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1. Introduction

Research and Development (R&D) generates at least two distinct types of "spillover"

effects. The first is technological spillovers, which increase the R&D productivity

of other firms which are operating in similar technological areas. The empirical

literature on technological (or knowledge) spillovers is extensive. The second type

of spillover is the product market rivalry effect of R&D. When a firm does R&D, it

increases its stock of knowledge. For firms which compete in similar product mar-

kets, this increase in ‘competitive’ knowledge has both a direct (business stealing)

effect on its rivals and a strategic effect that induces a change in optimal R&D

investment by its rivals. The product market rivalry effect of R&D has remained

largely unexplored in the empirical literature, in part because it is difficult to

distinguish the two types of spillovers using data on R&D at the firm level. This

paper develops a methodology for identifying the separate effects of technological

and product market spillovers.

But it is important to identify the empirical impact of these spillovers for three

reasons. First, econometric estimates of technological spillovers in the literature

may be contaminated by product market rivalry effects, and it is difficult to ascer-

tain the direction and magnitude of potential biases without building a model that

incorporated both types of spillovers. Second, estimates of the impact of product

market rivalry are needed to make an overall assessment of R&D spillovers for pol-

icy purposes. If product market rivalry effects dominate technological spillovers,

the conventional wisdom that there is under-investment in R&D could be over-
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turned. Third, such estimates would help in predicting the net effect on a firm of

its rivals’ R&D spending, which could be useful in formulating business strategy.

Our approach to identifying the effects of technological and product market

spillovers is based on two features. First, we distinguish a firm’s positions in

technology space and product market space using information on the distribution

of its patenting and sales activity. This allows us to construct separate measures

of the distance between different firms in the technology and product market di-

mensions. Firms that are close in technology space will enjoy larger technological

spillovers, while firms that are close in product market space will be exposed to

stronger product market rivalry effects, other things equal. Provided we have

sufficient variation in these two dimensions, it should be possible to distinguish

between knowledge and rivalry spillovers.1 The second feature of the approach is

that we use multiple indicators of performance (market value, patents and R&D).

This aids identification of the two spillover effects. Using a quite general frame-

work, we develop the implications of technology and product market spillovers for

each of these performance indicators. We apply the approach to a panel of U.S.

firms for the period 1981-2001. We find that that both technological spillovers

and product market rivalry are present, and that R&D by product market rivals

is a strategic complement for a firm’s own R&D.

There are many examples in the business press where firms interact differently

1This is not a new idea, but it has rarely been explicitly examined. Typically, earlier stud-
ies have assigned firms to a single, ‘primary’ industry because there is no information on the
distribution of their sales activity across industries. The only previous, firm-level study that
distinguishes technology and product market space is Jaffe (1988).
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in technology and product market areas. For example, in the high end of the

hard disk market, firms compete to offer different hard disks to computer man-

ufacturers. Most firms base their technology on magnetic technologies, such as

the market leader, Segway. Other firms (such as Phillips) are offering hard disks

based on newer, holographic technology. These firms draw their technologies from

very different areas, yet they compete in the same product market. R&D done

by Phillips is likely to pose a competitive threat to Segway, even though it is

unlikely to generate any knowledge spillovers for Segway. Other examples arise

from situations where there is competition to establish standards in network-based

industries, when those standards are based on distinct technologies.

The paper is organized as follows. The next section surveys some of the

spillover literature. Section 3 outlines our modelling strategy. Section 4 dis-

cusses the econometric issues and Section 5 describes the data. The econometric

findings are presented in Section 6. In the concluding remarks we summarize the

key results and implications for future research.

2. Spillovers Literature

Knowledge spillovers have been a major topic of economic research over the last

thirty years. The theoretical literature considers the impact of externalities from

R&D on strategic interactions between firms (e.g. Spence, 1984; Reinganum,

1989), as well as the role of spillovers in economic growth (e.g. Aghion and

Howitt, 1992). Empirically, spillovers have been analyzed at the country, industry,
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firm and establishment level using a wide variety of techniques and data types2

. More recently there has been a great deal of interest in international spillovers,

both empirically and theoretically, in terms of their implications for growth and

convergence in living standards3.

There are several ways in which one firm’s innovative activity can affect another

firm’s behaviour, so it is important to define exactly what is meant by ‘knowledge

spillovers’. Pure knowledge spillovers occur when innovation benefits not only the

innovator, but ‘spills over’ to other firms by raising the level of knowledge upon

which new innovations can be based. Several authors, following Griliches (1979),

differentiate between pure knowledge spillovers and ‘rent spillovers’. The latter

occur for example when R&D-intensive inputs are purchased from other firms at

less than their full ‘quality’ price. Such ‘spillovers’ are simply consequences of

conventional measurement problems. In addition, innovation by competitors is

likely to have strategic as well as productivity effects if it is embodied in new

products or processes. For example other firms’ R&D may have negative strategic

effects because successful innovation can erode monopoly rents. Several studies

have found evidence for such negative effects (Jaffe , 1986, and more recently

Harhoff, 2000). But it hard to distinguish such spillovers from any other positive

externality from innovation.

These issues make the identification of knowledge spillovers a difficult under-

taking. The dominant approach to estimating knowledge spillovers over the last

2For surveys see Griliches (1992), Mairesse (1995), or Hall (1996).
3For a recent surveys of empirical studies include Keller (2001).
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twenty years has been country, industry or firm-level regression-based estimates

of returns to a measure of ‘outside’ R&D in a production (or cost) function frame-

work. Other performance measures such as patenting have also been used. Aside

from many problems associated with the estimation of production functions, the

key difficulty for identification of spillovers is that the "spillover pool" of outside

knowledge available to a firm must be specified a priori. This problem is concisely

summed up by Griliches (1992): “To measure [spillovers] directly in some fashion,

one has to assume either that their benefits are localised in a particular industry

or range of products or that there are other ways of identifying the relevant chan-

nels of influence, that one can detect the path of the spillovers in the sands of the

data.”

A simple measure of the spillover pool available to a firm is the stock of knowl-

edge generated by other firms in its industry. An example of this approach is

Bernstein and Nadiri (1989) who use the unweighted sum of the R&D spending

of other firms in the (two-digit) industry and find evidence of spillovers. However,

there are several reasons why this may not be a good measure of the potential

spillover pool available to a firm. It assumes firstly that firms only benefit from

the R&D of firms in their industry, and secondly that all those firms’ R&D is

weighted equally in the construction of the spillover pool. In addition, measures

based solely at the industry level risk picking up spurious results due to common

industry trends or shocks unrelated to spillovers. More sophisticated approaches

recognize that a firm is more likely to benefit from the R&D of other firms that

are ‘close’ to it in some technological and/or geographical sense. In these models
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the ‘spillover pool’ available to firm i is equal to:

Gi = ΣjwijRj (2.1)

where wij is some ‘knowledge-weighting matrix’ applied

to the R&D expenditures of other firms or industries, Rj. All such (paramet-

ric) approaches impose the assumption that the spatial interaction between firms

i and j is proportional to the weighs (distance measure) wij.Pinkse, Slade and

Brett (2002) develop a semi-parametric method for incorporating spatial interac-

tion. This approach is more flexible since it does not impose any functional form

assumption on how spatial interaction depends on the distance measure. For a

good review of this literature, see Slade 2003). This approach could be applied in

our context of identifying technological spillovers and product market rivalry, but

in this paper we adopt the conventional parametric approach.

