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Abstract

We study entry and bidding patterns in sealed bid and open auctions with

heterogeneous bidders. Using data from U.S. Forest Service timber auctions,

we document a set of systematic e ects of auction format: sealed bid auctions

attract more small bidders, shifts the allocation towards these bidders, and can

also generate higher revenue.

We propose a model, which extends the theory of private value auctions with

heterogeneous bidders to capture participation decisions, that can account for

these qualititive e ects of auction format. We then calibrate the model using

parameters estimated from the data and show that the model can explain the

quantitative e ects as well. Finally, we use the model to provide an assessment

of bidder competitiveness, which has important consequences for auction choice.
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1. Introduction

Auction design has become increasingly important in many markets. A central,

and frequently debated, design issue concerns the relative performance of open and

sealed bid auctions. This choice comes up in structuring sales of natural resources,

art and real estate, in auctioning construction and procurement contracts, in asset

liquidation sales, and in designing bidding markets for commodities such as electricity.

Economic theory provides on the one hand very little and on the other hand

perhaps too much guidance on the merits of open and sealed bid auctions. The sem-

inal result in auction theory, Vickrey�s (1961) Revenue Equivalence Theorem, states

that under certain conditions, the two formats have essentially equivalent equilib-

rium outcomes. SpeciÞcally, if bidders are risk-neutral and have independent and

identically distributed values, the two auctions yield the same winner, the same ex-

pected revenue, and even the same bidder participation. In practice, however, these

assumptions often seem too strong. Further work points out that as they are relaxed,

auction choice becomes relevant, with the comparison between open and sealed bid-

ding depending on both the details of the market (e.g. bidder heterogeneity, collusion,

common rather than private values, risk-aversion, transaction costs and so on) and

the designer�s objective (e.g. revenue maximization or e ciency).

There has been less progress in providing empirical evidence on the performance

of alternative auction designs. A di culty is that many real-world auction markets

tend to operate under a given set of rules rather than systematically experimenting

with alternative designs. In this paper, we combine theory and empirical analysis

to study the use of open and sealed bid auctions to sell timber from the national

forests. The U.S. Forest Service timber program provides an excellent test case in

market design as it has historically used both open and sealed auctions, at times even

randomizing the choice. The timber sale program is also economically interesting in

its own right. Timber logging and milling is a $100 billion a year industry in the

U.S.,1 and about 30% of timberland is publicly owned. During the time period we

study, the federal government sold about a billion dollars of timber a year.

A long-standing debate surrounds the design of federal timber auctions. An early

study by Mead (1967) argued that open auctions generated less revenue. In 1976,

1This number is from the U.S. Census and combines forestry and logging, sawmills, and pulp and
paperboard mills (NAICS categories 113, 3221 and 321113).
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Congress proposed the use of sealed bidding. The implementation of the law, how-

ever, allowed forest managers to use open auctions if they could justify the choice.

As a result, sale method has varied geographically. In the PaciÞc Northwest, the

largest Forest Service region, open auctions have predominated apart from a short

period following the 1976 law. We focus instead on the neighboring Northern region

comprised of Idaho and Montana, and provide additional evidence from California

sales; both areas used a mix of formats during our sample period, 1982-1990.

The theoretical component of our analysis begins by highlighting two departures

from the standard independent private value auction model, departures that are espe-

cially salient for timber auctions. First, we allow bidders to have heterogeneous value

distributions. Here, we are motivated by the substantial variation among participants

in Forest Service auctions, where the bidders range from large vertically integrated

forest products conglomerates to individually-owned logging companies. Our second

departure from the standard model is to endogenize participation by making it costly

to acquire information and bid in the auction. Explicitly modeling participation deci-

sions by heterogeneous bidders makes the model more realistic, and more importantly

gives rise to new testable hypotheses about entry patterns.2

In our baseline model, we assume that entry decisions and bidding decisions are

made independently by the Þrms, so that there is no collusion. This competitive

theory generates predictions about how entry, allocation and revenue will vary by

auction format. When bidders are homogeneous, auction format will have no system-

atic e ect on any of these outcome variables. With heterogeneous bidders, however,

sealed bidding promotes entry by bidders who are relatively weak from an ex ante

standpoint and discourages entry by bidders who are relatively strong. The allo-

cation in a sealed auction also shifts toward weaker bidders, both because of entry

and because in the sealed bid equilibrium, weaker Þrms submit bids with a smaller

proÞt margin than stronger Þrms. To see the logic for these Þndings, observe that

with an open auction, the entrant with the highest value always wins. This makes

weak bidders hesitant to spend money to participate if strong bidders are also likely

to be present. In contrast, in a sealed bid auction, strong bidders have a relatively

2Maskin and Riley (2000) provide the seminal analysis of asymmetric Þrst-price auctions with
Þxed participation. Several papers study entry decisions in auctions with symmetric bidders, but
discussion of entry with asymmetric bidders has been limited to examples. Milgrom (2004, chapter
6) provides an insightful overview.
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large incentive to shade their bids below their true valuations, so a weaker bidder can

win despite not having the highest valuation. This handicapping e ect promotes the

entry of weaker bidders and may discourage the entry of strong bidders.3

We also argue that when entry costs are similar across bidders, the entry patterns

of weak bidders will be more sensitive to auction format than the entry patterns of

strong bidders. Because strong bidders expect higher proÞts than weak bidders, weak

and strong bidders with similar entry costs cannot both be indi erent about entry.

If the set of potential strong bidders is Þxed for a given auction (e.g. the set of local

mills in a timber auction), then these bidders may enter regardless of format, while

weak bidders will be marginal entrants whose participation is sensitive to the auction

format.

The competitive theory does not generate unambiguous predictions about rev-

enue. The existing examples and numerical results suggest that with a Þxed set of

heterogeneous bidders, revenue is typically (though not always) higher with sealed

bidding. Endogenous entry, however, generates an additional complication because

participation varies with the auction format. A revenue comparison, therefore, will

depend on all the primitives of the model: the value distributions of the bidders to-

gether with entry costs. Consequently one of our goals in this paper is to estimate

these primitives in order to compare the revenue gain (if any) from sealed bidding to

the e ciency distortion that sealed bidding induces in both entry and bidding.

Our empirical investigation of timber auctions has two parts. In the Þrst part,

we test the qualitative predictions of our theory, and quantify the e ect of auction

format on observed outcomes. The second part of the analysis exploits an additional

assumption about behavior, namely that in sealed bid auctions, bidders behave ac-

cording to our competitive theory. We estimate the primitives of the model, and use

our estimates to assess whether the theory can account for the quantitative di erences

across formats we observe in the data, as well as to quantify the trade-o s in revenue

3The Þrst half of this argument Þgured prominently in the design of the British 3G spectrum
auction. Initially, the proposed number of licenses for sale was to be just equal to the number of
incumbent Þrms, whose entry was assured. Concerned that there would be little de novo entry
to raise prices in an open auction, the lead designer Paul Klemperer proposed an �Anglo-Dutch�
design that would have added a sealed bid component to the auction. Ultimately concerns about
entry were alleviated by adding another license and it was possible to run a successful open auction.
Interestingly, the Netherlands ran an open auction for 3G spectrum despite having a number of
licences just equal to the number of incumbents. This resulted in minimal entry and very low prices.
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and e ciency suggested by theory.

For both parts of the empirical work, we classify the bidders into two groups:

mills that have manufacturing capacity and loggers that do not. We provide a variety

of evidence that mills tend to have higher values for a given contract than logging

companies, which have to re-sell the timber if they win the contract.

Our Þrst test of the theory concerns bidder entry. We Þnd that, conditional on

sale characteristics, sealed bidding induces signiÞcantly more participation by loggers.

Mill entry is roughly the same across auction formats in the Northern forests, and

somewhat lower in the sealed bid auctions in California. We Þnd evidence that

sealed bid auctions are more likely to be won by loggers; this e ect is substantial in

the California forests and smaller (and only marginally signiÞcant) in the Northern

forests. Finally, we measure winning bids to be 12-18% higher in the sealed bid

auctions in the Northern forests. In the California forests, the di erence is small and

cannot be statistically distinguished from zero.

Although the theoretical model is qualitatively consistent with these results, it

is less clear whether the quantitative di erences in the auction outcomes can be ac-

counted for by the competitive theory. In particular, the question arises of whether

the competitive bidding model can reconcile both the large revenue gap in the North-

ern forests, and the minimal revenue e ect in California.

To address this, it is useful to articulate alternatives and extensions to the base-

line competitive model that might be able to rationalize our Þndings. We argue that

several factors that seem plausible in the context of timber auctions, but are omit-

ted from our baseline model, such as common values and bidder risk-aversion, are

not good candidates. Instead, we focus on the possibility that behavior is not fully

competitive in open auctions. Bidder collusion has been a long-standing concern in

timber auctions; the prevailing view is that open auctions are more prone to collusion

because bidders are face-to-face and can respond immediately to opponents� behavior.

For this reason, we extend the theory to allow for collusion among strong bidders at

open auctions. We show that collusion at open auctions need not a ect the model�s

predictions for entry and allocation, but increases the predicted revenue di erence

between auction formats.

In the Þnal part of the paper, we turn to a quantitative assessment of the alterna-

tive theories, focusing on the Northern forests. We use the techniques pioneered by
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Guerre, Perrigne and Vuong (2001) to recover the distributions of bidder values from

the sealed bidding data, under the assumption that observed bids are set to maximize

proÞts against the empirical bid distribution. We also estimate the distribution of

logger entry in sealed bid auctions, and combine this with the proÞts implied by the

estimated value distributions to construct estimates of entry costs.

We use these estimates to make (out-of-sample) predictions about what would

happen in open auctions under alternative behavioral assumptions, and compare these

predictions to the actual open auction outcomes. This allows us to consider several

questions including whether the theoretical model can explain the departures from

revenue equivalence observed in the data, whether open auction behavior seems more

consistent with competitive bidding or a degree of collusion, and whether bidder

competitiveness might di er across regions.

Our results suggest that the estimated model can do plausible job of explaining

both the di erences in participation and the di erences in allocation we observe across

formats. Focusing on prices, we Þnd that neither the assumption of perfectly compet-

itive behavior, nor an assumption that mills collude perfectly at open auctions, can

match the observed open auction prices. Rather, the data appears consistent with a

mild degree of cooperative behavior on the part of participating mills.

Turning to the welfare di erences between open and sealed bid auctions, we Þnd

that for a Þxed set of participants, our calibrated model predicts relatively small

discrepancies between sealed bid auctions and competitive open auctions. Sealed bid

auctions raise more revenue, and distort the allocation away from e ciency and in

favor of loggers, but the e ects are small (less than 1%). The di erences are somewhat

larger when we account for equilibrium entry behavior: we predict that sealed bidding

increase revenues by roughly 4-6% relative to a competitive open auction, at the cost

of about 1% of social surplus.

We also observe that even a mild degree of collusion by the mills at open auctions

� the behavioral assumption most consistent with the observed outcomes in the

Northern forests � results in much more substantial revenue di erences (on the order

of 10-20%). This suggests that bidder competitiveness merits considerable attention

in the choice of auction format. We conclude by discussing some preliminary estimates

from the California forests. There we Þnd that the observed outcomes are more

consistent with competitive behavior in open auctions and, as a result, there is no
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dominant factor in the welfare comparison between open and sealed bid auctions.

