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Abstract

Increased arrival of new technologies and displacement of old technologies leads to

increased wealth re-distribution. Using a novel data set on the wealth of ultra-high

net worth (UHNW) individuals, we show that a major reason for the recent increase

in wealth inequality has been the the rapid ascension to wealth by self-made busi-

nesspeople in the last decades. We then build a model that encompasses lack of risk

sharing between existing investors and also between existing investors and arriving en-

trepreneurs to study the implications of redistributive growth for wealth dynamics and

portfolio choices of investors in a dynamic general equilibrium model. Consistent with

the data, the model predicts that “alternative asset classes” as diverse as commercial

real estate, commodities, and private equity become increasingly attractive in a world

of increased displacement and experience inflows. The same applies to zero-net supply

risk free investments, leading to a drop in the risk free rate. The output share of the

financial industry increases, whereas (irreversible) and specialized investment in equip-

ment and structures may not, despite the lower required rates of return. Surprisingly,

the equilibrium features a positive gap between the expected returns of investments in

emerging versus existing firms, despite the portfolio diversification benefits offered by

the former.



1 Introduction

The last few decades have seen a change in the investment landscape. Real interest rates have

experienced a protracted decline. At the same time alternative asset classes that seem to

have very little to do with each other (private equity, venture capital, commercial real estate,

commodities, etc.) have attracted increased portfolio allocations. We link these trends to an

increased incidence of growth that is “disruptive” — or, more appropriately, redistributive:

Growth leads new firms to capture a larger portion of profits and market capitalization, and

routinely at the expense of old firms which get displaced. The creation of these companies

benefits investors asymmetrically: The benefits accrue predominantly to their creators (and

more generally early investors holding large fractions of their equity), but not necessarily to

an investor simply holding the market portfolio of public companies.

If the dispersion of wealth growth across investors increases, then investors have an

incentive to increase allocations towards asset classes that are less affected by or can even

benefit from displacement risk. Our model identifies private equities, real assets and risk-free

assets as the asset classes that fit that requirement, thus explaining their popularity in recent

years. Somewhat surprisingly, the equilibrium expected rate of return of funds investing

in emerging technologies exceeds the equilibrium rate of return of the market portfolio of

existing equities, even though the market price of risk for displacement risk is positive and

these emerging technologies (as a whole) have negative exposure to displacement risk.

Specifically, after briefly documenting some of the above patterns in the data, we de-

velop a dynamic general equilibrium model with the following features. The production of

a final good requires labor and intermediate products. New lines of (intermediate) products

raise aggregate production, but also displace the demand and hence the profits for old in-

termediate products. The ownership rights to the production of the new product lines are

allocated either to existing publicly traded firms or to newly arriving agents. The allocation

of blueprints to new agents is highly asymmetric. Few of these agents end up with quite

profitable product lines, while the rest end up with worthless allocations. As a result, these

newly arriving agents are eager to share that risk with investors, by offering a fraction of

their company’s shares for sale. This transaction is facilitated by financial intermediaries who

purchase a portfolio of these privately held shares. However, this diversification is costly: In

particular the costs of diversifying across every single emerging firm would be prohibitively

costly, and thus each intermediary invests only in a subset of these firms.

Thus there are two dimensions that cause risk sharing to be imperfectly shared: a) An

inter-cohort dimension (across newly arriving agents and existing investors), which depends
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on the fraction of shares that are retained by the newly arriving agents. b) An intra-

cohort dimension (among existing investors), which depends on the correlation between an

intermediary’s portfolio and the market value of all blueprints accruing to firms outside

publicly traded equities. Indeed, the model nests the perfect risk sharing limit (Rubisnstein

(1976), Lucas (1978)) , the Constantinides-Duffie (1996) model, and the OLG model of

Garleanu, Kogan, and Panageas (2012) as special parametric cases.

We provide explicit closed-form solutions of the model and show the following results.

First, if risk sharing is close to perfect, then an increased arrival of new technologies is

“good news” for the marginal investor, since new technologies are good news for aggregate

output and market capitalization. However, if either intra- or inter-cohort risk sharing fails,

then increased arrival of new technologies is perceived as risky by the representative investor,

who might end up losing from the new technologies.

Second, a surprising result of the model is that the equilibrium returns of emerging, pri-

vately held firms must exceed the expected returns of publicly traded firms, even though

they offer hedging opportunities by reducing the exposure of an investor’s portfolio to dis-

placement risk. The reason is that in a world of imperfect risk sharing the diversifiable risk

of private investments commands risk compensation.

Third, an acceleration in displacement or dispersion of innovation gains across investors

increases the incentives to diversify out of public equities. The natural targets are risk free

assets, private equities, or real assets. Real assets benefit from increased arrival of new firms

since all firms (new and old) need assets such as real estate and commodities. Private equity

benefits because it helps offset the displacement risk of public equities. The demand for the

risk-free asset increases due to precautionary savings incentives – and since it is in zero net

supply, this leads to a decline in the risk free rate.

Fourth, an acceleration in displacement or dispersion in innovative gains across investors

will lead to an increase in the size of the financial industry and a reduction in real interest

rates, but may not lead to increased physical investment. The reason is that if investment

is specific to blueprints, increased displacement raises the risk that these investments may

render themselves unprofitable. This may help explain why the low real rates observed in

recent decades did not lead to a substantial increase in investment but rather an expansion

of the financial industry.
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Figure 1: Cumulative first differences in the logarithm of GDP, assets managed by the

financial industry, and alternative assets in the form of private equity, venture capital, and

commercial real estate. Source: McKinsey (2015).

2 Empirical motivation

Figure 1 illustrates the growth in alternative assets over the last decade. An obvious conclu-

sion is that the alternative asset management industry in the form of private equity, venture

capital, and commercial real estate has grown much faster than either GDP or total assets

under management in the economy. This substantial growth in the size of alternative invest-

ments coincided with substantial growth in other forms of alternative investments (such as

commodities or hedge funds) and with a protracted period of declining real interest rates,

trends that have been documented repeatedly in the literature.

Our goal in this paper is to explain these trends not as isolated phenomena, but rather

as emanating from a common source, namely the increased incidence of “disruptive growth”,

or more accurately, redistributive growth.

To motivate these notions we we point to Figure 2. This figure shows that even though

aggregate dividends and aggregate consumption share a common trend, the dividends-per-

share of the S&P 500 follow a markedly slower growth path. (The same conclusion holds
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Figure 2: Total real logarithm of S&P 500 dividends per share, real log-aggregate consump-

tion and real log-aggregate dividends. The CPI is used as a deflator for all series. The line

“Index Dividends + New Cap” is equal to real log-dividends per share plus the cumulative

(log) gross growth in the shares of the index that are due to the addition of new firms.

Sources: R. Shiller’s website, FRED, Personal Dividend Income series, and CRSPSift.

if we use the dividends accruing to the CRSP-value weighted portfolio). The difference

in growth rates between aggregate dividends and dividends per share is approximately 2%

per year. This discrepancy can be largely attributed to a dilution effect arising every time

new companies enter the index: Just like a cooperation would have to issue new shares to

purchase a new company, thus diluting the existing shareholders, the same happens at the

level of an index. Mathematically, if St is the divisor (of number of index “shares”) at time

t, MV old
t+1 the market capitalization at time t+ 1 of firms that were already part of the index

at time t, and MV new
t+1 the market capitalization of firms that are added to the index at time

t+ 1, we have that

MVt+1

St+1

=
MV old

t+1 +MV new
t+1

St+1

=
MV old

t+1

St
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Accordingly,

St+1

St
= 1 +

MV new
t+1

MV old
t+1

(1)

The adjustment of the divisor ensures that the strategy of simply holding the market portfolio

is self-financing, i.e., the process of simply re-constituting the index does not result in a

positive return for the investor.

Next, we let Dt denote total dividends, and define Dt
St

as dividends-per-share. The concept

of dividends per share corresponds to the cash flows generated by the self-financing strategy

of holding the market portfolio. Being the cash flows of a self-financing strategy is very

important from an asset pricing perspective, since the standard asset pricing arguments

imply that the value of the index corresponds to the present value of Dt
St

.

Empirically, over long horizons the discrepancy of the trends between dividends-per-share

and aggregate consumption is almost exclusively due to the diluting effect of new company

additions. Figure 2 shows that if we add back
∑

t log(1+
MV new

t+1

MV old
t+1

to the time series of dividends-

per-share Dt
St

, then the resulting series (denoted “Index Dividends + New Cap”) co-trends

with aggregate dividends and aggregate consumption. Hence the dillutionary effect of new

company additions is the main reason for the discrepancy between the cash flows generated

by the self-financing strategy of holding the market portfolio and aggregate consumption -

a fact that our model will be able to re-produce.

