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Abstract
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changes in the technology of pharmaceutical research.
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1 Introduction

This paper constructs a simple model linking innovation rates to current and future market

size, and provides evidence from the pharmaceutical industry to support this hypothesis. Our

empirical work, which exploits changes in the market size for different drug categories driven by

U.S. demographic trends, finds economically significant and relatively robust effects of market

size on innovation.

Although many historical accounts of important innovations focus on the autonomous

progress of science and on major breakthroughs that take place as scientists build on each

other’s work, economists typically emphasize profit incentives and the size of the target mar-

ket. For example, in his seminal study, Invention and Economic Growth, Schmookler argued

that: “...invention is largely an economic activity which, like other economic activities, is pur-

sued for gain” [1966, p. 206]. To emphasize the role of market size, Schmookler entitled two of

his chapters “The amount of invention is governed by the extent of the market.”

The role of profit incentives and market size in innovation is also important both for the

recent endogenous technological change models, which make profit incentives the central driving

force of the pace of aggregate technological progress [e.g., Aghion and Howitt, 1992, Grossman

and Helpman, 1991, Romer, 1990], and for the induced innovation and directed technical change

literatures, which investigate the influence of profit incentives on the types and biases of new

technologies [see, for example, Kennedy, 1964, Drandkis and Phelps, 1965, Samuelson, 1965,

Hayami and Ruttan, 1970, and Acemoglu, 1998, 2002, and 2003]. A recent series of papers by

Kremer, for example [2002], also build on the notion that pharmaceutical research is driven by

market size and argue that there is generally insufficient research to develop cures for third-

world diseases such as malaria.

In this paper, we investigate the effect of market size on entry of new drugs and pharma-

ceutical innovation. A major difficulty in any investigation of the impact of market size on

innovation is the endogeneity of market size–better products will have larger markets. Our

strategy to overcome this problem is to exploit variations in market size driven by U.S. demo-

graphic changes, which should be exogenous to other, for example scientific, determinants of

innovation and entry of new drugs.1 To create potential market size, we construct age profiles

of users for each drug category at a point in time, and then compute the implied market size

from aggregate demographic and income changes given these (time-invariant) age profiles.2 We

1For many drugs non-U.S. markets may also be relevant. Nevertheless, the U.S. market is disproportionately
important, constituting about 40 percent of the world market [IMS, 2000]. Below we report results using changes
in OECD market size as well as U.S. market size.

2Loosely speaking, “market size” corresponds to the number of users times their marginal willingness to
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measure entry and innovation using the Food and Drug Administration’s (FDA) approval of

new drugs.3

Our results show that there is an economically and statistically significant response of the

entry of new drugs to market size. For example, a 1 percent increase in the size of the potential

market for a drug category leads to a 7-10 percent increase in the total number of new drugs.

Much of this response comes from the entry of generics, which are drugs that are identical or

bioequivalent to an existing drug no longer under patent protection. More important, there is

also a statistically significant response of the entry of non-generic drugs, which more closely

correspond to “innovation”: a 1 percent increase in potential market size leads to a 5 percent

increase in the number of new non-generic drugs in the market. Interestingly, while generics

respond to current market size, we find that non-generics respond to five-year leads of market

size. The response of non-generic entry to anticipated changes in market size in the near future

is consistent with the predictions of the theoretical model we use to motivate our empirical

investigation.

The effect of market size on the entry of new drugs is generally robust. We obtain similar

results when we use different measures of market size, when we exploit changes in OECDmarket

size, and when we control for a variety of non-profit factors, pre-existing trends, and advances

in biotechnology.

There are a number of other studies related to our work. First, Schmookler [1966] documents

a correlation between sales and innovation, and argues that the causality ran largely from the

former to the latter. The classic study by Griliches [1957] on the spread of hybrid seed corn in

U.S. agriculture also provides evidence consistent with the view that technological change and

technology adoption are closely linked to profitability and market size. Pakes and Schankerman

[1984] investigate this issue using a more structural approach, linking R&D intensity at the

industry level to factor demands and to growth of output. In more recent research, Scott

Morton [1999] and Reiffen and Ward [2004] study the decision of firms to introduce a generic

drug and find a positive relationship between entry and expected revenues in the target market.

None of these studies exploit a potentially exogenous source of variation in market size, however.

Second, some recent research has investigated the response of innovation to changes in

energy prices. Most notably, Newell, Jaffee and Stavins [1999] show that between 1960 and

1980, the typical air-conditioner sold at Sears became significantly cheaper, but not much more

pay. Therefore, market size can increase both because the number of users increases and because their marginal
willingness to pay changes. We focus on changes driven by demographics to isolate exogenous changes in market
size.

3These data were previously used by Lichtenberg and Virahbak [2002], who obtained them under the Freedom
of Information Act. We thank Frank Lichtenberg for sharing these data with us.
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energy-efficient. On the other hand, between 1980 and 1990, there was little change in costs,

but air-conditioners became much more energy-efficient, which, they argue, was a response

to higher energy prices. In a related study, Popp [2002] finds a strong correlation between

aggregate patents and energy prices.

Third, there is substantial research focusing on innovation in the pharmaceutical industry.

Henderson and Cockburn [1996], Cockburn and Henderson [2001], and Danzon, Nichelson and

Sousa Pereira [2003] study the determinants of success in clinical trials, focusing mainly on

firm and project size. Galambos and Sturchio [1998], Cockburn, Henderson and Stern [1999],

Gambardella [2000], Malerba and Orsenigo [2000], and Ling, Berndt and Frank [2003] discuss

various aspects of the recent technological developments in the pharmaceutical industry.

Most closely related to this study are Lichtenberg and Waldfogel [2003], Finkelstein [2003],

and Cerda [2003]. Lichtenberg and Waldfogel show that following the Orphan Drug Act there

were larger declines in mortality among individuals with rare diseases (compared to other

diseases), and argue that this is related to the incentives created by the Act to develop drugs for

these rare diseases. Finkelstein exploits three different policy changes affecting the profitability

of developing new vaccines against 6 infectious diseases: the 1991 Center for Disease Control

recommendation that all infants be vaccinated against hepatitis B, the 1993 decision of Medicare

to cover the costs of influenza vaccinations, and the 1986 introduction of funds to insure vaccine

manufactures against product liability lawsuits for certain kinds of vaccines. She finds that

increases in vaccine profitability resulting from these policy changes are associated with a

significant increase in the number of clinical trials to develop new vaccines against the relevant

diseases.4 Cerda’s [2003] Ph.D. dissertation at Chicago is an independent study of the effect

of demographics on innovation in the pharmaceutical sector. Although Cerda uses a somewhat

different empirical methodology, he reaches similar conclusions to our study.

The rest of the paper is organized as follows. We outline a simple model linking innovation

to market size in the next section. Section 3 briefly explains our empirical strategy, and Section

4 describes the basic data sources and the construction of the key variables. Section 5 presents

the empirical results and a variety of robustness checks. Section 6 contains some concluding

remarks, while the Appendix gives further data details.

4Lichtenberg [2003] also presents evidence suggesting that the types of new drugs changed towards drugs
more useful for the elderly after Medicare was established.
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2 Theory

We now outline a simple model that illustrates the impact of market size on innovation. The

economy consists of a set I of infinitely-lived individuals. Time is continuous t ∈ [0,∞).
There are two types of goods in this economy. First, a basic good, y, which can be consumed

or used for the production of other goods, or for research expenditure. Individual i has an

exogenously given endowment yi (t) at time t. Second, there are J drugs, x1, ...., xJ , each with

a potentially time-varying “quality”, q1 (t), ...., qJ (t). Each individual demands only one type

of drug. Hence, we partition the set I of individuals into J disjoint groups, G1,...,GJ with

G1∪G2∪ ...∪GJ = I, such that if i ∈ Gj, then individual i demands drug j. More specifically,

if i ∈ Gj, then his preferences are given by:Z ∞

0

exp (−rt) £ci (t)1−γ (qj (t)xji (t))γ¤ dt, (1)

where r is the discount rate of the consumers (also the interest rate in the economy), γ ∈ (0, 1),
ci (t) is the consumption of individual i of the basic good at time t, and xji (t) is the consumption

of individual i of drug j. This Cobb-Douglas functional form and the assumption that each

individual only consumes one type of drug are for simplicity and do not affect the main results.5

Normalizing the price of the basic good to 1 in all periods, and denoting the price of drug j

at time t by pj (t), the demand of individual i ∈ I for drug j is xij (t) = γyi (t) /pj (t) if i ∈ Gj,

and xij (t) = 0 if i /∈ Gj. Summing across individuals, total demand for drug j is:

Xj (t) =
γYj (t)

pj (t)
. (2)

where Yj (t) ≡
P

i∈Gj
yi (t) is the total income of the group of individuals consuming drug j.

At any point in time, there is one firm with the best-practice technology for producing each

type of drug, and it can produce one unit of this drug with quality qj (t) using one unit of the

basic good. If there is an innovation for drug line j currently with quality qj (t), this leads to

the discovery of a new drug of quality λqj (t) where λ > 1. For the purposes of the model,

we think that any new innovation is approved (for example by the FDA) and can be sold to

consumers immediately (and is under patent protection indefinitely).

There is free entry into R&D and each firm has access to an R&D technology that generates

a flow rate δj of innovation for every dollar spent for research on drug j. So if R&D expenditure

at time t is zj (t), the flow rate of innovation (and of entry of new drugs) for drug j is:

nj (t) = δjzj (t) . (3)
5The Cobb-Douglas assumption implies that the share of income spent on drugs is constant. This implication

can be easily relaxed by considering a utility function with an elasticity of substitution different from 1, as in
the factor market models with directed technical change [see, for example, Acemoglu, 1998, 2002].
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Differences in δj’s introduce the possibility that technological progress is scientifically more

difficult in some lines than others.