Our paper is the Þrst empirical study we are aware of that focuses on di erential

entry and the importance of bidder heterogeneity across auction formats.4 Several

prior studies have looked directly at revenue di erences between open and sealed bid

timber auctions. Johnson (1979) and Hansen (1986) study sales in the PaciÞc North-

west following the passage of the 1976 sealed bidding mandate. They reach conßicting

conclusions: Johnson Þnds that the sealed bid auctions raised more revenue, while

Hansen argues that the di erences are insigniÞcant after accurately accounting for

sale characteristics. The episode is not, however, an ideal testing ground. As Hansen

points out, the choice of auction format during this period was sensitive to lobbying,

creating a potentially severe endogeneity problem that is hard to address empirically.

Moreover, one might naturally be skeptical of testing equilibrium predictions in an

unexpected and transient episode.

Subsequently, Shuster and Nicolluci (1993) and Stone and Rideout (1997) looked,

respectively, at sales in Idaho and Montana and in Colorado. Both papers Þnd higher

revenue from sealed bid auctions. A nice feature of Shuster and Nicolluci�s paper

is that they exploit the often-random assignment of auction format in some of the

Northern forests. Though we address a broader set of questions and from a somewhat

di erent perspective, we have drawn on their work to select our data sample.

Our work is also related to the empirical literature on collusion at auctions. A va-

riety of approaches have been suggested to assess whether bidding data are consistent

with models of competition or collusion.5 Some approaches require prior knowledge

about the existence and structure of a cartel, while others interpret departures from

symmetric bidding behavior as evidence of collusion. Our method di ers in that we

use behavior under one set of auction rules (sealed bidding) as a benchmark from

which to evaluate the competitiveness of behavior under an alternative set of rules.

4Indeed, most analyses of auctions assume that bidders are symmetric. A few notable exceptions
study asymmetries in auctions with Þxed participation, including Bajari (1997), Brannman and
Froeb (2000), Pesendorfer (2000), Jofre-Benet and Pesendorfer (2003), and Brendstrup and Paarsch
(2003a, 2003b).

5Examples include Porter and Zona (1993, 1999), Bajari and Ye (2003), Pesendorfer (2000);
see Bajari and Summers (2002) for a survey. Baldwin, Marshall, and Richard (1997) also analyze
collusion in U.S. Forest Service timber auctions using data from open auctions, and they argue that
collusion provides a better Þt than competition.
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2. Comparing Auctions: Theory

This section develops the theoretical model we use to frame our empirical analysis.

Our starting point is the heterogeneous private values setting studied by Maskin and

Riley (2000). With an eye toward the empirical patterns outlined above, we expand

their analysis to make participation endogenous and to incorporate possible collusion

in open auctions. In this exercise, there are numerous speciÞc modeling choices to

be made. To ease exposition, we begin with a baseline model, then discuss how the

results change under alternative assumptions.

A. The Model

We consider an auction for a single tract of timber. Prior to the sale, the seller

announces a reserve price and the auction format: open ascending or Þrst price

sealed bid. There are potential risk-neutral bidders. Each bidder has a private

cost of gathering information and entering the auction. By paying , bidder

learns his (private) value for the tract, , and may bid in the auction. We refer to

bidders who acquire information as participants, and denote the set of participants

by .

Entry costs and values are assumed to be independent across bidders. We model

entry costs as draws from a common distribution (·) with support [ ], and each

bidder �s value as a draw from a distribution with support [ = ].6 Anticipating

our empirical analysis, we allow for two kinds of bidders. Bidders 1 are Loggers

and have value distribution , while bidders + 1 are Mills and have value

distribution . We assume that stochastically dominates , so we sometimes

refer to the mills as strong bidders and the loggers as weak bidders.

Assumption (i) have continuous densities ; and (ii) for all , ( )
( )

( )
( )
.

We adopt a standard model of the bidding process. In an open auction, the price

rises from the reserve price and the auction terminates when all but one participating

bidder has dropped out. With sealed bidding, participating bidders independently

6The assumption that the reserve price equals the lowest possible value is easily relaxed.
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submit bids; the highest bidder wins and pays his bid. For both auctions, we as-

sume that bidders make independent decisions to acquire information, but learn the

identities of other participants before submitting their bids.7

A strategy for bidder consists of a bidding strategy and an entry strategy. A

bidding strategy (·; ) speciÞes �s bid (or drop-out point in the case of an open

auction) as a function of his value and the set of participating bidders. An entry

strategy speciÞes whether he should participate as a function of his entry cost. An

optimal entry strategy is a threshold rule, with bidder entering if and only if his

cost lies below some threshold .

A type-symmetric entry equilibrium is a pair of bidding strategies (·; ) (·; )

and entry cost thresholds with the property that: (i) loggers use the strat-

egy and mills the strategy ; (ii) each bidder�s bid strategy maximizes

his proÞts conditional on entering; and (iii) each bidder Þnds it optimal to enter if

and only if his entry cost lies below his cost threshold. As is often the case with

entry models, there may be many equilibria; as a result, our results compare sets of

equilibria across auction methods.

B. Sealed Bid Auctions

We analyze the sealed bid auction in two steps. We Þrst characterize optimal

bidding for an arbitrary set of participants. We then characterize equilibrium entry.

To focus on the main ideas, we defer proofs to the Appendix.

Suppose is a participating bidder with value . His expected proÞt is:

( ; ) := max( )
Y

\

( ; ), (1)

where ( ; ) is the probability that will bid less than . In equilibrium, bid

strategies will be continuous and strictly increasing, so ( ; ) = ( 1( ; ))

The Þrst order condition for �s bidding problem is:

1
=
X

\

( ; )

( ; )
. (2)

7This assumption is not essential. Indeed an earlier version of the paper assumed bids were
submitted without information about opponent�s participation. There we showed the same results
under a modiÞcation of Assumption (ii).
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The Þrst order conditions, together with the boundary condition that ( ; ) =

for all , uniquely characterize optimal bidding strategies (Maskin and Riley, 2000).

These bid strategies are type-symmetric.

To identify the equilibrium entry thresholds, observe that a bidder should enter

whenever his expected proÞt exceeds his entry cost. Given a set of entry thresholds

= ( 1 ), bidder �s expected proÞt from entry is:

( ) =
X½Z

( ; ) ( )

¾
Pr [ | ] , (3)

where Pr [ | ] is the probability that the set of participants will be given

that enters and opponents use their speciÞed entry strategies.

The equilibrium entry cost thresholds satisfy:

= min{ ( ) } (4)

Proposition 1 A type-symmetric entry equilibrium exists in the sealed bid auction.

In equilibrium: (i) mills submit higher bids: ( ; ) ( ; ) for all , despite

the fact that (ii) mills shade their bids more than loggers bidders: ( ; ) ( ; )

for all .

The Þrst part of the Proposition states that mills will tend to submit higher bids

than loggers. From an empirical standpoint, this will provide a straightforward test of

whether we have accurately classiÞed mills as stronger than loggers. The second part

of the Proposition states that mills shade their bids more loggers, a natural result

given that the mills face weaker competition. The consequence is that a logger may

win despite not having the highest value. We will show that, relative to an open

auction, this provides an extra incentive for loggers to participate.

C. Open Auctions

We now turn to the open auction. We initially consider the case where behavior

is competitive and discuss collusion below.

In an open auction, it is a dominant strategy for each participant to bid until

the price reaches his valuation. Therefore ( ; ) = for all bidders . Bidder �s
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expected proÞt, conditional on entering and having value is:

( ; ) := max( E[max{ }| ])
Y

\

( ; ) (5)

where are the competing bids and ( ; ) is the probability that bids less than

. In equilibrium, ( ; ) = ( ).

We identify equilibrium entry just as in the sealed bid case. Bidder �s expected

proÞt as a function of the entry cost thresholds is:

( ) =
X½Z

( ; ) ( )

¾
Pr [ | ]

In equilibrium, each bidder enters if his expected proÞt exceeds his entry cost. So the

equilibrium entry cost thresholds satisfy:

= max{ ( ) } (6)

Proposition 2 A type-symmetric entry equilibrium exists in the open bid auction.

In any such equilibrium, (i) mills submit higher bids: ( ; ) ( ; ) for all

, and (ii) all entrants bid their true value, ( ; ) = for all .

In equilibrium, mills enter more often and bid more conditional on entering. More-

over, the open auction is e cient in the sense that the participant with the highest

value always wins. As we will see, this tends to discourage the entry of weaker bidders

relative to the sealed bid case.

D. Comparing Auction Formats

We now present our main comparative results. As a point of reference, we start

with the case where the bidders have identical value distributions. Here, an extension

of the revenue equivalence theorem implies that so long as we restrict attention to

symmetric equilibria, the open and sealed bid auctions have equivalent outcomes.

Proposition 3 (Revenue Equivalence) If bidders are homogenous, so = , the

sealed bid and open auction each have a unique symmetric entry equilibrium, in which
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the highest valued entrant wins the auction. These equilibria have (a) the same ex-

pected entry, and (b) the same expected revenue.

Revenue equivalence breaks down if bidders are not homogenous. To analyze

this case, we exploit the relationship between a bidder�s equilibrium proÞts and his

probability of winning. Given a value and a set of participants , bidder �s expected

proÞt:

( ; ) =

Z
Pr[ wins | = ; ] . (7)

This representation holds for both auction formats; it follows from applying the en-

velope theorem to the optimization problems (1) and (5).

We saw above that in a sealed bid auction with heterogeneous bidders, mills

shade their bids more than loggers, while all bidders use the same strategy in an open

auction. Therefore for any given set of opponents, a logger has a greater chance to

win a sealed auction and hence higher expected proÞts. The argument is reversed for

mills, leading to the following result.

Proposition 4 For any type-symmetric entry equilibrium of the sealed bid auction,

there is a type-symmetric entry equilibrium of the open auction in which: (1) Loggers

are less likely to enter; (2) Mills are more likely to enter; (3) It is less likely a logger

will win.8

Because the sealed bidding equilibrium distorts the allocation toward loggers, only

the open auction is e cient given a set of participating bidders. The next Proposition

states that the e ciency of the open auction extends to entry.

Proposition 5 (E ciency) The socially e cient type-symmetric entry proÞle is an

entry equilibrium of the open auction. Every sealed auction equilibrium is ine cient.

As noted in the Introduction, there is unfortunately no general theoretical com-

parison for expected revenue (Maskin and Riley, 2000). Existing numerical examples

suggest that, with participation Þxed, sealed bid auctions often (but not always) re-

sult in higher revenue (Li and Riley, 1999). In terms of revenue, endogenous entry

8The statement of the result is complicated slightly by the fact that there may be several (type-
symmetric monotone) entry equilibria for each auction format. If both formats have a unique entry
equilibrium, loggers necessarily enter and win more with a sealed format.
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could in principle either tip the revenue comparison further toward sealed bidding (if

the primary entry e ect is on loggers) or toward open bidding (if the primary entry

e ect is on mills). Therefore a revenue comparison demands a carefully parameterized

model, which we develop in Section 5.

E. Collusion in Open Auctions

Collusion in open auctions has been a long-standing concern in Forest Service

timber auctions (U.S. Congress, 1976; Froeb and McAfee, 1988; Baldwin et al, 1997).

Here we consider the possibility of collusion by the mills in open auctions.

As collusive schemes can take many forms, we assume for concreteness that par-

ticipating mills at an open auction are able to collude perfectly, so the participating

mill with the highest value bids his value, while the other mills register as participants

but do not actively bid).9 Loggers simply bid up to their value. We maintain the

assumption that bidders make independent participation decisions. In making their

decisions, therefore, mills anticipate colluding with other participating mills, but do

not coordinate entry.10

Fixing the set of participants, collusion clearly will lower revenue and increase

mill proÞts. It has no e ect on who wins the auction or on logger proÞts, because the

high-valued mill is the relevant competitor for loggers in any case. Therefore, relative

to the case of competition, mills have a greater incentive to participate; this in turn

crowds out logger participation.