The literature contains many different approaches to constructing the knowledge-

weighting matrix. A fairly common method, suggested by Griliches (1979) and

first used in Jaffe (1986), is to use firm-level data on patenting by class of patent,

or sometimes the distribution of R&D spending across product fields, to locate

firms in a multi-dimensional technology space. A weighting matrix is then con-

structed using the uncentered correlation coefficients between the location vectors

of different firms. Harhoff (2000) is a recent application of this approach that uses

several different metrics. Another possibility is to use input-output flows (e.g.

Scherer, 1982), although this method seems more likely to become contaminated

by "rent spillover" effects.
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Even in the absence of rent spillovers and strategic interactions between firms,

these approaches to estimating spillovers suffer from a fundamental identification

problem. This is that it is not easy to distinguish a spillovers interpretation

from the possibility that any positive results are “just a reflection of spatially

correlated technological opportunities” (Griliches, 1996). In other words, if new

research opportunities arise exogenously in a firm’s technological area, then it and

its technological neighbors will do more R&D and may improve their productivity,

an effect which will be erroneously picked up by a spillover measure.

This issue is discussed by Manski (1991) under the general title “the reflection

problem”. True knowledge spillovers correspond to an endogenous social effect,

in the sense that an individual outcome (e.g. productivity) varies with the be-

haviour of the group (e.g. R&D spending). This can be differentiated from an

exogenous social effect, whereby an individual outcome varies with the exogenous

characteristics of the group, or a correlated effect whereby individuals in the same

group tend to have similar outcomes because they have similar characteristics

or face similar environmental influences. Identification of endogenous effects is

not possible unless prior information is available with which to specify the com-

position of reference groups. This is the role played by a knowledge weighting

matrix, or even a simple industry-level measure of the spillover pool. However,

even if this information is available, identification is not possible if the variables

defining reference groups are functionally related to variables that directly affect

outcomes. This is quite likely to be the case for many of the approaches found in

the literature. For example, technological closeness is likely to be correlated with
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exogenous technological opportunity, and firms in the same industry are likely to

be subject to similar supply or demand shocks. Thus the task for anybody trying

to identify knowledge spillovers is to find a set of variables with which to define

firms’ reference groups that are not related to unobserved variables that directly

affect the outcomes being measured.

3. Analytical Framework

We consider the empirical implications of some simple R&D models with techno-

logical spillovers and strategic interaction in the product market. For analytical

purposes, we distinguish between two basic models. The first is a non-tournament

model of R&D where many firms can be simultaneously successful in their R&D

investments. The second is a simple tournament model of R&D where there is a

race for an infinitely lived patent. The latter introduces strategic considerations

directly into the R&D game.

We study a two-stage game. In stage 1 firms decide their R&D spending and

this produces knowledge (patents) that are taken as pre-determined in the sec-

ond stage. There may be (positive) technological spillovers in this first stage.

In stage 2, firms compete in some variable, say x, conditional on knowledge lev-

els, k. We do not restrict the form of this competition except to assume Nash

equilibrium. All that will matter for the analysis is whether there is some form

of strategic interaction in the product market and whether it takes the form of

strategic substitution or complementarity. Even in the absence of technological

spillovers, product market interaction creates an indirect link between the R&D
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decisions of firms through the anticipated impact of R&D induced innovation on

product market competition in the second stage.

We analyze a game with three firms, labelled 0, τ and m. Firms 0 and τ

interact only in technology space (production of innovations, stage 1) but not in

the product market (stage 2); firms 0 andm compete only in the product market.4

Model 1. Non-tournament R&D competition

Stage 2

Firm 00s profit function is π(x0, xm, k0).We assume that the function π is com-

mon to all firms. Innovation output k0 may have a direct effect on profits, as well

as an indirect (strategic) effect working through x. For example, if k0 increases

the demand for firm 1 (e.g. product innovation), its profits would increase for any

given level of price or output in the second stage.5

The best response for firms 0 and m are given by x∗0 = argmax π(x0, xm, k0)

and x∗m = argmax π(xm, x0, km), respectively. Solving for second stage Nash

decisions yields x∗0 = f(k0, km) and x∗m = f(km, k0). First stage profit for firm

0 is Π(k0, km) = π(k0, x
∗
0, x

∗
m), and similarly for firm m. If there is no strategic

interaction in the product market, π(k0, x∗0, x
∗
m) does not vary with xm and thus

Π0 do not depend on km.

We assume that Π(k0, km) is increasing in k0, decreasing in km and concave.

The assumption that Π(k0, km)declines in km is reasonable unless innovation cre-

4In reality, there is overlap between the firms in τ and m — the correlation between the
technology (patents) and product market (sales) weighted R&D variables is about 0.3. We
briefly consider issues arising from such overlap later.

5We assume that innovation by firm τ affects firm 00s profits only through the strategic effect,
which is plausible in most contexts.
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ates a strong externality through a market expansion effect Recall that R&D

spillovers will be introduced separately through the production of k. Certainly

at km ' 0 this derivative must be negative, as monopoly is more profitable than
duopoly.

Stage 1

Firm 0 produces innovations with its own R&D, possibly benefitting from

spillovers from firms that it is close to in technology space: k0 = φ(r0, rτ) where we

assume that the knowledge production function φ is non-decreasing and concave

in both arguments. This means that if there are knowledge spillovers, they are

necessarily positive (technological) externalities. We assume that the function φ

is common to all firms.

Firm 0 solves the following problem:

max
r0i

V 0 = Π(φ(r0, rτ ), km)− r0.

Note that km does not involve r0.The first order condition is:

Π1φ1 − 1 = 0

where the subscripts denote partial derivatives with respect to the different argu-

ments.6 By comparative statics,

∂r∗0
∂rτ

= −{Π1φ1τ +Π11φ1φτ}
A

6If we allowed for firms in τ and m to overlap, there would be an additional term reflecting
the fact that the R&D spillover to firm τ also affects km and thus has a negative strategic effects
on its own profits.
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where A = Π11φ1+Π1φ11 < 0 by the second order conditions. If φ1τ > 0, firm 0
0s

R&D is positively related to the R&D done by firms in the same technology space,

as long as diminishing returns in knowledge production are not "too strong." On

the other hand, if φ1τ = 0 or diminishing returns in knowledge production are

strong (i.e. Π1φ1τ < −Π11φ1φτ) then R&D is negatively related to the R&D done
by firms in the same technology space. Consequently the marginal effect of ∂r∗0

∂rτ
is

formally ambiguous.

Comparative statics also yield

∂r∗0
∂rm

= −Π12φ1
A

Thus firm 10s R&D is an increasing (respectively decreasing) function of the R&D

done by firms in the same product market if Π12 > 0 — i.e., if k0 and km are strate-

gic complements (respectively substitutes). It is worth noting that most models

of patent races embed the assumption of strategic complementarity because the

outcome of the race depends on the gap in R&D spending by competing firms.7

We also get
∂k0
∂rτ

= φ2 > 0 and
∂k0
∂rm

= 0

One qualification should be noted. Strictly speaking, the result ∂k0
∂rm

= 0 holds

if k measures the stock of knowledge. But in practice k measures the stock of

patents. If the patenting decision is based on the potential market value of the

7This observation applies to single race models (see Chapter 10 in Tirole, 1994, for a review
of these models) and more recent models of sequential races (Harris and Vickers, 1985; and
Aghion, Harris and Vickers, 1997).
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innovation,then we would expect ∂k0
∂rm

< 0, because the firm will choose to patent

fewer inventions.

