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Abstract 
 

The purpose of this paper is to gauge the degree to which firm structure plays a 
role in successful product development in an innovation-driven industry. Do firm scale, 
product variety and technological scope affect product development success rate and if 
so, through which channels? Pharmaceutical and biotechnology industries are naturally 
attractive subjects of such an inquiry. While basic facts about drug development success 
rate are well-known, its determinants of are poorly understood. Using comprehensive 
database of product development outcomes in the biotechnology industry the paper 
investigates the role of these factors in determining drug development success rate. The 
results indicate that some elements of structure of a biotechnology firm are correlated 
with probability of drug development success.  

 
A number of empirical regularities are established. Measures of firm and project 

scale, choice of therapeutic and technological scope appear to be correlated with 
probability of drug development success. Evidence suggests that there is an inverse 
relationship between probability of development success and scale of drug development 
program. Another finding indicates that wider technological and therapeutic scope of 
drug development program contributes to higher probability of project development 
success. Experience with a chemical compound also matters: both successful and 
unsuccessful experience with a compound in one project affects the probability of success 
of other projects that use the same compound. Finally, research experience has weak 
adverse effect on the probability of drug development success.  
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1. INTRODUCTION  
 

The objective of the study is to identify elements of firm structure that are 

conducive to successful product development in an innovation-driven industry. Structural 

characteristics of an innovation-driven firm such as scale and scope of its product 

development pipeline, choice and scope of technologies may influence product 

development success rate and development cost. Biotechnology and pharmaceutical 

industries provide natural context for such inquiry for a number of reasons. Both 

industries represent one of the leading R&D intensive industries in advanced economies. 

Developing successful and profitable medicine is exceptionally costly and hard, and 

while basic facts about drug development cost and success rate are well-known, the 

determinants of both are poorly understood.  It takes about fifteen years of research and 

development to bring a drug to the market (Spilker, 1999) and roughly $600 million to 

come up with a single successful drug (Grabowski, Vernon and DiMasi 2002). Such 

arguably high cost of drug development is in part due to high failure rate of drug 

development projects. DiMasi (1995) estimates that only about 1 in 4 drugs make through 

the human clinical trials, yet all project, both eventual successes and failures require 

constant flow of cash adding to the final cost of successful projects. Despite recent 

advances in genomics, ethical drug development continues to be largely a trial-and-error 

process that relies on knowledge, experience and intuition of scientists (Robbins-Roth, 

2000).  The question arises as to what organizational and technological environment 

makes drug development less hard, more cost effective and eventually more profitable? 

Could one firm structure or configuration be more favorable to success of drug 

development than others? The answers to these questions have obvious implications for 
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management and design of innovation process in biotechnology and pharmaceutical 

industries. 

The choice of firm structure should matter from a firm’s point of view, as it may 

eventually affect profitability. A company must decide on the scale of its research and 

development program: how much to spend on drug development and how many drugs to 

work on. Larger scale of development efforts may enable a firm to spread its fixed cost 

over the greater amount of potential sales (Chandler, 1990), and additionally may 

increase the probability of product development success if scale enables more efficient 

drug development techniques. Firms must also decide on the therapeutic scope of its 

development effort: how many different diseases to work on. A firm could specialize in, 

say, cancer drugs or develop drugs in a wide variety of therapeutic areas. Choice of 

therapeutic scope is likely to be closely related to the characteristics of product market 

competition, desire to diversify sources of revenue and to the possible tradeoff between 

cost and success in drug development.  

Likewise, a biotechnology firm must decide how many chemical compounds 

(which could be interpreted as technologies) to utilize in development effort. Should two 

different, but to an extent related, medical conditions be treated with two different 

chemicals, or should a firm leverage a single compound and use it treat both medical 

conditions. Such decision is the decision about technological scope of development 

program. The ability to use the same tangible or intangible asset for multiple purposes at 

little or no additional cost is important to achieve higher productivity of a given amount 

of effort (Panzar and Willig, 1981). In this setting, profitability could be enhanced as a 

single technology (chemical compound) can be “leveraged” or be used to develop a 

number of different products (medical treatments). The choice of technological scope 
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depends on cost and benefits of scope, specialization and knowledge spillovers that exist 

in pharmaceutical product development. 

The direction of long-run adjustments in firm structure and the optimal structure 

will depend, among other things, on the marginal effect that changes in firm structure 

have on product development cost and on probability of development success (and thus 

on expected revenue).  Modeling such adjustments in the context of dynamic R&D 

competition is beyond the scope of this paper, which is decidedly modest. The paper 

focuses more narrowly on empirical relationship between probability of development 

success and firm structure, rather than on the dynamic choice of firm structure.  

The study describes various aspects of biotechnology firm structure and attempts 

to uncover the elements of firm structure that are correlated with probability of drug 

development success. Following previous studies, this relationship is investigated within 

an econometric setting that is based on estimation of probability of success function that 

takes as covariates various characteristics pertaining to firm structure such as firm scale, 

therapeutic or product scope, technological scope, measures of intrafirm knowledge 

spillovers and research experience. The main conclusion is that some aspects of firm 

structure such as the employment per project, technological and therapeutic scope, 

technological knowledge spillovers and development scale, appear to be relevant to drug 

development success. However, results also seem to indicate that choice of therapeutic 

field, knowledge spillovers across therapeutic areas and scale of firm’s research activity 

have small or no impact on probability of development success. 

 The next section provides a review of relevant literature. The section 3 describes 

research hypotheses, while section 4 addresses measurement issues. Subsequently, data 

issues (section 5), descriptive statistics (section 6) and estimation approach (section 7) is 



 6

discussed. The final sections report and discuss results (section 8) and offer conclusions 

(section 9). 

   

2. LITERATURE REVIEW 

 There has been a considerable amount of economic research on economies of 

scale in drug research or discovery1, yet rather few researchers addressed such issues in 

the context of drug development. The two recent and noteworthy studies by Cockburn 

and Henderson (2001) and by Danzon, Nicholson and Pereira (2003) address productivity 

effects of firm scale, therapeutic scope and knowledge spillovers in drug development. 

 The first study by Cockburn and Henderson investigates the determinants of drug 

development success of large pharmaceutical firms. Working with comprehensive 

longitudinal data on 10 large pharmaceutical companies, authors investigate the impact of 

firm scale and scope on probability of success of individual drug development projects, 

using logit model in a panel data setting. Defining success as project’s entry into 

regulatory stage (filing new drug application [NDA] with U.S. Food and Drug 

Administration), they conclude that: 

“…In contrast to previous work on the discovery phase of pharmaceutical R&D 

we find strong correlation between the diversity of firms’ development efforts and the 

success probability of individual projects, but no effect of scale per se. Large firms’ 

superior performance in drug development appears to be driven by returns to scope rather 

than returns to scale. Scope is confounded with firm fixed effects, however, suggesting an 

important role for inter-firm differences in the organization and management of the 

development function” (Cockburn and Henderson, 2001). 

                                                           
1 Concise review is provided by Cockburn and Henderson (2001). 
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This conclusion underscores the importance of firm-specific structural factors. 