A key feature of this R&D technology for our focus is that research is directed in the sense

that firms can devote their R&D to developing particular types of drugs. The pharmaceutical

industry, especially in the recent past, is a prime example of an industry where companies with

fairly sophisticated R&D divisions or specialized R&D firms can undertake research for specific

drug lines [e.g., Gambardella, 2000, Malerba and Orsenigo, 2000].6

The demand curves in (2) have an elasticity equal to 1, so an unconstrained monopolist

would charge an arbitrarily high price. However, the firm with the best drug in line j is compet-

ing with the next best drug in that line. An arbitrarily high price would allow the next best firm

to capture the entire market. Therefore, the firm with the best drug sets a limit price to exclude

the next best firm–i.e., to ensure that consumers prefer its product rather than the next best

drug supplied at the lowest possible price equal to marginal cost, which is 1. If a consumer buys

from the best-practice firm with quality qj (t) and price pj (t) and chooses her optimal consump-

tion as given by (2), her instantaneous utility at time t is (qj (t))
γ (1− γ)1−γ γγ (pj (t))

−γ yi (t);

and if she purchases from the next best firm, which, by definition, has quality qj (t) /λ at price

equal to marginal cost, 1, she obtains utility λ−γ (qj (t))
γ (1− γ)1−γ γγyi (t). The limit price,

which equalizes these two expressions, is:

pj (t) = λ for all j and t. (4)

The profits of the firm with the best product of quality qj (t) in line j at time t are:

πj (qj (t)) = (λ− 1) γYj (t) . (5)

Here λγYj (t) corresponds to the market size (total sales) for drug j. Notice that profits of drug

companies are independent from quality, qj (t), which is a feature of the Cobb-Douglas utility.

Firms are forward-looking, and discount future profits at the rate r. The discounted value

of profits for firms can be written by a standard dynamic programming recursion. Vj (t | qj),
the value of a firm that owns the most advanced drug of quality qj in line j at time t, is:7

rVj (t | qj) − V̇j (t | qj) = πj (qj (t))− δjzj (t)Vj (t | qj) , (6)

6Naturally, there exist examples of research directed at a specific drug type leading to the discovery of a
different product, such as the well-known example of Viagra, which resulted from research on hypertension and
angina, and was partly accidentally discovered from the detection of side effects in a clinical study [see, e.g.,
Kling, 1998]. The working paper version, Acemoglu and Linn [2003] shows that the results here generalize
even when there is a large component of random R&D, whereby research directed at drug j can result in the
discovery of other drugs.

7Throughout, we assume that the relevant transversality conditions hold and discounted values are finite.
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where πj (qj (t)) is the flow profits given by (5), and zj (t) is R&D effort at time t on this line

by other firms.8 Intuitively, the value of owning the best technology in line j, rVj (t | qj), is
equal to the flow profits, πj (qj (t)), plus the potential appreciation of the value, V̇j (t | qj), and
takes into account that at the flow rate nj (t) = δjzj (t) there will be a new innovation, causing

the current firm to lose its leading position and to make zero profits thereafter.

Free entry into R&D to develop better quality drugs implies zero profits, i.e.:

if zj (t) > 0, then δjVj (t | qj) = 1 for all j and t. (7)

(and if zj (t) = 0, δjVj (t | qj) ≤ 1 and there will be no equilibrium R&D for this drug).

An equilibrium in this economy is given by sequences of prices pj (t)|j=1,..J that satisfy (4),
consumer demands for drugs xi (t)|i∈I that satisfy (2) and R&D levels zj (t)|j=1,..J that satisfy
(7) with Vj (·) given by (6).
An equilibrium is straightforward to characterize. Differentiating equation (7) with respect

to time implies V̇j (t | qj) = 0 for all j and t, as long as zj (t) > 0. Substituting this equation

and (7) into (6) yields the levels of R&D effort in the unique equilibrium as:

zj (t) = max

½
δj (λ− 1) γYj (t)− r

δj
; 0

¾
for all j and t. (8)

Equation (8) highlights the market size effect in innovation: the greater is Yj (t), the market

size for a particular drug, the more profitable it is to be the supplier of that drug, and con-

sequently, there will be greater research effort to acquire this position. In addition, a higher

productivity of R&D as captured by δj also increases R&D, and a higher interest rate reduces

R&D since current R&D expenditures are rewarded by future revenues.

Another important implication of this equation is that there are no transitional dynamics.

At any point in time, R&D for a particular drug line is determined by the current market

size–past and anticipated future market sizes do not affect current research effort. This is

an implication of the linear R&D technology, which ensures that whenever there are profit

opportunities, there will immediately be sufficient R&D to arbitrage them, ensuring V̇j (t | qj)
= 0. The intuition for the lack of response to anticipated changes in future market size highlights

an important effect in quality ladder models of technological progress: firms would like to own

the best-practice product at the time the market size actually becomes larger. Investing in

R&D far in advance of the increase in market size is not profitable, since another firm would

improve over this innovation by the time the larger market size materializes. In fact, with the

8Because of the standard replacement effect first emphasized by Arrow [1963], the firm with the best tech-
nology does not undertake any R&D itself (see, for example, Aghion and Howitt [1992]).
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linear model here, zj can change discontinuously, so investing even a little bit in advance of the

actual increase in the size of the market is not profitable.

Combining equations (3) and (8) gives entry of new drugs as:

nj (t) = max {δj (λ− 1) γYj (t)− r; 0} . (9)

This equation relates innovation or entry of new products to market size (total expenditure of

consumers in this line of drug). It also encompasses the alternative view of the determinants of

innovation, discussed in the Introduction, that the cross-drug distribution of R&D is determined

by technological research opportunities or perhaps by other non-profit related motives. If there

are large and potentially time-varying differences in δj’s, then these may be the primary factor

determining variation in R&D across drug lines, and market size may have only a small effect.

Whether or not this is so is an empirical question.

The working paper version of our paper, Acemoglu and Linn [2003], presented a number of

generalizations of this framework. First and most importantly, we modified the R&D technology

captured in equation (3) to allow for within-period decreasing returns, so that

nj (t) = δjzj (t)φ (zj (t)) ,

where φ0 (z) ≤ 0 (the model studied above is the special case with φ0 (z) ≡ 0). Most of the
results here generalize, but the model also implies a potential response to anticipated changes

in future market size. In particular, let us assume that Yj (t) = Yj for all t. Then it is

straightforward to show that steady-state R&D will be given by

zSj = max

(¡
δjφ

¡
zSj
¢
(λ− 1) γYj − r

¢
δjφ

¡
zSj
¢ ; 0

)
,

which is similar to (8). If there is an unanticipated change in Yj, there continues to be no

transitional dynamics (i.e., zj immediately jumps to its new steady-state value). But it can be

shown that if there is an anticipated increase in market size in the future, there will be entry

of new drugs in advance of the actual increase. Nevertheless, the same forces emphasized here

imply that investing in R&D too far in advance would not be profitable because another firm

is likely to innovate further before the actual increase in market size materializes. In terms of

our empirical work, even if demographic changes are anticipated 20 or 30 years in advance, we

may expect significant innovation responses much later, perhaps 5 or 10 years in advance.

Second, we also extended this model to incorporate entry of both generic and non-generic

drugs and showed that market size has a positive effect on entry of both types of drugs, and

that, under plausible circumstances, there should be a larger effect of market size on generic

drug entry.
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3 Empirical Strategy

3.1 Empirical Specification and Estimation Issues

As r → 0, we can take logs on both sides of equation (9) to obtain:

log nj (t) = constant+ log δj + logmj (t) ,

where mj (t) ≡ λγYj (t) is the market size for drug line j at time t. We measure entry of

new drugs (or innovation), nj (t), as new drug approvals by the FDA in broad drug categories

as described below. This measure, denoted by Nct for drug category c at time t, includes

entry of generic drugs. Although generic drugs do not correspond to “innovation”, their entry

is driven by the same profit incentives as innovation. After presenting results using all drug

approvals, much of our analysis focuses on the relationship between market size and entry of

non-generics. Throughout, instead of actual market size, mj (t), we use potential market size

driven by demographic changes, which we denote by Mct, and discuss its construction below.

Adding other potential determinants, time effects and an error term capturing other unob-

served influences, and allowing the coefficient of logMct to differ from 1 as it would with more

general preferences than Cobb-Douglas, we arrive at an estimating equation of the form:

logNct = α · logMct +X 0
ct · β + ζc + µt + εct, (10)

where Nct is the number of new drugs in category c in time period t, Mct is potential market

size, X 0
ct is a vector of controls, including a constant, ζc’s are a full set of category fixed effects

that correspond to the δj terms above, µt’s are a full set of time effects capturing any common

time component, and finally, εct is a random disturbance term, capturing all omitted influences.

The specification with the dependent variable in logarithm is useful, since it ensures that drug

category fixed effects and time effects have proportional impacts on entry of new drugs.

One problem with equation (10) is that Nct is a count variable (number of new drugs), so it

can equal 0, making it impossible to estimate (10). So instead we consider the Poisson model

(see Hausman, Hall, and Griliches, 1984, and Wooldridge, 1999, 2002):

Nct = exp(α · logMct +X 0
ct · β + ζc + µt) + εct, (11)

which can be obtained from (9) by adding time effects and other covariates multiplicatively

and a random disturbance term, εct, additively, and then rearranging.

The estimation of (11) would lead to biased estimates, however, since the nonlinearity in

(11) makes it impossible to estimate the fixed effects, the ζc’s, consistently. To deal with this
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problem, we follow Hausman, Hall, and Griliches (1984), and transform (11) to obtain:

Sct =
exp(α · logMct +X 0

ct · β + µt)PT
τ=1 exp(α · logMcτ +X 0

cτ · β + µτ)
+ εct, (12)

where Sct = Nct/
PT

τ=1Ncτ is the number of drugs approved in category c at time t, divided by

the total number of drugs approved in category c, and T is the total number of time periods

in the sample. This transformation removes the drug category dummies, and the coefficient

of interest, α, can be estimated consistently. We estimate this equation using nonlinear least

squares (NLLS). Woodridge [1999] shows that NLLS estimation strategy has good consistency

properties, even when the true model is not Poisson.

We also estimate (10) with OLS following a procedure introduced by Pakes and Griliches

[1980], whereby the left-hand side variable is changed to log Ñct where Ñct = Nct if Nct ≥ 1 and
Ñct = 1 if Nct = 0, and a dummy that equals 1 when Nct = 0 is added to the right-hand side.

This procedure is simple and flexible, but the estimates are biased since the dummy variable

for Nct = 0 is endogenous.

