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Abstract

A Financial Stability Fund set by a union of sovereign countries can improve countries’ ability

to share risks, borrow and lend, with respect to the standard instrument used to smooth fluc-

tuations: sovereign debt financing. Efficiency gains arise from the ability of the fund to offer

long-term contingent financial contracts, subject to limited enforcement (LE) and moral hazard

(MH) constraints. In contrast, standard sovereign debt contracts are uncontingent and subject

to untimely debt roll-overs and default risk. We develop a model of the Financial Stability Fund

(FSF ) as a long-term partnership with LE and MH constraints. We quantitatively compare the

constrained-efficient FSF economy with the incomplete markets economy with default. In par-

ticular, we characterize how (implicit) interest rates and asset holdings differ, as well as how

both economies react differently to the same productivity and government expenditure shocks.

In our economies, ‘calibrated’ to the euro area ‘stressed countries’ , substantial efficiency gains

are achieved by establishing a well-designed Financial Stability Fund ; this is particularly true in

times of crisis. Our theory provides a basis for the design of an FSF - for example, beyond the

current scope of the Euroepan Stability Mechanism (ESM) - and a theoretical and quantitative

framework to assess alternative risk-sharing (shock-absorbing) facilities, as well as proposals to

deal with the euro area ‘debt overhang problem’.
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1 Introduction

“For all economies to be permanently better off inside the euro area, they also need to be

able to share the impact of shocks through risk-sharing within the EMU.”

This quote from the Five Presidents’ Report (2015) recognizes a widely accepted fact: without a

Federal Budget, or an institutional framework with similar fiscal automatic stabilizers for the euro

area, it is unlikely that it will efficiently exploit its capacity for risk-sharing local or country risks

with only private risk sharing and the existing EMU institutions1. In the aftermath of the financial

and euro crises, with the subsequent upsurge of social unrest and discontent, the Five Presidents’ call

seems timely and urgent2.

We develop a dynamic model of a Financial Stability Fund (FSF ) as a long-term partnership

addressing three features that are usually seen as the most problematic for a risk-sharing institution

to be sustainable. First, risk-sharing transfers should not become persistent, or permanent, transfers,

beyond the level of redistribution that partners would accept at any point in time, i.e. ex-post not only

ex-ante. Second, as in any insurance contract, the FSF must take into account moral hazard problems,

e.g. by avoiding current political costs, governments may increase future social and economic risks,

and it is not possible to make the Financial Stability Fund contract conditional on the effort a country

makes to reduce future liabilities and risks3. Third, risk-sharing among ex-ante equal partners without

debt liabilities is relatively easy to design and achieve but, for example, this is not the case among

European countries – in particular, the euro crisis has left a ‘debt overhang problem’ that aggravates

the euro area divide. Our Financial Stability Fund accounts for the first two features by taking them

as constraints, and accounts for the third by having country-specific long-term contracts and accounts,

which can adapt to the EU diversity and may be able to solve existing ‘debt overhang problems’ . In

sum, the Financial Stability Fund is a constrained efficient mechanism that can enhance countries’

ability to share risks, borrow and lend, with respect to the standard instrument used to smooth

fluctuations: sovereign debt financing.

In this paper we develop a model of Financial Stability Fund contracts between a risk-averse,

relatively small and impatient borrower (the sovereign country) and a risk-neutral lender (the fund

itself), and we evaluate its quantitative performance by calibrating the model to 1980-2015 data from

the euro area ‘stressed countries’, to see how they would have performed during this period had they

been in the fund. However, to assess the efficiency of the FSF it must be in relation to some other

risk-sharing mechanism. We use, as a benchmark, an incomplete markets model where sovereign

countries issue long-term defaultable debt in order to smooth their consumption.

