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Abstract
Banks produce private information about prospective borrowers. But, in the lending

market banks compete with each other without knowing how much information is being

produced by rival lenders. We show that strategic interaction between banks results in

endogenous credit cycles, with periodic "credit crunches." Banks can create winner’s curse

problems for rivals by adjusting their credit standards (amount of information produced),

sometimes raising standards resulting in some borrowers being unable to obtain credit

(a "credit crunch"). This can occur without any change in the macroeconomic environ-

ment. We then provide a variety of empirical evidence that this strategic interaction is an

important part of business cycle dynamics and is a priced factor in bank stock returns.

∗We thank Steve Davis, Armando Gomes, Anil Kashyap, Richard Kihlstrom, George Mailath, Nick Souleles, Jeremy Stein
and seminar participants at Duke, Chicago, and Moody’s Investors Services for their comments and suggestions.

†Philadelphia, PA 19104-6367. Phone: (215) 898-4802. E-mail: gorton@wharton.upenn.edu.
‡Philadelphia, PA 19104-6297. Phone: (215) 746-0361. E-mail: heping@ssc.upenn.edu.



1 Introduction

Changes in bank credit allocation, "credit crunches," are an important part of macroeconomic dynamics.

Rather than change the price of loans, banks sometimes ration credit.1 In this paper we show how the amount

of information that banks produce about potential borrowers, and the amount of credit banks are willing to

extend, varies through time due to strategic interaction between competing banks. Swings between high and

low credit allocations are an inherent part of banking due to the way banks compete for borrowers. Small

shocks can lead to prolonged credit crunches. But, bank credit cycles can occur without any change in the

macroeconomic environment. We investigate this amplification mechanism and provide empirical evidence

that bank credit cycles are an important autonomous part of business cycle dynamics. Also, we show that

credit cycles are a priced factor in an asset pricing model of bank stock returns. The theory and evidence

are also consistent with many stylized facts about bank lending. For example, the fact that bank lending is

procyclical.2

The amount of credit banks are willing to extend varies through time. A dramatic example in the U.S. is

the period shortly after the Basle Accord was agreed in 1988, during which time the share of U.S. total bank

assets composed of commercial and industrial loans fell from about 22.5 percent in 1989 to less than 16 percent

in 1994. At the same time, the share of assets invested in government securities increased from just over 15

percent to almost 25 percent. See Keeton (1994) and Furfine (2001).3 More generally, it has been noted that

banks vary their lending standards or credit standards. Bank “lending standards” or “credit standards” are

the criteria by which banks determine and rank loan applicants’ risks of loss due to default, and according to

which a bank then makes its lending decisions. While not observable, there is a variety of evidence showing

that while lending rates are sticky, banks do, in fact, change their lending standards. The most direct

evidence comes from the Federal Reserve System’s Senior Loan Officer Opinion Survey on Bank Lending

Practices.4 Banks are asked whether their "credit standards" for approving loans (excluding merger and

acquisition-related loans) have “tightened considerably, tightened somewhat, remained basically unchanged,

eased somewhat, or eased considerably.”5 Lown and Morgan (2001) examine this survey evidence and note

that, except for 1982, every recession was preceded by a sharp spike in the percentage of banks reporting a

tightening of lending standards. Other evidence that bank lending standards change is econometric. Asea

and Blomberg (1998) examined a large panel data set of bank loan terms over the period 1977 to 1993 and

“demonstrate that banks change their lending standards - from tightness-to laxity-systematically over the

cycle” (p. 89).

1Bank loan rates are sticky. Berger and Udell (1992) regress loan rate premiums against open market rates and control
variables and find evidence of “stickiness.” (Also, see Berger and Udell (1992) for references to the prior literature.) With
respect to credit card rates, in particular, Ausubel (1991) has also argued that they are “exceptionally sticky relative to the
cost of funds” (p. 50).

2 See Lown, Morgan and Rohatgi (2000), Jordan, Peek, and Rosengren (2002), and Lown and Morgan (2002).
3This episode is the focus of the empirical literature on credit crunches, an inconclusive literature no doubt due in large part

to a fundamental identification problem. See Bernanke and Lown (1991), Hall (1993), Berger and Udell (1994), Haubrich and
Wachtel (1993), Hancock and Wilcox (1994), Brinkman and Horvitz (1995), Peek and Rosengren (1995), and Beatty and Gron
(2001). Gorton and Winton (2002) provide a brief survey of the credit crunch literature.

4The survey is conducted quarterly and covers major banks from all parts of the U.S., accounting for between 60 and 70
percent of commercial and industrial loans in the U.S. The Federal Reserve System’s “Senior Loan Officer Opinion Survey on
Bank Lending Practices” was initiated in 1964, but results were only made public starting in 1967. Between 1984:1 and 1990:1
the question concerning lending standards was dropped. See Schreft and Owens (1991). Current survey results are available
at <http://www.federalreserve.gov/boarddocs/SnLoanSurvey/>.

5Lown and Morgan (2001, 2002), Lown, Morgan and Rohatgi (2000), and Schreft and Owens (1991) have analyzed the time
series of survey responses to the Senior Loan Officer Opinion Survey on Bank Lending Practices.
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Changes in lending standards have macroeconomic implications. Asea and Blomberg (1998) estimate

the joint relationship between bank lending standards and unemployment, concluding that cycles in bank

lending standards are important in explaining aggregate economic activity. Lown and Morgan (2001) go

further. They note that changes in bank lending standards may be responses to loan officers’ perceptions of

the future macroeconomy, so they adopt the approach that lending standards are endogenous in a standard

vector autoregression that controls for current macroeconomic, monetary, and credit conditions. Lown,

Morgan and Rohatgi (2000) summarize the results as follows: “A shock to credit standards and its aftermath

very much resemble a ‘credit crunch.’ Loan officers tighten standards very sharply for a few quarters, but

ease up only gradually: two or three years pass before standards are back to their initial level. Commercial

loans at banks plummet immediately after the tightening of standards and continue to fall until lenders ease

up. Output falls as well...” (p. 10). But, changes in credit standards are not a pure reaction to changes in

macroeconomic phenomena. Lown and Morgan (2001, 2002) and Lown, Morgan and Rohatgi (2000) extend a

standard macroeconomic vector autoregression (VAR) model to include the commercial bank loan market, in

particular including the lending standards survey index as a proxy for loan availability. Their basic finding is

that the macroeconomic variables are not successful in explaining variation in the lending standards index.6

Lown and Morgan (2001) conclude: “Even with the most conservative ordering — standards last — we find

that shocks to standards account for most of the variance decomposition in lending and a sizable share of

the variance of the decomposition of output. Standards remain important even when the model is extended

to include various proxies for commercial credit quality and demand (business failures and the loan rate)

forward looking variables (forecasted GDP and interest rate spreads)” (p. 3).

The theory we present has two main elements. The first element concerns the essence of banking.

Banks produce private information about potential lenders (see Gorton and Winton (2003) for a review

of the literature). When competing with each other to lend, banks produce information about potential

borrowers in an environment where they do not know how much information is being produced by rival bank

lenders.7 The basic idea that we develop concerns the strategic use of the winner’s curse by one bank against

rival banks over time. A bank can produce more information than its rivals and then select all the better

borrowers, leaving unknowing rivals with adversely selected loan portfolios. The second element relates

to the industrial organization of the banking industry. While ultimately an empirical matter, strategic

interaction between banks seems natural because banking is highly concentrated. Entry into banking is

restricted by governments. In developed economics the share of the largest five banks in total bank deposits

ranges from a high of 81.7% in Holland to a low of 26.3% in the United States. See the Group of Ten (2001).

In less developed economies, bank concentration is typically much higher (see Beck, Demirguc-Kunt, and

Levine (2003)).

Combining these two elements leads to a model in which banks collude to set high loan rates (hence loan

rates are sticky) and implicitly agree not to expend enormous amounts on information production. The

problem for maintaining the implicit agreement is that each bank does not know how much information rival

6They also find that changes in bank lending standards matter much more for the volume of bank loans and aggregate
output than do commercial loan rates, consistent with the finding that loan rates do not move as much as would be dictated
by market rates.

7Broecker (1990) observed that the information asymmetry also affects the banks themselves and means that banks compete
with each other in a special way. In Broecker’s (1990) model, banks use noisy, independent, credit worthiness tests to assess
the riskiness of potential borrowers. Because the tests are imperfect, banks may mistakenly grant credit to high-risk borrowers
who they would otherwise reject. As the number of banks increases, the likelihood that an applicant will pass the test of at
least one bank rises. Banks face an inherent winner’s curse problem in this setting. In Broecker’s model banks do not behave
strategically.
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banks are producing about borrowers. Information production intensity is private information. Deviation

from the arrangement occurs if a bank produces more information than its rivals and then accepts only high

quality borrowers at the agreed (collusive) loan rate. Rivals are left with an adversely selected pool of lower

quality borrowers. Banks can observe public information about rivals, namely, the size of banks’ loan port-

folios (number of loans that were granted) and the portfolio outcomes (the number of loans that defaulted).

This public information is the basis for banks’ beliefs about whether rival banks are following the implicit

collusive arrangement or deviating. As in Green and Porter (1984), intertemporal incentives to maintain

the collusive arrangement requires periods of "punishment," which here correspond to credit crunches. In a

credit crunch all banks increase their information production intensity, their "lending standards," and stop

making loans to some borrowers which previously were extended credit. These swings in credit availability

are caused by banks’ changing beliefs about the viability of the collusive arrangement.

A bank makes two strategic decisions each period, a loan rate is chosen and a level of information

production intensity is chosen. We show that as a result of there being two actions, banks must look at two

sources of public information, namely number of loans and the default performance of the loans, in order to

detect the possibility of cheating on the arrangement. This result is important for the empirical tests.

Testing the implications of the infinitely repeated game of bank lending is difficult. The collusive

arrangement of the model is subtle since it is implicit. Banks never formally collude, and they need not be

rivals with regard to every type of loan in all geographical areas. The model is abstract in the sense that

exact equilibrium strategies can not be explicitly stated, and there are likely many equilibria. Moreover,

banks’ beliefs are not observable, nor is information production intensity or lending standards. A robust

prediction of the model, however, is that the relative performance of other banks matters for the decisions

of each bank with respect to its own credit allocation. For example, if a bank’s loan losses have been rising

relative to those of rival banks, all banks may decide to raise their lending standards by producing more

information. This could occur because a bank believes that another bank is deviating, and that other bank

realizes that its rivals believe it is cheating. Therefore, all banks engage in punishment by increasing their

standards and cutting off credit to lower rated borrowers. In a perfectly competitive market the history of

rivals’ relative performance would not matter.

The empirical strategy then is to find a relevant history of relative bank performance that banks use to

form their beliefs. We must so this for some set of banks that could be rivals with regard to some category

of loans. The first set of empirical tests focuses on U.S. credit card lending because it is highly concentrated

with an identifiable group of banks that make the bulk of the loans in this market, so the rival banks can

be identified. Next, we look at whether our measures of bank beliefs have predictive value for bank stock

returns.

The second set of tests concerns whether the credit cycles induced by changes in bank beliefs, as proxied

for by the measure of relative bank performance histories has implications for the business cycles and for

systematic risks. In a vector autoregression we test whether measures of relative bank performance can

explain (in the sense of Granger-causality) the Senior Loan Officer Opinion Survey of Bank Lending Practices

index of lending standards tightening in a large sample of U.S. banks over time. We add a variety of

macroeconomic variables, as well, and show our belief proxy is an autonomous cause of macroeconomic

dynamics. Finally, we ask whether the beliefs measure is a priced factor in a Fama-French type three or

four factor model. We find all the evidence to be consistent with the theory.

Aside from the empirical literature on credit crunches mentioned above (in footnotes), the other related

work is Rajan (1994). He argues that fluctuations in credit availability by banks are driven by bank managers’
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concerns for their reputations (due to bank managers having short horizons), and that consequently bank

managers are influenced by the credit policies of other banks. Managers’ reputations suffer if they fail to

expand credit while other banks are doing so, implying that expansions lead to significant increases in losses

on loans subsequently. However, as pointed out by Weinberg (1995), the data on the growth rate of total

loans and loan charge-offs in the Unites States from 1950 to 1992 do not show the pattern of increases in

the amount of lending being followed by increases in loan losses. We test Rajan’s idea more formally in the

empirical section here.

We proceed in Section 2 to describe the stage game for bank lending competition, and we study the

existence of stage Nash equilibrium and the model implication for lending standards. The stage game is

a prelude to considering the infinitely repeated game, the subject of Section 3. In Section 4, we carry out

empirical tests based on the theoretical predictions. Section 5 concludes the paper.

2 The Lending Market Stage Game

In this section we set forth the model and analyze the lending market stage game.

Suppose (without loss of generality) that there are two banks in the market competing to lend, as follows.

There are N potential borrowers in the credit market. Each of the potential borrowers is one of two types,

good or bad. Good types’ projects succeed with probability pg, and bad types’ projects succeed with

probability pb, where pg > pb ≥ 0. Potential borrowers, sometimes also referred to below as “applicants,”

do not know their own type. At the beginning of the period potential borrowers apply simultaneously to

each bank for a loan. There is no application fee. The probability of an applicant being a bad type is λ,

which is common knowledge.8 Each applicant can accept at most one loan offer, and if a loan is granted, the

borrower invests in a one period project which will yield a return of X if the project succeeds and returns

0 otherwise. A borrower whose project succeeds will use the return X to repay the loan, i.e., a borrower’s

realized cash flow is verifiable.