In addition, we estimate equations with leads and lags of logMct to determine whether there

are significant delays and anticipation effects. Such effects are possible, since, as reported by

DiMasi et al. [1991], it can take as long as 15 years for a drug to enter the market from the

time of initial research. Furthermore, changes in demographics can be anticipated a long time

in advance, so, as discussed in Section 2, drug approvals may respond to anticipated future

market sizes.9

3.2 Potential Market Size and Identification

Throughout, we exploit the potentially exogenous component of market size driven by demo-

graphic trends, combined with differences in the age profiles of expenditure and use for different

types of drugs. We obtain the age profiles from micro drug consumption data, and the changes

in U.S. demographics from the CPS (Current Population Survey) data. Our (income-based)

measure of potential market size is:

Mct =
X
a

uca · iat, (13)

where iat is the income of individuals in age group a at time t in the United States, and uca

gives the age profile for drug category c. It is computed as the average expenditure share of

9An additional issue is that the FDA approval process may be faster for more profitable drugs, and thus
potentially for drugs with greater market size. See Dranove and Meltzer [1994]. Our data do not enable us to
investigate this issue.
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drugs in category c in the total income of those in age group a. This income-based measure

corresponds closely to the market size in the theoretical model, which is a combination of the

number of consumers and their incomes. We also check the robustness of our results with an

alternative population-based measure, calculated using the U.S. population for age group a at

time t for iat, and the average number of drugs in category c used per person in age group a

for uca. It is important that the over-time source of variation in both measures is not from

changes in individual use, but purely from demographic changes captured by iat–i.e., uca’s are

not time-varying.10 Consequently, changes in prices and drug quality, which may result from

innovations and affect consumption patterns, will not cause over-time variation in Mct. Our

baseline measure uses five-year age groups and time periods corresponding to five-year intervals.

We also check the robustness of our results using single year age groups and ten-year intervals.

The major threat to the validity of our empirical strategy is from potentially time-varying

omitted variables (the drug category fixed effects take out any variable that is not time-varying).

Omitted variables related to market size or profit opportunities may induce a bias in the implied

magnitudes, but will not lead to spurious positive estimates of the effect of market size (in

other words, the presence of such variables is essentially equivalent to mismeasurement of the

appropriate market size). More threatening to our identification strategy would be omitted

supply-side variables. If our instrument is valid, it will be orthogonal to variation in supply-

side determinants of innovation. We attempt to substantiate our identifying assumption further

by checking for residual serial correlation and pre-existing trends, and showing the robustness

of our estimates to controlling for potential supply-side determinants of innovation and entry.11

4 Data and Descriptive Statistics

The demographic data come from the March CPS, 1965-2000. We compute iat in equation (13)

for five-year age groups, ranging from 0-4 to 90+. Individual income is constructed by dividing

family income equally among the members of the family. For the purposes of the diagrammatic

presentation we aggregate the age groups into five broad categories, 0-20, 20-30, 30-50, 50-60

and 60+. This division is motivated by the similarity of income and population movements of

the age groups within each of these broad groups.

10If preferences have a Cobb-Douglas form as in (1) and are stable, the expenditure measure of uca should
be constant. With non-Cobb-Douglas preferences, changes in prices and drug quality will induce changes in
uca. In this case, by using a time-invariant measure of uca, we remove this potentially endogenous source of
variation.
11Another source of endogeneity may be that innovations in certain drug categories extend the lives of the

elderly, thus increasing their Mct. Lichtenberg [2002, 2003] provides evidence that new drugs extend lives. This
source of endogeneity is not likely to be quantitatively important, however, since the variation resulting from
extended lives in response to new drugs is a small fraction of the total variation in Mct. Nevertheless, we also
report estimates that instrument Mct with past demographics, purging it from changes in longevity.
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Figure I shows population shares, and Figure II shows the corresponding income shares

(i.e., income of the corresponding age group divided by total income in that period) for the

five broad age groups. To facilitate comparison with Figure III, Figure II starts in 1970. Both

figures show a large amount of variation across age groups over time. In particular, it is possible

to trace the baby boomers, as the fraction of those in the age bracket 20-30 in the 1970s, and

those in the age bracket 30-50 in the 1980s and the 1990s.

The FDA classifies all prescription drugs into 20 major drug categories, which are further

subdivided into 159 categories. These categories are based on a combination of therapeutic

intent and chemical structure. We drop 4 of the 20 major categories from this classification:

Anesthetics, Antidotes, Radiopharmaceuticals and Miscellaneous.12 We then subdivide some

of these categories according to the conditions and diseases that the drugs are used to treat.13

For example, within the Hematologics major category, we separate Anemia drugs from Anti-

coagulants because they treat different diseases. We also subdivide broader groups when the

age distribution of expenditure is sufficiently heterogeneous. For example, the indications of

drugs in Estrogens/Progenstins and Contraceptives overlap somewhat, but the age structure

of users is quite different: 20-30 year-olds use Contraceptives most, while 50-60 year-olds use

Estrogens/Progestins most. In one case, we combine categories from different major classes,

Antifungals and Dermatologics, because the drugs have similar indications and age distribu-

tions. The result is a classification system with 33 categories.14 Appendix Table A1 lists the

33 categories.

Our main data source for drug use is the Medical Expenditure Panel Survey (MEPS), which

is a sample of U.S. households over the years 1996-1998. The survey has age and income data

for each household member, and covers about 28,000 individuals each year. There is also

a list of prescription drugs used by each person (if any), and the amount spent on drugs,

which includes copayments and payments by insurance companies and government programs

(e.g., Medicaid and worker’s compensation).15 In all, there are about 500,000 medications

12We drop the Anesthetics, Radiopharmaceuticals and Miscellaneous categories because most of the items
in these categories were not developed for a distinct market. Radiopharmaceuticals are used for diagnostic
purposes, and the Miscellaneous category mainly contains surgical and dental tools. The Antidote category is
dropped because there are few drugs approved and there is little use of these drugs in the surveys. See the Data
Appendix for further details on the contruction of our categories.
13Other authors, for example Lichtenberg [2003], have used a more detailed classification system based on

diseases. We were unable to construct a comprehensive mapping of the prescription drugs listed in the micro-
data surveys to the detailed disease classes. Our classification system relies on the FDA categories, but then
subdivides those according to disease and age distribution.
14The working paper version, Acemoglu and Linn [2003], used a system with 34 categories based on FDA

classification. Results using this alternative classification are reported in the Appendix. Further details on the
construction of the 33 categories used here and on our old classification system are available upon request.
15Respondents list the pharmacy or medical provider where they obtained the prescription drug, which are

then contacted to validate the information and to gather additional information on prescription drug payments.
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prescribed. We compute drug expenditure and use by five-year age groups, then divide these

by the corresponding income and population numbers from the CPS to construct the income-

based and the population-based measures of uca. Appendix Table A1 reports these numbers

aggregated to the five broad age groups used in the figures. This table shows a large amount

of variation in the age profiles of expenditure across the 33 drug categories. The elderly spend

more on many categories than do younger individuals, but there are numerous exceptions.

For example, Antibiotics are used most by individuals in the youngest group, Contraceptives

are used most by 20-30 and 30-50 year-olds, and Antivirals are used most by 30-50 year-olds.

We construct the measures of potential market size according to equation (13) by combining

expenditure data from the MEPS and income data from the CPS.

To investigate the stability of the age profile of users, we supplement the MEPS data with the

National Ambulatory Medical Care Survey (NAMCS), which is an annual survey of doctors

working in private practice and includes drug use data for the years 1980, 1981, 1985 and

1989-2000. Observations are at the doctor-patient-visit level; there are about 40,000 visits per

year. Doctors are selected randomly, surveyed for a week, and patient-visits are then selected

randomly from all the visits that week (further details on this survey are given in Acemoglu

and Linn [2003]). We use the same classification system with the NAMCS as with the MEPS.

Because the NAMCS does not contain expenditure information and its sampling scheme makes

it less representative and less reliable than the MEPS, we focus on the MEPS for our main

analysis and use the NAMCS only to check the stability of the age profiles of users.

Table I gives correlations between various measures of drug use. The first two rows of

Panel A show a high degree of correlation between the NAMCS surveys at various dates, both

unweighted or weighted by total use of each category in the survey. These results indicate

that the age profiles of use have not changed significantly over the 1980s and the 1990s. The

third and fourth rows report mean correlation by drug. These are constructed by computing

the within category correlation between the two measures and then averaging it across all

categories. This measure, which is more informative for the question of whether or not the age

profiles of use for a particular drug has changed, also shows a substantial degree of persistence

over time, especially when we look at the weighted correlation in row 4. The difference between

the weighted and the unweighted correlations reflects the relatively imprecise estimates of use

per person in five-year age brackets for the smaller categories.

Panel B performs the same calculation for the three waves of the MEPS (weighted correla-

tions now use total expenditure in each category as weights), and similarly shows substantial

persistence in the age profiles of expenditure. Notably, there is now an even larger difference
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between weighted and unweighted mean correlations by drug, presumably because the MEPS,

which is a representative sample of the U.S. population, has only a few observations in some of

the smaller drug categories. This motivates our focus below on weighted regressions. Finally,

Panel C shows that the NAMCS and the MEPS measures, and also expenditure shares and use

per person in the MEPS are highly correlated.

The last major data source is a list of FDA new drug approvals. We exclude over-the-counter

drugs, the so-called orphan drugs,16 and drugs that have the same identifying characteristics

(i.e., same name, company, and category, or the same FDA approval number). We focus on the

time period 1970-2000. Both the quality of the approvals data and the quality of our measures

of potential market size deteriorate as we go back in time, because we can only match FDA

categories for drugs that are still listed by the FDA, and we are using age profiles from the

1990s. Our approvals dataset for 1970-2000 comprises 5,374 prescription drugs, including both

generics and non-generics (see the Appendix). Since 1970 there have been about 2/3 as many

approved non-generics as generics.

Figure III shows the share of drug approvals over time to compare with changes in income

shares depicted in Figure II. To construct Figure III, we allocate each of the 33 categories to the

five broad age group that has the largest expenditure in that category (there are no categories

for which the 20-30 group has the largest expenditure, so we only have 4 curves in the figure, see

Appendix Table A1). The share of drug approvals is computed as the number of approvals in

a given category in each five-year period divided by total approvals in that period.17 Although

this cut of the data uses only a small part of the information that the regression analysis below

exploits, a positive association between changes in income shares and changes in drug approvals

can be detected by comparing this figure to Figure II . For example, the income share of the

30-50 group increases over the sample, and so does the entry of drugs most used by this group.

