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Abstract

We develop an empirical approach to value marginal changes to a climate in terms of total market

output given optimal factor allocations in general equilibrium. Our approach fully accounts

for unobservable heterogeneity as well as all costs and benefits of adaptation in climates of

arbitrary dimension. Importantly, we use the Envelope Theorem to show that the marginal

product of a probabilistic long-run climate can be exactly identified using only idiosyncratic

weather realizations. We apply this approach to the temperature climate of the modern United

States and find that, despite evidence that populations have adapted to their local climates,

the marginal product of climate has remained unchanged during 1970-2010, with the highest

temperatures having the lowest net value. Capital investments associated with urbanization are

important but incomplete substitutes for mild temperatures. Integration of marginal products

allows us to construct a value function for climate up to a constant, allowing valid causal,

non-marginal, cross-sectional and climate change comparisons net of all re-optimization using

existing adaptation technologies. In our preferred specification, we estimate that, for example,

the climate of Northern Minnesota returns over $2,000 per capita more annually than the climate

of Southern Texas. Using a 3% discount rate, the NPV of “business as usual” warming (RCP8.5)

until 2100 in the median scenario is a loss of $6.7 trillion.
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Carleton, Melissa Dell, Olivier Deschênes, Don Fullerton, Michael Greenstone, Hilary Hoynes, Amir Jina, Bentley
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Frank Wolak, and seminar participants at Chicago, IZA, LSE, MIT, Princeton, Stanford, UC Berkeley, UC Davis,
UC Santa Barbara, UI Urbana-Champaign, UNC, and Yale for discussions and comments. We thank DJ Rasmussen,
Michael Delgado, and Andrew Wilson for research assistance. This version: July 23, 2017
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1 Introduction

We consider the contribution of climate to the total market output of United States (US) counties.

Empirical construction of these values is challenging because it requires simultaneously accounting

for all unobservable di↵erences between counties (Deschênes and Greenstone, 2007) and all en-

dogenous adaptations to climate net of costs (Schlenker, Roberts, and Lobell, 2013)—criteria that

no prior approach has yet delivered (Hsiang, 2016). Here we develop a single unified framework

that satisfies both of these criteria for an arbitrary number of unobserved allocative adaptations

in an economy at general equilibrium responding to a high-dimensional climate. We derive how

our approach can recover the marginal product of climate by only exploiting idiosyncratic weather

variation using a reduced-form estimator.

Our core insight is that the marginal e↵ect of weather, suitably defined, is exactly equal to

the marginal e↵ect of climate on total output in the “local neighborhood” of a long-run market

equilibrium—where neighborhood is defined in the space of all possible probability distributions of

environmental states, which we term the space of all possible climates. As is well understood, the

short-run income response to weather and the long-run income response to climate are not the same

mathematical object, due to possibility of adaptive re-optimization in the long-run (Mendelsohn,

Nordhaus, and Shaw, 1994; Kelly, Kolstad, and Mitchell, 2005). However, the two surfaces that de-

scribe these relationships are exactly tangent in any observed equilibrium, which occurs because no

adaptive reallocation occurs in the short-run, by definition, and the e↵ect of marginal adaptation on

income in the long-run is exactly zero, a direct result of the Envelope Theorem (Guo and Costello,

2013). This equivalence enables us to measure the local gradient of the long-run relationship im-

plicitly by measuring the local gradient of the short-run relationship directly. Recognizing that the

two local gradients are identical is useful because the short-run response can be empirically iden-

tified by exploiting idiosyncratic variations in weather over time within each location, allowing the

econometrician to purge unobserved cross-sectional heterogeneity from these parameter estimates.

A large number of local gradient estimates observed at “nearby” baseline climates can then be

“pieced together” through integration to reconstruct the long-run income response surface, which

cannot otherwise be observed directly. The key data requirements necessary for this approach to

be valid is a large panel of similar economies that (i) span the space of possible climates, (ii) are

su�ciently densely packed in this space such that integration between positions is reasonable, and

(iii) experience short-run weather disturbances that are not “too large” in the sense that they do

not perturb the economy so far from its equilibrium that the Envelope Theorem no longer applies.

We demonstrate the application of this approach for a large number of ‘small macro-economies’

represented by the panel of modern US counties, which plausibly satisfy the criteria above, when we

examine their local response to small perturbations in the annual distribution of daily temperatures.

We discover a remarkably strong and stable relationship between temperatures and production

across space, seasons, and over time. Importantly, we show that large investments in human-made

capital—in the form of air conditioning and cities—appear to be partial substitutes for climate in

production, in the sense of Hartwick (1977) and Solow (1991). However, we continue to observe
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large contributions of climate to output even in extremely urbanized contexts and into the twenty-

first century, indicating a high net value of certain climates despite the existence of numerous

possible margins of adaptation.

Our approach enables us to integrate marginal e↵ects of climate to compute causal non-marginal

e↵ects on production due to large climate changes. Thus, we can compute di↵erences in economic

production that are attributable to di↵erences in contemporaneous locations’ climates, as well as

to estimate distortions to future production due to projected future warming. In both cases, our

construction of this integral accounts for both the costs and benefits of all margins of endogenous

adaptation along the entire evolution of a high dimensional climate. On net, we find that existing

climate di↵erences between counties generates substantial di↵erences in output, with hotter climates

having lower production on average ceteris paribus, a result that we recover without exploiting

cross-sectional variation in our parameter estimates.

For similar reasons, projections of future output are substantially reduced once future warming

and resulting adaptations are both accounted for. Net of all currently available adaptation tech-

nologies, we value the projected change in US production during the twenty-first century at $6.7

trillion in NPV (RCP 8.5, discounted at 3% annually) in the median scenario, using our preferred

specification. Accounting for climate model uncertainty (Burke et al., 2015), the 90% confidence

interval of this estimate is $4.7-10.4 trillion. Importantly, these values do not represent welfare

calculations, they do not account for non-market impacts of warming, they do not account for

e↵ects of climate change other than temperature changes, and they clearly cannot account for pos-

sible future technological innovations that do not yet exist in our data. Interestingly, we note that

accounting for adaptive reallocations using our approach increases total projected losses relative to

a naive approach that assumes uniform marginal e↵ects everywhere, a result that is counter to the

widely referenced “folk theorem” that the latter should be larger in magnitude. This occurs be-

cause the marginal damages from warming—which are larger for cooler and less adapted northern

counties—are positively correlated across space with the distribution of economic activity. Thus, in

models that assume uniform marginal e↵ects, we under-estimate total future losses because param-

eter estimates for northern locations are biased toward zero by pooling those counties with hotter

and more adapted (but less productive) counties in the South, thereby obscuring the di↵erentially

larger e↵ects in the North.

The structure of the paper is as follows. In Section 2, we introduce definitions for climate,

the space of all possible climates, the marginal product of climate, the role of climate in a market

equilibrium, and the relationship between climate and weather. Our definitions are somewhat more

formal than is standard in this literature, but as we show, construction of this new formulation

is much of what delivers our main theoretical result. In Section 3 we derive how the marginal

product of climate can be estimated using weather variation and how these estimates can be used

to compute nonmarginal e↵ects of climate. We also provide graphical illustrations to build intuition

for this result in simple climates of one and two dimensions. In Section 4 we explain our empirical

implementation in the modern US, deriving how our empirical specification recovers the marginal
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product of high-dimensional daily temperature distributions. In Section 5 we examine the structure

of the marginal product of temperature in the US, including its stability over time, the dynamics

of income growth, and the e↵ects of adaptation. In Section 6 we examine what mechanisms might

be responsible for these results, considering both di↵erent sectors of production (e.g. agriculture,

manufacturing) and the role of human-made capital (e.g. air-conditioning) as partial substitutes

for climate in production. In Section 7 we use our results to compute the non-marginal e↵ects

of temperature on the current cross-section of income and the projected value of future warming.

Section 8 discusses important caveats of our analysis and points towards areas for future research.

2 Statement of the problem

To fully quantify the marginal product of a climate, we must compute the economic value generated

by an economy facing that climate relative to the same economy when it faces a slightly di↵erent

climate, including any adaptation measures taken in response. Because the climate is a joint

probability distribution over a large number of possible environmental conditions that may occur

at a given location and time, we necessarily are looking for a mapping that takes us from the space

of possible joint probability distribution functions to a scalar measure of production. Since this

input to the economy that we are focusing on is a function, the transformation of climate and other

inputs into economic output (a scalar) will be governed by a functional1. The core challenge of our

analysis is to find a suitable framework for translating this functional into an empirically tractable

object while simultaneously accounting for endogenous adaptation to any changes in climate.

2.1 Defining climate and its marginal product

Let the relevant environmental conditions, which we consider state variables, at location i and time

t be represented by the vector x:

xit = [temperatureit, precipitationit, humidityit, ...] , (1)

where xit is a draw from the joint probability distribution function f(x). We are interested in

how changes to this probability distribution function alter the economic value of output in a given

economy. The functional Y (.) maps this function to economic output:

f(x) 7! Y (f(x),b), (2)

where b is the vector of length N describing all endogenous control variables in the economy, which

must also include all inputs not described by x. Alteration of these control variables is how the

economy may adapt to changes in f(x).

1A functional is similar to a function, but takes functions (rather than scalars or vectors) as arguments and
outputs a scalar. Thus, functionals are a mapping from a function space to the space of reals. A definite integral is
a commonly used functional.
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Define  to be the function space of valid probability distribution functions over the state

variables in x:

f(x) 2  . (3)

The structure of  is constrained both by physics and the identity that the joint distribution and

its marginal distributions all integrate to one.

To make the characterization of (2) empirically tractable, we exploit a “function-generating

function”  (.) that describes the entire probability distribution function f(x) in terms of a vector

C:

C 7!  (C,x) = f(x). (4)

Output from this function-generating function must also be a valid probability distribution:

 (C,x) 2  . (5)

Let the vector C have length K and lie in the space C. C is defined such that

C 2 C ()  (C,x) 2  . (6)

Thus, for any vector C in the space C, there exists a valid probability distribution over x

generated by  (C,x). Thus, without loss of generality, we can rewrite Y (f(x),b) as Y (C,b),

where it is understood that C is the parameterization of the probability distribution f(x) through

the function  (.). The purpose of using  (.) in this formulation is that it creates a parameterized

mapping from the function space  to the vector space C such that we can treat the functional

Y (.) as if it were a function, so long as we know the mapping function  (.).

By construction, the vector C is a set of su�cient statistics for f(x). For simplicity, we will

refer to this vector as climate. Correspondingly, C is the space of possible climates. Our objective is

to define and measure the economic value of relocating an economy within this space. To describe

the value of such relocations, we define the marginal product of climate evaluated at location C0

in C to be
dY (C0,b

⇤
0)

dC
= lim

C0!0

⇥
Y (C0 +C0,b⇤

0 + b⇤0)� Y (C0,b
⇤
0)
⇤
, (7)

where the vectors b⇤
0 and b⇤

0 + b⇤0 are endogenous to the economy and, presumably, optimized to

adapt the economy to the two climates C0 and C0 +C0.

2.2 Information and adaptation to climate in general equilibrium

In general equilibrium, individuals with knowledge of the state C will adjust their behavior and

factor allocations to maximize their private utility. If each individual behaves as a price-taker

and prices are non-zero, these decentralized choices results in maximization of the value of total

revenue in the market economy Y (Arrow and Debreu, 1954; Koopmans, 1957). The vector b

describes all N control variables throughout the economy, including all production, consumption,
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b1

p(C)

Y(C,b*)

b*(C)

U(C,b)

production possibility set

better-than set

PPF(C,b)

b2

b1

Y(C2,b*)b*(C1)

Y(C1,b*)

b*(C2)

Figure 1: General equilibrium in a climate C where b1 (an input to production as drawn) and b2

(an output) are endogenously determined. Left: Preferences U(.) and the production possibility
set may both be influenced by climate. The equilibrium allocation is b⇤(C) with price vector p.
Total market revenue (income) is Y , treating b2 as the numeraire. Right: As the climate of an
economy is altered from C1 ! C2, both the PPF and the better-than set will adjust, producing a
new optimal allocation b⇤(C1) ! b⇤(C2), an adjustment of the price vector, and a change in total
revenue Y .

and investment decisions. In response to the information contained in C, b will be optimally set

to b⇤ in equilibrium, leading us to write b = b(C). Thus, in an economy with full information of

the climate and N margins of adaptation, b is endogenously set to

b⇤(C) = argmax
b

Y (C,b(C)). (8)

Thus it is clear that, as far as total revenue in the market is concerned, all costs of adaptation to

climate are opportunity costs due to the re-allocation of resources in response to changes in C. If an

exogenous change in the climate were to induce an endogenous adjustment in b⇤, then it must be

the case that any reductions in Y caused by this adjustment were outweighed by its gains under the

new climate. To illustrate this, consider an economy in general equilibrium where N = 2, as shown

in the left panel of Figure 1, where representative utility is U(C,b) and the production possibility

frontier is PPF (C,b). If the climate C changes then the economy will adapt by reallocating factors

b1 and b2 to maximize U(.), which in turn will necessarily maximize total revenue in the economy,

i.e. income Y , given nonzero prices p(C) (Koopmans, 1957).

We note that if some factors have no market price, such as a completely externalized pollutant

or a non-market good, they will not be factored into the market and will not a↵ect total revenue

for the market. This is not an immediate concern for us because we are focused on changes to

total market output, but it is worth noting because many other approaches to valuing climatic
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conditions in welfare terms do take into account both market and non-market responses to climate

(e.g. Antho↵, Hepburn, and Tol (2009); Hsiang et al. (2017)).

This formulation of adaptation is general in the sense that it accounts for an arbitrary number

of endogenous adjustments to climate, including their opportunity costs, while allowing for the

possibility that C a↵ects the economy by altering the better-than set and the PPF simultaneously.

For example, on the production side, increasing temperatures might reduce the yields of some crops,

altering the structure of the PPF and causing adjustment in the allocation of land to di↵erent crop

varieties or the more intensive use of irrigation, both of which are accompanied by the opportunity

cost of using those resources for other productive activities. On the preferences side, increasing

temperatures might increase the demand for ice cream and reduce the demand for hot chocolate, a

response that would lead to some reallocation of both production and consumption—both of which

may also have opportunity costs. Clearly, in all cases prices will adjust, but it is not required that

we observe them directly in order to measure the marginal product of climate. To construct this

marginal product, we simply must observe how Y responds to changes in C, net of all general

equilibrium adjustments, as shown in the right panel of Figure 1.

Because our focus is the value of the climate in terms of total market production net of all

optimal re-adjustments, we can write equilibrium output as the value function

V (C) = Y (C,b⇤(C)), (9)

which captures the net costs and benefits of all possible adaptations embodied by b⇤. If there

exist regions in the climate space C where endogenous adjustment of b can fully o↵set any changes

in total production induced by changes in C, than the value function V (C) will be flat in that

region. However, if compensating adjustments in b are not possible or impose high costs (benefits)

by moving resources away from (towards) other productive activities, then the value function may

have a steeper gradient.

Throughout this analysis we assume that b lies in the state space B which is a dense subset of

RN ; further we assume that Y is concave and di↵erentiable in the elements of b. These assumptions

ensure that b⇤ exists. In an empirical application, this implies that the elements of b take on

continuous values, a natural assumption for most standard variables in an economy of su�ciently

large scale, such as the number of apples are sold in a regional market or the number of miles

of road laid down within a county. For some specific control variables often discussed as margins

of adaptation to climate, such as the construction of sea-walls or the switching of crops that are

planted, the literature often frames these decisions as discrete.2 However, such a framing is not

generally accurate even at the scale of a decision-maker because many decisions have (continuous)

intensive margins. For example, a sea-wall can always be slightly longer or slightly higher and a

farmer can always allocate just a slightly larger fraction of cropland to a new variety. At larger

scales of aggregation—such as at county, state, or national levels—the assumption that elements

2For example, both Mendelsohn, Nordhaus, and Shaw (1994) and Deschênes and Greenstone (2007) describe
crop-switching as a discrete choice variable.
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of b takes on continuous values is even more easily defended, as the economic decisions of many

individuals are easily aggregated into continuous measures.