1For example, Furceri and Zdzienicka (2015) estimate that the percentage of non-smoothed GDP shocks is 20% in

Germany, 25% in the United States, but 70% in the Euro Area (15) 1978 - 2010. Using their methodology, M. Lanati

estimates that it is 83% non-smoothed for EA(19), 1995 - 2015. Beraja (2016) has performed the counterfactual exercise

of having the United States being Independent States. He finds, using a ‘ Semi-Structural Methodology’ that, if the

employment rate’s cross-state standard deviation was 2.6% in 2010, it would have been 3.5% had it not been a fiscal

union.
2However, almost surprisingly, they leave the task for a future date:

“In the medium term, as economic structures converge towards the best standards in Europe, public

risk-sharing should be enhanced through a mechanism of fiscal stabilisation for the euro area as a whole.”

3Although ‘austerity programs’ , to gain financial assistance in the euro crisis, attempted this.
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In order to properly compare the FSF economy with the incomplete markets economy with default-

able debt (IMD), we ‘decentralize’ the fund contract generating the appropriate prices. For example,

both in the incomplete markets economy with default, and in the two-sided limited-enforcement FSF

economy, interest rates may differ from the risk-free rate. In the former, the positive spreads reflect the

risk of default, while in the latter the negative spreads reflect the risk that the lender’s participation –

or, with moral hazard, borrower’s incentive compatible – constraints become binding. Lower interest

rates deter the lender from lending, thus implementing the FSF lender’s enforcement constraint, which

in our simulations is a tight constraint: ‘at any point and state the lender’s expected profits must be

non-negative’. In both regimes, default is costly, resulting in autarky, with only a small probability

of being able to join the incomplete markets economy and issue long-term defaultable debt.

It is interesting to note how the FSF mechanism compares with – de facto defaultable – long-term

uncontingent sovereign debt contracts, currently in place, when the risk-averse borrowing country is

subject to similar shocks to those to which the euro area ‘stressed countries’ have been exposed, in

the last ten years. Without debt crises, the real euro crisis would not have been so severe, nor would

it have turned into a recession; consumption smoothing and, therefore, the welfare of the borrowing

country would have been higher, even if ex-post permanent transfers from the risk-neutral fund were

set to zero.

We are not the first to address these issues, and there are many proposals for how risks could

be shared in a monetary union, as there are for dealing with sovereign debt overhang problems. For

example, as an implicit criticism of different proposals to issue some form of joint-liability eurobonds,

Tirole (2015) emphasises the asymmetry issue: the optimal (one-period) risk-sharing contract with

two symmetric countries is a joint liability debt contract serving as a risk-sharing mechanism, while

the optimal contract between two countries with very different distress probabilities is a debt contract

with a cap and no joint liability, where the cap depends on the extent of solidarity, which is given by

the externality cost of debt default on the lender. With long-term relationships – as they are among

sovereign countries that form a union – better contracts can be implemented: the FSF contracts are

constrained efficient and can be implemented as long-term bonds with state-contingent coupons.

On the more practical side, a positive development within the euro crisis was the creation of the

European Stability Mechanism in 2012, which treaty (Ch. 4 Art. 12.1) establishes as its first principle

that:

If indispensable to safeguard the financial stability of the euro area as a whole and of its

Member States, the ESM may provide stability support to an ESM Member subject to

strict conditionality, appropriate to the financial assistance instrument chosen.

While this first principle assesses the need to have contingent contracts, it also limits its funding to

extreme events. Conditionality is a property of the optimal long-term contract that we characterize,

but in contrast with the ESM, the FSF is designed as a risk-sharing mechanism, not as a crisis-

resolution mechanism, and its conditionality is based on ex-post realisations, not on ex-ante promises

to reform, which often require ex-post renegotiations.

Our model of the FSF as a partnership builds on the literature on dynamic optimal contracts

with enforcement constraints (e.g. Marcet and Marimon 2017), as well as on the related literature

on price decentralization of optimal contracts (e.g. Alvarez and Jermann 2000, Krueger et al. 2008).

Our benchmark incomplete markets economy with long-term debt with default, builds on the model
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of Chatterjee and Eyigungor (2012), who extend the sovereign default models of Eaton and Gersovitz

(1981) and Arellano (2008) to long-term debt.