Current paper expands the number and detail of explanatory variables and considers not 

only development scale and therapeutic scope, but also other possible determinants of 

drug development success: technological scope, scale of drug discovery activity, as well 

as intrafirm knowledge spillovers in drug development.  All those factors could be 

responsible for differential success record across biotechnology firms. Considering such 

elements of firm structure explicitly could yield additional insights into firm-level 

determinants of development success. 

The second study of interest is by Danzon, Nicholson and Pereira (2003). Using 

data on both pharmaceutical and biotechnology firms the authors investigate the effect of 

scale (total experience in their terminology), therapeutic scope and therapeutic-specific 

experience on success probabilities for different drug development stages. These authors 

also adopt the logit model. Evidence presented suggests that there are positive effect of 

total experience for late stage clinical trials, as well as positive effect of therapy-specific 

experience and negative effect of wider therapeutic scope on the likelihood of successful 

completion of Phase 2 clinical trials.    

Both studies suggest that some decisions about firm structure matter for 

successful drug development. Current paper builds upon these inquiries by systematically 

investigating the effects of development scale, technological and therapeutic dimensions 

of firm scope, intrafirm knowledge spillovers and research activity on drug development 

success in the biotechnology industry. This set of firm characteristics is more 

encompassing measure of firm structure than the explanatory variables used in the 

previous studies. While Danzon, Nicholson and Pereira investigate the probability of 

success separately for different human clinical trial stages (Phase 1, 2 and 3), this paper 
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focuses on the probability of bringing a project beyond the clinical trial stage (into 

regulatory stage). The difference in approach reflects the desire to evaluate the effect of 

firm structure on eventual technical success of a project and to generate results 

comparable to results obtained by Cockburn and Henderson (2001).  

 

3. RESEARCH HYPOTHESES 

 The hypotheses presented below focus on the determinants of success of a drug 

development project which is defined in this study as a unique chemical compound – 

disease pair. This definition of a development project is warranted by the U.S. Food and 

Drug Administration’s requirement of separate set of human clinical trials and separate 

regulatory review for each such compound-disease pair. For instance, a firm that uses a 

single chemical to treat two different diseases would be required to conduct two separate 

sets of clinical trials and two separate regulatory reviews for each compound-disease pair.  

Naturally, the notion of development success is clearly defined when such definition of 

development project is adopted. Hypotheses 1 through 5 presented below provide 

conjectures about the effects of firm structure on the probability of development success.  

Hypotheses 1 through 3 parallel, to some extent, Cockburn and Henderson (2001) 

hypotheses concerning scale and scope effects on productivity of big pharmaceutical 

companies; here, however, the focus is on biotechnology companies. Hypothesis 4 

considers possible channels for knowledge spillovers across drug development projects, 

while the fifth hypothesis addresses the effect of cumulative discovery effort on 

probability of development success.  

H.1:  Ceteris paribus, larger scale of development effort has no effect on 

probability of development success.  
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Cockburn and Henderson (2001) found that there is no statistically significant 

partial effect of scale on drug development success, and here their finding is adopted as a 

null hypothesis. It is possible that zero effect found is simply a net effect of forces 

working in opposite directions, rather than a phenomenon reflecting genuine absence of 

scale effects. Beneficial effect of scale on the probability of success may work through 

learning-by-doing. A firm with twenty projects in development may know more about 

efficient and successful management of drug development projects than a firm with only 

two projects in the pipeline. Other things equal, firms with more projects in development 

could be expected to accumulate more knowledge about the science and art of 

pharmaceutical product development, by adapting more efficient techniques and learning 

from its more numerous past successes and failures. Additionally, larger scale may also 

lead to productivity-enhancing specialization. One, but by no means the only possible 

source of diseconomies of scale is managerial input. While supervisory and monitoring 

requirements for increasing number of projects could be met by hiring more managers or 

outside contractors (such as contract research organizations) coordination and agency 

issues (see Azolay(2003)) may become more important with increasing size. If such 

problems become severe enough they could outweigh benefits of scale in drug 

development that accrue through learning-by-doing and specialization. 

H.2: Ceteris paribus, firm’s technological specialization (narrower technological 

scope) lowers probability of project’s success. 

There are gains and cost to leveraging a single technology across different 

applications. The benefits of narrower technological scope may arise from cost sharing. 

Identifying the best compound to treat disease X is major and costly task of pre-clinical 

research. An alternative and cost-saving strategy is to use the compound that has already 
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shown promise in treatment of another and possibly related disease Y. When a single 

chemical compound is used to develop drugs to treat two or more different diseases, more 

products share the costs involved in compound discovery. Furthermore, passing safety 

clinical trials would indicate that a certain dose of chemical compound is likely to be safe 

no matter which disease is being treated. Hence, once safety is established for a 

compound treating disease X, a firm may not need conduct as large and as extensive a 

safety trial to treat disease Y or other diseases. Confirmation of safety for disease X, 

could therefore save some safety trial costs for other diseases. 

The tradeoff in this decision is between saving on the discovery and development 

cost and finding the compound that is the best match to the disease in question. Using 

existing compound to treat another disease may lower discovery expenses, but at the 

same time may compromise the quality of match between a compound and target disease 

in terms of lower probability of development success.  The second and costlier strategy is 

to search for the new compound from scratch, spending funds on identifying a new 

compound that is the best match to the disease in question. The implication for drug 

development outcome is that narrower technological scope compromises the quality of 

compound-disease match, resulting in a higher probability of development failure. 

H.3: Ceteris paribus, firm’s therapeutic specialization (narrower therapeutic 

scope) lowers probability of project’s success. 

Specialization in a narrow set of therapeutic areas may enable a firm to utilize 

similar clinical trial design across a number of projects, with likely savings in 

development cost. Yet such approach may also be detrimental to project success rate if 

such specialization limits managerial and scientific experience of a company. Managers 

and scientists in companies that are exposed to wide variety of therapeutic areas may 
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have better exposure to different clinical trials settings and challenges posed by drug 

development and hence may adapt better and faster in response to unfavorable trial 

results, by introducing appropriate changes in clinical trials design and conduct. 

Consequently, such exposure may lead to higher development success rate.  

H.4: Development efforts are subject to the intrafirm knowledge spillovers. A 

chemical compound that succeeds in clinical trials for one medical indication is more 

likely to succeed in the clinical trial for another medical indication2. Similarly, success of 

a project in one therapeutic field is likely to increase the probability of success of other 

projects in firm’s pipeline in the same therapeutic field. 

 Toxicity of a compound, when found in the clinical trial for one medical 

indication, may be serious enough to terminate other clinical trials that involve the same 

chemical compound. This type of technological spillover may be important rationale for 

avoiding technological specialization, despite its possible cost advantages. 

Correspondingly, within a firm a success (failure) of a project in one therapeutic area, 

may to some extent predict success (failure) of another project in the same therapeutic 

area.  This correlation is likely to reflect acquired experience within a therapeutic area. 

For example, successful development of one anti-infective drug may provide necessary 

knowledge to develop successfully another anti-infective drug.  

 H.5: The size of firm’s research program has no effect on the probability of 

development success. 