The shares of income and entry of drugs for those 0-20, on the other hand, show a downward

trend, though the decline in the share of new drugs is somewhat less pronounced and later than

the decline in income share. We also see that the income share of 50-60 year-olds is constant

at first, then declines and finally increases again. The share of drugs most used by this group

first increases slightly, and then declines and then increases again. There is little relationship
16These drugs treat rare conditions, affecting fewer than 200,000 people. An example is botox, first developed

to treat adult dystonia, which causes involuntary muscle contractions. We drop these drugs because we have
difficulty matching them consistently, and because they receive special inducements under the Orphan Drug
Act.
17There are large fluctuations in the total number of approvals, partly because of a number of institutional

changes. For example, it was discovered in 1989 that some FDA officials were taking bribes to speed up the
approval process for generic drugs. As a result, in the early 1990s the approval process for generics was greatly
slowed. See, for example, The Washington Post, August 16, 1989. When we separate our approval data into
generics and non-generics, we see a large drop in generics approvals in the early 1990s, but only a small decline
for non-generics. We thank Ernie Berndt for suggestions on this issue.

13



between the share of income and the share of drugs for the 60+ age group, however. Figure

IV is similar to Figure III, but is for non-generics; it shows a similar, though noisier, pattern.

These patterns are explored in greater detail in the regression analysis below.

5 Results

5.1 Basic Specifications

Table II provides the basic results from the estimation of equation (12) with nonlinear least-

squares (NLLS). The top panel is for all approvals. Panel B and C look separately at non-generic

and generics. Throughout the paper, the standard errors are corrected for heteroscedasticity

using the Huber-White formula. In this table and in our baseline specifications, we use the

basic (income-based) measure of logMct, constructed using expenditure data from the MEPS,

and income from the CPS, the time periods correspond to five-year intervals, and observations

are weighted by total expenditure in the corresponding drug category in the MEPS.

Column 1 of Panel A shows that the NLLS estimate of α for all new drugs is 6.73 with a

standard error of 2.33, which is significant at the 1 percent level.

The theoretical analysis suggests the possibility of entry of new drugs responding to an-

ticipated changes in market size. The remaining columns of Panel A investigate whether it is

current market size or past or future market sizes that have the strongest effect on entry of new

drugs by including lags (logMc,t−1) and leads (logMc,t+1) of potential market size on the right

hand side of the estimating equation.

Column 2 includes current and lagged market size together,18 column 3 looks at the effect

of lagged market size alone, column 4 includes both current and lead market size, and finally,

column 5 looks at the relationship between lead market size and entry of new drugs. The

entry of all drugs is most responsive to current or five-year lead market size. When current

and lag market sizes are included together, current market size has a similar magnitude to

column 1, while lag market size is negative, though insignificant, presumably because current

and previous market sizes are highly correlated. When current and lead market sizes are

included together, current market size is not significant, whereas lead market size is marginally

significant. Moreover, column 5 shows that the five-year lead of market size has somewhat

greater predictive power for entry of new drugs than current market size (the estimate of α is

now 10.02, with standard error 2.61, and the R2 of the regression has increased to 0.86 from

0.81 in column 1).

18We construct the lagged market size measures for 1960s using demographic information from the CPS, so
the number of observations does not decline. The results are similar if we only use the post-1970 data.

14



The working paper version, Acemoglu and Linn [2003], reported results using a different

classification of drugs based purely on age structure rather than drug indications. Appendix

Table A2 contains estimates using this classification. The results are qualitatively similar,

though quantitatively somewhat smaller. For example, the basic specification with all drug

approvals in column 1 now leads to an estimate of α equal to 3.95 (standard error = 1.16),

which is again significant at 1 percent.

5.2 Market Size and Non-Generics

The results in Panel A combine generics and non-generics. Entry of generics and non-generics

may be driven by different processes. Moreover, generics, which are identical to existing drugs,

do not correspond to “innovation”. For the purposes of understanding the relationship between

market size and innovation, the response of non-generics to potential market size is therefore

more relevant.

Panel B shows a positive but statistically insignificant relationship between potential market

size and entry of new non-generic drugs. However, column 5 shows that there is a strong and

statistically significant relationship between five-year leads of market size and entry of new

non-generic drugs. The estimate is 5.11, with standard error 2.22.19 Appendix Table A2 shows

that the results are similar with our alternative classification scheme; for example, the effect

of five-year leads of market size on the entry of non-generic drugs is estimated to be 6.31 with

standard error 2.18, which is significant at 1 percent. These results suggest that the entry

of new non-generic drugs responds to anticipated future market size, perhaps with five-year

leads, which is consistent with the possibility of limited anticipation effects highlighted by the

theoretical model.20

Panel C shows an even stronger and larger effect of potential market size on the entry

of generics. The estimate of α in the baseline specification of column 1 is 12.19 (standard

error=3.29). The estimates in the other columns are similar, and suggest that the entry of

generics respond most strongly to current market size. Appendix Table A2 shows that using

the old classification system leads to similar results, though the magnitudes of the effect of

market size on generic entry are much smaller. For example, the estimate in column 1 is 6.50

19The difference between the estimates in columns 1 and 5 reflects not the differences in samples but the
response of the entry of non-generics to lead market size rather than current market size. Using the current
market size with the same sample as the lead market size specification yields a coefficient of 2.54 (standard
error = 1.72).
20Here “limited” does not refer to the strength of the effect, but to the fact that the response to market size

is 5 years before the change in market size, not further in advance. The estimate with two-period (ten-year)
lead of market size is 5.95 with standard error 3.11, while those with further leads are insignificant. Although
the ten-year lead is marginally significant, we focus on the five-year lead since it is more precisely estimated
and enables us to have a larger sample.
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(standard error = 2.17).

The magnitude of the effects shown in Table II, in particular the impact of market size

on non-generics, is large, but plausible. For example, the estimate in column 5 of Panel B

implies that a 1 per cent increase in our market size measure leads to about a 5.1 percent

increase in the entry of new non-generic drugs. There are a total of 2,203 non-generic approvals

between 1970 and 2000, thus on average 10 approvals in every five-year interval in each of our

33 categories. Therefore, our estimate implies that a 2 percent increase in market size should

lead to the entry of about 1 new drug. Total pharmaceutical sales were approximately $130

billion in 1999 [IMS, 2000], which implies an average annual expenditure of $3.9 billion per

category. A 2 percent increase therefore corresponds to $78 million, or about $1.07 billion over

15 years, which is the life of a typical non-generic drug. Since entry costs for non-generics are

around $800 million [in 2000 dollars, DiMasi et al, 2001], entry of one new drug in response

to an increase of approximately $1 billion in revenue is within the range of plausible responses

Naturally, this calculation is very rough and only suggestive, since it ignores the difference

between average demand and the demand that a marginal entrant will capture.21

5.3 Robustness

Table III investigates the robustness of the results shown in Table II. Although our main focus

is the response of new non-generic drugs to market size, we also show results for all approvals

(Panel A) and for generics (Panel C). Since Table II shows that entry of new non-generic drugs

responds to five-year leads of market size, Panel B looks at the robustness of the effect of lead

market size on non-generic entry.

Column 1 replicates the baseline results from Table II (column 1 for Panels A and C, and

column 5 for Panel B). In column 2, we use ten-year intervals instead of the five-year intervals.

The estimate of α for all drug approvals is slightly smaller, 6.22 (standard error=2.21), while

the estimate for non-generics is larger, 8.89, but less precise (standard error = 4.57). Column

3 looks at the effect of changes in market size driven purely by population changes, and shows

very similar results to the baseline estimates (in this case, regression weights are given by total

use in the corresponding category in the MEPS).

21It also has to be borne in mind that these estimates are informative about the effect of market size on the
composition of research, and the relationship between total pharmaceutical market size and aggregate research
could be quite different. If we estimate (12) for all approvals without time effects, we obtain a coefficient of 0.32,
with a standard error of 0.11, on current market size (for non-generics, the estimate on lead market size is 0.40,
with a standard error of 0.09). This is consistent with the view that the response of the composition of R&D to
market size is quite different from the response of total R&D. Nevertheless, the difference between the results
with and without time effects is at least partly due to the presence of other time-varying factors affecting entry
of new drugs, for example, the fluctuations in FDA approvals, unrelated to market size, discussed in footnote
17.
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Column 4 uses an OECD market size measure combining West European and Japanese

demographic information with the U.S. information.22 Since we only have information on pop-

ulation shares for the other countries, we perform this exercise for the population-based measure

of market size. The U.S. and OECD populations by age group have a high correlation, equal

to 0.81. Using the OECD market size measure leads to qualitatively similar, but quantitatively

smaller results than those obtained using only the U.S. information. For example, for all ap-

provals, the estimate of α is 4.24 (standard error=1.36), while for non-generics, the estimate is

3.43 (standard error = 1.83). The smaller estimate with the OECD market size measure might

be because entry of new drugs in the United States is more responsive to the U.S. market

size, or because there is greater measurement error in our OECD market size estimates, which

are constructed from only population data, available at five-year intervals, combined with age

profiles for U.S. consumers.

Column 5 investigates the effect of weighting on the estimates. The unweighted estimates of

α for all approvals and for generics are smaller than the baseline. For example, for all approvals,

the estimate is 3.32 (standard error = 1.74). But the unweighted estimate for non-generics is

very similar to the baseline, 4.57 (standard error = 1.91), and continues to be significant at 5

percent.

Column 6 uses an alternative measure of market size constructed with single age groups for

iat’s and uca’s in equation (13). This procedure uses more information about the age profiles,

but since there are fewer observations in some single age groups, the estimates of uca’s are less

precise. The estimates using this alternative measure are very similar to the baseline results.

For example, the estimates of α for non-generics is 5.01 with a standard error of 2.20.

Column 7 estimates the model in (10) with the Pakes-Griliches transformation using OLS.

The estimates are similar to those in column 1. For example, for non-generics, the estimate of

α is 4.53, with standard error 2.24, and is significant at 5 percent.

Finally, columns 8, 9 and 10 check the robustness of the results to dropping some of the

categories that are most heterogeneous in terms of types of drugs and expenditure profiles.