We summarize these results in the following table.

Table 1. R&D Spillovers and Strategic Rivalry: Non-Tournament

R&D
No R&D Spillovers No R&D Spillovers R&D Spillovers R&D Spillov
Strategic Complements Strategic Substitutes Strategic Complements Strategic Sub

∂V0
∂rτ
|r0 Zero Zero Positive Positive

∂V0
∂rm
|r0 Negative Negative Negative Negative

∂k0
∂rτ

Zero Zero Positive Positive
∂k0
∂rm

Zero Zero Zero Zero
∂r0
∂rτ

Zero Zero Ambiguous Positive
∂r0
∂rm

Positive Negative Positive Negative

Two points about identification from the table should be noted. First, the em-

pirical identification of strategic complementarity or substitution comes only from

the R&D equation. Identification cannot be obtained from the patents (knowl-

edge) or value equations because the predictions are the same for both forms of

strategic rivalry. Second, the presence of spillovers can in principle be identi-

fied from the R&D, patents and value equations. Using multiple outcomes thus

provides a stronger test than we would have from any single indicator.8

Model 2. Tournament Competition

In this section we show that the predictions in Table 1 hold in a simple, sto-

chastic patent race model with spillovers. We do not distinguish between com-

peting firms in the technology and product markets because the distinction does
8To simply the model, we assumed that firms operate either in the same technology areas or

the same product markets, but not both. What happens to the predictions of the model if we
relax this assumption and allow for overlap in technology areas and product markets? Define
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not make sense in a simple patent race (where the winner alone gets profit). For

generality we assume that n firms compete for the patent.

Stage 2

Firm 0 has profit function π(k0, x0, xm). As before, we allow innovation output

k0 may have a direct effect on profits, as well as an indirect (strategic) effect

working through x. In stage 1, n firms compete in a patent race (i.e. there are

n − 1 firms in the set m). If firm 0 wins the patent, k0 = 1, otherwise k0 = 0.

The best response function is given by x∗0 = argmax π(x0, xm, km). Thus second

stage profit for firm 0, if it wins the patent race, is π(x∗0, x
∗
m; k0 = 1), otherwise it

is π(x∗0, x
∗
m; k0 = 0).

We can write the second stage Nash decision for firm 0 as x∗0 = f(k0, km) and

first stage profit as Π(k0, km) = π(k0, x
∗
0, x

∗
m). If there is no strategic interaction

in the product market, πi does not vary with xj and thus x∗i and Πi does not

depend directly on kj.However, recall that in the context of a patent race, only

one firm gets the patent — if kj = 1, then ki = 0. Thus Πi depends indirectly

on kj in this sense. The patent race corresponds to an (extreme) example where

the technology and market-related pools of outside R&D for firm i as

riτ =
P
j 6=i

sijrj

and

rim =
P
j 6=i

wijrj

where s and w represent some kind of technology and product market distance metrics, which
we discuss in more detail in Section 4. The analysis in the text applies directly becasue it
focuses on the effects of changes in these technology and product market R&D pools, riτ and
rim. However, if we want to analyze the effect of a change in the R&D of a particular firm (or
set of firms), then we need to use the corresponding technology and market weights in doing
that comparative statics exercise.
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∂Πi(ki, kj)/∂kj < 0.

Stage 1

We consider a symmetric patent race between n firms with a fixed prize (patent

value) F = π0(f(1, 0), f(0, 1); k0 = 1)− π0(f(0, 1), f(1, 0); k0 = 0). We can write

the expected value of firm 1 as

V 0(r0, rm) =
h(r0, (n− 1)rm)F − r0

h(r0, (n− 1)rm) + (n− 1)h(rm, (n− 1)rm + r0) +R

where R is the interest rate, rm is the R&D spending of each of firm 00s rivals, and

h(r0, rm) is the probability that firm 0 gets the patent at each point of time given

that it has not done so before (hazard rate). We assume that h(r0, rm) is increasing

and concave in both arguments. It is rising in rm because of spillovers.9 We also

assume that hF − R ≥ 0 (expected benefits per period exceed the opportunity
cost of funds).

The best response function is given by r∗0 = argmax V 0(r0, rm).Using the

shorthand h0 = h(r0, (n− 1)rm) and subscripts on h to denote partial derivatives,
the first order condition for firm 0 in the patent race is

(h1F − 1){h0 + (n− 1)hm +R}− (h0F − r1){h01 + (n− 1)hm2 } = 0

By comparative statics and imposing symmetry, we find that

sign
∂r0
∂rm

= sign{h12(hF (n− 1) + rF −R}+ {h1(n− 1)(h1F − 1)}

−{h22(n− 1)(hF −R)}− h2{(n− 1)h2F − 1}}
9The probability that firm 1 gets the patent might be decreasing in rm in the absence of

spillovers (it is normally assumed to be independent). The spillover term in our formulation can
be thought of as net of any such effect.
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We assume that h12 ≥ 0 (spillovers do not reduce the marginal product of

a firm’s R&D) and that h1F − 1 ≥ 0 (the expected net benefit of own R&D is
non-negative). These assumptions imply that the first three bracketed terms are

positive. Thus a sufficient condition for strategic complementarity in the R&D

game ( ∂r0
∂rm

> 0) is that (n − 1)h2F − 1 ≤ 0. That is, we require that spillovers
not be ’too large’. If firm 0 increases R&D by one unit, this raises the probability

that one of its rivals wins the patent race by (n− 1)h2. The condition says that
the expected gain for its rivals must be less than the marginal R&D cost to firm

0.

Using the envelope theorem,

∂V 0

∂rm
|r0 < 0

The intuition is that a rise in rm increases the probability that firm m wins the

patent. While it may also generate spillovers that raise the win probability for

firm 0, we assume that the direct effect is larger than the spillover effect. For the

same reason,
∂V 0

∂km
|k0 = 0

As in the non-tournament case, ∂r0
∂rm

> 0 and ∂V 0

∂rm
|r0 < 0. The difference is that

with a simple patent race, ∂V 0

∂km
|k0 is zero rather than negative. This is because of

the one shot nature of the game — the firms only race for a single patent.10

10In this analysis we have assumed that k = 0 initially, so ex post the winner has k = 1 and
the losers k = 0. The same qualitiative results hold if we allow for positive initial k.
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4. Econometrics

4.1. Generic Issues

There are three main equations of interest that we wish to estimate: a market

value equation, an R&D equation, and a patents equation. There are generic

econometric issues with all three equations which we discuss first before turning

to specific problems with each equation. We are interested in investigating the

relationship

yit = x0itβ + uit (4.1)

where the outcome variable for firm i at time t is yit, the variables of interest

(especially SPILLTECH and SPILLSIC) are xit and the error term, whose

properties we will discuss in detail is uit.

Firstly, we have the problem of unobserved heterogeneity. We will present es-

timates with and without controlling for correlated fixed effects through including

a full set of firm dummy variables. The time dimension of the company panel is

relatively long, so the "within groups bias" on weakly endogenous variables (see

Nickell, 1979) is likely to be small11, subject to the caveats we discuss below. Sec-

ondly, we have the issue of the endogeneity due to transitory shocks. To mitigate

these we condition on a full set of time dummies and a distributed lag of industry

sales12. Furthermore we lag all the firm level variables on the right hand side

11We have up to 21 years of continuous firm observations in our sample for estimation. In the
market value equation, for example, the mean number of continuous time series observations is
16.
12The industry sales variable is constructed in the same way as the SPILLSIC variable. We
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of equation (4.1) by one period to overcome any immediate feedback effects13.