 The fifth hypothesis reflects an agnostic prior. For financially constrained firms 

discovery activities would tend to compete for resources with development activities. In 

this case, given the pool of resources, larger size of discovery program could harm 

                                                           
2 Same applies to failure. A failure of a compound in one project could make more likely failure of other 
projects that use that compound. 
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development efforts. Conceivably, cohabitation of drug discovery and development 

activity within a firm could also have beneficial impact on development success, if tacit 

knowledge transmission is important. To an extent that knowledge about beneficial 

properties of discovered compound cannot be completely codified, all else equal, 

development of a drug discovered in-house may have higher success rate than a 

compound in-licensed from outside. In such a case the size of research (or discovery) 

program may have beneficial impact on the probability of drug development success. An 

implicit, and possibly questionable, assumption behind this beneficial effect is that 

transmission of knowledge within a biotechnology firm is easier than across firm 

boundaries. A priori it is not clear which effect dominates and thus the statement 

claiming no effect of research program size is adopted as the null hypothesis.    

 

4. MEASUREMENT 

4.1 Product development scale 

Development scale could be measured in a variety of ways. One choice is to use 

aggregate R&D expenditures or employment to measure the scale of development effort, 

which is a common practice in R&D productivity literature.  Alternatively, scale could be 

measured along the extensive and intensive margins. Extensive margin reflects the total 

size of development effort and here is measured by the total number of projects a firm 

was engaged in from inception through 2000. These include active drug development 

projects, projects terminated prior to 2000, as well as the projects under regulatory review 

and on the market. This variable is intended to measure an overall experience of a firm in 

drug development. The intensive margin reflects the scale of effort at the level of 

individual project. Ideally, project-specific R&D expenditures or employment should be 
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used to capture project-level scale. Lack of project level cost and employment data forces 

me to define employment per project variable as the ratio of firm employment3 to the 

total number of projects.  

4.2 Technological and therapeutic scope: concept and measurement 

Studies reviewed in section 2, focused on a dimension of firm scope that can be 

termed “therapeutic scope” of firm’s drug development program. To illustrate the concept 

consider a firm with three development projects to treat three related diseases (say 

ovarian, breast and colon cancers). This firm is said to be narrow in its therapeutic scope, 

while a firm with three projects for three generally unrelated diseases (say AIDS, cystic 

fibrosis and Crohn’s disease) has product development program of wide therapeutic 

scope. These two companies with the same number of development projects (or 

development scale) have very different therapeutic scope. The second dimension of scope 

could be called “technological scope”. Again, consider a firm that decides to develop 

drugs to treat three different diseases. It can make a choice between using one, two, three 

or possibly more distinct chemical compounds to treat these diseases. If a firm chooses 

just one compound to treat all three diseases, its technological scope is narrow. On the 

other hand if a firm chooses to use a different chemical compounds for each disease 

(three different compounds in total) its technological scope is wider relative to the first 

case when only one compound is utilized. 

 Although therapeutic and technological scope could be correlated, a clear 

distinction in concept and measurement can be made between firm’s therapeutic and 

technological scope. A firm with a given number of projects in development and a given 

therapeutic scope can have different technological scope depending on the number of 

                                                           
3 Compustat data used in this paper do not differentiate between research and development employment or 
R&D expenditures 
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chemical compounds it decides to use in drug development. While therapeutic scope 

captures the breadth of firm’s product market position, technological scope indicates 

firm’s propensity to “leverage” its technology across different development projects. 

Therefore, the scope of drug development program can be viewed as having these two 

dimensions. As an example consider the following actual data 

Table A: Therapeutic and technological scope of a firm, an example 
 
Firm: Matrix Pharmaceuticals     

Project# Compound/Drug Disease 
Disease 

Class code Project Phase 
1 IntraDose malignant melanoma 2 Lead 
2 MPI 5017 bladder cancer 2 Pre-Clinical 
3 MPI 5019 cancer 2 Pre-Clinical 
4 IntraDose primary liver cancer 2 Phase 2 
5 IntraDose metastatic liver cancer 2 Phase 2 
6 IntraDose prostate cancer 2 Phase 2 
7 FMdC colon cancer 2 Phase 2 
8 IntraDose head and neck cancer, solid tumors 2 Phase 3 
9 IntraDose recurrent or metastatic breast cancer 2 Phase 3 

10 MPI 5020 breast tumor reccurence 2 Terminated 
11 AccuSite basal cell cancer 2 Terminated 
12 AccuSite squamous cell cancer 2 Terminated 
13 AccuSite psoriasis 12 Terminated 
14 AccuSite genital warts 1 Terminated 

 
 Table A lists all development projects that this firm was ever involved in. There 

are fourteen projects in development. Each project corresponds to a unique disease-

compound combination because of FDA requirement to have separate set of clinical trials 

for each such combination. International Classification of Diseases, 9th edition (ICD-9, 

see Table B) was used to group all target diseases for this firm into three separate disease 

classes4: Neoplasms (2), Infections (1) and Diseases of the skin and subcutaneous tissue 

(12). There are also six distinct chemical compounds/drugs that are used to treat different 

diseases (IntraDose, MPI 5017, 5019, 5020, FMdC and AccuSite).   

                                                           
4 Multum’s Lexicon provides a table matching a list of roughly 38,000 diseases to a therapeutic class 
defined by ICD-9. 
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 One way to measure therapeutic scope is to count the number of distinct disease 

classes. For Matrix Pharmaceuticals the number of distinct disease classes is three. 

Similarly, one can measure technological scope by the count of distinct chemical 

compounds/drugs in development. In this case there are six distinct chemical compounds. 

Furthermore, we can measure the scale of development effort, which is reflected in the 

total count of development projects (fourteen projects in total). Clearly, the firm’s 

configuration we observe: therapeutic scope = 3, technological scope = 6 and scale = 14 

is just one possibility. For a given number of projects this firm could have chosen a 

different technological and therapeutic scope. For instance a configuration of therapeutic 

scope = 14, technological scope = 14 and scale = 14 represents a firm with widest 

possible technological and therapeutic scope given the number of projects in 

development.   

Table B: International Classification of Diseases, 9th edition 
 

Disease/Therapeutic class Class code 
Infectious and Parasitic Diseases 1 
Neoplasms 2 
Endocrine, Nutritional, Metabolic Diseases, and Immunity disorders 3 
Diseases of the blood and blood-forming organs 4 
Mental disorders 5 
Diseases of the nervous system and sense organs 6 
Diseases of the circulatory system 7 
Diseases of the respiratory system 8 
Diseases of the digestive system 9 
Diseases of the genitourinary system 10 
Complications of pregnancy, childbirth and puerperium 11 
Diseases of the skin and subcutaneous tissue 12 
Diseases of the musculoskeletal system and connective tissue 13 
Congenital anomalies 14 
Certain conditions originating in perinatal period 15 
Symptoms, signs and ill-defined conditions 16 
Injury and Poisoning 17 
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4.3 Capturing the effects of knowledge spillovers 

Success or failure of a chemical compound in one project may serve as a good 

predictor of outcomes of other projects that use the same chemical compound. As an 

example consider chemical toxicity. Toxicity of a chemical compound X that leads to 

failure of one project, may not affect other projects if for these projects the dose could be 

lowered without adverse therapeutic effects. However, if concerns about toxicity were 

serious enough, all projects that use compound X would be abandoned. Thus, learning 

about toxicity of a chemical in one development project is likely to affect the outcomes of 

other projects that use the same chemical. Conversely, successful development of a 

project involving chemical X, may increase the chance of successful progress of other 

projects that use the same chemical, for the knowledge gained in one such project could 

at little cost be shared across all chemical X projects in a firm’s development pipeline. 