Banks are risk-neutral. They can raise funds at some interest rate, assumed to be zero. After receiving

the loan applications, a bank can use a costly technology to produce information about applicant type. The

credit worthiness test results in determining the type of an applicant, but there is a per applicant cost, c > 0,

for each loan applicant. Banks can test any proportion of their applicants. Let ni denote the number of

applicants that are tested by bank i. We say that the more applicants that a bank tests, i.e., using the

costly information production technology the higher is its credit or lending standard.9 If a bank switches

from not using the credit worthiness test to using it, we say that the bank has raised its lending or credit

standards.10 We assume that neither bank observes the other bank’s credit standards, i.e., each bank is

unaware of how many applicants the other bank tests. Also, results of the test are the private information

8We will hold λ fixed throughout the analysis, but this is to clarify the mechanism that is our focus. It is natural to think of
λ as being time-varying, representing other business cycle shocks outside the model, and we could easily incorporae this. But
it would obscure the cyclical effects that are purely due to bank competition.

9 Imagine that banks always produce some minimal amount of information about loan applicants. We ignore this base
amount of information, however, and focus only on the situation where banks choose to produce more information than this
base level. So, we interpret the credit worthiness test as the additional information produced, beyond the normal information
production.
10 "Lending standards" are here equated with increased information production. Sometimes a "lending standard" is thought

of as a score that is produced by a model. The model here envisions something perhaps broader, incorporating a culture that
expresses a view about the score and how it is to be combined with other information the bank may have. Since "lending
standards" are unobservable, part of the joint hypothesis tested in the empirical section is the idea that our interprettion of
"lending standard" is correct.
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of the testing bank.

Since the bank borrowing rate is zero, when a bank charges F (to be repaid at the end of the period) for

one unit of loan, the bank’s expected return from lending to an applicant will be λpbF + (1− λ)pgF − 1 in
the case of no credit worthiness test.

• Assumption 1: pgX > 1, pbX < 1, and λpbX + (1− λ)pgX > 1; 0 ≤ X ≤ 1.

This assumption means that there exists some interest rate that allows a bank to earn positive profits

from lending to a good type project ex ante, but there does not exist an interest rate at which a bank can

make positive profits from lending to a bad type project ex ante. (The face value of the loan F is equivalent

to the interest rate, and later on we refer to F as the “loan interest rate.”) It is also possible for banks to

make profit from lending to both types of applicants without discriminating between the types.

Bank i randomly chooses ni applicants to test. For those applicants that bank i does not test, it will

decide to approve applications to Nαi ≤ N−ni of the applicants, and offer the approved applicants a loan at
interest rate Fαi. The bank rejects the rest of the non-tested applicants. In general, Fαi could vary among

the untested applicants that get approved by bank i, i.e., different applicants in the same category of “no

test” could possibly get offers of loans at different interest rates. Therefore, we interpret Fαi as a vector of

interest rates charged to those approved non-tested applicants.

For those applicants that are tested by bank i, the bank will observe a number of good type applicants,

Ngi ≤ ni, and will then decide to approve applications to Nβi ≤ Ngi of the applicants that passed the test,

and offer the approved applicants a loan at interest rate Fβi (which could in principle vary across those

offered loans). Bank i can also decide to approve applications to Nγi ≤ ni−Ngi of the applicants that failed

the test, and offer these approved applicants a loan at interest rate Fγi. The bank rejects the remaining

applicants.

We assume that banks do not observe each other’s interest rates or the identities of applicants offered

loans. At the end of the period only final loan portfolios sizes and outcomes are publicly observable. Banks

cannot communicate with each other.

The stage strategy of a bank is:

si = {ni, Nα(ni, Ngi), Nβ(ni, Ngi), Nγi(ni,Ngi), Fαi(ni, Ngi), Fβi(ni, Ngi), Fγi(ni, Ngi)}, (1)

where:

ni : the number of applicants that bank i tests;

Ngi : the number of good applicants found with the test;

Nαi : the number of applicants that bank i offers loans to without test;

Nβi : the number of applicants that pass the test and get a loan from bank i;

Nγi : the number of applicants that fail the test and get a loan from bank i;

Fαi : the interest rate on the loan that bank i offers to the applicants without a test;

Fβi : the interest rate on the loan that bank i offers to the applicants that pass the test;

Fγi : the interest rate on the loan that bank i offers to the applicants that fail the test.

Figure 1 shows the timing of moves in the one period game.
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Firms apply to 
both banks for 
loans 

Nature decides the 
type of the firms. 

Banks choose to test or not, and then make 
loan and interest rate offers, contingent on 
test results, if the test was used. 

Applicants that receive 
loan offers choose to 
accept or not. 

Successful 
borrowers invest in 
their projects.

Borrowers with 
successful projects 
repay loans. 

Next period starts.

Figure 1: The Timing of the Stage Game

2.1 Stage Nash Equilibrium

We now turn to study the Nash equilibrium and the conditions for the existence of Nash equilibrium in the

lending market stage game. We show a condition under which the only Nash equilibrium that exists is one

in which neither bank conducts credit worthiness tests and both banks earn zero profits.

First we will study the Nash equilibrium in which no bank conducts credit worthiness tests. We have

the following results.

Proposition 1 If c ≥ (1−λ)λ(pg−pb)
λpb+(1−λ)pg , then there exists a symmetric Nash equilibrium in which no bank

conducts credit worthiness tests. If c < (1−λ)λ(pg−pb)
λpb+(1−λ)pg , then there is no symmetric Nash equilibrium in which

no bank conducts credit worthiness tests.

The proof is in the Appendix.

Proposition 1 says that if the cost of testing each loan applicant is sufficiently high, i.e., c ≥ (1−λ)λ(pg−pb)
λpb+(1−λ)pg ,

then the there exists a Nash equilibrium in which no bank conducts credit worthiness tests and both banks

earn zero profits.

• Assumption 2: c ≥ (1−λ)λ(pg−pb)
λpb+(1−λ)pg .

Assumption 2 guarantees the existence of the stage symmetric Nash equilibrium. At the same time, this

assumption implies that the optimal payoffs for the banks are reached when no credit worthiness test are

conducted (as we will show in a moment). That is, credit worthiness testing is socially inefficient.

Now consider the case where both banks test all the applicants.

Proposition 2 There is no symmetric Nash equilibrium in which both banks test all the applicants.

The proof is in the Appendix. Intuitively, after the banks test all the applicants, they will compete with

each other for the good type applicants, which will drive the post-test profit to be zero. However, since there

is a cost of test, ex-ante the banks’ profit will be negative.

Next we examine symmetric equilibria in which each bank tests a subset of the applicant pool.

If in equilibrium, each bank tests a subset of all applicants, the winner’s curse effect may lead the banks

to reject all those non-tested applicants. Assume the banks randomly pick n < N applicants for testing,

6



and offer loans to those that pass the test. To simplify the argument, assume that the interest rates offered

to non-tested applicants is higher than the one offered to applicants that passed the test. For the non-tested

applicants, it is possible that there does not exist a profitable interest rate due to the winner’s curse. If a

bank offers loans to non-tested applicants then given that it is accepted by the applicant, the probability of

this non-tested applicant being a bad type is:

θ
.
= Pr(bad type|not tested) =

n
N λ+ (1− n

N )
1
2λ

n
N λ+ (1− n

N )
1
2

.

When n is close to N , θ can be very close to 1. This has a sensible implication for lending standards. When

banks conduct credit worthiness testing, lending standards (loosely defined) can rise in two ways. First,

those applicants that were tested are rejected if banks find them to be bad types; second, those applicants

that were not tested can be rejected if the proportion of applicants that are tested is large. The second

"rejected" category might contain some good type applicants. Therefore, some non-tested applicants can

not get loans if both banks test a large portion of all applicants, and this naturally creates a "credit crunch,"

in which a non-tested (by either bank) applicant does not get a loan even it is of good type.

The possibility of non-existence of a profitable interest rate for non-tested applicants will be discussed in

the proof of the proposition below.

Proposition 3 There does not exist a symmetric Nash equilibrium in which each bank test 0 < n < N

applicants.

The proof is in the Appendix. The basic argument similar to that of Proposition 2.11

Our conclusion with regard to the stage game in the lending market is that, without mixed strategies,

the only Nash equilibrium that exists is the equilibrium in which neither bank conducts credit worthiness

testing, and both banks earn zero profits. However, in the repeated setting, banks can earn strictly positive

profit and we can not rule out the credit worthiness testing on the equilibrium path. Indeed, the existence

of the credit worthiness testing and the winner’s curse effect makes the competition more complicated than

the usual Bertrand competition without information acquisition.

It is straightforward to characterize the optimal payoffs that the two banks receive in the stage game.

Lemma 1 Under Assumption 2, the maximum joint stage payoff for banks is reached without credit worthi-
ness test.

Proof. If a bank does not carry out a credit worthiness test on an individual applicant and charges F ,
then the expected payoff from a loan to that individual applicant is:

Eπ = λpbF + (1− λ)pgF − 1,

which is maximized at F = X. The gain from credit worthiness testing is λ(1− pbF ), which is decreasing in

F . Under Assumption 2, charging X to all loan applicants without testing is more profitable than charging

X to only those applicants that pass the test.

Intuitively, a higher interest rate (higher F ) will make the credit worthiness test less valuable. However,

when the banks collude by offering a profitable interest rate to the applicants without testing, there are

incentives for both banks to undercut the interest rate in order to get more applicants or to conduct credit

11Banks could play more general mixed strategies. For example, banks could mix between testing n1 applicants and testing
n2 applicants. We do not delve into these strategies.
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worthiness test in order to get better applicants. This two dimensional competition, through the loan

interest rate and the amount of information acquisition results in some special features to the game, as we

show in the next section.

3 Repeated Competition

Let F ∗ be the interest rate corresponding to zero profits in the loan market when there is no testing.12 In

the one period game with symmetric pure strategies, for any F > F ∗, it is more profitable for banks to
lend without conducting credit worthiness tests. Setting a (collusive) loan interest rate of F = X would be

the most profitable case for both banks, but this outcome cannot be achieved in one period. In repeated

competition banks will try to collude to charge F = X without using credit worthiness tests. But collusion

can only be supported if there are intertemporal incentives, that is, if banks have a way to punish each other

to prevent deviation. In deciding if there is a need for punishment, a bank can, at the end of each period,

observe the number of loans made by a rival (the loan portfolio size) and the number of loans defaults that

occurred. There are two ways to deviate. Lowering the loan interest rate attracts more applicants but

this can be imperfectly detected by monitoring the loan portfolio size.13 Alternatively, a bank can engage

in more intensive information production, by testing, to improve loan quality. This can only be detected

by monitoring the rival’s loan portfolio default performance. A bank’s use of testing cannot be perfectly

monitored by rival banks since both good and bad type applicants have a risk of failure. So, observing the

ex post loan performance does not provide full information about whether a bank deviated by conducting

credit worthiness tests.

In general, banks can base their strategies on all available information, both public and private. Note

that, given bank A’s strategy, bank B’s strategy will affect bank A’s loan portfolio size and composition,

i.e., the proportion of bad type applicants in the portfolio. If one bank’s strategy only depends on public

information, the other bank can not do better by making its strategy dependent on both public information

and its private information. We therefore consider sequential equilibria in which banks’ strategies will depend

on public information. The class of sequential equilibria (see Kreps and Wilson (1982)) that depends only on

public information is called “Perfect Public Equilibria” (PPE). See Fudenberg, Levine, and Maskin (1994).

Banks can compete by changing their offered loan interest rates and by changing their credit standards, i.e.,

the amount of information that they produce. The available public information at the end of each period

is the number of loans that the rival made and the number of those loans that defaulted.14

In this section we restrict attention to symmetric PPE (SPPE) (defined below). Aside from seeing how

the repeated game works, the main point of this section is the demonstration that because banks have two

actions that they can use to compete (i.e., change lending rates and increase information production), banks’

beliefs must be based on the history of banks’ portfolio size as well as banks’ loan default performance.

12See Lemma 2 of the Appendix.
13 If both banks make identical offers to a borrower, the borrower randomly chooses a bank. So, portfolio sizes may differ

even if no bank is deviating.
14As we noted above, observing the ex post loan performance of a bank’s porfolio cannot give full information about whether

the bank deviated by conducting credit worthiness tests because both good and bad type borrowers have a risk of failure. In
other words, the support of the distribution of outcomes is independent of the banks’ actions, with regard to interest rate and
lending standard. This also implies that Bayes’ Rule can be used off the equilibrium path.
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3.1 The Formal Model

Assume that the two banks play the lending market stage game period after period, each with the objective

of maximizing its expected discounted stream of profits. Upon entering a period of play, a bank observes

only the history of:

(i) its own use of the credit worthiness test and the results;

(ii) its interest rate on the loan offered to the applicants;

(iii) its choice of applicants that it lent to;

(iv) its own and its competitor’s loan portfolio size (number of loans made);

(v) its own and its competitor’s number of successful loans.

For bank i, a full path play is an infinite sequence of stage strategies as in (1). The infinite sequence

{sit}∞t=0, i = 1, 2, together with nature’s realization of the number of good type applicants and the applicants’
rational choice of bank, implies a realized sequence of loans from bank i, as well as a quality of the borrowers

who received loans from bank i. That is:

Kit = (Dαit,Dβit,Dγit, χαit, χβit, χγit),

where D denotes the number of applicants that accepted the offer, and χ denotes the number of successful

borrowers; α, β, and γ denote the corresponding category, as defined earlier. Let the public information at

the start of period t+1, be κt = (κ1t, κ2t), where κit = {Dit, χit}, i=1,2 (for each bank). So, the information
set includes the realization of the number of loans made by bank i and the number of borrowers that repaid

their loans in period t. By definition:

Dit = Dαit +Dβit +Dγit

χit = χαit + χβit + χγit.

At the beginning of period T bank i has an information set: hT−1i = {ait,Kit, κt}T−1t=0 ∈ HT−1
i , where

ait = {nit, Nαit, Nβit, Nγit, Fαit, Fβit, Fγit} is the action of each bank (by convention h−1i = ∅). A (pure)

strategy for bank i associates a schedule σiT (h
T−1
i ) with each T = 0, 1, ... and σiT : HT−1

i → S, where

S is the stage strategy space with element sit, defined earlier. Denote the public information as hT−1 =
{κt}T−1t=0 ∈ HT−1, and a (pure) strategy for bank i associates a schedule σiT (hT−1) with each T = 0, 1, ...

and σiT : HT−1 → S.