These are the Antibiotic, Cardiac, and Pain Relief categories. In all cases, the exclusion of

these categories has little effect on the estimates.23

22Obtained from the United Nations website, esa.un.org/unpp/.
23We have also experimented with dropping each of the other categories. The effect of market size on all

approvals remains significant at 5 percent in all cases. With two exceptions, Acid/Peptic Disorders and
Estrogens/Progestins, dropping any of the other categories also makes little difference for non-generics. When
these categories are dropped, the effect of lead market size on non-generic entry is somewhat smaller and only
significant at 10 percent.
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5.4 Potential Supply-Side Determinants of Innovation

The first part of Table IV investigates the robustness of the baseline results to controlling

for potential non-profit determinants of innovation, such as changes in scientific incentives or

opportunities captured by the δj’s in the theoretical model. Although our focus is on the effect

of lead market size on the entry of new non-generic drugs (Panel B), for completeness, we

also report the estimates of the effect of current market size on all approvals and on generics

separately (Panels A and C).

First, recall that the major threat to our identification strategy is changes in the δj’s (since

permanent differences in δj’s are already taken out by the drug category fixed effects). If the

δj’s change over time, they are also likely to be serially correlated. Adding lags of logNct to

our basic specifications is therefore a simple way to check the importance of these concerns.

Column 1 of Table IV reports the results of estimating a lagged dependent variable specifica-

tion, by adding a one-period lag of the dependent variable, logNct−1, to our basic specification.

The basic estimating equation changes from (12) to:

Sct =
exp (α · logMct + ψ · logNct−1 + µt)PT

τ=1 exp(α · logMcτ + ψ · logNcτ−1 +X 0
cτ · β + µτ )

+ εct, (14)

where recall that Sct = Nct/
PT

τ=1Ncτ . Since logNct−1 is correlated with the error term,

estimates of this equation would be biased. To deal with this problem, we instrument logNct−1
with ∆ logNct−2. This is a valid instrument as long as there is no additional autocorrelation

in the error term, εct.24 This specification is also useful to check for other sources of serial

correlation in the entry rate of new drugs.

The estimate of α from equation (14) for non-generics, reported in column 1 of Panel B, is

similar to the estimate in Table II, 5.05 with a standard error of 2.19, and the lagged dependent

variable is insignificant (0.01, with standard error 0.23). Similarly, if we look directly at the

residuals from the estimation of (12), there is no evidence of residual serial correlation for non-

generic drugs. These results therefore show no evidence of significant residual serial correlation

due to changes in scientific opportunities or other reasons, and also demonstrate that controlling

for serial correlation has little effect on our estimates for non-generics.

The situation is different for generics. In this case, the lagged dependent variable is highly

significant, and the estimate of α is much smaller, imprecise and insignificant.25 When we

24See, for example, Arellano and Bover [1995] and Blundell and Bond [1998]. We cannot use other commonly-
used moment restrictions, since equation (11) cannot be first-differenced. As with the specifications with lag
market size in Table II, we use information on approvals before 1970 to construct lags, so the sample size remains
the same as in the basic specification.
25Since generic drugs can only enter after patents on non-generics expire, a more satisfactory specification
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combine generics and non-generics and look at all approvals in Panel A, the lagged dependent

variable is still significant, and the estimate of α is smaller, though still significant at 5 percent.

These results show that there is significant residual serial correlation for generics, presumably

because a process of slow entry of new generics after patents expire [see Reiffen and Ward,

2004]. This reduces our confidence in the magnitude of the estimates for generics and all

approvals. The rest of the table continues to show the other robustness results for generics and

all approvals for completeness, though we do not dwell on these.

A plausible conjecture is that non-profit incentives to develop drugs would be particularly

responsive to opportunities to save lives or cure major illnesses. Our second strategy looks

at variation in the health benefits of new drugs across categories. New drugs in our data

set include both drugs that are demanded by the consumers but do not “save lives”, such as

Prozac, Paxil, Vioxx, or Viagra, and those that actually save lives such as heart medicines or

cancer treatments (see Lichtenberg [2002, 2003], on the effect of pharmaceutical innovations

on declines in mortality). To investigate this issue, we measure the number of life-years lost

corresponding to each drug category using the Mortality Detail Files from the National Center

for Health Statistics from 1970-1998. Following Lichtenberg [2002], for each death, we subtract

the person’s age from 65, then calculate the total number of life-years lost for all the deaths

resulting from diseases related to drugs in each category.26 Column 2 adds this measure of

life-years lost to the right hand side of our baseline regression models as a proxy for this source

of non-profit incentive to undertake research. The estimate of the effect of lead market size on

non-generics is now 4.85 (standard error = 2.33).

Third, we investigate the implications of differences in scientific funding for various drug

categories. Using the Computer Retrieval of Information on Scientific Projects (CRISP) dataset

(details are contained in Lichtenberg [2001] and Acemoglu and Linn [2003]), we construct a vari-

able measuring the total amount of federal funding for research projects in all drug categories,

and include this variable as a control on the right hand side. To the extent that government

funding also responds to potential market size (for example, because drug companies have a

greater tendency to apply for funding in areas where they plan to do research), this variable

would be correlated with our market size measure. In practice, the correlation is low, and col-

would include both lagged generic and non-generic approvals on the right hand side. In this case, when estimated
without instrumenting, the effect of market size on entry of generics has a reasonable magnitude 6.31 (s.e.=4.46).
The coefficient on lagged non-generic approvals is 0.34 (s.e.=0.18) and that on lagged generic approvals is 0.39
(s.e.=0.15). This specification is not instrumented, since we do not have generic approvals before 1970, and
instrumentation would reduce the number of time periods substantially. Since generics are not our main focus,
we do not pursue this specification further.
26For example, if someone dies at age 32, this counts as 33 life years lost; people dying older than 65 receive

no weight in this calculation. Since many of our categories contain diseases or conditions that do not lead to
death, we obtain several empty cells.
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umn 3 shows that the inclusion of this variable has little effect on our estimates. The estimate

of the effect of lead market size on new non-generics is 5.68 (standard error = 2.25), though

the funding variable itself is also significant at 5 percent (not reported in the table), and shows

that the availability of funding might also have an effect on innovation.

Fourth, to control for potential trends in scientific opportunities across drug categories,

we add proxies for pre-existing trends. We construct an estimate for pre-existing trends as

∆c = (logNc,70 − logNc,40)/6, where logNc,70 is the log approvals for category c in 1970 and

logNc,40 is the log approvals in 1940. We then estimate the equation:

Sct =
exp (α · logMct +∆c · σt + µt)PT

τ=1 exp(α · logMcτ +∆c · στ +X 0
cτ · β + µτ)

+ εct, (15)

where σt’s are such that σt = 0 if t = 1970, σt = σ75 if t = 1975, σt = σ80 if t = 1980, and so on.

This specification allows drug categories that have grown at different rates between 1940 and

1970 to also grow at different rates in the later periods. Column 4 reports the results of this

exercise. The estimates of α are similar to our baseline estimates; for non-generics, it is 5.59

(standard error = 2.38). These results are perhaps not surprising, since pre-1970 approvals are

considerably noisier, thus only an imperfect control for pre-existing trends. We do not report

this specification for generics, since there is no entry of generics prior to 1970.

An alternative, and substantially more demanding, strategy is to include in-sample linear

time trends. To do so, we estimate:

Sct =
exp (α · logMct + ηC · t+ µt)PT

τ=1 exp(α · logMcτ + ηC · t+X 0
cτ · β + µτ)

+ εct, (16)

where c refers to the 33 detailed drug categories, and C refers to the relevant 16 major drug

categories, i.e., the one to which the detailed category c belongs to. We expect technological

differences to be well approximated by the 16 major drug categories, which are based on broad

therapeutic intent. The estimates, reported in column 5, are in fact larger than our baseline

estimates. For example, for non-generics the estimate of α is 9.37 (standard error =4.22), and

the linear trends are jointly significant at 1 percent. These results indicate that market size is

unlikely to be proxying for differential scientific trends across the major drug categories.

We also investigate the potential effects of advances in biotechnology, such as the use of

recombinant DNA, or other technological changes, during the late 1980s and the 1990s. In

terms of our model, these developments would correspond to changes in the δj’s. In column

6, we drop the categories of Cancer and Vascular, which, according to the FDA approval list,

have witnessed the entry of the greatest number of orphan drugs, presumably by biotechnology

firms. Even though, as noted above, our dependent variable does not include these drugs,
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we also check whether our results are driven by entry of new drugs in these categories. The

estimates in column 6 are close to those in column 1 of Table II.

In addition, there is anecdotal evidence that biotechnology firms were first active in produc-

ing insulin (the Glucose and Thyroid category) and in the Anemia category.27 In column 7, we

drop these two categories, and again find that our results are essentially unchanged. To assess

the role of biotechnology firms further, we add the approvals of a group of products known

as biologics, where biotechnology firms have been particularly active, to our measure of drug

approvals. These products, which include some vaccines, blood and plasma related products,

such as interferon and errythropoietins (used for red blood cell production), are not included in

our baseline measure because they go through a separate FDA regulatory process. The results

of this regression, reported in column 8, show little change in the estimates of α.

Finally, to see whether the advent of biotechnology or other technological advances of the

past two decades have changed the relationship between market size and entry of new drugs,

we estimate our baseline models including an interaction between a post-1985 (or post-1990)

dummy and market size. Our estimates show no evidence of significant interactions. For

example, in a specification parallel to the model for non-generics in column 5 of Table II (not

reported), the estimate of α is 6.09 (s.e.=2.38), and the interaction with the post-1985 dummy

is -0.13 (s.e.=0.09), thus small and insignificant.

The results in this subsection therefore show that a number of controls for non-profit factors

have little effect on our main finding regarding the effect of lead market size on entry of new

non-generic drugs. Although these results are not conclusive on the effect of scientific or other

non-profit considerations in pharmaceutical research, they suggest that the effect of potential

market size on entry and innovation is relatively robust.

5.5 Changes in Health Insurance Coverage

Our market size measure only exploits changes in potential market size driven by demographic

trends. Another source of variation in market size comes from changes in coverage of drug

expenditure in private or public health insurance programs. During our sample period, there

were significant changes in the coverage of drug expenditure in health insurance plans. For

example, the percentage of 60+ year-olds with private insurance rose from 60 percent to 75

percent between 1974 and 1996 (authors’ calculations). We now investigate whether we can

improve our measure of potential market size by including information on health insurance

coverage.