Figure 3 shows that the dillutionary effect of new company additions has accelerated over

time. The figure plots 20-year moving averages of log(1 +
MV new

t+1

MV old
t+1

and documents an upward

trend.

The distinction between aggregate dividends and dividends-per-share is significant for

asset pricing models, since only the latter series corresponds to the cash-flows of a self-

financing strategy. Hence the usual asset pricing formulas (expressing the price of the stock

market as the sum of discounted cash flows) would apply only if one uses the latter series of

cash flows but not the former.

Casual empiricism suggests that the benefits of the introduction of new firms are highly

asymmetric. It is typically the firm creators and the early investors who benefit.

The data offer some evidence in that direction. Figure 4 compares the total wealth in the

hands of billionaires that inherited their wealth with the wealth of “self-made” entrepreneurs.

In 2003 (the earliest electronically available cross section in Forbes) the estimated net worth

of self made billionaires is roughly comparable to that of billionaires who inherited their

wealth. By 2016, the net worth in the hands of self-made billionaires is roughly twice as

large as the wealth of billionaires who inherited their wealth.
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Figure 3: 20-year moving average of the change in the index divisor that is due to the

addition of new firms.

In addition, Table 1 shows that a billionaire who inherited her wealth has about the same

wealth as a self-made billionaire in 2016. Moreover, for ages between 45 and 65 a self-made

billionaire tends to have a higher net worth than someone who inherited their wealth. This

didn’t use to be the case. In 2003, a self-made billionaire had on average about 31% less

wealth than a billionaire who inherited her wealth, with a t-stat of about -1.9. The difference

in the 2003 cross section is even larger for older billionaires. Figure 6 shows that it is not only

the averages that differ: in the 2016 cross-section the distribution of billionaire wealth looks

identical for the subgroups of self-made and heirs. Taken together, Table 1 and Figure 6

imply that self-made billionaires must have experienced a stronger wealth growth (compared

to heirs) in recent times. 1

Figure 5 performs a related exercise: The figure fixes billionaire families in the 2003

1To make this statement mathematically precise, express a billionaires wealth growth as log(WT ) =

log(W0) + u where u combines the cumulative rate of growth in the value of a billionaire’s assets net of her

consumption-to-wealth ratio. Figure 6 shows that the distribution of log(WT ) (conditional on WT being

above a billion) is independent of log(W0). Hence, the distribution of u for self-made and non self-made

billionaires cannot be the same. Indeed, the distribution of u for self-made billionaires must contain a positive

location shift compared to the one for billionaires who inherited their wealth.
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Figure 4: Wealth of US billionaires who inherited their wealth and those who were self-made

(left figure). Number of US billionaires who inherited their wealth and number of billionaires

who are self made. Source: Forbes 2003, 2016.

edition of Forbes. Using a newly available database called Wealth-X, we follow the entire

wealth growth of each family between 2003 and 2016. This database is ideally suited for this

purpose: it is a professionally maintained database maintained by 170 employees, who collect

data pertaining to an individual’s publicly disclosed transactions, holdings, philanthropy,

large purchases, board memberships, professional and family ties, etc., and aggregate them

into a detailed “folder” for that individual and their family. In constructing family wealth

growth we compare the wealth of each family in 2003 to the wealth of the same family in

2016.2 The somewhat surprising fact about Figure 5 is that the median family experienced

a wealth growth rate no different than the growth in the price-per-share of the S&P 500.

Taken as group, the wealth of these families has about doubled between 2003 and 2016, while

the wealth in the hands of billionaires has quadrupled between 2003 and 2016. This implies

that the large increase in the hands of billionaires has been the result of entry of new wealth

in that population, rather than the organic growth of the wealth of the previously rich.

Table 2 shows that the above results are unlikely to be the result of error or different

consumption-to-wealth rates between new and old rich. Using data from the Wealth-X

database, we regress an individual’s publicly known log philanthropic expenditure over her

life-time on her estimated log-net worth and a dummy variable taking the value one if the

billionaire is listed as “self-made”. This table shows two things: First the coefficient on

2We include immediate descendants and divorced spouses as part of a family for the computation of total

wealth growth rates.
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Source: Wealth-X 2016

(1) (2) (3)

All Ages 45< Age< 65 Age> 65

Self-Made Dummy -0.029 0.049 -0.150

(0.087) (0.109) (0.155)

Number of Observations 413 165 215

R2 0.000 0.001 0.006

Source:Forbes 2016

(1) (2) (3)

All Ages 45< Age< 65 Age> 65

Self-Made Dummy -0.010 0.124 -0.148

(0.095) (0.110) (0.177)

Number of Observations 465 197 233

R2 0.000 0.005 0.004

Source: Forbes 2003

(1) (2) (3)

All Ages 45< Age< 65 Age> 65

Self-Made Dummy -0.310 -0.324 -0.492

(0.165) (0.240) (0.264)

Number of Observations 176 83 73

R2 0.027 0.028 0.062

Table 1: Regressions of billionaire’s log(net worth) on a dummy variable taking the value

one if the billionaire is characterized as self made in the respective data set. Standard errors

in parentheses
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Figure 5: logarithm of the (gross) wealth growth rates of billionaire families between 2003

and 2016. Source: Forbes 2003 and Wealth-X 2016.

log net worth is essentially equal to one. Since it is reasonable to expect that philanthropy

should be proportional to an individual’s true, unobserved net worth, this is re-assuring:

It suggests that net worth is measured reasonably well, and does not just capture “paper

money”. Instead we see it reflected in an easily observed expenditure component. The second

conclusion from the table is that, if anything, self-made individuals spend a slightly higher

fraction of their wealth on philanthropy compared to billionaires who have inherited their

wealth. Even though this observation pertains only to philanthropy, it is suggestive that

differences in expenditure rates do not seem a likely candidate for the observed differences

in wealth growth rates.

We summarize the pieces of the empirical evidence that motivates our model as follows:

1) Recent decades have seen an increase in portfolio allocations to alternative asset classes,

real assets, and a simultaneous drop in the real interest rate. 2) The addition of new firms to

the market portfolio acts in a manner similar to dilution for existing investors and over long
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Figure 6: Kernel-smoothed density of log net worth for self made billionaires and billionaires

who inherited their wealth. Sources: Forbes 2016 and Wealth-X 2016

(1) (2) (3) (4) (5) (6)

lnphil lnphil lnphil lnphil lnphil lnphil

lnw 1.157*** 1.149*** 1.199*** 1.191*** 0.983*** 0.982***

(0.151) (0.149) (0.341) (0.334) (0.166) (0.164)

SelfMade 0.234 0.0953 0.278

(0.269) (0.517) (0.313)

Constant -8.312* -8.292* -9.691 -9.582 -4.160 -4.320

(3.338) (3.313) (7.424) (7.324) (3.679) (3.640)

Observations 258 258 86 86 154 154

R2 0.201 0.204 0.184 0.184 0.174 0.178

Table 2: Regressions of log(Philanthropy) on log(net worth) and a dummy variable taking

the value one if the billionaire is listed as self made. Regressions (1) and (2) pertain to the

entire sample, (3) and (4) to billionaires between 45 and 65 and (5) and (6) to billionaires

above 65.
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periods is the dominant source of discrepancy between aggregate consumption and dividends

per share of the market porttolfio. 3) The rate of these additions has progressively increased

in recent decades. 4) This increase coincided with a strong ascension to wealth for self-made

billionaires; by contrast the wealth growth of the 2003 billionaires (who are presumably more

sophisticated than the typical investor) have largely followed the change in the value of the

S&P, which has been far slower than the growth in the total wealth held by billionaires.

Based on this stylized facts, we build a model that departs from the standard assumption

that the gains of innovation accrue to the representative agent. Instead we take seriously the

notion that the gains of innovation are not equally shared between investors, and investigate

the implications of such a departure for finance and macroeconomics.

3 Model

3.1 Agent’s preferences and demographics

We consider a model with discrete and infinite time: t = {..., 0, 1, 2, ...}. The size of the

population is normalized to one. At each date a mass λ of agents are born, and a mass λ

dies so that the population remains constant. We denote by Vt,s the utility at time t of an

agent born at time s. Preferences are logarithmic:

log Vt,s = log ct,s + β (1− λ) Et log Vt+1,s, (2)

where β ∈ (0, 1) is the agent’s subjective discount factor, and ct,s is the agent’s consumption

at time t. These preferences imply that the representative agent has an intertemporal elastic-

ity of substitution (IES) equal to one and a risk aversion equal to one. These preferences are

convenient for obtaining closed form solutions. We consider extensions to allow for general

risk aversion and IES later.