Proposition 6 (Collusion) For any type-symmetric entry equilibrium of the open

auction, there is a type-symmetric collusive equilibrium in which: (1) Loggers are less

likely to enter; (3) Mills are more likely to enter; (3) It is less likely a logger will win.

Thus, for any type-symmetric entry equilibrium of the sealed bid auction, there is a

type-symmetric collusive equilibrium of the open auction where (1)-(3) hold.

9More generally, to avoid arousing suspicion, the mills with lower values might place bids in
the open auction at a point where many bidders are still active and thus the bids are unlikely to
determine the auction outcome.
10There are forms of collusion, of course, that involve coordinated entry (such as bid rotation).

We have looked for evidence of this in our data by checking whether the entry of pairs of mills or
loggers is negatively correlated conditional on sale characteristics. There are a handful of pairs for
which entry is signiÞcantly negatively correlated, but this pattern does not appear to be a strong
feature of the data.
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An important point is that relative to equilibrium outcomes of the sealed bid

auction, the competitive and collusive outcomes of the open auction look qualitatively

similar (lower prices, less logger entry, fewer sales won by loggers). The di erence is

one of magnitude.

F. Discussion of Modeling Choices

In this section, we brießy discuss a few of our modeling choices. We Þrst discuss

our model of entry. We then consider two issues omitted from the model: common

values and bidder risk-aversion.

Concentrated versus Dispersed Entry Costs

Our model assumes that bidders di er in their costs of information acquisition and

bid preparation.11 In principle these di erences could be either large or small (relative

to the average entry cost); this distinction turns out to be relevant in interpreting the

results.

Consider Þrst that entry costs are dispersed. In this case, every potential bidder

will be �marginal� in the sense of having a probability of entry strictly between

zero and one. Moreover, a change in the auction format (which changes all bidders�

expected proÞts) will a ect the equilibrium entry behavior of all bidders � both mills

and loggers.

In contrast, if entry costs are concentrated, it cannot be true that both mills and

loggers are marginal, because mills expect higher proÞts than loggers. In equilibrium,

either mills will be roughly indi erent to entering while loggers expect strictly neg-

ative proÞts and don�t enter (clearly not the appropriate assumption for our data),

or alternatively, loggers will be roughly indi erent while mills always enter.12 In the

latter case, mill participation will be una ected by auction format, while logger par-

ticipation will be strictly higher with sealed bidding. An interesting consequence is

the e ect of sealed bidding on revenue via its e ect on participation will always be

positive.

11These di erences might correspond to knowledge of an area, or the availability of personnel.
12In the former case, the relevant bidders are homogenous so revenue equivalence holds across

auctions. A third possibility is that all bidders agree on whether or not entry is proÞtable. In this
case, the set of participating bidders is e ectively Þxed in a given auction. A fourth (and somewhat
perverse) possibility is that all loggers enter, and given this, mills strictly prefer not to enter. We
disregard this equilibrium.
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Common Values and Risk-Aversion

In timber auctions, di erences in bidder costs and contractual arrangements pro-

vide a source of private value di erences. At the same time, bidders can obtain private

estimates of the quality and quantity of timber, which suggests a potential �common

value� component as well (Athey and Levin, 2001).13 Haile (2001) studies how resale

markets in timber auctions can lead to common values even if the underlying envi-

ronment has private values. In the presence of common values, expected revenue is

higher in open auctions, at least with symmetric bidders.

Bidder risk-aversion also has implications for the comparison between open and

sealed bid auctions (see e.g. Matthews, 1987). If bidders are symmetric and have

CARA or DARA preferences, expected revenue is higher with a sealed bid auction,

while participation is higher at open auctions. It is plausible that bidders at Forest

Service timber auctions might exhibit risk-aversion; Athey and Levin (2001) provide

some indirect support for this based on the way observed bids are constructed.14

Without dismissing the possibility of either common values or bidder risk-aversion,

we decided not to focus on them in our theoretical model for two reasons. First,

incorporating either greatly complicates the analysis. Second, to jump ahead, our

empirical results suggest that neither common values nor risk-aversion are the primary

cause of the departures we observe from revenue equivalence.

3. Timber Sales

The U.S. Forest Service has historically used both open and sealed bid auctions

to sell timber from the national forests. In this section, we describe the mechanics of

a timber sale, the data for our study, factors that relate to the auction format, and

how we classify competing bidders.

A. The Timber Sale Process

13Athey and Levin (2001) show that in certain Forest Service auctions, bidders can proÞt from
acquiring commonly relevant information about timber volumes. They also show, however, that the
potential rents are competed away, suggesting that the equilibrium information asymmetry about
volumes may not be quantitatively large.
14See also Perrigne (2003) for evidence of risk aversion from French timber auctions.
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Our data consists of timber sales held between 1982 and 1990 in Lolo and Idaho

Panhandle National Forests, neighboring forests on the Idaho/Montana border. These

are the two forests in the Forest Service�s Northern region with the largest timber

sale programs. They make a good test case for comparing auction formats because

they use a mix of open and sealed auctions and the tracts sold under the two formats

appear to be relatively homogenous. We discuss the way auction format is determined

in more detail below. In Section 4C, we provide additional evidence from forests in

the PaciÞc Southwest region. These California forests also use both open and sealed

bidding, but the auction format varies more systematically with the size of the sale,

which makes controlling for tract di erences more challenging.

In both regions, a sale begins with the Forest Service identifying a tract of timber

to be o ered and organizing a �cruise� to estimate the merchantable timber. The sale

is announced publicly at least thirty days prior to the auction. The announcement

includes estimates of available timber and logging costs, tract characteristics and a

reserve price. It also states whether the auction will involve open or sealed bids. In

some cases, the Forest Service restricts entry to Þrms with less than 500 employees.

We do not consider these small business sales � in principle the bidders are more

homogenous than in regular sales, removing what we believe to be a crucial factor in

distinguishing open and sealed sales.15

Following the sale announcement, the bidders have the opportunity to cruise the

tract and prepare bids. As in the model, we classify bidders into two types: mills

that have manufacturing capability and logging companies that do not. We discuss

this classiÞcation below.

After the auction is completed, the winner has a set amount of time � up to seven

years but more often one to four years in our sample � to harvest the timber. Some of

the sales in our sample are �scale sales� meaning the winner pays for the timber only

after it is removed from the tract. The fact that payments are based on harvested

timber, but bids are computed based on quantity estimates means there can be a gap

between the winning bid and the ultimate revenue. Athey and Levin (2001) study the

incentive this creates for strategic bidder behavior. For the scale sales in our sample,

we have limited harvest data, so we use the bid price as a proxy for revenue. The

15Ideally we would be able to perform a separate comparison of open and sealed bidding using
the small business sales. Unfortunately, we do not observe enough to make a good comparison.
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remaining sales are �lump-sum� sales. In these sales the winner of the auction pays

the bid price directly.

B. Data Description

For each sale in our sample, we know the identity and bid of each participating

bidder, as well as detailed sale characteristics from the Forest Service appraisal. This

is the same appraisal information provided to bidders. Table 1 presents some basic

summary statistics.

Focusing on the full sample, there are some obvious di erences between the open

and sealed bid auctions. The average sale price per unit of timber (in 1983 dollars

per thousand board feet of timber or $/mbf) is roughly $70 in the open auctions and

$80 in the sealed auctions. The number of entering loggers is also somewhat higher

in sealed auctions (3.4 versus 2.6), while the number of entering mills is slightly lower

(1.5 versus 1.2). Contracts sold by sealed auction are more likely to be won by a

logging company than tracts sold by open auction.

These numbers are broadly consistent with the model presented above. At the

same time, the Table indicates that the tracts sold by open auction are not identical

to those sold by sealed bid. While the per-unit reserve price of the timber is similar

across format, the open auction tracts tend to be larger. The average open auction

has an estimated 2893 mbf of timber, while the average sealed bid sale has only 1502

mbf. This suggests that we need to understand how the sale format is decided and

control for tract characteristics if to isolate the e ects of auction format.

C. Choice of Sale Method

In Forest Service timber sales, the choice of sale method is made locally by forest

managers. One reason for focusing on the two Northern forests is that Shuster and

Nicolluci (1993) report that for a subset of these sales, the choice of sale format was

explicitly randomized. In one forest district the format apparently was determined

by picking colored marbles out of a bag. Unfortunately, we do not know precisely

how the randomization procedure varied across forest districts and over time. We

get similar empirical results focusing on the subset that Shuster and Nicolluci (1993)

identify as randomized (though our estimates are somewhat less precise due to the

smaller sample size).16

16Within our two forests, we include more districts and years than those Shuster and Nicolluci
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To better understand the determinants of sale method in our sample, we consider

a logit regression where the dependent variable is a dummy equal to 1 if the auction

is sealed bid and equal to 0 if the sale is an open auction. We include a large set

of observable tract characteristics, including the reserve price, the Forest Service

estimates of the volume of timber, its eventual selling value, and the costs of logging,

manufacturing and road-building. We also include the density of timber on the tract,

the contract length, whether the sale is a salvage sale, and a HerÞndal index of the

concentration of species on the tract. To capture market conditions, we include the

number of U.S. housing starts in the previous month. Finally, as measures of potential

competition, we use the number of logging Þrms and sawmills in the county of the

sale, as counted by the U.S. Census in the past year, as well as the number of �active�

logging Þrms and sawmills, constructed as the number of distinct bidders in the same

forest district in the 300 days preceding the sale.17 We also include dummy variables

for the year of the sale, the quarter of the sale, the forest district in which the sale

took place and if major species were present. We are particularly sensitive to the

importance of sale size, so rather than simply assuming a linear or quadratic e ect,

we specify its e ect as a step function with 10 steps (that roughly correspond to

deciles in the data).18

The results are reported in Table 2. As expected, sale size is a signiÞcant correlate

of auction method. Even after controlling for time and geographic location, smaller

sales tend to be sealed bid, while larger sales tend to be open auctions. Moreover,

identify as randomized (they focus on 1987-1990). In including these additional years, our motivation
is that the set of tracts sold by open and sealed bidding appear to vary mainly with size, time and
location, precisely the characteristics we need to control for in any case with the randomized sales.
We focus on the two largest Northern forests because timber markets in Idaho and Montana are
quite local due to the geography, while tract characteristics also vary with geography as well, making
it di cult to e ectively control for heterogeneity in forests with fewer sales.
17In terms of capturing potential competition, these measures probably su er from a degree of

measurement error. Apart from the fact that logging Þrms may go in and out of business without our
knowledge, the Forest Service data records bidder names with a variety of spellings and abbreviations.
Despite sale by sale checking of the names and cross-referencing with industry reference books, in
the case of very small Þrms that appear relatively few times in the data it is sometimes hard to
distinguish whether two bidders in distinct sales are really the same Þrm. This is less of problem
with mills as their manufacturing capability is coded, there a far fewer in total, and they generally
appear many times. Note that for the California sales, we use the forest rather than the district as
a unit of analysis, because forests are smaller there.
18We use this functional form in all our regressions. We have also tried using a series expansion

for volume and splines, with similar results throughout.

17



di erent forest districts use somewhat di erent sale methods on average.

Because sale method varies with observable sale characteristics, we want to control

for these characteristics in comparing the outcomes of the open and sealed bid auc-

tions. A concern is that, even controlling for tract characteristics ßexibly, some open

sales in our data may look very �unlike� any sealed bid sales and conversely some

sealed sales may look unlike any open sales. This will be reßected in having some sales

for which, conditional on characteristics, the predicted probability of being sealed or

open according to our logit regression will be close to zero or one. Figure 1 plots a

smoothed histogram of these predicted probabilities, also called the propensity score.