2.3 Weather and climate

Once agents use their knowledge of C to make all behavioral and factor allocation decisions, de-

scribed by b, there remain no possible channels for the abstract probability distribution described

by C to influence economic outcomes except through generating actual realizations of xit. A cli-

mate that is generally wet will generate more rainy days and a climate that is generally warm

will generate more hot days. These actual events will potentially a↵ect Y , perhaps mediated by

adaptations described by b⇤(C).

Having observed some realizations of xit over the interval ⌧ = [t, t), we can construct an em-

pirical cumulative distribution function F̂ (x)i⌧ over the space of x. Di↵erentiating F̂ (x)i⌧ gives us

f̂(x)i⌧ , an empirical analog to the probability distribution f(x), which also must lie in the space

 . Noting that the function-generating function  (.) can also generate f̂(x)i⌧ , we define ci⌧ as an

empirical analog to C for location i during ⌧ :

ci⌧ 7!  (ci⌧ ,x) = f̂(x)i⌧ . (10)

By construction, ci⌧ has the same dimensionality as C and also lies in C. We define ci⌧ as the

weather realized at i during period ⌧ .

The description of ci⌧ may appear on its face more complicated than vernacular usage of the

term “weather,” although we believe it actually maps very closely to common usages of the term.

It is tempting to consider xit the weather, since these are directly observable realizations, but we

caution that elements in xit are continuous measures taken at continuous (or at least infinitesimally

short) moments in time indexed by t. In contrast, ci⌧ summarizes many of these measures taken

over a finite interval of time. Thus, if one were to ask “what was today’s weather?” a reasonable

response would be “pretty warm,” or “a high of 80 and low of 60,” both of which are summary

statements more akin to the summary captured in ci⌧ than to an infinite number of measures of

temperature taken at all moments t within a day, as is captured by xit.

Because C summarizes the probability distribution function f(x), which produces realizations

xi⌧ that are in turn is used to construct the summary ci⌧ , it is straightforward to consider ci⌧ ’s

as random vectors generated by some function of C. Stated another way, weather is a random

realization of events that are determined by the climate. To capture this intuition and simplify

notation, we write

c = c(C) (11)

to denote some distribution of weather realizations ci⌧ realized from a climate C.

Because the probability distribution described by the climate C can only a↵ect economic pro-

duction (1) as information, through its e↵ect on decisions embodied by b⇤, and (2) through its

influence on actual events, through its e↵ect on weather realizations c, it is useful to rewrite to Eq.

8



9 so that C clearly enters only through these two arguments:

Y (C,b(C)) = Y (c(C),b(C)). (12)

Using this notation we write down our final formulation of the value function for climate as the

optimal endogenous output by an economy when weather events are realized from a probabilistic

climate and all factors and production decisions are optimized with full knowledge of the climate

V (C) = Y (c(C),b⇤(C)). (13)

The shape of the income-generating function Y (.) along the optimized path b⇤(C) over all C 2 C
ultimately determines the value of the climate V (C), net of all adaptation costs and benefits

captured by the market. Thus, the full marginal product of the climate from Eq. 7 can be

rewritten as the local gradient in the value function

dY (c(C),b⇤(C))

dC
=

dV (C)

dC
= lim

C0!0

⇥
V (C+C0)� V (C)

⇤
, (14)

where C0 describes the structure of an arbitrary perturbation to the current climate vector C such

that C+C0 2 C. Empirically recovering the gradient vector dV (C)
dC for the modern counties in the

United States is the goal of this analysis.

2.4 Relationship of this formulation to prior work

Seminal analysis by Mendelsohn, Nordhaus, and Shaw (1994) attempted to directly estimate Equa-

tion 13 in a cross-sectional nonlinear regression of farm profits on a vector Ĉ that captured average

seasonal temperatures and rainfall. This approach essentially specifies that average temperatures

and rainfall are su�cient statistics to reconstruct, through application of  (.), the full distribution

of actual weather c relevant to farm value. If, conditional on observable characteristics included in

the regression (such as soil quality), farms are identical and only the first moments of temperature

and rainfall are relevant to output, then this approach will recover the shape of V (C) net of all

adaptation costs and benefits.

Schlenker, Hanemann, and Fisher (2006) expanded on this cross-sectional approach by adopt-

ing a more sophisticated structure for  (.), whereby degree-days above and below two specified

temperature cuto↵s are considered su�cient statistics Ĉ for estimation of V (C). Deschênes and

Greenstone (2007) raise the concern that that di↵erent farm units may not be comparable, even

conditional on observable traits, leading to potential bias in these earlier regression frameworks. To

circumvent this issue, they propose to use a within-unit panel regression approach that di↵erences

out any constant unobserved heterogeneity between farm units. To implement this, the authors

assume Ĉ = ci⌧ and then estimate a version of Equation 13 exploiting random variation in ci⌧ .

In their implementation, the authors used first moments in temperature and rainfall to summarize

weather, analogous to Mendelsohn, Nordhaus, and Shaw (1994). A concern raised by later authors
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was that endogenous responses to climate changes captured by re-optimization of b⇤(C) would not

be captured in this framework, since farmers can di↵erentiate between temporary changes in ci⌧

and long-term changes in C.

Schlenker and Roberts (2009) and Deschênes and Greenstone (2011) expanded on the approach

of Deschênes and Greenstone (2007) by adopting sophisticated structures for  (.) to capture nonlin-

ear responses of crop yields and human mortality, respectively, to temperature. These contributions

did not directly address adjustments of b⇤(C).

Analyses by Aroonruengsawat and Au↵hammer (2011), Hsiang and Narita (2012), and Barreca

et al. (2013), along with others, built on these contributions by accounting for some re-optimization

of b⇤(C) in a panel framework where the partial e↵ect of ci⌧ on Y in Equation 13 is estimated

directly, allowing this e↵ect to vary as a function of C—thereby capturing some influence of b⇤(C)

by proxy. While this approach is able to document the presence of adaptive behaviors, it has now

been recognized that it cannot fully capture changes in V (C) because the costs of adjusting factors

b is unobserved by the econometrician (Houser et al., 2015).

Dell, Jones, and Olken (2012) and Burke and Emerick (2016) also expand on the approach

of Deschênes and Greenstone (2007) by using a long (multi-year) period of observation ⌧ when

constructing Ĉ = ci⌧ , arguing that the period is su�ciently long that b⇤(C) would have plausibly

adjusted. Neither analysis recovers evidence of such adjustment, concluding that such adjustments

are absent. However, even if evidence of adjustment had been found, it would not be possible to

evaluate the costs (and thus net benefits) of these adaptations.

Thus, a systematic challenge to evaluating the economic value of climate has been the inability

to simultaneously account for unobservable heterogeneity while also accounting for adaptive re-

optimization of b⇤ in a manner that fully accounts for both costs and benefits (Hsiang, 2016). We

solve this challenge in a single framework by carefully constructing the appropriate  (.), allowing

for nonlinear adaptation at all points in the distribution of f(x), and restricting our analysis to an

optimized outcome where short-run marginal changes in ci⌧ exactly identify the marginal e↵ect of

long-run changes in C.

3 Identifying the full marginal product of climate empirically

As formulated here, an economy’s output Y (C,b) depends on its position in the K+N dimensional

Cartesian space C ⇥ B, recalling that C 2 C, c 2 C, and b 2 B. Exogenous changes in the position

of the economy in the subspace of C lead to endogenous re-optimization of state variables b to b⇤

such that income Y (c(C),b⇤(C)) is always at an optimum with respect to the subspace of b. A

core empirical challenge has been tracing out the optimal path of an economy through the space

C ⇥ B as it adjusts b⇤ in response to changes in position C.

Our objective is to characterize the marginal product of climate

dV (C)

dC
=

h
@V
@C1

, · · · , @V
@CK

i���
C

(15)
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where Ck denotes the k-th element in C. Note that the marginal product of climate is equivalent

to the gradient of the value function rV (C) in the space of C, so as a vector it points in the

direction of most rapid increase in the value function everywhere. Since the value function V (C) is

the outcome Y (.) when b is optimized, we decompose dV (C)
dC into contributions that come from (1)

the direct e↵ect of changing C and the resulting changes in c and (2) the endogenous adjustments

to b in response to the knowledge that C has changed. Following Hsiang (2016), we term these

contributions the direct e↵ect and the belief e↵ect—since the latter is entirely driven by changes in

beliefs of individuals over the structure of the unobservable probability distribution f(x), and thus

implicitly by their beliefs over C. We write

dV (C)

dC
=

dY (c(C),b⇤(C))

dC
=

KX

k=1

@Y (C)

@ck

dck
dC

| {z }
direct e↵ects

+
NX

n=1

@Y (C)

@bn

db⇤
n

dC
| {z }

belief e↵ects

(16)

where dck
dC and dbn

dC are the k-th and n-th row vectors of Jacobians dc
dC (size K ⇥K) and dbn

dC (size

N ⇥K), respectively.3 Note that each partial derivative is evaluated “locally” in the neighborhood

of the initial climate C.

In the ideal experiment, we would compare two identical economies with identical climates C.

We would then perturb the climate of one by the small disturbance C0 to C + C0 and allow the

economy to adjust b⇤ endogenously. The di↵erence in productivities between the treatment and

control economies would then be the marginal product dV (C)
dC , capturing contributions from both

direct e↵ects and belief e↵ects.

Previous work, such as Mendelsohn, Nordhaus, and Shaw (1994), approximated this experi-

ment in a cross-sectional hedonic framework, where productivities were conditioned on climate C

and covariates. The benefit of this approach is that it captures belief e↵ects that di↵er between

contemporaneous counties. However, a drawback of this approach is that it cannot ensure that

unobservable heterogeneity in determinants of productivity is fully accounted for.

Later work, such as Schlenker and Roberts (2009) and Deschênes and Greenstone (2011), ex-

ploited exogenous variation in weather c within a location to purge estimates of any omitted

variables bias due to unobservable heterogeneity. This approach identifies direct e↵ects, but has

been critiqued for failing to capture belief e↵ects, since beliefs about the climate may not respond

to weather (@b
⇤

@c 6= @b⇤

@C ).

Here we derive conditions under which the marginal product of climate, as described by Eq 16,

is exactly identified using a within-location estimator that exploits random variation in weather.

This approach builds on the methods proposed by Schlenker and Roberts (2009) and Deschênes and

Greenstone (2011) to purge estimates of omitted variables bias from unobservable heterogeneity,

but requires more stringent conditions that are not met by these previous analyses. Furthermore,

3 The Jacobian matrices are dc
dC =

2

664

@c1
@C1

· · · @c1
@CK

...
. . .

...
@cK
@C1

· · · @cK
@CK

3

775 and db
dC =

2

664

@b1
@C1

· · · @b1
@CK

...
. . .

...
@bN
@C1

· · · @bN
@CK

3

775.
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integration of marginal products of climate while accounting for belief e↵ects (i.e. adaptation),

which is necessary to compute the e↵ects of non-marginal changes in climate, requires a new

method that we derive.

3.1 Empirically identifying e↵ects of climate using weather

Variation in climateC and variation in weather c are not the same. Further, the marginal product of

climate (dV (C)
dC ) and the marginal product of weather (dY (C)

dc ) are di↵erent mathematical objects.

However, we show here that the values of these two marginal products are equal under certain

conditions, allowing us to measure the value of climate by isolating the marginal product of weather

net of all unobservable heterogeneity, which is generally easier than isolating the marginal product

of climate directly. This insight results directly from application of the Envelope Theorem.4

The intuition of the result is as follows. Imagine there are two otherwise identical households

that are next-door neighbors on a street that runs North-South. The more northern household faces

a very slightly di↵erent climate because it is very slightly further north. The di↵erence in climate

faced by the two households is vanishingly small, but nonzero. These two households have the ability

to adapt many dimensions of their daily life to their beliefs about their respective climates and will

adopt slightly di↵erent behaviors and investments that maximize various outcomes, generating

belief e↵ects. However, if we focus on outcomes that are maximized by the households, then the

overall net e↵ect caused by these slightly di↵erent adaptation decisions is zero because any marginal

benefits that the northern household reaps are exactly o↵set by additional marginal costs (since the

household is at a maximum). Therefore, any di↵erence in the optimized outcome between the two

households must come from the direct e↵ects of the slightly di↵erent climate, and the influence of

slightly di↵erent beliefs and adaptations between the two households can be ignored. If a weather

realization occurs such that the southern household experiences conditions that are slightly di↵erent

from what they expect and its distribution of weather actually matches the climate of the northern

household, then this “weather e↵ect” on the optimized outcome of the southern household must

be exactly the same as the cross-sectional di↵erence across the two households in a year when

their weather realizations match their respective climates perfectly—since in both cases there is no

influence of changing beliefs on the optimized outcome. Stated simply, the marginal e↵ect of the

climate on an optimized outcome is exactly the same as the marginal e↵ect of the weather.

Based on this insight, we can trace out a curve describing climate e↵ects between sequential

neighbors by watching how optimized outcomes in each household change when that household is

confronted by a weather distribution that matches the climate of their immediate next-door neigh-

bor. The integral of these marginal di↵erences between sequential neighbors must then describe

how the climate generates larger di↵erences between households that are not adjacent neighbors

4In related work, Guo and Costello (2013) exploit the Envelope Theorem to demonstrate that adaptation to
climate should generate limited value on the margin in California timberland management. Similarly, Schlenker,
Roberts, and Lobell (2013) demonstrate empirically that marginal costs of adaptation to temperature in US maize
production closely match marginal benefits at the current equilibrium, a result fully consistent withe predictions of
the Envelope Theorem as it is used in the present analysis.
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and experience climates that di↵er by a non-marginal amount. Importantly, this integration pro-

cedure does not assume that individuals do not adapt to their climate. Rather, the marginal e↵ect

of such adjustments for marginal climate changes is zero on an optimized outcome, so marginal

e↵ects of weather—which do not cause beliefs to change—can be used as a substitute for marginal

climate changes in the integration, despite the presence of changing beliefs and adaptations.

Let Ca be a benchmark climate at which we are evaluating the marginal product of climate. To

estimate the k-th element of dV (Ca)
dC we di↵erentiate V by Ck (Eq 15). By the chain rule we have

dV (Ca)

dCk
=

dY (c(Ca),b⇤(Ca))

dCk

=
@Y (c(Ca),b⇤(Ca))

@Ck
+

KX

=1

@Y (c(Ca),b⇤(Ca))

@c

dc
dCk

+
NX

n=1

@Y (c(Ca),b⇤(Ca))

@bn

dbn

dCk

(17)

where
@Y

@Ck
= 0 (18)

since the climate, as a probability distribution, cannot a↵ect any outcome by a pathway other

than through the weather realizations it causes and actions based on beliefs regarding its structure.

