The Demand for Older Workers: The Role Of Technology And Skill

John Abowd John Haltiwanger Julia Lane Kevin McKinney Kristin Sandusky

NBER Summer Institute 2004

Contributions of Paper

- How do older workers differ from younger workers in terms of skills?
- What is the relationship between older workers' skill levels and the entry and exit of workers from the workforce?
- What is the relationship between technology at firm level and demand for skill?
- How do all these factors translate into outcomes for older workers (employment, retirement, wages)?

Deriving the Demand for Age Groups from Skill Demand

Aggregating across firms yields:

$$S_{st} = \sum_{i} (L_{jt} / L_t) S_{sjt}$$

• The accounting relationship between share of workers of age $a(\lambda_{at})$, the demand for type s workers, and the share of age a workers with type s skills (λ_{ast}) , is given by:

$$\lambda_{at} = \sum_{s} \lambda_{ast} S_{s}$$

- We can characterize the firm level skill demand equations and use these accounting relationships to derive the demand for workers of a given age
- Supply conditions in the local labor market for given age groups complete the analysis

Measuring of Human Capital: Estimation

 $\ln w_{it} = \theta_i + x_{it}\beta + \psi_{\mathbf{J}(i,t)} + \varepsilon_{it}$

- We use a decomposition of the log real annualized fulltime, full-year wage rate (In *w*) into person and firm effects.
- The person effect is θ.
- The firm effect is ψ , where J(i,t) is the employer of *i* at *t*.
- Continuous, time-varying effects are in $x\beta$, where some of the *x* variables are human capital measures (labor force experience) and some correct for differential quality in our measure of full-time, full-year wage rate.

Demand for Human Capital and Technology

- Specify demand equations at the firm level
- Merge in technology measures from surveys in 1992 and 1997 (Economic census years)
- Estimate these equations for entire labor force
- Extract demand for older workers from these demand equations

Construction of Linked Data

- Human capital file containing worker and firm identifiers, detailed worker characteristics
- Business file containing firm identifiers and detailed business characteristics.
- These two files linked by employer identifiers to form a business-level file.
- Unit of business observation is the most detailed disaggregation available of EIN, State, 2-digit SIC, and county (pseudo-establishment)

Construction of Technology Measures

- Data for the manufacturing sector for the 1992 and 1997 Annual Survey of Manufacturers (ASM).
- For services, wholesale trade and retail trade we use data from the Business Expenditure Survey (BES).
- In the majority of ASM cases, we are able to link the two files by EIN, State, 2-digit SIC (SIC2), and county.
- In the BES, there is no state county level detail and the survey is conducted using more aggregated business units (EIN, 2-digit SIC or Enterprise, 2-digit SIC)
- In all cases, unit of observation is EIN, SIC2, County
 - If technology measures are available only at more aggregated level for firm, we make a uniformity assumption.

Establishment Human Capital Measures

- Using g_{it}(h) measure
 - Proportion of employment above median percentile (1992 basis)
 - Proportion above the 75th percentile
 - Proportion below the 25th percentile

Technology Measures

- Technology Measures
 - Computer Investment/Total Investment (ASM, BES, 1992 only)
 - Spending on Computer Software and Data Processing Services/Sales (ASM, BES, 1992 and 1997)
 - Inventory/Sales (higher inventories indirect indicator of lack of technology; ASM, BES, 1992 and 1997)
- Traditional Technology Measures
 - Equipment Investment/Total Investment (ASM, BES, 1992)
 - Average Beginning and Ending Assets/Employment (ASM 1992 and 1997, BES 1992)
- Firm Effect from Wage Equation
 - Potential proxy for "unmeasured" technology and other things

Technology Measures across Sectors (Median Business)

- Computer investment/investment much higher in non-manufacturing (0.000 v. 0.005)
- Equipment investment/total investment much higher in manufacturing (0.97 v. 0.82)
- Non-manufacturing more capital intensive (3.8 v. 9.8)
- Inventory holdings higher for manufacturing (0.09 v. 0.04)
- Firm effect lower in non-manufacturing and dispersion greater (0.14 v. -0.10)

Computer Investment to Total Investment (Level)

	ASM	BES
Sep.	0.057	0.117
	(0.011)	(0.014)
Comb.	0.091	0.087
	(0.010)	(0.014)
Sep.	0.070	0.097
	(0.008)	(0.012)
Comb.	0.089	0.080
	(0.008)	(0.012)
Sep.	-0.022	-0.088
	(0.009)	(0.012)
Comb.	-0.049	-0.055
	(0.008)	(0.012)
	Comb Sep Comb Sep	Sep. 0.057 (0.011) (0.011) Comb. 0.091 (0.010) (0.010) Sep. 0.070 (0.008) (0.008) Comb. 0.089 (0.008) (0.008) Sep. -0.022 (0.009) Comb.

