

(0.214) 
- 

 
Notes:  

US
iW  and UK

iW are the (pre-1990) proportion of a firm’s inventors located in the US and UK respectively. Standard errors in brackets under coefficients are robust to 
heteroskedacity and autocorrelation of unknown form and are clustered by industry. The dependent variable in columns (2) through (5) is the log of value added divided by capital 
stock, in column (6) it is the log of value added and in column (7) it is the log of real sales. The time period is 1990-2000. Columns (1), (2) and (7) are estimated by OLS. Columns 
(3) to (5) are estimated by System-GMM (one-step robust standard errors). In Systems GMM (see Blundell and Bond, 2000) the firm-level variables are assumed endogenous and 
industry level variables are assumed strictly exogenous; endogenous variables are instrumented by levels lagged from two to five times in the differences equation and differences 
lagged once in the levels equation, as well as by all exogenous variables and year and industry dummies. Column (6) is estimated by the OP method (Olley-Pakes, 1996). In OP we 
use a fifth order series expansion in the first and second stage (the second stage also includes a selection correction term).  After obtaining the firm specific (total 
factor) productivity term (?  it) from stage one we regress this against the indicated variables (including full sets of industry and time dummies). In OP the 
standard errors are bootstrapped (100 replications) and allow for clustering by firm. For diagnostic tests p -values are in brackets and italics. Columns (1) through (6) are 
UK firms and column (7) is the sample of US firms. All equations include a full set of industry dummies and time dummies. Column (7) also includes US industry value added 
(which was insignificant in the other columns). 
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Table 4:  R&D Augmented Production function results – Further Investigations  
 (1) (2) (3) (4) 

Estimation method GMM GMM GMM GMM 

Dependent variable ln (Y) it Log(Y/K) it Log(Y/K) it Log(Y/K) it 

Company listed in USA UK UK UK 

Sample USA  “Domestic” High TFP Gap with 
USA 

Low Gap with the USA 

Location weight: Location Location & Citation 
within 3 years 

Location & Citation 
within 3 years 

Location & Citation 
within 3 years 

 -    
ln (L/K) it  0.610 

(0.072 
0.757 

(0.076) 
0.518 

(0.087) 
ln (L) it 0.706 

(0.078) 
   

ln (K) it 0.220 
(0.052) 

   

ln (R&D) it 0.049 
(0.035) 

0.029 
(0.014) 

0.029 
(0.013) 

0.005 
(0.014) 

US
iW * ln (US R&D) jt 0.002 

(0.072) 

0.212 

(0.063 

0.277 

(0.130) 

0.123 

(0.093) 
UK

iW * ln (UK R&D) jt 0.151 
(0.131) 

 

-0.672 
(0.408 

0.434 
(0.267) 

-0.826 
(1.072) 

ln (US R&D) jt 0.247 
(0.078) 

0.116 
(0.096 

0.353 
(0.171) 

0.035 
(0.070) 

ln (UK R&D) jt -0.063 
(0.046) 

0.211 
(0.115 

0.404 
(0.152) 

-0.041 
(0.121) 
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US

iW  -1.244 
(0.978) 

-2.028 
(0.637) 

-2.849 
(1.445) 

-1.182 
(0.844) 

UK
iW  -0.097 

(0.781) 
4.199 

(2.757) 
-3.540 
(2.338) 

4.861 
(7.040) 

     
Firms  570 135 99 89 
Observations 5446 1267 938 856 

1st order serial correlation (p-value) -4.877 
(0.000) 

-1.198 
(0.231) 

-1.101 
(0.271) 

-2.702 
(0.007) 

2nd order serial correlation -1.739 
(0.082) 

-1.814 
(0.070) 

-0.243 
(0.808) 

-1.468 
(0.142) 

Sargan difference test 
 

13.99 
(0.693) 

  

Sargan 67.96 
(0.081) 

83.63 
(0.283) 

55.22 
(0.801) 

66.93 
(0.197) 

 
Notes:  
 
“Domestic” indicates the sub-sample of UK firms who are estimated to have no overseas production facilities. “High TFP Gap” indicates those industries where 

the TFP gap with the USA was above the median (see Figure 1).   Column (1) contains US firms and columns (2) through (4) contain UK firms.  US
iW  and UK

iW are the 

(pre-1990) proportion of a firm’s inventors located in the US and UK respectively. Standard errors in brackets under coefficients are robust to heteroskedacity and 
autocorrelation of unknown form.  The dependent variable in columns (2) through (4) is the log of value added divided by capital stock and in column (1) it is the log of real sales. 
The time period is 1990-2000.  All columns are estimated by System-GMM (one-step robust standard errors). The firm-level variables are assumed endogenous and industry level 
variables are assumed exogenous. Endogenous variables are instrumented by levels lagged from two to five times in the differences equation and differences lagged once in the 
levels equation, as well as by all exogenous variables and year and industry dummies.  For diagnostic tests p -values are in brackets and italics. All equations include a full set of 
industry dummies and time dummies. Column (1) also includes US industry value added (which was insignificant in the other columns). 
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Table 5: Citations results  
 (1) (2) (3) (4) 