Given λ, pg, and pb (i.e., nature’s uncertainty), a strategy profile (σ1, σ2), with σi = {σit(.)}∞t=0, i = 1, 2,
recursively determines a stochastic process of credit standards ({nit}∞t=0, i = 1, 2), interest rates ({Fit}∞t=0, i =
1, 2), bank portfolio sizes, and loan performances ({κit}∞t=0, i = 1, 2). The expected pathwise payoff for bank
i is:

vi(σ1, σ2) = E
∞X
i=0

δtπi(s1t, s2t),

where

πi(s1t, s2t) = (χαitFit −Dαit) + (χβitFβit −Dβit) + (χγitFit −Dγit)− nitc.

In the next section we turn to determining the Perfect Public Equilibria of the repeated lending game.
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3.2 Factorization of Perfect Public Equilibrium

A Perfect Public Equilibrium (PPE) is a profile of public strategies that, starting at any date t and given

any public history ht−1i , forms a Nash equilibrium from that point on (see Fudenberg, Levine, and Maskin

(1994)). As noted earlier, a bank cannot do better by playing a non-public strategy, if the other bank is

using a public strategy (i.e., one based on public information). Private information about past actions,

use of the credit worthiness tests or loan interest rates, do not affect behavior because such information

is not public. We will show that a PPE induces a PPE in every continuation game.15 We now turn to

characterizing the PPEs.

Let ht = κt be the history of realized public information, namely the number of loans made (loan

portfolio size) and the number of defaults (loan performance) for each bank at the end of each period t.

Let V ≡ {v(σ) | σ is an PPE} be the set of PPE payoffs. Note that, by the existence of the stage game

Nash equilibrium, V is not empty. To characterize the set of PPE payoffs we will follow Abreu, Pearce,

and Stacchetti (APS) (1986, 1990). The basic idea of APS is that each stage of the repeated lending game

can be represented as a static game with payoffs equal to the state game payoffs augmented by continuation

payoffs, i.e., the present value of the future payoffs. The continuation payoffs depend on the current play

of the stage game. Because the loan portfolio sizes and the number of defaults are publicly observed at

the end of the period, the continuation strategy profile is induced by this public information (i.e., a PPE).

Therefore, this profile is common knowledge, and is itself a PPE. The value of the continuation profile is

therefore always in V . APS define the notion of “self-generation” to “factor” a PPE into the first period

payoff and the continuation payoff, depending on the first period outcome. The key to finding the subgame

perfect sequential equilibrium is the construction of self-generating sets. Intuitively, a set W contained in

RN is “self-generating” if each value in W can be supported by continuation values which themselves have

values in W . The concept of self-generation is formalized by the construction of an operator or map T (V ).

Suppose that V is the set of all possible payoffs tomorrow. Let T denote the set of payoffs today using pure

strategies and consistent with Nash play in the game for some u in V . Define the operator T (V ) which

yields the set of PPE values, V ∗, as the largest invariant, or “self-generating” set. For any V containing

(0, 0) (the stage Nash payoffs), which is the expected payoff from stage Nash equilibrium, the operator is

defined as follows:

T (V ) ≡ {(v1, v2) : ∃(s1, s2) ∈ S × S and (u1, u2) with ui : N 4 → co(V )

such that : vi = E[πi(s1, s2) + δui(κt)] for i = 1, 2

and : vi ≥ E[πi(s
0
i, s−i) + δui(κ

0
t)] for any s

0
i ∈ S and i = 1, 2.

This operator factors the supergame into two components: current-period strategies (s1, s2) ∈ S×S and

the continuation value (u1, u2) drawn from the convex hull of the set V .16

Lemma 2 The operator T maps compact sets to compact sets.

15A PPE toegether with any beliefs consistent with Bayes’ rule consitutes a Perfect Bayesian Equilibrium (PBE), but a PBE
need not be a PPE. See Fudenberg, Levine, and Maskin (1994) for an example.
16By using the convex hull of V , we are allowing public randomization. Implicitly, we assume that in each period, there is a

lottery that determines which Nash equilibrium will be played next period, as a function of the actions chosen by the banks this
period. The randomization (i.e., the lottery) is public, so this is like having a “sunspot” determine the continuation values.
This convexifies the set of equilibrium continuation values. This is a standard assumption. E.g., see Cronshaw and Luenberger
(1994).
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Proof. This follows because the constraints entail weak inequalities, the feasible set is compact, and the
utility and constraint functions are real-valued, continuous and bounded.

This property of T is crucial for applying the methodology of Abreu, Pearce, and Stacchetti (1986,

1990). In particular, let V0 be compact and contain all feasible, individually rational payoffs (for example,

V0 = [0,
1
δN [λpbX + (1− λ)pgX − 1]]× [0, 1δN [λpbX + (1− λ)pgX − 1]]), and define Vn+1 = T (Vn), n ≥ 0.

Then the definition of T implies that T (Vn) ⊆ Vn. Using this and the fact that Vn is nonempty for each

n (since repeating stage Nash payoff is always in every Vn), V ∗ = limn→∞ Vn is a nonempty, compact set.

Following the arguments in Abreu, Pearce, and Stacchetti (1990), V ∗ is the largest invariant set of T , and
thus is equal to the set of public perfect equilibrium values of this game.

3.3 Symmetric Perfect Public Equilibrium

We now examine symmetric PPE (SPPE) in which asymmetric play is allowed after the first period stage

game is played symmetrically.17 We focus on demonstrating that the banks’ continuation play depends on

the history of the number of loans made by each bank and on the number of loan defaults in each bank’s

portfolio. These results then motivate the empirical analysis.

Any symmetric perfect public equilibrium σ can, as discussed, be factored into a first-period strategy s

and a continuation payoff function u : N 4
+ → V ∗. An SPPE is defined as follows:

Definition: A Symmetric Perfect Public Equilibrium (SPPE) is a Perfect Public Equilibrium that can be
decomposed into the first period stage strategies and continuation value functions (s1, s2, u1, u2) such that:

s1 = s2 and u1(D1,D2, χ1, χ2) = u2(D2,D1, χ2, χ1).

According to the definition, the stage game strategies are the same, but the continuation strategies can

differ though they must have the same continuation value. In particular, note that the continuation value

functions for Bank 1 and Bank 2 are symmetric in that if we exchange the loan portfolio sizes and loan

performances, the continuation values will also be exchanged. In such an SPPE, the expected payoff for the

two banks are the same, but asymmetric play is allowed after the first period, for asymmetric realizations of

loan portfolio size and loan performance.

We will show that if there is no credit worthiness testing (because, by assumption, the cost is too high),

then the continuation values will only depend on the loan portfolio sizes of the two banks. At a profitable

interest rate, when Bank 1 gets more loans than its rival, the continuation value of Bank 1 should be lower,

to eliminate the incentive of the banks to deviate by undercutting interest rates to get more loans. However,

when there is credit worthiness testing, it may not be true that making more loans is always better. A bank

can deviate by testing, “raising credit standards,” resulting in the other bank lending to bad type applicants

rejected by the first bank. This is the strategic use of the winner’s curse by one bank against its rival. Due

to that possibility, we will show that loan performance (number of defaults in each bank portfolio) will also

affect the continuation value.

Proposition 4 In any SPPE with s = (n = 0, Nα, Fα) played symmetrically on the equilibrium path, where
Fα is a constant larger than F ∗ = 1

λpb+(1−λ)pg and Nα = N , if c < λ(1−λ)(pg−pb)Fα, then the continuation
value functions cannot only depend on (D1,D2) (i.e., only on the number of loans made by each bank).

17We can prove that there does not exist any symmetric PPE in a strict sense (i.e., both banks behave the same way in the
stage game and in the continuation game) other than the one in which the stage Nash equilibrium is played every period. The
proof is available on request.
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The proof is in the Appendix. The proof involves finding a deviating strategy such that the expected

continuation payoffs are the same for both banks while there is a stage gain by conducting a credit worthiness

test. The proposition says that banks’ loan performances (i.e., number of defaults) matters in an SPPE with

banks charging the same interest rate to all the applicants, and when they do not carry out credit worthiness

testing. With the possibility of credit worthiness testing, variation in loan portfolio sizes is not enough to

detect deviation through credit worthiness testing. When both banks offer loans to only a subset of the

applicants without using the test, we have the following results.

Corollary 1 In any SPPE with s = (n = 0, Nα, Fα) played symmetrically on the equilibrium path, where
Fα is a constant larger than F ∗ = 1

λpb+(1−λ)pg and 2 ≤ Nα < N , if c < λ(1 − λ)(pg − pb)Fα, then the
continuation value functions cannot depend on (D1,D2) only (i.e., only on the number of loans made by
each bank).

The proof is in the Appendix.

Corollary 2 In any SPPE with s = (n = 0, Nα, Fα) played symmetrically on the equilibrium path, where
Fα > F ∗ is a vector of different interest rates offered to the approved applicants and Nα ≤ N , if c <
2N−1
2N λ(1−λ)(pg−pb)min{Fα}, then the continuation value functions cannot depend on (D1,D2) only (i.e.,
only on the number of loans made by each bank).

The proof is in the Appendix.

The conclusion is that when the banks want to avoid the costly credit worthiness test on the equilibrium

path, then it is not possible for the two banks to collude at a high loan interest rate in a PPE without looking

at each other’s loan performances. The possibility of deviating by using credit worthiness testing, and the

resulting winner’s curse effect, makes both banks strategies sensitive to each others’ past loan performances,

even though there is an i.i.d. distribution of borrower types.

Banks’ strategies depend on the history of banks’ loan portfolio performance and size. To help understand

this issue for later empirical tests consider a simple example, withN = 2 applicants. Suppose Bank 1 deviates

from the strategy s = (n = 0, Nα = 2, Fα), by deviating to s0 as follows: test one applicant; if it is good, offer
a loan at rate F−α , and reject the other applicant; if the applicant is bad, reject it, and offer a loan to the other
applicant at loan rate F−α . In this way, the expected loan portfolio size is not changed, but loan performance
will be improved — ,there is less likely to be a default. Given the loan distribution (D1 = 1,D2 = 1), from

Bank 2’s point of view, without deviation by Bank 1, the probability of Bank 2 having a loan default loan

is:

q1 = λ(1− pb) + (1− λ)(1− pg).

With Bank 1 deviating to s0, this probability becomes:

q01 = λ(1− pb) + (1− λ)[λ(1− pb) + (1− λ)(1− pg)].

The likelihood of default is higher:

∆q1 = q01 − q1 = λ(1− λ)(pg − pb).

To detect a deviation, however, banks should compare their results. That is, they should check their loan

performance difference. Looking at that difference, the results are different. Given the loan distribution
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(D1 = 1,D2 = 1), without deviation by Bank 1, the probability of Bank 2 having a worse performance than

Bank 1 is:

q2 = λ(1− pb)[λpb + (1− λ)pg] + (1− λ)(1− pg)[λpb + (1− λ)pg] < q1.

With Bank 1 deviating to s0, this probability becomes:

q02 = λ(1− pb)[λpb + (1− λ)pg] + (1− λ)[λ(1− pb) + (1− λ)(1− pg)]pg.

And:

∆q2 = q02 − q2 = λ(1− λ)(pg − pb) = ∆q1.

The measure of "performance difference" detects the deviation effectively because it excludes the case where

both banks perform poorly. Excluding this case is empirically important because this case can result from

aggregate shocks, which we do not model.

In the Appendix, we construct a detailed example, using a Green-Porter (1984) type trigger strategy, in

which banks change their lending standards based on the history of their performance differences.

In the next section, we carry out different empirical tests based on "performance difference" measures,

and as we have discussed, we expect that a large "performance difference" will cause a "punishment" in the

form of a credit crunch induced by the switch to using the costly credit worthiness tests.

4 Empirical Tests

The model is abstract in the sense that exact equilibrium strategies can not be explicitly stated, and there

are likely many equilibria. It is not immediately obvious how to test such a model. In addition, formulating

empirical tests of the repeated lending market game requires confronting a number of other large problems.

First, important variables are unobservable, such as lending standards and bank beliefs. Second, rival banks

must be identified and it is not clear how to do this. Banks may compete based on geography or product

line, or both. In this section we explain how we confront these issues. We will then present a variety

of evidence. We also will examine some alternative explanations for why this variable might matter, for

example, learning about the macroeconomy. Overall we find broad support for the repeated credit cycle

model.

Lending standards are unobservable, so empirical tests cannot be based directly on standards. In the

repeated game the decision to increase information production or raise standards results from a change in

beliefs about rival banks’ actions. But banks’ beliefs are also not observable. However, we have shown that

equilibria depend on the history of public information; beliefs and changes in beliefs are based on public

information. Therefore, the empirical strategy we adopt is to focus on one robust prediction that the theory

puts forward, namely, that unlike a perfectly competitive lending market, in the imperfectly competitive

lending market that we have described, past histories of rival banks should affect the decisions of any given

bank. The basic empirical strategy is to construct measures of the relative performance histories of banks.

We construct indices of the absolute value of the difference in loan loss ratios and test whether the history

of such a variable has predictive power for future lending decisions, loan losses, and bank stock returns.18 If

banks’ beliefs about rivals’ actions changed based on this parameterization of the public history, then when

this measure increases, i.e., there is a greater dispersion of relative performance, then banks reduce their
18Note that the absolute value is important because even if a bank is doing relatively better than its rivals it knows that the

rivals believe that it has deviated and so rivals will raise their information production, causing the better performing bank to
also raise its information production. Banks punish simultaneously resulting in the credit crunch.
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lending and increase its quality, resulting in lower loss ratios in the future. The test focuses on the general

notion of imperfect competition in bank lending, rather than the specific set of equilibria in which banks

punish each other by increasing information production, rather than increasing interest rates.