Because V is the outcome when Y has been optimized through all possible adaptations, and it is

di↵erentiable in b, we also know by the Envelope Theorem that

@Y (c(Ca),b⇤(Ca))

@bn
= 0 (19)

for all N dimensions of the b subspace. Thus, Eq. 17 simplifies to

dV (Ca)

dCk
=

KX

=1

@Y (c(Ca),b⇤(Ca))

@c

dc
dCk

=
KX

=1

@V (Ca)

@c

dc
dCk

, (20)

where the second equality holds by the definition of V (.) (Equation 13). Noting that for any

marginal change in the distribution of weather, there exists a marginal change in climate that is

equal in magnitude and structure such that

dc
dCk

=

(
1 for  = k

0 otherwise
(21)

we can focus only on cases where  = k, i.e. the e↵ect of the -th element of c is thought to be

informative of the e↵ect of the k-th element of C. This restriction is equivalent to setting dc
dC equal

13



to the identity matrix5 (Eq. 21). Then we have

dV (Ca)

dCk
=
@V (Ca)

@ck
, (22)

which says that the total marginal e↵ect on V of the kth dimension of the climate, evaluated at

Ca, is equal to the partial derivative of V with respect to the corresponding dimension of weather,

also evaluated at Ca. Locally, the marginal e↵ect of the climate on V is identical to the marginal

e↵ect of the weather.6 Extending this to all k dimensions we have

dV (Ca)

dC
=
@V (Ca)

@c
, (23)

stating that the full marginal product of climate is equal to the vector of partial e↵ects of k weather

measures, net of all endogenous adaptations. An identical equation can be written for income Y

since Y = V in equilibrium. Equation 23 is particularly useful empirically because the right-hand-

side term can be estimated in a multivariate time-series or panel model regression that is purged

of location-specific heterogeneity (e.g. using county fixed e↵ects), following the approach laid out

in Schlenker and Roberts (2009) and Deschênes and Greenstone (2011).

Importantly, for Equation 23 to hold, the outcome V must represent a maximized quantity

(Equation 13), which is true in the case of income—studied here—but which may not hold in

the case of other outcomes, such as crop yields or mortality risk. This maximization results from

individuals considering both the costs and benefits of any adaptive adjustment to state variables b,

guaranteeing that estimation of Equation 23 empirically captures both of these e↵ects.

The equivalence between marginal e↵ects of climate and weather can be used to construct

estimates for non-marginal e↵ects of the climate by integrating marginal e↵ects of weather. For

an arbitrary climate Cb, we know that we can solve for V (Cb) by computing a line integral of the

gradient in V along a continuous path through the k-dimensional C subspace (C) from Ca ! Cb,

starting from V (Ca):

V (Cb) = V (Ca) +

Z Cb

Ca

dV (C)

dC
· dC. (24)

At each position C 2 C, dV (C)
dC is a vector of di↵erentials describing all the marginal e↵ects of

the climate measured “locally” at C (recall Equation 15). From Equation 23 we know that these

di↵erentials with respect to climate can be substituted for using di↵erentials with respect to weather,

terms that can be estimated empirically via regression

\@V (C)

@c
= �̂weather

���
C

(25)

5 This restriction is quite weak. It simply requires that we do not interpret changes in one measure of weather
(e.g. realized average temperature) as reflecting changes in an orthogonal climate measure (e.g. expected rainfall).

6Hsiang (2016) calls Eq. 22 the marginal treatment comparability assumption, which holds exactly in this case.
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where �̂ is a reduced-form parameter estimate of the marginal e↵ects of weather on total economic

production. If �̂ can be credibly estimated for each value of C along the path of the line integral,

then by combining Equations 23-25 we have the value of a non-marginal change in the climate from

Ca to Cb, in the presence of all adaptation adjustments in b, exploiting only exogenous variation

in weather:

V (Cb)� V (Ca) =

Z Cb

Ca
�̂weather

���
C
· dC. (26)

The total di↵erence in economic output due to a change in the climate is thus computed by inte-

grating a sequence of weather-derived marginal products evaluated at each intermediate value of

C.

To summarize, climate and weather are not the same. However, properly formulated, a large

number of reduced-form estimates for the local marginal e↵ect of weather on production provides us

with enough information to reconstruct the full surface of productivities over the space of possible

climates. This result is obtained because, if all control variables are optimized to a baseline climate,

additional adaptations to local deviations from that climate have no influence on the marginal e↵ect

of climate in a su�ciently small neighborhood (by the Envelope Theorem). Similarly, idiosyncratic

weather deviations from the baseline climate also induce no additional adaptations, so the marginal

e↵ects of climate and weather on output must be equal. But because non-marginal changes in

climate may induce substantial adjustments to control variations, the marginal e↵ects of climate

and weather may change, so new marginal e↵ects must be empirically estimated at each position

in the K-dimensional climate space. Once enough local marginal e↵ects are estimated throughout

the climate space, non-marginal e↵ects of climate can be computed by integrating these marginal

e↵ects along any line-integral from the starting climate through the K-dimensional climate space

to the final climate.

3.2 Graphical illustration of the solution concept

Some simple examples help clarify our solution to valuing climate. Recall that our goal is to

construct an estimate for the value of the position C in the K-dimensional space of potential

climates C, allowing for any possible adjustments in control variables b based on the position C:

V (C) = Y (c(C),b⇤(C))

We derived that the shape of this surface could be reconstructed, up to a constant of integration,

by integrating estimates for the reduced-form marginal e↵ects of weather obtained at each position

in C (Equation 26). Here we graphically illustrate the construction of V (C), and how adaptation

is captured, in cases where K = {1, 2} and N = 1. Our actual empirical implementation for the

US has K = 16 and unknown N , making it more di�cult to visualize.

Example: One dimensional climate with one dimension of adaptation Choice of the

form for the function-generating function  (C,x) = f(x) implicitly determines the structure of the
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space of all possible climates C, since C 2 C. Begin by considering a one dimensional temperature

climate where the probability distribution of daily temperatures is summarized by the scalar T1,

equal to the expected fraction of days in each year below some temperature threshold T̄ . A second

number T2 equals the expected fraction of days with temperature above T̄ . This climate is fully

described by only one of these values since T1 = 1� T2, making this a one dimensional climate. In

this example,  ({T1},x) is implicitly defined as the function that places probability mass T1 below

T̄ and mass 1 � T1 above T̄ in a two-bar histogram, as shown in Panel A of Figure 2. Because of

the way in which  is defined in this example, the space of possible climates is the unit 1-simplex:

C = {T1|T1 2 [0, 1]}.

The shaded gray surface in Panel B of Figure 2 illustrates the income function Y (T1, B), which

is defined over the space of possible values for T1 and the single control variable B, which is the

only element in b. In a maximizing economy, B is adjusted to maximize Y conditional on the

exogenously determined climate T1. Thus, the maximum income obtainable at any value of T1 is

the “ridge” of the surface7 that is traced by the blue line. The vertical blue plane at T1 = C1

illustrates the maximization problem in a given climate: if constrained to select a position on the

surface Y along the locations where the T1 = C1 plane intersects, the economy will adapt to the

climate T1 = C1 by setting the control variable B = B⇤(C1), illustrated by the black circle. If

the plane describing the climate were shifted out of the page to T1 = C2, then the economy would

adapt by setting B = B⇤(C2), the second black circle. As the plane describing the climate shifts

along all possible values of T1, the actual trajectory of the adapting economy traces out the blue

ridge Y (T1, B
⇤(T1)) = V . Projecting V onto the subspace of climate dimensions (light blue plane

on right side of Panel B) produces the value function V (T1) over the space of possible climates, as

shown in Panel C.

To illustrate how V (T1) could be constructed empirically, first consider a reduced form estimate

for the marginal e↵ect of weather in this setup for a population with climate T1. Here, in year t

the realized count of days with temperature below T̄ would randomly deviate from the expected

number T1 by ✏(t). Thus, the one dimension of weather that corresponds to the one dimension of

climate is

T̃1(t) = T1 + ✏(t).

Because the control variable B responds to knowledge of the climate but not to random changes

in weather, the trajectory of the economy will move along the gray surface in Panel B tracing

out the values Y (T1 + ✏(t), B⇤(T1)) in the vicinity of a point on the blue ridge. For example, if

T1 = C1, the economy will traverse the surface in the neighborhood of the first black circle as

production responds to the small disturbances around C1. If these disturbances are su�ciently

small, then we know from Equation 22 that their tangency will have the same slope, with respect

7This ridge is sometimes described as the “envelope” in the Envelope Theorem, although that description is mainly
fitting when this three dimensional plot is collapsed to two dimensions (not explicitly showing the B-subspace), as it
is usually drawn in microeconomic textbooks.
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to T1, as the curve tracing out V (T1). This is true—even though the blue line tracing the ridge

V moves back and forth in the B-dimension as T1 changes—because these adjustments occur in a

subspace (of B) that is orthogonal to the climate subspace (of T1) and each position on the ridge

V is locally optimized with respect to B (Equation 19). Thus, the shape of the blue curve V (T1)

in Panel C can be constructed by integrating a large number of these small tangencies, describing
@Y (T̃1,B⇤(T1))

@T̃1
= @V (T1)

@T1
, each identified by random variation in weather T̃1(t) around each sequential

baseline climate T1.

Example: Two dimensional climate with one dimension of adaptation Expansion of the

climate space by one dimension is useful for developing intuition for how this approach generalizes as

the dimensionality of the problem increases. Consider restructuring  (.) such that the probability

distribution of daily temperatures in a year is summarized by a three-bin histogram, shown in Panel

D of Figure 2. T1 is still the expected fraction of days with temperature below T̄ . However, now T2

is the expected fraction of days with temperature above T̄ and below a second cuto↵ temperature
¯̄T . T3 is the expected fraction of days with temperature above ¯̄T and is fully determined by the

first two dimensions of the climate since T3 = 1 � T1 � T2. The space of possible climates here is

the unit 2-simplex:

C = {(T1, T2) | T1, T2 2 [0, 1], T1 + T2 2 [0, 1]}.

Let there remain only one dimension of possible adaptive adjustment B.

Depicting Y ((T1, T2), B) now requires four dimensions. Panel E of Figure 2 depicts multiple

semi-translucent surfaces, each a function over the 2-simplex C, holding a value of Bn fixed. The

height of the Bn surface at a point (T1, T2) is the level of output the economy would exhibit for

the climate (T1, T2) if B = Bn. Optimization of output would lead to selection of B = B⇤(T1, T2)

for each position in C, causing the actual economy to exhibit production that matched the highest

surface at each position, corresponding with the opaque blue-green curved triangle surface that is

outlined in blue. This two dimensional surface is the value function

V (T1, T2) = Y (T1, T2, B
⇤(T1, T2))

and it is analogous to blue ridge line in Panel B. This curved triangle is the upper envelope of all the

production frontiers across all values of B, where individual surfaces of Y (T1, T2, Bn) are exactly

tangent to the value function for those positions in the climate space (T1, T2) where Bn = B⇤, as

was described by Equation 22. For example, the black translucent surface labeled Y (T1, T2, B2)

lies below V for almost all positions in C, but defines the maximum value obtainable for the small

band labeled B⇤ = B2, where the surfaces are exactly tangent. This tangency is the manifestation

of Equation 22 (and the Envelope Theorem) which allows the shape of the value-function surface V

to be measured, locally, without consideration for any adaptive adjustment of B. For an economy

that is initially positioned at V (T1, T2) = Y (T1, T2, B
⇤
0) and then is perturbed by idiosyncratic two-

dimensional weather variation (T̃1(t), T̃2(t)), changes in observed output Y (T̃1, T̃2, B
⇤
0) with respect
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to T̃1(t) and T̃2(t) will equal corresponding changes in the value function V (T1, T2) with respect to

T1 and T2. In panel F, the color of each position in the 2-simplex depicts the value function at that

location in the climate space, analogous to the height of the curve in Panel C. Note that the height

of the simplex (T3) is not an independent dimension because it is fully determined by the first two

dimensions (T1, T2).

Importance of nonlinearity for capturing adaptation empirically Both examples above

demonstrate how idiosyncratic variations in weather around some baseline climate can be used to

identify the local structure of the value function in the neighborhood of an initial climate C0, since

in both cases adaptive adjustments have exactly no influence in the slope of a tangency plane.

However, for non-marginal changes in climate, adaptive adjustments to b may be large, causing

local derivatives of the value function @V (C0)
@c to change as the climate moves to positions in C

far from C0. This is seen in both examples above, where the value surface V exhibits curvature,

some of which is likely due in part to changing values of b⇤8. Thus, in order to ensure that

any value function of climates identified by local variations in weather captures adaptations, it

is important that a large number of marginal e↵ects of weather (local tangencies) are estimated

at di↵erent baseline climates (equivalent to evaluating Equation 25 at many di↵erent C) prior to

integration. This will allow the resulting value function to exhibit curvature. If a single marginal

e↵ect of weather is estimated, pooling across many baseline climates, this is equivalent to forcing the

marginal e↵ect of climate to be constant in each dimension. This would have the e↵ect of causing

the one-dimensional value function in Panel C of Figure 2 to be linear, and the two dimensional

value function in Panel E of Figure 2 to be a flat plane. These constant marginal e↵ects models

might reasonably approximate V (C), although it is di�cult to be certain whether this is the case

ex ante. In our empirical implementation in the US, we explore when constant marginal e↵ects are

a good approximation and when nonlinearity is critical for adequately capturing adaptive responses

to climate.

4 Empirical implementation for the modern United States

In our empirical analysis of the temperature climate for the US, we define  (.) such that the

probability distribution of daily average temperatures within each year and location is described

by a 17-bin histogram, where the interior fifteen bins are each 3�C wide and the extreme top and

bottom bin are not bounded above and below, respectively. The space of possible climates C is

thus the 16-simplex, constrained such that the total number of days in a year is exactly 365. The

climate of a county i is then Ci, a 16-element-long vector describing the expected count of days in

each temperature bin less one. Ci is thus the position of that county on the 16-simplex C.
Our objective is to empirically estimate the value of repositioning the climate Ci to some nearby

8It is theoretically possible for income to respond while b remains perfectly stationary for non-marginal changes
in climate. This occurs if the PFF and better-than set evolve so that the separating hyperplane between the feasible
and better-than sets rotates around a fixed b⇤. However, this seems like an unlikely scenario in most contexts.
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location Ci+C0. To measure the value of such a permanent marginal distortion in the climate, our

empirical strategy exploits the result in Equation 22 and measures the marginal value of temporary

distortions to the weather vector cit within location i over time, which is equal to the marginal

value of the permanent distortion. The weather vector cit necessarily has the same 16 element

structure as Ci and can be written as

cit = Ci + ⇠it,

where the 16-element disturbance vector ⇠it may have a complex structure and need not necessarily

have mean zero.9 As ⇠it varies randomly over time, the position of cit will “explore” the neighbor-

hood of C surrounding the position Ci, allowing us to estimate the local marginal e↵ect of these

changes. Panel B of Figure 3 displays an example realization of cit overlaid on the climate Ci. An

important econometric benefit of exploiting the within-county variation in cit is that it allows us

to utilize panel-regression techniques that condition out unobservable heterogeneity across counties

(Schlenker and Roberts, 2009; Deschênes and Greenstone, 2011).

Once we empirically estimate the local structure of V (Ci) by exploiting within-county variation

in cit, we can use these local marginal e↵ects to compute V (Ci+C0) via integration (Equation 26).

If there is an adjacent county j such that Cj = Ci +C0, then we can then exploit inter-temporal

variation in cjt to estimate the local structure of V (Cj) and thus compute V (Cj +C0) via another

integration step. We can repeat this procedure, so long as adjacent counties are not “too far” away

from one another in the space C, and thereby compute the di↵erence in value V (Cj) � V (Ci) for

arbitrary pairs of i and j, even if the change in climate is non-marginal.

Panel C of Figure 3 heuristically illustrates how we might apply this approach to compute the

di↵erence in value between the climate of St. Paul, Minnesota and Orlando, Florida. By tracing

a path through adjacent counties from St. Paul to Orlando, we gradually trace a path through

the 16-simplex of C and at each step use local variation in weather to estimate @V (Ci)
@cit

which we

integrate to follow the shape of the surface from V (Ci) to V (Ci+1) through this space. It is worth

noting that the exact path taken from St. Paul to Orlando should not matter, so long as the V (C)

is su�ciently smooth and counties are su�ciently “near” one another in C, where “near” is relative

to the curvature of V (C). If V (C) is relatively linear in C, then extrapolation of V (C) between

counties distant in C may be reasonable.

