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Health care extends life. Over the past half century, Americans have spent a
rising share of total economic resources on health and have enjoyed substantially
longer lives as a result. Debate on health policy often focuses on limiting the
growth of health spending. We investigate an issue central to this debate: can
we understand the growth of health spending as the rational response to changing
economic conditions—notably the growth of income per person? We estimate
parameters of the technology that relates health spending to improved health,
measured as increased longevity. We also estimate parameters of social pref-
erences about longevity and the consumption of non-health goods and services.
The story of rising health spending that emerges is that the diminishing marginal
utility of non-health consumption combined with a rising value of life causes the
nation to move up the marginal-cost schedule of life extension. In principle, this
mechanism can produce a health share that eventually approaches 100 percent if
incomes continue to grow. Quantitatively, simulations based on our parameter
estimates project that the trending health share will reach about 33 percent by the
middle of the century.
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1. INTRODUCTION

The United States devotes a rising share of its total resources to health

care. The share was 5.2 percent in 1950, 9.4 percent in 1975, and 15.4

percent in 2000. Over the same period, health has improved. The life

expectancy of an American born in 1950 was 68.2 years, of one born in

1975, 72.6 years, and of one born in 2000, 76.9 years.

Why has this health share been rising, and what is the likely time path

of the health share for the rest of the century? We present a framework

for answering these questions. In the model, the key allocative decision

is the division of total resources between consumption and health care.

Utility depends on quantity of life (life expectancy) and quality of life

(consumption). Health spending is valued because it allows people to live

longer and better lives. In our analysis, the rise in the health share occurs

because of an income effect. As consumption increases with income, the

marginal utility of consumption falls rapidly while the value of extending

life rises. As agents in our model get richer and richer, consumption rises

but they devote an increasing share of resources to health care.

Many of the important questions related to health involve the institu-

tional arrangements that govern its financing—especially Medicare and

employer-provided health insurance. One approach would be to introduce

these institutions into our model and to examine the allocation of resources

that results.

Instead, we take an alternative approach. We examine the allocation of

resources that maximizes social welfare in our model. This allows us to

abstract from the complicated institutions that shape spending in the United

States and to ask a more basic question: from a social welfare standpoint,

how much should we spend on health care, and what is the time path of

optimal health spending? We look at these issues from two points of view,

first under the hypothesis that historical levels of health care were optimal



THE VALUE OF LIFE AND HEALTH SPENDING 3

and second under the hypothesis that they were not. In the second case, we

make progress by drawing on the results of a large body of existing research

on the value of a statistical life.

We start by documenting the aggregate facts for health spending and life

expectancy, the two key variables in our model. We then present a simple

stylized model that makes some extreme assumptions but that delivers our

basic results. From this foundation, we consider a richer and more realistic

framework and develop a full dynamic model of health spending. The

remainder of the paper estimates the parameters of the model and shows a

number of simulation results.

Related contributions that we will discuss in more detail in future drafts

include Grossman (1972), Usher (1973), Shepard and Zeckhauser (1984),

Ehrlich and Chuma (1990), and Ehrlich (2000).

2. BASIC FACTS

We will be concerned with the allocation of total resources to health and

other uses. We believe that the most appropriate measure of total resources

is consumption plus government purchases of goods and services. That is,

we treat investment and net imports as intermediate products. Similarly,

we measure spending on health as the delivery of health services to the

public and do not include investment in medical facilities. Thus we differ

conceptually (but hardly at all quantitatively) from other measures that

include investment in both the numerator and denominator. When we speak

of consumption of goods and services, we include government purchases

of non-health goods and services.

Figure 1 shows the fraction of total spending devoted to health care,

according to the U.S. National Income and Product Accounts. The nu-

merator is consumption of health services plus government purchases of

health services and the denominator is consumption plus total government
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FIGURE 1. The Health Share in the United States
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Note: The health share is calculated as follows. The numerator is consumption of
health services plus government purchases of health services and the denominator
is consumption plus total government purchases of goods and services. For further
information on sources, see the data section of this paper.
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FIGURE 2. Life Expectancy in the United States
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Note: Life expectancy at birth data are from Table 12 of National Vital Statistics
Report Volume 51, Number 3 “United States Life Tables, 2000", December 19,
2002. Center for Disease Control.

purchases of goods and services. The fraction has a sharp upward trend,

but growth is irregular. In particular, the fraction grew rapidly in the early

1990s, flattened in the late 1990s, and resumed growth after 2000.

Figure 2 shows life expectancy at birth for the United States. Following

the tradition in demography, this life expectancy measure is not expected

remaining years of life (which depends on unknown future mortality rates),

but rather represents life expectancy for an individual who faces the cross-

section of mortality rates from a given year.

Life expectancy has grown about 1.7 years per decade. It shows no sign of

slowing over the 50 years reported in the figure. In the first half of the 20th

century, however, life expectancy grew at about twice this rate, so a longer
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times series would show some curvature. Whether life expectancy rises

linearly or less-than-linearly over time is somewhat open to debate in the

demography literature. Oeppen and Vaupel (2002) document a remarkable

linear increase in the upper tail of female life expectancy dating back to

1840. See Lee (2003) for an overview of this debate.

3. BASIC MODEL

We begin with a model based on the simple but unrealistic assumption

that mortality is the same in all age groups. We also assume that preferences

are unchanging over time and income and productivity are constant. This

model sets the stage for our full model where we incorporate age-specific

mortality and productivity growth. As we will show in Section 4, the stark

assumptions we make in this section lead the full dynamic model to collapse

to the simple static problem considered here.

The economy consists of a collection of people of different ages who

are otherwise identical, allowing us to focus on a representative person.

Let x denote the person’s state of health, which we will call health status.

The mortality rate of an individual is the inverse of her health status, 1/x.

Since people of all ages face this same mortality rate, x is also equal to life

expectancy. For simplicity at this stage, we assume zero time preference.