27Biotechnology firms were also active in producing human growth factor, but since there are only a small
number of individuals using these drugs in the MEPS, these drugs are not included in our approvals dataset.
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We use the National Health Interview Survey (NHIS, 1974-1996) to construct a market size

measure incorporating information on health insurance coverage as follows: fMct =
P

a uca ·
iat · fat, where fat is the fraction of those of age a in period t with private health insurance,

uca and iat are as defined above. Because there is no consistent information on prescription

drug coverage, we assign prescription coverage to any individual with both doctor and surgical

coverage. Prescription drug coverage is highly correlated with this measure in the years we

can observe it. In column 9, we use logfMct as our market size measure instead of logMct.

This leads to similar, and somewhat more precise, results. For non-generics, the estimate of α

is 4.45 with standard error 1.38. Despite the greater precision of these results, we have more

confidence in our baseline estimates, since the measure fMct effectively assigns 0 expenditure to

those without insurance and relies on information on drug coverage imputed from doctor and

surgical coverage.

5.6 Reverse Causality

Lichtenberg [2002, 2003] shows that new drugs have increased the average age at death. This

introduces the potential for reverse causality whereby the market size for successful drugs

may be endogenously larger, because their users live longer. This is unlikely to be a first-

order concern, since drug-induced changes in population are small relative to the demographic

changes that we are exploiting. Nevertheless, we further address this issue by instrumenting

for current population using the corresponding population from 5 years before. For example,

we use the income of 50-54 year-olds in 1975 as an instrument for the income of 55-59 year-olds

in 1980. The fraction of 50-54 year-olds is highly correlated with the fraction of 55-59 year-olds

5 years later, but is unaffected by new drugs that are developed in the intervening 5 years.

These instrumental-variables estimates, reported in column 10 of Table IV, are similar to

the baseline results and show no evidence of reverse causality. For example, for non-generics,

the estimate in Panel B is 5.32 (standard error = 2.30).

5.7 New Molecules and Patents

The results so far show a large and robust effect of potential market size on entry of new

non-generic drugs, and suggest a strong link between market size and innovation. In this

subsection, we briefly investigate the relationship between market size and some other measures

of pharmaceutical innovation, namely, the introduction of new molecules and patents.28

28We were unable to obtain data for a sufficient number of categories for another possible proxy for pharma-
ceutical innovation, clinical trials.
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First, the FDA has classified some new drugs as containing a new molecule (an active

ingredient that has not been marketed before in the United States). In all, there are 442

new molecules in our dataset compared to 2,203 non-generics, indicating that new molecules

may correspond to significantly more important innovations. We use the introduction of new

molecules as an alternative measure of innovation. Panel D of Appendix Table A2 shows

that there is a positive but insignificant association between current market size and new

molecules, and a positive and statistically significant relationship between lead market size and

new molecules. The estimate of α with lead market size is 4.35 (standard error = 2.18) and is

significant at 5 percent.

Finally, we investigate the effect of potential market size on patents. We obtained data on

pharmaceutical patents from Thomson Derwent Inc., and with the help of a specialist at this

company, we mapped these patents into our classification system.29 However, the mapping of

patents for chemicals into the FDA and disease categories is imperfect and necessarily introduces

a significant amount of noise, which makes inference more difficult in this case.

Firms typically apply for a patent prior to the clinical trial stage of drug development, or

about 5-10 years before the drug is approved.30 Given the results so far, we might expect

patents to respond to future demographic changes. Panel D of Appendix Table A2 shows that

there is no relationship between current or lead market size and new patents.

There may be a number of reasons for the weaker results with patents.31 First, this may

simply reflect the imperfect match between the patent data and the FDA categories, espe-

cially bearing in mind the potential use of certain chemical structures in multiple drug lines.

Second, the significant costs and uncertainty involved in the development of new molecules

and patentable products may be creating substantial attenuation (e.g., a drug intended for the

1990s may be patented in the 1980s or 1990s, depending on delays in the research process).

Third, pharmaceutical companies may respond more to profit incentives at the later stages of

the research process than at the earlier stages. Finally, patents may be more responsive to

OECD demand than to U.S. demand. To investigate the last possibility, column 5 of Panel D

of Appendix Table A2 looks at the relationship between changes in OECD market size derived

from European, Japanese and U.S. demographic changes. In this case, we find a significant

29We could not use the data from the Hall-Jaffe-Trachtenberg patent dataset (see Jaffe and Trachtenberg,
2002) because we were unable to map their classification based on chemical structure to our drug categories.
30The firm therefore loses a significant fraction of the life of the patent before it can begin marketing the drug.

Part of the 1984 Hatch-Waxman Act allowed pharmaceutical companies to apply to the FDA for an extension
of the life of their patents, if they could show that they lost marketing time while waiting for approval. The
maximum extension is 5 years, and depends, among other things, on the length of the initial FDA approval
process. Overall, companies have a maximum of 14 years of patent protection after FDA approval.
31Finkelstein [2003] also finds weaker results for vaccine patents than for later stages of development.
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relationship between market size and patents. With lead OECD market size, the estimate of

α is 4.60 (standard error = 1.85).32 Although this result suggests that OECD demand may be

more important for patents, we are currently unable to make more progress in distinguishing

between these various explanations, and the weaker results for patents remain a puzzle.

6 Concluding Remarks

This paper investigates the response of entry of new drugs and pharmaceutical innovation to

changes in potential market size of users, driven by demographic changes. Our results indicate

that a 1 percent increase in the potential market size for a drug category leads to approximately

a 5 percent growth in the entry of new non-generic drugs approved by the FDA. Entry of non-

generic drugs appears to respond to increases in future market size in the next five years or so.

There is also a substantial response of entry by generic drugs mostly to current market size.

The relationship between market size and entry of new drugs, if further proven to be ro-

bust, has important implications both for research on the pharmaceutical industry, and for

the endogenous growth and directed technical change literatures. It provides evidence that,

as conjectured by these models, R&D and technological change are directed towards more

profitable areas. Furthermore, the magnitude of the effect, which is important for evaluating

various theoretical predictions of these models, is substantial. For example, directed technical

change models suggest that the relative demand curves for factors of production can be upward,

rather than downward, sloping if the development of new technologies responds to a 1 percent

increase in market size by more than 1 percent (see, for example, equations (21) and (22) in

Acemoglu, [2002])–the corresponding number implied by our estimates is around 5. Second,

these findings imply that pharmaceutical research towards drugs with relatively small markets

may be limited, which is a key premise of recent work by Kremer [2002]. Kremer suggests

that there needs to be selective government incentives for developing drugs against malaria and

other third-world diseases.

We view this research as part of a broader investigation of the effects of profit incentives

on innovation. Evidence from a single industry may be nonrepresentative, for example because

the pharmaceuticals may be more research oriented than other industries. Future research

investigating the response of innovation and entry of new products to market size both in specific

industries and at the economy-wide level is necessary to substantiate the results presented here.

32Part of the difference between the U.S. and OECD results is driven by the fact that we are using income-
based measures for the U.S. and the population-based measures for the OECD. Using the population-based
measure for the U.S. lead market size yields a coefficient of 2.79 (standard error = 1.97).
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8 Data Appendix

8.1 Medical Expenditure Panel Survey (MEPS) and Construction of the Drug
Classification System

The MEPS is an annual survey of randomly sampled households; we use the 1996, 1997 and
1998 surveys. We obtain each person’s age, the name and national drug code of the prescrip-
tion drug(s) used, and total expenditure (there are multiple records for people who use more
than one prescription drug). Over the 3 years, we have about 500,000 drugs used and about
85,000 people. Expenditure information includes out-of-pocket expenses, as well as amounts
paid by insurance companies and government payments (e.g., Medicaid and worker’s compen-
sation). These information are collected from the pharmacies and medical providers listed by
the respondents.
We begin with the 159 therapeutic categories, obtained from the FDA’s National Drug

Code (NDC) Directory. The names of these categories can be found in the second column of
Appendix Table A1. The NDC Directory contains a file with the therapeutic category for most
FDA approved drugs currently on the market. We assign each drug in the MEPS to one of the
159 categories by matching it by national drug code with a drug in the NDC file. We cannot
match about 10 percent of the drugs mentioned in the MEPS; these are usually not commonly
used drugs, and make up less than 5 percent of the total drugs used.
Drug expenditure shares and use per person are calculated by computing drug expenditure

and use by five-year age group, and then dividing by the income and population estimates for
the same age group from the CPS. The results are also very similar if we construct expenditure
shares (use per person) as a weighted average of expenditure shares (use per person) for individ-
uals in the survey (i.e., without using CPS information). For example, although the estimates
of the effect of current market size on all approvals are somewhat smaller, the estimate of the
effect of lead market size on the entry of non-generics, which is our main focus, is similar to
our baseline estimates, 4.88, with standard error 1.54. We prefer to use income estimates from
the CPS because the MEPS income data are likely to contain greater measurement error; in
the MEPS, wage and salary incomes for almost half of the sample are imputed either based on
broad income ranges or other information, and non-wage incomes were generally imputed and
also the imputation methods changed between the 1996-97 and 1998 surveys. We also checked
the robustness of our results using an alternative market size measure constructed with single
age groups, and the results are reported in Table III. We prefer the measure using five-year age
groups, since there are only a few observations in some single-age groups in the MEPS.
The FDA has assigned the 159 categories to one of 20 major therapeutic categories. As

noted in the text, we drop four major categories: Anesthetics, Antidotes, Radiopharmaceuti-
cals, and Miscellaneous.33 Within each major category, we first separate categories whose drugs

33We also drop several minor categories when there are not sufficient observations to estimate a reliable age
structure. We use about 1,000 observations as our cutoff rule. We obtain this number from observing that only
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have different indications (we determine drugs’ indications by searching by name on the Na-
tional Institute of Health website, www.nlm.nih.gov/medlineplus/druginformation.html). For
categories that have not been separated based on indications, we then separate them if there is
sufficient heterogeneity in the age profile of users for subcategories. The categories in Table A1
make it clear that we create subcategories when there is considerable age variation within broad
categories. For example, Antimicrobials are separated into category 1, Antibiotics, used mostly
by 0-20 year olds; category 2, Antivirals, used predominantly by individuals of age 30-60; and
category 4, Antifungals, which have a balanced age profile. This classification system differs
somewhat from the working paper version, in which we divided major classes based entirely
on age structure. The details of the previous classification system are in Acemoglu and Linn
[2003], and Appendix Table A2 reports results using this older classification.