4.1 Regression specification

We construct our empirical specification to closely reflect the theoretical structure of the climate

value function such that the vector of regression coe�cients we recover directly characterize the

marginal product of climate in Equation 15. We combine Equations 15, 22, and 24, setting the

benchmark climate to Ci, and noting that the level of the value function at Ci is also conditional on

9It need not be the case that E[cit] = Ci in order to trace out a tangency to the value function, although there
is no issue if this relationship holds.
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a variety of other location and time specific factors unrelated to the climate zit, such as geography,

history, and human capital endowments:

Y (Ci +C0
it,b

⇤) = V (Ci +C0
it) = V (Ci|zit) +

Z Ci+C0
it

Ci

dV (C)

dC
· dC

=
C0!0

V (Ci|zit) +
Z Ci+C0

it

Ci

dV (C)

dc
· dc

= V (Ci|zit) +
Z Ci+C0

it

Ci

h
@V

@ck=1
, · · · , @V

@ck=K

i���
C
· dc

=
⇠!0

V (Ci|zit) +
h

@V
@ck=1

, · · · , @V
@ck=K

i���
Ci| {z }

dV (Ci)
dC

·⇠it (27)

where the last equality holds exactly for su�ciently small changes in ⇠ since it is the first order

Taylor expansion of V (Ci + ⇠). The first term is simply the total income that the economy at i

would obtain at time t conditional on covariates zit if the climate remained at Cit—in the data we

model this term parsimoniously using vectors of county fixed-e↵ects, year fixed-e↵ects, and an auto-

regressive term. The second term in Equation 27 is the inner product between the K-dimensional

gradient of the value function, evaluated at Ci, and the disturbance vector ⇠it that describes how

weather conditions at it deviate from characteristic weather conditions c = Ci. The gradient of

the value function is the object of interest because it is the marginal product of the climate at

Ci, and it can be recovered from the data as coe�cients to the terms in ⇠it. Importantly, because

the marginal product of climate is identified locally, in the neighborhood of Ci, it is possible that

marginal products identified at di↵erent positions in C are not identical. This may occur if, as

was shown in the illustrative examples above, populations adapt to climates in ways that alter its

local marginal product. To account for this, we construct a model that is nonlinear in each of the

K dimensions of C, which allows the marginal product of climate to change as a function of the

position C in C, thereby fully capturing all e↵ects of adaptation. However, for clarity of exposition

we begin by first presenting a linearized model where the marginal product of each K dimension

of the climate is held fixed throughout C. We then demonstrate how allowing for curvature in the

value function alters these results.

We estimate the marginal product of climate by constructing an empirical analog to Equation 27,

where the dimensions of climate include both the daily temperature and precipitation distributions

for both the current and past year, although our main focus is on the e↵ect of current temperatures

since these other dimensions of the climate appear to have little e↵ect on the value function.

As mentioned above, we also account for within-county autocorrelation, unobserved heterogeneity

across counties, and nonlinear time trends. Specifically, using our panel of US counties, we estimate

Yit = ⇢Yi,t�1 + µi + ✓t +
HX

h=1

"
X

m

h
�mh(T̃m

it )
h + �mh(T̃m

i,t�1)
h
i#

+
X

g

h
⇣nP̃ g

it + ⌘nP̃ g
i,t�1

i
+ ✏it, (28)

22



where counties are indexed by i and years are indexed by t. Yit is a measure of output, which in

our main specification is log income per capita. µi is a set of county fixed e↵ects that account for

unobserved constant di↵erences between counties, such as geography. ✓t is a set of year fixed e↵ects

that flexibly account for common trends, such as technological innovations or trends in climate, and

year-specific shocks, such as abrupt changes in energy prices. The model is allowed to be nonlinear

in each dimension of the temperature climate up to the order H, to allow for curvature in the value

function, which is crucial for fully accounting for adaptation10. In our linearized model, we set

H = 1, which constrains the marginal e↵ect of a hot or wet day to remain constant throughout

the support of the weather data. We then re-estimate Equation 28 allowing for curvature in every

dimension of C by setting H = 3. This allows, for example, the marginal e↵ect of additional hot

days to become larger or smaller depending on whether a location already experiences a large

number of hot days.

T̃m
it is the number of days in county i and year t that have 24-hour average temperatures in

the mth temperature bin. Each interior temperature bin is 3�C wide. We define T̃m=1
it = the

number of days when Td < �15�C, T̃m=2
it = the number of days when Td 2 [�15,�12)�C, T̃m=3

it =

the number of days when Td 2 [�12,�9)�C, and so on. The top (m = 17) bin counts days with

Td � 30�C=86�F. The m = 11 bin for Td 2 [12, 15)�C = [53.6, 59)�F is the omitted category.11

The coe�cients �mh are the parameters of interest, as they characterize the marginal e↵ect on

Y of an additional day in the mth temperature bin, relative to a day with temperatures in the

omitted category. In the linear model where H = 1, these coe�cients are intuitive to interpret

directly as they are the marginal e↵ect of an additional day and the vector of coe�cient estimates

[�̂m=1, ...�̂m=16] is directly interpretable as the gradient vector for the value function, the marginal

product of climate
\dV (C)
dC . When the order of the model is increased to H = 3 in order to fully

account for adaptation, interpretation becomes more nuanced. The count of days in each mth

temperature bin is accounted for in the model with the polynomial

�m1T̃m
it + �m2(T̃m

it )
2 + �m3(T̃m

it )
3,

which allows for the marginal e↵ect of each additional day in the mth temperature bin to evolve

like the derivative of this polynomial with respect to the count of days in the mth bin:

�m1 + 2�m2T̃m
it + 3�m3(T̃m

it )
2.

For ease of interpretation, we display the full polynomial below, where the importance of non-

constant marginal e↵ects becomes clear. However, it is important to note that, unlike the case

where H = 1, the vector of coe�cients (which is now three times longer) cannot be directly

10We find that the role of precipitation is essentially zero, even in a linear model, so we do not present models that
account for curvature in the precipitation subspace of C.

11For display purposes, coe�cients on the two coldest temperature bins (Td < �15�C and Td 2 [�12,�9)�C)
are not shown in figures but are included in tables. Generally, e↵ects in these bins are highly uncertain and not
statistically di↵erent from zero because there are few observations at these extremely cold temperatures.
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interpreted as the gradient vector of the value function because the first-order Taylor expansion

used in Equation 27 is no longer exact.

P̃ g is defined similarly for daily precipitation across 12 bins. Each bin spans 40mm of daily

precipitation, with the bottom bin corresponding to no precipitation and the top bin corresponding

to precipitation > 400mm in a day. Because temperatures and precipitation are, on average, serially

correlated within a county, we include lagged values for all T̃m and P̃ g variables to capture any

possible direct e↵ects that weather in the prior year might have on current output. For example,

low rainfall in a prior year might reduce the quantity of groundwater available for irrigating crops

in the current year.

The variable ✏it is a disturbance term that we assume may be arbitrarily correlated between

counties within a state-by-year as well as within a given county over time. To account for this, we

estimate standard errors that are clustered in two dimensions (Cameron, Gelbach, and Miller, 2011):

within state-by-years and within counties. This approach accounts for both spatial correlation

across contemporary counties within each state and autocorrelation within each county.12

Finally, Yi,t�1 is a lagged dependent variable with serial correlation coe�cient ⇢. Including this

term in the specification is important because there is substantial serial correlation in outcomes at

the county level that is not accounted for by common trends. For example, the history of capital

investments within a county a↵ect production in subsequent years. It is known that one drawback

of dynamic panel models, such as Equation 28, is that they are inconsistent when lagged dependent

variables and fixed e↵ects are estimated simultaneously by OLS (Nickell, 1981). However, this

drawback is primarily a concern when panel lengths are short (e.g. 10 periods). We are not in this

hazardous context, as our panel has 43 periods. We estimate that the magnitude of our potential

bias is less than 5% of the magnitude of our point estimate, leaving us relatively unconcerned about

this potential bias as it is far smaller than our uncertainty due to sampling error.13 We opt to utilize

OLS because it conveys many advantages, allowing us to account for spatial autocorrelation and

avoid using weak or potentially invalid instruments. For completeness, we show estimates without

any lagged dependent variable and continue to obtain our main result.

The average marginal e↵ect of daily temperature in the mth bin (�mh) is identified by Equation

28 if the exact number of days in that bin, relative to other years in the same county, are orthogonal

to other potential confounders, conditional on all control variables. For example, the estimated

e↵ect of a 16�C day is identified by comparing a county to itself across years when the number of

16�C degree days was slightly di↵erent. Weather has systematic patterns in each location that are

absorbed by county fixed e↵ects. Random variations in those patterns give rise to small distortions

in the distribution of daily temperature across years that we exploit for inference. Our estimates

of each �mh are identified o↵ of these random disturbances at each point in the temperature

12See Fisher et al. (2012) for a discussion and analysis of this technique to account for spatial autocorrelation. See
Hsiang (2010) for a discussion of simultaneously accounting for spatial and temporal autocorrelation.

13Nickell (1981) derives that the bias scales like �(1+⇢)
(T�1) , where T is the number of periods. Based on our estimate

that ⇢̂ = 0.825 for log personal income per capita, �(1+⇢)
(T�1) is approximately 0.045 in our case.
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distribution within a location.14 We follow Deschênes and Greenstone (2007) and Schlenker and

Roberts (2009) in assuming that these detrended year-to-year random variations within each county

are uncorrelated with year-to-year variations in other important factors that a↵ect income but are

not caused by weather.

4.2 Data

We match weather and income data at the county level for the lower 48 states during the period

1969-2011. All income measures are inflation-adjusted to 2011 dollars and converted to per capita

terms. Summary statistics for key variables are presented in Table A1.

Weather data To measure daily maximum and minimum temperatures as well as precipitation,

we use daily surface data from the National Climatic Data Center (NCDC).15 We match weather

stations to counties using each station’s reported latitude and longitude. We omit observations

where the maximum or minimum temperature exceeds 60 degrees Celsius or is lower than -80

degrees Celsius, as these are likely errors. If there are multiple stations within a county, we average

their measures for each day. Our preferred measure of daily temperature is a simple average between

the maximum and minimum temperatures, which is the standard measure for average temperature

during a 24-hour period.16 As discussed in Au↵hammer et al. (2013), weather station data is often

incomplete, sometimes due to mechanical failures, political events, or financial constraints. We

drop county-by-year observations that do not have a complete set of daily weather observations.

This results in a reduced sample size, with coverage that is displayed in Appendix Figure A1.

Thus, our results represent the average e↵ect of temperature on income, conditional on whatever

circumstances allow counties to provide a complete record of daily weather within a single year.

Income data To measure income, we use Regional Economic Information System (REIS) data,

published by the Bureau of Economic Analysis (BEA). The BEA, in turn, uses a variety of sources

to construct these measures.17 The most inclusive income measure at the county level is total

personal income. It encompasses all sources, including all types of labor income; proprietors’

income; dividends, interest, and rent payments; and government transfer payments. A subset of

personal income, earnings, includes only wages and salaries, other labor income, and proprietors’

income. In turn, wages and salaries include tips, commissions, bonuses, and any “pay-in-kind”

provided by an employer. They are measured before any deductions are taken and are derived from

14The e↵ects of weather conditions over intervals longer than a day will be reflected in our estimates, but we do
not identify them separately. For example, the e↵ect of a heat wave with five 28�C days will be captured by the
coe�cient on the 27-30�C temperature bin, but we do not estimate a separate additional e↵ect (eg. a “heat-wave
e↵ect”) for this specific sequence of daily temperatures.

15Publicly available from ftp://ftp.ncdc.noaa.gov/pub/data/ghcn/daily/by_year/.
16The diurnal cycle in temperature approximately follows a sinusoid, so this standard measure is a good approxi-

mation for the true mean.
17For further details, see http://www.bea.gov/regional/pdf/lapi2010.pdf.
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reports filed by employers to comply with unemployment insurance (UI) laws.18 Total personal

income is reported on a place-of-residence basis, while wage and salary payments and other income

components are reported by place of work. The residence adjustment is made using US Census

estimates of worker commuting behavior. As a result, the components of personal income can

sometimes exceed total personal income.

Measures of farm income in REIS are derived from United States Department of Agriculture

(USDA) estimates, which are based on sample surveys, Agricultural Census data, and administra-

tive data.19 A distinction is made between gross farm income, which includes inventory sales, and

net farm income, which does not. However, additions to inventories are included in the net farm

income measure. Importantly, the net farm income measure we use also includes transfers such as

subsidies, crop insurance, and disaster payments. Our measure of gross farm income is cash receipts

from marketing crops.

5 The marginal product of temperature

5.1 Results for an a�ne value function with constant marginal products

We first present results that assume the value function V (C) is a flat hyperplane spanning the 16-

simplex C defining all possible contemporaneous temperature distributions, i.e. H = 1 in Equation

28. This model provides a good first-order approximation of the marginal product of climate for

most county-years in our sample.

Main result Panel A of Figure 4 presents the first order approximation for the marginal product

of daily temperature with respect to total annual income per capita in US counties. Specifically, the

figure displays the vector of ordered coe�cient estimates for contemporaneous daily temperatures

that is equal to the gradient vector of the value function V (C)

[�̂m=1, ...�̂m=16] =
\dV (C)

dC

which is precisely the marginal product of climate. As noted in many previous studies20, the

display of this high-dimensional vector in this way is convenient because it can be interpreted as a

“dose-response” function where values indicate the marginal e↵ect on annual income of exchanging

a single day from the omitted category with a day of the indicated temperature. However, this

18There are only five industries that are not fully subject to these laws: agriculture, railroads, the military, private
education, and religious organizations. Other data are used to infer wages and salaries in the uncovered portions of
these industries. Typically, an employer will report wage and salary payments by county and by industry, resulting in
very accurate county-level estimates. In a few cases, an employer will file a UI report for the whole state, rather than
by county. In that case, the state total will be allocated to counties based on the industry’s share in each county.

19For some states, estimates at the state level are allocated to counties using weights derived from the Census
of Agriculture. For some commodities, Agricultural Census data are interpolated to create intercensal estimates.
Because these procedures may mask some impacts of weather shocks, our estimates for the e↵ects of temperature on
farm income should be viewed as a lower bound.

20We believe Deschênes and Greenstone (2011) were the first to point this out.
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Figure 4: (A) The e↵ect of distorting the temperature distribution by shifting a single daily average
temperature on log annual total personal income per capita⇥100 (i.e. percentage points) in US
counties for 1969-2011. For reference, an average day contributes 1

365 = 0.27% of annual income.
Shaded area denotes 95% confidence intervals. (B) The e↵ect of daily average temperatures in the
prior year on income per capita. (C) Same as Panel A, but for total earnings per capita. (D) Same
as Panel B, but for total earnings per capita. Panels A and B are estimated simultaneously in a
single regression model. The same is true for Panels C and D.
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convenient interpretation is no longer possible in the higher-order model (H = 3) that fully accounts

for adaptation, presented in the next section.

We find that log personal income per capita increases slightly as temperatures rise from cool to

moderate, then declines approximately linearly at temperatures above 15�C (59�F). Relative to a

day with an average temperature of 15�C (59�F), a day at 29�C (84.2�F) lowers annual income by

roughly 0.065% (�0.00065 log points). This e↵ect is highly statistically significant.21

If output were uniform across 365 days in a year, then each day would contribute 1
365 = 0.27%

of annual income. Thus a decline of 0.065% of annual income from a single day at 29�C (84.2�F)

indicates that day is roughly 23.6% less productive than an average day. Linearizing the e↵ect of

temperature relative to the approximate zero e↵ect at 15�C (59�F), this is a marginal change in

daily productivity of �23.6%
14�C = �1.68%/�C = �0.93%/�F.