Software and Data Processing Expenditures to Sales (Level)

		ASM	BES
Proportion of workers at	Sep.	1.640	0.062
business above median		(0.421)	(0.036)
	Comb.	1.062	0.036
		(0.376)	(0.033)
Proportion of workers at	Sep.	1.261	0.053
business above 75th		(0.315)	(0.030)
percentile	Comb.	0.803	0.034
		(0.302)	(0.028)
Proportion of workers at	Sep.	-0.898	-0.041
business below 25th		(0.354)	(0.031)
percentile	Comb.	-0.514	-0.019
		(0.315)	(0.029)

•		sity (Leve	, , , , , , , , , , , , , , , , , , ,
		ASM	BES
Proportion of workers at	Sep.	0.075	0.017
business above median		(0.002)	(0.003)
	Comb.	0.067	0.016
		(0.002)	(0.003)
Proportion of workers at	Sep.	0.037	0.011
business above 75th		(0.002)	(0.003)
percentile	Comb.	0.036	0.012
		(0.002)	(0.003)
Proportion of workers at	Sep.	-0.062	-0.012
business below 25th		(0.002)	(0.003)
percentile	Comb.	-0.053	-0.012
		(0.002)	(0.003)

Firm Effect (Level)			
		ASM	BES
Proportion of workers at	Sep.	0.276	0.205
business above median		(0.011)	(0.015
	Comb.	0.172	0.173
		(0.010)	(0.015
Proportion of workers at	Sep.	0.113	0.132
business above 75th		(0.008)	(0.012
percentile	Comb.	0.056	0.105
		(0.008)	(0.013
Proportion of workers at	Sep.	-0.261	-0.191
business below 25th		(0.009)	(0.013
percentile	Comb.	-0.179	-0.169
		(0.009)	(0.013

Change in Software and Data Processing Expenditure to Sales (First Difference)

(· · · · •		A'SM	BES
Proportion of workers at	Sep.	-0.312	0.007
business above median		(0.526)	(0.003)
(first difference)	Comb.	-0.288	0.014
		(0.524)	(0.004)
Proportion of workers at	Sep.	0.317	0.005
business above 75th		(0.470)	(0.003)
percentile (first difference)	Comb.	0.322	0.011
		(0.470)	(0.004)
Proportion of workers at	Sep.	-0.125	0.001
business below 25th		(0.433)	(0.003)
percentile (first difference)	Comb.	-0.145	-0.003
		(0.429)	(0.004)

Summary of Findings			
 Computer Investment In cross-section, positive correspondence between computer investment and the level of human capital at a business Capital Intensity Consistently find positive relationship in all specifications (level and first difference) Other Computer-Related Expenditures Consistently find positive relationship in level specifications. Change specification only significant for non-manufacturing Model Performance Findings at firm level with these new measures of skill and technology support general finding in literature that high tech businesses demand high skilled workers Much to be done: Sample selection corrections Analysis for components of skill Interesting in its own right but essential for this analysis of demand for older workers as workers of different ages have different bundles of skills 			

Implications for Older Workers?

- Without results on components of skill, difficult to draw inferences:
 - Older workers are high *h* workers on average but mostly via experience
 - Older workers are low person effect workers on average.
 - Open question:
 - While high tech businesses demand higher skills, which component of skill is demanded more?

Interesting Related Factors We Need to Consider...

- Distribution of older workers across firms is highly uneven:
 - Only ten percent of jobs are held by workers between the ages of 55 and 70
 - Less than half of all businesses employ even one older worker.
 - Less than 15% (of SEINs) employ 5 or more older workers.
 - This varies substantially by industry and size class
- Open question: Can we account for these differences across firms and industries with technology?

Putting Pieces Together...

- · New measures of skill
- Age/skill distribution shows young, prime and older workers have very different dimensions of skill:
 - Not surprisingly, older workers are more experienced
 - Interestingly, older workers have lower person effects
- Age/skill distribution changing:
 - Upskilling for all age groups
 - Older workers upskilling driven in part by high exit rate of low person effect older workers
- Technology and skill closely linked at micro level
 - Substantial "to-do" list here especially with respect to impact of technology on different dimensions of skill
- Overall to-do list is to combine findings on technology/skill and joint age-skill distribution
 - Two separate effects one on older worker earnings; the other on exit.