The second challenge in testing concerns identifying rival banks. To test the theory, we must identify

banks that are, in fact, rivals in a lending market. It is not clear whether banks compete with each other in

all lending activities or only in some specialized lending areas. It is also not clear whether bank competition

is function of geography or possibly bank size. In the U.S., for example, banks can compete for loans

anywhere in the world, regardless of their location. It is often stated that banks tend to specialize in lending

to specific sectors (e.g., the steel industry or hospitals), in certain geographical areas (the Southwestern

U.S. or Latin America), or to certain types of applicants (e.g., consumers who want home mortgages, small

businesses, or large corporations). But, the data are not fine enough to assess this specialization notion. It

is not clear whether the theory applies to all lending or to narrow categories. Banks could collude on some

products, in some geographical areas, but not on other products or in other areas. This is an empirical issue,

so we will examine both possibilities.

Broadly, the empirical analysis is in two parts. First, we examine a narrow category of loans, credit

card lending, where there are a small number of banks that appear to dominate a market. We base the

parametrization of bank’s relative histories (which we hypothesize is the basis of their belief formation)on

this narrow category of lending. Since it is not clear which banks are rivals, we first analyze this lending

market by examining banks pairwise. Unfortunately, the Federal Reserve Call Reportsonly have the specific

credit card data for a short period of time, an econometric issue we address below. We also ask whether

the our parameterization of banks’ relevant histories has any predictive power with respect to future bank

stock returns.

Secondly, we turn to a broader examination of the theory in several parts. (1) We form the index of

relative bank performance differences based on all commercial and industrial loans. If beliefs are, in fact,

based on this information, then we should be able to explain (in the sense of Granger causality) the time series

of lending standard survey responses (the percentage of banks reporting "tightening" their standards) that

Lown and Morgan (2001) and Schreft and Owens (1991) analyzed. (2) We examine the explanatory power

of the performance difference index with respect to business cycle dynamics. We show that the performance

difference index Granger-causes all the macroeconomic variables, but is not in turn caused by any of the

macroeconomic variables. That is, banks cause macroeconomic fluctuations to a significant degree. (3) If

credit crunches are endogenous, and a systematic risk, then they should be a priced factor in an asset pricing

model of bank stock returns. Therefore, our final test is to ask whether the parameterization of banks’

relevant histories is a priced factor in a three or four factor Fama-French asset pricing setting. We find that

it is.

4.1 The Credit Card Loan Market

In the U.S. credit card lending market rival banks are identifiable because credit card lending is highly

concentrated and this concentration has been persistent. The Federal Reserve has collected data on credit

card lending and related charge-offs since the first quarter of 1991 in the Call Reports. The data we use is

at the bank holding company level, as aggregated by the Federal Reserve Bank of Chicago. Thus, we are

thinking of banks competing at the holding company level rather than at the individual bank level. For

each bank holding company, we collect quarterly data from 1991.I through 2000.IV for “Credit Cards and
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Figure 2: Herfindahl Index

Related Plans,” as well as some other variables discussed below.19

The high concentrated is shown by the Herfindahl Index for credit card loan market pictured in Figure

2.20

Figure 3 shows the proportion of credit card loans for the top 10, 30, and 50 bank holding companies.

We can see from Figures 2 and 3 that over time the credit card loan market has become increasingly

concentrated, and the market shares of the top bank holding companies have become increasingly larger.21

4.1.1 Data Description

The basic idea of the first set of tests is to regress an individual bank’s credit card loans outstanding,

normalized by total loans or total assets, or the bank’s (normalized) credit card loss rate, on lagged variables

that we hypothesize predict the bank’s decision to make more credit card loans or to reduce losses on credit

card loans (by making fewer loans or more high quality loans). Macroeconomic variables that characterize

the state of the business cycle are one set of predictors. Lagged measures of the bank’s own performance in

the credit card market are another set of predictors. The key variables concern measures of bank’s histories

19The data are not reported more frequently than quarterly.
20A Herfindahl Index is constructed as

P
i(
firm i credit card loan size
total credit card loan size

× 100)2.
21Ausubel (1991) observed that “the bank credit card market ... casually appears to be a hospitable environment for the

model of perfect competition. Nevertheless, ... credit card interest rates have been exceptionally sticky relative to the cost
of funds. Moreover, major credit card issuers have persistently earned from three to five times the ordinary rate of return
in banking” (p. 50). Ausubel (1991) proposed an explanation for these phenomena, essentially arguing that the credit card
market is not perfectly competitive because of consumer behavior. We offer a nonmutually exclusive viewpoint, namely, that
the stickiness of credit card interest rates indicates that credit card issuers are competing through non-price strategies instead
of competing in price, to drive it down towards marginal cost.
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Figure 3: Shares of Top Bank Holding Companies in Credit Card Loan Market

that we hypothesize are the basis for banks’ beliefs that rivals have deviated. Our main hypothesis is that

these measures of bank histories will be significant, even conditional on all the other variables.

The tests require two types of data: data on individual banks and macroeconomic data. In addition to

collecting the quarterly data bank holding company from 1991.I to 2000.IV for “Credit Cards and Related

Plans(CLS),” we also use “Charge-offs on Loans to Individuals for Household, Family, and Other Personal

Expenditure — Credit Cards and Related Plans (CCO),” “Recoveries on Loans to Individuals for Household,

Family, and Other Personal Expenditures — Credit Cards and Related Plans (CRV ),” “Total Loans and

Leases, Net (TLS),” and “Total Assets (ASSET ).”

We construct the following variables:

Credit Card Loan Loss Rate (CLL) =
CCO − CRV

CLS
,

Credit Card Loans on Total Loans Ratio (CRL) =
CLS

TLS
,

Credit Card Loans on Total Assets Ratio (CRA) =
CLS

ASSET
.

Each variable is constructed for each bank holding company for each quarter, with the exception of the

Aggregate Credit Card Loan Loss Rate, which measures the state of the banking industry with respect to

credit card loan losses.

With respect to macroeconomic data we use quarterly macroeconomic data from the Federal Reserve Bank

of St. Louis for the period 1991.I to 2000.IV : “Civilian Unemployment Rate, Percent, Seasonally Adjusted

(UMP ),” “Real Disposable Personal Income, Billions of Chained 1996 Dollars, Seasonally Adjusted Annual
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Rate (DPI),” “Federal Funds Rate, Averages of Daily Figures, Percent (FFR).”22

4.1.2 Pairwise Tests on Rival Banks

We want to empirically test whether the history of the credit card loan performance of a bank affects other

banks’ credit card lending decisions. We will do this in several ways. First, we look at banks pairwise. We

do this because we have only 40 periods of quarterly observations for each bank. We select the largest six

bank holding companies, which constantly remain within the top 20 in credit card loan portfolio size during

the period 1991.I to 2000.IV . These six banks are:

• CITICORP, NEW YORK, NY (CITI);

• BANK ONE CORP, CHICAGO, IL (BONE);

• MBNA CORP, WILMINGTON, DE (MBNA);

• BANK OF AMER CORP, CHARLOTTE, NC (BOAM);

• CHASE MANHATTAN CORP, NEW YORK, NY (CHAS);

• WACHOVIA CORP, WINSTON-SALEM, NC (WACH).

We ask whether bank holding company i’s credit card loan loss rate and the proportion of credit card loans

on total loans or on total assets are affected by the other bank holding companies’ past loan performance,

given bank holding company its own past loan performance. In general, we run the following regression for

each bank holding company i:

yit = αijxt + βijwit +
X
j 6=i

γijzijt + εit,

where

yit = CLLit, CRLit, or CRAit,

xt = (C, T, S1, S2, S3,DPIt, FFRt, UMPt),

wit = (CLLit−1, CLLit−2, CLLit−3, CLLit−4),

zijt = (|∆CLLijt−1| , |∆CLLijt−2| , |∆CLLijt−3| , |∆CLLijt−4|),

and αij , βij , and γij are the coefficients for x, w, and z, respectively. C is the constant term, T is the time

trend, S1 is the seasonal dummy for first quarter, S2 is the seasonal dummy for second quarter, and S3 is

the seasonal dummy for third quarter. We do not include lags of DPIt, FFRt, or UMPt because the main

results are not affected by adding them. Since some bank holding companies might have systematically

higher (or lower) loan loss rates than another bank holding companies, we first take out the mean from each

CLLi, and then take the difference to get ∆CLLji. In this way, |∆CLLji| reflects the relative performance
of the two banks.

|∆CLLji| is the key variable. The idea of the test is to condition on the state of the macroeconomy
and bank holding company i’s own past performance, and then ask whether bank holding company i’s

22We collected the monthly data for the Unemployment Rate (UMP ), Disposable Income (DPI), Federal Funds Rate (FFR),
and calculated the three-month averages to get the quarterly data. Moreoever, DPI is normalized by GDP.
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CLL CITI BONE MBNA BOAM CHAS WACH

CITI –
−0.1896
(0.1038)

*

−0.3115
(0.0677)

*

0.1160

(0.7261)

−

−0.0597
(0.9829)

−

−0.2686
(0.0013)

**

BONE

−0.3339
(0.0010)

***

–
−0.4543
(0.0002)

***

−0.3385
(0.2393)

−

−0.4876
(0.0656)

*

−0.2546
(0.1993)

−

MBNA

−0.0025
(0.9101)

−

−0.0114
(0.8002)

−
–

0.0089

(0.6759)

−

0.0790

(0.0865)

#

−0.0724
(0.3747)

−

BOAM

−0.1310
(0.9289)

−

−0.1666
(0.3809)

−

−0.3834
(0.0002)

***

–
0.4371

(0.0002)

###

−0.4024
(0.4510)

−

CHAS

−0.1328
(0.7765)

−

−0.0170
(0.8690)

−

0.0603

(0.4808)

−

0.0784

(0.2212)

−
–

−0.1906
(0.5896)

−

WACH

−0.1278
(0.0000)

***

−0.0809
(0.3120)

−

−0.2117
(0.0063)

***

0.0236

(0.9471)

−

−0.0198
(0.0181)

**

–

Table 1: Results with CLL as the dependant variable

lending decisions depend on observed differences between it’s own past performance and that of its rival,

bank holding company j. In the theory, banks form beliefs based on public information about rivals and

about themselves. That is, bank holding company i’s beliefs about whether rival bank holding company j

is deviating is hypothesized to be a function of some measure of the relative performance of its own credit

card loans and the performance of its rival. It is not clear how to parameterize measures of the differences

in relative performance that might be the basis for forming those beliefs. We use the absolute difference of

the loan losses of two the bank holding companies, i and j. The idea is that when banks observe too large

a relative difference in loan performance they might attribute the difference to one bank having deviated,

and as a result they simultaneously raise their lending standards.

For each measure of the relative difference in loan performance, we test whether γ = 0. As discussed

above, we examine regressions pairwise for each pair of bank holding companies. Therefore, we run the

following pairwise regression for each bank holding company i and bank holding company j 6= i:

yit = αijxt + βijwit + γijzijt + εit, for j 6= i. (2)

We use the Wald test (chi-squared distribution) to test γ = 0. The results are shown in Tables 1-3.23

Tables 1-3 present the results for the pairwise regressions while

zijt = (|∆CLLijt−1| , |∆CLLijt−2| , |∆CLLijt−3| , |∆CLLijt−4|).

We report the average value of the coefficients of zij , and the p-value (in parenthesis) of the Wald test

(χ2(4)). Significant negative coefficients are marked by ‘∗,’ and significant positive coefficients are marked
23The result in entry (i, j) in the table comes from the regreesion with bank i’s loan loss (or asset allocation) being the

dependent variable.
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CRL CITI BONE MBNA BOAM CHAS WACH

CITI –
−0.4807
(0.004)

***

0.1403

(0.6713)

−

−0.2671
(0.0926)

*

1.2131

(0.0869)

#

−0.5353
(0.0004)

***

BONE

−1.2008
(0.0003)

***

–
−2.4739
(0.0000)

***

−1.6719
(0.0609)

*

−1.4095
(0.5178)

−

−1.9717
(0.0294)

**

MBNA

0.2569

(0.8386)

−

0.8216

(0.0491)

##

–
−0.6914
(0.3577)

−

−0.5540
(0.4128)

−

1.1749

(0.0004)

###

BOAM

−0.2932
(0.0002)

***

−0.2859
(0.0274)

**

−0.2608
(0.2543)

−
–

0.2274

(0.0125)

##

−0.2283
(0.5495)

−

CHAS

−0.2586
(0.9027)

−

−0.1209
(0.2272)

−

−0.1075
(0.9810)

−

−0.1433
(0.6790)

−
–

−0.4296
(−0.0771)

*

WACH

−0.3865
(0.0095)

***

−0.8394
(0.0001)

***

−0.6496
(0.0059)

***

0.0345

(0.8199)

−

0.7314

(0.0906)

#

–

Table 2: Results with CRL as the dependant variable

CRA CITI BONE MBNA BOAM CHAS WACH

CITI –
−0.2085
(0.0710)

*

0.1959

(0.3413)

−

−0.1331
(0.4040)

−

0.7186

(0.0405)

##

−0.2197
(0.0582)

*

BONE

−0.9125
(0.0002)

***

–
−1.8853
(0.0000)

***

−1.2954
(0.0486)

**

−1.0538
(0.5572)

−

−1.4485
(0.0392)

**

MBNA

−0.6157
(0.9109)

−

2.3238

(0.0285)

##

–
−0.8193
(0.8978)

−

−2.7239
(0.0006)

***

3.0559

(0.0005)

###

BOAM

−0.2050
(0.0045)

***

−0.2311
(0.0279)

**

−0.2309
(0.1486)

−
–

0.1708

(0.0391)

###

−0.2361
(0.4878)

−

CHAS

−0.1838
(0.8661)

−

−0.1130
(0.2672)

−

0.0859

(0.9456)

−

−0.0090
(0.6709)

−
–

−0.2390
(0.1080)

*

WACH

−0.2504
(0.0215)

**

−0.5720
(0.0003)

***

−0.4152
(0.0293)

**

0.0418

(0.6935)

−

0.4957

(0.0888)

#

–

Table 3: Results with CRA as the dependant variable
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by ‘#.’ Broadly, the results are in line with the theory: most coefficients are negative, which matches

the theory prediction. When the difference between the loan performance history is large, it leads to

(an increase in lending standards and, consequently) a subsequent decrease in (lower quality) loans and a

consequent reduction in loan losses. Many negative coefficients are significant (indicated by *** for the 1%

level, by ** for the 5% level, and by * for the 10% level, and similarly for positive coefficients). Also, we

can observe a systematic pattern of competition between Citicorp, Bank One, and Wachovia; the credit card

loan loss and credit card loan size (relative to total loans or total assets) for these banks significantly depend

on the relative performance of each other.