Temporal displacement Panel B of Figure 4 displays the estimated e↵ect of daily tempera-

tures on annual income per capita the following year. We estimate these e↵ects jointly with the

contemporaneous e↵ect shown in panel A, specified as �m in Equation 28. Except for the single

coe�cient in the hottest temperature bin (> 30�C), we do not observe any statistically significant

e↵ect of daily temperatures on income the following year. It is possible that the significant coe�-

cient in the top temperature bin is spurious; because we are testing sixteen coe�cients, it would

not be unlikely for one to be spuriously significant. However, it is also possible that this e↵ect is

meaningful and indicates that some of the income lost from the hottest days is displaced into the

following year. The estimated magnitude of this positive lagged e↵ect is half the magnitude of the

negative contemporaneous e↵ects, indicating that roughly half of the income loss from the hottest

days might be made up in the following year.22 There is no statistically significant evidence for

temporal displacement of income for days below 30�C.

Earnings Earnings make up the majority of personal income. In panels C-D of Figure 4 we

display the e↵ect of daily temperature in current and prior years, respectively, on earnings per

capita. Qualitatively, the structure of the earnings response is very similar to the income response,

although the magnitudes of the point estimates are larger. Relative to a day at 15�C (59�F), a day

at 29�C (84.2�F) lowers annual earnings by roughly 0.11%. Again assuming uniform output across

365 days, this estimate suggests that the hotter day results in roughly 40.0% lower daily earnings.

This represents a linear decline of daily earnings at a rate of roughly 2.9%/�C above 15�C. Similar

to total income, we see no systematic response of earnings to daily temperatures in the prior year,

except possibly to very hot days with average temperatures exceeding 30�C.

21We do not find any significant response of personal income or other income components to rainfall. Estimates
are available upon request.

22In later simulations, we include temperature lags to ensure we do not mis-estimate the e↵ect of high temperature
days.
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Figure 5: The inter-temporal dynamics of the e↵ect daily temperatures on income, earnings, and
farm income. All e↵ects are scaled to the estimated e↵ect of treatment in lag year zero (100%).
Black lines are the e↵ect of any disturbance to county income (temperature or otherwise) in the
AR1 benchmark model for the decade following the shock—identification of this autoregressive
structure is almost entirely dependent on non-temperature idiosyncratic income shocks. Colored
lines are the directly estimated lagged e↵ects of temperature e↵ects in the top four bins that occur
in the initial year, using a model that omits the AR1 structure. The inter-temporal structure of
temperature impulse-responses is extremely similar to the AR1 characteristic structure exhibited
in response to non-temperature impulses.
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Intertemporal dynamics A key question in studies of climate’s influence on production is

whether temperature fluctuations a↵ect income levels or growth rates, as the latter accumulate and

can cause much larger income reductions in the long run. For example, early work by Nordhaus

and Yang (1996) assumed that higher temperatures a↵ected the instantaneous levels of production

only, while country-scale empirical analysis by Hsiang (2010), Dell, Jones, and Olken (2012) and

Burke, Hsiang, and Miguel (2015) find evidence that growth rates of national incomes are influenced

by temperature changes, generating level e↵ects that persist after temperatures return to earlier

levels. For an economy in general equilibrium that adjusts to changes in climate (recall Figure 1),

temporary changes in temperature will have some persistence if the allocations b⇤ in one period

a↵ect the endowment and allocations in subsequent periods. This could occur, for example, if the

evolution of durable non-climatic state variables, such as the rate of investment in the capital stock,

is influenced by the climate, thereby transmitting information about historical climate conditions

into future periods (Burke, Hsiang, and Miguel, 2015). Furthermore, accounting for these inter-

temporal e↵ects is important when trying to fully account for adaptation in the presence of credit

markets, as some of the costs of reallocating b⇤ might be deferred to future periods.

In our setting, where we consider a large number of the “small” macro-economies of counties—

which are known to have di↵erent dynamic properties than national economies—we observe that

annual income in US counties is serially correlated, so a disturbance to income in county i in

year t will have an indirect e↵ect on income for i in year t + 1. For average personal income in

our lagged-dependent variable model (LDV, Equation 28), we estimate that ⇢̂ = 0.825, implying

that county income (unlike national income) does not have a unit-root, but instead that Yi,t+1 =

0.825Yit +Xit� + ✏it. Thus, an income loss of $1 in year t will result in an income loss of $0.825

in year t + 1, $0.68 in year t + 2 and so on, relative to a counterfactual income trajectory where

no loss was su↵ered in year t. Importantly, however, this pattern of auto-correlation is primarily

identified o↵ of variations in the idiosyncratic disturbance term ✏ for prior periods—not from

changes in county temperature in prior periods—as most of the income variation is not driven by

temperature. Therefore, it is important to check whether temperature-induced changes in income

exhibit similar dynamics. It is possible that endogenous adjustments to state-variables made in

response to temperature are more or less persistent than adjustments made in response to other

idiosyncratic income changes.23 To investigate this, we estimate a variant of Equation 28 where

we replace the lagged dependent variable term (⇢Yi,t�1) with ten annual lags of each temperature

and precipitation bin. If current temperatures a↵ect future income similar to other types of income

disturbances, than the structure of these lags should be similar to the negative-exponential structure

of persistence indicated by ⇢̂, when the latter is no longer captured by the model. To implement

this comparison, we examine the contemporaneous and lagged coe�cients on key temperature bins

to the analogous e↵ect on future periods that we be captured by successive multiplication of the

autoregressive coe�cient.

The results of this exercise for log income per capita, log earnings per capita, and farm income

23We thank James Stock for this suggestion.
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are shown in Figure 5. To ensure comparability, all contemporaneous e↵ects of temperature are

normalized to 100 and subsequent lags can be interpreted as a percent of the contemporaneous

e↵ect. The thick black line corresponds to the repeated application of the estimated autoregressive

coe�cient to the e↵ects of temperature in our benchmark LDV model, and is smooth by construc-

tion. The blue, yellow, orange, and red lines correspond to the 21 � 24�C, 24 � 27�C, 27 � 30�C,

and > 30�C temperature bins, respectively. Because 252 additional parameters are needed to

characterize persistence (9 additional lags for 16 temperature bins and 12 precipitation bins), the

unrestricted lagged coe�cients on temperature bins are much noisier than the estimates from the

LDV model. Nonetheless, they clearly decline over time with an average structure that resembles

the negative exponential decay. Temperature-driven income responses appear to be persistent.

For total income and earnings, the delayed e↵ects of the hottest three bins appear to decay more

rapidly than in the LDV model, although this di↵erence is mostly explained by the small delayed

positive response from hot lagged temperatures in the LDV model (recall Figure 4B and D). For

farm income, the initial persistence of temperature-driven income changes tend to be substantially

lower than in the LDV model, but the ratios for lags larger than three years are very similar to

the autoregressive term (and close to zero). It is possible that the relatively faster recovery of farm

income is due to the particular ways in which the PPF in agriculture recovers from temperature

changes, perhaps similar to the original intuition of Nordhaus and Yang (1996), although some

of this recovery is likely due to crop insurance indemnities paid out by the federal government

following hot temperatures (see the Online Appendix).

The finding that high-temperature-driven income losses exhibit persistence, although perhaps

less so than other idiosyncratic disturbances, has two important implications. First, changes in

the current temperature distribution of a county change the income trajectory of that county in

subsequent periods, even if the temperature distribution returns to initial values in subsequent

periods, indicating that some of the adaptive adjustments of b⇤ are in durable state-variables that

themselves alter the evolution of the economy. This result thus provides county-level support for

prior macro-economic findings that climatic conditions alter growth grates. Second, evidence of

persistence indicates that the total NPV cost of a small change in the temperature distribution

is larger than the contemporaneous marginal product would suggest. Using a 3% discount rate

to integrate the transient evolution of the economy, a change in total income due a shift in the

temperature distribution produces an NPV of income changes that is 5.0 times as large as the

magnitudes displayed in Figure 4A.24 Below, we do not present this NPV and instead focus on the

24The discounted sum of these income losses between the time of the temperature event and 1 represents the net
present value (NPV) of lost income attributable to the temperature event. By computing the NPV of the di↵erence
in county i’s income (�Y

m
is ) at each moment s that was attributable to the temperature event T̃m

it = 1 at time t, we
can estimate the full net present value of a day with T̃

m
it = 1. Using a discount factor �, this is

NPV (total lost income) =
1X

s=t

�

(s�t)�Y

m
is ⇡

1X

s=t

�

(s�t)
⇢̂

(s�t)
�̂

m =
1

1� ⇢̂�

�̂

m
.

Thus, the NPV of the altered income trajectory is a linear scaling of coe�cients by 1
1�⇢̂� . Using a discount factor

� = 0.97 (implying an annual discount rate of 3%) and ⇢̂ = 0.825, we estimate this scaling factor to be 5.01. In NPV
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Figure 6: The stationary marginal product of climate over time. The gradient of the value function
for the temperature distribution (as in 4A) using decade-long subsamples of the data.

contemporaneous marginal product of climate, although we do account for this transient response

in economic projections under climate change.

Stationarity of the relationship over time We consider whether the marginal product of

climate has changed appreciably over the time period in our sample. Some economic consequences

of climatic conditions have surely changed over the period 1970-2010. For example, the spread of

residential air conditioning appears to be responsible for reducing heat-related mortality during the

last half-century (Barreca et al., 2013). Meanwhile, other technology, such as the heat-tolerance

of maize, has remained essentially stationary over the same period (Roberts and Schlenker, 2011).

Importantly, prior analyses that document evolving sensitivity of specific impacts over time do

not account for the total net cost of those adaptations which, presumably, are rising over time

as populations increasingly exploit new technologies. Because the marginal costs and gains from

additional adaptation must equalize at b⇤ at any moment in time, these previously unaccounted for

costs must be similar in magnitude (on the margin) to gains from adaptation. Because our estimate

of the gradient in the value function captures all market costs and benefits25, we capture these

adaptation costs, which, as mentioned before, are simply opportunity costs due to re-optimization

terms, this implies that a warm day at 22.2�C (72�F) costs 5.01⇥ � 0.000294 = �0.00147 log points of annual per
capita income (relative to a 13�C (55.4�F) day) because, in addition to altering contemporaneous income, it alters a
county’s future income trajectory. A hot day exceeding 30�C (86�F) is estimated to cost 5.01⇥�0.000757 = �0.00379
log points of annual per capita income in NPV terms. Recalling that a randomly selected day is responsible for
1

365 = 0.00274 log points of annual income, the NPV of the total cost of a warm or hot day is roughly 0.5 and 1.4
days’ worth of average income, respectively.

25We note that the analysis by Barreca et al. (2013) focuses on human mortality, the value of which is unlikely to
be fully captured by the market.
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of b⇤. In addition, many aspects of the US economy outside of temperature-related technologies

have evolved during 1969-2011. Thus, taking into consideration both the previously unaccounted-

for cost of adaptation as well as secular changes in the economy, it is not clear ex ante how the

marginal product of climate should evolve over time.

To examine how the marginal product of climate has evolved, we re-estimate the response

of income to temperature for each decade separately, shown in Figure 6. These estimates are

noisier because each relies on a much smaller sample, but they do not di↵er substantively from

our pooled estimate or from one another. In particular, the marginal e↵ect of warm and hot days

is essentially constant over time, indicating a remarkable stability of the gradient of the value

function V (C) in the C-subspace governing those temperatures. This indicates that despite the

possibly numerous adaptations to temperature that have occurred during the last half-century in

the US—adaptations which may have substantially increased welfare—they did not fundamentally

alter the marginal product of climate. High temperature days remain costly even during the first

decade of the twenty-first century.

Seasonal consistency Our estimates reflect the average marginal product of climate given the

current distribution of daily temperatures within the year. We examine whether these marginal

products vary substantially across seasons by estimating a version of Equation 28 where separate

contributions to annual income for temperature distributions in each quarter of the year are es-

timated simultaneously, by interacting temperature bins with dummy variables for each quarter

(Jan-Mar, Apr-Jun, Jul-Sep, Oct-Dec). The results are shown in Figure 7A-D. The marginal ef-

fects of warm and hot days in the second and third quarters (roughly corresponding to spring and

summer) are extremely similar to each other and to the pooled estimates, which is sensible because

the bulk of variation in those dimensions of C occur during those quarters. A similar pattern hods

for cold days in the first and fourth quarters. However, we lack precision to make meaningful

comparisons between cold days in the second and third quarters or between hot days in the first

and fourth quarters, because such events are uncommon. Overall, these results suggest that the

marginal product of climate, for those regions of C in which su�cient data allows estimation, is

quite consistent across seasons in our setting.

Regional heterogeneity The marginal product of climate is the local gradient of the value

function V (C), measured in the vicinity of some position C 2 C. Thus, if there is any curvature

in value function (recall Figure 2), the local gradient vector—which must point in the direction of

steepest ascent at all points along the surface V (C)—will rotate as C is traversed. Stated another

way, the local slope of the value function will change based on the average climate of a location.

Such curvature could result from endogenous adaptations to di↵erent climates, if populations select

di↵erent b⇤(C) in di↵erent climates (e.g. investing in air conditioners). But it could also result

from features of the income-generating process that are beyond the control of agents, as the PPF

may itself respond nonlinearly to temperature. For whatever reason, if there is such curvature,

then the marginal product of climate will be di↵erent for di↵erent regions of the country, because
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Figure 7: The marginal e↵ect of climate estimated for sub-periods within each year and sub-
regions of the country, compared to the pooled estimate (dashed, identical to Figure 4A). (A)-(D)
E↵ects of temperatures experienced in each quarter of the year (estimated simultaneously), where
annual income is allowed to respond to changes in the temperature distribution for all four quarters
separately. Large confidence intervals generally indicate regions of the temperature distribution
containing very few observations.(E)-(H) E↵ects of annual temperature distributions by region
(estimated simultaneously).

counties in di↵erent regions will, on average, be located in di↵erent regions of C. We provide prima

facie evidence of curvature in V (C) by examining the marginal product of climate for four major

regions of the country, the West, Midwest, South, and Northeast (as defined by the US Census).

In Figure 7 we examine regional heterogeneity in the data and find that the overall structure of

the response to daily temperature distributions is generally similar across the country, suggesting

that curvature in the value function due to adaptation or the PPF is not dramatic for most tem-

peratures. No regional subsample exhibits a response that is statistically di↵erent from the pooled

estimate at any temperature, although the structure of point estimates at high temperatures pro-

vides suggestive evidence that the influence of high temperatures is not identical everywhere. In

particular, high temperatures are most costly in the Midwest and least costly in the South. The high

marginal cost of hot temperatures in the Midwest is likely due to changes in the PPF associated with

the climate in the neighborhood of B where Midwestern economies tend to be located—with many

resources allocated to agricultural production. In the South, low marginal costs of hot temperatures
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Figure 8: Comparison in the estimated e↵ect of hot temperature days using an approach that
assumes constant marginal e↵ects of additional days (left) and an approach that accounts for
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primarily allows for some concavity in the response to moderate temperature days (15-21�C ) and
convexity in the response to very hot days (>30�C ). Responses of warm temperatures are well
approximated by the constant marginal e↵ects model.

appear related to adaptive allocations b⇤ due to the hot climate of the region. Later, we investigate

possible reasons for these di↵erences. But before investigating mechanisms directly, we illustrate

the importance of curvature in the value function to net out e↵ects of adaptive adjustments.