Similar effects may exist within therapeutic areas. The likelihood of a successful 

project completion for a drug treating an infectious disease may be enhanced if there 

were other active projects to develop anti-infective therapies. Knowledge gained in the 

process of developing one anti-infective therapy is often useful in development of another 

anti-infective drug. Failures may also be informative. Inability to develop drugs in one 

therapeutic class may be a signal to firm’s management that other projects within the 

same therapeutic class may now be less promising due to technical or other difficulties, 

and hence are more likely to be abandoned.  

Dummy variables are used to test for the presence of these knowledge spillover 

channels. Suppose that a project m in question uses chemical k and treats a disease that 

falls into therapeutic class t, then the set of knowledge spillover variables consists of four 

dummy variables. The first variable COFjm = 1 if there is at least one other failed project 
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in firm’s j pipeline that used chemical k to treat a different disease, and COFjm = 0 if 

otherwise. Also COAjm = 1 if there is at least one other active5 project in firm’s j pipeline 

that uses chemical k to treat a different disease, COAjm = 0 if otherwise. Observe that 

COF and COA are not mutually exclusive. A firm j can concurrently have other failed 

and active projects that use chemical k .  

Similar dummies are defined for therapeutic classes. TOFjm = 1 if there is at least 

one other failed project in firm’s j pipeline that is in the same therapeutic class as given 

project m, and zero otherwise. TOAjm = 1 if there is at least one active project in firm’s j 

pipeline that is in the same therapeutic class as given project m, and zero otherwise. 

When all four dummies are equal to zero, the project m under consideration is a “stand-

alone” project - that is a firm has no other active or failed projects in firm’s pipeline that 

use the same chemical or are in the same therapeutic class as project m. 

As an illustration consider Matrix Pharmaceuticals’ project #6 (Table A). 

Spillover dummy variables for this project take the following values [COA, COF, TOA, 

TOF] = [1,0,1,1]. Dummy variable COA = 1, as there are other active projects that use 

compound IntraDose and COF = 0 since there are no failed projects using IntraDose. 

Variable TOA = 1, because there other active projects that are in Neoplasms therapeutic 

class. Finally, TOF = 1, as there are failed projects that belong to Neoplasms 

therapeutic/disease class. Values of spillover dummies for other projects in the sample 

are determined in a similar fashion. 

 

                                                           
5 An “active” project is defined as a project that is still in development or on the market. 
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5. DATA ISSUES 

 The data on drug development outcomes are assembled from the data made freely 

available by Recombinant Capital (ReCap) on its website6 prior to October 2000. ReCap 

is a San Francisco-based consulting firm specializing in biotechnology alliances and 

capitalization. Its Clinical Trials Progress Database tracks the progression of more than 

900 compounds in or near clinical development for which a biotechnology firm is 

involved in such compound's development and/or commercialization. The data covers the 

period between 1980 and 2000. The database provides the information on a company’s 

drug pipeline, including the number of drugs in different phases of development; dates of 

entry into and exit from a particular phase of clinical trials; the number and development 

dates for projects whose development has been terminated; data on marketing partners for 

each drug development project. 

The Recap database encompasses 292 existing and former public as well as 

private biotechnology companies involved in drug discovery and development. These 

companies encompass the entire spectrum of biotechnology firms: from boutique-scale 

companies with less than a dozen employees to biotechnology giants such as Biogen and 

Genentech. Matching Recap data with Compustat data on public companies yielded a 

sample of 220 public companies. Inspection of Compustat data uncovered 436 publicly 

traded U.S. companies that were involved in drug and diagnostics development prior to 

1999 (excluding big pharmaceutical companies) of which 408 companies were listed in 

SIC 2833 to 2836 category7 and 28 firms had 5122 as their primary SIC code. If these 

436 companies represent the population of publicly traded U.S. biotechnology 

                                                           
6 www.recap.com 
7 SIC 2833 (medicinal chemicals), SIC 2834 (pharmaceutical preparations), SIC 2835 (In vitro/in vivo 
diagnostics), SIC 2836 (biological products), SIC 5122 (drugs & proprietary) 
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companies, then 220 companies in the sample account for 50.5% of all public 

biotechnology companies in the United States. 

In principle Recap database could be used to construct longitudinal dataset of 

drug development outcomes. However, since many development dates are missing it is 

impractical for this purpose unless one is willing to make imputations for project 

development dates. Despite this problem with missing dates, the eventual status and 

phase of the projects (as of 2000) was tracked fairly accurately. Tracking of product 

development outcomes by Recap for a random sub-sample of 30 companies was 

compared with the information available from company websites and with Lexis-Nexis 

Medical news indicated only a few discrepancies.   

 Compustat database was used to obtain measures of employment and other firm 

specific financial information for public biotechnology companies. Stock of patents for 

each firm was calculated using Hall, Jaffe and Trajtenberg (2001) patent data set. The 

result is reduction in sample size to 220 companies that went public prior to 1999 for 

which information on employment and patents was available.  

The data sets present a number of potential measurement problems. Compustat 

database provides total R&D expenditures and firm employment without distinguishing 

between research and development stages. As a result, the effect of development scale on 

development success, if it exists, could be contaminated by likely correlation with 

research scale. If research scale also affects the chance of development success, the 

estimate of development scale effect will be biased. To fix this problem (and for other 

reasons) patent stock variable is included in productivity regressions, in effect mitigating 

omitted variable bias by picking up partial effect of the research scale.  
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The second potential problem concerns censored observations in the Recap 

database. Left censoring does not present a problem, because virtually all biotechnology 

companies were formed in the 1980’s and 1990’s8. Since the dataset starts in 1980 it 

captures end points of virtually all development projects that began in the 1980’s and late 

1970’s. Right censoring is most probable for projects commenced in the late 1990’s, as 

the end year of the dataset is 2000. Most of such projects are still in development and 

hence are neither terminated nor successfully brought to the market. This may present a 

problem as older and newer firms of comparable size may have different age structure of 

the development pipeline. For instance, a firm with 20 projects ever undertaken that has 

formed in the 1980’s is likely to have more marketed products that otherwise similar firm 

that was born in the mid-90’s. In this case while the scale of development effort may 

have the same effect on success for both firms, for the newcomer firm this effect will be 

censored. To control for this censoring effect entry date into Phase 1 clinical trial is used 

as another explanatory variable and a set of regressions is run on various sub-samples to 

elicit the effect of right censoring on parameter estimates.  