3.2 Technology

Output is produced by a representative (competitive) final-good firm, which uses two cate-

gories of inputs: (a) labor and (b) a continuum of intermediate goods. Letting LFt denote

the efficiency units of labor that enter into the production of the final good, At the number

of intermediate goods available at time t, and xj,t the quantity of intermediate good j used

in the production of the final good, the production function of the final-good producing firm
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is

Yt =
(
LFt
)1−α

[∫ At

0

xαj,tdj

]
(3)

At each point in time the representative final-good firm chooses LFt and xj,t to maximize its

profits

πFt = max
LFt ,xj,t

{
Yt −

∫ At

0

pj,txj,tdj − wtLFt
}
, (4)

where pj,t is the price of intermediate good j at time t and wt is the prevailing wage at time

t.

The intermediate goods xj,t are produced by monopolistically competitive firms that

own nonperishable blueprints to the production of these goods. The production of each

intermediate good requires one unit of labor per unit of intermediate good produced, so that

LIt =
∫ At

0
xj,tdj,where LIt is the total amount of labor used in the intermediate goods sector.

The price pj,t is set by the intermediate-good firm j to maximize their profits

πIt = max
xj,t
{(pj,t − wt)xj,t} .

Labor is supplied inelastically by workers (to be introduced shortly) and is in fixed total

supply equal to one.

We state some standard results associated with this production setup, which are useful

for our purposes. We refer to ? for proofs.

Lemma 1 The share of labor directed to intermediate goods LIt is constant, and so is LFt .

The optimal amount of intermediate good j produced is xj,t =
LIt
At
, and output is proportional

to A1−α
t :

Yt ∝ A1−α
t . (5)

The profits of final-good firms are zero, and the total profits of intermediate-goods firms equal

Atπt = α (1− α)Yt, (6)

where we have dropped the superscript I to write πt instead of πIt . Accordingly, the profits

accruing to each blueprint are equal to

πt =
α (1− α)Yt

At
∝ A−αt . (7)
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This lemma captures some of the key implications of the by now standard model of

expanding varieties. An increasing number of blueprints At raises total output Yt (equation

(5)), but the profits per blueprint decline (equation (7)). This is the sense in which this

simple production specification captures the idea of displacement of old blueprints by new

ones.

We would like to point out here that, even though we opted for a basic Romer-style

production specification, the specific production assumptions (whether they are of the Romer

type or the quality-ladder type) are irrelevant for the intuitions we develop in this paper.

3.3 New agents: Workers, entrepreneurs, and new products

The measure λ of newly born agents are of two types. A fraction θ are entrepreneurs and

a fraction 1− θ are workers. We assume that workers supply one unit of labor inelastically

throughout their life. Since workers are not the focus of the paper, we assume that they

are “hand-to-mouth” consumers, i.e., their wage income equals their consumption period-

by-period. This assumption is not essential for the results, and we relax it in a later section.

The focus of the paper is on business owners (entrepreneurs). Entrepreneurs are born

with the right to new blueprints for new intermediate goods. At the time of their birth,

entrepreneurs are uncertain about the number of blueprints that they will be receiving.

To model this uncertainty we assume that, once born, a mass λθdi of entrepreneurs is

assigned to every “location” i ∈ [0, 1) on a circle, so that
∫ 1

0
λθdi = λθ is the total mass of

newly born entrepreneurs each period.

Each period a total mass

∆At+1 = At+1 − At = ηAtΓt+1 (8)

of new blueprints arrives, where Γt+1 is a gamma distributed variable with shape parameter a

and rate parameter b and η is a constant. Since the gamma distribution is infinitely divisible,

we will write Γt+1 ≡
∫
i∈[0,1]

dΓi,t+1, where dΓi,t+1 denotes the increments of a gamma process

and captures the increment in the mass of blueprints that will be assigned to location i at

time t+ 1.3

Since the Gamma process is not commonly used in economics, we summarize briefly some

of its properties. To build intuition, it is most useful to split the interval [0, 1] into N equal

intervals, and think of the Gamma process at the location k
N

as a sum of gamma-distributed

3For technical reasons, we think of new entrepreneurs as indexed by (i, j) ∈ [0, 1)× [1, 1], with, for all j,

(i, j) assigned to location i and receiving the same number of blueprints ηAtdΓi,t+1.

13
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Figure 7: An illustration of the increments ξi, for the case N = 1000, a = 1, b = 2.

increments ξ n
N

,

k∑
n=1

ξ n
N
, (9)

where the pdf of the increment ξi is given by

Pr(ξi ∈ dx) =
b
a
N

Γ
(
a
N

)x a
N
−1e−bx dx. (10)

The parameters a
N

and b are sometimes refered to as the “shape” and the “rate” of the

gamma distribution, and Γ
(
a
N

)
is the gamma function evaluated at a

N
. The increments ξi

are indepenent of each other, and the properties of the gamma distribution imply that

Pr

(
N∑
n=1

ξ n
N
∈ dx

)
=

ba

Γ (a)
xa−1e−bx dx, (11)

which is the distribution of a gamma variable with shape a and rate b.

Using the gamma process is technically attractive for our purposes, since it captures in

a stylized way the fact that entrepreneurship is very risky. This is illustrated in Figure 7.

The figure shows a sample of increments ξi for the case N = 1000. The figure illustrates

that these increments tend to be close to zero for most of the locations; however, a small
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subset of random locations exhibit big spikes of random height. From an economic point

of view, this means that only the lucky few entrepreneurs who happen to find themselves in

the locations exhibiting the large spikes obtain a valuable allocation of blueprints.

The limit of the variables given by (9) as the number of locations N goes to infinity is

a Gamma process. It is a positive and increasing process, whose paths are not continuous

(they are only left continuous with right limits).4 This implies that any given location is

unlikely to receive a non-trivial allocation of blueprints. However because the process Γi,t+1

is a discontinuous function of i, a zero-measure of locations may receive a strictly positive

measure of blueprints, and the entrepreneurs who find themselves in these locations become

spectacularly wealthy.

Before proceeding, we would like to note that this extreme inequality setup is mostly for

illustrative purposes and technical convenience. Less extreme distributions5 would not affect

the economic insights, as long as we preserve some notion of distributional risk.

A final crucial assumption is that no agent knows the realization of the gamma process

path at time t. Everyone is trading behind the “veil of ignorance” about which locations

on the circle will obtain the valuable blueprints and which ones will obtain the useless

ones. Newly arriving entrepreneurs are therefore eager to share that risk by selling shares to

investors on the market before this uncertainty is resolved. These shares entitle investors to

a fraction υ of the profits that will be produced by the newly arriving firms in perpetuity.

A fraction 1− υ is “inalienable,” a reduced form way of capturing incentive effects of equity

retention.

3.4 Markets

At each point in time, an investor can trade a zero net-supply bond. We follow Blanchard

(1985) and assume that agents can also trade annuities with competitive insurance companies

that break even. These annuity contracts entitle an insurance company to collect the wealth

W
(j)
t of an agent j in the event that she dies at time t and in exchange provide her with an

income stream λW
(j)
t while she is alive. We refer to Blanchard (1985) for further details.

Investors at time t can trade costlessly in the shares of all companies that were created

prior to time t. Per blueprint, all such companies make the same profits π. For future use,

4The Gamma process is, however, continuous in probability. This means that, for any ε > 0,

limδ→0 Pr(|Γi+δ,t+1 − Γi,t+1| > ε) = 0.
5Something as simple as assuming that locations are finite rather than a continuum would produce less

extreme distributions without affecting the economic intuitions.
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we denote by Πt the value of the future stream of profits from the representative blueprint:

Πt = Et

[
∞∑
t+1

M i
s

M i
t

πs

]
, (12)

with M i
s the marginal-utility process of a given investor.

The shares of new firms are introduced to the market via intermediaries as follows: Every

investor at time t is assigned to a location i on the circle [0, 1). At each location i there is

a representative competitive intermediary, who purchases an equally weighted portfolio of

shares of companies located in an arc of length ∆i centered at location i. The intermediary

then offers the portfolio for purchase to the investors in location i. Intermediation requires

resources equal to ψA1−α
t f (∆i) per share. (We make the cost proportional to A1−α

t to ensure

that the cost of intermediation is a stationary fraction of the size of the aggregate economy).

Hence, to break even, the intermediary needs to sell each share of the portfolio at a price
1

∆i

∫ i+ ∆i
2

i−∆i
2

P
(j)
t dj + ψA1−α

t f (∆i) , where P
(j)
t is the price of a newly created firm in location

j. Assuming that there exist location-invariant equilibria such that P
(j)
t = Pt, the price of a

portfolio share is simply Pt+ψA1−α
t f (∆i) . To simplify notation, from now on, we will guess

that there exist equilibria with P
(j)
t = Pt, and will then verify their existence in the next

section.

Figures 8 and 9 illustrate how intermediaries can facilitate risk sharing in this economy.