Thirdly, the model in (4.1) is static, so we experiment with more dynamic forms.

In particular we present specifications including a lagged dependent variable. Fi-

nally, there are inherent non-linearities in the models we are estimating (such as

the patent equation) which we now discuss below.

4.2. Market Value equation

We adopt a simple linearization of the value function proposed by Griliches (1981)14

ln

µ
V

A

¶
it

= lnκit + ln

µ
1 + γv

µ
G

A

¶
it

¶
(4.2)

where V is the market value of the firm, A is the stock of tangible assets, G is

the stock of R&D, and the superscript v indicates that the parameter is for the

market value equation. The deviation of V/A (also known as "Tobin’s average

Q") from unity depends on the ratio of the R&D stock to the tangible capital

stock (G/A) and κit. We parameterize this as

lnκit =βv1 lnSPILLTECHit + βv2 lnSPILLSICit + ZV 0
it β

v
3 + ηvi + τ vt + υvit

where ηvi is the firm fixed effect, τ vt a full set of time dummies, Z
v
it denotes other

control variables such as industry demand, and υvit is an idiosyncratic error term.

use the same distance weighting technique, but instead of using other firms’ R&D stocks we used
rivals’ sales. This ensures that the SPILLSIC measure is not simply reflecting demand shocks
at the industry level.
13This is a conservative approach as it is likely to reduce the impact of the variables we are

interested in. An alternative (in the absence of obvious external instruments) to explicitly use
the lags as instruments - we report some experiments using this approach in the results section.
14See also Jaffe (1986), Hall et al (2000) or Lanjouw and Schankerman (2004).
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If γv(G/A) was "small" then we could approximate ln
¡
1 + γv

¡
G
A

¢
it

¢
by
¡
G
A

¢
it
.But

this will not be a good approximation for many high tech firms15 and, in this case,

equation (4.2) should be estimated directly by non-linear least squares (NLLS).

Alternatively one can approximate ln
¡
1 + γv

¡
G
A

¢
it

¢
by a series expansion with

higher order terms (denote this by φ((G/A)it−1)), which is more computationally

convenient when including fixed effects. We kept adding higher order terms until

they were statistically insignificant at the 0.05 level. Empirically, we found that a

fifth order series expansion was satisfactory. Taking into consideration the generic

econometric issues over endogeneity discussed above16 our basic empirical market

value equation we estimate is:

ln

µ
V

A

¶
it

= φ((G/A)it−1)+βv1 lnSPILLTECHit−1+βv2 lnSPILLSICit−1+Zv0
it β

v
3+η

v
i+τ

v
t+υ

v
it

(4.3)

4.3. R&D equation

We write the R&D equation as:

lnRit = αr lnRit−1+βr1 lnSPILLTECHit−1+βr2 lnSPILLSICit−1+Zr0
itβ

r
3+η

r
i+τ

r
t+υ

r
it

(4.4)

15See Hall and Oriani (2004) for example.
16We do not include a lagged dependent variable as this would make our specification close

to a first difference equation in market value where only "surprises" should matter. This is
qualitatively different in interpretation from the "hedonic" equation that we are estimating
here.
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The main issue to note is that the contemporaneous value of SPILLTECH

and SPILLSIC would be particularly difficult to interpret in equation (4.4) due

to the reflection problem (Manski, 1991). Any variable that shifts the incentive

for firm i to perform R&D will also be likely to shift the incentive for firm j.A

positive correlation could reflect strategic complementarity, but is could also reflect

common unobserved shocks that are not controlled for by the other variables in

(4.4).Our defences against this problem are: (a) we lag the independent variables,

which should mitigate this problem (b) we include a variety of controls to account

for the other factors driving this correlation and (c) we are particularly interested

in the contrast between the coefficients on SPILLTECH and SPILLSIC, which

may, arguably, be less sensitive to the reflection problem.

4.4. Patent Equation

Because patents are counts, not continuous variables OLS is inappropriate. We

use a version of the Negative Binomial count data model to allow for dynamics

and fixed effects17. Models for count data generate the first moment of the form

E(Pit|Xit, Pit−1) = exp(x0itβ
p)

where E(.|.) is the conditional expectations operator. In our analysis we want
to allow both for dynamics and fixed effects. To do so, we use a Multiplicative

17See Blundell, Griffith and Van Reenen (1999) and Hausman, Hall and Griliches (1984) for
discussions of count data models of innovation.
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Feedback Model (MFM)18. The first moment of the estimator is:

E(Pit|Xit, Pit−1) = exp{δ1Dit lnPit−1 + δ1Dit + βp1 lnSPILLTECHit−1 + βp2 lnSPILLSICit−

+Zp0
itβ

p
3 + ηpi + τ pt}

where Dit is a dummy variable which is unity when Pit−1 > 0.

The variance of the Negative Binomial under our specification is:

V (Pit) = exp(x
0
itβ

p) + α exp(2x0itβ
p)

where the parameter,α, is a measure of "overdispersion". Under Poisson α = 0,

restricting the mean to equal the variance. The Negative Binomial estimator

relaxes this assumption (empirically, overdispersion is important in our data).

We estimate the model by maximum likelihood. We introduce firm fixed effects

into the model using two alternative approaches: Hausman, Hall and Griliches

(1984), which is valid when the regressors are strictly exogenous, and Blundell,

Griffith and Van Reenen (1999), which relaxes this assumption19.

5. Data

The two main sources of data we use are: (1) accounting and market value data

from Compustat, used to generate R&D, Tobin’s Q and product market close-

ness measures; and (2) patent data from the U.S. Patent and Technology Office

18The short run impact of a variable on patents in the MFM is E(P )βP .Alternative models,
such as the Linear Feedback Model, generally have similar impacts as the MFM (Blundell et al,
1999, 2002). We are currently examining these alternatives.
19See also Blundell, Griffith and Windmeijer (2002)
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(USPTO), used to generate patent count, cite-weighted patents stock and tech-

nology market closeness measures. We now describe each data source and the

construction of the two distance measures, SPILLTECH and SPILLSIC,in

more detail

5.1. Accounting Data and Product Market Closeness

The basic accounting and market value data come from U.S.Compustat 1980-

2001. We cleaned the data to remove major mergers and acquisitions, accounting

periods below tenmonths and above fourteen months, and firms with less than four

years of consecutive data. R&D capital stocks were calculated using a perpetual

inventory method with a 15% depreciation rate. We constructed a measure of

Tobin’s (average) Q as the total firm value divided by the full book value of

assets, both following Hall, Jaffe and Trajtenberg (2000)20.

The product market information is also provided by the Compustat from 1993

onwards, which reports the sales and 4-digit SIC codes of each major line of

business. On average 5.1 different lines of business are reported per firm, ranging

from 1 to 28, covering 623 different 4-digit SIC codes. Taking the average share of

sales per line of business within each firm over the period21 is used as our measure

20For Tobin’s Q firm value is the sum of the values of common stock, preferred stock, long-
term debt and short-term debt net of assets. Book value of capital includes net plant, property
and equipment, inventories, investments in unconsolidated subsidiaries and intangibles (other
than R&D). Tobin’s Q was set to 0.1 for values below 0.1 and at 20 for values above 20. See
also Lanjouw and Schankerman (2004).
21The breakdown by SIC code was unavailable prior to 1993, so we pool data 1993-2001. This

is a shorter period than we have for the patent data, but we perform several experiments with
different timings of the patent technology distance measure to demonstrate robustness to the
exact timing (see below).
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of activity by product market, Si, where Si = (Si,1, Si,2, ...Si,623) is the share of

sales of firm i in each SIC code. The product market closeness measure is then

calculated as the uncentered correlation between all firms pairings SICi,j (i 6= j),

following Jaffe (1986), where

SICi,j =
(SiS

0
j)

(SiS
0
i)

1
2 (SjS

0
j)

1
2

This closeness measure ranges between zero and one, depending on the degree of

product market overlap, and is symmetric to firm ordering so that SICi,j = SICj,i.