Expected lifetime utility for the representative individual is

U(c, x) =

∫ ∞

0
e−(1/x)tu(c)dt = xu(c). (1)

That is, lifetime utility is the present value of her per-period utility u(c)

discounted for mortality at rate 1/x. In this stationary environment, con-

sumption is constant so that expected utility is the number of years an indi-

vidual expects to live multiplied by per-period utility. Here and throughout

the paper, we normalize utility after death at zero.
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Rosen (1988) pointed out the following important implication of a spec-

ification of utility involving life expectancy: When lifetime utility is per-

period utility, u, multiplied by life expectancy, the level of u matters a

great deal. In many other settings, adding a constant to u has no effect on

consumer choice. Here, adding a constant raises the value the consumer

places on longevity relative to consumption of goods. Negative utility also

creates an anomaly—indifference curves have the wrong curvature and the

first-order conditions do not maximize utility. As long as u is positive,

preferences are well behaved.

Rosen also discussed the following issue: If the elasticity of utility rises

above one for low values of consumption—as it can for the preferences

we estimate in this paper—mortality becomes a good rather than a bad.

A consumer would achieve a higher expected utility by accepting higher

mortality and the correspondingly higher level of later consumption. Thus

one cannot take expected utility for a given mortality rate as an indicator of

the welfare of an individual who can choose a lower rate. This issue does

not arise in our work, because we consider explicit optimization over the

mortality rate. An opportunity for improvement of the type Rosen identified

would mean that we had not maximized expected utility.

The individual is endowed with a constant flow of resources y that can

be spent on consumption or health:

c + h = y. (2)

The economy has no physical capital or foreign trade that permits shifting

resources from one period to another.

Finally, the individual’s state of health is determined by health spending

according to a health production function:

x = f(h). (3)
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The optimal allocation of resources in this economy involves the choice

of consumption and health spending that maximizes the utility of the in-

dividual in (1) subject to the resource constraint (2) and the production

function for health status (3). The first order condition for the optimal

allocation is

U(c, x)

u′(c)
=

x2

f ′(h)
. (4)

This condition equates the marginal benefit of saving a life, U(c, x)/u′(c),

to the marginal cost. The marginal cost of saving a life is dh/dm, the

amount of output that must be given up to reduce the mortality rate m

by one unit. In terms of our model, it is straightforward to show that

dh/dm = x2/f ′(h). Intuitively, the mortality rate is 1/x, so that saving

one life requires x2 people to increase x by one unit, at a cost of dh/dx =

1/f ′(h).

Throughout the paper, we will take the health technology to have the

form,

x = f(h) = A(zh)θ, (5)

where z is the productivity of health resources in producing health status

and A is a constant. The specification implies diminishing returns to adding

resources in health care if θ is below one. Note that f ′(h) = θx/h.

Let s = h/y denote the share of resources devoted to health care, and let

L(c, x) ≡ U(c, x)/u′(c) denote the value of a life on the preference side,

in consumption units. Dividing by u′(c) converts units of utility into units

of consumption. Then the health technology implies that the first-order

condition is

s = θ ·

L(c, x)/x

y
. (6)

The optimal allocation of resources makes the health share proportional to

the value of a year of life L/x as a fraction of per capita income. This
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first-order condition together with the production function for health status

and the definition of the value of life determine the optimal allocation of

resources in the model.

Now suppose we ignore the fact that income and life expectancy are

taken as constant in this static model and instead consider what happens

if productivity grows. Despite this short-cut of using a static model to

answer a dynamic question, the results anticipate the findings in our full

dynamic model. With the value of life held constant, equation (6) implies

that growing y would cause the health share to decline. In other words, to

get a rising health share, it must be the case that the value of a year of life,

L/x, rises faster than total resources y.

One final manipulation of the first-order condition is also informative.

In this basic model, L/x = u(c)/u′(c). Using this fact, we can rewrite

equation (6) as

s

1 − s
=

θ

ηuc
, (7)

where ηuc ≡
du
dc

c
u is the elasticity of flow utility with respect to consump-

tion. This form of the optimality condition shows two results. First, the

health share is a decreasing function of the elasticity of utility with respect

to consumption. For a large class of utility functions, this elasticity declines

as consumption rises, which will produce a rising health share in the model.

For example, this occurs if u(c) is bounded or if u(c) = log c. Second,

because s = 1 − c/y, this expression shows that the optimal health share

is invariant to the technology parameter z. That is, technical change in

the production of health leaves the optimal health share unchanged in this

simple formulation. Our framework does not put technical change in the

health sector at the center of an explanation for the rising health share; we

will discuss this more in the conclusion to the paper.
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3.1. An Example: Constant-elastic utility

To illustrate some of the principles of the analysis, we calibrate the simple

static model to data for the U.S. for 1950 and 2000. In the calibration, we

ignore the fact that the planner in both cases would understand that the

economy is not static and also that mortality is far from constant by age.

We tackle both of those issues in the next section. It will turn out that the

static model is similar to the full dynamic model with age-specific mortality.

Suppose that the flow of utility takes the constant-elastic form with an

additive constant:

u(c) = b +
c1−γ

1 − γ
. (8)

Concavity requires γ > 0. When γ > 1, the realistic case, the base level

of utility, b, needs to be positive and large enough to ensure that flow utility

is always positive, so that the optimum occurs at an interior point. Notice

that in this case u(c) is bounded so that the elasticity ηuc is decreasing in

consumption.

In the constant-elastic case, it is straightforward to show that the value

of a year of life, L(c, x)/x, satisfies

L(c, x)

x
= bcγ

−

c

γ − 1
. (9)

For γ > 1, the growth rate of the value of a life year approaches γ times the

growth rate of consumption from above. Therefore, the value of a year of

life will grow faster than consumption if γ is larger than 1. It turns out that

this is enough to get the value of a year of life to grow faster than income

as well. For example, if the health share were constant, consumption and

income would grow at the same rate. But then the value of a year of

life would be growing faster than income, producing a rising health share.