5.2 Results for a value function with curvature

We next present results that do not assume the value function V (C) is flat. Rather, we allow

the envelope of equilibrium allocations b⇤ on the PPF to trace out a curved surface spanning

the 16-simplex C (analogous to Figure 2, but in 17 dimensions rather than three). In contrast to

assuming the value function is linear, this approach allows the marginal e↵ect of distorting to the

temperature distribution by C0 to have e↵ects that depend on the initial position of a county’s

economy C0 within C. Such an adjustment becomes important if, for example, the marginal e↵ect

of additional hot days declines as a population experiences higher numbers of hot days, perhaps

because some adaptive allocations (such as air-conditioning) become increasing beneficial when

more hot days are experienced. If this were the case, and hot days were still costly on average, then

the value function would become convex with a less extreme gradient as economies moved toward

the corner of the simplex C where hot days dominate the climate. We implement this approach by
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setting H = 3 in Equation 28, such that income becomes cubic in the count of days in each bin.

This allows the shape of the value function to be quite flexible, since it may curve di↵erently in

each dimension of the temperature distribution. Because this approach accounts for all changes in

marginal e↵ects due to adaptation, we denote it the “full adaptation model,” in contrast to the

“constant marginal e↵ect” model.

Figure 8 presents the results of the full adaptation model, contrasted with the constant marginal

e↵ects model, for all temperature bins above 15�C . Because the gradient vector of the value

function is no longer constant, it cannot be plotted as a “response function,” as in earlier sections.

Instead, we display the total contribution of days within each temperature bin to annual income.

The derivatives of these functions are the marginal e↵ect of an additional day at that temperature,

relative to the omitted 12-15�C bin. The right-most panel displays probability density functions over

the count of days in each temperature bin within our sample, with colors and labels corresponding

to the functions in the center and left panels.

In the constant marginal e↵ects model (left-most panel of Figure 8), we see that annual income

declines linearly in the count of days within each warm or hot temperature bin, with slopes that

reflect the constant marginal e↵ects in Figure 4A. In the full adaptation model (middle panel of

Figure 8) we see that that marginal e↵ects of modest but warm temperatures (15-18�C and 18-21�C

) are less negative for small counts of days, becoming more negative as counts of days increase,

while the marginal e↵ect of very hot temperatures (27-30�C and > 30�C ) are most negative for

small counts of days, with marginal e↵ects that increase with the count of days. For the “middle-

hot” temperature bins (21-24�C and 24-27�C ) the marginal e↵ects of additional days appear to

be essentially constant and identical to the constant marginal e↵ects model. The concavity of the

15-18�C bin, with its peak between 22 and 23 days per year, indicates that most counties actually

su↵er very small losses to these temperatures, as the distribution of daily counts are clustered and

centered only slightly right of this peak (right panel).

For the hot 27-30�C bin, the convexity is modest, with the first day in this bin reducing annual

incomes -0.096 log points, the tenth day reducing income by -0.081 log points, and the thirtieth day

reducing income by -0.054 log points. Since almost all county-years experience fewer than ten days

in this category, this response remains generally well approximated by a linear function. Only for

the very hottest bin, where temperatures exceed 30�C , does curvature in the value function have

such a large e↵ect that the a�ne approximation is poor. Having one very hot day in the annual

distribution of daily temperatures lowers annual incomes by -0.181 log points (recall that a single

day contributes roughly 0.274 log points on average) while the tenth hot day a year lowers incomes

only -0.125 log points and the thirtieth lowers incomes -0.039 log points. The value function is

estimated to have an inflection point near 50 days per year above 30�C , although estimates in that

region are extremely noisy since there is essentially no probability mass in that region: over 70%

of county-years in our sample have only one or zero days in this bin, with only very hot and arid

regions of the country, such as the deserts, exhibiting large number of days with such high average

temperatures. Nonetheless, the flattening out of the value function for high counts of very hot
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days clearly indicates that populations with many hot days make large adaptive allocations of b⇤

such that hot days have limited marginal impact, although these reallocations appear su�ciently

substantive that they have large average impacts on income.

To our knowledge, this estimate of the non-a�ne 17-dimensional value function represents the

first characterization of the market value generated by the temperature distribution, accounting for

all benefits and costs of adaptive adjustments captured by the market. Importantly, however, this

result reveals that for most regions in C currently populated by modern US counties, the constant

marginal e↵ects model is a strikingly good approximation of the curved surface described by the

complete adaptation model. This insight, which we could not have assumed ex ante, is powerful

because it allows us to more confidently exploit the constant marginal e↵ects model when exploring

other properties of the data in our sample. As will be seen below, focusing on results that assume

constant marginal e↵ects substantially reduces the complexity of displaying and understanding

properties of the value function, a simplification that becomes important as we explore additional

heterogeneity in the data and try to understand the mechanisms underlying this result.

Importantly, however, the adaptive responses captured by curvature in the value function be-

come increasingly relevant as populations move into regions of C that contain large numbers of

hot and very hot days. If marginal e↵ects are assumed to be constant, than our model estimates

will poorly approximate the true value function and we will mis-estimate the total cost of warming

a climate. As we demonstrate below, this issue becomes especially important when we project

income changes into a future climate change scenario using our estimated value function. Thus,

when we consider the overall value of current and future climates, we account for curvature along

every dimension of the value function surface.

Erroneous “folk theorem” on sign of forecast bias We make one final practical point that is

revealed by our estimate for the fully nonlinear value function which we think is critical and applies

widely throughout this empirical literature. Our nonlinear results in Figure 8 clearly indicate that

populations adapt to high temperatures and that assuming constant marginal e↵ects for these

high temperatures will generate incorrect predictions about the e↵ects of warming a population’s

climate. But an incorrect “folk theorem” salient in the climate literature states that projections

using empirical estimates that assume constant marginal e↵ects of temperature will necessarily

generate an “upper bound” for the damage from warming, because adaptations will cause the

actual marginal damages from warming to become nearer zero. We carefully demonstrate that

this reasoning is incomplete below. The intuition for why is seen most clearly in the panels of

Figure 8. Focusing on the response to very hot (> 30�C ) days for clarity, we see that the constant

marginal e↵ects model does over-estimate the marginal damage from additional warming for highly

adapted populations, consistent with the “folk theorem.” However, this pooled model also under-

estimates the marginal damage of additional warming for cooler and poorly adapted populations

that presently have only zero or one day in the hottest temperature bin—i.e. the slope of the fully

adapted response is actually steeper at zero days above 30�C (middle panel) than the constant
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marginal e↵ects estimate (left panel). Because the constant marginal e↵ects model recovers the

pooled average treatment e↵ect in the sample, many cooler locations—which in the US represent

the vast bulk of counties—are assigned marginal e↵ects that are too small in magnitude because

they have been averaged with the marginal e↵ects from a smaller number of hot and highly adapted

locations. Thus, as counties with only zero or one very hot day (right panel) warm up, they initially

descend down the fully adapted curve much more rapidly than they descend down the constant

marginal e↵ects line. Because in the US most economic activity at present occurs in these relatively

cool counties, fully accounting for adaptation causes the projected losses from warming to increase

relative to projections that use a constant marginal e↵ects model, a fact that we demonstrate below.

6 Mechanisms

We attempt to understand the mechanisms that underly the nonlinear and multidimensional re-

sponse of total income to the distribution of temperatures. Much research on the economic impact

of temperature in the US has focused on farming, since the negative impact of adverse weather on

crop yields is acute (Mendelsohn, Nordhaus, and Shaw, 1994; Schlenker, Hanemann, and Fisher,

2005; Deschênes and Greenstone, 2007; Schlenker and Roberts, 2009; Welch et al., 2010; Fisher

et al., 2012; Burke and Emerick, 2016). However, recent work has indicated that non-farm income

sources outside of the US may also be a↵ected by high temperatures (Jones and Olken, 2010; Hsiang,

2010; Dell, Jones, and Olken, 2012; Burke, Hsiang, and Miguel, 2015). These authors suggest that

this non-farm e↵ect may be driven by the well-documented productivity decreases of workers who

are exposed to thermal stress (Mackworth, 1946; Froom et al., 1993; Seppanen, Fisk, and Lei, 2006).

Furthermore, changes in aggregate demand could theoretically respond to temperatures, shifting

equilibrium production and altering prices.

In the US, high daily temperatures are known to reduce yields of major crops (Schlenker and

Roberts, 2009) as well as to reduce labor supplied among workers exposed to outdoor temperatures,

which includes manufacturing (Gra↵ Zivin and Neidell, 2014). These studies demonstrate that the

productivity of crops and the quantity of labor supplied depend on daily temperature and suggest

mechanisms that might explain our main finding. In our general equilibrium framework, these

changes can be thought of as altering the structure of the PPF. However, without observing price

changes, these studies alone are not conclusive. If local or regional prices change with temperature,

then changes in production might not translate into changes in revenue. To consider whether these

mechanisms might be contributing to the e↵ect we document above, we directly examine how the

agricultural and non-agricultural components of income respond to temperature. We then compare

both the structure and magnitude of these responses to earlier results by Schlenker and Roberts

(2009) and Gra↵ Zivin and Neidell (2014). To facilitate comparison, we reproduce the main results

of both studies in Figures 9A and 9D, respectively.

It is worth noting here that Gra↵ Zivin and Neidell (2014) obtain data on the quantity of

labor supplied but cannot observe labor e↵ort, i.e. the productivity of labor supplied. Lab studies
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indicate that the labor productivity response to temperature is qualitatively similar in structure

to the response reported in Gra↵ Zivin and Neidell (2014) (Mackworth, 1946; Froom et al., 1993;

Seppanen, Fisk, and Lei, 2006). Thus, the total labor e↵ects on income may be larger than the

estimates in Gra↵ Zivin and Neidell (2014) suggest, but the overall structure of the response should

be similar.

6.1 Agriculture

To examine how crop losses contribute to our main result, we repeat our analysis, replacing the

dependent variable with log revenue from crop sales per capita. In panel B of Figure 9, we plot

the e↵ect of hot days on annual income from crops and observe steep declines when daily average

temperatures rise above 27�C. This structure is very similar to the yield response obtained by

Schlenker and Roberts (2009) (Figure 9A). The slightly higher breakpoint of 29-32�C in that study

and its steeper decline is likely because Schlenker and Roberts (2009) use hourly temperature,

whereas our analysis uses daily averages. Because days with 24-hour average temperatures of

27�C are likely to have some hours above 29�C, we would expect to observe declines on days with

average temperatures of 27�C in our analysis, even if crop yields do not deteriorate until the hourly

temperature reaches 29�C. Thus, we interpret our results in Figure 9B as consistent with the crop

yield response in Figure 9A reported by Schlenker and Roberts (2009). Our results suggest that

higher crop prices do not dramatically o↵set yield losses caused by high temperature days; thus,

reductions in yields translate into reductions in income.

Quantitatively, the decline in crop income explains a significant share (but not all) of our main

result for total income: a 30�C day reduces annual crop income by 0.523% but lowers total income by

only 0.076%. This large decline in crop income is broadly consistent with the magnitude of changes

reported by Schlenker and Roberts (2009), although a direct comparison is di�cult because of the

di↵erence in measurement described above. The outcome in Schlenker and Roberts (2009) is the

yield e↵ect of 24 hours at each exact temperature. Because 24 hours at 35�C reduces annual yields

by roughly 0.03 log points (an approximate average across the three crops in Schlenker and Roberts

(2009)), one hour at 35�C should reduce annual yields by roughly 0.03
24 = 0.00125 log points. A

day with average temperature of 29�C might have roughly one hour at this higher temperature

during the day’s peak temperature, and we estimate that such a day would cause crop income to

decline by 0.00187 log points. Thus, while we cannot make a perfect comparison between these two

sets of results, this back-of-the-envelope calculation does seem consistent with the hypothesis that

high-temperature yield declines cause a decline in income that is not o↵set by rising prices.

In panel C of Figure 9, we examine how net farm income per capita (in levels) responds to

daily temperature and find that it declines by $21.07 for each day above 30�C .26 The structure

of the response of total farm income di↵ers somewhat from that of crop income: we observe lower

farm incomes starting at temperatures around 20�C . We lack the data to determine precisely

26Net farm income is not amendable to a log model because many observations in the sample are negative. So we
estimate an analogous model but with the outcome specified in levels.
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Figure 9: (A) Log annual crop yields vs. temperature during growing season for three major crops,
reproduced from Schlenker and Roberts (2009). Yield e↵ects are depicted as the e↵ect of 24 hours
at exact temperatures. (B) The e↵ect of daily average temperature on log income from crops per
capita, from this study. (C) The e↵ect of daily average temperature on farm income per capita (in
levels), from this study. (D) Change in minutes of labor supplied per day for high-risk workers vs
daily maximum temperature, reproduced from Gra↵ Zivin and Neidell (2014). High-risk workers
are defined as workers who are likely exposed to outdoor temperatures (includes manufacturing).
(E) The e↵ect of daily average temperature on non-farm income per capita, from this study. (F)
The e↵ect of daily average temperature on non-farm income per capita interacted with county-level
measures of manufacturing income share (U.S. Census Bureau, 1969-2011).
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the mechanism that could mediate e↵ects at these lower temperatures. However, the observed

structure is broadly consistent with the labor productivity response discussed below. Alternatively,

farmers may be increasing expenditure on inputs to combat the negative impacts of temperatures

on yields. Finally, it is also possible that other productive factors respond negatively to these lower

temperatures.27

6.2 Non-farm income and manufacturing

We examine whether non-agricultural income might be playing a role by repeating our analysis on

log non-farm income per capita, shown in Figure 9E. We see that non-farm income is relatively

flat (albeit noisy) at low temperatures and then begins to decline systematically at temperatures

above 15�C, the same breakpoint observed for total income (Figure 4). However, the magnitude

of the e↵ect on non-farm income is smaller, with temperatures at 25�C lowering annual non-farm

incomes by only 0.021% relative to 15�C whereas the analogous loss of annual total income is

0.059%. Both of these features of the response, the smaller magnitude and the lower breakpoint

temperature, are broadly consistent with the response of labor supply documented by Gra↵ Zivin

and Neidell (2014) (Figure 9D) and labor productivity responses from lab experiments (Seppanen,

Fisk, and Lei (2006)). As with the crop yield response, the breakpoint documented by Gra↵ Zivin

and Neidell (2014) (⇠25�C) is a higher temperature than what we observe in non-farm income

(15�C). This di↵erence is likely due in part to Gra↵ Zivin and Neidell (2014) using daily maximum

temperature rather than daily average temperature as we do—although the 10�C di↵erence might

be too large relative to normal diurnal temperature variations to be fully explained by this fact

alone.28 It is possible that changes in the quality of labor, i.e. the intensive margin, are responsible

for this lower turning point: lab studies summarized in Seppanen, Fisk, and Lei (2006) indicate

that productivity begins to decline at slightly lower temperatures (⇠21-22�C). We observe that the

point estimate for non-farm income increases in the hottest temperature bin. However, this point

estimate is noisy and is neither statistically di↵erent from zero nor from the negative estimate at

the adjacent temperature bin.

Quantitatively, our estimated e↵ect of temperature on non-farm income is roughly four times

larger than what one might expect based only on previous labor supply results, which is consistent

with the notion that unmeasured labor productivity e↵ects are comparable or larger in magnitude

to documented labor supply e↵ects. For a day with an average temperature of 25�C, annual

non-farm income is estimated to fall by 0.000213 log points, which corresponds to a loss of 7.8%

of an average day’s non-farm output (0.0002131/365 = 0.078) relative to the optimum temperature.

Maximum temperatures on such a day might reach low 30’s or even 35�C. Based on results reported

by Gra↵ Zivin and Neidell (2014), daily maximum temperatures in this range might result in a

27We observe cash receipts from livestock sales and find that they are not significantly a↵ected by temperature.
Key, Sneeringer, and Marquardt (2014) find that, while dairy production is negatively correlated with local average
temperatures, there is no relationship between temperature deviations and dairy production.