The above results have the obvious problem that we do not know how many significant chi-squared

statistics would be expected to be significant in a small sample. We can answer this issue using a bootstrap

(see Horowitz (2001) for a survey). We use the bootstrap method to test if the results in Tables 1-3 can

verify our conjecture that the measures of bank holding companies’ loan performance affect each other’s

loan decisions. The Null hypothesis is that a bank holding company’s loan decision only depends on the

aggregate economic variables and its own past loan performance, i.e.:

H0 : yit = αixt + βiwit + uit.

The alternative hypothesis comes from the pairwise regression for each bank holding company i and bank

holding company j 6= i:

H1 : yit = αijxit + βijwit + γijzijt + εit, with γij < 0.

In order to test the Null hypothesis, we use the bootstrap to obtain an approximation to the distribution

of a Significance Index, SI, defined below, and then find the p-value of Sİ∗ (the Significance Index from
the pairwise regressions using the original data). For each round of the bootstrap, the Significance Index

is constructed as follows. For each of the 30 pairwise regressions, when the average coefficient of zijt is

negative, if the chi—squared-statistic is significant at the 99% confidence level, add a value of 4 to SI, if it is

significant at the 95% confidence level , add a value of 3 to SI, if it is only significant at the 90% confidence

level, add a value of 2 to SI, and add a value of 1 otherwise; when the average coefficient of zijt is negative, if

the chi—squared-statistic is significant at the 99% confidence level, add a value of −4 to SI, if it is significant
at the 95% confidence level , add a value of −3 to SI, if it is only significant at the 90% confidence level, add
a value of −2 to SI, and add a value of −1 otherwise. The index SI takes care of both the significance and
the sign of the coefficients of zijt. If the p-value of SI∗ is small enough, we can reject the Null hypothesis.
The bootstrap algorithm is as follows:

Step 1: Run the OLS regression yit = αixt + βiwit + uit, for the three cases where yit = CLLit, CRLit,

or CRAit, and use the estimated coefficients, bαOLS and bβOLS , to generate the residuals u∗it.
Step 2: By hypothesis, the residuals u∗it are i.i.d. so we can sample from u∗CLLit to generate new CLL∗it

using CLL∗it = bαCLLixt + bβCLLiwit + u∗CLLit. This creates new w∗it and z∗ijt, which are necessary since zijt
and some of the wit variables are lags of CLLi and CLLj .

Step 3: Use u∗it , for yit = CRLit and CRAit, to generate new CRL∗it and CRA∗it using CRL∗it =bαCRLixt + bβCRLiw∗it + u∗CRLit and CRA∗it = bαCRAixt + bβCRAiw∗it + u∗CRAit.
Step 4: Use y∗it, x

∗
it, w

∗
it, and z∗jit to run the pairwise regression y∗it = αx∗it + βw∗it + γz∗jit + ε∗it, and

calculate the Significant Index SI.

Step 5: Repeat Step 2 to Step 4 10, 000 times, and obtain the distribution of SI.

Step 6: Calculate the p-value of SI∗, i.e. Pr(SI ≥ SI∗).
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p-value
SICLL 0.0197

SICRL 0.0005

SICRA 0.0049

Table 4: Boothstrap results

CLL CITI BONE MBNA BOAM CHAS WACH

CITI –
−0.1845
(0.0082)

***

−0.7195
(0.0006)

***

−0.0017
(0.8264)

−

−0.3415
(0.6929)

−

−0.2451
(0.0217)

**

BONE

−0.3434
(0.0001)

***

–
−0.3695
(0.0054)

***

−0.2316
(0.8644)

−

−0.3215
(0.3174)

−

−0.5564
(0.0001)

***

MBNA

−0.1317
(0.2469)

−

−0.0343
(0.9268)

−
–

−0.0830
(0.0937)

*

0.0261

(0.0821)

#

−0.0377
(0.4500)

−

BOAM

−0.1439
(0.9580)

−

−0.1836
(0.6709)

−

−0.4283
(0.1388)

−
–

0.4137

(0.0011)

###

−0.3658
(0.5556)

−

CHAS

−0.0421
(0.9484)

−

0.0053

(0.7126)

−

−0.0279
(0.3056)

−

0.1109

(0.2944)

−
–

−0.1354
(0.8480)

−

WACH

−0.1140
(0.0107)

**

−0.1798
(0.0569)

*

−0.0745
(0.0693)

*

−0.0995
(0.7680)

0.0395

(0.0591)

*

–

Table 5: Robustness check results with CLL as the dependant variable

The results are reported below. The critical values for the chi-squared distribution are: χ2(4)0.90 = 7.78,

χ2(4)0.95 = 9.49, and χ2(4)0.99 = 13.28. The sample Significance Indices are: SI∗CLL = 34, SI
∗
CRL = 36, and

SI∗CRA = 31. The p-values are presented in Table 4.
We conclude that the Null hypothesis is rejected.

Could the above results be explained by some sort of learning? That is, an alternative explanation is

that banks learn about underlying the economic conditions from other banks’ loan performance. Perhaps

this learning effect is also captured by the |∆CLLji| variable that we constructed. It would seem that

learning should not be based on absolute differences in bank performance, but on the level of other banks’

performances as well as the bank’s own performance history. To examine this possibility we add lags of

CLLj in the regression of Bank i. Therefore, in the regression equation (2), we replace wit with wijt:

wijt = (CLLit−1, CLLit−2, CLLit−3, CLLit−4, CLLjt−1, CLLjt−2, CLLjt−3, CLLjt−4). (3)

We report the results in Tables 5-7.

Tables 5-7 present the results for the pairwise regressions with wij being replaced by wijt as in (3). We

report the average value of the coefficients of zij , and the p-value (in parenthesis) of the Wald test (χ2(4)).
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CRL CITI BONE MBNA BOAM CHAS WACH

CITI –
−0.5019
(0.0098)

***

−1.1219
(0.1178)

−

−0.4031
(0.4119)

−

0.8807

(0.4979)

−

−0.5358
(0.0000)

***

BONE

−1.4049
(0.0001)

***

–
−2.5697
(0.0002)

***

−1.1523
(0.2303)

−

−1.8735
(0.3274)

−

−2.7473
(0.0016)

***

MBNA

1.8208

(0.0094)

###

0.9289

(0.0395)

##

–
0.2279

(0.8813)

−

−0.9744
(0.7303)

−

1.3884

(0.0009)

###

BOAM

−0.4337
(0.0000)

***

−0.2148
(0.2866)

−

−0.2740
(0.5081)

−
–

0.2513

(0.0000)

###

−0.2541
(0.4786)

−

CHAS

0.3313

(0.9088)

−

−0.1541
(0.9753)

−

−0.2404
(0.3684)

−

0.2086

(0.5477)

−
–

−0.5534
(0.1980)

−

WACH

−0.6381
(0.0000)

***

−1.0113
(0.0000)

***

−0.8832
(0.0001)

***

−0.1680
(0.4957)

−

0.8636

(0.1073)

−
–

Table 6: Robustness check results with CRL as the dependant variable

CRA CITI BONE MBNA BOAM CHAS WACH

CITI –
−0.2008
(0.1872)

−

−0.3635
(0.1974)

−

−0.1007
(0.8695)

−

0.4860

(0.4783)

−

−0.2035
(0.0542)

**

BONE

(−1.0722)
(0.0000)

***

–
−1.9734
(0.0001)

***

−0.9242
(0.1857)

−

−1.4180
(0.3400)

−

−2.0595
(0.0020)

***

MBNA

3.6483

(0.0359)

##

2.9491

(0.0002)

##

–
2.5454

(0.1204)

−

−3.1768
(0.0239)

**

3.0033

(0.0042)

###

BOAM

−0.2641
(0.0001)

***

−0.1766
(0.3327)

−

−0.2096
(0.6343)

−
–

0.1882

(0.0000)

###

−0.2622
(0.3464)

−

CHAS

0.0552

(0.9517)

−

−0.1086
(0.8960)

−

−0.0981
(0.9315)

−

0.0515

(0.6866)

−
–

−0.2550
(0.2102)

−

WACH

−0.4158
(0.0000)

***

−0.6851
(0.0000)

***

−0.5718
(0.0027)

***

−0.0930
(0.4708)

−

0.6066

(0.0826)

#

–

Table 7: Robustness check results with CRA as the dependant variable
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p-value
SICLL 0.0138

SICRL 0.0024

SICRA 0.0085

Table 8: Bootstrap results for robustness check

The main results are similar to Tables 1-3. We can observe from Tables 5-7 the same pattern of

competition between Citicorp, Bank One, and Wachovia as in Tables 1-3, while the results involving other

banks are mixed.

For the bootstrap the regression is: y∗it = αx∗it + βw∗ijt + γz∗jit + ε∗it, , i.e., with the lags of LLj included
in the regression in credit card loan part. The null hypothesis is still:

H0 : yit = αixt + βiwit + uit.

with

yit = CLLit, CRLit, or CRAit,

xt = (C, T, S1, S2, S3,DPIt, FFRt, UMPt),

wit = (CLLit−1, CLLit−2, CLLit−3, CLLit−4),

The critical values for the chi-squared distribution are: χ2(4)0.90 = 7.78, χ2(4)0.95 = 9.49, and χ2(4)0.99 =

13.28. The sample Significant Indices are: SI∗CLL = 36, SI
∗
CRL = 28, and SI∗CRA = 26. The p-values are

presented in Table 8.

4.1.3 Significance Tests on a Performance Difference Index

Based on the success of the pairwise tests, we move next to analyzing the histories of all relevant rival credit

card lenders jointly. We construct an aggregate performance difference index (PDI):

PDIt =

P
i>j |CLLit − CLLjt|

15
.

This performance difference index measures the average difference of the competing banks’ loan perfor-

mances.24 For each bank i, we run the following regression:

yit = αixt + βiwit + γizit + uit,

where yit, xt, and wit are the same as before, while zit = (PDIt−1, PDIt−2, PDIt−3, PDIt−4). The results
are reported in Table 9.

Table 9 presents the average value of the coefficients of zij and the p-value (in parenthesis) of the Wald

test (χ2(4)), with

zijt = (PDIt−1, PDIt−2, PDIt−3, PDIt−4).

Table 9 shows that, besides MBNA, all banks have negative and significant coefficients for the performance

index, confirming the conjecture from the theory. When there is a large performance difference across all

banks, banks raise their lending standards to punish each other, and consequently future loan losses go down.

24Again, we first take out the mean from each CLLi, and then take the difference.
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yit = CLLit yit = CRLit yit = CRAit

CITI

−0.7895
(0.2927)

−

−2.1500
(0.0073)

***

−0.9752
(0.0758)

*

BONE

−1.5211
(0.1038)

*

−6.1892
(0.0003)

***

−4.6702
(0.0005)

***

MBNA

0.0631

(0.6693)

−

1.3084

(0.3235)

−

0.8631

(0.7098)

−

BOAM

−0.5212
(0.0354)

**

−0.5189
(0.0050)

***

−0.4787
(0.0013)

**

CHAS

−0.3860
(0.0873)

*

−0.0521
(0.3381)

−

−0.1202
(0.1863)

−

WACH

−0.4333
(0.0003)

***

−1.4574
(0.0330)

**

−0.9755
(0.0458)

**

Table 9: Results on performance difference index

4.1.4 A Test of an Alternative Hypothesis

We have asserted that the above results are consistent with our theory, and are not consistent with learning.

However, there are some related theories. Rajan (1994) argues that reputation considerations of bank

managers cause banks to simultaneously raise their lending standards when there is an aggregate shock to

the economy causing the loan performance of all banks to deteriorate. Banks tend to neglect their own loan

performance history in order to herd or pool with other banks. Rajan’s empirical work focuses on seven New

England banks over the period 1986-1991. His main finding is that a bank’s loan charge-offs-to-assets ratio

is significantly related not only to its own loan loss provisions-to-total assets ratio, but also to the average

charge-offs-to-assets ratio for other banks (instrumented for by the previous quarter’s charge-offs-to-assets

ratio).

In the context here the question is whether our measure of banks’ beliefs about rivals’ credit standards,

the performance difference index, remains significant in the presence of an average or aggregate credit card

loss measure.25 We construct:

Aggregate Credit Card Loan Loss Rate(AGLL) =
P

i(CCOi − CRVi)P
i CLSi

,

and we examine the coefficient on AGLLt−1 in our regressions:

yit = αixt + βiwit + γizt + uit,

25There are several interpretations of Rajan’s result. For example, the charge-offs of other banks may be informative about
the state of the economy, so their significance in the regression is not necessarily evidence in favor of Rajan’s theory.
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yit = CLLit yit = CRLit yit = CRAit

CITI

0.6620

(0.0167)

−

1.6366

(0.0108)

−

0.7115

(0.0441)

−

BONE

1.3343

(0.0049)

−

4.3686

(0.0020)

−

3.3253

(0.0020)

−

MBNA

0.0726

(0.3395)

−

−1.9956
(0.0028)

**

−4.4127
(0.0109)

**

BOAM

0.4734

(0.3306)

−

0.3611

(0.3016)

−

0.3975

(0.1516)

−

CHAS

0.0597

(0.7445)

−

−0.5579
(0.3238)

−

−0.0708
(0.7837)

−

WACH

0.3151

(0.1974)

−

1.7023

(0.0126)

−

1.0373

(0.0312)

−

Table 10: Test of alternative hypothesis

where

yit ∈ {CLLit, CRLit, CRAit},
xt = (C, T, S1, S2, S3,DPIt, FFRt, UMPt),

wit = (CLLit−1, CLLit−2, CLLit−3, CLLit−4)

zt = AGLLt−1.