 

6. DESCRIPTIVE STATISTICS  

 Table 2 (see appendix) provides a glance at the data. As of year 2000, an average 

biotechnology firm in the sample has been involved in 10.0 development projects. This 

number conceals considerable variation across firms. By year 2000, old and experienced 

firms have been involved in 40 to 60 projects, while the startups are usually involved in 

no more than a few projects.  Another interesting observation concerns firm choice of 

technological and therapeutic scope. An average firm with 10.0 projects in development 

                                                           
8 Genentech along with three others companis had an IPO in 1980. Only Biogen, Genentech and Genome 
Therapeutics incorporated prior to 1980 (Robbins-Roth, 2000).  
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is involved with roughly 6 distinct chemical compounds, and in 4 distinct therapeutic 

areas (Table 2A indicates that DC = 5.9 and TS = 4.3). Thus, there is some evidence of 

multiple applications of a chemical compounds in drug development: on average firms 

utilize a single compound to treat more than one medical condition. The same data also 

suggests that, on average, biotechnology firms have about two projects per therapeutic 

area. 

 Figures 1 and 2 provide information about the distribution of entry dates into 

Phase 1 clinical trials and initial public offering dates for biotechnology firms in the 

sample. Both clearly show biotechnology boom of early and mid-1990’s, a time of entry 

for many new biotechnology firms. Correspondingly, we see many firms bringing new 

projects into human clinical trials around this time. 

The success rate for drug development projects that entered Phase 1 of human 

clinical trials prior to 1990 is 25.7% (see Table 2C) and it is about equal to the success 

rate (23.5%) reported by DiMasi(1995) for the new chemical entities that entered clinical 

trials in early and mid-1980’s.  The number of projects still in development in 2000 rises 

sharply to 51.6% for projects that entered Phase 1 between 1990 and 1994, reflecting the 

effect of censoring. For the same cohort of projects the success rate is already about 

25.5%, only slightly lower than for projects that entered Phase 1 prior to 1990. This could 

possibly reflect higher quality of 1990- 1994 cohort of projects. For the projects entering 

Phase 1 after 1994, percentage of projects still in development in 2000 is the highest - 

85.1%, reflecting the proximity of censoring date (year 2000) to the Phase 1 date of entry.  

As of 1999, an average biotechnology firm possessed 27.1 patents (Table 2A), yet 

only 10.0 projects were ever undertaken by 2000. If each patent reflects discovery of a 

new chemical entity, then at most 1 in 3 patented chemical compounds entered product 
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development and possibly even fewer considering that a compound could be involved in 

multiple drug development projects. The above observation is consistent with a notion 

that patented compounds are perceived to be different in value prior to development 

stage, and that only most ex-ante promising compounds enter product development (Hall, 

Jaffe and Trajtenberg, 2000).  

There are comparatively few biotechnology firms that have good record of 

success in drug development and those firms that do succeed consistently have superior 

access to capital, large employee base, extensive laboratory and equipment capital. At the 

same time most biotechnology firms are quite small firms characterized by relatively few 

projects in development, small number of employees, as well as relatively small R&D 

expenditures and cash funds (Robbins-Roth, 2000). This configuration is a well-known 

feature of biotechnology industry and is clearly reflected in the summary statistics 

presented in Table 2A. For all firm characteristics the mean values considerably exceed 

their respective median values and the distributions of these characteristics in the sample 

are highly skewed and exhibit large kurtosis.   

           Lastly, the mean values of the spillover dummy variables COA, COF, TOA and 

TOF indicate that there is a potential for intrafirm knowledge spillovers across projects 

and within therapeutic/disease areas (Table 2B). The mean value of COA is 0.393 and 

mean value of COF is 0.106 indicate that for 39.3% of projects in the sample there is at 

least one other active project within a firm that utilizes the same chemical compound and 

for 10.6% of projects in the sample there is at least one other failed project within a firm 

that utilized the same chemical compound. Similarly, TOA = 0.66 and TOF = 0.21 

indicate that for 66% of projects in the sample there is at least one other active project 
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within a firm in the same therapeutic class and for 21% of projects in the sample there is 

at least one other failed project within a firm in the same therapeutic class. 

 

7. EMPIRICAL MODEL 

The empirical model is based on a single estimating equation that relates a 

measure of project’s success to various variables that describe firm structure and project-

specific characteristics. The unit of observation is project which is a patented chemical 

compound designated to treat a particular disease (medical indication). A single chemical 

compound could be used to treat several diseases and a disease could be treated by a 

number of different compounds. Each chemical compound-disease pair (here called 

project) is required by U.S. Food and Drug Administration to have separate clinical and 

pre-clinical development, as well as regulatory review. For example, a firm using one 

chemical compound to treat two different medical conditions would be required to 

conduct two separate sets of trials. Thus, the development pipeline of such a firm will 

consist of two projects. In this setting, the probability of development success of a project 

m belonging to a firm j becomes, 
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       The dependent variable (SUCCESSjm) is a dummy variable that is equal to 1 if 

project m belonging to firm j reaches an NDA filing stage (i.e. a firm files an NDA for a 

project by year 2000) and equal to zero otherwise. The independent variables are firm 
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level and project level variables. Firm level variables include employment per project 

(EMPP) and EMPP squared; the total number of development projects undertaken 

between 1980 and 2000 (TOTPROJ) and total number of projects squared; patent stock 

of firm j  (PATSTOCK); measure of technological scope (DCj) and a measure of 

therapeutic scope (TSj). Intrafirm knowledge spillovers are captured by the set of project 

level spillover dummy variables (COA, COF, TOA and TOF). Seventeen therapeutic 

class dummies are included for two reasons. One is to control unobserved heterogeneity 

in development difficulty as drugs in some therapeutic classes may be harder to develop 

than in others.  Another reason for inclusion of therapeutic dummies is to alleviate 

potential omitted variable bias. Firms with wide therapeutic scope may also be the ones 

that select therapeutic specialties where developing drugs is relatively easy. In such a 

case positive effect of wider therapeutic scope on the probability of success would reflect 

unmeasured difficulty of therapeutic areas. Finally jθ  is firm effect, and jmε is a project 

specific disturbance term. Table 1 provides detailed definitions of variables. The logit and 

random effects logit models are estimated by maximum likelihood. For the logit model 

standard errors are computed correcting for possible heteroskedasticity (White or robust 

standard errors) and clustering on firm9.  

Partial effect of scale will show up in 1β , 2β , 3β  and 4β .  Effects of technological 

and therapeutic scope will be captured by 6β  and 7β , respectively. If there are intrafirm 

spillover effects 9β < 0, that is the failure of other projects that use the same chemical k 

decreases the probability of success for project m. Correspondingly, 8β  > 0, would 

indicate that presence of other active projects in firm’s pipeline that use the same 

chemical k increases the chance of success for project m. Similar interpretation pertains to 

                                                           
9 Estimation is implemented in Stata 8.2 using logit and xtlogit commands.  
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the signs of therapeutic coefficients: 12β < 0 implies smaller chance of success if at least 

one other project within the same therapeutic class has failed, and 11β > 0 implies greater 

chance of success if at least one other project within the same therapeutic class is active. 

Control variables include a set of dummies reflecting entry date into Phase 1 clinical 

trials. This is intended to account for different age structure of projects across firms. 