8.2 Drug Approvals from the FDA

The list of FDA drug approvals were obtained by Lichtenberg and Virahbak [2002] under the
Freedom of Information Act. We thank Frank Lichtenberg for generously sharing these data
with us. Over-the-counter drugs and orphan drugs (of which only a few can be matched) are
excluded. Biologics, which go through a separate approval process, are not in this dataset.
We match drugs in the approval list to FDA categories by drug name and FDA approval

number. 14,432 of 16,772 prescription drugs (86 percent) approved since 1970 are matched,
while before 1970, the match rate is about 51 percent. This motivates our focus on drug
approvals between 1970 and 2000. Drugs that have the same approval number as a previously
approved drug and drugs for which the corresponding FDA category is dropped because of
insufficient observations in the MEPS are excluded. Finally, we drop drugs with the same
name, MEPS category and company has a previously approved drug, leaving us with our
sample of 5,374 drugs. Of these, 2,203 are non-generics, and 442 new molecules.

8.3 Patents

We have obtained patent data from Thomson Derwent Inc. We use all pharmaceutical patents
granted in the United States, between 1970-2000. We use these data instead of the Hall-Jaffe-
Trachtenberg patent data because the latter use a classification for pharmaceuticals based on
chemical structure, which we are not able to map into our FDA classification system. The
Thomson Derwent patents are classified by chemical structure and therapeutic intent, and a
specialist at the company has mapped this system into the FDA system. The mapping is not
precisely one to one, and we drop about five percent of the patents that fall into two of our
categories. We are left with 275,406 patents.

categories with more than 1,000 observations have fairly smooth age profiles.
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Correlation

Weighted Correlation

Mean Correlation by Drug

Correlation

Weighted Correlation

Mean Correlation by Drug

MEPS/NAMCS MEPS use/MEPS expenditure

Correlation 0.869 0.954

Weighted Correlation 0.891 0.956

Mean Correlation by Drug 0.804 0.902

0.935 0.940

TABLE I

Correlations Between Different Drug Use Measures

1996/1997

1980/1990

0.897

0.906

1997/1998

Panel A: NAMCS over time

1996/1998

1990/2000

Notes: Correlation refers to the correlation of use per person or average expenditure share between the 
indicated dates and datasets. In weighted correlations, observations are weighted by total use or expenditure 
from the MEPS or NAMCS. Mean correlation by drug computes correlations separately by drug, then 
calculates the average.

0.698 0.686

Panel C: NAMCS/MEPS and MEPS use/expenditure

0.881 0.796

0.709

0.861

0.843

0.651

1980/2000

0.856

0.626

0.575

0.929

0.937

0.861

Panel B: MEPS over time

0.961

0.962

0.965

0.973

0.825 0.790Weighted Mean 
Correlation by Drug

Weighted Mean 
Correlation by Drug

Weighted Mean 
Correlation by Drug

0.820

0.865



(1) (2) (3) (4) (5)

6.73 8.76 1.86
(2.33) (5.58) (4.00)

-1.83 4.94
(4.32) (1.81)

8.07 10.02
(5.13) (2.65)

R Squared 0.81 0.81 0.80 0.86 0.86

2.45 8.95 3.00
(2.19) (5.11) (4.05)

-5.87 0.92
(4.53) (2.07)

1.88 5.11
(4.94) (2.22)

R Squared 0.83 0.83 0.83 0.84 0.84

12.19 6.16 13.87
(3.29) (8.22) (6.82)

5.52 10.30
(6.24) (2.32)

-2.08 12.49
(8.43) (4.53)

R Squared 0.70 0.70 0.70 0.70 0.69

Number of Observations 198 198 198 165 165

Lag Market Size

Panel C: NLLS for Poisson model, dep var is count of generic drug approvals

Lag Market Size

Lead Market Size

Log Market Size

Notes: Huber-White robust standard errors are reported in parentheses. The dependent variable in Panel A is 
count of drug approvals, in Panel B the dependent variable is count of non-generic drug approvals, and in Panel 
C, it is generic drug approvals, all calculated from the FDA dataset of New Drug Approvals (see Appendix). 
Market Size is log potential market size calculated from the MEPS and the CPS (see text). Lag Market Size 
refers to one-period lag of Market Size, and Lead Market Size refers to one-period lead of Market Size. All 
regressions include drug and time dummies, an use the income-based measure of market size. Time intervals 
are 5 years. Estimates are weighted by total expenditure for the category in the MEPS. The Poisson model is 
estimated by Non-Linear Least Squares (with the Hausman, Hall and Griliches [1984] transformation). See 
equation (12) in the text.

Panel B: NLLS for Poisson model, dep var is count of non-generic drug approvals

Market Size

TABLE II
Effect of Changes in Market Size on New Drug Approvals

Panel A: NLLS for Poisson model, dep var is count of drug approvals

Market Size

Lag Market Size

Lead Market Size

Lead Market Size



baseline 
NLLS

10 year 
intervals

population-
based 

market size

OECD 
market size

unweighted 
regressions

market size 
uses single 
age groups

OLS drop 
Antibiotics drop Cardiac drop Pain 

Relief

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10)

6.73 6.22 6.33 4.24 3.32 6.11 5.44 6.77 7.14 6.72
(2.33) (2.21) (2.46) (1.36) (1.74) (2.25) (1.94) (2.67) (2.66) (2.43)

R Squared 0.81 0.89 0.84 0.84 0.72 0.80 0.83 0.80 0.79 0.79

Approvals 5374 5374 5374 5374 5374 5374 5374 4651 5019 4815

5.11 8.89 6.65 3.43 4.57 5.01 4.53 6.25 4.90 5.27
(2.22) (4.57) (2.82) (1.83) (1.91) (2.20) (2.24) (2.25) (2.48) (2.32)

R Squared 0.84 0.89 0.85 0.85 0.73 0.84 0.88 0.84 0.83 0.83

Approvals 1745 1745 1745 1745 1745 1745 1745 1174 1646 1648

12.19 11.68 14.36 8.95 5.96 11.21 7.85 11.74 13.25 12.30
(3.29) (2.91) (3.27) (2.00) (2.81) (3.10) (2.78) (3.79) (3.75) (3.47)

R Squared 0.70 0.79 0.75 0.75 0.54 0.70 0.79 0.69 0.69 0.69

Approvals 3171 3171 3171 3171 3171 3171 3171 3085 2941 2759

otes: Huber-White standard errors in parentheses. Dependent variables are count of drug approvals in Panel A, count of non-generic approvals in 
Panel B, and count of generic approvals in Panel C, all computed from the FDA dataset of New Drug Approvals. Panels A and C use current market 
size, and Panel B uses one period lead market size. All columns except 3 and 4 use the income-based measure of market size; columns 3 and 4 use 
the population-based measure. All regressions include drug and time dummies, and, except for column column 5, are weighted. Market size in column 
4 is computed using total OECD population, as explained in text. In column 6 market size is computed using single year age groups (see text). The 
Poisson model is estimated using Non-Linear Least Squares (with the Hausman, Hall and Griliches, 1984, transformation) in columns 1-6 and 8-10.In 
column 7 if a cell is empty, the log approvals variable is set equal to zero, and a dummy variable equal to 1 when the cell is empty is added (see text).

Panel B: dependent variable is count of non-generic drug approvals

Lead Market Size

Panel C: dependent variable is count of generic drug approvals

Log Market Size

TABLE III

Robustness Checks

Panel A: dependent variable is count of drug approvals

Market Size



lag dep var life years lost CRISP pre-existing 
trends

major cat 
trends

drop Cancer, 
Vascular

drop Thyroid, 
Anemia

include 
Biologics

health 
insurance

IV with prev 
mkt size

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10)

3.98 6.01 6.73 8.05 9.02 8.03 6.88 6.71 3.46 6.73
(2.02) (2.45) (2.30) (2.31) (4.15) (2.50) (2.39) (2.36) (1.30) (2.34)
0.97

(0.33)
R Squared 0.86 0.81 0.81 0.85 0.91 0.79 0.80 0.81 0.80 0.81

5.05 4.85 5.68 5.59 9.37 4.81 5.03 5.11 4.45 5.32
(2.19) (2.33) (2.25) (2.38) (4.22) (2.26) (2.30) (2.22) (1.38) (2.30)
0.01

(0.22)
R Squared 0.84 0.84 0.85 0.85 0.88 0.84 0.85 0.84 0.85 0.84

0.97 11.69 12.60 18.45 13.77 12.45 11.86 6.32 12.22
(6.27) (3.50) (3.30) (6.48) (3.78) (3.40) (3.23) (2.05) (3.28)
1.88

(0.44)
R Squared 0.89 0.70 0.71 0.86 0.68 0.70 0.70 0.69 0.70

Lagged Dependent 
Variable

Panel C: NLLS for Poisson model, dependent variable is count of generic drug approvals

Market Size

Notes: Huber-White standard errors in parentheses. Dependent variables are computed from the FDA dataset of New Drug Approvals. Panels A and C 
use current market size, and Panel B uses one period lead market size. Market Size is constructed as in Table II for columns 1-9 and 11. All regressions 
include drug and time dummies, use the income-based measure of market size and are weighted. In Panels A and C the number of observations is 198 in 
columns 2-5 and 8-10; and 186 in columns 6 and 7. The number of observations is 198 in Panel A column 1, 99 in Panel C column 1, 165 in columns 1-5 
Panel B, and 8-10; and 155 in columns 6 and 7 Panel B. In column 1 the lagged dependent variable is instrumented with the twice lagged first difference 
of the dependent variable (see text). Life years lost is years prior to age 65 for each death in the U.S., calculated from the Mortality Detail Files (see text). 
Column 2 includes a count of total life years lost due to diseases in the corresponding category and time interval. Column 3 includes the amount of funding 
from NIH research grants in each category calculated from the CRISP database (see Appendix). 1940 /1970 trend is the log difference of drug approvals 
for category c between 1970 and 1940. In column 4, the 1940/1970 trend is interacted with period dummies (see text). Major drug category trends are 
linear time trends interacted with dummies for the 16 major drug categories (see text). In column 8, FDA approvals of biologics are added to the 
dependent variable. In column 10, market size includes information on health-care coverage (see text). In column 11, current market size is instrumented 
with the market size of the same cohort 5 years earlier.