As can be seen, there are some sales that are cause for concern. To alleviate this in

our empirical analysis below, we drop sales that have a propensity score below 0.075

or above 0.925. This results in dropping 129 open auctions and 8 sealed auctions.19

A problem we cannot easily solve is that the choice of auction method may depend

on characteristics of the sale observed by the bidders and the Forest Service, but not

in our data. In this case, a regression of entry or revenue on auction method, even

controlling for observed characteristics, will have an endogeneity problem. We discuss

this possibility at more length in Section 4E.

D. Bidder Heterogeneity: Mills and Loggers

We try to capture the diversity of bidders by distinguishing between mills (for-

mally, Þrms with manufacturing, which are larger and can process at least some of

the timber themselves, and logging companies, who must re-sell all the timber they

harvest. This distinction is just one of several we could draw, but in practice it turns

out to be similar to other natural classiÞcations. For instance, we have categorical

data on Þrm employment and Þnd that if we break the Þrms into large and small em-

ployers, we arrive at very nearly at the same classiÞcation.20 Mills also attend more

auctions than most loggers, although there are a few loggers who attend frequently.

Our theoretical model assumes that mills tend to have higher willingness to pay

than loggers. The theory suggests several ways to check this assumption � mills

19The dropped sales are generally large volume sales in districts that ran few sealed auctions.
20The employment data appears to be somewhat noisy, but to convey a rough sense, suppose we

classify bidders as �large� if they have more than XX employees. Then of the 1536 appearance by
mills in our data, 1311 are by mills that are large. In constrast, only 467 of 3097 logger appearances
are by large Þrms.
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should submit higher bids, win disproportionately, and (likely) enter more often. To

compare bids, we focus on the sealed bid auctions. We regress the per-unit bids (in

logs) on a dummy for whether the bidder is a mill and auction Þxed e ects. The

coe cient on the mill dummy is 0.239, meaning mill bids are 24% higher on average,

with a -statistic of roughly 7. An entering mill is also more likely to win than an

entering logger (28% versus 21%).

To compare entry rates we require a measure of the potential number of mills and

loggers that might enter a given auction. For this, we use the measure of �active�

mills and loggers described above. The average sale had 5.1 potential mill entrants

and 1.3 actual mill entrants, and 19.5 potential logger entrants and 3.0 actual logger

entrants, so by this measure mills are more likely to enter.21

4. Comparing Auctions: Evidence

In this section, we investigate the consequences of auction choice for bidder par-

ticipation, revenue and allocation. Our empirical approach is fairly straightforward;

we describe it now before turning to the speciÞc questions.

A. Empirical Approach

For a given outcome (such as the number of entering mills or loggers, or the

auction price per unit), suppose that

= ( ) (8)

where is an unknown function, is a dummy equal to one if the auction

is sealed and zero if the auction is open, is a vector of observed sale characteris-

tics, and is unobservable. A standard point is that to identify the average e ect of

auction format, denoted = E [ (1 ) (0 )], we require that the unob-

served component of the outcome is independent of the auction format conditional

on covariates.

21Although (as noted above) our measure of active loggers is probably biased upward (relative to
the measure for mills) due to di culties in determining unique identities from abbreviated bidder
names, it is unlikely the bias could be large enough to fully account for the di erence.
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This identiÞcation condition clearly holds for the randomly assigned sales in our

sample (although it is important that the administrative unit that assigned the format

is included in , given that assignment probabilities di ered by forest district).22 It

holds for the other sales if the forest manager�s choice of format is based on information

from the Forest Service appraisal, or follows some rule based on covariates in our

data.23

Perhaps the most obvious approach to estimating is to use ordinary least

squares regression for the speciÞcation

= · + + (9)

This approach is easily interpretable, but there are caveats. First, (9) does not

allow the e ect of sealed bidding to vary across tracts. To remedy this, we also

report estimates from a speciÞcation where we interact with the individual

covariates.24 A second issue is that we must specify the functional form for the

covariates (and interactions among covariates) that will be included in , but we

have limited ßexibility in doing so given our sample size relative to the number of

covariates. While our results are not very sensitive to the alternatives we have tried,

in general of course mis-speciÞcation could lead to bias.25

22Otherwise, we would be in danger of over-estimating the e ect of sealed bidding if, for example,
a forest district with especially valuable tracts also used a high fraction of sealed-bid sales. This is
a shortcoming of Shuster and Nicolluci (1993)�s analysis: they control for only a limited set of tract
characteristics, and so even for the randomized sales, the estimates they provide may not represent
the causal e ect of the auction format.
23If the forest manager uses a deterministic rule, such as using an open auction if and only if the

volume of timber exceeds a threshold (which seems a possible description of some areas in California),
then in principle auction format will not vary conditional on . In practice, if our speciÞcation of
does not exactly match the rule, we will estimate Pr( | ) to be intermediate for sales

close to the cut-o . So long as unobserved sale chacteristics are independent of the assignment
conditional on , we will still be identiÞed in a manner analogous to a �regression discontinuity�
approach, whereby discontinuous changes in the outcomes in response to changes in close to the
threshold will be attributed to auction format.
24We implement this approach by de-meaning the elements of before interacting them with

, so that the coe cient on gives the average e ect on the sample.
25There are really two concerns. First, if the covariates associated with open and sealed sales are

fairly di erent, we will rely on our functional form assumptions to extrapolate what the outcome in
one format would have been, had the auction been held using the other format. This concern mo-
tivates the procedure of selecting a subsample of sales with intermediate propensity scores. Second,
if for instance sale volume is correlated with the auction format, a failure to ßexibly control for sale
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Motivated by this concern, we also report a set of estimates using a matching

estimator. Because the matching estimator gives consistent estimates using a di erent

approach than OLS, it provides a useful robustness check. This estimator matches

every sealed bid auction with the �closest� open auctions and vice versa, with

closeness being measured as a weighted distance between sale characteristics.26 It

then compares the outcome of each sale , , with the average outcome of the matched

sales � , and estimates the average e ect of auction format as the average of these

comparisons:

� =
1 X

:

( � ) +
1 X

:

( � )

where and are the number of sealed and open sales. We implement this

estimator, setting = 4, and compute robust standard errors following Abadie and

Imbens (2004).

B. Evidence from Northern Forests

We begin our empirical analysis by looking at how auction choice a ects the

entry patterns of mills and loggers in the Northern forests. The model suggests that

controlling for sale characteristics there should be more entry by loggers and either the

same or less entry by mills. Table 3A reports our estimates (as well as our estimates

of how auction choice e ects other outcomes).

Conditional on sale characteristics, we estimate that sealed bid auctions attract

10-16% more logger entrants than open auctions. This translates roughly into 3-4

additional loggers for every 10 sales. All three point estimates are highly signiÞcant.

In contrast, sale format appears to have little e ect on entry by mills. Conditional

on sale characteristics, our estimated e ect is small and statistically cannot be dis-

tinguished from zero in all speciÞcations.

The third column of Table 3 reports estimates of how auction format a ects the

fraction of entrants who are loggers. Consistent with the entry results, the compo-

sition of bidders at sealed bid auctions is shifted toward loggers. On average the

volume might lead us to falsely impute a revenue e ect of auction method.
26We use the metric || || = ( 0 )1 2, where is a diagonal matrix consisting of the inverses

of the variances of the covariates . Thus the distance between two vectors of covariates and is
|| || . We include the estimated propensity score for each auction as a covariate in addition to
our standard set of characteristics.
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fraction of participants who are loggers is 5-8% higher in sealed bid auctions than in

open auctions.

Given this shift in bidder composition, it is natural to expect that sealed bid

auctions should be more likely to be won by loggers. The fourth column of Table

3 reports our estimate of this e ect. Our point estimates range from a 3.4%-7.4%

greater chance that a logger will win if the auction is not sealed bid. These estimates

are at best marginally statistically signiÞcant. Thus, although our point estimates

are not insubstantial, we cannot rule out the e ect of auction format on allocation

being relatively small in these sales.

Finally, we turn to revenue, the issue that has attracted the most attention among

economists. The Þfth column of Table 3A reports our estimates of the e ect of auction

format on the sale price per unit volume. We Þnd that after controlling for sale

characteristics, sealed bid prices are 14-18% higher than open auction prices. Again,

all three point estimates are all highly signiÞcant. To get a sense of the magnitude of

this e ect in dollar terms, note that the average winning bid (in 1983 dollars rather

than 1983 dollars per unit volume) is just over $144 000. So a 14% di erence in the

winning bid price translates into a $20 000 di erence in Forest Service revenue per

sale, or about $19 million for the whole sample.

A natural question is whether the revenue di erence is due to sealed bid auctions

attracting more bidders. The Þnal column of Table 3A reports estimates of the

sale price where we include the number of entering loggers and mills as covariates.

Even controlling for the number of entrants, sale method appears to matter. In

the regression estimates, sealed bid auctions generate roughly 7% (s.e. 3%) more

revenue. The matching estimator suggests a slightly larger revenue e ect of 13% (s.e.

5%). The table does not report the revenue decomposition, but the estimates suggest

that an additional mill is associated with about a 19% increase in the winning bid,

while and additional logger is associated with about a 12% increase in the winning

bid. Note that some caution is warranted in interpreting this revenue decomposition

because there may be sale characteristics that are observed by the bidders but not

accounted for in our data. In this case, the number of entrants may be endogenous

in this regression.27

27An approach followed in the auction literature is to instrument for the number of entering bidders
using measures of potential competition. We experimented with this, but found that our estimated

22



C. Evidence from California Forests

While the Northern forests seem particularly well-suited to making a statistical

comparison between auction methods, we would like to draw on additional evidence

as well. To this end, we also examined sales from California forests in the Forest

Service�s PaciÞc Southwest Region. We consider sales that took place between 1982

and 1989. We have data on 1188 open auctions and 694 sealed bid auctions.

While the Forest Service sale process is similar in California and the set of potential

bidders includes both Þrms with manufacturing capability and logging companies,

this sample is somewhat less ideal. The reason, which can be seen in the summary

statistics in Table 1B, is that the tracts sold by sealed bid auction tend to be quite

di erent from those sold by open auction. The principal di erence is in the size of

sales. The average sale volume for the open auctions is over 6000 mbf, while it is

closer to 700 mbf for the sealed bid auctions. The sealed bid auctions are also more

likely to be salvage sales. The per unit reserve prices are similar across sale formats.

The second column of Table 2 reports a logit estimate of the choice of sale method,

using our standard controls. As is apparent in the summary numbers, volume is a

highly important correlate of sale method. Sale method also varies signiÞcantly across

the twelve forests in the region. The extent to which sale method correlates with

sale characteristics can also be seen in Figure 1B, where we plot the density of the

propensity score for the open and sealed bid auctions. Our logit regression predicts

the sale method of many of the open auctions with near-perfect precision; this is

mainly a function of the fact that very large sales are almost certain not to be sealed

bid.

As with the Northern forests, we again drop sales that have an estimated propen-

sity score below 0.075 and above 0.925. This dramatically reduces the sample and

leaves us with 212 open auctions and 269 sealed bid auctions. Figure 1B illustrates

how, relative to the full sample of California sales, the selected sample has much more

overlap in the distribution of estimated propensity scores. And as can be seen in Ta-

ble 1B, the selected sample has much smaller di erences across sale format. Still,

the remaining di erences require carefully controlling for covariates in estimating the

e ect of auction format on di erent outcomes.

coe cients were highly sensitive to the particular choice of potential competition measures, none of
which are ideal.

23



With this caveat in mind, we turn to Table 3B, where we report estimates of the

e ect of auction method on entry, revenue and allocation outcomes. The results for

entry are similar to the Northern forests. Sealed bid auctions attract more loggers.