We construct the pool of competing, product-market R&D for firm i in year t,

SPILLSICit,as

SPILLSICit = Σj 6=iSICijRjt (5.1)

where Rjt is the stock of R&D by firm j in year t.

5.2. Patent Data and Technological "Closeness"

The U.S. Patent and Trademark Office patenting data come from the NBER data

archive, described in Hall, Jaffe and Trajtenberg (2000). They drew this data

from the United States Patent Office, and it contains detailed information on

almost 3 million U.S. patents granted between January 1963 and December 1999,

all citations made to these patents between 1975 and 1999 (over 16 million), and

a firm level linking code for Compustat22. We kept all firm years with a positive

22A firm’s patent stock is calculated using a perpetual inventory method with a deprecation
rate of 15%. A citation weighted patent stock was also calculated, in which citations were
normalized according to the average number of citations to all patents in that year, with the
stock again calculated using a perpetual inventory method. See Hall, Jaffe and Trajtenberg
(2000) and Bloom and Van Reenen (2001).
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patent stock (so those with current and/or previous patent counts) and matched

by firm year into the cleaned Compustat data. This left a panel of 712 firms with

accounting data between 1980 and 2001 and patenting data from 1970 to 1999.

The technology market information is provided by the allocation of all patents

by the USPTO into 426 different technology classes (labelled N-Classes). Taking

the average share of patents per firm in each technology class over the period

1970 to 1999 is used as our measure of activity by technology market, Ti, where

Ti = (Ti,1, Ti,2, ...Ti,426) is the share of patents of firm i in each technology Class.

The technological closeness measure is calculated, as above, as the uncentered

correlation between all firms pairings TECHi,j (i 6= j), where

TECHi,j =
(TiT

0
j )

(TiT
0
i )

1
2 (TjT

0
j)

1
2

This closeness measure ranges between zero and one, depending on the degree of

technology market overlap23 We construct the pool of technological spillover R&D

for firm i in year t, SPILLTECHit,as

SPILLTECHit = Σj 6=iTECHijRjt. (5.2)

Table 2 provides some basic descriptive statistics for the accounting and patent-

ing data, and the technology and product market closeness measures, TECH and

SIC. The sample firms are large (mean employment is about 18,000), but there

23We pooled across the entire sample period and also experiemented with sub-samples. Using
a pre-sample period (e.g. 1970-1980) reduces the risk of endogeneity, but increases the measure-
ment error due to timing mismatch if firms exogenously switch technology areas. Using a period
more closely matched to the data has the opposite problem (i.e. greater risk of endogeneity
bias). In the event, the results were reasonably similar and (since firms only shift technology
area slowly) the larger sample enabled us to more accurately oin down the firm’s position.
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is huge heterogeneity in size, as well as in R&D intensity, patenting activity and

market valuation. The two closeness measures also differ widely across firms 24 It

is worth noting that the bulk — about 80 percent — of the variance in the associated

pools of external (technological and product market) R&D, SPILLTECH and

SPILLSIC, is between-firm variance. This means that introducing fixed firm

effects in the econometric specifications, as we will do, will leave only about 20

percent of the variance to identify the spillover effects of interest.

Table 2. Descriptive Statistics
Variable name Mnemonic Mean Median s.d
Tobins Q V/K 2.36 1.41 3.00
Market value V 4,013.5 414.3 16,702
R&D stock G 616.4 28.0 2,764.7
R&D stock/fixed capital G/K 0.48 0.18 0.92
R&D flow R 79.5 1 2,10.5
Technological Spillovers SPILLTECH 6,006.5 1,019.8 93,14.7
Product market rivalry SPILLSIC 9,989 293.0 10,710.3
Patent flow P 7.9 0 54.9
Sales S 3,111.1 478 9,824.9
fixed capital K 1,176.3 11,76.3 4,155.1

Notes:The means, medians and standard deviations are taken over all non-

missing observations (up to 16,310) between 1980-2001.

5.3. Identification from Product Market and Technology Distance Mea-
sures

In order to distinguish between the effects of technology spillovers and strategic

interaction in product markets. we must have variation in the distance metrics in
24The absolute level of these measures will, of course, depend on the degree of aggregation of

the underlying patent and product market classes.
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technology space and product market space. If these two dimensions are empiri-

cally strongly collinear - so that the overlap between any pair of firms in technol-

ogy space and product market space are very close - identification of differential

impacts will not be feasible. So the initial empirical question that needs to be

addressed before we undertake any estimation is: How distinct are our measures

of technology and product market closeness, SIC and TECH?.

To gauge this we do three things. First, we calculate the raw correlation

between the two measures (SIC and TECH). This correlation is only 0.213,

which suggests that the two measures reflect different characteristics of firms and

gives some hope of empirical identification. Even after weighting these with R&D

stocks using equations (5.2) and (5.1) the correlation between SPILLTECH and

SPILLSIC is still only 0.309. Second, we plot the two measures against each

other in Figure 1. Two features are noteworthy. It is apparent that the positive

correlation we observe is caused by a wide dispersion across the unit box, rather

than being driven by a few outliers. There is a large mass of firms which are far

from each other both in technology and product space (bottom left quadrant) and

a smaller mass of firms which are close on both dimensions (top right quadrant).

However, there is also a large mass of firms, in the top left quadrant, which are

close product market competitors but draw their technology from very different

technology areas. There is also a significant number of firms which are close in

technology space but compete in very different product markets (bottom right

quadrant). In the Appendix we discuss four examples of well-known firms, from

both low and high-tech sectors, to illustrate the four possible pairings — near/far
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in product market and technology spaces.

6. Results

6.1. Market Value Equation

Table 3 summarizes the results for the market value equation. We present spec-

ifications with and without fixed effects. As noted in Section 3, we use a series

expansion in the own R&D to capital stock ratio to capture the nonlinearity in

the value equation, because it is easier to incorporate fixed effects in this specifi-

cation25. The coefficients of the other variables in column (1) were close to those

obtained from nonlinear least squares estimation26. In this specification without

any firm fixed effects, the product market spillover variable, SPILLSIC,has a

positive impact on market value of the firm, contrary to the prediction of the

theory. Finally, we find that the growth of industry sales affects the firm’s mar-

ket value (the coefficients are close to being equal and opposite), which probably

reflects unobserved demand factors.