By purchasing an equal-weighted portfolio of shares on an arc of length ∆, the interme-

diaries are able to “smooth out” the spikes of the gamma process. Indeed, as the Figure

illustrates, they can offer their investors a portfolio of blueprints that has the same mean

as the number of blueprints that arrive in each location, but is second-order stochastically

dominant. Specifically, by using properties of the gamma distribution, one can show that
1
∆

∫ i+ ∆
2

i−∆
2

dΓj is gamma distributed with shape a∆ and rate b∆, and accordingly it has mean

equal to a
b

and standard deviation equal to
√
a

b
√

∆
. Further, it holds that, if ∆2 > ∆1, then

1
∆2

∫ i+ ∆2
2

i−∆2
2

dΓj 32 1
∆1

∫ i+ ∆1
2

i−∆1
2

dΓj, where 32 denotes second-order stochastic dominance.

The arc-length ∆ has an intuitive interpretation as a correlation coefficient. Specifi-

cally, the correlation between the blueprints accruing to a given fund 1
∆

∫ i+ ∆
2

i−∆
2

dΓj and total

displacement
∫ i+ 1

2

i− 1
2

dΓj is
√

∆.

Intermediaries in each location are competitive and in an effort to attract investors they

determine ∆ in a way that maximizes investor welfare. Moreover, the assumption of perfect

competition ensures that intermediaries make no profits. Accordingly, they act as simple

pass throughs, enabling existing investors access to the newly created firms albeit at a cost.
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Figure 8: An illustration of how intermediaries help with risk sharing. The increments are

the same as in Figure 7, and ∆ = 0.5. The intermediary in position 0.5 provides an equal

weighted portfolio of the increments in [0.25, 075]. The intermediary in position 0.75 averages

the increments in [0.5, 1], while the intermediary in position 0 averages the increments in

[0, 0.25] ∪ [0.75, 1].

To allow for heterogeneity in the returns of existing investors, we assume that f (1) =∞,

implying that ∆ lies in the interior of [0, 1].

We conclude this section with two comments. First, the notion of a “location” should

not be understood geographically. It is simply a convenient device to produce heterogenous

returns across investors. Second, since the gamma process has independent increments, it is

immaterial whether investors invest in a single arc of length ∆ or a set of non-contiguous arcs

of total length ∆. Our construction only requires that these sets satisfy rotational symmetry.

17



0 0.2 0.4 0.6 0.8 1

Location

0.08

0.1

0.12

0.14

0.16

0.18

0.2

0.22

0.24

b
lu

e
p

ri
n

ts
 a

c
c
ru

in
g

 t
o

 d
if
fe

re
n

t 
lo

c
a

ti
o

n
s

0

0.2

0.05

0.1

0.1 0.2

0.15

Polar coordinates

0.2

0

0.25

0
-0.1

-0.2 -0.2

Figure 9: The distribution of equal weighted returns. The left figure depicts the blueprints

accruing to the portfolio formed by the intermediary in each location i, which is simply

an equal weighted average of the blueprints accruing to locations in an arc ∆ around the

intermediary’s location. The right figure is identical to the left figure except that the results

are now depicted in polar coordinates.

3.5 Budget constraints

With these assumptions, the dynamic budget constraint of an investor who resides in location

i, can be expressed as

W i
t = SE,it AtΠt +Bi

t + SN,it

(
Pt + ψA1−α

t f (∆)
)

+ cit, (13)

W i
t+1 = SE,it At (Πt+1 + πt+1) + (1 + rft )Bi

t + SN,it

ηυ

∆

∫ i+ ∆
2

i−∆
2

(Πt+1 + πt+1)At dΓi,t+1 + λW i
t+1,

where SE,it are the shares of the (representative) firm that is already traded at time t, Bi
t

is the amount invested in, rft the interest rate, and SN,it is the number of shares purchased

in the intermediary-provided portfolio of newly created firms. We normalize the supply of

shares of all firms to unity. A convenient way to express (13) is

W i
t+1

W i
t

=

1− cit
W i
t

1− λ

(φiB (1 + rft

)
+ φi2R

E
t+1 + φiNR

N,i
t+1

)
, (14)

where φiB ≡
Bit

W i
t−cit

, φiE ≡
SE,it AtΠt
W i
t−cit

, and φiN =
SN,it (Pt+φA1−α

t f(∆))
W i
t−cit

are the post-consumption

wealth shares invested by investor i in bonds, existing firms, and newly arriving firms re-
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spectively, and RE
t+1 ≡

Πt+1+πt+1

Πt
and RN,i

t+1 ≡
ηυ
∆
At
∫ i+ ∆

2

i−∆
2

(Πt+1+πt+1)dΓi,t+1

Pt+ψA
1−α
t f(∆)

are the gross returns

of existing firms and the portfolio of newly arriving firms that investor i invests in.

An important observation about (14) is that as long as P
(j)
t = Pt for all j ∈ [0, 1), the

choices φiB, φiE, and φiN , the choice of ∆i, and the choice of
cit
W i
t

are the same for all investors,

irrespective of their level of wealth and the location where they reside at time t, which

simplifies the solution and analysis of the model.

To ensure that P
(j)
t = Pt for all j ∈ [0, 1) we make one final assumption, namely that

investors re-locate once returns in period t+ 1 have materialized, so that the total wealth of

all the investors positioned in each location becomes equal across locations.6

The motivation behind this assumption is free entry into locations. Conditional on all

funds offering the same arc-length ∆i = ∆, and given the location-invariant nature of the

distribution of new firms across the circle, it makes sense for investors to move to locations

that offer lower prices. This outcome occurs when wealth moves across locations in such a

way that the total wealth in every location is equalized. (In turn, this would make the choice

of ∆i location invariant, confirming the anticipation ∆i = ∆.)

3.6 Location-invariant equilibrium

The definition of a location-invariant equilibrium is standard. Such an equilibrium is a

collection of prices Πt, pt, and Pt, portfolio allocations φB, φE, and φN , a choice of ∆,

and consumption processes for all agents cjt such that a) Given prices, φB, φE, φN , ∆,

and cjt are choices that maximize (2) subject to (14), b) the consumption market clears:∫
j
dcjt = Atπt − ψA1−α

t f (∆), c) the markets for all shares (both new and existing) clear:∫
j
dSE,jt =

∫
j
dSN,jt = 1, and d) the bond market clears:

∫
j
dBj

t = 0.

4 Solution

Next we construct an equilibrium that is both location-invariant, time-invariant and sym-

metric, in the sense that all agents choose the same portfolio. Specifically, we guess that

there exist an equilibrium whereby φB = 0, and the portfolio shares φE and φN , the in-

terest rate rf , the participation arc ∆, the valuation ratios πE ≡ Πt
πt

and PN ≡ Pt
Atπt

, and

the consumption-to-wealth ratio c ≡ cit
W i
t

are the same for all agents and constant across

6Mathematically, such a re-location is always possible; one of the infinitely many ways to achieve it is to

assign the investor with wealth W
(j)
t to location F−1(W

(j)
t ), where F (·) is the wealth distribution.
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time. After computing explicit values for the constants that support such an equilibrium,

we provide sufficient conditions for its existence.

It is best to construct the equilibrium by specializing to the case where investors have

logarithmic preferences, which we assume in this section. Later we show how to extend the

results to cases where investors have constant relative risk aversion different than one, or

more general recursive preferences.

Maintaining the supposition that Πt
πt

is a constant equal to PE, the return RE
t+1, can be

expressed as

RE
t+1 =

πt+1 + Πt+1

Πt

=
πt+1

πt

(
1 + PE

PE

)
=

(
1 + PE

PE

)(
At+1

At

)−α
=

(
1 + πE

PE

)
(1 + ηΓt+1)−α . (15)

Moreover, using the supposition that Pt
Atπt

is a constant equal to PN and letting δ ≡ ψA1−α
t

Atπt
,

the return on an equal-weighted portfolio of newly created firms over an arc ∆ is

RN
t+1 =

υAt (Πt+1 + πt+1) η
∆

∫ i+ ∆
2

i−∆
2

dΓi,t+1

Atπt (PN + δf (∆))
(16)

= RE
t+1

PE

PN + δf (∆)

(
ηυ

∆

∫ i+ ∆
2

i−∆
2

dΓi,t+1

)
. (17)

The following proposition provides a set of necessary conditions associated with a sym-

metric, location-invariant equilibrium.

Proposition 1 Assuming that a location-invariant, time-invariant, and symmetric equilib-

rium exists, the unique values of of φk and c that support such an equilibrium are φB = 0,

φE = E
[
(1 + Z)−1] (18)

φN = 1− φE, (19)

with

Z ≡ ηυ

∆

∫ i+ ∆
2

i−∆
2

dΓj,t+1 (20)

gamma distributed with shape a∆ and rate b∆
ηυ

, and

c = 1− β (1− λ) . (21)
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The equilibrium values of PE and PN are

PE = φE
1− δf (∆)

1− β (1− λ)
β (1− λ) , (22)

PN = (1− φE)
1− δf (∆)

1− β (1− λ)
β (1− λ)− δf (∆) , (23)

and the interest rate equals

1 + rf =
E
[
(1 + Z)−1]

E
[(
RE
t+1

)−1
(1 + Z)−1

] . (24)

Finally, the equilibrium value of ∆ is given by the solution of the equation

[1− β (1− λ)]
δf ′ (∆)

1− δf (∆)
= β (1− λ)

∂E [log (1 + Z)]

∂∆
. (25)

Proposition 1 contains an explicit description of a symmetric, time- and location-invariant

equilibrium.