The regression models give an estimate of 11-12% (6%) more loggers at sealed sales,

which translates into an additional 3 loggers participating for every 10 sales (similar

to the Northern forests in terms of the absolute numbers). The matching estimate

is a bit larger � 4.7 additional loggers for every 10 sales. We also Þnd that mills

are somewhat less likely to participate in sealed bid sales. Our point estimate from

the regression model is that sealed bidding attract 1.3 fewer mills for every 10 sales,

but the estimate is not statistically signiÞcant. The matching estimate is larger in

magnitude: 3 fewer mills for every 10 sales, and this estimate is statistically signiÞcant.

As in the Northern forests, the composition of bidders shifts signiÞcantly toward

logging companies with sealed bidding � here by 8-15%.

Our estimates of the e ect of auction method on allocation also are qualitatively

similar those in the Northern forests, though larger and more signiÞcant. In the

California forests, we estimate that there is roughly a 8-14% greater chance a logger

will win with sealed bidding (the linear probability estimate is 8% (5%), the matching

estimate is 14% (5%)).

A notable di erence between the California results and those for the Northern

forests is that we do not Þnd a signiÞcant e ect of auction method on revenue in

California. The regression estimate is slightly positive, the matching estimate slightly

negative. Neither are large or statistically insigniÞcant, and the same is true after

controlling for the number of entering mills and loggers.

D. Explaining the Departures from Revenue Equivalence

Our empirical evidence suggests that in both the Northern and California forests

there are signiÞcant di erences between the outcomes of sealed bid and open auctions.

Conditional on sale characteristics, sealed bid auctions attract more entry by logging

companies, with either a negligible change in the entry of mills (Northern region) or

a decrease in their participation (California). Sealed bidding also appears more likely

to result in the auction being won by a logging company � particularly in California.

Finally, after controlling for sale characteristics, the winning bids in the sealed bid

sales are appreciably higher in the Northern forests (14-17%), but similar to open
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auction prices in California. It is in the e ect of auction method on sale price that

the two regions di er most noticeably.

At a qualitative level, the theoretical model developed earlier in the paper can

rationalize all of these Þndings. The model predicts that logger entry will be higher

in sealed bid sales, that loggers are more likely to win a sealed bid sale, and that sealed

bid sales may result in greater revenue, particularly if mills are able to collude to some

extent in the open sales. Moreover, the key assumption generating these departures

from revenue equivalence, that bidders are heterogeneous, also seems consistent with

the data.28

What we cannot say at this point, however, is whether a reasonable parametriza-

tion of the model can match our quantitative Þndings. Moreover, recall that the

theory predicts qualitatively the same di erences between open and sealed bidding

regardless of whether the mills are able to collude in open auctions, a primary con-

cern that has historically motivated the use of sealed bidding in Forest Service timber

auctions. Without a more quantitative approach to the model, we cannot distinguish

between its competitive and collusive versions. We try to address this shortcoming

in the next section by estimating the model�s parameters directly from the data and

then comparing the quantitative predictions of the theories to the data.

E. Alternative Explanations

A di erent explanation for our Þndings is that our estimates do not reßect the

systematic e ects of auction format, but rather some confounding correlation between

auction choice and unobserved aspects of the sale that also a ect the outcome. This

is certainly a concern. Even in the Northern forests, where many sale assignments

were random, we may not have perfectly controlled for sale di erences. And as we

have noted the di erences are greater in California. We have attempted to mitigate

this by making use of the very rich data on sale characteristics in the Forest Service

sale reports, augmented by further data on market conditions.

Could it be the case that some omitted variable is generating our Þndings? Several

of the most obvious stories have problems themselves. For instance, one possibility

28Above, we reported comparisons between mills and loggers for the Idaho and Montana sales. In
California, mill bids are just over 10% higher on average, after controlling for auction Þxed e ects,
and the di erence is highly signiÞcant. Mills are also more likely more likely to participate and to
win conditional on participating.
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is that forest managers like to sell more valuable tracts by sealed bid, a bias that

would help to explain the entry and revenue di erences we Þnd. This story is hard to

square, however, with the fact that larger sales, which are by deÞnition more valuable

on a total value basis, are more often sold by open auction. A second possibility is

that forest managers use sealed bid sales when they expect there to be more bidder

interest, especially on the part of logging companies. This would certainly help to

explain the entry results, though it is not clear to us why forest managers would

systematically behave in this way. Indeed, industry lore is more consistent with a

scenario where the mills prefer oral auctions (as predicted by our theory), and where

forest managers defer to the mill�s preferences.29

Turning from endogeneity to behavioral explanations, recall that our theoretical

model abstracted from two potentially relevant aspects of timber auctions: common

values and bidder risk-aversion. Could either of these explain our empirical Þnd-

ings? While our results certainly do not rule out the presence of common values or

bidder risk-aversion (or both), it seems unlikely that either is primary source of the

departures we observe from revenue equivalence. With common values (and without

the other elements of our model, namely bidder heterogeneity and collusion), prices

should be lower in sealed auctions, rather than higher as we observe in the data.

Risk-aversion might be able to explain the observed prices, but it would also suggest

that participation should be lower in the sealed bid auctions, rather than higher. So

to the extent that either common values or bidder risk-aversion would help to explain

our Þndings, they would have to be part of a more complicated story.

6. Structural Estimation and Testing

In this section, we try to assess more precisely the relationship between our Þnd-

ings and the theory we proposed to account for them. We investigate three related

issues. First, we ask whether our a calibrated version of our model, with parameters

estimated from the data, can quantitatively match the departures we observe from

revenue equivalence. Second, we ask whether the model can provide a measure of

29A further point that is potentially relevant here that the Forest Service Handbook instructs
forest managers to use sealed bidding if they expect a sale not to be competitive (CITE). To the
extent that this might create an omitted variable problem, it presumably would lead to Þnding that
sealed bidding generated less entry and lower prices, precisely the opposite of our results.
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bidder competitiveness in the open auctions. Finally, we estimate the welfare conse-

quences of moving exclusively to open or sealed bidding, under the assumption that

our estimated model accurately describes the sale environment.

We proceed as follows. We Þrst use the sealed bid data to estimate the unknown

parameters of the theoretical model � the value distributions of loggers and mills,

and the costs of entry. We then compute the expected equilibrium outcome of each

sale as predicted by our calibrated model and compare the predicted outcomes to

what we actually observe. This allows us to assess how accurately the model predicts

the observed di erences across auction formats, and, as we will see, provides a rough

way to assess bidder competitiveness in the open auctions. The welfare comparison

of open and sealed bidding is developed at the end of the section.

A. Structural Estimation

Our Þrst step is to use the sealed bid data to estimate the parameters of the theo-

retical model. To estimate the value distributions of mills and loggers, we follow the

two-stage approach pioneered by Guerre, Perrigne and Vuong (2000). They suggest

Þtting a distribution to the observed sealed bids, then using the Þrst-order condition

for optimal bidding to recover the bidders� value distributions. This approach par-

allels the recovery of latent cost parameters from price-quantity data (e.g. Rosse,

1976). Given the value distributions, we can proceed to estimate bidders� entry costs.

We begin by introducing some notation. For a given auction, let denote the

set of sale characteristics known both the us and the bidders. To account for the

fact that sales may di er in ways we cannot observe, we let denote an additional

characteristic known to participating bidders but not observed in our data. We write

the bidders� value distributions, conditional on ( ), as (·| ) and (·| ).

In line with our model, we assume that bidders� values, and hence their bids,

are independent conditional on ( ). Letting denote the set of participating

bidders, we write the equilibrium bid distributions as (·| ) and (·| ).

We assume that if there is a single bidder, he optimally bids the reserve price, but

otherwise treat the reserve price as non-binding.30 Finally, we assume that bidders

30See Haile (2001) for a discussion of why the reserve prices in Forest Service timber auctions are
typically non-binding. A slight drawback to our treatment of the reserve price is that our Þtted bid
distributions will assign positive (though typically small) probability to bids below the reserve price.
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have independent entry costs that are concentrated around some average entry cost

( ).

Estimating the Bid Distributions

Conditional on the observable sale characteristics ( ), the joint distribution

of bids in a given auction is a combination of the bid distributions (·| ) and

(·| ) and the distribution of the unobserved auction heterogeneity , which is

responsible for any covariation of bids within a given auction. We adopt a parametric

approach to estimate these three distributions.

After extensive experimentation, we found that Weibull bid distributions with

Gamma distributed auction heterogeneity provided a good Þt to our sealed bid data.

Thus we assume that for = :

( | ) = 1 exp

Ã

·

µ

( )

¶ ( )
!

Here (·) is the scale, and (·) the shape, of the Weibull distribution, parametrized

as ln ( ) = + + and ln ( ) = + .31 We assume has a Gamma

distribution with unit mean and variance , and is independent of and .32 We

estimate the parameters ( ) by maximum likelihood; the

estimates are reported in Table 4.

Several points about the estimated bid distributions deserve mention. First, recall

that the basic assumption of the theory was that mill values stochastically dominate

logger values, and an implication was that mill bids should dominate logger bids.

Our empirical speciÞcation does not impose this, nor any ordering between logger

and mill bids. Nonetheless, we Þnd that mill bids do dominate those of loggers. On

average, mill bids are roughly 25% higher than logger bids. Also consistent with

the theoretical model, we Þnd that bids are increasing in the number of competitors

31The speciÞcation for we adopt is more parsimonious than in our earlier regressions. While
our results do not seem sensitive to including more covariates (or less for that matter), we opted
for parsimony because of the need to make out-of-sample predictions where over-Þtting could in
principle be a problem.
32Implicitly then, is observed only once bidders acquire information. The assumption that is

orthogonal to ( ) is strong, but should be viewed in light of most empirical work on auctions (an
important exception being Krasnokutskaya, 2003), which makes the even stronger assumption that
there is no unobserved heterogeneity at all across auctions.
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(a property that may not be satisÞed by auction models where bidder values are

a liated or have a common value component). Finally, we estimate that has

signiÞcant variance, indicating that our modeling of the unobserved heterogeneity

across auctions is warranted.

Estimating the Value Distributions

Given our Þtted bid distributions, we turn to recovering the bidders� value distribu-

tions. Under the assumption that the observed bidding is consistent with equilibrium

behavior, each bid must be optimal against the opponents� bid distributions. So given

sale characteristics ( ), a bidder�s value can be recovered from his observed

bid and his Þrst-order condition for optimal bidding:

1
=
X

\

( ; )

( ; )
(10)

Note that for a given auction in our data, we do not know , so we cannot recover

the value that corresponds to each observed bid. Nevertheless, as established by

Krasnokutskaya (2002), we can recover the distributions (·| ) and (·| )

by sampling bids from (·| ) and (·| ) and inferring the corresponding

values from the Þrst-order conditions.33 34

33Guerre, Perrigne and Vuong (2000) and Krasnokutskaya (2002) suggest a nonparametric ap-
proach for both the Þrst step of this approach (estimating the bid distributions) and the second
step (estimating the distribution of valuations). In contrast (and similar to an approach used by
Jofre-Benet and Pesendorfer (2003)), we use a parametric model for the Þrst step, but use a non-
parametric approach for the second step. We follow this approach because our sample size is small
relative to the number of covariates and variation in participation.
34In recovering values from the Þrst-order condition, we face a self-imposed technical hurdle. It

can be shown that in a (symmetric) IPV auction model, E[ ] = ( + ( 2)E[ ]) ( 1) Because
we model the bid distribution as Weibull, and the Weibull distribution has inÞnite support, we
implicitly impose an inÞnite mean on the bidder value distribution. An obvious alternative would
be to estimate bid distributions with Þnite support, but this has serious drawbacks as well because
it requires estimating the maximum bid conditional on (observed and unobserved) covariates. This
is a hard problem and moreover the mean of bidder values will be in close correspondence with
the (arguably poor) estimate. Instead, we propose to exploit the fact the for high values, the bid
function is very ßat, so by specifying even a wide range for the maximum value, we can pin down
the maximum bid with some precision. We have taken this approach in generating Figure 2. Tables
5 and 6, however, still reßect our initial approach, similar in spirit, which was to cap values in the
far right tail at six times the bid draw (six is arbitrary, but using two or ten has little e ect on our
results). From what we have seen so far, our results do not seem very sensitive to the way that we
impose the upper bound.
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Figure 2 plots the density functions for logger and mill values for an auction with

average covariates, as well as the equilibrium bid functions assuming two mills and

two loggers participate in the auction. As the Figure indicates, the distribution of

mill values is substantially shifted rightward from the distribution of logger values.