Including firm fixed effects in column (2) changes the estimated coefficients

in several ways27. The coefficient on own R&D is twice as large when we allow

25The coefficient on the sixth order term in G/K was insignificant (p-value 0.546) in column
(2).
26For example, the coefficients (standard errors) on SPILLTECH and SPILLSIC were

0.034(0.006 ) and 0.047(0.004 ) respectively under NLLS. If we estimate using OLS and using
just the first order term of G/A, the coefficients(standard errors) on G/A was 0.275(0.011 )
compared to 0.775(0.037 ) under NLLS. This suggests that a first order approximation is not
valid since G/A is not "small" - the mean is close to 50%.
27The fixed effects are highly jointly significant with an F(702,11942)=28.01 and a p-value of

under 0.001. The Hausman test also rejects the null of random effects with a p-value of under
0.001 (χ2(28) = 91.70). The Hausman test does not reject a random effects specification includ-
ing four digit dummies vs. our fixed effects specisifcation (conditional on strict exogeneity). But

27



for fixed effects. Recall that we include a fifth-order series of the ratio of own-

R&D stock to tangible capital, G/A,in order to capture the nonlinearity in the

value equation. Using the parameter estimates on these G/A terms, we obtain

an elasticity of market value with respect to own R&D of 0.175. A ten percent

increase in the stock of R&D for the firm increases it market value by about 1.75

percent. Evaluated at the sample means, this implies that an extra dollar of R&D

is worth about 86 cents in market value. This represents the return net of the cost

of the R&D, of course (if the private returns just covered the cost of the R&D,

market value would not increase). This estimate is almost identical to the finding

by Hall, Jaffe and Trajtenberg (2000).

When we allow for fixed effects, the estimated coefficient on SPILLTECH

remains positive but is more than three times as large, as compared to column

(1). A ten percent increase in SPILLTECH generates a .76 percent increase in

market value. At sample means, this implies that an extra dollar of SPILLTECH

increases the recipient firm’s market value by 5.1 cents. Put another way, 5.1 cents

is the amount by which the market value of a firm would rise if another firm with

perfect overlap in technology areas (SIC = 1) raised its R&D by one dollar.

Comparing this figure to the return from own-R&D (86 cents), we conclude that

a dollar of technological spillover R&D is worth (in terms of market value) about

5.8 percent as much to a firm as a dollar of its own R&D28.

examination of our the coefficients shows that there are significant differences between random
and fixed effects for our variables of interest. For example, the difference in the SPILLTECH
coefficient is 0.024 with a standard error of 0.009.
28We also experimented with including the interaction between ln(SPILLTECH) and G/K

to test for "absorbtive capacity" (are spillovers larger for R&D intensive firms). As with Jaffe
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With fixed effects, the estimated coefficient on SPILLSIC is now negative

and significant at the ten percent level29. Evaluated at the sample means, a

ten percent increase in SPILLSIC generates a 0.39 percent reduction in market

value. At sample means, this implies that an extra dollar of SPILLSIC reduces

a firm’s market value by 1.6 cents. It is interesting to note that the negative

impact of an extra dollar of product market rivals’ R&D is much smaller than

the positive impact of technological (R&D) spillovers. Of course, the net effect of

R&D spending by other firms will depend on the product market and technological

distance between those firms (TECH and SIC). Using our parameter estimates,

one could compute the effect of an exogenous change in R&D for any specific sets

of firms.30

In short, once we allow for fixed firm effects in the specification of the market

value equation, the signs of the two spillover coefficients are consistent with the

prediction from the theory outlined in Section 2. Conditional on technological

spillovers, R&D by a firm’s product market rivals should depress its stock market

value, as investors expect that rivals will capture future market share and/or

depress prices.

It is also worth noting that, if we do not control for the product market rivalry

(1986) this interaction was positive and significant for OLS (.022 with a standard error of 0.007).
It was insignificant in the fixed effects specifications, however.
29The coefficients on SPILLTECH and SPILLSIC are also jointly significant at the 5%

level; the test statistic is F(2,11,946) = 3.12 (p-value = 0.04).
30In doing such simulation exercises, it would be necessary to include the strategic reaction

of a firm’s R&D spending to product market rivals. As we discuss later in this section, we find
that R&D by product market rivals is a strategic complement, so increases in that pool would
induce greater R&D by the firm.
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effect, the estimates of the technological spillover variable is biased toward zero.

Column (3) presents the estimates when SPILLSIC is omitted. The coefficient

on SPILLTECH declines and becomes statistically insignificant. Thus failing to

control for product market rivalry would lead us to miss the impact of technological

spillovers on market value.

Attenuation bias is exacerbated by fixed effects, but classical measurement

error should bias the coefficient towards zero. This suggests that the change in

the coefficients on the spillover variables when we introduce fixed effects is not

due to measurement error (one coefficient rises while the other declines). Instead,

it is likely that unobserved heterogeneity obscures the true impact of the spillover

variables on market value. This could arise if we have not controlled sufficiently for

firms who are closely clustered in high tech sectors - they will tend to have high

value of SPILLTECH and SPILLSIC and high Tobin’s Qs (since R&D will

not perfectly control for intangible knowledge stocks). This will drive a positive

correlation between the spillover terms and market value even in the absence of

any technological or product market interactions. Fixed effects control for these

correlated effects (they are like more accurate industry or technology dummies).

Finally, we also tried an alternative specification that introduces current (not

lagged) values of the two spillover measures, and estimate it by instrumental vari-

ables using lagged values as instruments. This produced similar results. For ex-

ample estimating the fixed effects specification in column (2) in this manner (using

instruments from t − 1) yielded a coefficient (standard error) on SPILLTECH
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of 0.064 (.044 ) and on SPILLSIC of -.042 (.023 )31.

6.2. Patents Equation

We turn next to the patents equation (Table 4). Column (1) presents the OLS

estimates in a static model. Unsurprisingly, larger firms and those with larger

R&D stocks are much more likely to have more patents32. SPILLTECH has a

positive and highly significant association with patenting, indicating the presence

of technological spillovers. By contrast, there is no evidence of product market

rivalry effects on patenting — the coefficient on SPILLSIC is insignificant. These

findings are in line with the theory outlined in Section 3. The overdispersion

parameter is highly significant here (and in other columns), rejecting the Poisson

model in favour of the Negative Binomial.

In column (2) we control for firm fixed effects. We can easily reject the hypoth-

esis that there are no firm effects (p-value under 0.001). Compared to column (1),

the coefficient on the R&D stock falls by about half but remains highly significant.

A ten percent increase in the stock of own R&D generates a 2.2 percent increase

in patents. This estimate points to more sharply diminishing returns than most

previous estimates in the literature, but the earlier studies do not typically con-

trol for technological spillovers or the level of sales to capture demand factors. At

sample means, our estimate implies that an increase in own-R&D stock of one

dollar would generate .0029 extra patents — equivalently, the cost of the marginal

31This approach instruments all the firm level variables and the spillover variables. We also
used the Arellano-Bover (1995) approach of instrumenting with the lagged differences.
32We also tried weighting the patent counts by future citations, but this made little difference

to the main results.
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patent produced by own R&D is about $344,000.

Turning to our key variables, allowing fixed effects reduces the coefficient on

SPILLTECH,but it remains positive and significant at the .05 level. The esti-

mated coefficient on SPILLSIC remains insignificant. Evaluated at the sample

means, the estimates for SPILLTECH imply that an extra dollar of technologi-

cal spillovers generates .00027 extra patents. Comparing this figure to the figure

for own-R&D, we conclude that a dollar of technological spillovers is worth (in

terms of extra patents generated) about 10 percent as much to a firm as a dollar

of its own R&D.

The coefficient on firm sales variable rises sharply when we add firm fixed

effects, and remains significant. Our finding that higher sales is associated with

increased patenting activity, conditional on the R&D variables, is consistent with

the idea that greater demand33 makes an innovation more valuable and thus more

likely to pass the threshold to justify incurring the costs of patenting.