We analyze the properties of the equilibrium in steps. First, we derive the implications

of the equilibrium for risk sharing both within and across cohorts of entrepreneurs. Then we

discuss implications for the size of the financial industry and its relation to the equilibrium

expected excess returns of existing firms and new ventures.

4.1 Risk sharing implications

For presentation purposes, it is convenient to start the analysis by treating ∆ not as a choice

variable, but rather as an exogenous parameter.

To derive the implications of the model for risk sharing between and accross investor

cohorts, we start with the following lemma.

Lemma 2 Aggregate wealth growth is given by

Wt+1

Wt

= (1 + ηΓt+1)1−α , (26)

while an individual investor’s wealth growth (conditional on survival) is given by

W i
t+1

W i
t

=
Wt+1

Wt

(
1

1− λ

)(
1 + PE

1 + PE + PN

)(
1 + ηυΓt+1

1 + ηΓt+1

)
Xi,t+1, (27)

where

Xi,t+1 ≡
1 + ηυΓt+1

1
∆

∫ i+ ∆
2

i−∆
2

dLj,t+1

1 + ηυΓt+1

(28)

dLj,t+1 ≡
dΓj,t+1

Γt+1

. (29)
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Equation (27) reveals that risk is imperfectly shared both within and across cohorts. The

lack of within-cohort risk sharing is captured by the term Xi,t+1, which reflects heterogenous

investment returns experienced by existing agents. This is driven by their inability to invest

in all available ventures. Indeed, for ∆ = 1 the term Xi,t+1 becomes one, and the within-

cohort lack of risk sharing disappears.

However, this is not the only dimension along which risk is imperfectly shared. Even if

∆ = 1, equation (27) shows that individual wealth
W i
t+1

W i
t

and aggregate wealth Wt+1

Wt
are not

perfectly correlated as long as υ is less than one. The random term 1+ηυΓt+1

1+ηΓt+1
captures the

inter-cohort lack of risk sharing. It is driven by the fact that newly arriving entrepreneurs

retain a fraction 1 − υ of new company shares. Indeed, for υ = 1 the term 1+ηυΓt+1

1+ηΓt+1
would

disappear.

In summary, ∆ controls the extent of intra-, while υ controls the extent of inter-cohort

risk sharing. If ∆ = υ = 1, then risk is perfectly shared both within and accross cohorts;

individual wealth growth and aggegate wealth growth are perfectly correlated. However,

even in that case individual and aggregate wealth growth differ by a negative constant.

Indeed, aggregating the wealth growth of all investors surviving into t+ 1, we obtain

log

(
(1− λ)

∫
i
W i
t+1di

Wt

)
− log

(
Wt+1

Wt

)
= log

(
1 + πE

1 + PE + PN

)
< 0. (30)

The negative constant reflects that the wealth owned by existing investors does not

include new-firm endowments, which are nevertheless part of aggregate wealth.

4.2 Implications for the SDF

Since the wealth-to-consumption ratio is constant, our conclusions on wealth changes apply

without modification to consumption changes of individual investors: an individual investor’s

consumption change is given by the right hand side of (27). With logarithmic utilities, the

SDF Mt of an individual investor is given by

M i
t+1

M i
t

= β (1− λ)

(
W i
t+1

W i
t

)−1

(31)

∝ (1 + ηΓt+1)α
(

1 +
ηυ

∆
Γt+1

∫ i+ ∆
2

i−∆
2

dLj,t+1

)−1

.

For the markets where all investors are participating (in particular, the market for exist-

ing stocks and the risk-free asset), any
M i
t+1

M i
t

is a valid SDF, and so is Mt+1

Mt
≡ E

[
M i
t+1

M i
t
|Γt+1

]
.
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By the properties of gamma distributed variables, the quantity
∫ i+ ∆

2

i−∆
2

dLj,t+1 is beta dis-

tributed and independent of Γt+1. One can provide an explicit closed form solution for Mt+1

Mt

as a function of Γt+1 in terms of a hypergeometric function. For our purposes, we wish to

investigate whether Mt+1

Mt
is increasing or decreasing in Γt+1:

Lemma 3 Mt+1

Mt
is decreasing in Γt+1 when risk sharing both across and within cohorts is

perfect, that is, when ∆ = 1 and υ = 1. However, Mt+1

Mt
is increasing in Γt+1 when either υ

or ∆ is sufficiently small.

Lemma 3 shows how risk sharing imperfections can determine whether the marginal

utility of consumption of the representative investor rises or declines as the extent of dis-

placement Γt+1 increases. If risk is shared perfectly both within and across cohorts, then

large realizations of Γt+1 are “good news” for the representative investor. The gains in the

value of the portfolio of new firms are enough to undo the losses on the existing assets owned

by the investor. However, away from the perfect risk sharing limit, large realizations of Γt+1

are “bad news.” For instance, if risk is shared perfectly within cohorts but imperfectly across

cohorts, then a fraction of the value of new ventures cannot be separated from the newly

arriving cohort of agents. Hence, the losses on the portfolio of existing assets cannot be

offset by the gains on the portfolio of new ventures. This is the key insight of ?. But even

if risk is perfectly shared across cohorts, large realizations of Γt+1 may be (unconditionally)

perceived as states of high marginal utility (“bad states”). Conditional on Γt+1 being high,

the only certain outcome is a decline in the value of existing assets. Even though existing

investors as a group obtain the gains of that growth, they do not know ex ante whether they

will receive a large or a small allotment of the new firms. Since investors are risk averse,

they assign greater weight to the event that they end up with a disproportionately small

share of the gains from growth, and therefore they perceive a high realization of Γt+1 as bad

news. This intuition is reminiscent of the intuition put forth by ?, Kogan and Papanikolaou

(2014), and Garleanu et al. (2015).

Hence our model nests models of perfect risk sharing as well as of imperfect risk sharing,

across and within cohorts, as special cases. However, the most important difference is that it

proposes a view of the financial industry as a (costly) device to improve risk sharing, yielding

joint predictions on how expected returns, the size of the financial industry, the interest rate,

etc. change as, say, displacement increases.
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4.3 Equilibrium excess returns

Having derived the equilibrium SDF we can now discuss the implications of the model for

expected excess returns. We start with a comparison of the expected returns on new ventures

as opposed to existing firms. We then discuss implications for the excess return on the stock

market. Using (15), (17), and the results of Proposition 1 leads to

E

[
RN

RE

]
=

1− φN (∆)

φN (∆)
× E

[
ηυ

∆

∫ i+ ∆
2

i−∆
2

dΓj,t+1

]
. (32)

The right-hand side of (32) contains two terms. The first term, 1−φN (∆)
φN (∆)

, is a declining

function of φN , the share of aggregate wealth invested in new ventures. The second term has

expectation equal to ηυ a
b
, which is independent of ∆, and indeed of any endogenous model

variable. Equation (32) shows that the expected return on new investments as compared to

existing investments is negatively related to φN .

Lemma 4 For any ∆ ∈ [0, 1] and any υ ∈ [0, 1] it holds that E
[
RN

RE

]
≥ 1.

Lemma 4 may appear counterintuitive at first pass. When φ3 is small, then the bulk of

investors’ wealth is invested in existing assets, whose value is declining in aggregate displace-

ment Γt+1. Accordingly, one would expect new assets to act as a partial hedge against capital

losses on existing assets, and hence to have a low expected return. To see this, rewrite (17)

as

RN
i,t+1 = υ

1 + PE

PN + δf (∆)

ηΓt+1

(1 + ηΓt+1)α
1

∆

∫ i+ ∆
2

i−∆
2

dLj,t+1.

The properties of the gamma process imply that 1
∆

∫ i+ ∆
2

i−∆
2

dLj,t+1 is independent of Γt+1, and

thus RN
i,t+1 can be viewed as containing the component Γt+1

(1+Γt+1)α
, which is increasing in

Γt+1, and the “idiosyncratic” component 1
∆

∫ i+ ∆
2

i−∆
2

dLj,t+1, which is independent of Γt+1. So,

conventional reasoning would suggest that especially when an investor places a small weight

of her wealth on new assets, the “idiosyncratic” component would become irrelevant, and

the investor would value the hedging component of RN
i,t+1, rendering its equilibrium excess

return low, not high.