Moreover, the estimated mill bid function is below the logger bid function. Thus, mills

bid less than loggers for any given value, matching a key prediction of the theoretical

model.

Estimating Entry Costs

The remaining parameter of the model is the entry cost. To recover the entry

cost for each auction, we use the equilibrium entry condition. Recall that when entry

costs are concentrated as we have assumed, and loggers are the marginal participants,

then in equilibrium each logger will be close to indi erent regarding participation. So

if the expected logger proÞt is ( ), the average entry cost can be recovered from

the equilibrium condition: ( ) ( ).

We write the expected proÞt for a participating logger, conditional on observed

sale characteristics, as

( ) =
X

( ) Pr [ | ] . (11)

The Þrst term, ( ), is a logger�s expected proÞt conditional on sale characteris-

tics and the set of participants. This number is easily computed from our estimate of

the value and bid distributions, integrating out the unobserved auction heterogeneity.

The second term, Pr[ | ], is the probability an entering logger assigns to

the set of participants being . To estimate Pr [ | ], we assume that bidders

know the number of potential mill entrants (and hence the actual number because

mills will be inframarginal participants in equilibrium). We model the number of

entering loggers as a Poisson random variable with mean ( ), parametrized as

ln ( ) = .35 Our estimate of ( ) is reported in Table 4.

The Þnal step, having estimated ( ) and Pr[ | ], is to calculate for

each sale the expected proÞt for a logger that enters a sealed bid auction for that

35In theory, the distribution of logger entrants is binomial because loggers make independent entry
decisions. As we do not have a very good measure of the number of potential logger entrants, we
use the poisson speciÞcation to approximate the binomial.
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tract.36 We then impute the entry cost for each tract as ( ) = ( ). In

our sample of sealed bid auctions, we estimate that the median entry cost is $4449

(s.e. $503). As the costs of surveying a tract can run to several thousand dollars,

this seems reasonably consistent with our prior beliefs about the costs of acquiring

information and preparing a bid.37

B. Comparing Predicted and Actual Outcomes

Having estimated the parameters of the theoretical model � the auction entry

costs and the distribution of logger and mill values � we now ask how closely the

model�s equilibrium predictions match the observed auction outcomes in our data.

This serves several objectives. In the case of sealed bid sales, this exercise provides

a measure of how well we have Þt the entry and bidding data. In the case of open

auctions, it allows us to ask whether the calibrated model can explain (out-of-sample)

the open auction outcomes, and in particular, whether assuming some degree of co-

operative behavior provides a more accurate Þt to the data. Finally, by looking at

both kinds of sales, we can assess whether the model is able to explain not just

the qualitative but the quantitative departures from revenue equivalence documented

above.

To proceed, we compute for each tract the expected equilibrium outcome of our

parameterized model. If the tract was sold by sealed bid auction, we compute the

expected equilibrium outcome for a sealed bid auction. If the tract was sold by open

auction, we compute both the competitive and collusive open auction equilibria. We

report two variations of these calculations. The Þrst is the expected equilibrium

outcome of the model conditional on the actual participation in each sale. The second

is the expected outcome of the full entry equilibrium.38

36In practice, of course, not every tract was sold by sealed bidding. Nonetheless, our estimates of
the bid and value distributions, and logger entry under sealed bidding, combined with our knowledge
of each tract�s characteristics, allow us to calculate the expected logger proÞts of a hypothetical sealed
bid auction for each tract, even though some tracts were actually sold by open auction.
37An alternative approach to estimating entry costs is to assume that bidders perfectly forecast

opponent entry. Then in equilibrium, ( ) ( ), where is the realized entry. This
approach generates a slightly lower estimate for the median entry cost in our sample of sealed bid
auctions: $2652 (s.e. $334), but one that also seems within reason.
38The actual amount of �computation� is limited. In the case of the sealed bid auctions, the

equilibrium bid and entry distributions correspond to our estimates from the previous section. In
the open auctions, bidders either bid their value, or if they are colluding, potentially drop out
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Table 6 reports the actual average outcomes in our sample and the average out-

comes predicted by our parameterized model.39 In the case of sealed bid auctions, we

closely predict the average bids of loggers and mills. The model predicts averages of

54.1 ($/mbf) and 102.4 ($/mbf), while the actual averages are $57.6 and $101.0. It

also closely predicts logger entry, as well as the average auction prices both uncondi-

tionally (i.e. given just sale characteristics) and conditional on the set of participating

bidders. The model somewhat under-predicts the fraction of sales that loggers win �

both the unconditional prediction of 63.5% and the prediction of 66.0% conditional

on realized entry undershoot the actual number of 68.7%.

Of course, it should not be too surprising that the model accurately predicts the

sealed bid outcomes because the its parameters are estimated from the sealed bid data.

The more demanding test of how well the theory can Þt the observed outcomes is to

compare the open auction outcomes predicted by the model to the actual outcomes.

In this case, we asking the model to make predictions that are �out-of-sample� in two

senses: we are predicting sale outcomes for tracts not used to estimate the model�s

parameters, and also for a di erent auction format than that used to estimate the

model�s parameters.

To consider the open auctions, we start by looking at the model�s predictions for

entry and allocation relative to the realized outcomes. Strikingly, the model predicts

a level of equilibrium logger entry that is very close to the level we actually observe

(2.81 loggers per sale versus 2.84 in reality), indicating that the Þtted model is able to

explain the entry di erences between open and sealed bid sales in our data. The model

is somewhat less successful in matching the fraction of sales won by loggers. As with

the sealed bid auctions, the model under-predicts how often loggers win (the model�s

prediction is that loggers will win 51.5% of the sales, or 54.5% conditional on realized

participation, while in reality they win 60%). Note, however, that despite under-

predicting logger purchases for both sale formats, the model accurately captures the

immediately. Moreover, with concentrated entry costs, all potential mills enter, meaning the only
unknown is the entry behavior of loggers at open auctions. To compute this, we approximate their
equilibrium entry distribution as Poisson and for each open auction solve for the Poisson parameter
that just equates expected logger proÞts and our estimate of the entry cost. Logger entry is identical
under competition and collusion with concentrated entry costs, so one computation per auction
su ces.
39We generate the standard errors using a parametric bootstrap in which we re-sample from the

asymptotic distribution of the bid and entry distribution parameters reported in Table 4.
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di erence across the open and sealed bid sales (the model�s prediction is 8.7% versus

12% in reality).

A key point to have in mind for the open auctions is that under our assump-

tion of concentrated entry costs, the competitive and collusive equilibria di er only

in the price they predict. Therefore, to the extent that the data squares with the

model in terms of entry and allocation, it squares with many versions of the model

� from competitive behavior to perfect mill collusion, to any intermediate degree of

mill collusion that involves the highest-valued mill bidding up to his value. To dis-

tinguish these behavioral alternatives and extract some measure of competitiveness,

it is necessary to focus on prices.

The numbers in Table 6 indicate that the observed prices in the open auctions

lie between the competitive and fully collusive prices predicted by the model. In

reality, the average sale price across open auctions in our sample is $72.8 per mbf; the

competitive model predicts average prices equal to $79.0, or $79.8 if we condition on

realized entry. In contrast, if mills fully collude, we predict the average price will be

$51.5 per mbf. Even accounting for sampling error, we reject both the competitive

and collusive models at the 1% level. Thus it appears that the assumption of mildly

cooperative behavior on the part of participating mills provides a better match than

either the competitive or fully collusive extremes.

When we put the sealed bid and open auction comparisons together, it appears

that the theoretical model developed in Section 2 and estimated using the sealed bid

data does a plausible job of explaining the departures from revenue equivalence we

observe in the data. The parametrized model easily explains the logger and mill entry

patterns we observe in the Northern sales. It errs somewhat in predicting the fraction

of sales won by loggers for both the sealed bid and the open sales, but predicts a

di erence across auction formats that is similar to what we actually observe. Finally,

the observed price di erential between the open and sealed bid sales in our sample

allows us to reject (under the assumption that sealed bidding behavior is competitive)

both the assumption of perfectly competitive behavior and perfectly collusive mill

behavior in the open auctions. Rather, the price di erence can be rationalized by a

mild degree of cooperation on the part of mills bidding in open auctions.

C. Quantifying the Trade-o s in Auction Design
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So far our goal has been to assess whether the theoretical model we proposed

could explain the systematic departures from revenue equivalence we observe in the

data. We now take as given that we have accurately estimated bidders� values and

entry costs, and investigate the welfare consequences of using either open or sealed

bidding on an exclusive basis. From an a priori standpoint, our theoretical results

suggest that neither format will dominate. The open auction conveys an e ciency

beneÞt, but the increase in social surplus may come at the cost of lost revenue and

an allocation that favors stronger bidders. For this reason, it seems natural to try to

quantify the trade-o s faced in choosing between the two formats.

To estimate the welfare consequences of making exclusive use of either open of

sealed bidding, we compute the predicted outcome of both an open and a sealed

bid auction for each tract in our sample. We consider two alternative speciÞcations

of mill behavior in the open auctions: a benchmark speciÞcation where mills behave

competitively, and perhaps a more realistic speciÞcation where they cooperate 25% of

the time (25% being the number that rationalizes the observed open auction prices).

Our comparisons reported in Table 7. The top panel reports the expected auction

outcomes taking participation as Þxed and computing only the corresponding bidding

equilibrium. The bottom panel reports expected outcomes when we solve for the

complete entry equilibria of the alternative models.

A Þrst point that stands out is that if participation is assumed to be independent

of the auction format, the di erences in equilibrium outcomes between open and

sealed bidding � assuming bidder behavior is competitive in both cases� are very

small. Sealed bidding would generate more revenue, but the revenue gain is less than

$1000 per sale. Sealed bidding also increases the probability that sales are won by

loggers, but again the average increase in probability is less than 1%. Finally, the

e ciency beneÞt to using an open auction format is also quite small, only $145 per

sale.

These di erences are magniÞed when we account for the fact that bidder par-

ticipation will vary systematically with auction format. Under our assumption of

concentrated entry costs, sealed bid and open auctions will attract the same number

of mills, but sealed bid auctions will attract between 3-4 more loggers for every 10

sales. This additional entry has several e ects. First, it generates a more substantial

di erence in the probability that a logger will win any given sale � the probability
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a given sale will be won by a logger is 3.2% higher with sealed bidding. Second, it

increases the revenue advantage of sealed bidding. With equilibrium participation,

we estimate that sealed bidding would raise an extra $8000 on average (about 5% of

the average sale price). At the same time, however, the additional entry has a welfare

cost: on a per-sale basis, the social surplus generated by open auctions is nearly $1900

higher than with sealed bidding.