Finally, in column (3) we present our most demanding specification, which

includes both firm fixed effects and lagged patent counts. Not surprisingly, we find

persistence in patenting (the coefficient on lagged patents is highly significant),

but the main findings from the static model do not change when we add dynamics.

We obtain a similar pattern of implied, long run effects of the other variables34.

33Including industry sales was unnecessary as the current and lagged values were individually
and jointly insignificant (χ2(2) = 4.42) with a p-value of 0.11.
34We also used the Blundell, Griffith and Van Reenen (1999) approach of conditioning on

the initial conditions to control for correlated unobserved heterogeneity. We included the
average value of the pre-sample patent stock (1969-1980) in the context of the specification
in column (3). This variable was highly significant, with a coefficient (standard error) of
0.148 (.013).SPILLTECH remained highly significant, with coefficient of 0.160 (.014) and
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Dropping the insignificant SPILLSIC variable from column (3) increases the

coefficient on SPILLTECH to 0.252 with a standard error of 0.113 (see column

(4)).

To summarize, patents are a knowledge output and should be affected by

technological spillovers but not strategic rivalry (at least in our simple models).

The empirical results are consistent with these predictions.

6.3. R&D Equation

We now turn to the parameter estimates for the R&D equation (Table 5). In

the static specification without firm fixed effects (column (1)), we find that both

technological and product market spillovers are present35. The positive coefficient

on SPILLSIC indicates that own and product market rivals’ R&D (knowledge

stocks) are strategic complements. We control for the level of industry sales, which

picks up common demand shocks and positively affects R&D spending at the firm

level. We also find that the coefficient on lagged firm sales is large (elasticity of

0.70) and highly significant.

But as in the market value equation, the inclusion of firm fixed effects (column

(2)) changes the key results. In this case the coefficient on SPILLSIC remains

positive and highly significant, indicating strategic complementarity, but the coef-

ficient on SPILLTECH disappears. Introducing dynamics (lagged R&D) reduces

the precision of the estimates, but does not change the magnitude or statistical

SPILLSIC remained insignificant.
35The fixed effects are highly significant (p-value under .001). A Hausman Test of random

effects with four digit industry dummies is rejected in favour of the fixed effects model at the
0.01 level (χ2(25) = 52.60)).
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significance of the implied, long run coefficients on the two spillover variables. To

summarize, we find strong evidence that R&D spending by a firm and its product

market rivals are strategic complements, even once we control for industry level

sales and firm fixed effects.

And yet, even though the finding of strategic complementarity is robust, the

direct (short run) impact of product market rivals’ R&D is relatively small. Using

the estimated elasticity of 0.109 (column (2) in Table 3) and evaluating at sample

means, we find that an extra dollar of SPILLSIC raises a firm’s own R&D

spending by only 0.082 cents. However, we emphasize that this is only a short run

impact because it ignores the feedback effect of an increase in own R&D on the

R&D by rival firms, and so on. To assess the long run impact, we need to have

a model of how the equilibrium level of R&D is determined and use it for policy

simulation.

The only other study that tries to test whether R&D games exhibit strate-

gic complementarity, to our knowledge, is Cockburn and Henderson (1995). They

study detailed R&D data from ten major pharmaceutical companies and find that

R&D investment is only weakly correlated across firms, once common responses

to exogenous shocks are taken into account. They interpret this as rejecting the

hypothesis that [R&D] investment in that industry is driven by strategic consid-

erations. However, as we argued in Section 3, identifying the role of strategic

rivalry and R&D spillovers really requires the use of multiple outcome measures

— in our case, market value, patents and R&D. Attempts to do so with a single

performance indicator, as in Cockburn and Henderson (1995), are problematic.
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To summarize our findings concisely, Table 6 compares the predictions from

the model with the empirical results from Tables 1-3. The match between the

theoretical predictions and the empirical results is quite close. It gives some reason

for optimism that this kind of approach, based on using multiple performance

measures, can help disentangle the role of technological spillovers and product

market rivalry.

35



Table 3: Coefficient Estimates for Tobin’s-Q Equation 
 

Dependent variable: 
Ln (V/A) 

(1) (2) (3) 

 No individual 
Effects 

Fixed Effects Fixed Effects 
(drop 

SPILLSIC) 
Ln(SPILLTECHt-1) .022 

(.006) 
.076 

(.042) 
0.062 

(0.041) 
Ln(SPILLSICt-1) .034 

(.004) 
-.039 
(.020) 

 

Ln(Industry Salest) .328 
(.061) 

.197 
(.041) 

0.196 
(.041) 

Ln(Industry Salest-1) -.413 
(.061) 

-.146 
(.042) 

-.151 
(.042) 

Ln(R&D Stock/Capital 
Stock)t -1 

.171 
(.023) 

.354 
(.112) 

.350 
(.112) 

[Ln(R&D Stock/Capital 
Stock)t -1]2 

-.267 
(.081) 

.035 
(.092) 

.039 
(.092) 

[Ln(R&D Stock/Capital 
Stock)t -1]3 

.037 
(.029) 

-.039 
(.028) 

-.040 
(.028) 

[Ln(R&D Stock/Capital 
Stock)t -1]4 

-.002 
(.004) 

.007 
(.004) 

.007 
(.004) 

[Ln(R&D Stock/Capital 
Stock)t -1]5 

.002 
(.181) 

-.033a 
(.015) 

-.034 a 
(.015) 

    
Year dummies Yes Yes Yes 
Firm fixed effects (703) No Yes Yes 
No. Observations 12,679 12,679 12,679 

 

a coefficient and standard error have been multiplied by 100 
 
Notes: Tobin’s Q = V/A is defined as the market value of equity plus debt, divided by the stock of 
fixed capital. The equation is estimated by OLS (robust standard errors in brackets).  A dummy 
variable is included for observations where lagged R&D stock equals zero. The estimation period 
is 1981-2001. 
  



 
Table 4: Coefficient Estimates for the Patent Equation 

 
Dependent variable: 
Patent Count 

(1) (2) (3) (4) 

 No individual 
Effects 

Fixed Effects Fixed Effects + 
Dynamics 

Fixed Effects 
+ Dynamics 
(drop 
SPILLSIC) 

Ln(SPILLTECH) t-1 .523 
(.026) 

.343 
(.148) 

.223 
(.129) 

0.262 
(.113) 

Ln(SPILLSIC) t-1 -.009 
(.012) 

.043 
(.062) 

.044 
(.060) 

 

Ln(R&D Stock) t-1 .450 
(.023) 

.223 
(.039) 

.065 
(.035) 

0.067 
(0.035) 

Ln(Sales) t-1 .079 
(.021) 

.561 
(.043) 

.273 
(.037) 

0.274 
(0.036) 

Ln(Patents) t-1   .513 
(.019) 

0.513 
(0.019) 

     
Over-dispersion (alpha) 3.884 

(.087) 
.412 
(.018) 

.208 
(.013) 

0.209 
(0.013) 

Year dummies Yes Yes Yes Yes 
Firm fixed effects (712) No Yes Yes Yes 
No. Observations 11,024 11,024 11,024 11,024 
Log Likelihood -19,512 -14,413 -13,742 -13,742 
Pseudo-R2 .112 .344 .375 .375 
 
 
Notes: Estimation is conducted using the Negative Binomial model (robust standard errors in 
brackets). The estimation period is 1981-1998. A dummy variable is included for observations 
where lagged patent stock or lagged R&D stock equals zero. Fixed effects in columns (2) through 
(4) are estimated following Hausman, Hall and Griliches (1984). The results are similar when we 
use the method in Blundell, Griffith and Van Reenen (1999). 
 