According to equation (6), this is exactly what we need in order for the

model to generate a rising health share.
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Now we pick some parameter values for this utility function and the

production function for life expectancy. According to the data underlying

the figures at the beginning of the paper, resources per capita rose from

0.343 to 1.0 (as an index based in 2000), health spending rose from 0.018

to 0.154 (in the same units), and life expectancy rose from 68.2 to 76.9

years. We assume that health productivity, z, is normalized to one in the

year 2000 and grows at a constant exponential rate; as discussed later in the

paper, we assume this growth rate is one percent per year. Fitting the life

expectancy and health spending data to our health technology, equation (5),

we find parameter values θ = 0.0453 and A = 83.68.

We estimate the curvature parameter, γ, and the base level of utility, b, for

the constant-elastic utility function by matching the first-order condition to

the data in 1950 and 2000. Using the consumption, health spending, and

life expectancy data, we solve the two instances of the first-order condition,

for 1950 and 2000, for the two parameters. We find γ = 1.8 and b = 6.0.

Figures 3 and 4 show the results of the model simulation with these

parameter values. Because we chose the four parameter values to match

the beginning and ending data points for each figure, the simulation results

match up nicely with the data. Projecting forward, the basic model suggests

a health spending share of nearly 30 percent by the year 2050, when life

expectancy reaches 85 years.

The basic mechanism of the rising health share is straightforward. Be-

cause γ is greater than one, the value of a year of life rises faster than

income. Life becomes increasingly valuable relative to consumption for a

society with these preferences.

We can calculate exactly how valuable life becomes by computing L(c, x)

in the simulation. For the year 2000, the model implies a value of life of

$7.8 million (in 2000 prices). We will discuss the empirical literature on

the value of life in a later section, where we will conclude that this value
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FIGURE 3. Simulation with the Basic Model: the Health Share
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is probably at the upper end of the reasonable range. Taken at face value,

the model implies that aggregate health spending in 2000 was at roughly

the right level—if we believe the true value of life in 2000 was around $8

million—or was too high by as much as a factor of three—if instead the

true value of life was $1 million.

The simple model develops intuition, but it falls short on a number of

dimensions. First, the model assumes constant total resources and con-

stant health productivity—we have been flouting these assumptions in the

simulations by letting these grow. Second, the model assumes a constant

mortality rate at all ages. Finally, as we will show, in the full dynamic

model with age-specific mortality, the value of life is substantially lower.
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FIGURE 4. Simulation with the Basic Model: Life Expectancy

1950 2000 2050
65

70

75

80

85

90

Year

Life Expectancy

Circles “o” show actual data. The solid line shows the simulated values.

4. THE FULL DYNAMIC MODEL

We turn now to the full dynamic model, allowing age-specific mortality

and the associated heterogeneity, as well as growth in total resources and

productivity growth in the health sector. An individual of age a in period t

has an age-specific state of health, xa,t. As in the basic model, the mortality

rate for an individual is the inverse of her health status. Therefore, 1−1/xa,t

is the per-period survival probability of an individual with health xa,t.

An individual’s state of health is produced by spending on health ha,t:

xa,t = fa(ztha,t), (10)

where zt is an exogenous productivity factor that converts spending on

health ha,t into effective health input. Note that we allow the production

function for health to depend on age—mortality varies by age because of
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variations in health input and variations in the effectiveness of health inputs

in raising health status.

The starting point for our specification of preferences is the flow utility

of the individual, ua,t (ca,t). Utility depends on both time and age. For

simplicity, we assume that the time and age effects are additive, so that

ua,t (ca,t) = ba,t + u (ca,t) (11)

Here ba,t is the base value of flow utility for a person of age a and u (ca,t)

is the part that varies with the current quality of life, as measured by the

flow of consumption, ca,t.

In this environment, we consider the allocation of resources that would

be chosen by a social planner who places equal weights on each person

alive at a point in time and who discounts future flows of utility at rate β.

Let Na,t denote the number of people of age a alive at time t. Then social

welfare is
∞
∑

t=0

∞
∑

a=0

Na,tβ
t (ba,t + u (ca,t)) . (12)

The optimal allocation of resources is a choice of consumption and health

spending at each age that maximizes social welfare subject to the production

function for health in (10) and subject to a resource constraint we will

specify momentarily.

It is convenient to express this problem in the form of a Bellman equa-

tion. Let Vt(Nt) denote the social planner’s value function when the age

distribution of the population is the vector Nt ≡ (N1,t, N2,t, ..., Na,t, ...).

Then the Bellman equation for the planner’s problem is

Vt(Nt) = max
{ha,t,ca,t}

∞
∑

a=0

Na,t (ba,t + u(ca,t)) + βVt+1(Nt+1) (13)

subject to
∞
∑

a=0

Na,t(yt − ca,t − ha,t) = 0, (14)
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Na+1,t+1 =

(

1 −

1

f(ha,t)

)

Na,t, (15)

N0,t = N0, (16)

yt+1 = egyyt, (17)

zt+1 = egzzt, (18)

and subject to the production function for health status in equation (10).

The first constraint is the economy-wide resource constraint. Note that we

assume that people of all ages contribute the same flow of resources, yt. The

second is the law of motion for the population. We assume a large enough

population so that the number of people aged a+1 next period can be taken

equal to the number aged a today multiplied by the survival probability.

The third constraint specifies that births are exogenous and constant at N0.

The final two constraints are the laws of motion for resources and health

productivity, which grow at rates gy and gz .

Let λt denote the Lagrange multiplier on the resource constraint. The

optimal allocation satisfies the following first order conditions for all a:

u′(ca,t) = λt, (19)

β
∂Vt+1

∂Na+1,t+1
·

f ′(ha)

x2
a,t

= λt. (20)

That is, the marginal utility of consumption and the marginal utility of

health spending are equated across people and to each other at all times.