The paper is organized as follows. Section 2 presents the economy with incomplete markets and

sovereign defaultable long-term debt. Section 3 develops the FSF mechanism and Section 4 shows how

to decentralize the FSF contract with state-contingent long term bonds. Section 5 discusses the cali-

bration and data sources. Section 6 quantitatively compares the IMD and FSF regimes without moral

hazard, concluding with a welfare comparison and showing the ability of the FSF to confront ‘debt

overhang’ problems. Section 7 extends the calibrated model to account for moral hazard, showing how

allocations and bond prices change when incentive compatibility constraints are introduced. Section

8 shows how a simpler – less state contingent – Fund contract can be designed and decentralized.

Section 9 concludes.

2 The economy and the benchmark case of sovereign debt

financing

We consider a standard infinite-horizon representative agent economy, where the agent has preferences

for current leisure, l = 1− n, consumption, c, and effort, e, represented by U(c, n, e) := u(c) + h(1−
n)−v(e) and discounts the future at the rate β. We make standard assumptions on preferences4. The

agent has access to a decreasing returns labor technology y = θf(n), where f ′ > 0, f ′′ < 0 and θ is a

productivity shock, assumed to be Markovian; θ ∈ (θ1, ..., θN ), θi < θi+1. The economy is a small open

economy in a world with no uncertainty with interest rate r satisfying 1/(1 + r) ≥ β; an inequality

that, in general, we will assume to be strict. In order to borrow and save, the agent, which we also

identify with the government of the country, may have access to different financial technologies, which

will define different regimes, which we also call different economies.

The country also faces government expenditure shocks G = Gc + Gd, which together with the

productivity shock defines the exogenous state, denoted by s = (θ,G). Gc takes discrete values from

Gc ∈ {Gc1, . . . , GcNG} and is a Markov process with transition probability πG
c

(G′|s, e), and Gd is

i.i.d. over time with continuous distribution ν over Gd =
[
− m̄, m̄

]
. In addition, Gc and Gd are

independent with each other. The interpretation is that Gc are government expenditures and the

distribution of next period expenditures depend on the policies that the government implements in

the current period. In particular, the government can have a a better distribution of tomorrow’s

expenditures if it exercises sufficient effort in the current period (e.g. politically costly reforms are

more likely to result in lower government expenditures). Gd is a residual shock that cannot be affected

by government actions5. More precisely, we assume that given the current state, s = (θ,G), the next

period realizations of θ and G are independent and only the latter depends on effort. That is

π(s′|s, e) = πθ(θ′|θ)πG(G′|G, e)
4In particular, we assume that (c, n, e) ∈ R3

+, n ≤ 1, and u, h, v are differentiable, with u′(c) > 0, u′′(c) < 0, h′(c) >

0, h′′(c) < 0 and v′(c) > 0, v′′(c) > 0.
5The introduction of Gd is for technical reasons, as in Chatterjee and Eyigungor (2012). Notice that the composite

G shock admits a Markov structure as well, with state space G = ∪i
[
Gci − m̄,Gci + m̄

]
⊂ R and transition kernel

πG = πGc ⊗ ν.
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We assume that the cost of this effort are expressed in utility terms given by v(e). We assume

that high effort increases the probability of lower government expenditure, in this sense we can think

about effort as ‘austerity’ measures with utility costs which reduce primary deficit. We assume that

both v(·) and πG(G′|s, e) are continuous and twice differentiable in effort, moreover we assume that

v(·) is convex.

2.1 The incomplete market model with long-term bond financing

The incomplete market model is a quantitative version of the seminal model by Eaton and Gersovitz

(1981). We integrate three modeling advances in the recent literature, namely endogenous labor and

output, long-term bonds, and an asymmetric default penalty, to achieve a more complete description of

the business cycle dynamics of an small open economy with sovereign debt. We detail the specification

of the baseline incomplete market model in this section.