As a practical matter, however, the model suggests that these di erences are

dwarfed by the potential e ects of bidder collusion. Even if we take participation

as Þxed, open bidding generates some $22,000 less per sale than competitive sealed

bidding if mills are able to engage in a mild amount of cooperative behavior. The

di erence is over $29,000 once we account for participation e ects. So to the extent

that mild cooperation by mills at open auctions is the behavioral assumption that

receives the most support from our data, the revenue beneÞts of sealed bidding clearly

seem to be the most quantitatively signiÞcant welfare consequence of the choice of

auction method � at least in these forests during the study period.

A more general point we draw from this is that the degree of bidder competi-

tiveness can be of crucial importance in weighing the relative beneÞts of open and

sealed bidding. Indeed, we have repeated the analysis of this section on the Califor-

nia forests with quite di erent conclusions. Recall that in the those forests, auction

format appeared to have an insigniÞcant e ect on prices. Though the greater hetero-

geneity between open and sealed sales makes the California analysis somewhat less

precise, when we calibrate the model using the sealed bid sales, we Þnd that the ob-

served auction open behavior can be described reasonably well under the assumption

that Þrms bid competitively. As a consequence, the welfare analysis for California

resembles the comparison of competitive sealed and open auctions in Table 7, with

moderate e ciency gains for open sales trading o against moderate revenue beneÞts

to sealed bidding.40

6. Conclusion

This paper has examined the relative performance of open and sealed bid auctions,

using U.S. Forest Service timber sales as a test case in auction design. Our main em-

40We view the California analysis as still having some room for improvement; we may report more
fully on it in the next version of the paper.
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pirical Þnding is that there are systematic di erences in the auction outcomes. Sealed

bid auctions attract more small bidders, shift the allocation toward these bidder, and

in the Northern forests though not in California forests, generate higher revenue.

Our main theoretical contribution is an extension of the standard independent pri-

vate values auction model that can explain these Þndings, both qualitatively and

quantitatively, and also allows us to measure the degree of bidder competitiveness.

Our structural estimation results suggest that competitiveness may vary across Forest

Service regions, and that the implications of competitiveness for auction choice may

be quantitatively the most signiÞcant.

Appendix: Proofs of the Results

To begin, we establish existence of entry equilibrium.

Proposition 7 For both auction formats, a type-symmetric entry equilibrium exists.

Proof. For the sealed bid auction, Li and Riley (1999) show that for any set of partic-
ipants, there is a unique type-symmetric bidding equilibrium that is type-symmetric.
The same is true for the open auction if we restrict attention to undominated strate-
gies. We can use a single proof to show the existence of an entry equilibrium for both
auction formats. Let ( ) denote �́s proÞts from entry assuming entrants use equi-
librium bid strategies. An entry equilibrium couples these strategies with a vector
such that ( ) := min{ ( ) } = for all . So establishing a type-symmetric
entry equilibrium amounts to Þnding a type-symmetric Þxed point of = ( 1 ).
Let K = {( [ ] : 1 = = +1 = = } denote the space of
type-symmetric entry thresholds. Now, : K K and is continuous in because
(·) results from a unique Nash equilibrium (and hence is continuous in ). So
Kakutani�s Þxed point theorem implies that has a Þxed point in K. Q.E.D.

Proof of Proposition 1. Equilibrium existence is shown above. Properties (i) and
(ii) follow from the analysis of Maskin and Riley.

Proof of Proposition 2. Equilibrium existence is shown above. Properties (i) and
(ii) follow from the fact that it is a dominant strategy for participants to bid their
values, and by Assumption (ii), ( ) ( ) for all .

Proof of Proposition 3. Standard revenue equivalence results (see e.g. Milgrom,
2003) imply that for any Þxed set of participants , the equilibrium surplus, and the
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expected revenue and proÞts of individual bidders will be identical across the two
auction formats. Therefore ( ) = ( ). Moreover, = = is constant in
and decreasing in , so it is decreasing in when = ( ). It follows

that both auctions have a unique symmetric entry equilibrium; the equilibrium entry
threshold solves ( ) = min{ }. The results follow directly.

Proof of Proposition 4. We Þrst show that for any ,

( ) ( ) and ( ) ( )

From the text, for each auction type { }:

( ; ) =

Z
Pr[ wins | = ] .

In the sealed bid equilibrium ( ; ) ( ; ) for all , while all bidders use
the same strategy in the open auction. Therefore if is a logger:

Pr[ wins | , Open] Pr[ wins | , , Sealed]

while the converse holds for mills. Hence ( ; ) ( ; ) and consequently
( ) ( ), while the converse holds for mills.
To proceed, we characterize type-symmetric entry equilibria of the open auction.

DeÞne:
( ) := min{ ( ) }.

Consider the space {( ) : [ ]} of type-symmetric entry thresholds. Let
L denote the locus of points ( ) for which ( ) = 0, and deÞne L
accordingly. The intersections of L and L are the type-symmetric entry equilibria
of the open auction. Figure 1 depicts a unique equilibrium, but there may be several.
Now, observe that L and L are continuous, and also downward sloping because
(·) and hence (·) are decreasing in . So above L , ( ) 0 while below

L , ( ) 0. Moreover, if = then by deÞnition ( ) 0,
so L lies (weakly) below L at = . A consequence is that for any point
= ( ) above L and below L , there must be an open auction equilibrium
with and .
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To prove the result, suppose is a type-symmetric entry equilibrium of the
sealed auction and is interior (a similar argument applies for boundary equilibria).
Because mills prefer open auctions and loggers sealed auctions:

( ) 0 and ( ) 0.

So lies above L , below L (as in the Figure). Therefore there is a type-symmetric
open auction equilibrium with and . Relative to the sealed
equilibrium, mills enter more, while loggers enter, and win, less. Q.E.D.

Proof of Proposition 5. Social e ciency means choosing entry thresholds and an
allocation process to maximize social surplus. Given participation, it is best to allo-
cate e ciently, which the open auction does and the sealed bid auction already fails
to do. To consider entry, write the social surplus as ( 1 ). A participant�s
open auction payo equals his contribution to social surplus, so bidder payo s in the
open auction entry game can be written:

( 1 ) := ( 1 ) = ( 1 ) ( ),

and satisfy = .
Now, suppose is an e cient type-symmetric proÞle:

= arg max ( ) = ( )
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Assuming is interior (the proof is similar for boundaries), we have ( ) =
( ) = 0. But then, because is symmetric in logger thresholds and in mill

thresholds, it must be that for all , ( ) = 0 and hence ( ) = 0.
So is also a type-symmetric entry equilibrium. Q.E.D.

Proof of Proposition 6. Let ( ) denote the proÞts of bidder from entering if
mills collude. We have:

( ) = ( ) and ( ) ( )

Now consider the depiction of equilibrium open auction entry in the Figure above.
Collusion by mills has the e ect of increasing mill proÞts for any ( ) pair, so
the curve L shifts up, while L stays unchanged. Because L must still lie below
L when = , this means that for any open auction entry equilibrium, there
must clearly be a collusive equilibrium with more mill entry, less logger entry and less
chance of a logger winning. Q.E.D.
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Open Auctions Sealed Auctions
Full Sample Selected Full Sample

N 787 658 308 300

Mean Std. Dev. Mean Std. Dev. Mean Std. Dev. Mean Std. Dev.

Auction Outcomes
Winning Bid ($/mbf) 70.14 52.94 72.78 53.81 80.21 56.25 81.10 56.57
Entrants 4.12 2.46 4.23 2.45 4.53 2.84 4.57 2.86
  # Loggers Entering 2.62 2.40 2.84 2.39 3.36 2.58 3.42 2.59
  # Mills Entering 1.50 1.65 1.40 1.66 1.17 1.66 1.14 1.66
  Fraction Loggers Entering 0.61 0.39 0.65 0.38 0.76 0.32 0.77 0.32
Logger Wins Auction 0.56 0.50 0.60 0.49 0.67 0.47 0.69 0.46

Appraisal Variables
Volume of timber (hundred mbf) 28.93 39.64 21.95 33.71 15.02 26.97 12.88 22.51
Reserve Price ($/mbf) 26.22 26.72 27.45 27.72 28.46 24.24 28.68 24.38
Selling Value ($/mbf) 196.04 168.41 196.02 169.11 202.59 166.07 201.80 166.66
Road Construction ($/mbf) 6.36 9.84 4.91 9.07 3.11 7.77 2.83 7.54
No Road Construction 0.58 0.49 0.66 0.47 0.78 0.42 0.79 0.41
Logging Costs ($/mbf) 84.66 63.64 82.91 63.77 83.55 62.81 82.51 63.25
Manufacturing Costs ($/mbf) 114.59 84.04 112.93 84.71 117.79 85.57 116.75 86.40

Sale Characteristics
Contract Length (months) 24.78 17.38 22.19 16.35 18.12 14.79 17.03 13.11
Species Herfindal 0.60 0.27 0.59 0.28 0.58 0.27 0.58 0.27
Density of Timber (hmbf/acres) 0.07 0.06 0.07 0.06 0.08 0.07 0.08 0.07
Salvage Sale 0.37 0.48 0.37 0.48 0.39 0.49 0.40 0.49
Scale Sale 0.44 0.50 0.42 0.49 0.41 0.49 0.40 0.49
Quarter of Sale 2.39 1.00 2.39 1.01 2.42 1.01 2.42 1.01
Year of Sale 86.08 2.31 86.07 2.38 85.75 2.52 85.76 2.55
Housing Starts 1580.62 237.95 1572.33 235.52 1559.18 261.09 1553.84 261.71

Potential Competition
Logging companies in county 43.86 21.22 42.15 21.67 40.05 22.22 40.36 22.35
Sawmills in County 8.66 4.45 8.42 4.56 7.60 4.47 7.45 4.30
Active Loggers (active in District 
in prior 12 months) 30.97 24.83 30.19 24.22 25.83 17.62 26.19 17.69
Active Manufacturers (active in 
District  in prior 12 months) 11.02 9.01 11.50 9.26 12.33 10.30 12.54 10.34

Selected

Table 1A: Summary Statistics for Northern Sales



Open Auctions Sealed Auctions
Full Sample Selected Full Sample

N 1188 212 694 269

Mean Std. Dev. Mean Std. Dev. Mean Std. Dev. Mean Std. Dev.

Auction Outcomes
Winning Bid ($/mbf) 108.62 165.23 118.95 103.51 93.25 71.80 92.09 74.24
Entrants 4.13 2.32 4.23 2.41 3.85 2.59 4.40 2.68
  # Loggers Entering 1.15 1.56 2.12 2.09 2.86 2.25 3.02 2.35
  # Mills Entering 2.98 1.81 2.11 1.90 0.99 1.43 1.38 1.58
  Fraction Loggers Entering 0.24 0.28 0.50 0.37 0.77 0.31 0.70 0.32
Logger Wins Auction 0.17 0.38 0.43 0.50 0.73 0.45 0.62 0.49

Appraisal Variables
Volume of timber (hundred mbf) 63.63 45.60 19.85 20.00 7.39 13.38 10.46 10.36
Reserve Price ($/mbf) 41.96 38.02 49.68 46.54 42.56 39.84 37.32 37.09
Selling Value ($/mbf) 278.86 85.30 246.80 131.93 234.49 268.00 247.68 118.60
Road Construction ($/mbf) 10.66 12.95 4.71 11.44 1.08 4.33 2.04 5.89
No Road Construction 0.26 0.44 0.67 0.47 0.90 0.29 0.83 0.38
Logging Costs ($/mbf) 112.85 40.48 96.24 55.24 89.15 56.32 103.47 52.70
Manufacturing Costs ($/mbf) 127.41 34.47 109.20 54.36 100.97 61.85 114.06 52.95

Sale Characteristics
Contract Length (months) 28.68 14.35 16.37 9.75 10.01 6.62 12.51 6.16
Species Herfindal 0.54 0.23 0.59 0.25 0.60 0.24 0.58 0.24
Density of Timber (hmbf/acres) 0.10 0.12 0.09 0.10 0.16 1.82 0.11 0.15
Salvage Sale 0.14 0.35 0.25 0.43 0.36 0.48 0.26 0.44
Scale Sale 0.95 0.21 0.86 0.35 0.67 0.47 0.82 0.38
Quarter of Sale 2.35 1.00 2.55 0.95 2.71 0.88 2.65 0.93
Year of Sale 85.32 2.14 85.62 2.42 85.59 2.30 85.01 2.15
Housing Starts 1587.06 251.78 1528.56 260.22 1558.48 249.87 1581.44 264.07

Potential Competition
Logging companies in county 23.22 18.65 22.32 17.56 20.39 17.35 23.06 19.84
Sawmills in County 6.65 6.50 6.14 5.55 6.05 6.01 7.04 7.73
Active Loggers (active in Forest 
in prior 12 months) 57.65 32.79 60.23 31.55 54.37 30.31 57.96 28.28
Active Manufacturers (active in 
Forest  in prior 12 months) 47.39 27.81 48.96 26.17 44.48 27.08 46.48 26.25

Selected

Table 1B: Summary Statistics for California Sales



Table 2: Choice of Sale Method

Dependent Variable: Dummy if auction is sealed bid (Logit regression)
(1) (2)

Northern California
coefficient s.e. coefficient s.e.