This condition implies that people of all ages have the same consumption

ct at each point in time, but they have different health expenditures ha,t

depending on age.

Let va,t ≡
∂Vt

∂Na,t
denote the change in social welfare associated with

having an additional person of age a alive. That is, va,t is the social value

of life at age a in units of utility. Combining our two first-order conditions,



16 HALL AND JONES

we get a new version of the optimal allocation condition that we derived

before for the static model:

βva+1,t+1

u′(ct)
=

x2
a,t

f ′(ha,t)
, (21)

The optimal allocation sets health spending at each age to equate the

marginal benefit of saving a life to its marginal cost. The marginal benefit

is the social value of life from the preference side, βva+1,t+1/u
′(ct). The

marginal cost is dh/dm, the additional units of output that must be given

up to reduce the mortality rate m by one unit to save a life. In terms of our

setup with health status x, dh/dm = x2/f ′(h). The mortality rate is 1/x,

so that saving one life requires x2 people to increase x by one unit, at a cost

of dh/dx = 1/f ′(h).

Finally, by taking the derivative of the value function, we find that the

social value of life satisfies the recursive equation:

va,t = ba,t + u(ct) + β(1 −

1

xa,t
)va+1,t+1 + λt(yt − ct − ha,t). (22)

The additional social welfare associated with having an extra person alive

at age a is the sum of four terms. The first is the base level of flow utility

enjoyed by that person. The second is the adjustment for the quality of life

associated with the current consumption level. The third is the expected

social welfare associated with having a person of age a+1 alive next period,

where the expectation employs the survival probability 1−1/xa,t. Finally,

the fourth term is the net social resource contribution from a person of age

a, her production less her consumption and health spending.

4.1. Relation to the Static Model

It is worth pausing for a moment to relate this full dynamic model to the

simple static framework. With constant income y, a time- and age-invariant

health production function f(h), β = 1, and a representative individual,



THE VALUE OF LIFE AND HEALTH SPENDING 17

the Bellman equation can be written as

V (y) = max
c,h

b + u(c) + (1 − 1/f(h))βV (y) s.t. c + h = y. (23)

Given the stationarity of this environment, it is straightforward to see that

the value function is just

V (y) = max
c,h

(b + u(c)) x(h) s.t. c + h = y. (24)

This is exactly the static model that we postulated earlier, restated in discrete

time.

4.2. Summary of the Dynamic Model

Here we pull together all of the elements of the model:

Functional form for health technology:

fa(ha,t) = Aa (ztha,t)
θa . (25)

Functional form for flow utility:

ba,t −
c−(γ−1)

γ − 1
(26)

Recursion for value of life measured in utility units:

va,t = ba,t −
c
−(γ−1)
t

γ − 1
+ c−γ

t (yt − ct − ha,t) + β

(

1 −

1

xa,t

)

va+1,t+1.

(27)

Value of a statistical life in consumption units = marginal cost of a statistical

life:

βva+1,t+1

c−γ
t

=
xa,tha,t

θa
. (28)
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5. DATA

We organize the data into 20 five-year age groups, starting at zero and

ending at 99. We consider 11 time periods in the historical period, running

from 1950 through 2000.

We obtained data on age-specific mortality rates from Table 35 of Na-

tional Vital Statistics Report Volume 51, Number 3 United States Life Ta-

bles, 2000, December 19, 2002, Center for Disease Control. This source

reports mortality rates every 10 years, with age breakdowns generally in 10-

year intervals. We interpolated by time and age groups to produce estimates

for 5-year time intervals and age categories.

We obtained data on age-specific health spending from Meara, White and

Cutler (2004). These data are for 1963, 1970, 1977, 1987, 1996, and 2000.

We distributed national totals for health spending across age categories,

interpolated to our 5-year age categories.

We obtained data on national totals from Table 2.5.5 of the revised Na-

tional Income and Product Accounts of the Bureau of Economic Analysis,

accessed at bea.gov on February 13, 2004 (for private spending) and Table

3.15 of the previous NIPAs, accessed December 2, 2003 (for government

spending). Data on government purchases of health services are no longer

reported in the accounts.

The empirical counterpart for our measure, y, of total resources is total

private consumption plus total government purchases of goods and services,

from the sources described above.

6. ESTIMATING THE HEALTH PRODUCTION FUNCTION

We begin by assuming a functional form for the production function of

health:

xa,t = fa(ztha,t) = Aa (ztha,t)
θa . (29)
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Notice that we allow the parameters of this production function, Aa and θa,

to depend on age.

We also need to specify how the productivity of the health technology

changes over time. Recall that we assume exponential improvement over

time at rate gz:

zt = z0e
gzt, (30)

and normalize the level of z in the year 2000 to one.

Our procedure is to use outside evidence on gz and then to estimate Aa

and θa from data on health spending and mortality. Evidence on the value of

gz is limited to case studies of particular disorders. These studies estimate

price declines of more than 1 percent per year, but are selectively chosen.

A key contribution of these studies is to adjust for quality change. Cutler,

McClellan, Newhouse and Remler (1998) find that the real quality-adjusted

price of treating heart attacks declined by 1.1 percent per year between 1983

and 1994. Shapiro, Shapiro and Wilcox (1999) estimate a real annual rate

of decline of 1.5 percent for the price of treating cataracts between 1969

and 1994. Berndt, Bir, Busch, Frank and Normand (2000) find that the

price of treating acute phase major depression declined at an annual rate

of more than 3 percent between 1991 and 1996. See Jones (2003) for the

details underlying these numbers. We will consider a benchmark value of

gz = .01 and (in a later draft) consider robustness to gz = 0 and 0.02.