The coefficients on AGLLt−1 and the associated p-value of t-statistics are reported in Table 10.26

Table 10 gives out the coefficient on the Aggregate Credit Card Loan Loss (AGLL) and the p-value of

t-statistics, with other macroeconomic variables in the regressors. Rajan’s (1994) idea is that an aggregate

bad shock leads banks to raise their standards, so we would expect the coefficients on AGLLt−1 to be
significantly negative. However, as the table shows, conditional on other macroeconomic variables, besides

bank 3, the coefficients of the aggregate loan loss rate are all positive, and some of them are significant; this

is the result of the persistence of loan loss and asset allocation.

If we remove other macroeconomic variables from the regression, i.e.,

xt = (C, T, S1, S2, S3, AGLLt−1),

results are basically the same.

4.1.5 Stock Return Prediction

Strategic competition between banks results in periodic credit crunches, an aggregate of systematic risk.

Consequently, if the stock market is efficient, then the stock returns of each bank holding company should
26Adding more lags of AGLL gives us basically the same results.
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Beta β1 β2 β3 β4

coeff.

(t− stat)

3.4311

(0.9155)

−

−2.4101
(−0.6376)
−

−5.9428
(−1.5715)
−

−13.665
(−3.6136)
***

Intercept α1 α2 α3 α4 α5 α6

coeff.

(t− stat)

0.1138

(3.5323)

***

0.0247

(1.0237)

−

0.0944

(3.6143)

***

0.0450

(2.1519)

**

0.0842

(2.7509)

***

0.0296

(2.2020)

**

Table 11: Results on stock returns with six banks

Beta β1 β2 β3 β4

coeff.

(t− stat)

1.9495

(0.4902)

−

−0.4509
(−0.1124)
−

−7.7452
(−1.9304)

*

−11.990
(−2.9885)
***

Intercept α2 α3 α6

coeff.

(t− stat)

0.0248

(1.0519)

−

0.0944

(3.7058)

***

0.0297

(2.1434)

**

Table 12: Results on stock returns with three banks

reflect the competition between banks. In this section, we test whether the performance difference index has

predictive power for the stock returns of each top bank holding company in credit card loans. We collect the

stock return from CRSP from 1991.I to 2000.IV. During this period, Citicorp, Bank of America, and Chase

Manhattan are involved in mergers.27 We carry out the tests for all six bank holding companies and for

the three bank holding companies (Bank One, MBNA, and Wachovia) without merger activity. According

to our theory, after observing large performance differences between banks, banks will raise their lending

standards (which is costly) and consequently their profit margins will be lower. Therefore, we expect to see

negative loadings on the lags of the performance difference index. The regression equations are:

rit = ai + βi1PDIt−1 + βi2PDIt−2 + βi3PDIt−3 + βi4PDIt−4 + εit, i = 1, 2, ..., 6 (or i = 2, 3, 6).

We use the Seemingly Unrelated Regression method to estimate the system of equations, with the restriction

that the βis are the same across banks (we only allow for different intercepts).
28 The results are reported in

Table 11 for the case with six banks and in Table 12 for the case with three banks.

Table 11 gives out the results about the prediction power (on stock returns) of the performance difference

index with six bank holding companies, and Table 12 gives out the results three bank holding companies.

From both Table 11 and Table 12, we see that the performance difference index from the previous year

significantly predicts the stock return this period. For the case with six banks, the Wald test of β1 = β2 =

β3 = β4 = 0 gives χ2 = 20.6229, with p-value 0.0004. For the case with three banks, the Wald test of

β1 = β2 = β3 = β4 = 0 gives a χ
2 = 10.2850, with p-value 0.0359. Therefore, the performance difference

index that we constructed does have some prediction power for the stock return.

27The dates of the M&A activity are: Citigroup,1998.10; Bank of America, 1998.10; and Chase Manhattan in 1996.4.
28 In the regressions, we take out the mean and the seasonal effects for the first three quarters from the performance difference

index (PDI).
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Beta β1 β2 β3 β4

coeff.

(t− stat)

4.1728

(1.0666)

−

−1.7792
(−0.4581)
−

−6.2940
(−1.6282)

*

−13.557
(−3.4539)
***

Intercept α1 α2 α3 α4 α5 α6

coeff.

(t− stat)

0.0626

(1.5942)

*

−0.1061
(−1.2727)
−

0.1078

(2.4689)

**

−0.0214
(−0.2797)
−

−0.0276
(−0.4338)
−

−0.0401
(−0.7018)
−

Gama γ1 γ2 γ3 γ4 γ5 γ6

coeff.

(t− stat)

3.4921

(2.0434)

**

3.7721

(1.6351)

*

−0.5255
(−0.3815)
−

2.3147

(0.9040)

−

3.4264

(1.9423)

*

2.2451

(1.2553)

−

Table 13: Results on stock returns with dividend yield, six banks

Beta β1 β2 β3 β4

coeff.

(t− stat)

2.4851

(0.6147)

−

0.2885

(0.0721)

−

−7.3791
(−1.8517)

*

−12.322
(−3.0404)
***

Intercept α2 α3 α6

coeff.

(t− stat)

−0.0820
(−0.9396)
−

0.0811

(1.6230)

*

−0.0232
(−0.3750)
−

Gama γ2 γ3 γ6

coeff.

(t− stat)

3.0793

(1.2676)

−

0.5265

(0.3123)

−

1.7038

(0.8776)

−

Table 14: Results on stock returns with dividend yield, three banks

Since dividend yield is well known to be a good predictor for the future stock return (see, e.g., Cochrane

(1999)), we also include dividend yields in the regressions. We collect the dividends of each bank from

CRSP. The quarterly dividend yield is constructed as follows: We first construct the monthly dividend yield

using the dividends during past twelve months divided by the stock price at the end of the month; then we

take the three-month average to get the quarterly dividend yield.29 The regression equations are:

rit = ai + βi1PDIt−1 + βi2PDIt−2 + βi3PDIt−3 + βi4PDIt−4 + γiDYit−1 + εit,

for i = 1, 2, ..., 6 (or i = 2, 3, 6).

Again, we use the Seemingly Unrelated Regression method to estimate the equation system with the restric-

tion that βis are the same across banks (we only allow for different intercepts). The results are reported in

Table 13 for the case with six banks and in Table 14 for the case with three banks.

Table 13 gives out the results about the prediction power (on stock return) of the performance difference

index with six bank holding companies while we include dividend yield as another prediction variable, and
29The time series of MBNA start from January of 1991. So, to calculate the dividend yield of 1991, we use dividends in 1991

as a proxy of dividends in 1990.
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Table 14 gives out the results with three banks. Again, from both Table 13 and Table 14, we can observe

that the lagged performance difference index significantly predicts the stock return this period. For the case

with six banks, the Wald test of β1 = β2 = β3 = β4 = 0 gives χ
2 = 19.103, with p-value 0.0008. For the

case with three banks, the Wald test of β1 = β2 = β3 = β4 = 0 gives a χ
2 = 16.147, with p-value 0.0028.

4.2 VAR Analysis of the Fed’s Lending Standards Index

If banks raise their increase their information production, raise their lending standards, then some borrowers

are cut off from credit, a credit crunch that should have macroeconomic implications. In this section, we use

Vector Autoregressions (VARs) to analyze the aggregate implications of banks’ loan performance differences.

In contrast to the single equations estimated above, a VAR is a system of equations that lets us better control

for the feedback between current and past levels of performance differences, the lending standard survey, and

macro variables Given estimates of these interactions, we can identify the impact that unpredictable shocks

in performance difference public histories have on other variables in the system. We first ask whether the

performance difference histories predict, in the sense of Granger causality, the index of lending standards

based on the Federal Reserve System’s Senior Loan Officer Opinion Survey on Bank Lending Practices. We

follow Lown and Morgan (2001, 2002) and Schreft and Owens (1991) in analyzing the time series of survey

responses, the percentage of banks reporting tightening in the survey. The series starts from the first quarter

of 1967, and it ends at the last quarter of 2001. However, in 1984 the question on credit standards was

dropped from the survey, and then was reintroduced starting from the second quarter of 1992.

As above, we use quarterly bank loan data from the Chicago Federal Reserve Bank’s Commercial Bank

and Bank Holding Company Database, which is from the Call Reports. For the period from 1976.1 to

2002.2, we collected Total Loans, Net of Unearned Income (TL); Loan Loss Allowances (LA). For each bank

(holding company) we constructed the Loan Loss Allowance Ratio (LAR):

LAR =
LA

TL
.

We construct the Performance Difference Index to measure the dispersion of performance across the U.S.

banking industry as a whole. To do this, we use the top 200 commercial banks ranked by total loans, and

for each period, we construct the Performance Difference Index as follows:30

PDI =

P
i>j |LARi − LARj |

19900
.

Besides the data on the Lending Standards and the Performance Difference Index, we also collected data

on Total Loans and Leases at Commercial Banks and Federal Funds Rate.31

We conjecture that this Performance Difference Index captures the relevant history that is at the basis

of banks’ beliefs about whether other banks are deviating to using the credit worthiness tests.32

4.2.1 VAR Results

The VAR includes four lags of the four endogenous variables: bank lending standards (STAND) (i.e., the

survey responses), the performance difference index (PDI), the federal funds rates (FFR), and the log of

30Some banks report the loan loss or loan allowance semi-annually instead of quarterly, so we drop these zero value in the
calculation below, therefore, the denominator is not necessarily 19900.
31We first collected monthly data, then we took the three-month average to obtain quarterly data.
32We also constructed the performance difference index using charge-off ratios. The empirical results are similar, and are

omitted to save space.
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STAND LAGS PDI LAGS FFR LAGS LOGLOAN LAGS

STAND

0.1981

(0.0020)

***

498.82

(0.0077)

***

−1.2523
(0.0010)

**

30.464

(0.1673)

−

PDI

−4.1E-6
(0.7414)

−

0.1309

(0.0411)

**

−0.0001
(0.3452)

−

0.0076

(0.7480)

−

FFR

−0.0066
(0.0127)

**

−101.60
(0.0006)

***

0.0414

(0.0000)

***

7.6086

(0.0032)

**

LOGLOAN

−9.3E-6
(0.0172)

**

0.3515

(0.0267)

**

0.0012

(0.0000)

***

0.2051

(0.0000)

**

Table 15: Results for VAR analysis

commercial bank loans (LOGLOAN). Bank lending standards are a loan supply side factor and the federal

funds rate is a loan demand side; commercial bank loans are the equilibrium outcomes, and the performance

difference index captures the market beliefs, which affect all the other variables. The exogenous variables

are a constant, a time trend, and seasonal dummies for the first three quarters of a year.

We run the VAR for the period of 1990.II—2001.IV , which is the longest continuous of period where both

STAND and PDI have data. The results are presented in Table 15.

Table 15 presents the average value of the coefficients and P -values (in parenthesis) of the Wald test

(χ2(4)) of VAR with four lags of the lending standards, the performance difference index, log commercial

bank loans, and federal funds rate. Table 15 shows that the Performance Difference Indices Granger-causes

all the other three endogenous variables, but not vice versa. An increase in PDI immediately causes a

rise of STAND, which triggers a "recession," and thus leads to a future decrease in the FFR, and a future

decrease of in LOGLOAN (even though the average value of coefficients of PDI for equation LOGLOAN

is positive, the only significant one is negative). We can clearly observe this pattern in the graph of impulse

responses in Figure 4.

The results support the theoretical prediction, namely, that strategic bank competition is an autonomous

driving force of the macro dynamics. The performance difference index is a predictor of bank lending

behavior, and thus implicitly a sufficient measure of public histories upon which banks’ beliefs are based.

4.3 Risk-Factor Analysis

If strategic behavior between banks causes credit cycles, then it causes variation in the profitability of

banks. Credit crunches are not profitable for banks. The credit cycle is a systematic risk. We conjecture

that the constructed performance difference indices should be a priced risk factor for the banking industry.

That is, in an asset pricing model of bank stock returns, there should be an additional factor, namely, the

performance difference index. We adopt the widely-used Fama-French three factor empirical asset pricing

model, augmented with a momentum factor (as has become common practice).33 The asset pricing regression

33See Fama and French (1993, 1996). Carhart (1997) introduced the momentum factor. We collect the quarterly Fama-
French three factors and momentum factor from French website (the construction method can also be found there). The
quarterly bank returns are collected from COMPUSTAT. The data that we use range from 1993.II to 2001.IV, and there are
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Figure 4: This figure gives the impulse response of VAR analysis.
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βi (t-statistics)

c −2.0330 (−10.8786)***
rm − rf 0.6962 (27.316)***

SMB 0.3621 (14.559)***

HML 0.9345 (32.497)***

MOM 0.4728 (17.071)***

PDI 418.16 (3.5058)***

Table 16: Results for risk-factor analysis

results are reported in Table 16.34

Table 16 reports the coefficients and t-statistics of the factor-regression with rm−rf , SMB, HML,MOM

and PDI as the risk factors. The results in Table 16 show that the performance indices are significant risk

factors. The mean of PDI is 0.0110, and the standard deviation is 0.00133. Therefore, when the performance

index changes by one standard deviation, the excess return changes by about 50 basis points. We conclude

that the competition and collusion among banks is an important risk factor for bank returns.