In the incomplete market model, the borrower can issue or purchase long-term bonds, which

promise to pay constant cash flows across different states. We model the long-term bond in the same

way as Chatterjee and Eyigungor (2012).

A unit of long-term bond is parameterized by (δ, κ), where δ is the probability of continuing to

pay out the coupon in the current period, and κ is the coupon rate. Alternatively, 1 − δ is to the

probability of maturing in the current period, and this event is independent over time. The size of

each bond is infinitesimal and the payment of each bond is independent in cross-section. As a result,

on average one unit of bond (δ, κ) will repay (1− δ) + δκ in the current period for sure. It also follows

that the bond portfolio has a recursive structure, in which only the size of total outstanding debt b

matters, regardless when a particular issue of the bond enters into the portfolio. Moreover, δ directly

captures the duration of the bond: if δ = 0 the bond becomes the standard one-period debt, and in

general, the average maturity of the bond equals to 1/(1 − δ), which is increasing in δ. The coupon

rate κ provides a flexible way to capture the coupon payment: δκ equals to the coupon payment on

each unit principal of outstanding debt.

For an outstanding bond portfolio of size b, its cash flow stream is given by (1 − δ)b + δκb,

δ(1− δ)b+ δ2κb, . . . . When there is no default, the price of a unit of a riskless long-term bond (δ, κ),

given a constant discount rate r, is:

q =

∞∑
t=0

[(1− δ) + δκ]
δt

(1 + r)t+1
=

(1− δ) + δκ

r + 1− δ
,

with the corresponding risk free yield to maturity:

r =
(1− δ) + δκ

q
− (1− δ)

2.2 The budget Constraint and default

Let bt denote the size of the bond portfolio (δ, κ) held by the borrower at the beginning of time t.

Following the convention in the literature, bt ≥ 0 means holding assets while bt < 0 means having

debt. The borrower first makes a decision on whether to default on the promised bond payment of

the entire bond portfolio bt.
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No default When the borrower chooses not to default, then the bond payment (1− δ)bt + δκbt will

be settled as promised: if bt ≥ 0, then the bond payment is part of the borrower’s time t income; else

if bt < 0, then the borrower will make the required payment to the lender. Choosing not to default

allows the borrower to stay in the bond market, so that the borrower may choose the bond holding

position bt+1 for the next period. The difference between bt+1 and the remaining principal δbt is the

net issuance at time t. Due to the recursive structure of the long-term bond, the cash flows starting

from t + 1 onward of both bt+1 and δbt are proportional, and therefore the same unit bond price

applies to both. As to be explained below, the bond price is a function of the exogenous shock st and

the bond position bt+1 for the next period, thus we use q(st, bt+1) to denote this function. It follows

that when the borrower chooses not to default, the budget constraint is as follows:

ct + q(st, bt+1)(bt+1 − δbt) ≤ θtnαt −Gt + (1− δ + δκ)bt.

Default Upon choosing default, the borrower is excluded from the bond market immediately and

enters into autarky. As a result, the time t consumption is given by

ct = θp (θt)n
α
t −Gt.

The exclusion lasts for a random number of periods. If the borrower is excluded from the market

in the previous period, then with probability λ < 1 the borrower regains access to the bond market in

the current period, and with remaining probability 1−λ > 0 the borrower stays in autarky. Moreover,

upon regaining access to the bond market, the borrower starts from a zero bond position.

Besides the exclusion from the bond market, the borrower also suffers from a productivity penalty

in autarky. As in Arellano (2008), the penalty takes the following form:

θp (θ) =

θ̄, θ ≥ θ̄

θ, θ < θ̄
with θ̄ = ψEθ,

which is asymmetric in the sense that the magnitude of the penalty is zero for lower than average”

productivity states, while it is equal to θ − θ̄—increasing in θ—for higher than average productivity

states. The level of the penalty is parameterized by ψ > 0. Given that 0 < θ1 < · · · < θNθ , on the one

hand the penalty becomes a benefit if ψ ≥ θNθ/Eθ; and on the other hand, the penalty ceases to be

effective if ψ < θ1/Eθ, since the borrower can always choose to have zero debt while enjoying higher

productivity levels. An asymmetric penalty is crucial for the quantitative performance of models

with sovereign debt and default. When the penalty is properly specified, it creates incentives for the

borrower to borrow more in good states while deterring default temptation by harsh punishment, and

these high levels of debt then induce the borrower to choose default in bad states where the penalty

is zero.