To estimate Aa and θa, we take logs of the production function in equa-

tion (29) and add an error term:

log xa,t = log Aa + θa log(ztha,t) + εa,t. (31)

Our identifying assumption is that the error, εa,t, has mean zero and no trend.

Accordingly, we use a GMM estimator based on the two orthogonality

conditions of zero mean and zero covariance with a liner trend variable.
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FIGURE 5. Estimates of the elasticity of health status with respect to
health inputs
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Note: The height of each bar measures the elasticity, θa, in the specification log x =
log Aa + θa log(zh). Standard errors are shown at the top of the bars.

Because ha,t is strongly trending, the resulting estimator has small standard

errors—the trend instrument is strong rather than weak.

Figure 5 shows the GMM estimates of θa, the elasticity of health status,

x, with respect to health inputs, zh, by age category. The groups with

the largest improvements in health status over the 50-year period, the very

young and the middle-aged, have the highest elasticities.

Figure 6 shows the actual and fitted values for two representative age

groups. Because the health technology has two parameters for each age—

intercept and slope—the equations are successful in matching the level and

trend of health status. The same is true in the other age categories.
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FIGURE 6. Estimation of the parameters of the health technology
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From these estimates, we can calculate the marginal cost of saving a life

at each age. However, before turning to these calculations, it is helpful

to have in mind a summary of the empirical literature on the value of a

statistical life (VSL).

6.1. Evidence on the Value of a Statistical Life

In evaluating our results, three dimensions of the VSL literature are rel-

evant. We are interested in (i) the level of the VSL, (ii) the rate at which

the VSL changes over time, and (iii) how the VSL varies with age.

Most estimates of the level of the value of a statistical life are obtained

by measuring the compensating differential that workers receive in more

dangerous jobs. Viscusi and Aldy (2003) provide the most recent survey of

this evidence and find estimates of the value of a statistical life that range

from $4 million to $9 million, in year 2000 prices.

Ashenfelter and Greenstone (2004) provide an alternative approach to

estimating the VSL. Their research design exploits the fact that states took

differential advantage of the relaxation of federal mandatory speed limits

that occurred in 1987. They find that a much lower number of 1.5 million

dollars (in 1997 prices) represents an upper bound on the VSL, suggesting

that various problems including omitted variable bias and selection prob-

lems account for the higher estimates in the labor market literature.

How does the value of life change over time? Recall that a rising value

of life is crucial in this model to understanding the rising health share.

Unfortunately, there is relatively little empirical evidence on changes in the

value of life over time.

Costa and Kahn (2003) appear to provide the first estimates from a con-

sistent set of data on changes in the value of life in the United States. They

use decennial census data from 1940 to 1980 and estimate the value of a

statistical life in 1980 of 5.5 million dollars (in 1990 dollars). Moreover,
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they find that this value has been rising over time at a rate equal to between

1.5 and 1.7 times the growth rate of per capita GDP. Hammitt, Liu and

Liu (2000) made a similar study for Taiwan, combining a time series of

cross-sections, and they estimate an elasticity of the value of a statistical

life with respect to per capita GDP of between 2 and 3. Because life ex-

pectancy itself grows relatively slowly, these studies therefore support the

key requirement in this paper that the value of a year of life as a ratio to per

capita income is rising over time, and provide an estimate of how rapidly

the rise occurs.

A different approach to estimating changes in the value of life finds the

opposite result, however. In addition to surveying the existing literature

that estimates the value of life at a point in time, Viscusi and Aldy (2003)

also conduct a “meta-analysis” to estimate the elasticity of this value with

respect to income. Looking across some 60 studies from 10 countries, they

regress the average value of life estimates from each study on a measure of

average income from each study and obtain an estimate of the elasticity of

the dollar value of life with respect to income of about 0.5 or 0.6, with a 95

percent confidence interval that is typically about 0.2 to 0.8. This appears

to be consistent with several other estimates from different “meta-analysis”

studies that are also summarized by Viscusi and Aldy.

Some additional insight on this issue comes from looking back at our

model. Recall that equation (9) in the simple model suggests that the value

of life as a ratio to life expectancy is roughly proportional to consumption

raised to the power γ. That is, in units of output, the value of a year of

life grows with cγ . One way of thinking about γ is that it is the inverse

of the intertemporal elasticity of substitution, which recent empirical work

estimates to be less than one. This suggests that γ > 1, and in fact the

values that Costa and Kahn (about 1.6) and Hammitt, Liu, and Liu (about 2

or 3) find accord well with this interpretation. Kaplow (2003) puzzles over
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the low income elasticity estimates from the meta-analysis literature for a

similar reason; the recent empirical work by Costa and Kahn and Hammitt,

Liu, and Liu helps to resolve this puzzle, we think.

Finally, we turn to evidence on variation in the value of a statistical life by

age. Aldy and Viscusi (2003) summarize the existing empirical literature,

which primarily consists of contingent valuation studies. They go on to

provide their own age-specific estimates using the hedonic wage regression

approach. Qualitatively, they support the contingent valuation literature in

finding an “inverted-U” shape for VSL by age. Quantitatively, their main

finding is that the value of life for a 60-year old is about 5.5 million dollars,

while the value of life for 30 to 40-year olds is about 2.5 to 3.0 million

dollars, a gradient of about 1/2 across these age groups.

To summarize, we take the following stylized facts from the VSL litera-

ture. First, there is substantial uncertainty regarding the level of the VSL:

it could be as low as 1.25 million in the late 1980s, but could range much

higher to numbers like 5 million or more. These numbers are plausibly

interpreted as the value of life at some average age, which we will take to

be the 35 to 39-year olds. Second, recent estimates suggest that the VSL

grows over time, at a rate something like 1.6 or 2 times the growth rate of

income. Finally, it appears that the VSL varies with age in an inverted-U

pattern, with a relatively gentle slope, falling by about 1/2 between the ages

of 35 and 60.