5 Conclusion

Banking is special because banks produce information about lenders and therefore are, themselves, reposi-

tories of private information. This role of banks makes them opaque institutions, subject to banking panics

and consequently government insurance. In this paper we show that this basic feature of banking extends

to banks themselves when they compete for lenders. Banks compete imperfectly because of restricted entry.

Imperfect competition leads banks to behave strategically and we showed that this endogenously causes

credit cycles. Credit crunches due to bank competition are an important part of business cycle dynamics.

The theory predicts public information about bank lending performance is the basis for banks’ beliefs,

changes in which cause credit cycles. Empirically we showed that a simple parameterization of relative bank

performance differences has predictive power for rival banks in the credit card market. Moreover, introducing

the performance difference histories into a vector autoregression-type macroeconomic model confirms that

this is an autonomous source of macroeconomic fluctuations. Since changes in bank beliefs based on public

information cause credit cycles, this should be an important independent risk factor for bank stock returns.

We showed that this is indeed the case.

18708 bank-quarters in total (about 700-800 banks). The risk free rates are three-month T-Bill rates (we take the average of
monthly data to get the quarterly data) from FRED II at Federal Reserve Bank at St. Louis.
34We demean PDI.
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Appendix 1: Proofs

Before we prove Proposition 1, we first prove the following two lemmas.

Lemma 3 If it exists, in any symmetric stage Nash equilibrium in which neither bank conducts credit wor-
thiness tests, each bank offers loans to all the loan applicants.

Proof. It is easy to check that if bank i is playing si = (ni = 0,Nαi < N,Fαi), then bank −i can strictly
increase its profits by playing s0−i = (n−i = 0, N 0

α−i = N,F 0α−i), where the strategy s0−i is to offer F
0
α−i

= Fαi to Nαi applicants (although these Nαi applicants might not be the same applicants that bank i is

offering loans to), and offer X to the rest of them.

Lemma 4 If it exists, in any symmetric stage Nash equilibrium in which neither bank conducts credit wor-
thiness tests, each bank offers the same interest rate to all the applicants.

Proof. Let F ∗ be the interest rate corresponding to zero profits in the loan market when there is no
testing. Then:

Eπi =
N

2
[λpbF

∗ + (1− λ)pgF
∗ − 1] = 0,

and F ∗ =
1

λpb + (1− λ)pg
< X (by Assumption 1).

Assume bank i is playing si = (ni = 0, Nαi = N,Fαi), with Fαi = (F1, F2, ..., FN ). Suppose Fj ≥ F ∗

for j = 1, 2, ..., N and assume there exist j and k, such that Fj 6= Fk, and, without loss of generality,

Fk > F ∗. Bank −i can strictly increase its profitability by playing s0−i = (n−i = 0, Nα−i = N,F 0α−i), where
F 0α−i = (F1, ..., Fk−1, F

−
k , Fk+1, ..., FN ) and F

−
k is smaller than Fk by an infinitely small amount. Therefore,

interest rates are bid down until each bank offers F ∗ to all the applicants.

Proof. (Proposition 1) From Lemmas 3 and 4, we see that in a symmetric equilibrium with no bank

testing applicants, both banks offer loans to all the applicants at F ∗ = 1
λpb+(1−λ)pg < X (by Assumption 1).

With c <
(1−λ)λ(pg−pb)
λpb+(1−λ)pg , a bank will have an incentive to carry out the credit worthiness test on at least

one loan applicant and to offer loans to those applicants that pass the test, offering an interest rate F ∗−,
which is lower than F ∗ by an infinitely small amount. To see this consider a bank that deviates by carrying
out the credit worthiness test on one applicant. The expected profit from this deviation is:

Eπdi = (1− λ)(pgF
∗ − 1)− c.

We can see that:

Eπdi > Eπi iff (1− λ)(pgF
∗ − 1)− c > 0,

or c < (1− λ)(pgF
∗ − 1) = (1− λ)λ(pg − pb)

λpb + (1− λ)pg
.

We can see that if c ≥ (1−λ)λ(pg−pb)
λpb+(1−λ)pg , then F ∗ will be a Nash equilibrium interest rate on the loan, and

no bank will carry out the credit worthiness test.
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Before we prove Proposition 2, we first state the following two lemmas.

Lemma 5 In any symmetric stage Nash equilibrium in which both banks test all the applicants, each bank
offers loans to all the applicants that pass the test.

The proof is similar to Lemma 3 and is omitted.

Lemma 6 In any symmetric stage Nash equilibrium in which both banks test all the applicants, each bank
offers the same interest rate to all the applicants that pass the test.

The proof is similar to Lemma 4 and is omitted.

Proof. (Proposition 2) The proof is by contradiction. If there exists a Nash equilibrium with both banks
carrying out the credit worthiness test on all the applicants, from Lemmas 5, both banks offer loans to all

the applicants that pass the test, i.e., Nβ = Ng, where Ng denotes the number of applicants passing the

test. Banks will make no loans to bad types found by testing, i.e., Nγ = 0. Both banks use the credit

worthiness test at a cost c per applicant. Based on Lemma 6, assume the loan interest rate they charge to

approved applicants is Fβ(N,Ng), depending on Ng. Each bank must earn non-negative expected profits

Eπ ≥ 0, i.e., the participation constraints. For each realization of Ng, each bank expects to make loans to
1
2Ng applicants. Let pk denote the probability of finding k good type applicants. Then:

Eπi = E
NX
k=0

1

2
kpk[pgFβ(N, k)− 1]−Nc

≥ 0.

Assume now, if bank i cuts Fβ by an infinitely small amount, i.e. F d
β (Ng) = F−β (Ng), then it will loan to Ng

applicants for any realization of Ng. We have:

Eπdi = E
NX
k=0

kpk[pgF
−
β (N, k)− 1]−Nc

> Eπi.

Before we prove Proposition 3, we first prove the following two lemmas.

Lemma 7 If it exists, in any symmetric stage Nash equilibrium in which both banks test n < N applicants,
each bank offers loans to all applicants that pass the test (good types) at F ∗∗ = 1

pg
.

Proof. First, notice that the two banks might choose different sets of n applicants for testing due to
random selection. If one bank’s strategy is (n < N , Nα, Nβ, Fα, Fβ), where Fβ = {F1, ..., FNg}, then we
can see that Fk ≥ F ∗∗ = 1

pg
, for any k = 1, ..., Ng. If there exist i, j < Ng, Fi 6= Fj , then there exists

some Fk ∈ Fβ, and Fk > F ∗∗, so bank i can strictly improve its profitability by setting F 0β = {F−k , F−k},
where F−k is smaller than Fk by an infinitely small amount and F−k = {F1, ..., Fk−1, Fk+1, ..., FNg}. It is

easy to check that by lowering Fk, the marginal cost is close to zero, while the marginal gain is substantial.

By lowering Fk, conditional on that bank already winning the applicant, the only cost of lowering Fk is a

small decrease in profit, while the marginal gain, the probability of winning the applicant, is substantially

improved.
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Lemma 8 If it exits, in any symmetric stage Nash equilibrium in which both banks test n < N applicants,

each bank either offers loans to all non-tested applicants at the same interest rate or offers loans to none of
them.

Proof. If there exists a feasible F ≤ X such that the banks can make a strictly positive profit by lending

to non-tested applicants at F , following a similar argument as in the proof of Lemma 3, we conclude that

each bank offers loans to all non-tested applicants. Assume Fα = {F1, ..., FNα}, where Nα ≤ N − n, then

offering Fα to non-tested applicants results in a non-negative profit.35 Let us assume that the minimum

interest rate on loans to non-tested applicants to insure non-negative profit is F (n). If there exists i, j <

N − n, Fi 6= Fj , then there exists some Fk ∈ Fα, and Fk > F (n), so bank i can strictly improve its

profitability by setting F 0α = {F−k , F−k}, where F−k is smaller than Fk by an infinitely small amount and

F−k = {F1, ..., Fk−1, Fk+1, ..., FNα}. It is easy to check that by lowering Fk, the marginal cost is close to

zero, while the marginal gain is substantial. By lowering Fk, conditional on that bank already winning the

applicant and the applicant is of good type, based on being tested by the other bank or the applicant has

not been tested by either bank, the cost of lowering Fk is a small decrease in profit. But conditional on

the applicant being a bad type that was tested and rejected by the other bank, the cost is an even smaller

decrease in profit. The marginal gain of the probability of winning the applicant when the applicant is

either non-tested or is a good type (that was tested by the other bank), is substantially improved.

If there does not exist a feasible F such that the banks can make a non-negative profit by lending to

non-tested applicants at F , we conclude that each bank offers loans to none of those non-tested applicants.36

Proof. (Proposition 3) For the case in which the banks offer loans all non-tested applicants, we have
Fβ = F ∗∗ and Fα = F (n), which are the interest rate that results in zero expected profit from offering loans

to tested good type applicants and non-tested applicants when banks test n applicants. It is easy to check

that F (n) > F ∗∗. The argument for Fα = F (n) is similar to the argument for Fβ = F ∗∗. However, at

Fα = F (n) and Fβ = F ∗∗, banks will earn negative expected profit due to the test cost.
For the case in which the banks offer loans to none of the non-tested applicants, the banks will only offer

loans to those applicants that passed the test at F ∗∗. The argument is similar.

Proof. (Proposition 4) The proof is by contradiction. Assume that there exists a SPPE with s = (n = 0,
Nα = N , Fα) played on the equilibrium path, where Fα is a constant larger than F ∗ = 1

λpb+(1−λ)pg , and the
continuation value function does not depend on (χ1, χ2), i.e., the number of defaulted loans in each bank’s

loan portfolio.

To eliminate the incentive for a bank to deviate to strategy s0(D) = (n = 0, Nα = D, F−α ), for some
0 ≤ D ≤ N , we must have:

E[π1(s
0(D), s) + δu1(D,N −D)]

= E[π1(s
0(D0), s) + δu1(D

0, N −D0)] for any D 6= D0.

35Here we can not say that the profitable level of the loan face value is F∗ = 1
λpb+(1−λ)pg , since the N−n non-testedapplicants

for one bank might contain some bad type borrowers rejected by the other bank.
36Here we neglect a non-generic case in which there exists an F such that the banks can earn zero profit by offering loans to a

non-tested applicant, and there does NOT exists an F such that the banks can earn strictly positive profit by offering loans to
a non-tested applicant. In this case, each bank can possibly offer to a subset of the non-tested applicants. However, including
this case will not affect the results in Proposition 3.
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Moreover, due to symmetry, it is easy to see that:

δE[u1(D,N −D)]− δE[u1(D + 1,N −D − 1)] (4)

= [λpb + (1− λ)pg]Fα − 1 for any D.

Let us first take a look at an example with two loan applicants and consider a deviation to strategy s00

in which a bank tests one applicant. If the tested applicant is a bad type the bank rejects it and, without

testing the other applicant, undercuts the interest rate to F−α for the loans to the other applicant. If the

tested applicant is of good type then the bank offers a loan to the applicant at F−α and raises the interest rate

to F+α for the loan to (or rejects) all other applicants, without testing them. In this way the expected loan

portfolio size for both banks will remain the same while the distribution of the loan portfolio size changes a

little. It is easy to check that the improvement in the stage profit for the deviating bank is:

∆E[π] = −c+ λ(1− λ)(pg − pb)Fα,

and and ∆E[π] > 0 iff c < λ(1− λ)(pg − pb)Fα.

Recall Assumption 2: c ≥ (1−λ)λ(pg−pb)
λpb+(1−λ)pg . Therefore, the parameter space is not empty as long as:

Fα > F ∗ =
1

λpb + (1− λ)pg
.

In our example with two loan applicants, if one bank deviates in the way we described above, then

the loan allocation is (1, 1) with probability 1, while without a deviation, the loan allocation is (2, 0) with

probability 1
4 , (1, 1) with probability 1, and (0, 2) with probability

1
4 . We know by (4):

Eu1(0, 2)−Eu1(1, 1) = Eu1(1, 1)−Eu1(2, 0),

which implies:
1

4
Eu1(0, 2) +

1

2
Eu1(1, 1) +

1

4
Eu1(2, 0) = Eu1(1, 1).

Thus with the deviation s00, the expected continuation payoff remains unchanged.
For more general case with more than two loan applicants, suppose that one bank deviate in the way

above. Let pk,N−k denote the probability of (k,N − k) for the two banks’ loan portfolio sizes when no bank

deviates, and p0k,N−k as the probability of (k,N−k) for the two banks’ loan portfolio size with the deviation.
By symmetry, it is easy to check that:X

k

pk,N−kE[ui(k,N − k)] =
X
k

p0k,N−kE[ui(k,N − k)] for bank i = 1, 2.

There is a stage profit improvement, while the expected continuation value remains the same, a contra-

diction.

Proof. (Corollary 1) The proof is similar to that of Proposition 4. First consider the case N − 2 ≥ Nα.

Assume that there exists a SPPE with s = (n = 0, Nα < N , Fα) played on the equilibrium path, where Fα
is a constant larger than F ∗ = 1

λpb+(1−λ)pg , and the continuation value function does not depend on (χ1, χ2),
i.e., the number of defaulted loans in each bank’s loan portfolio.