Lagged Dependent 
Variable

TABLE IV
Potential Supply-Side and Demand-Side Determinants of Innovation

Panel A: NLLS for Poisson model, dependent variable is count of non-generic drug approvals

Market Size

Panel B: NLLS for Poisson model, dependent variable is count of non-generic drug approvals

Lead Market Size

Lagged Dependent 
Variable



Class Description 0-20 20-30 30-50 50-60 60+

Age Group with 
Peak 

Expenditure

1.20 0.58 0.62 0.62 0.90
{0.31} {0.10} {0.29} {0.12} {0.19}

0.04 0.02 0.37 0.34 0.05
{0.04} {0.01} {0.65} {0.25} {0.04}

0.01 0.03 0.06 0.04 0.08
{0.03} {0.07} {0.46} {0.14} {0.29}

0.28 0.22 0.22 0.24 0.38
{0.21} {0.11} {0.30} {0.14} {0.24}

0.00 0.00 0.00 0.01 0.01
{0.04} {0.02} {0.19} {0.27} {0.47}

0.01 0.00 0.03 0.12 0.77
{0.01} {0.00} {0.08} {0.11} {0.80}

0.00 0.01 0.02 0.07 0.58
{0.00} {0.01} {0.06} {0.09} {0.85}

0.12 0.25 0.72 1.28 2.87
{0.02} {0.03} {0.26} {0.19} {0.49}

0.00 0.00 0.01 0.01 0.03
{0.03} {0.04} {0.28} {0.17} {0.49}

0.02 0.05 0.46 1.34 4.68
{0.00} {0.01} {0.14} {0.17} {0.67}

0.09 0.18 0.75 2.39 7.00
{0.01} {0.01} {0.15} {0.19} {0.64}

0.02 0.08 0.24 0.28 0.58
{0.02} {0.04} {0.37} {0.17} {0.40}

0.31 0.69 1.71 1.48 1.28
{0.05} {0.07} {0.51} {0.18} {0.18}

0.12 0.02 0.05 0.02 0.01
{0.46} {0.06} {0.38} {0.07} {0.03}

0.00 0.00 0.01 0.01 0.05
{0.04} {0.02} {0.19} {0.16} {0.58}

0.01 0.01 0.03 0.11 0.46
{0.02} {0.01} {0.11} {0.15} {0.71}

0.07 0.02 0.05 0.07 0.14
{0.22} {0.05} {0.25} {0.15} {0.34}

60+

30-50

60+

0-20

60+

60+

60+

60+

60+

60+

60+

60+

60+

15 Vitamins/Minerals

Antidiarrheals, Laxatives

10 Cardiac

9

5 Anemia

6 Anticoagulants

7 Glaucoma

8 Acid/Peptic Disorders

2 Antivirals

3 Antiparasitics

{Share of Expenditure by Age Group in Total Expenditure in Brackets}

0-20

APPENDIX TABLE A1

Summary of Disease Classifications and Drug Expenditure by Age Group
Expenditure Share x 1000

Antibiotics

16
Electrolyte 

Replenishment/Regulation, 
Water Balance

1

Antifungals4

30-50

30-50

30-50

Vascular11

17 Adrenal Corticosteroids

12 Sedatives/Hypnotics, 
Antianxiety

Antipsychotics/Antimanics, 
Antideppresants13

14 Anorexiants/CNS Stimulants



Class Description 0-20 20-30 30-50 50-60 60+

Age Group with 
Peak 

Expenditure

0.00 0.00 0.01 0.00 0.07
{0.01} {0.02} {0.16} {0.04} {0.77}

0.06 0.70 0.48 1.27 0.97
{0.02} {0.15} {0.28} {0.30} {0.26}

0.02 0.26 0.11 0.01 0.00
{0.05} {0.42} {0.50} {0.03} {0.01}

0.04 0.14 0.50 1.36 2.90
{0.01} {0.02} {0.20} {0.23} {0.54}

0.02 0.01 0.02 0.02 0.06
{0.14} {0.06} {0.24} {0.12} {0.43}

0.01 0.01 0.01 0.01 0.02
{0.24} {0.08} {0.25} {0.16} {0.27}

0.00 0.00 0.02 0.05 0.29
{0.01} {0.01} {0.14} {0.11} {0.74}

0.19 0.23 0.50 0.37 0.39
{0.10} {0.08} {0.49} {0.15} {0.18}

0.08 0.40 0.27 0.35 0.84
{0.04} {0.15} {0.27} {0.15} {0.39}

0.06 0.04 0.03 0.05 0.14
{0.21} {0.08} {0.20} {0.12} {0.39}

0.02 0.01 0.01 0.01 0.02
{0.31} {0.11} {0.19} {0.11} {0.28}

0.02 0.01 0.02 0.03 0.08
{0.13} {0.06} {0.22} {0.17} {0.42}

0.17 0.43 0.99 1.28 2.09
{0.03} {0.06} {0.36} {0.19} {0.35}

0.45 0.26 0.32 0.56 1.28
{0.17} {0.06} {0.21} {0.16} {0.40}

0.04 0.06 0.08 0.07 0.08
{0.12} {0.11} {0.42} {0.15} {0.20}

0.36 0.37 0.48 0.60 0.64
{0.15} {0.10} {0.35} {0.18} {0.22}

Notes: All data from the MEPS, 1996-1998. Construction of the 33 categories is described in the Data Appendix. 
Each category includes the indicated FDA sub-categories. Expenditure share is the total expenditure on drugs in 
the category divided by the total income of people in that age group. Share of expenditure by age group is the 
fraction of total expenditure in the category accounted for by the age group. Shares of expenditure by category 
are calculated for 10-year age groups. Age group with peak expenditure is the broad age group with the greatest 
expenditure on the corresponding category.  

30-50

30-50

60+

60+

{Share of Expenditure by Age Group in Total Expenditure in Brackets}

30-50

60+

0-20

60+

60+

60+

30-50

50-60

60+

60+

30-50

Expenditure Share x 1000

33 Antihistamines, 
Inhalation/Nasal 

31 Antiasthmatics/ Broncodilators

32 Nasal Decongestants, 
Antitussives, Cold Remedies

29 Vertigo/Motion Sickness

30 Pain Relief

25 Skeletal Muscle Hyperactivity, 
Anticonvulsants

28 Topical Otics

Oncolytics

Ocular Anti-Infective/Anti-
Inflammatory27

26

23 Topical Anti-Infectives

24 Extrapyramidal Movement 
Disorders

Contraceptives

21 Blood Glucose Regulators, 
Thyroid/Antithyroid

22 Topical Steroids

18 Androgens/Anabolic Steroids

19 Estrogens/Progestins

Appedix Table A1 (cont.)

60+

20



(1) (2) (3) (4) (5)

3.95 7.07 0.14
(1.16) (3.78) (2.96)

-3.05 2.85
(3.17) (1.00)

6.26 6.41
(3.83) (1.61)

R Squared 0.87 0.87 0.87 0.91 0.91

1.13 8.82 -0.49
(1.83) (4.40) (3.49)

-6.89 -0.79
(3.48) (1.63)

6.83 6.31
(4.40) (2.18)

R Squared 0.81 0.81 0.81 0.85 0.85

6.50 -0.72 13.74
(2.17) (6.22) (5.05)

7.43 6.80
(5.51) (1.67)

-8.64 5.49
(6.57) (2.75)

R Squared 0.77 0.77 0.77 0.80 0.79
Number of Observations 204 204 204 170 170

2.73 1.22
(1.97) (1.72)

4.35 0.38 4.60
(2.18) (2.16) (1.85)

R Squared 0.72 0.63 0.87 0.94 0.94
Number of Observations 204 170 204 170 170
Dependent Variable New Molecules New Molecules Patents Patents Patents
OECD Included No No No No Yes
Notes: Huber-White robust standard errors are reported in parentheses. Variable construction and specifications 
are as described in Table II, except that the classification system from Acemoglu and Linn [2003] is used in 
Panels A, B and C. See text and Data Appendix for details. In Panel D, market size is income-based in columns 
1-4, and population based, using OECD population, in column 5. The dependent variable in columns 1 and 2 in 
Panel D is a count of New Molecules in the FDA New Drug Approvals dataset. The dependent variable in 
columns 3-5 in Panel D is a count of patent, computed from the Derwent Inc. patent dataset (see Appendix).  

Panel B: NLLS for Poisson model, dep var is count of non-generic drug approvals

Market Size

APPENDIX TABLE A2
Effect of Changes in Market Size, Using Previous Classification Scheme, and 

New Molecules and Patents as Dependent Variables

Panel A: NLLS for Poisson model, dep var is count of drug approvals

Market Size

Lag Market Size

Lead Market Size

Lead Market Size

Panel C: NLLS for Poisson model, dep var is count of generic drug approvals

Lag Market Size

Lead Market Size

Log Market Size

Panel D: NLLS for Poisson model, dep var is count of new molecules and patents

Log Market Size

Lead Market Size

Lag Market Size



Figure II
Share of Income by Age Group from CPS, 1970-2000
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Figure I
Share of Population by Age Group from CPS, 1964-2000
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Notes: Share of income is income of the corresponding age group, divided by total income, computed 
from the March CPS. Individual income is obtained by dividing total family income equally among family 
members. 

Notes: Share of population is the population of the corresponding age group divided by total population, 
computed from the March CPS. 



Figure IV
Share of Non-Generic FDA Approvals by Age Group, 1970-

2000

0

0.1

0.2

0.3

0.4

0.5

0.6

1970 1975 1980 1985 1990 1995 2000
Year

Sh
ar

e 0-20
30-50
50-60
60+

Figure III
 Share of FDA Approvals by Age Group, 1970-2000
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Notes: Share of FDA approvals is given by approvals of drugs in the corresponding broad age group divided 
by total approvals in that period, calculated from the FDA data set of New Drug Approvals. Each of our 33 
drug categories is assigned to one of the five broad age groups according to which broad age group has the 
largest expenditure (see Appendix Table A1). 

Notes: Share of non-generic FDA approvals is given by approvals of non-generic drugs in the 
corresponding broad age group divided by total non-generic approvals in that period, calculated from the 
FDA data set of New Drug Approvals. Each of our 33 drug categories is assigned to one of the five broad 
age groups as in Figure III. 