6.2. The Marginal Cost of Saving a Life

Our estimates of the health production function allow us to calculate the

marginal cost of saving a life, given the observed allocation of resources.

Recall that this marginal cost is x2/f ′(h). (See, for example, the discus-

sion surrounding equation (21).) With our functional form for the health

technology, f ′(h) = θx/h, so the marginal cost of saving a life is hx/θ. It
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TABLE 1.
The Marginal Cost of Saving a Life (thousands of 2000 dollars)

Growth
Age 1950 1970 1990 2000 Rate

0-5 10 60 310 430 7.7
10-15 140 480 2,060 4,690 7.1
20-25 410 1,310 2,580 3,240 4.1
30-35 310 760 1,460 2,900 4.5
40-45 120 240 780 1,370 4.9
50-55 60 130 490 810 5.4
60-65 30 130 390 680 5.9
70-75 30 100 420 590 6.2
80-85 30 120 470 560 6.1
90-95 30 160 520 570 5.6

Note: The middle columns of the table report the value of a statistical life for various age
groups. The estimates are calculated as the marginal cost of extending life, hx/θ, using
the estimates of θ given in Figure 6 and using actual data on health spending and mortality
by age. Standard errors for these values based on the standard errors of θa are small. The
“Growth Rate” column reports the average annual growth rate between 1950 and 2000.

is important to realize that this calculation only involves the health produc-

tion function. For this part of the paper, the preference side of the model is

irrelevant.

Table 1 shows this marginal cost of saving a life for various age groups.

We can interpret these results in terms of the three findings from the empir-

ical VSL literature. First, the marginal cost of saving the life of a 40-year

old in the year 2000 was about 1.4 million dollars. This lines up reasonably

well with lower end of the level estimates from the literature, for example,

the numbers from Ashenfelter and Greenstone (2004). This would suggest

that health spending was at approximately the right level as a whole for

this age group in 2000. Alternatively, of course, if one believes the higher

estimates of the VSL from the literature, the calculation from Table 1 would

suggest that health spending for this group was too low.
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Next, the final column of the table shows the growth rate for the marginal

cost of saving a life. These growth rates are high, on the order of 5 percent

per year or more. By comparison, the empirical VSL literature finds signif-

icantly lower growth rates. Taking income growth to be about 1.8 percent

per year, for example, the income elasticity from Costa and Kahn (2003) of

about 1.6 suggests that the VSL grows at a rate of 1.8× 1.6 = 2.9 percent

per year. This implies that the value of life in 1950 or 1960 would have

been much higher than the marginal cost of saving a life. Therefore, we

may have been spending too little on health prior to the most recent decade,

even taking the level of the VSL from the lower end of the estimates.

Finally, in terms of variation by age, the general pattern of the marginal

cost of saving a life matches the inverted-U shape found in the VSL litera-

ture. Quantitatively, the slope of the relation appears to be slightly steeper

than what that literature finds. Another way of saying that is this: if the

value of life at age 60 is really as high as half of that at age 30, then we may

be spending too little on health at higher ages. Similarly, it appears that the

marginal cost of saving a life at very young ages is so low that additional

spending at those ages might be worthwhile.

7. ESTIMATING THE PREFERENCE PARAMETERS

We present results for two approaches. The first takes the observed levels

of health spending as optimal and estimates the preference parameters. The

second estimates preference parameters from the evidence in the empirical

VSL literature; it implies that health spending was inefficiently low until

recently.
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7.1. Estimation Using the First-Order Condition

Our model contains the following preference parameters: the discount

factor β, the base levels of flow utility ba,t, and the curvature parameter γ.

We will assume a period length of 5 years.

We have explored a variety of parametric restrictions on the base utility,

ba,t. These include making it a constant for all ages and years, making

it vary by age, and giving it a trend over time. The evidence in favor of

age effects is strong. There is evidence of trends in base utility, but not

at the same rate for different age groups. We have not found a useful

parametric restriction—candidates such as a set of age effects and a set of

time effects result in sufficiently large residuals that the other parameters

take on improbable values.

Accordingly, we treat the values of ba,t as parameters themselves, without

imposing any restriction. Because there is one of these parameters for each

data point, estimation is a matter of solving for the values, not minimizing

a GMM norm or other criterion. Further, this means there are not enough

equations to estimate the other two parameters, β and γ. We use outside

evidence on these parameters before solving for the values of ba,t.

With respect to the discount rate, we use the following approach: the

Euler equation for consumption with constant-elastic preferences is

ct

ct−1
= [β(1 + r)]σ (32)

where σ is the intertemporal elasticity of substitution (see, for example,

Hall (1988)). We take its value to be 0.5, in line with a substantial amount

of research on this subject over the past two decades. r is the real return

to saving, which we take to have the value 0.05—see Hall (2003) and the

research cited there. The value of β that reconciles the observed growth

rate of consumption per person over the sample period 1950-2000 of 2.08

percent per year is 0.992, or, for the 5-year intervals in the model, 0.963.
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For the utility curvature parameter γ, we look to other circumstances

where curvature affects choice. First is intertemporal choice, as just dis-

cussed. The intertemporal elasticity of substitution, σ, is the reciprocal of

the elasticity of marginal utility with respect to consumption. If marginal

utility is quite elastic, diminishing marginal utility of future consumption

inhibits trading off future for current consumption and the intertemporal

elasticity is low. If we make an analogy between valuing future consump-

tion for the purposes of choosing its level and valuing the enjoyment of

future live for the purpose of choosing health spending and thus choosing

mortality, then we would relate our curvature parameter γ to the reciprocal

of σ, suggesting a value of 2. This value is also not too different from the

value of 1.8 we calculated in section 3.2.