Table 5: Coefficient Estimates for the R&D Equation 
 

Dependent variable 
ln(R&D) 

(1) (2) (3) 

 No Effects Fixed Effects Fixed Effects + 
Dynamics 

    
Ln(SPILLTECH) t-1 .179 

(.009) 
-.018 
(.035) 

-.010 
(.023) 

Ln(SPILLSIC) t-1 .317 
(.009) 

.109 
(.020) 

.025 
(.014) 

Ln(Capital) t-1 0.119 
(0.022) 

.216 
(.017) 

.036 
(.013) 

Ln(Sales) t-1 .703 
(.025) 

.609 
(.021) 

.189 
(.016) 

Ln(R&D) t-1   .689 
(.014) 

Ln(Industry Sales) t .660 
(.079) 

.143 
(.029) 

.135 
(.022) 

Ln(Industry Sales) t-1 -.868 
(.078) 

-.062 
(.030) 

-.102 
(.022) 

    
Year dummies Yes Yes Yes 
Firm fixed effects (536) No Yes Yes 
No. Observations 8395 8395 8395 

 
Notes: Estimation is by OLS (robust standard errors in brackets). The sample includes only firms 
which performed R&D continuously in at least two adjacent years. Estimation period is 1981-
2001.  
 



Table 6. Theory vs. Empirics
Partial correlation of: Theoretical Prediction Empirical Result Consistent

∂V 0

∂rτ
|r0 Market value with SPILLTECH Positive 0.076 yes

∂V 0

∂rm
|r0 Market value with SPILLSIC Negative -0.039 yes

∂k0
∂rτ
|r0 Patents with SPILLTECH Positive 0.223 yes

∂k0
∂rm
|r0 Patents with SPILLSIC Zero 0 yes

∂r0
∂rτ

R&D with SPILLTECH Ambiguous 0 no

∂r0
∂rm

R&D with SPILLSIC Positive 0.025 yes

Notes: The theoretical predictions are for the case of technological spillovers

with product market rivalry (strategic complements and non-tournament R&D)

- this is the third column of Table 1. The empirical results are from the most

demanding specifications for each of the dependent variables (i.e. dynamic fixed

effects for patents and R&D, and fixed effects for market value). Any result which

is not significant at the 10% level or better is denoted by "0".

6.4. Extensions

We close this discussion with a preliminary set of results on the productivity

impact of technological and product market spillovers. To do that, we estimate a

Cobb Douglas production incorporating the two spillover variables. The predicted

coefficients on the these spillover measures depends on the quality of the price

deflators used to measure real output. If the price deflators are good, then we

would expect technological spillovers to increase output (given the levels of capital,
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labour and R&D inputs) because they increase productivity of R&D by the firm.

However, product market spillovers should have no direct effect on productivity,

even though they would affect the optimal levels of inputs. If our output measure

is contaminated by prices, then the predictions are less clear — in that case we

might expect to find that R&Dby product market rivals also affects (mis)measured

productivity, and the impact of technological spillovers will also contain demand-

elasticity effects (Klette and Griliches, 1996). In the empirical work we use time

dummies to pick up price movements (in later versions we will use industry-specific

deflators), so such price effects may be present.

These results should be taken as very preliminary for two reasons. First, there

is a misspecification due to data availability. Specifically, we measure output by

sales but we do not have a measure of intermediate material inputs. This will

create an upward bias in the estimated spillover effects if intermediate inputs

(quantity or quality) are positively related to technological or product market

spillovers. The bias may not be too serious, since we would expect the relevant

R&D here would be the R&D by input suppliers. The second limitation is that

we estimate by OLS, rather than using more sophisticated techniques to allow for

input endogeneity (this will be done in later versions).

Table A1 summarizes the results. In the specification without firm fixed effects

(column 1), we estimate the output elasticity of own R&D at .045, which is in

line with the literature. But we find no effect for SPILLTECH, and a negative

effect for SPILLSIC. However, when we allow for fixed effects the results change

dramatically. The estimated coefficient on own R&D is robust to fixed effects,
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but now we find that technological spillovers have a positive and statistically

significant impact on productivity. However, product market rivals R&D also has

a significant positive impact on measured productivity. It is not surprising that

there is an effect, given the crude adjustment for prices we use.

In the absence of price deflators, we include industry sales variables to pick

up demand factors that may be correlated with price-cost margins (column 3).

This is our preferred specification. The elasticity on own-R&D is robust to these

variables, now estimated at .042. Evaluated at the sample means, this implies

a marginal product (gross, private rate of return) of 21 percent. The coefficient

on SPILLTECH falls — from .092 to .034 — but remains statistically significant.

Evaluated at sample means, an extra dollar of SPILLTECH increases produc-

tivity by 1.7 cents. But in this specification the effect of SPILLSIC disappears,

which is what we expect if the industry sales variables capture the price effects

not controlled for by the output price deflator.

7. Conclusions

R&D activity of other firms generates two basic types of spillovers to other firms.

Benefits accrue from technological spillovers, but R&D by product market rivals

can have strategic business stealing effects. We propose a simple methodology for

identifying these two effects, which is based on two features. First, we distinguish

a firm’s position in technology space and product market space. Second, we use

multiple indicators of performance (market value, patents and R&D). Using a

quite general framework, we develop the implications of technology and product
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market spillovers for these different indicators. We apply the approach to a large

panel of U.S. firms from Compustat for the period 1981-2001. We find that that

both technological spillovers and product market rivalry are present in our data,

and that R&D by product market rivals is a strategic complement for a firm’s

own R&D. The results are consistent with theoretical predictions when R&D is a

strategic complement, and indicate that both strategic rivalry and R&D knowledge

spillovers are present. We show that failure to control for product market rivalry

will lead to an underestimation of the magnitude of technological spillovers (e.g.

in the market value equation).

There are many extensions and robustness checks we need to pursue. We are

currently looking at the heterogeneity between industries of our results, other

econometric methods of controlling for endogeneity, the impact of additional con-

trol variables (e.g. for product market structure) and examining alternative ways

of constructing our spillover measures. Nevertheless, we believe the framework

and results in this paper offer a fruitful method for dealing with a long-standing

problem in the empirical literature.
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Table A1: Coefficient Estimates for the Production Function 

 
Dependent variable 

Ln(Sales) 
(1) (2) (3) 

 No Effects Fixed Effects Fixed Effects  
Ln(SPILLTECH) t-1 -.0005 

(.035) 
.092 
(.018) 

.034 
(.017) 

Ln(SPILLSIC) t-1 -.014 
(.003) 

.023 
(.011) 

.002 
(.009) 

Ln(Capital) t-1 .292 
(.006) 

.183 
(.009) 

.180 
(.009) 

Ln(Labour) t-1 .645 
(.008) 

.641 
(.011) 

.632 
(.011) 

Ln(R&D Stock) t-1 .045 
(.023) 

.056 
(.005) 

.042 
(.005) 

Ln(Industry Sales) t   .186 
(.021) 

Ln(Industry Sales) t-1   -.031 
(.021) 

    
Year dummies Yes Yes Yes 
Firm fixed effects (703) No Yes Yes 
No. Observations 12,663 12,663 12,663 

 
Notes: Estimation is by OLS (robust standard errors in brackets). A dummy variable for 
observations where lagged R&D equals to zero is included. Estimation period is 1981-2001.  
 
 
 
 
 
 
 
 
 
 
  