Estimation method Negative Binomial Negative Binomial Probit Probit 

Dependent variable 
US
pitCITES  US

pitCITES  )0(1 >US
pitCITES  )0(1 >US

pitCITES  

     

US
iW  

0.631 
(0.267) 

0.104 
(0.198) 

0.126 
(0.043) 

0.033 
(0.044) 

UK
iW  

0.197 
(0.205) 

0.054 
(0.199) 

0.056 
(0.042) 

0.025 
(0.047) 

pitUS  - 
0.684 

(0.158) 
- 

0.124 

(0.020) 

pitUK  - 
0.037 

(0.107) 
- 

0.010 
(0.023) 

pitTOTALCITES  
0.013 

(0.001) 
0.012 

(0.001) 
0.009 

(0.002) 
0.008 

(0.002) 
     

Dispersion (delta) 
1.050 

(0.069) 
0.999 

(0.067) 
- - 

     

Observations 14,161 14,161 14,161 14,161 
Mean of dep. var.  0.695 0.695 0.356 0.356 
Log Pseudo -L -15,116.06 -14,996.25 -8,465.02 -8,400.51 

     
 
Notes:  The dependent variable in columns (1) and (2) is the number of citations per patent to a US inventor 
(not owned by the same firm and applied for within the last three years); the dependent variable in columns 
(3) and (4) is a dummy equal to one if the patent cited at least one patent with a US inventor (not owned by 
the same firm and applied for within the last three years).  Reported coefficients in columns (1) and (2) are 
equal to the incidence-rate ratio minus one, and in columns (3) and (4) are marginal effects. US

iW  and 
UK

iW are the (pre-1990) proportion of a firm’s inventors located in the US and UK respectively.  pitUS  and 

pitUK  denote whether the patent’s inventor is located in the US or UK respectively .  TOTALCITES is the 

total number of cites made by the patent. Robust standard errors in brackets are adjusted for clustering by 
firm; all specifications include 8 year dummies, 14 industry dummies and 36 technology class dummies, as 
well as all firm and industry level variables from the production function in Table 3. The sample consists of 
all patents applied for by our UK firms between 1990 and 1998.   
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Appendix Tables 

Table A1: Location of citing and cited inventors: non self-citations 

Cited country: UK USA Other Total 

Citing country:     

     
       UK 5,842 51,370 27,427 84,639 

 (6.9%) (60.7%) (32.4%) (100%) 

     

       USA 6,445 145,180 50,529 202,154 

 (3.2%) (71.8%) (25.0%) (100%) 

     

       Other 2,387 39,684 30,401 72,472 

 (3.3%) (54.8%) (42.0%) (100%) 

     

       Total 14,674 236,234 108,357 359,265 

 (4.1%) (65.8%) (30.2%) (100%) 

     
Notes: Citations made by the firms  in our sample, excluding self-citations. 
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Table A2: Location of citing and cited inventors: non self-citations, cite at least one patent 
with US inventor that has been applied for within past three years 

Cited country: UK USA Other Total 

Citing country:     

     
       UK 717 3,697 5,140 9,554 

 (7.5%) (38.7%) (53.8%) (100%) 

     

       USA 224 4,397 3,847 8,468 

 (2.7%) (51.9%) (45.4%) (100%) 

     

       Other 512 5,167 12,610 18,289 

 (2.8%) (28.3%) (69.0%) (100%) 

     

       Total 1,453 13,261 21,597 36,311 

 (4.0%) (36.5%) (59.5%) (100%) 

     
Notes: Citations made by the firms in our sample. 
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Table A3: Summary statistics for UK patenting firms 

 
  Mean   Median 

 
Standard 
Deviation 

   Min   Max 

      

Total patent applications  
240 40.5 657 1 5820 

UK Location Weight 0.354 0.274 0.363 0 1 

UK Loc ation + Citation Weight 0.082 0.017 0.145 0 1 

UK Location + Citation Within 3 Years 0.019 0.000 0.054 0 0.5 

USA Location Weight 0.462 0.425 0.379 0 1 

USA Location + Citation Weight 0.417 0.368 0.349 0 1 

USA Location + Citation Within 3 Years 0.162 0.134 0.184 0 1 

      
Notes: 141 firms matched to at least one patent; location weights are constructed as described in the text  
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Table A4 Descriptive Statistics for US firms 
 

 Mean Median Standard 
Deviation 

    

Employees 13,760 3,528 38,640 

Real Sales ($1000) 3,196 586.4 10,742 

Capital per employee ($) 59,407 34,607 81,630 

Real sales per employee 
($1000s) 

193.736 162.843 128.641 

R&D expenditure/value 
added 

0.059 0.029 .198 

R&D stock/value added 0.237 0.113 0.567 

 
Notes: All in 1995 prices, 570 firms, 6016 observations, 1990-2000 