The second dimension of choice is over uncertain outcomes. Risk-averse

consumers will apply a concave utility function to those outcomes. If the

utility function has a constant elasticity, the elasticity of marginal utility is

the coefficient of relative risk aversion. Lucas (1994) discusses the evidence

on this parameter and concludes that 2 is a reasonable value. Again, if we

make an analogy between choosing among risky outcomes and evaluating

the benefit of the value of future life, we would relate our curvature param-

eter γ to the coefficient of relative risk aversion, once more suggesting a

value of 2.

We should also note that the relatively high values of the base value of

life that we find have the implication that our results are not at all sensitive

to the value of the curvature parameter γ. Most of the motive to invest in

longevity comes from the base value and relatively little from the part of

utility that depends on consumption.
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FIGURE 7. Estimates of base flow utility, ba,t
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Note: Each line shows the cross section of base levels of utility in a period. The
periods cover 5 years each from 1950 through 2000.

Given the data and the values of θa, β, and γ, we first calculate the implied

value of life in utility units from equation (28):

va,t =
xa−1,t−1ha−1,t−1c

−γ
t−1

βθa−1
. (33)

and then recover the base levels of utility from a rearranged version of

equation (27):

ba,t = va,t +
c
−(γ−1)
t

γ − 1
− c−γ

t (yt − ct − ha,t) − β

(

1 −

1

xa,t

)

va+1,t+1.

(34)

Figure 7.1 shows the results of the calculations. Each line portrays the

base level of utility for every age group in a particular year, for the 11
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years at 5-year intervals from 1950 though 2000. The lines share a com-

mon pattern—negative flow utility in the youngest group and usually in the

second-youngest group, and also negative flow utility for teenagers. Neg-

ativity of flow utility does not contradict any principles of the model. The

motivation for continuing to live is to capture next period’s value of life.

Negative flow utility marks a difficult period of life that people choose to

live through so that they can enjoy later periods with positive utility. For

older people, flow utility stabilizes at a common, lower positive level over

all periods. Flow utility rises somewhat for the very elderly.

We could also interpret the solved values for ba,t as the residuals from the

first-order condition in a model with a constant b. Economically, they arise

because the marginal cost of saving a life—the right side of equation (28),

with values shown in Table 1—varies considerably more across ages than

the value of life on the preference side would in the absence of variation in

b. That is, with a constant b across ages, the value of life on the preference

side—the left side of equation (28)—turns out to be relatively flat across

ages. For example, consider the marginal cost of saving a life reported in

Table 1. The only way the model can make sense of the fact that we spend

so little on health care for children from 0 to 4 and so much those between

4 and 9 is by having a substantially lower b for the younger group.

These calculations provide estimates of the base level of utility during the

historical period. For our projections for the next 50 years, we need future

values of the base utility parameters. For this purpose, we make use of

additional information, namely the level of the value of life in utility units

from equation (33) in the last historical year, 2000. This level information

is not used in the calculation of the historical values of ba,t from equation

(34), which is in difference form. To make use of the level information,

we hypothesize that ba,t will not change over the future from its values in

2000. This hypothesis makes sense, because there is no systematic trend in
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FIGURE 8. Comparison of historical average base utilities and values
inferred from values of life in 2000
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Note: The dashed line is the average of all of the lines in Figure 7.1 and the solid
line is the set of base values of utility inferred from the value of life in 2000

the historical values in Figure 7.1. Then we proceed in the following way:

When we solve the model for the years 2000 through 2095, we treat ba as

a set of unknowns to solve and then require that the model solution match

the value of life in 2000.

Figure 8 compares the results of the two approaches. The solid line infers

the future values of ba from the year-2000 values of life and the dashed line

is the average of all of the historical lines in Figure 7.1. Except for the more

erratic values for the younger groups, the match is quite good.

7.2. Matching the Value of Life Estimates

For this approach, we drop the assumption that the observed data are gen-

erated by maximizing social welfare given our estimated health technology.

Instead, we take the age-specific spending data and the consumption data
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as given and compute VSL at each age, βva+1,t+1/u
′(ct), from these data.

For future values of health spending by age, we project the existing data

forward at a constant growth rate.

We keep γ = 2 as before. We assume that the base value of utility takes

the form

ba,t = egbtb̃ (35)

and choose the level b̃ and growth rate gb to match the estimates from the

VSL literature. We start with the estimate from Ashenfelter and Greenstone

of a value of life for 35–39 year olds of $1.25 million in 1987. We project

this back to 1950 and forward to 2000, using a growth rate of 1.6× 2.31 =

3.70 percent per year, based on the Costa and Kahn income elasticity. The

resulting estimates are b̃ = 16.85 (the level in 2000) and gb = −0.735

percent per year.

An alternative approach, which yields results similar to what we will see

in the next section, is to assume that b is constant over time and across ages,

and choose γ to match the change in the value of life. This yields a value

of γ that is approximately 1.8. [to be explored in a later draft].

8. SOLVING THE MODEL

We now solve the model over the sample period 1950 through 2000 and

also project the economy out to the year 2050. For the historical period,

we take resources per person, y, at its actual value. For the projections,

we use the historical growth rate for the sample period, 2.31 percent per

year. During the historical period, we use the actual age distribution of the

population in the model solution. For the projections, we get the age dis-

tribution in year t by applying the model’s mortality rate from the previous

year to that year’s population by age. At the moment, we project births

to be a constant 4 million per year and ignore immigration; in the future,
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FIGURE 9. Simulation Results: The Health Share of Spending
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The line at the lower left shows actual data for the health share. The upward-sloping line
for the period 2000-2050 shows the projected health share based on the full model where
VSL is inferred from the health technology, as in Table 1. The gently sloping line for the
period 1950-2050 shows the hypothetical historical and projected share for preferences
inferred from the VSL literature.

we should improve on these assumptions. The details for the numerical

solution of the model are discussed in the Appendix.

Figure 9 shows the calculated share of health spending over the period

1952 through 2100. For the historical period, the figure also shows the

actual share.