Finally, coefficient on PATSTOCK ( 5β ) would capture the effect of firm’s cumulative 

research effort on the probability of development success. 

 

8. RESULTS AND DISCUSSION 

8.1 Main specifications 

 The results confirm that scale and scope of firm’s development effort along with 

intrafirm knowledge flows play important role in determining the probability of success 

of a project. The following points are notable; they indicate partial effects of various 

variables on the probability of success of a development project,  

(1)  Greater employment per project has positive but weakly diminishing effect on  

 the probability of success.  

(2) Greater total number of projects has negative, but diminishing in absolute value 

effect on the probability of success.  

(3) Greater patent stock (which is a measure of firm’s research output) has weak 

negative or no effect (in one specification) on the probability of development 

success.  

(4) Wider technological and therapeutic scope increases probability of project’s 

success. However, in some specifications the effect of therapeutic scope is 

statistically insignificant. 
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(5) Therapeutic area of a project does not affect the probability of successful 

completion of a project.  

(6) Technological knowledge spillovers across projects within a firm do exist and 

have substantial and statistically significant effect on the probability of success, 

indicating that both positive and negative development experience with same 

chemical compound in other projects affect the probability of success of a given  

 project. The evidence of knowledge spillovers via therapeutic channel is less      

decisive. 

The positive effect of greater scale on probability of project’s success seems to 

work to large extent through an “intensive margin”: greater effort per project (measured 

as employment per project) leads to higher probability of success. However, along the 

“extensive margin” the relationship between the total number of projects and probability 

of success is negative. Having one more project in the pipeline decreases the probability 

of success (Table 2, coefficient on TOTPROJ) even after holding employment per 

project, scope, spillover and research effort measures constant.  

All else equal, it appears that involvement in the greater number of projects is 

associated with lower probability of success. Negative effect is the strongest for small 

firms, remaining negative but declining in magnitude with greater firm size. This inverse 

dependence may reflect unequal relationship between learning-by-doing and 

specialization effects favoring positive effect of firm size (that may start playing some 

role for relatively large and experienced firms) and effects that favor negative effect of 

firm size, such as managerial coordination problems, lack of focus and agency problems 

that firms may face when they decide to expand the size of product development 

program. One simple explanation is that monitoring and agency problems may compound 
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with development program size, while benefits of acquired practical knowledge and input 

specialization may not be strong enough to counteract such forces.  

Confirming predictions of hypotheses 2 and 3, wider technological and 

therapeutic scope improves chances of project’s success. Consistent with the finding of 

Cockburn and Henderson (2001), experience in a greater variety of therapeutic areas 

appears to have beneficial effect on the probability of success. The positive effect is 

present in all specifications, however it is statistically significant only in random effects 

model. A number of interpretations are possible. Better exposure of management and 

scientists to varied challenges posed by drug development in different therapeutic areas 

may improve the quality of response to unfavorable trial results. Conversely, firms 

developing drugs in only one therapeutic area may not have accumulated necessary 

knowledge and skill to deal with product development setbacks. It is also possible that 

estimated effect of therapeutic scope may be due to omitted ability bias. Firms that are 

involved in a variety of therapeutic areas may be the once that employ more talented top 

management team able to work on projects in disparate, yet profitable therapeutic areas 

and at the same time manage to develop drugs that are more likely to succeed. Whatever 

the ultimate explanation, firms with wider therapeutic scope have on average a better 

chance to develop a successful drug. 

Wider technological scope has a similar positive and statistically significant effect 

on probability of success (see coefficient on DC variable in Table 3). The chance of 

multiple project failure is lessened if more chemical compounds are used to treat a given 

number of diseases. Employing a single chemical compound with proven safety record to 

treat multiple diseases may reduce development cost, but may also increase the risk of 

failure in efficacy trials. One possible explanation is that this leverage strategy 
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compromises the quality of compound-disease match with a resulting negative effect on 

probability of success. The alternative strategy of looking for the best compound from 

scratch may improve the probability of development success but also likely to be more 

costly as each new compound would require separate discovery expenses and probably 

larger safety trials. Clearly, biotechnology firms have to consider such detrimental effects 

on probability of success if they decide to adopt narrower technological scope as a cost 

saving strategy.  

Joint significance test on therapeutic dummies indicates that once we account for 

the effect of structural characteristics of a firm, the variation in development difficulty 

across therapeutic areas does not affect the probability of successful completion of a 

project. This result is consistent with Cockburn and Henderson (2001) finding that 

therapeutic dummies have insignificant joint effect on probability of success for large 

pharmaceutical companies. Inspection of individual statistical significance of therapeutic 

dummies reveals that with exception of two therapeutic areas, the differences between 

areas are statistically insignificant.  

Technological spillovers have substantial and statistically significant effect on the 

probability of success, confirming the first part of conjecture outlined in hypothesis 4.  

Working and succeeding with a chemical compound in treatment of one disease, 

substantially increases the probability that the same compound will be proven to be 

successful in treatment of another disease. Negative experience also matters: failure of a 

chemical compound to pass a clinical trial tends to spill over onto trial outcomes for other 

diseases that use the same chemical compound. Marginal impacts of  COA and COF 

dummies in Table 3 on probability of success indicate that both positive and negative 

experience with a compound in other projects has about the same effect (only with 
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opposite sign) on the probability of development success. Consequently, the knowledge 

gained in one project seems to be a good predictor of an outcome of other development 

projects that utilize the same chemical compound. 

Knowledge spillovers within therapeutic areas appear to have smaller impact on 

the probability of success than technological spillovers (see marginal impacts of TOA 

and TOF in Table 3), and insignificant in random effects model. Having another active 

project in the same therapeutic class, increases the probability of success of a given 

project, while having another failed project in the same therapeutic class has no effect on 

the probability of success. This result only partially supports the evidence presented by 

Danzon, Nicholson and Pereira (2003) suggesting positive effect of therapy-specific 

experience. It could still be that the therapeutic area definitions used in the present study 

are simply too inclusive to detect strong spillover effects within therapeutic areas that 

would have been possibly observed over the narrower individual disease channels.   

Another point worth emphasizing is that cumulative research experience 

(measured by patent stock) has weak negative effect on the probability of development 

success, once development scale, scope and spillovers are taken into account. The 

coefficient estimate on PATSTOCK variable is consistently negative, but significant only 

in some specifications.  Relocating a development project from a firm with substantial 

research experience to an otherwise similar firm with less research experience, positively 

affects the probability of project’s success. As a practical matter this result seems to 

suggest that specializing in product development by licensing compounds from other 

companies may have some beneficial effect on the probability of project’s development 

success.  
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8.2 Robustness 

 An important concern for the stability of the estimates is right censoring. Two 

firms with the same measures of scale, scope and other characteristics may, nonetheless, 

have different age structure of their development portfolios. An older of two firms may 

naturally have older projects, some of which could have resulted in NDA by year 2000; 

an otherwise similar younger firm may have no successful projects by 2000, even though 

both firms could be equally productive.  Hence, if right censoring is present, lack of 

success may reflect a project’s young age rather than a genuine failure. Main 

specifications reported in Table 3 address this issue by introducing dummy variables 

reflecting the date of entry into Phase 1 clinical trials. An alternative approach is to 

restrict the sample to observations that are less likely to be right censored. Table 4 reports 

the estimates for the sub-sample of projects that have had entered Phase 1 prior to 1990 

(Eq.4) and for a larger sub-sample of projects that entered Phase 1 prior to 1994 (Eq.5, 6 

and 7). Qualitatively, with exception of jointly significant therapeutic dummies and 

wrong and statistically significant sign on TOF dummy in Eq.4, almost all results 

obtained for the entire sample of projects (Table 3) also remain true for these sub-

samples, suggesting little relevance of right censoring for the signs of estimates of the 

logit model. Interestingly, the quantitative effects are the strongest for the sub-sample that 

includes only the projects that entered Phase 1 prior to 1990 (compare Eq.4 to Eq.5 in 

Table 4, and to Eq.1 in Table 3). 