2.3 Recursive Formulation

If b the size of the long-term bond portfolio held by the borrower at the beginning of a period6, then

(s, b), s = (θ,G), is the state. Let V bn (b, s) denote the value function of the borrower, in the incomplete

6We assume that b ∈ B = [bmin, bmax], with −∞ < bmin < 0 ≤ bmax < ∞., where we will choose bmin and bmax so

that in equilibrium the bounds are not binding.
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market economy, at the beginning of a period before any decisions are made. The value function when

the borrower chooses not to default satisfies

V bn (b, s) = max
c,n,e,b′

{
U(c, n, e) + βE

[
V b(b′, s′) | s, e

]}
(1)

s.t. c+G+ q(s, b′)(b′ − δb) ≤ θf (n) + (1− δ + δκ)b,

where, taking into account that default can occur next period,

V b(b, s) = max{V bn (b, s), V a(s)}, (2)

and V a(s) is the value upon default, given by

V a( s) = max
n,e
{u (θp(θ)f (n)−G) + h(1− n)− v(e) (3)

+ βE
[
(1− λi

)
V a(s′) + λiV b (0, s′) | s, e] ,

where λi is the probability to come back to the market and be able to borrow again. We denote the

choices when there is no default, given by (1), by (c(b, s), n(b, s), e(b, s), b′(b, s) and those in autarky,

given by (3), by (na(s), ea(s)). Note that since we assume effort, e, is not observable or contractable,

the lender should try to infer the effort choice based on all its current information – in particular,

the state (b, s) – but, as it will become clear, in fact, the effort does not depend on b and could also

be denoted by e(s) when there is no default. The bond price has also a recursive structure. Let the

default decision be given by

D( s, b) = 1 if V ai( s) > V bin (b, s) and 0 otherwise;

therefore, the expected default rate is d(s, b′) = E [D(s′, b′) | s, e(s, b)] The equilibrium bond pricing

function q(s, b′) satisfies the following recursive equation:

q(s, b′) =
E [(1−D(s′, b′)) [(1− δ) + δ [κ+ q(s′, b′′(s′, b′))] ] | s, e(s, b)]

1 + r
,

which can also be expressed as:

q(s, b′) =
(1− δ) + δκ

1 + r
(1− d(s, b′))

+ δ
E [(1−D(s′, b′)) q(s′, b′′(s′, b′) | s, e(s, b)]

1 + r
, (4)

For the one-period bond (δ = 0), this reduces to q(s, b′) = 1−d(s,b′)
1+r . The implied interest rate (i.e.

yield to maturity) of the long-term bond is given by

ri(s, b′) =
(1− δ) + δκ

q(s, b′)
− (1− δ) ,

resulting in a positive spread ri (s, b′)− r ≥ 0, which is strictly positive if d(s, b′) > 0.

In order to keep track of debt flows, it is useful to define the primary surplus – or primary deficit

if negative – which is given by

q(s, b′)(b′ − δb)− (1− δ + δκ)b = θf (n)− (c+G)
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2.4 The effort decision

The optimal policies cb(b, s), nb(b, s), b′(b, s) and na(s) are standard dynamic programming solu-

tions to (1) and (3), respectively. The effort policy function when there is no default in state

s = (θ,G), eb(b, s), is given by

v′(eb(b, s)) = β
∑
s′

πθ(θ′|θ)∂π
G(G′|G, eb(b, s))

∂e
V b(b′, s′),

where b′ is the optimal choice of debt in (1). Similarly, the effort policy function when there is

default in state s = (θ,G), ea(s), is given by

v′(ea(s)) = β
∑
s′

πθ(θ′|θ)∂π
G(G′|G, ea(s))

∂e

[
(1− λi)V a(s′) + λiV b(0, s′)

]
,

since in (3) the choice of debt is predetermined to be zero.