37The expected payoff with no deviation is a linear combination of the expected payoffs with deviations in the form of s0(D),
D = 0, 1, ..., N . Therefore, the expected payoff for each deviation with s0(D) must be the same.
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Denote s0(D) = (n = 0, Nα = D, F−α ) as a feasible deviation strategy, for some 0 ≤ D ≤ Nα. Let

N(D)/N(D) be the maximum/minimum possible number of applicants that accept loans offered by bank 2

when bank 1 deviates to s0(D), and let pk(D) be the probability of bank 2 getting k applicants given bank
1 getting D applicants. We must have:

E[π1(s
0(D), s) + δ

N(D)X
k=N(D)

pk(D)u1(D, k)]

= E[π1(s
0(D0), s) + δ

N(D0)X
k=N(D0)

pk(D
0)u1(D0, k)] for any D 6= D0,

which implies:

δE

N(D)X
k=N(D)

pk(D)u1(D, k)− δ

N(D−1)X
k=N(D−1)

pk(D − 1)u1(D − 1, k)] (5)

= [λpb + (1− λ)pg]Fα − 1 for any D.
Consider the following deviation in which one bank tests one applicant. If the tested applicant is good,

then it offers loan to this tested applicant at F−α , offers loan to a randomly picked non-tested applicant at
F+α , and offers loans to other randomly picked Nα − 2 applicants at Fα. If the tested applicant is bad, it

rejects the applicant, and offers loan to other randomly picked Nα applicants at Fα. We denote the above

deviating strategy as s00. We can check that given (5), s00 gives the same expected continuation payoff as s.
The improvement in the stage profit for the deviating bank can be written as:

∆E[π] = −c+ λ(1− λ)(pg − pb)Fα,

and the result comes out immediately.

The proof for the case with Nα = N − 1 is similar, and thus omitted.

Proof. (Corollary 2) For the case with N = Nα, consider the deviation in which one bank tests one

applicant and offers loan to that applicant at min{Fα}− > F ∗ with probability 2N−1
2N when it is good and

rejects the applicant when it is bad. We can check this keep the distribution (D1,D2) the same, and thus

the continuation payoff is the same with the deviation. The stage gain is c− 2N−1
2N λ(1−λ)(pg−pb)min{Fα}.

For the case with N < Nα, consider the deviation in which one bank tests one applicant and offers loan to

that applicant at min{Fα} when it is good, when it is bad, rejects the applicant and picks another un-tested
applicant to keep the total number of applicants it approves the same. We denote the above deviating

strategy as s0. Denote π(s, s) as π(N,Nα), and it is easy to understand what π(N − 1, Nα − 1) means; we
also denote π(N − 1,Nα − 1, Nα) as the expected payoff of one bank offering loans to Nα − 1 applicants out
of N − 1, while the other banks offers to Nα of them. It is easy to check that with the deviation to s0, the
deviating bank’s expected payoff is:

π0 = (1− λ){( 1
N

1

2
+

Nα − 1
N

)(pgmin{Fα}− 1) + Nα

N
π(N − 1, Nα − 1)

+
N −Nα

N
[(pgmin{Fα}− 1) + π(N − 1, Nα − 1,Nα)]}+ λπ(N,Nα)− c.

We can also write π(N,Nα) as follows:

π(N,Nα) = (
1

N

1

2
+

Nα − 1
N

)[(1− λ)pgmin{Fα}+ λpbmin{Fα}− 1] + Nα

N
π(N − 1,Nα − 1)

+(1− Nα

N
){[(1− λ)pgmin{Fα}+ λpbmin{Fα}− 1] + π(N − 1,Nα − 1, Nα)}.
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We have:

π0 − π(N,Nα) = (1− λ){( 1
N

1

2
+

Nα − 1
N

)λ(pg − pb)min{Fα}] + (1− Nα

N
)λ(pg − pb)min{Fα}}− c

=
2N − 1
2N

λ(1− λ)(pg − pb)min{Fα}− c > 0

iff c <
2N − 1
2N

λ(1− λ)(pg − pb)min{Fα}.
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Appendix 2: An Example of a PPE with Trigger Strategies
In this example, for simplification, banks start with asymmetric strategies to reach a symmetric loan

distribution. Assume that each period there are two loan applicants (N = 2). Banks want to keep the

loan interest rate at F = X. The loan portfolio size distribution for the two banks is determined as follows.

When there is no credit worthiness testing, Bank 1 offers loans to both applicants at interest rate X, while

Bank 2 offers a loan to only one applicant at interest rate X−, and rejects the other applicant. Each bank
will get exactly one loan in equilibrium. They punish any other loan distribution by playing stage Nash

equilibrium forever.

Formally, the period one strategy for Bank 1 is s1 = (n = 0, Nα1 = 2, Fα1 = X); Bank 2’s strategy is

s2 = (n = 0, Nα2 = 1, Fα2 = X−). For a discount rate, δ, close enough to 1, Bank 1 does not have an

incentive to deviate by conducting credit worthiness testing, since if Bank 1 rejects one bad-type applicant,

while Bank 2 offers loans to the other one, there will be a positive possibility that the loan distribution will

be different from (1, 1).38 However, with the above strategy Bank 2 might have an incentive to carry out

testing while keeping the loan distribution equal to (1, 1) with probability 1. With δ close enough to 1, the

only possible deviation, without changing the loan portfolio distribution, is as follows. Bank 2 deviates to

high credit standards by testing one of the applicants. After carrying out the test, if the tested applicant is

of bad type, then Bank 2 offer a loan to the non-tested applicant at X− while rejecting the other one; if the
tested applicant is of good type, Bank 2 offers a loan to it at X− while rejecting the other one. Formally

Bank 2’s deviation strategy can be written as s02 = (n = 1, Nα2(Ng), Nβ2(Ng), Fα2 = Fβ2 = X−), where:

Nα2(Ng) = 1, if Ng = 0

Nβ2(Ng) = 1, if Ng = 1.

We claim that if X is big enough, then Bank 2 will be strictly better off by deviating for some level of

test cost c. When Bank 2 does not deviate, the expected stage payoff is:

Eπ2 = λ(pbX − 1) + (1− λ)(pgX − 1).

When Bank 2 deviates as described above, the expected stage payoff is:

Eπ02 = (1− λ)(pgX − 1) + λ[(1− λ)(pgX − 1) + λ(pbX − 1)]− c.

We have:

Eπ02 −Eπ2 = λ(1− λ)(pg − pb)X − c

> 0

iff c < λ(1− λ)(pg − pb)X

Compare this condition with that of Assumption 2: c ≥ (1−λ)λ(pg−pb)
λpb+(1−λ)pg . As long asX > F ∗ = 1

λpb+(1−λ)pg ,
the parameter space is not empty.

38 It can be verified that other forms of deviation are also not incentive compatible for Bank 1.
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However, with a trigger punishment, we can eliminate the incentive of Bank 2 to deviate through credit

worthiness testing. The idea is for both banks to test all applicants for T periods whenever Bank 1’s borrower

defaults while Bank 2’s borrower does not. When both banks test, if there is no bad-type applicant, Bank

1 offers loans to both applicants at X, and Bank 2 offers a loan to one applicant at X−. If there is one

good-type applicant, only Bank 1 offers a loan to the good type applicant at X, while Bank 2 rejects all the

applicants. Finally, if there are two bad-type applicants, both banks reject all the applicants.

Now, we are ready to describe a trigger strategy that will support the PPE. At period t = 0, Bank 1’s

strategy is s1 = (n = 0, Nα1 = 2, Fα1 = X), and Bank 2’s strategy is s2 = (n = 0, Nα2 = 1, Fα2 = X−).
At t > 0, they will continue to play (s1, s1) unless one of the following two cases occurred at t− 1:
(1) If they observe (D1t−1,D2t−1) 6= (1, 1), then they play (sd, sd) for the rest of the periods, where

sd = (n = 0, Nα = 2,Fα = F ∗).
(2) Else, if they observe χ1t−1 = 0 and χ2t−1 = 1, then they play (sr1, sr1) at period t, where sr1 = (n = 2,

Nβ1(Ngt), Nγ1(Ngt) = 0, Fβ1 = Fγ1 = X), sr2 = (n = 2, Nβ2(Ngt),Nγ2(Ngt) = 0, Fβ2 = Fγ2 = X−) and

Nβ1(Ngt) = 2 if Ngt = 2

= 1 if Ngt = 1

= 0 if Ngt = 0

Nβ2(Ngt) = 1 if Ngt = 2

= 0 if Ngt = 1

= 0 if Ngt = 0.

They will continue to play (sr1, s
r
2) unless one of the following two cases occurs at τ > t:

(2.1) If banks do not observe (1, 1), (1, 0), or (0, 0),39 then they will play (sd, sd) for the rest of the time,

where sd = (n = 0, Nα = 2,Fα = F ∗).
(2.2) Else, if τ ≥ t+T , i.e. T periods have elapsed, then the banks go back to normal by playing (s1, s2)

as defined above.

Formally, the trigger strategy is defined as follows. Define period t to be normal if (a) t = 0; or (b), t−1
was normal, Dt−1 = (1, 1) and χ1t−1 = 1; or (c), t − T − 1 was normal, Dt−1 = (D1(Ngt−1),D2(Ngt−1)),
and t− 1 was reversionary (as we will define in a moment). Define period t to be reversionary if (a) t− 1
was normal, Dt−1 = (1, 1) and χ1t−1 = 0; or (b), t − 1 is reversionary, and t < T or else t − T is normal,

and Dt−1 = (D1(Ngt−1),D2(Ngt−1)). Define period t to be devastating otherwise. Let st be the strategy

for banks, and the trigger strategy is given by:

st =


(s1, s2) if t is normal

(sr1, s
r
2) if t is reversionary

(sd, sd) if t is devastating.

Each bank faces a stationary Markov dynamic programming problem. Its optimal strategy is to play

(s1, s2) in normal periods, play (sr1, s
r
2) in reversionary periods, and play (s

d, sd) in deviating periods. The
39 In fact, (D1,D2) depends on Ngτ−1, which is not public information, we have, on the equilibrium path,

(D1(Ngτ−1),D2(Ngτ−1))

= (1, 1) if Ngτ−1 = 2

= (1, 0) if Ngτ−1 = 1

= (0, 0) if Ngτ−1 = 0.

In PPE, however, banks’ strategies can not depend on non-public information.
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play (sd, sd) is a threatening play, which will never occur on the equilibrium path, while both (s1, s2) and

(sr1, s
r
2) will occur.

If t is a normal period, and banks play (s1, s2), then the probability of switching to a reversionary period

at time t+ 1 is:

q = λ(1− pb)[λpb + (1− λ)pg] + (1− λ)(1− pg)[λpb + (1− λ)pg].

With bank 2 deviating to s02, We have:

q = (1− λ) (1− pg) + λ(1− pb).

However, if one Bank 2 plays s02 = (n = 1, Nα2(Ng), Nβ2(Ng), Fα2 = Fβ2 = X−) where:

Nα2(Ng) = 1, if Ng = 0

Nβ2(Ng) = 1, if Ng = 1,

this probability becomes:

q0 = λ(1− pb)[λpb + (1− λ)pg] + (1− λ)[λ(1− pb) + (1− λ)(1− pg)]pg.

We can see that:

∆q = q0 − q = λ(1− λ)(pg − pb).

In words, the above condition says that when Bank 2 deviates to s02, the probability of switching to a
reversionary period increases. By hypothesis Bank 2 is deviating. Now, having defined the trigger strategies,

we check the incentive constraint for Bank 2. In the normal period, Bank 2’s expected stage payoff from

playing s2 = (n = 0, Nα2 = 1, Fα2 = X−) given s1 = (n = 0, Nα1 = 2, Fα1 = X) is:

Eπn2 = λ(pbX − 1) + (1− λ)(pgX − 1).

In the reversionary period, Bank 2’s expected stage payoff from playing sr2 = (n = 2, Nβ2(Ngt), Nγ2 = 0,

Fβ2 = Fγ2 = X−) given sr1 = (n = 2, Nβ1(Ngt), Nγ1 = 0, Fβ1 = Fγ1 = X) is:

Eπr2 = (1− λ)2(pgX − 1)− 2c.

We can see:

Eπn2 − Eπr2 = λ (pbX − 1) + λ(1− λ)(pgX − 1) + 2c
> 0

iff c > −1
2
[λ (pbX − 1) + λ(1− λ)(pgX − 1)]

It is easy to check this condition is implied by Assumptions 1 and 2.40

40By Assumption 2, c ≥ (1−λ)λ(pg−pb)
λpb+(1−λ)pg , we have

(1− λ)λ(pg − pb)

λpb + (1− λ)pg
− {−1

2
[λ(pbX − 1) + λ(1− λ)(pgX − 1)]}

=
λ

λpb + (1− λ)pg
{2(1− λ)(pg − pb) + {[λpb + (1− λ)pg]X − λ}pb

−(1− λ)pg + (1− λ)(pgX − 1)[λpb + (1− λ)pg ]}
≥ λ

λpb + (1− λ)pg
{(1− λ)(pg − pb) + (1− λ)(pgX − 1)[λpb + (1− λ)pg ]}

> 0,

where we use Assumption 1:
[λpb + (1− λ)pg ]X > 1.
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Let Wn
2 (s) denote the expected payoff in a normal period when Bank 2 plays s2. Given the other bank

is playing the trigger strategy, Bank 2’s expected discounted present value from playing s2 is:

Wn
i (s2) = Eπn2 + δ(1− q)Wn

i (s2)

+δq[
TX
t=1

δt−1Eπr2 + δTWn
i (s2)].

We have:

Wn
i (s2) =

Eπn2 + δq 1−δ
T

1−δ Eπ
r
2

1− δ(1− q)− δT+1q

=
Eπn2 + q δ−δ

T+1

1−δ Eπr2

1− δ + (δ − δT+1)q

=
Eπn2 −Eπr2

1− δ + (δ − δT+1)q
+

Eπr2
1− δ

.

In the normal period, Bank 2 can deviate from the equilibrium strategy by playing s02 as defined earlier.
The short-run payoff to Bank 2 is:

Eπ02 = (1− λ)(pgX − 1) + λ[(1− λ)(pgX − 1) + λ(pbX − 1)]− c

and we have the expected one-shot deviation discounted present value of Bank i:

Wn
i (s

0
2) = Eπ02 + δ(1− q0)Wn

i (s2)

+δq0[
TX
t=1

δt−1Eπr2 + δTWn
i (s2)]

In order to make the trigger strategy the best response to each other in normal periods, we need:

Wn
i (s2) > Wn

i (s
0
2).

It is easily verified that there is no incentive for either bank to deviate in a reversionary period as long

as δ is close enough to 1 and T is large enough.
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