 Another issue is possible survivorship bias. If the sample of firms includes only 

existing public companies, they may represent competent survivors. In this case, negative 

effect of scale on development success could be an artifact of survival or “startup 

fratricide” (Robins-Roth, 2000), because new but unsuccessful companies that have 
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ceased to exist are not in the sample, while successful ones are. As more companies went 

public in the 1990’s than in the 1980’s, more intense competition could have selected 

more efficient winners in the 1990’s than in the 1980’s. Therefore, even if there is no 

scale effect it would appear that firm size is inversely related to probability of success, as 

recent surviving startups are simply more efficient than older and larger firms.  

The likelihood of survivor effect warrants a closer look at the data. The match 

between Compustat, Recap and patent databases yielded 220 companies that had an 

initial public offering between 1980 and 2000. Of this number, 33 companies or 15% 

were no longer public in 2000 (Compustat lists them in the research database). These 33 

companies were involved in 250 development projects out of 2208 projects in the sample, 

or 11.3% of the total. Four of the 33 companies went public prior to 1990, and all four 

were involved in more than 10 projects prior to year 2000 (an average for these 

companies was 15.8 projects). Another 14 companies of 33 had an IPO after 1994. 

Finally, 25 of these 33 companies were acquired prior to 2000, while the fate of the other 

8 is unclear. Including a dummy for these companies in the logit regressions (not 

reported) produced negative but statistically insignificant effect on the probability of 

success. It appears that the survivor effect is likely to be small, if not absent altogether. 

 A number of auxiliary regressions were run to determine whether estimates are 

sensitive to the choice of specification. Including aggregate firm-level R&D expenditures 

instead of the number of projects and employment per projects as an independent variable 

produces small positive but statistically insignificant coefficient on R&D input. This 

change in specification had no effect on the sign and statistical significance of scope and 

spillover measures. This result is consistent with Cockburn and Henderson (2001) finding 

of no effect of firm scale, which they also measure as total firm development spending. 
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Inclusion of an interaction effect between technological and therapeutic scope produced 

no statistically significant effect on the probability of development success.  

 Sensitivity of results to definition of variables was also tested. Redefining total 

number of projects to be projects that are currently in development (rather than the 

number of projects ever developed) had no substantial effect on sign or statistical 

significance of any of the independent variables, with exception of PATSTOCK. The 

negative coefficient on patent stock increased substantially in absolute value, remaining 

negative but becoming statistically significant at 1% level. 

 

9. CONCLUSIONS 

 Evidence from biotechnology industry suggests that some key structural aspects 

of innovation-intensive firms such as firm scale, effort per project, therapeutic and 

technological scope, along with technological knowledge spillovers appear to be 

correlated with product development success. However, results also seem to indicate that 

choice of therapeutic field, knowledge spillovers within therapeutic areas and size of 

research activity have no or little impact on probability of drug development success.  

An important empirical question for future inquiry is how the choice of firm 

structure affects cost of clinical development. Effects of firm structure on R&D cost and 

probability of success, along with a firm’s competitive environment may determine the 

choice of scale and scope in both the short and long run. This brings to the forefront 

deeper theoretical and modeling questions about privately and socially optimal structure 

of innovation-driven firms and more generally about the dynamic nature of competition 

in drug development.  
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Appendix 
 

Table 1: Description of variables 
 

Variable Measure of… Definition 

SUCCESS development 
success 

Dummy: equals 1-if a project has filed new drug application (NDA) by 
year 2000, and 0 otherwise 

TOTPROJ 
firm 

scale/total 
experience 

Number of projects that were ever in development (including failed ones 
and on the market) between 1980 and 2000 

 
EMPP 

 

Development 
project scale Average number of employees per project (1980- 2000) 

        DC 
 

Technological 
scope 

Number of distinct chemical compounds ever used in development 
portfolio between 1980 and 2000 

TS 
 

Therapeutic 
scope 

 
Number of distinct therapeutic areas ever involved in between 1980 and 

2000 

PATSTOCK 
 

Research 
Scale 

Number of patent applications filed by 1999 

COA 

Positive 
technological 

spillover 
across projects 

Dummy: COA = 1 if there is at least one other active  project in firm’s j 
pipeline that uses the same chemical k to treat a different disease, and 

COA = 0 if otherwise 

COF 

Negative 
technological 

spillover 
across projects 

Dummy: COF = 1 if there is at least one other failed  project in firm’s j 
pipeline that used the same chemical k to treat a different disease, COF = 

0 if otherwise 

TOA 

Positive 
spillover 
within 

therapeutic 
area 

Dummy: TOA = 1 if there is at least one other active project in firm’s j 
pipeline that is in the same therapeutic class, and 0 otherwise 

TOF 

Negative 
spillover 
within 

therapeutic 
area 

Dummy: TOF = 1 if there is at least one other failed project in firm’s j 
pipeline that is in the same therapeutic class, and 0 otherwise 
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Table 2: Summary statistics 
 

(A)    Firm level – 220 biotechnology firms, year 2000. 
 

 
 

(B)    Project level – 2208 drug development projects, year 2000  
 

  
 
 
 
 
 
 
 
 
 
 
 

 
(C)    Project outcomes 
 

 

Variable Mean Std Min Max Median Skewness Kurtosis 
TOTPROJ 10.0 8.9 1 60 5 2.5 11.5 

EMPP 43.6 292.0 0.33 4850 11.9 16.1 265.1 

DC 5.9 5.7 1 40 4 2.3 10.5 
TS 4.3 3.2 1 15 3 1.2 4.0 

PATSTOCK 27.1 60.0 1 601 11 6.7 57.7 

Variable Mean Std Min Max 
Success 
dummy 0.128 0.35 0 1 

COA 0.393 0.49 0 1 

COF 0.106 0.31 0 1 

TOA 0.660 0.47 0 1 

TOF 0.210 0.41 0 1 

Project status 

Sample: Projects 
that entered 

Phase 1 before 
1990 

Sample: Projects 
that entered 

Phase 1 between 
1990 and 1994 

Sample: Projects 
that entered 
Phase 1 after 

1994 

Sample: All 
Projects 

 

Success (Filed 
NDA by 2000) 25.7% 25.5% 8.6% 12.8% 

Still in clinical 
development in 

2000 
12.6% 51.6% 85.1% 72.9% 

Failure 61.7% 22.9% 6.3% 14.3% 
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Figure 1: Frequency distribution of project entry dates into Phase 1 clinical trial 

 

 
 
 

 
Figure 2: Frequency distribution of initial public offering dates 

 
 



 37

Table 3: Probability of development success regressions, Year 2000. 
 