3 The Financial Stability Fund as a long-term contract

An economy with a Financial Stability Fund (FSF) is modeled as a long-term contract between a

fund, or FSF (also called lender), who can freely borrow and lend in the international market, and

an individual partner (also called country or borrower), who is ’the representative agent’ of the small

open economy. We assume that the manager cannot observe the effort of the partner – or, simply, that

the effort is not contractable,– which implies that the long term contract will have to provide sufficient

incentives for the country to implement a (constrained) efficient level of effort. In the fund contract,

the country consumes c and the resulting transfer to the FSF manager is τ = θf (n)−(c+G); i.e. when

τ < 0 the country is effectively borrowing. We consider that there is two-sided limited enforcement;

that is, both the FSF manager and the lender can renege of their contract and pursue their outside

options at any time-state.

In state st = (s0, . . . , st), the outside value for the borrower country is the value of being in the

incomplete market economy after default – that is V a(st), given by (3). In other words, once a country

has joined the fund if it ever quits, or does not fulfil the FSF contract, the country is not allowed

back and goes into autarky and then with probability λi is able to borrow in the private market.

The outside option of the lender is Z ≤ 0, at any st, which is determined by the willingness of the

FSF (the lender) to accept some level of redististribution or to avoid that the country breaks away7.

Whether it is ex-post altruisitic or self-interested – as in Tirole (2015) – solidarity, Z is an important

parameter when assessing the efficiency gains of establishing a FSF; in particular, if Z = 0 the FSF

may still be superior to other mechanisms, since it can still provide some level of risk-sharing and for

the impatient borrower can always be a better ‘borrowing mechanism’. In the next Section we show

how Z constraints the paths of FSF transfers and its effect on prices.

With two-sided limited enforcement, denoted (2S), an optimal fund contract is a solution to the

7Our characterisation easily generalises to the case that the outside value of the manager (lender) is time-state

dependent.
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following problem:

max
{c(st),n(st),e(st)}

E

[
µb,0

∞∑
t=0

βt
[
U(c(st), n(st), e(st))

]
+ µl,0

∞∑
t=0

(
1

1 + r

)t
τ(st) | s0

]

s.t. E

[ ∞∑
r=t

βr−t [U(c(sr), n(sr), e(sr))] | st
]
≥ V a (st) , (5)

v′(e(st)) = β
∑

st+1|st
πθ(θ′|θ)∂π(st+1|st, e(st))

∂e(st)
V bf (st+1), (6)

E

[ ∞∑
r=t

(
1

1 + r

)r−t
τ(sr) | st

]
≥ Z, (7)

and τ(st) = θ(st)f
(
n(st)

)
− c(st)−G(st), ∀st, t ≥ 0,

where the first two constraints (5) and (7) are the intertemporal participation constraints for the

borrower and the lender, respectively, and (µb0, µl0) are initial Pareto weights. Here the notation

is explicit about the fact that expectations are conditional on the implemented effort sequence as it

affects the distribution of the shocks. The constraint (6) is the incentive compatibility constraint with

respect to effort8, where V bf (st+1) is the value of the FSF contract to the borrower in state st+1.

By imposing equality in (6) we have implicitly assumed that effort is interior, that is e > 0. The

interpretation of this constraint is standard: the marginal cost of increasing effort has to be equal to

the marginal benefit. The latter is measured as the change in life-time utility due to the change in

the distribution of future shocks as a result of the increasing effort. Note that V bf (st+1) can also be

written explicitly as the continuation life-time utilities of the borrower for all continuation states from

next period on. In particular, (6) can also be written as:

v′(e(st)) = β
∑

st+1|st
πθ(θ′|θ)∂π(st+1|st, e(st))

∂e(st)
E

[ ∞∑
r=t+1

βr−(t+1) [U(c(sr), n(sr), e(sr))] | st+1

]
.