28The average di↵erence between the daily average and maximum temperatures in our sample is about 6.5�C. A
di↵erence of 10�C is slightly above the 90th percentile in that distribution.
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roughly 30-minute drop in labor supply, or 6.5% of the average 7.67 hour workday among workers

who spending a significant amount of time working outdoors. Because these thermally-vulnerable

workers — termed “high risk” in Gra↵ Zivin and Neidell (2014) — constitute 28% of the national

workforce (Houser et al. (2015)), a randomly selected worker would on average supply 1.8% less

work on this hot day, which is roughly one fourth of the 7.8% loss of non-farm income that we

document.

Finally, we examine how the marginal e↵ect of temperature on non-farm income evolves with

changes in a county’s manufacturing share. Specifically, we use County Business Patterns (U.S.

Census Bureau, 1969-2011) to calculate the ratio of manufacturing payroll to total payroll (in

2011 dollars) over the time period 1969–2011. We then add an interaction term between each

temperature bin and manufacturing share to our baseline specification in Equation 28 to identify

a component of temperature-related income variation that projects systematically onto the spatial

distribution of manufacturing. The results, shown in Figure 9F, indicate an inverted-U shaped

relationship between manufacturing income and daily temperature that peaks around 9-12�C and

declines at warmer temperatures, although this response is also somewhat noisy.

6.3 Evidence of specific substitutes for climate in production

Another strategy for understanding what mechanisms underly the marginal product of tempera-

ture is to examine how non-climatic allocation decisions embodied by b⇤ influence the observed

marginal product. If populations adapt to certain temperature distributions by choosing one allo-

cation and then adjust that allocation to compensate for a di↵erent temperature distribution while

maximizing production, that indicates some factors in b are e↵ective but costly substitutes29 for

certain dimensions of C. Optimizing populations will essentially substitute human-made capital

for “natural capital” (Solow, 1991). Here, natural capital can be conceptualized as the temperature

distribution, with an implicit price equivalent to its marginal product. Next, we look for empirical

evidence of such substitution by examining how the marginal product of temperature changes based

on overall allocation of specific factors thought to be important for adaptation to temperature. In

the graphical solution shown in Figure 2, this exercise can be thought of as examining the gradient

of the value function when the sample of data is restricted to specific cross-sections b 2 [b1, b2] in

the B-subspace.
Specifically, we consider the e↵ectiveness of two potential substitutes to climate in the pro-

duction process: air conditioning and urbanization. The potential of the former to substitute for

climate in certain production processes is fairly obvious. Urbanization is a more complex phe-

nomenon that is surely not driven purely or even primarily by the desire to adapt to climate.

Nonetheless, urbanization is thought to alter the e↵ects of climate on the production process by

altering the organization, density, and composition of economic activity in such a manner that it

becomes less a↵ected by temperature (Kahn, 2013; Deschênes et al., 2011).

29Were these substitutions not costly we would likely observe similar allocations in all climates.
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Figure 10: Estimated e↵ect on income by 1980 residential air conditioning penetration, as reported
by the 1980 Census. First row shows the marginal product of temperature for total income (Panels
A-C, dashed lines correspond to the pooled estimate from Figure 4A); second row shows the e↵ect
of temperature on farm income (Panels D-F); third row shows e↵ect of temperature on nonfarm
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Air conditioning We classify the counties in our sample into three groups based on the degree

of residential air conditioning (AC) penetration reported in the 1980 Census: (1) counties with

penetration rates less than or equal to 60%, (2) counties with penetration rates between 60% and

80%, and (3) counties with penetration rates of 80% or more. The last group consists almost exclu-

sively of counties in Florida, Kansas, Louisiana, Oklahoma, and Texas. We then estimate a version

of Equation (28) where we interact indicators for each of these three groups with contemporaneous

temperature and precipitation bins.

The results for total income per capita, farm income per capita, and non-farm income per capita

are shown in Figure 10. Counties with AC penetration rates below 60% and 60%-80% show similar

susceptibility to high temperatures with respect to total income, both to each other and to the

whole sample (Panels A and B). Counties with the highest AC penetration rates, on the other

hand, appear to be half as susceptible to such temperatures, and the point estimates for this group

of counties are not statistically significant (Panel C).

The next six panels show separate results for farm and non-farm income. Non-farm income

in counties with the highest rates of AC penetration is essentially immune to high temperatures

(Panel I). By contrast, counties with AC penetration rates of 60%-80% experience increasing de-

clines in non-farm income with higher temperatures (Panel H). Counties with the lowest rates of

AC penetration fall somewhere in between, with point estimates that are negative but largely sta-

tistically insignificant (Panel G). Interestingly, farm income in counties with the highest rates of
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AC penetration is also less susceptible to heat than counties with lower rates of AC penetration

(Panel F vs. Panels D and E), suggesting that the former may also be more likely to adopt other

adaptation strategies, such as a more heat-tolerant crop mix.

Urbanization Next, we classify the counties in our sample by whether a majority of their pop-

ulation lived in an urban area in 2010, as reported by the U.S. Census Bureau.30 About 41% of

U.S. counties are “urban” by this definition. Alternatively, we classify a county as urban if its

population density averages at least in the 90th percentile during our sample period. By definition,

only 10% of counties will be considered urban in this case. As with AC penetration, we interact

the contemporaneous temperature and precipitation bins with urban/rural indicators to arrive at

our estimates.

The results for total income per capita are shown in Figure 11. Rural counties are slightly more

susceptible to the hottest temperatures than the entire sample, although the di↵erences are not

statistically significant (panel A). By contrast, urban areas exhibit a lower susceptibility to heat

(panel B). Counties at the top of the population density distribution are even less a↵ected by high

temperatures, although they remain far from immune from them (panel C).

Overall, our results suggest that AC penetration is a much more important predictor of suscep-

tibility of income to heat than is urbanization, although both clearly matter. Because allocations of

resources towards AC installation and usage will likely be a direct response to warmer temperature

distributions, the costs and benefits of AC allocations will already by implicitly captured by the

“full adaptation model” that allows the value function to contain curvature (e.g. declining marginal

e↵ects of high temperatures seem likely to be a result of AC technology). It is less obvious that the

influence of urbanization is explicitly captured in any dimension of our previously estimated value

function. Rather, our main estimates simply reflect average treatment e↵ects over the present joint-

distribution of urban populations and temperature climates. Thus, in order to account for both the

e↵ects of AC (and other endogenous adaptations) as well as the influence of urbanization in our

valuations of the current and future climate (below), we implement a “full adaptation” model of the

value function that contains surfaces for both urban and non-urban counties. This is implemented

by interacting an “urban” dummy variable with every polynomial for each temperature bin.

6.4 Other features of the economic response to temperatures

Transfers from government Prior studies have found that federal government transfers increase

following natural disasters (Healy and Malhotra, 2009; Deryugina, 2017), but whether temperature

changes lead to a systematic change in the distribution of transfers from the government is unknown.

To examine whether government transfers might be contributing to these results, we obtain multiple

types of data on transfers, including various types of unemployment insurance, Medicare, federal

crop insurance, and ad hoc disaster transfers directed by Congress (see Appendix for details). We

30To our knowledge, this statistic is not available in earlier years.
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find that daily temperatures have zero e↵ect on county-level annual transfers from the government

(excluding crop-related payments) or on county-level spending on public medical benefits (see Panels

A and B of Appendix Figure A2). We find some evidence that ad hoc crop disaster payments

increase as a results of really hot days (> 30�C), while crop insurance payouts increase steeply for

days that exceed 27�C (80.6�F) (see Panels C and D of Appendix Figure A2). The latter estimates

suggest that farm income losses would be roughly 25% higher if crop insurance were not available.

Spatial displacement Finally, we examine whether there is any evidence for spatial displacement

of economic activity by estimating a spatial lag model with five 100-km distance bins. The results,

shown in Appendix Figure A3, indicate that high temperatures continue to have a negative e↵ect

on own income even when accounting for neighbors’ temperature. If anything, there is some

evidence that high temperatures in neighboring counties have negative e↵ects on a county’s own

income, either because of negative spillovers across counties that experience high temperature days

or because neighbors’ temperatures are a proxy measure for some other temporary environmental

condition that negatively a↵ects income but is not captured by our benchmark model, such as the

length of hot spells.

7 Valuing current and future climates

The robustness and stability in our estimates provide confidence that many county-level economies

face a similar value function such that they lie on the same V (C) surface up to a county-specific

constant µi, which captures all other county-specific factors zit, and a mean zero idiosyncratic

disturbance. Expected county income y when county i experiences its own current climate is then

E[yi(Ci)|zit] = V (Ci) + µi(zit). (29)

By applying our estimates for the marginal product of climate
\dV (C)
dC at each point in the climate

space C to Equation 26, we can trace out a change in income for i if the climate were displaced to a

counterfactual climate Ci2, net of all adaptive adjustments in b⇤
i , which we do not need to observe

directly:

E[yi(Ci2)|zit] = V (Ci) + (V (Ci2)� V (Ci)) + µi(zit) (30)

= V (Ci) +

Z Ci2

Ci

\dV (C)

dC
| {z }

�y

+µi(zit). (31)

We compute�y for two counterfactual climates. First, we consider how much daily temperature

distributions contribute to current production by taking a single county, displacing its climate to the

climate of another county, and comparing how these counterfactual productivities di↵er. Second,

we gradually distort the climate of each county along a “business as usual” climate change scenario
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and compute how its productivity changes through 2100. Both comparisons focus on the term

�y as they net out V (Ci) + µi(zit), in the first case by using a single benchmark county for all

comparisons and in the second case by comparing a county to itself in later moments in time.

7.1 Contribution of temperature to current production

To understand how current temperature climates contribute to cross-sectional patterns of produc-

tivities, we integrate our fully non-linear estimate of
\dV (C)
dC from the benchmark historical climate

(averaged over 1968-1990) of Lebanon, Kansas to the climate of each other county. We choose

Lebanon simply because it is the geographic centroid of the country, aiding display of results, but

comparisons of this �y across locations are invariant to the constant of integrations, which in this

case happens to be V (CLebanon) + µLebanon.

The left panel in Figure 12 depicts the change in income that occurs as the climate of Lebanon

(marked with a black circle) is smoothly transitioned to the climate of each county in our pooled

“full adaptation” model. This panel depicts the value function evaluated at historical temperature

climates across the country, net of all county-specific di↵erences and all adaptive adjustments.

The white band of counties, stretching through the corn belt, south of Appalachia, and up to the

Mid-Atlantic states, indicates climates that are similar in value to Lebanon. South of this band,

the value of climate declines as the number of low-productivity hot days increases, with locations

along the Gulf Coast losing more than $1000 per capita (2011 dollars) in annual income, relative

to Lebanon, due to the high number of hot days (in the current year) in those climates. Note that

these values fully account for the curvature in V (C) shown in Figure 8, which captures changes

in the marginal e↵ect of additional hot days due to adaptation. North of the white zero band,

counties earn higher incomes due to their climate, largely due to the reduction or elimination of hot

days, with locations along the Pacific, Rockies, Great Lakes, and New England earning $500-1000

or more per capita in annual income. Note that accounting for the dynamic e↵ects of these earning

losses would increase their magnitude by a factor of 5.01, as discussed above.

The right panel of of Figure 12 shows an analogous calculation, but, instead of using a fully

pooled model, it conditions the value of the climate on whether a county is urban or not. Using

this approach, regional patterns are largely unchanged, but urban locations exhibit a more muted

version of regional patterns. This occurs because the marginal e↵ects of climate appear smaller

in overall magnitude in urban regions, as shown earlier, suggesting that the human-made capital

installed in urban locations is partially a substitute for cool climatic conditions. Accounting for

urban-rural heterogeneity in this way is akin to treating currently installed urban capital as part

of each county’s endowment that mediates the e↵ect of the climate. The distribution of urban

counties is not systematically correlated with climatic conditions, so this capital might be thought

of as allocated according to an orthogonal optimization. The pooled model (left panel) can be

considered the a priori valuation of each county’s climate if the urban-rural status of each county

were unknown in advance of the valuation calculations.
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7.2 Production distortions due to future warming

Next, we use 44 di↵erent climate change scenarios from Hsiang et al. (2017) to project how output

will change due to future warming in RCP8.5 (“business as usual”) relative to a counterfactual pro-

jection where temperatures remain at historical levels. Used as an ensemble, this set of projections

is constructed to emulate the distribution of global climate sensitivities. For each U.S. county, the

scenarios report the expected number of days in each 1-degree-Celsius temperature bin in 2080-

2099. We aggregate this distribution to the 3-degree temperature bins used in our estimates and

use the empirical 1969-1990 distribution of temperatures in each county as the no-climate-change

counterfactual. We assume that warming begins in 1991, is linear in the number of days in each

temperature bin, and converges to the 2080-2099 distribution in 2090. We use three discount rates

(1%, 3%, and 5%) to probe the sensitivity of the projections to this important parameter and cal-

culate the net present value (NPV) of lost income relative to the no-climate-change scenario. We

multiply the per-capita estimates by the county’s actual or projected population, assuming that

population growth in each county follows a linear trend.

We apply the warming projections to three sets of estimates: the a�ne model where all counties

are pooled together and the full adaptation model (cubic in the number of days in each temperature

bin) model, with and without distinguishing between rural and urban counties, as measured by

whether the majority of a county’s residents lived in an urban area in 2010. The a�ne model

assumes that each additional day in a temperature bin has the same marginal e↵ect on income,

essentially ruling out any e↵ects of adaptive adjustments that alter the marginal e↵ect of additional

warming. The cubic model, on the other hand, picks up non-linearities in a very flexible manner,

allowing us to account for adaptation as a function of the number of days in each temperature

bin (recall Figure 8). However, this model will not capture dimensions of adaptation that are

not correlated with the temperature distribution, such as urbanization. For this reason, we also

create projections using a full adaptation model that is fully interacted with an urban indicator—

e↵ectively estimating two curved value functions, one that applies to urban counties and one that

applies to all other counties.

The spatial distribution of changes in the NPV of total income for the median climate trajectory

(in terms of the total income loss) is shown in the first column of Figure 13. Dollar amounts

correspond to billions of 2011 dollars. Here, we use a 3% discount rate for clarity, relegating

discussion of other rates to Table 1. Without accounting for non-linearity or heterogeneity, the

largest aggregate losses from climate change are concentrated in the Southwest and the Northeast

(dark red). Some Northern states and many counties in Florida also su↵er large losses, and very

few counties see income gains (light and dark blue). However, once we allow the value function to

be curved, more counties, especially in Texas, are projected to experience income gains as a result

of climate change; allowing for urban-rural heterogeneity produces more gains in urban counties in

Gulf Coast states. Yet, as discussed above, allowing for curvature in the value function increases

damage projections for initially cool counties, such as the Northeast and Midwest. This occurs

because the value function for these counties becomes steeper when the relatively flat marginal
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Table 1: Probability distribution of the net present value of national income losses due
to “business as usual” climate change (RCP8.5) through the year 2099

(1) (2) (3)
Discount rate: 1% 3% 5%

Panel A: a�ne model, no heterogeneity

10th percentile -43.54 -18.93 -13.55
25th percentile -37.44 -16.33 -11.7
Median -31.52 -13.7 -9.8
75th percentile -26.5 -11.5 -8.22
90th percentile -22.19 -9.61 -6.86

Panel B: “full adaptation” cubic model,
no heterogeneity

10th percentile -60.41 -25.37 -18.17
25th percentile -46.44 -20.94 -15.43
Median -38.96 -17.87 -13.3
75th percentile -31.48 -15.55 -11.61
90th percentile -26.01 -11.98 -8.82

Panel C: “full adaptation” cubic model,
urban-rural heterogeneity

10th percentile -27.32 -10.36 -7.15
25th percentile -18.26 -7.9 -5.79
Median -13.47 -6.74 -5.16
75th percentile -10.62 -5.35 -4.1
90th percentile -9.11 -4.65 -3.51

Discount rate shown above each column. Values are in trillions of US 2011 dollars.
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e↵ects of Southern states are no longer pooled with these cooler locations (recall Figure 8). Because

economic production is more heavily concentrated in the North, where allowing for curvature in the

value function increases damages, than the South, where allowing for curvature decreases damages,

allowing for adaptation by letting marginal damages vary by climate has the net e↵ect of increasing

total national income losses (shown in Table 1).