Unit of observation: project (chemical compound-medical indication pair), N = 2208 (entire sample) 
Dependent variable: Dummy = 1 if NDA filed by year 2000, 0 - otherwise 
 

 Eq.1 Eq.2  Eq.3 
Independent variables           Logit 

 
Logit Logit 

marginal impact 
Random effects 

(RE) logit 
        Employment per project 

( EMPP) 
     0.0072*** 

(.0022) 
 

     0.0075*** 
(.0023) 

 

      0.00052*** 
(.00019) 

 

     0.0073** 
 (.0037) 

 
 

EMPP squared 
 

--       -1.31x10-6*** 
(4.87x10-7) 

    -9.0x10-8** 
 (3.73x10-8) 

      -1.22x10-6 
    (1.35x10-6) 

 
TOTPROJ  

(Number of projects) 
 

      -0.187*** 
 (.060) 

      -0.186*** 
 (.060) 

     -0.013*** 
(.004) 

      -0.228*** 
 (.060) 

 
TOTPROJ  squared 

 

  0.0015** 
(.0007) 

  0.0015** 
(.0007) 

    0.00011** 
(.00004) 

   0.0021** 
(.0008) 

 
DC (technological scope) 

 

        0.118*** 
 (.041) 

        0.117*** 
 (.041) 

    0.0081** 
(.0032) 

      0.147*** 
          (.044) 

 
TS (therapeutic scope) 

 

0.114 
(.083) 

0.114 
(.083) 

0.0078 
(.0056) 

  0.126* 
(.072) 

 
PATENT STOCK 

 

     -0.0019* 
    (.0011) 

     -0.0019* 
    (.0011) 

-0.00013* 
(.00008) 

   -0.0028 
    (.0025) 

Entered Phase 1 before 1990 
dummy 

      1.93*** 
(.25) 

      1.93*** 
(.25) 

    0.253*** 
(.053) 

      1.98*** 
(.23) 

 
Entered Phase 1 after 1994 

dummy 
 

    -2.15*** 
(.27) 

    -2.15*** 
(.27) 

 -0.208*** 
(.028) 

    -2.45*** 
(.21) 

 
COA 

 

      0.72*** 
(.20) 

      0.72*** 
(.20) 

     0.053*** 
(.016) 

      0.73*** 
           (.18) 

 
COF 

 

     -1.46*** 
(.26) 

     -1.46*** 
(.26) 

   -0.065*** 
(.012) 

     -1.48*** 
           (.30) 

 
TOA 

 

  0.44** 
(.22) 

  0.44** 
(.22) 

   0.028** 
(.013) 

  0.36 
            (.23) 

 
TOF 

 

0.28 
(.33) 

0.28 
(.33) 

0.020 
(.026) 

0.17 
           (.22) 

Therapeutic area dummies  Jointly insignif. 
(p-value = 0.21) 

Jointly insignif. 
(p-value = 0.21) -- 

 Jointly 
insignif.(p-value 

= 0.71) 
 

% correctly predicted 
 

89.3 89.3 -- 89.0 

 
Log-Likelihood -618.1 -618.1 -- -603.0 

 
Notes: (1) For logit regressions (eqs.1,2) standard errors in parenthesis corrected for heteroskedasticity and clustering 
on firm, (2) ***, **, * - significant at 1, 5 and 10 percent level, respectively, (3) Omitted category – entered Phase 1 in 
1990 – 1994. (4) Constants are not reported, (5) marginal impacts calculated for eq. 2 and evaluated at sample means. 
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Table 4: Effects of right censoring 

 
Dependent variable: Dummy = 1 if NDA filed by year 2000, 0 - otherwise 
 

 Eq.4 Eq.5 Eq.6  Eq.7 
Independent variables Sample: entered 

Phase 1 before 
1990 only 

(Logit) 

Sample: Entered 
Phase 1 before 

1994 only 
(Logit) 

Sample: Entered 
Phase 1 before 

1994 only 
(Logit) 

Sample: Entered 
Phase 1 before 

1994 only 
(RE Logit) 

      Employment per project 
( EMPP) 

  0.012* 
(.007) 

 

    0.0049* 
  (.0025) 

 

0.0050* 
(.0026) 

   0.0049 
  (.0031) 

 
 

EMPP squared 
 

-- --  -6.54x10-7 
(6.60x10-7) -- 

 
TOTPROJ 

 

      -0.529*** 
 (.151) 

      -0.229*** 
 (.059) 

      -0.229*** 
 (.059) 

      -0.229*** 
 (.050) 

 
TOTPROJ  squared 

 

      0.006*** 
(.001) 

      0.0025*** 
(.0007) 

      0.0025*** 
(.0007) 

      0.0024*** 
(.0006) 

 
DC (technological scope) 

 

    0.085* 
 (.048) 

    0.069** 
 (.034) 

    0.069** 
 (.034) 

    0.069** 
 (.029) 

 
TS (therapeutic scope) 

 

    0.621** 
(.248) 

      0.178*** 
(.067) 

      0.178*** 
(.067) 

      0.178*** 
(.062) 

 
PATENT STOCK 

 

     -0.0053** 
  (.0023) 

    -0.0017 
    (.0011) 

    -0.0017 
    (.0011) 

    -0.0017 
    (.0015) 

Entered Phase 1 before 1990 
dummy --       1.93*** 

(.26) 
      1.93*** 

(.26) 
      1.93*** 

(.21) 

 
Entered Phase 1 after 1994  

 
-- -- -- -- 

 
COA 

 

      1.84*** 
(.51) 

      0.87*** 
(.23) 

      0.87*** 
(.23) 

      0.87*** 
(.20) 

 
COF 

 

     -1.50*** 
(.52) 

     -1.37*** 
(.27) 

     -1.37*** 
(.27) 

     -1.37*** 
(.29) 

 
TOA 

 

 0.35 
 (.67) 

0.23 
(.28) 

0.23 
(.28) 

0.23 
(.26) 

 
TOF 

 

    1.02** 
(.50) 

-0.003 
(.30) 

-0.003 
(.30) 

-0.003 
(.23) 

Therapeutic area dummies  
Jointly signif. 

(p-value = 
0.001) 

Jointly insignif. (p-
value = 0.45) 

Jointly insignif. (p-
value = 0.45) 

Jointly insignif. (p-
value = 0.58)  

 
% correctly predicted 

 
73.6 77.4 77.4 77.4 

 
Log-Likelihood -95.6 -386.1 -386.1 -386.1 

 
Notes: (1) For logit regressions (eqs.4,5 and 6) standard errors in parenthesis corrected for heteroskedasticity and 
clustering on firm (2) ***, **, * - significant at 1, 5 and 10 percent level, respectively, (3) Sample size: Eq. 4: N = 201  
, Eqs.5, 6 and 7: N =774 , (4) Constants are not reported. 