Appraisal Controls
Ln(Reserve Price) 0.006 (0.115) 0.192 (0.180)
Ln(Selling Value) -0.049 (0.060) 0.196 (0.593)
Ln(Logging Costs) -0.143 (0.428) 0.302 (0.545)
Ln(Manufacturing Costs) 0.190 (0.426) -0.646 (0.499)
Ln(Road Costs) -0.056 (0.208) -0.025 (0.219)
No Road Construct. (Dummy) 0.455 (0.555) 0.473 (0.565)

Other Sale Characteristics
ln(Contract Length/volume) -0.094 (0.254) 0.005 (0.385)
Species Herfindal -0.735 (0.396) -0.005 (0.473)
Density of Timber (hmbf/acres) -1.645 (1.248) 0.162 (0.324)
Salvage Sale (Dummy) 0.167 (0.183) -0.134 (0.284)
Scale Sale (Dummy) 0.373 (0.195) -1.509 (0.346)
ln(Monthly US House Starts) -1.415 (1.049) -5.965 (1.534)

Volume Controls (Dummy Variables):
Volume: 1.5-3 hundred mbf 0.072 (0.339) -1.394 (0.682)
Volume: 3-5 -0.236 (0.378) -1.611 (0.697)
Volume: 5-8 -0.172 (0.404) -1.790 (0.747)
Volume: 8-12 -0.754 (0.445) -2.902 (0.783)
Volume: 12-20 -0.690 (0.478) -3.632 (0.830)
Volume: 20-40 -1.144 (0.524) -7.229 (0.924)
Volume: 40-65 -1.785 (0.632) -8.615 (1.011)
Volume: 65-90 -1.594 (0.723) -8.320 (1.052)
Volume: 90+ -2.081 (0.705) -10.013 (1.393)

Potential Competition
ln(Loggers in County) -0.276 (0.235) -0.866 (0.329)
ln(Sawmills in County) -0.336 (0.296) 0.355 (0.356)
ln(Active Loggers) -0.058 (0.133) -0.004 (0.291)
ln(Active Manufacturers) -0.084 (0.151) 0.234 (0.339)

Constant 11.979 (7.694) 49.668 (11.012)

Additional Controls (Dummy Variables)
Chi-Squared Statistics (p-value in parenthesis)
Years 6.25 (0.619) 58.30 (0.000)
Quarters 2.08 (0.556) 0.76 (0.860)
Species 12.14 (0.205) 14.58 (0.006)
Location 78.71 (0.000) 144.09 (0.000)

N=1095 N=1882
LR chi2 (57) 220.11 LR chi2 (50) 1808.59
P-value 0.000 P-value 0.000
Pseudo-R2 0.1692 Pseudo-R2 0.7299



Dependent Variable: ln(Logger Entry) ln(Mill Entry) Loggers/Entrants Logger Wins ln(Price) ln(Price)*

No Interactions Between Sealed and Covariates
Sealed Bid Effect 0.104 -0.017 .056 0.044 0.125 0.076

(0.037)** (0.032) (0.016)*** (0.028) (0.039)*** (0.032)**
Includes Interactions Between Sealed and All Covariates
Sealed Bid Effect on Sample 0.105 0.004 .045 0.034 0.139 0.067

(0.037)** (0.033) (0.015)** (0.028) (0.041)*** (0.032)*

See Appendix Tables 1A and 2A for full set of controls and coefficients for the no-interaction specifications. Robust standard errors.

Dependent Variable: ln(Logger Entry) ln(Mill Entry) Loggers/Entrants Logger Wins ln(Price) ln(Price)*

Sealed Bid Effect on Sample 0.158 -0.036 0.079 0.074 0.179 0.133
(0.043)*** (0.041) (0.019)*** (0.032)* (0.052)** (0 .048)**

Number of matches = 4 using same controls as Panel A and the estimated propensity score.  Robust standard errors (using 4 matches).

Panel B: Matching Estimates

*Note: specification includes number of entering mills and loggers in addition to sale controls.

Table 3A: Effect of Auction Method on Sale Outcomes (Northern Sales)

Panel A: Regression Estimates

(N= 958 Sales)



Dependent Variable: ln(Logger Entry) ln(Mill Entry) Loggers/Entrants Logger Wins ln(Winning Bid) ln(Winning Bid)*

No Interactions Between Sealed and Covariates
Sealed Bid Effect 0.131 -0.069 0.087 0.086 0.013 -0.048

(0.058)* (0.051) (0.029)** (0.046)+ (0.065) (0.055)
Includes Interactions Between Sealed and All Covariates
Sealed Bid Effect on Sample 0.120 -0.079 0.084 0.077 0.009 -0.027

(0.058)* (0.050) (0.029)** (0.046)+ (0.064) (0.048)

See Appendix Tables 1B and 2B for full set of controls and coefficients for the no-interaction specifications. Robust standard errors.

Dependent Variable: ln(Logger Entry) ln(Mill Entry) Loggers/Entrants Logger Wins ln(Winning Bid) ln(Winning Bid)*

Sealed Bid Effect on Sample 0.181 -0.194 0.152 0.135 -0.048 -0.027
(0.061)** (0.053)*** (0.031)*** (0.045)** (0.076) (0 .075)

Number of matches = 4 using same controls as Panel A and the estimated propensity score.  Robust standard errors (using 4 matches).

Panel B: Matching Estimates

Table 3B: Effect of Auction Method on Sale Outcomes (California Sales)

Panel A: Regression Estimates

(N= 481 Sales)



Table 4: Bid and Entry Distributions for Sealed Bid Auctions

(1)  (2)  
Bid Distribution  Logger Entry  

coefficient s.e. coefficient s.e.

Ln(Reserve Price) 0.43 (0.03) -0.29 (0.05)
Ln(Selling Value) -0.01 (0.02) -0.03 (0.03)
Ln(Manufacturing Costs) 0.39 (0.14) 0.85 (0.17)
Ln(Logging Costs) -0.39 (0.14) -0.81 (0.17)
Ln(Road Costs) 0.00 (0.03) -0.16 (0.04)
Species Herfindal -0.08 (0.11) -0.24 (0.15)
Density of Timber (hmbf/acres) -0.88 (0.31) -0.91 (0.44)
Salvage Sale (Dummy) -0.05 (0.05) -0.02 (0.07)
Scale Sale (Dummy) -0.07 (0.05) -0.15 (0.08)
Ln(Volume) -0.07 (0.03) -0.24 (0.04)
Kootenai NF (Dummy) 0.12 (0.06) 0.18 (0.09)
Mill (Dummy) 0.26 (0.03)
Mill Entrants 0.12 (0.02) 0.08 (0.03)
Logger Entrants 0.05 (0.01)
Potential Logger Entrants 0.01 (0.00)
Constant 2.70 (0.19) 2.20 (0.26)
Poisson parameter and Weibull scale parameter include year dummies

Mill(Dummy) 0.00 (0.06)
Logger Entrants 0.03 (0.01)
Mill Entrants 0.06 (0.01)
Constant 0.92 (0.09)

Constant -0.52 (0.13)

N=1325 N = 300
 Wald Chi-sq (22) 879.7 LR Chi-sq (21) 199.3

P-value 0.000 P-value 0.000
Pseudo-R2 0.14

Note: Bidding distribution model estimated using all sealed bids in 300 sealed bid auctions.

ln( )

ln( µ)

(Weibull) (Poisson)

ln( )

ln(p)



Table 5: Actual Outcomes vs. Outcomes Predicted by Model

(1) (2) (3)
Predicted Predicted

N Actual

Avg. Bid 1370 68.5 70.0 (2.0) 66.2 (1.8)
Avg. Logger Bid 1027 57.6 59.2 (1.8) 54.1 (1.6)
Avg. Mill Bid 343 101.0 102.4 (3.7) 102.4 (3.7)

Avg. Sale Price 300 81.1 83.8 (2.2) 85.0 (2.2)
Avg. Revenue 300 116,207 113,663 117,202
% Sales won by Loggers 300 68.7 66.0 (0.9) 63.5 (1.0)
Avg. Logger Entry 300 3.42 3.42 N/A 3.42 (0.1)

Avg. Sale Price (Competition) 658 72.8 79.8 (2.3) 79.0 (2.5)
Avg. Sale Price (Collusion) 658 72.8 52.4 (0.0) 51.5 (1.5)
Avg. Revenue (Competition) 658 156,937 163,478 162,820
Avg. Revenue (Collusion) 658 156,937 62,621 65,930
% Sales won by Loggers 658 60.0 54.4 (2.3) 51.5 (2.3)
Avg. Logger Entry 658 2.84 2.84 N/A 2.81 (0.4)

Note: Bootstrap standard errors in parentheses

Sealed Bid Sales

Open Auction Sales

(bidding only) (entry + bidding)



Table 6: Welfare Effects of Sealed vs. Open Auctions

(1) (2) (2)
Sealed Bid Open Auction Open Auction

(Competitive) (Part. Collusion)

Avg. Sale Price 81.5 80.8 0.6 (0.2) 74.5 7.0 (0.4)
Avg. Sale Revenue 148,533 147,665 868 (326) 125,935 22,599 (1612)
Avg. Sale Surplus 259,025 259,167 -141 (31.0) 259,167 -141 (31.0)
% Sales Won by Loggers 58.6 57.8 0.8 (0.1) 57.8 0.8 (0.1)

Avg. Sale Price 82.9 80.0 2.9 73.4 9.5
Avg. Sale Revenue 154,620 146,564 8,056 125,277 29,344
Avg. Sale Surplus 247,298 249,180 -1,882 249,180 -1882
% Sales Won by Loggers 57.7 54.6 3.2 54.6 3.2
Logger Entry 3.28 2.91 0.37 2.91 0.37

Note: Bootstrap standard errors in parentheses.  Standard errors are not yet available for the model with predicted entry and bidding.

(3)
Difference

Predict Bidding Only

Predict Entry & Bidding

(3)
Difference



Figure 1A 
Density of Propensity Score by Auction Format for Idaho and Montana Sales— 

 Full and Selected Samples 
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Figure 1B 
Density of Propensity Score by Auction Format for California Sales— 

 Full and Selected Samples 
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Figure 2: Estimated Bid Functions and Densities of Bidder Valuations
for the Case of Two Loggers, Two Mills
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