The resolution of this puzzle is tied with the fact that the idiosyncratic risk is priced

in equilibrium, and increasingly so as ∆ (and hence the allocation to new assets) becomes

smaller. Indeed as ∆ decreases, both the variance and the skewness of 1
∆

∫ i+ ∆
2

i−∆
2

dLj,t+1 become

arbitrarily large, while the expected value is always one. In economic terms, this means that
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an investment in new assets results in a loss with probability approaching one, and results

in a spectacularly high return with very small probability. Since the investor is risk averse,

she finds this risk-return tradeoff unattractive and requires a higher compensation for that

risk.

At the opposite extreme of perfect risk sharing (∆ = 1, υ = 1), the expected excess return

of new ventures continue to exceed the expected excess of existing assets, but for an entirely

different reason: in this case the marginal agent’s consumption is perfectly correlated with

aggregate consumption and new ventures deliver high payoffs (a large nunmber of blueprints)

in states of the world where the consumption growth of existing investors would be high, not

low.

In summary, for any constellation of parameters, the expected ratio of gross returns

of new ventures to existing assets exceeds unity. Interestingly, this gap exists even in cases

where the investor’s marginal utility increases in Γt+1, i.e., in cases where the investor desires

to hedge against fluctuations in displacement risk. Indeed, the smaller is ∆ — and hence

the higher the desire to hedge displacement risk — the larger is the gap in expected returns

between the new venture portfolio and existing firms.

Inspection of (15) and (16) reveals that the returns RE
t+1 and RN

t+1 are negatively cor-

related. This result hinges critically on the fact that — purely for simplicity — the model

includes only displacement shocks, but no “neutral” productivity shocks (or any other busi-

ness cycle shocks for that matter), which would affect both new and existing firms in a similar

fashion. Such shocks would easily render the correlation between RE
t+1 and RN

t+1 positive, but

less than one; moreover they would introduce an additional source of risk for both existing

and new assets, which would require additional compensation in form of an enhanced excess

return.

4.4 Equilibrium interest rate

The equilibrium interest rate is declining in η, and is increasing in υ and ∆.

A higher value of η implies a more rapid (and more volatile and skewed) decline in the

value of existing assets. Faced with such a modified profile, existing investors attempt to save

more in order to leave their consumption profile unaffected. Since aggregate bond holdings

must remain zero, the interest rate must decline to clear the market.

An increase in υ implies that existing agents can use purchases of new assets to reduce

the impact of displacement shocks on their existing assets. Hence, less precautionary savings

are required, and the interest rate increases. Finally, an increase in ∆ also helps to reduce
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the idiosyncratic volatility of an investor’s wealth, and hence helps reduce precautionary

savings.

4.5 The participation arc ∆ and the size of the financial industry

So far we have treated the participation arc ∆ as an exogenous parameter. Now we discuss

how it is determined inside the model. Equation (25) determines the size of the participation

arc ∆, which is a monotone function of the resources devoted to the financial industry.

To gain some intuition on the determinants of the size of the financial industry, we provide

the following comparative static results.

Lemma 5 ∆ is an increasing function of η and υ and a declining function of δ.

Lemma 5 states, that as expected displacement increases (an increase in η), it becomes

more meaningful to expend resources so as to reduce the uncertainty associated with risky

new ventures. Similarly, the lower the fraction of shares that is retained by newly arriving

agents (υ), the larger the incentive to expend resources to risk-share with the newly arriving

agents. Finally, a higher value of δ increases the cost of the financial industry and hence the

resources expended into it.

The following Lemma summarizes the impact of increased displacement on the economy,

taking into account the impact of endogeneizing ∆.

Lemma 6 Increased displacement (a higher η) implies a) a larger fraction of resources de-

voted to the financial industry (a higher ∆); b) a higher fraction of the aggregate portfolio

directed towards new ventures (higher φN); c) a lower equilibrium interest rate rf .

5 Private equity and “real” assets

5.1 Private equity

To prepare for our discussion of private equity, we extend the model to allow some of the

blueprints to accrue to existing firms. Specifically, we assume that the total number of new

blueprints can be expressed as ηAt
(
Γet+1 + Γt+1

)
, where Γet+1 is the number of blueprints

accruing to existing firms and Γt+1 continues to capture the number of blueprints accruing

to new firms. Γet+1 is gamma distributed with shape aE and rate b, so that Γet+1 + Γt+1 is

gamma distributed with shape aE + a and rate b.
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How blueprints are allocated to existing firms is irrelevant for our purposes, since investors

hold a value-weighted portfolio of all existing firms, so that the distribution of blueprints

across existing fims is irrelevant.

In this version of the model, the return on existing firms becomes

RE
t+1 =

Atπt+1

(
1 + ηΓEt+1

) (
1 + PE

)
AtπtPE

=

(
1 + PE

PE

) (
1 + ηΓEt+1

)
1 + η

(
ΓEt+1 + Γt+1

) (1 + η
(
ΓEt+1 + Γt+1

))1−α
,

while the return on new assets becomes

RN
t+1 =

υAt (Πt+1 + πt+1) η
∆

∫ i+ ∆
2

i−∆
2

dΓi,t+1

Atπt (PN + δf (∆))
=

RE
t+1

1 + ηΓEt+1

PE

πN + δf (∆)

(
ηυ

∆

∫ i+ ∆
2

i−∆
2

dΓi,t+1

)
.

Repeating the proof of Proposition 1, it is straightforward to establish that all the results

of Proposition 1 hold after replacing Z with

Ze ≡
ηυ
∆

∫ i+ ∆
2

i−∆
2

dΓj,t+1

1 + ηΓEt+1

.

Having introduced the possibility that some blueprints accrue to existing firms, we now

sketch how to introduce private equity. We assume that each period a fraction of the existing

firms lose their eligibility to receive new blueprints. Newly arriving entrepreneurs have the

ability to purchase those firms from existing agents for a value Π + P e per blueprint, and

restore their ability to receive an allocation of blueprints over the next period, at which point

the firms are re-introduced into the public market.

The private equity firms can sell shares to the investors with whom they share the lo-

cation. Mirroring the assumptions of the baseline model, these firms can only purchase

companies located within a distance of ∆
2

from the firm.

This version of the model would be equivalent to the baseline model. Hence, whether

the blueprints arrive to newly created firms, or firms taken private and then re-listed is

irrelevant for this model. The important economic force is the inability to hold a fully

diversified portfolio of all non-publicly traded firms.

5.2 Real assets

So far we have studied a model where labor is the only factor of production. We now

extend the model to introduce additional factors. We distinguish between two types of

factors, namely those that are not tied to a specific blueprint but are useful for all productive
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purposes, and those that are specific to a given blueprint. An example of the first factor

of production would be commercial real estate or commodities, while an example of the

second factor of production would be specialized equipment required to manufacture a given

intermediate good.

5.2.1. Land

The introduction of a factor such as land is straightforward. To be as explicit as possible

that land is not tied to any intermediate good, we assume that land is useful only in the

production of the final good. We discuss at the end of this section how to introduce land in

the production of intermediate goods as well.

Land is owned by existing agents and rented out to final-good producing firms, so that

aggregate output is given by

Yt = F ζ
t

(
LFt
)1−α−ζ

[∫ At

0

xαj,tdj

]
, (33)

where ζ ∈ (0, 1 − α) is the share of output that accrues to land. Total land is fixed and

normalized to one. Given the Cobb-Douglas structure of (33), it follows that the rental rate

of land is

rFt = ζYt. (34)

Once again we construct an equilibrium where the price-to-rent ratio P F =
PFt
rFt

is con-

stant, so that the return on land is given by RF
t+1 =

rFt+1+PFt+1

PFt
= Yt+1

Yt
1+PF

PF
. Repeating the

arguments of Section 4.1, the wealth evolution of an individual investor is

W i
t+1

W i
t

=
1

1− λ
Wt+1

Wt

(
ζ
(
1 + P F

)
α (1 + PE + PN) + ζ (1 + P F )

+

α (1− α)
(
1 + PE

)
α (1 + PE + PN) + ζ (1 + P F )

(
1 + ηυΓt+1

1 + ηΓt+1

)
Xi,t+1

)
, (35)

for some new constants P F , PN , and PE. Comparing (35) with (27), the only difference is

that the wealth growth of an individual investor now gains a fraction
ζ(1+PF )

α(1+PE+PN )+ζ(1+PF )
of

aggregate wealth growth. The reason is inutitive: Since land captures a constant fraction of

total output, it actually benefits from higher values of Γt+1, since those are associated with

higher output growth.
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For sufficiently small ∆, υ, and ζ, it follows that the SDF is increasing in Γt+1. And

since the return RE
t+1 is declining in Γt+1, while RF

t+1 is increasing in Γt+1, it follows that

E
(
RF
t+1

)
< E

(
RE
t+1

)
. Indeed, in addition E

(
RF
t+1

)
< 1+rf , a result that, however, depends

critically on the absence of neutral productivity shocks in the model.