By contrast, projected changes in farm income (set of maps in the second column) are much more

similar across the three sets of estimates. Very few counties are projected to gain agricultural income

as a result of climate change. The largest losers are again concentrated in the Southwest, Northeast,

and Florida. Comparing the two columns, we see that while farm income losses contribute to

aggregate losses, they do not fully explain their magnitude, especially once heterogeneity and non-

linearities are accounted for. Non-agricultural losses thus must play a major role in generating the

bulk of projected reductions in economic output.

The third column of Figure 13 shows how aggregate income losses accumulate over time across

the 44 climate projections. By definition, income losses are zero in 1990. In the linear model,

aggregate losses grow linearly between 1991 and 2099, and range from 3.8% to 12.2% of the no-

climate-change counterfactual annual income. The median scenario predicts income losses of 6.3%

by 2099. Both projections based on cubic estimates (with and without allowing for urban-rural

heterogeneity) display non-linear and non-monotonic temporal patterns and a wider distribution

of projected income losses by 2099. Without accounting for urban-rural heterogeneity, 2099 losses

range from 4.4% to 36% of income (median is 8.0%). Accounting for urban-rural heterogeneity

reduces the magnitude of the lower and upper bound of losses to 0.98% and 31%, respectively, and

shifts the median to 3.4%.

In Table 1 we present a summary of the distribution of the NPV of aggregate income losses

across all 44 climate projections using each of the three models for the value function (a�ne,

homogenous cubic, and heterogeneous cubic) and for three di↵erent discount rates (1%, 3%, and

5%). Panel A shows the a�ne model estimates. With a 3% discount rate, the median NPV of

income loss is $13.7 trillion in 2011 dollars. At the 10th percentile of the distribution, the losses are

almost $19 trillion, and at the 90th percentile losses are estimated at $9.6 trillion. With respect to

the discount rate, the NPV of losses is more than two times larger when we use a discount rate of

1% rather than 3%. Conversely, it is about one quarter to one third lower than the 3% estimates

if we use an annual discount rate of 5%.

Allowing for a cubic relationship between income and the number of days in a temperature bin

(Panel B) increases income loss estimates across the board. As discussed above, this occurs because

the marginal e↵ects of warming (for the high temperature bnis) are negatively correlated across

space with the overall economic output of counties. However, adding urban-rural heterogeneity

while still allowing for a cubic relationship (Panel C) reduces projected losses and yields the smallest

income losses. This adjustment has substantial negative e↵ects on total costs because economic

activity is concentrated in urban counties, and allowing for heterogeneity reduces marginal damage

from warming in these counties. Specifically, the median NPV of income losses is $6.7 trillion at
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a 3% discount rate and ranges from $4.7 trillion at the 90th percentile to $10 trillion at the 10th

percentile. Varying the discount rate a↵ects the estimates in Panels B and C similarly to panel A.

8 Discussion

Previous analyses of an economy influenced by its climate have struggled to simultaneously account

for observable factors that di↵er across locations and the overall impact, net of costs, of constantly

re-optimized adaptive adjustments. Here we developed a general reformulation of the problem

that, when considering the role of the climate in economic production, delivers both. For a macro-

economy in general equilibrium, market optimization leads to the maximization of certain aggregate

quantities, such as total income. This maximization allows us to leverage the Envelope Theorem

such that random perturbations in weather can be econometrically exploited to identify the local

marginal product of climate. In cases where we have a large number of small macro-economies

that are densely packed in climate-space (such as US counties), we may integrate many “nearby”

estimates of these local marginal e↵ects to recover the entire value function describing the total

product of climate in these economies, which characterizes the economic impact of nonmarginal

changes to the climate. Importantly, this value function captures the net e↵ect–both costs and

benefits–of all adaptive adjustments in the economy and, so long as the estimator used purges

unobservable heterogeneity, it will not be biased by cross-sectional covariates unrelated to the

climate.

Applying this approach to estimate the role of daily temperature distributions in modern US

markets, we find that the marginal product of climate, which is the local gradient vector of the

value function, is remarkably stationary over time and fairly stationary across space. We find that

the gradient vector rotates as an economy’s climate changes, the PPF adjusts, and the popula-

tion reallocates resources in response, such that the marginal impact of very high temperatures

is reduced. Some of this response appears due to compositional shifts in production away from

agriculture and the usage of air conditioning. Urbanization, which does not appear directly related

to climate, also plays a role in determining the local marginal product of climate. Accounting

for curvature in the value function, which captures all adaptations, as well as urban-rural hetero-

geneity, we compute causal estimates for cross-sectional di↵erences in income across US counties

attributable to each county’s climate by integrating each county’s position on the value function

relative to a benchmark county. To the best of our knowledge, this is the first such calculation of

this type. Using a similar technique, we estimate distortions to national economic output induced

by future anthropogenic warming in the RCP8.5 scenario across a range of climate models, fully

accounting for both the costs and benefits of adaptation through factor reallocation. Importantly,

counter to a widely invoked “folk theorem,” accounting for adaptation by allowing for curvature in

the value function increases forecast losses because marginal damages from warming are larger in

Northern regions where economic output is concentrated, a fact that is obscured in a�ne models

that assume the marginal product of climate is constant across space.
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There are numerous important caveats for this analysis. First, these results depend on markets

being essentially e�cient in the long run. We assume agents have have perfect information about the

climate they inhabit, that capital can be rented at annualized costs, and that if there are profitable

opportunities they will be seized. Without these assumptions, it is more di�cult to analyze the

long-run general equilibrium structure of the economy and, critically, our Envelope Theorem result

that depends on e�cient market-clearing will no longer hold exactly. Future work may examine

how market distortions, imperfect information, and the incomplete rationality of decision-makers

may alter these findings.

Another key assumption in our analysis is that disturbances due to weather are “small” such

that they do not move the economy “too far” from its equilibrium. This assumption is important

for guaranteeing the identifiability of the marginal product of climate using weather variation, and

its validity depends on the spatial scale of analysis, how weather and climate are defined, and how

they relate to the economy. We chose to demonstrate the application of this result using annual

distributions of daily temperature, described with temperature bins, in part because perturbing an

annual temperature distribution by shifting one or two days from one bin to the next is plausibly

a “small” perturbation in an otherwise large space of possible temperature distributions. This

intuition appears to be confirmed by our results, since shifting individual days results in only

fractional changes in annual percentages of income. Thus the “local” assumption we invoke seems

valid in this context. Yet the validity of this assumption cannot be extended blindly to all measures

of all dimensions of climate—for example, hurricanes and mega-droughts might not be su�ciently

“small” economic perturbations for our core results to apply (Hornbeck, 2012; Deryugina, Kawano,

and Levitt, forthcoming).

Perhaps most importantly, none of these results should be interpreted as welfare e↵ects. The

focus of this analysis has been to characterize the contribution of the climate to aggregate economic

production that is captured by total market revenue. Many other analyses that consider the

economic value of the climate in welfare terms also account for numerous non-market e↵ects, such

as the welfare loss associated with increasing economic inequality, degraded ecosystems, higher

crime, or the loss of life (Antho↵, Hepburn, and Tol, 2009; Hsiang et al., 2017). These factors may

be substantially a↵ected by the climate but are not accounted for in the present analysis beyond

any influence they have on the structure of the PPF or aggregate demand.

A core contribution of our analysis accounts for a large number of allocative adjustments made

within a macroeconomy to cope with a change in the economy’s climate. Our empirical imple-

mentation focuses on a large number of ‘small’ macroeconomies, US counties, within which a vast

number of possible allocations for b exist. There is, however, interest in allocative adjustments

across larger spatial scales that are responses to regional or global climatic changes (Desmet and

Rossi-Hansberg, 2015; Costinot, Donaldson, and Smith, 2016; Dingel, Hsiang, and Meng, 2017;

Desmet et al., 2017). Our theoretical analysis remains relevant to these larger scales, as the do-

main of the macroeconomy under consideration can simply be expanded to contain larger regions.

However, our empirical analysis does not fully address many of the ideas explored in other studies.
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Nonetheless, applying our empirical technique to larger units of analysis that span larger spatial

scales is a valid approach to accounting for spatial reallocations across the larger regions of space

contained within these units.31

When considering our projections of production distortion due to anthropogenic climate change,

it is important to note that we only consider the impact of shifting distributions of daily temper-

ature and we omit any influence of other climatic factors that may also change, such as hurricane

frequencies or intensities, sea level rise, or drought. In principle, our approach can easily account

for a large number of additional dimensions of the climate, something which is an important avenue

for future work.

In addition, it is crucial to recognize that future, unknowable technological innovations that may

eventually a↵ect the marginal product of climate are unlikely to be well-captured in our empirical

analysis. Theoretically, new technologies can been incorporated into our model by increasing the

dimensionality of B to allow for allocations towards a new type of technology, which may have

prohibitively high costs prior to its discovery. Because currently unknown technologies are by def-

inition not available, it is not possible to empirically explore the structure of the value function

in the subspace of B in which resources have been allocated towards a not-yet-existent technology.

Nonetheless, future innovations may be captured by our analysis to the extent that they are rep-

resented in the present marketplace. For example, valuations of assets (e.g. stocks, bonds, farm

land) that reflect market beliefs about the future trajectory of technology a↵ect allocation decisions

within the present market. Future work should explore the extent to which current allocations may

be informative about the path of future technologies and their potential role in altering the marginal

product of climate in future periods.
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Appendix

Description of transfers data We obtain data on total transfers from government to individ-

uals from the REIS. These include unemployment insurance, which in turn consists primarily of

standard state-administered unemployment insurance schemes, but also includes unemployment

compensation for federal employees, railroad workers, and veterans. Government transfers also in-

clude income maintenance (which includes Supplemental Security Income (SSI), family assistance,

and food stamps), retirement and disability insurance benefits, public medical benefits other than

Medicare, Medicare, veterans’ benefits, and federal education and training assistance. In addition,

the United States has an extensive crop insurance program that has been greatly expanded over

the past 30 years. Insurance plans are sold by private companies, but are heavily regulated and

reinsured by the US government. We obtain annual county-level data on crop insurance indemnities

for the years 1990–2011. These are publicly available from the Risk Management Agency (RMA) of

the USDA. Finally, Congress has also passed numerous ad hoc disaster bills to give aid to farmers

who su↵ered crop losses, regardless of whether they had insurance. County-level crop-related disas-

ter payments for the years 1990–2010 are from USDA Farm Services Agency (FSA) administrative

data, obtained through a Freedom of Information Act request.
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Appendix Tables and Figures

Appendix Table A1: Summary statistics

(1) (2) (3) (4) (5)
Mean Std.

Dev.
Min Max Obs

Population 111,722 341,233 209 9,889,056 76,646
Personal income per capita 26,806 8,438 6,356 136,936 76,646
Non-farm personal income per capita 16,710 10,549 2,738 336,356 76,646
Percent of personal income that is non-farm income 61.67 27.53 8 916 76,646
Percent of personal income that is wage/salary income 45.16 22.59 9 757 76,646
Percent of personal income that is farm income 5.24 8.66 -235 77 76,646
Percent of personal income that is rents 18.15 5.93 2 123 76,646
Percent of personal income that is transfers 16.88 6.38 2 65 76,646

Source: Regional Economic Information Systems. Unit of observation is a county-year. All monetary amounts are in
2011 dollars.

2 - 10 years

11 - 18 years

19 - 27 years

28 - 36 years

37 - 43 years

Appendix Figure A1: Number of years that each county has a complete record of daily average
temperatures and daily rainfall. Years with incomplete records are dropped from the sample.

60



-50510

15
35

55
75

D
ai

ly
 te

m
pe

ra
tu

re
s 

in
 F

ah
re

nh
ei

t

-1
0

0
10

20
>3

0
D

ai
ly

 te
m

pe
ra

tu
re

s 
in

 C
el

si
us

Dollars per capita

D
is

as
te

r p
ay

m
en

ts
19

90
-2

01
0 

on
ly

15
35

55
75

D
ai

ly
 te

m
pe

ra
tu

re
s 

in
 F

ah
re

nh
ei

t

-1
0

0
10

20
>3

0
D

ai
ly

 te
m

pe
ra

tu
re

s 
in

 C
el

si
us

C
ro

p 
in

su
ra

nc
e 

in
de

m
ni

tie
s

19
90

-2
01

0 
on

ly

-0
.1

-0
.0

50

0.
050.

1

0.
15

15
35

55
75

D
ai

ly
 te

m
pe

ra
tu

re
s 

in
 F

ah
re

nh
ei

t

-1
0

0
10

20
>3

0
D

ai
ly

 te
m

pe
ra

tu
re

s 
in

 C
el

si
us

Log dollars per capita × 100

An
nu

al
 c

ur
re

nt
 tr

an
sf

er
s

fu
ll 

sa
m

pl
e

15
35

55
75

D
ai

ly
 te

m
pe

ra
tu

re
s 

in
 F

ah
re

nh
ei

t

-1
0

0
10

20
>3

0
D

ai
ly

 te
m

pe
ra

tu
re

s 
in

 C
el

si
us

Pu
bl

ic
 m

ed
ic

al
 b

en
ef

its
fu

ll 
sa

m
pl

e

A
p
p
en

d
ix

F
ig
u
re

A
2:

(A
)
T
h
e
e↵

ec
t
of

d
ai
ly

av
er
ag

e
te
m
p
er
at
u
re
s
on

lo
g
to
ta
l
go
ve
rn
m
en
t
tr
an

sf
er
s
to

in
d
iv
id
u
al
s
p
er

ca
p
it
a.

(B
)
T
h
e

sa
m
e
as

A
,
b
u
t
fo
r
th
e
su
b
se
t
of

tr
an

sf
er
s
th
at

ar
e
p
u
b
li
c
m
ed

ic
al

b
en

efi
ts
.
(C

)
T
h
e
e↵

ec
t
of

d
ai
ly

te
m
p
er
at
u
re
s
on

ad
ho
c
cr
op

d
is
as
te
r

p
ay
m
en
ts

p
er

ca
p
it
a
(i
n
le
ve
ls
).

(D
)
T
h
e
e↵

ec
t
of

d
ai
ly

te
m
p
er
at
u
re
s
on

cr
op

in
su
ra
n
ce

in
d
em

n
it
ie
s
p
er

ca
p
it
a.

61



Own 0−100 100−200 200−300 300−400 400−500

−0.06

−0.04

−0.02

0

0.02

0.04

0.06

Effect of an additional day above 30ºC

lo
g 

po
in

ts
 x

 1
00

Spatial lag (km)

Own 0−100 100−200 200−300 300−400 400−500

−0.06

−0.04

−0.02

0

0.02

0.04

0.06

Effect of an additional day at 27−30ºC

lo
g 

po
in

ts
 x

 1
00

Spatial lag (km)

Own 0−100 100−200 200−300 300−400 400−500

−0.06

−0.04

−0.02

0

0.02

0.04

0.06

Effect of an additional day at 24−27ºC

lo
g 

po
in

ts
 x

 1
00

Spatial lag (km)

100W 90W
30N

40N

0−100

100−200

200−300

300−400

400−500

Longitude

L
a

ti
tu

d
e

Spatial lag annuli 

(radii in km)

A B

C D

Appendix Figure A3: (A) Example of annuli used to construct spatial lags, relative to Sta↵ord,
Kansas (black). (B) E↵ect on i of each additional day at 24-27�C for i and 24-27�C days experienced
by j’s at various distances from i. (C) Same but for 27-30�C . (D) Same but for > 30�C . All e↵ects
in (B)-(D) are estimated simultaneously, along with own e↵ects for lower temperatures and all
controls.
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