The rising health share observed in the data is a robust feature of the

optimal allocation of resources in the health model. For both approaches,

we find that the optimal allocation of resources involves a rising health

share. The key force at work in the model behind this result is that the

marginal utility of consumption falls rapidly. Intuitively, spending an extra
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dollar on consumption yields a gain of u′(c), which goes to zero quickly,

while spending an extra dollar on health yields a gain of βvf ′(h)/x2. This

term also goes to zero, of course, but if the value of life is growing over

time, the decline is slower.

It is important to be clear that this occurs as consumption is rising in

all years. Consumption grows, but at a rate that is slower than the rate of

income growth. As we get richer and richer, the most valuable thing we

have to purchase is more time to live.

The figure shows a substantial difference between projected health shares

for the two approaches. Our first approach would match the actual health

share between 1950 and 2000 exactly. The projection based on that ap-

proach, labeled “technology VSL” in the figure, implies a rapidly growing

health share in the future, reaching 34 percent in 2050. The second ap-

proach, based on the VSL estimates in the literature, produces a much

flatter health share. It suggests underspending on health for the last 50

years. The optimal health share rises gradually in the future, reaching only

28 percent in 2050.

Figure 10 shows the actual and projected levels of life expectancy at birth.

For the projection based on inferring the VSL from actual spending and our

estimated health technology, the projected path does not grow quite as fast

as the historical life expectancy. The slowdown is the result of decline of

the elasticity of health status with respect to spending, θa, at high ages. It

is also interesting to notice how similar the predicted life expectancies are

in the year 2050, despite the relatively large differences in health spending

observed in Figure 9. The main reason for the similarity is that the pattern

of health spending for the projection based on outside estimates of the

VSL is more efficient at producing life expectancy than is the one based

on the historical pattern of VSL inferred from the age distribution of health

spending. In particular, spending on the youngest group of children is
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FIGURE 10. Simulation Results: Life Expectancy at Birth
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See notes to Figure 9. Life expectancy is calculated using the cross-section distribution
of mortality rates at each point in time.

more than four times higher in the projection based on outside estimates.

In that projection, we assume equal flow value of life for all age groups,

whereas we infer a much lower flow value for young children based on

actual spending patterns.

The slight discontinuity in the rise of life expectancy in the figure is

the result of an under-prediction of health status in 2000 in our health

technology, concentrated in the three youngest age groups.

9. QUALITY OF LIFE

We are currently at work incorporating quality-of-life considerations into

the model, replacing the flow of utility u(c) with u(c, x). The flow of utility

will depend not only on current consumption, but also on current health
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status x. In future versions of the paper, our model will likely include these

quality-of-life effects from the beginning (we have worked out the model,

but we haven’t completed the empirical estimation for this case).

10. CONCLUSION

Our research is still at an early stage. Nevertheless, several key find-

ings are already emerging. The most important of these is that a relatively

standard economic model yields a strong prediction for the health share.

Provided the marginal utility of consumption falls sufficiently rapidly —

as it does for a common specification of preferences featuring a constant

intertemporal elasticity of substitution less than one — the optimal alloca-

tion of resources involves a health share that rises over time. It is important

to realize that this occurs as consumption continues rises; it is just that

consumption grows slightly more slowly than income. The intuition for

this result is that life is extremely valuable, and as we get richer and richer,

the most valuable channel for our spending may be to purchase more time

to live. This fundamental mechanism in the model receives support from

conventional estimates of the intertemporal elasticity of substitution and

from the recent work of Costa and Kahn (2003) and Hammitt et al. (2000),

who document that the value of a statistical life appears to be rising faster

than income over time.

Given the recent trend in the literature of emphasizing the importance of

technological change as an explanation for the rising health share (for exam-

ple, see Newhouse (1992)), readers may be puzzled that this phenomenon

has barely made an appearance here.

There are two keys to reconciling our paper with the technological ex-

planation. First and foremost, the technological explanation only works if

preferences accommodate the rising health share. For example, the discov-

ery of new drugs and medical procedures can lead the optimal health share
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to rise from 5 to 15 percent of income only if spending 15 percent on health

is optimal from the preference side. Both sides of Marshall’s scissors must

be in favor of high health spending.

Second, it should be noted that it is far from clear that technical change

in the health sector promotes rising spending. For example, increases in the

productivity of the health sector, z, in our model actually work to reduce the

health share: for a given value of life, it becomes cheaper to purchase the

effective health input that delivers the right life expectancy. This is not to

say that one cannot make the technological explanation work; Jones (2003)

is one paper that does this. Rather, it is to point out that (a) one needs a

story of preferences no matter what happens on the technology side, and

(b) the effect of technological change on the health share is not obvious

from a theoretical standpoint.

APPENDIX: SOLVING THE FULL MODEL

We solve the model with age-specific mortality numerically using the

following procedure.

1. Begin with a guess for per capita consumption at each date.

2. Guess a terminal value for the value function at each age in the final

year of the simulation, 2095; we calculate v from the hypothesis that future

variables have the same value as has been projected for 2095.

3. Iterate backwards in time using the first order condition to determine

health spending at each age and each point in time.

4. Use this time series for health spending by age to get health status, x

and hence age-specific mortality. Iterate forward on the population equation

to get the size of the population at each age and date.

5. Finally, for each period, the distribution of the population, the guess for

per capita consumption, and the health spending level imply a total quantity
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of resources used, while the level of per capita income implies a total

quantity of resources available. Let d be the T × 1 vector of discrepancies

in the resource constraint.

6. Use a nonlinear equation solver (fsolve in Matlab) to find the time

series for consumption that makes the discrepancy vector equal to zero.

We use a similar procedure when we solve the complete model starting

in 2000 and match the observed values of v in 2000 from the technology

estimates. We start with guesses for both c and b and calculate discrepancies

in both material balance and in the values of v in 2000. The nonlinear

equation solver then finds values for both c and b.

A complete solution takes about 5 seconds using a Pentium M processor.
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