5.2.2. Specialized equipment

Unlike a factor of production whose return is not tied to a specific blueprint, the behaviour

of a factor of production that is closely tied with a specific blueprint would be quite different.

To illustrate what would happen in such a case, we assume that in addition to labor, the

production of the new goods requires a location-specific capital ki

xi,t = kνi l
1−ν
i,t ,

where li,t is the amount of labor used in the production of intermediate good i and ki denotes

an irreversible capital investment ki that is specific to the location of a blueprint and its

vintage. Capital for the arriving vintages is produced by converting consumption goods to

capital goods with one unit of investment good requiring one unit of the consumption good.

Similar to the baseline model, the financial industry allows existing investors at time ∆

to invest in capital goods in an arc of length ∆ without knowing which locations will be

receiving blueprints in the next period. This capital is then sold to the newly arriving firms

in the respective locations once production commences at time t+1. We suspend the market

for the sale of new firm shares to existing investors prior to the resolution of the uncertainty

about their productivity; shares of new firms are tradeable only after their productivity is

known. This assumption is inessential, but it will allow us to illustrate an analogy to the

baseline model.

We will only sketch the solution of this version of the model, since the key intuitions are

no different than the baseline model. In this version of the model aggregate output evolves

according to

Yt+1

Yt
=

(
At+1

At

)1−(1−ν)α

in steady state. The owners of capital goods extract a fraction ν of the present value of

profits of the firms produced in location i, so that the return from investing in the new

capital goods is given by

RN
t+1 =

νAt (Πt+1 + πt+1) η
∆

∫ i+ ∆
2

i−∆
2

dΓi,t+1

Atkt (1 + ψf (∆))
(36)

29



which is very similar to equation (17), except that existing investors obtain a fraction ν of

total profits and the cost of their investment is given by Atkt (1 + ψf (∆)) , where Atkt is the

number of investment goods and 1 + ψf (∆) is the cost per unit of capital good. Since the

equilibrium of this model features a constant price-to-profits ratio in equilibrium, equation

(36) can alternatively be expressed in q-theoretic fashion as

RN
t+1 =

ν π(kt+1)
kt

(
1 + PE

)
η
∆

∫ i+ ∆
2

i−∆
2

dΓj,t+1

1 + ψf (∆)
, (37)

where ν π(kt+1)
kt

is the marginal product of capital at firm inception and 1 + ψf (∆) is the

marginal cost of converting one unit of consumption to capital. Comparing (37) with (17)

shows that ν plays a similar role to υ, in that it controls the fraction of new firm value that

accrues to existing investors. However, unlike the baseline model the reason why existing

investors capture that fraction is because they are providing the capital goods that are

required for production, rather than insuring the entrepreneur.

In this version of the model the equilibrium quantity that adjusts to clear markets is kt+1,

the quantity of capital, rather than the valuation ratio PN . Hence, all the intuitions of the

baseline model that pertain to the magnitude of PN carry over to the determination of kt+1.

For example, a mean–preserving spread in ην
∆

∫ i+ ∆
2

i−∆
2

dΓj,t+1, or an increase in ψ (a decrease

in the efficiency of the financial industry) will reduce the investment in new capital goods

in steady state. By contrast, such a spread would raise the attractiveness (and hence the

equilibrium price) of a factor like land, which is not tied to a specific factor of production.

We conclude by noting that even though we drew a stark distinction between factors of

production that are tied to specific blueprints and those that are not, in reality the distinction

is not so stark, with many factors being convertible between different uses at some cost.

6 Further Discussion

We discuss here how to interpret in the context of our model various other economic quan-

tities and institutions.

6.1 Labor income and pension funds

Labor income benefits from displacement in our model since the arriving firms compete for

labor services, which are in fixed supply. Indeed, total wages increase at the same rate as

aggregate output. Moreover, we have assumed that workers are hand-to-mouth consumers
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who are not actively participating in financial markets. These assumptions are purely for

simplicity and can be easily relaxed.

Suppose for instance that workers are allowed to participate in financial markets. More-

over, suppose that the production of a unit of each intermediate good takes one unit of

a labor composite good, which is a Cobb-Douglas aggregate of labor inputs provided by

different cohorts of workers

lt =
∏

s=−∞..t

(lt,s)
at,s , (38)

where lt,s is the labor input of workers born at time s and the weights at,s are given by

at,s = ∆As
At
. This specification implies that even though the aggregate wage bill grows at the

rate of aggregate output, the fraction of wages accruing to a given cohort of workers declines

over time and indeed at the same rate as the profits of existing firms.

One motivation for such a specification is skill obsolecence: As the number of blueprints

expands, the skills of a given cohort of workers becomes progressively less useful.

If one were to adopt equation (38), and allowed workers access to financial markets

on the same terms as firm owners, then all our conclusions would carry through without

modification: With such a specification, workers’ human capital would exhibit a similar

exposure to displacement to that of the value of existing firms, making workers eager to

hedge displacement risk by investing in newly arriving companies.

In particular, if one took the view that pension funds invest on behalf of workers in a

way that maximizes their welfare, then an increase in displacement activity would explain

the increased popularity amongst pension funds of investment vehicles offering (positive)

exposure to displacing firms.

6.2 Institutional investors and alternative asset classes

With the assumptions we made in the paper, existing investors differ in their return real-

izations, but collectively their portfolios finance a consumption process that is a declining

fraction of aggregate consumption. Suppose instead that someone envisaged an institutional

investor with the stated goal of financing a cash-flow stream that grows at the same rate as

aggregate consumption (imagine, for instance, a pension fund or university endowment fund

that needs to finance an expenditure stream growing at the same rate as aggregate output).

One commonly held view is that since profits are (roughly) a constant share of aggregate

output, the replicating portfolio of such a stream would be un-levered equity: that is, invest

a fraction of the portfolio in stocks and a fraction in bonds that corresponds to a firm’s
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leverage ratio, so that the resulting portfolio has cash flows that match those of un-levered

equity. Accordingly, these cash-flows would grow at the rate of aggregate output growth.

Figure 2 demonstrates clearly that such a strategy would not attain the stated goal. Our

model offers a simple explanations for this fact, namely that, even though existing investors

hold the market portfolio (i.e., all firms in existence) at any point in time, and all firms are un-

levered, the consumption process that is financed by such a portfolio is a declining fraction of

aggregate consumption. The reason is that a fraction of the portfolio is used up every period

to finance new firm purchases. If one wanted to replicate a cash flow process that remains a

constant (or, more generally, stationary) fraction of aggregate consumption, then one would

have to invest disproportionately more (than the representative agent) in investment vehicles

that are negatively exposed to displacement risk or in factors of production that are not as

exposed to displacement.

This observation may help explain the attractiveness of alternative asset classes and real

assets for institutional investors.

7 Calibration

In this section we calibrate the model. Our goal is to obtain a sense of the quantitative mag-

nitudes for the share of the aggregate portfolio held in the form of alternative investments,

the expected returns, interest rates, etc., that are implied by this model.

For calibration purposes it is convenient to maintain the assumption that agents have unit

intertemporal elasticity of substitution, but have risk aversion γ that may be different than

one. Moreover, our calibration focuses on the version of the model presented in Section 5.1,

which allows existing firms to obtain blueprints. This is motivated by both realism and the

desire to ensure that the dividends of existing firms and aggregate consumption growth are

positively correlated (even in the absence of neutral productivity shocks).

The introduction of a risk-aversion coefficient γ 6= 1 doesn’t change the model in a

substantive way. The appendix describes the straightforward modifications necessary.

We abstract from issues such as illiquidity, lock-up periods, etc., which are quite common

in private equity investments. As a result we choose to define a period to be equal to five

years in our calibration. By lengthening the horizon, the Euler equation applies between

times when the investor may actually have a chance to make a portfolio choice in reality.

Consistent with common practice, we report returns at an annualized frequency to facilitate

comparison with the literature.

Table 3 contains the parameters that we choose. The parameters aE, a, and b control
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aE 4 β 0.97 υ 0.8

a 0.8 1− λ 0.98 ∆ 0.5

b 0.6 γ 6 α 0.92

δ 0.01 f(∆) 1

Table 3: Parameters used for the calibration

the distributions for the arrival of blueprints to existing and new firms. We choose these

parameters to match as closely as possible the mean and variance of five-year real growth

rates of aggregate consumption and the dividends of the market portfolio. To obtain a better

understanding of these parameters, we note that the parameter aE is five times larger than

a. This means that (on average) the existing firms obtain five blueprints for every blueprint

accruing to a newly born firm over a five-year horizon. As a result, the ratio aE

a
controls how

quickly the market value of existing firms declines as a fraction of total market capitalization

over a five-year horizon. With these choices the market capitalization of existing firms is on

average 87% of total market capitalization at the end of the five-year period, a number that

is consistent with the data. The parameter b is mostly a scaling constant. With this choice

of b we obtain an average (annualized) consumption growth rate of about 2 percent per year

and a volatility of consumption equal to 1.5% (annualized). The volatility of dividend growth

of the market portfolio is approximately 7% (annualized). The correlation between dividend

growth of the market portfolio (and accordingly stock market returns in this model) and

consumption growth is approximately 10%.

We choose 1 − λ = 0.98 to capture a birth rate of about 2% in the population, and

β = 0.97 to match a real risk free rate of about 1%. The risk-aversion parameter γ = 8

is sufficient to match the (un-levered) equity premium. The parameter α = 0.92 is chosen

to match the profit share of output in aggregate data (about 8%). The quantity δf (∆)

captures the added value of the financial industry as a share of aggregate profits. Since the

financial industry for the purposes of this paper is the private-equity industry, we choose a

very low number. This number is actually quite inconsequential for any of the quantities of

interest.

Finally, instead of fully specifying a function f (∆) we choose ∆ directly, since this is

the quantity that enters returns, interest rates and the share of the market portfolio that

is invested in alternative investments. A choice of ∆ equal to 0.5 implies that a typical

investor’s portfolio of new firms has a correlation of
√

0.5 with the cross-sectional average

of the returns of all private equity funds. Finally, the parameter υ = 0.8 means that the
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E(Re) E(RN) rf φN

Baseline 3.54 13.40 1.76 6.48

∆ = 0.7 2.08 5.39 3.34 8.48

υ = 0.5 3.80 5.63 1.47 5.85

β = 0.99 3.47 13.10 -0.50 6.48

δ = 0.02 3.55 13.43 2.04 6.48

Table 4: Un-levered excess return on existing assets (E[Re]), un-levered excess return of the

new assets portfolio provided by the intermediary (E[RN ]), risk-free rate (rf ), and fraction

of assets invested in new assets (φN). All entries in the tables are percentages. All returns

and excess returns are annualized. Rows correspond to different calibrations changing one

parameter while keeping all others unchanged.

founder retains approximately 20% of a firm’s equity.

Table 4 reports results of the calibration. The results are for un-levered returns. To relate

un-levered to levered returns (which is what we observe in the data) one has to multiply the

excess returns reported in the table by 1.6. Taking that into account, it is evident that the

model can easily produce large equity premiums and also low real interest rates. Moreover,

the fraction of assets invested in new assets is roughly consistent with the data.

The reason for the model’s quantitative success is quite simple: the representative in-

vestor’s wealth (and, accordingly, consumption) growth is more volatile than aggregate con-

sumption. Indeed, an investor’s (annualized) standard deviation of consumption growth is

approximately 5.7% in this model. This larger standard deviation at the individual level

is driven by the fact that innovation causes redistribution of wealth across investors with

some benefiting and some losing. Even with perfect inter-cohort risk sharing (υ = 1), the

premiums remain substantial as long as intra-cohort risk sharing is imperfect.
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A Proofs

Proof of Proposition 1. A first-order condition for portfolio choice for an investor with

logarithmic preferences is

E

[
RE
t+1 −RN

t+1

φB (1 + rf ) + φ2RE
t+1 + φNRN

t+1

]
= 0. (39)

Using the definitions of φE and φN and imposing φB = 0 and market clearing in the stock

markets implies φE = PE

PE+PN+δf(∆)
and φN = 1− φ2. Accordingly, using (15) and (17),

φB
(
1 + rf

)
+φER

E
t+1 +φ3R

N
t+1 =

PE

PE + PN + δf (∆)
RE
t+1

(
1 +

ηυ

∆

∫ i+ ∆
2

i−∆
2

dΓj,t+1

)
. (40)

Using (40) and (17) inside (39) and noting that PE

PN+δf(∆)
= φE

1−φE
leads to (18).

Having determined φE, it is straightforward to determine πE and PN . To start, we note

that with logarithmic preferences c = 1−β (1− λ) . Integrating (13), imposing asset market

and goods market clearing Ct
Atπt

= (1− δf (∆)) and re-arranging yields

1 + πE + PN =
1− δf (∆)

1− β (1− λ)
. (41)

Combining (41) with φE = PE

PE+PN+δf(∆)
results in (22)–(23).

The requirement E

[
REt+1−(1+rf)

φ1(1+rf)+φER
E
t+1+φNR

N
t+1

]
= 0 together with φB = 0 yields (24).

Proof of Lemma 2. Aggregate wealth at time t is equal to the value of all existing

firms plus the value of the newly arriving firms plus total profits, or:

Wt = Atπt
(
PE + PN + 1

)
. (42)

Using (42) and (8), we arrive at (26). As for (27), it follows from (14), (40), (15) and the

goods market clearing condition fact that c Wt

Atπt
+ δf (∆) = 1, which implies

1− c =
PE + PN + δf (∆))

(1 + πE + PN)
.

Proof of Lemma 3. When υ = 1 and ∆ = 1, Mt+1

Mt
∝ (1 + ηΓt+1)α−1 , which is decreasing

in Γt+1.

To prove the second sentence, suppose that υ < 1 or ∆ < 1. Then differentiating Mt+1

Mt

with respect to Γt+1 yields

∂
(
Mt+1

Mt

)
∂Γt+1

∝ (1 + ηΓt+1)α

ηαE
(

1

1+ ηυ
∆

Γt+1L
i,∆
t+1

)
(1 + ηΓt+1)

− E

(
ηυ
∆
Li,∆t+1

1 + ηυ
∆

Γt+1L
i,∆
t+1

) .
35



Fix a ∆. As υ becomes sufficienty small, the term inside square brackets converges to
ηα

(1+ηΓt+1)
, which is positive. Similarly, fix a value of υ and rewrite

∂
(
Mt+1
Mt

)
∂Γt+1

(1 + ηΓt+1)α 1
Γt+1(1+ηΓt+1)

∝ ηΓt+1αE

(
1

1 + ηυ
∆

Γt+1L
i,∆
t+1

)
− (1 + ηΓt+1)E

(
ηυ
∆

Γt+1L
i,∆
t+1

1 + ηυ
∆

Γt+1L
i,∆
t+1

)

= ηΓt+1

[
αE

(
1

1 + ηυ
∆

Γt+1L
i,∆
t+1

)
− E

(
ηυ
∆

Γt+1L
i,∆
t+1

1 + ηυ
∆

Γt+1L
i,∆
t+1

)]
−

E

(
ηυ
∆

Γt+1L
i,∆
t+1

1 + ηυ
∆

Γt+1L
i,∆
t+1

)
.

Since lim∆→0 Pr

(
Li,∆t+1

∆
> κ

)
= 0 for any κ > 0, it follows that lim∆→0E

(
1

1+ ηυ
∆

Γt+1L
i,∆
t+1

)
= 1,

lim∆→0E

(
ηυ
∆

Γt+1L
i,∆
t+1

1+ ηυ
∆

Γt+1L
i,∆
t+1

)
= 0 and hence the sign of

∂
(
Mt+1
Mt

)
∂Γt+1

is positive.

Proof of Lemma 4. E
[
RN

RE

]
can be written as

E

[
RN

RE

]
=

E [(1 + Z)−1] E [Z]

1− E [(1 + Z)−1]
=

E [(1 + Z)−1]E [Z]

E [Z(1 + Z)−1]
= 1− cov (Z, (1 + Z)−1)

E [Z(1 + Z)−1]
> 1,

where the first equality follows from (18) and the last inequality follows from the fact that

Z and (1 + Z)−1 are negatively correlated.

Proof of Lemma 5. It suffices to show that

∂2E
[
log
(

1 + ηυ
∆

∫ i+ ∆
2

i−∆
2

dΓi,t+1

)]
∂∆∂η

> 0 (43)

Differentiating E
[
log
(

1 + ηυ
∆

∫ i+ ∆
2

i−∆
2

dΓi,t+1

)]
with respect to η gives

∂E
[
log
(

1 + ηυ
∆

∫ i+ ∆
2

i−∆
2

dΓi,t+1

)]
∂η

= E

 υ
∆

∫ i+ ∆
2

i−∆
2

dΓi,t+1

1 + ηυ
∆

∫ i+ ∆
2

i−∆
2

dΓi,t+1

 .

Since x
1+ηx

is a concave function of x it follows that for ∆1 > ∆2, E

1
∆1

∫ i+ ∆1
2

i−∆1
2

dΓi,t+1

1+ η
∆1

∫ i+ ∆1
2

i−∆1
2

dΓi,t+1

>

E

1
∆2

∫ i+ ∆2
2

i−∆2
2

dΓi,t+1

1+ η
∆2

∫ i+ ∆2
2

i−∆2
2

dΓi,t+1

, which proves (43).
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