It is known from Marcet and Marimon (2017) and Mele (2014) that we can rewrite the general

8Note that we have used the first-order condition approach here, that is, we have replaced by the agent’s full

optimization problem by its necessary first-order conditions of optimality. According to the results of Rogerson (1988),

the first-order conditions are also sufficient if the πG(G′|s, e) functions satisfy the monotone likelihood ratio and the

convex distribution function conditions described below.

MLR. The probability shifting function πG (G′ | s, e) has the monotone likelihood ratio property if, for each e ≥ 0 and

s, the ratio
∂πG(G′|s,e)/∂e
πG(G′|s,e) is non-increasing in G′.

CDF. The functions πG(G′|s, e) satisfy the convex distribution function condition if
∂2F

G̃
(s,e)

∂e∂e
is non-negative for every

e, s and G̃ where FG̃(s, e) =
∑
G′≤G̃ π

G(G′|s, e).
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fund contract problem as a saddle-point problem 9:

SP min
{γb,t,γl,t ξt}

max
{ct,nt,et}

E

[ ∞∑
t=0

βt (µb,tU(ct, nt, et)− ξtv′(et)

+ γb,t [U(ct, nt, et)− V a(st)])

+

∞∑
t=0

(
1

1 + r

)t
(µl,t+1 [θtf(nt)−Gt − ct]− γl,tZ) | s0

]

µb,t+1 = µb,t + γb,t + ξt
∂π(st+1|st, et)/∂e
π(st+1|st, et)

, with µb,0 given, and

µl,t+1 = µl,t + γl,t, with µl,0 given

Here βtπ(st|s0)γb (st), βtπ(st|s0)γl (s
t) and βtπ(st|s0)ξ (st) are the Lagrange multipliers of the lim-

ited enforcement constraints (5), (7) and incentive compatibility constraint (6), respectively, in state

st. That is, with one-sided limited commitment γl (s
t) = 0, ∀t ≥ 0. Notice that, by construction,

∂π(st+1|st,et)/∂e
π(st+1|st,et) = ∂πG(Gt+1|Gt,et)/∂e

πG(Gt+1|Gt,et) ; that is, with the incentive compatibility constraint (6), the co-

state µb,t+1 is a vector µb,t+1(Gt+1 | Gt), while without (6) it is a number.

We will use a convenient normalization, in order to minimise the dimension of the co-state vector.

Let η ≡ β(1 + r) ≤ 1 and normalize multipliers: vi,t = γi,t/µi,t, i = b, l, ξ̃t = ξt
µb,t

and

ϕt+1(Gt+1 | Gt, et) = ξ̃t
∂π(Gt+1|Gt, et)/∂et
π(Gt+1|Gt, et)

; (8)

then, a new co-state vector is recursively defined as:

x0 = µb,0/µl,0 and xt+1 =
1 + vb,t + ϕt+1

1 + vl,t
ηxt

With this normalization, vb,t and vl,t become the multipliers of the limited enforcement constraints,

corresponding to (5) and (7), and ϕt the multiplier of the incentive compatibility constraint, corre-

sponding to (6). With this normalization, the state and co-state vector is given by (x, s) and the

saddle-point Bellman equation is given by

FV (x, s) = SP min
{vb,vl ,ξ̃}

max
{c,n,e}

{
x
[
(1 + vb)U(c, n, e)− vbV a(s)− ξ̃v′(e)

]

+ [(1 + vl) (θf(n)−G− c)− vlZ] +
1 + vl
1 + r

E [FV (x′, s′) | s]
}

(9)

where x′ =
1 + vb + ϕ(G′ | G, e)

1 + vl
ηx and ϕ(G′ | G, e) = ξ̃

∂π(G′|G, e)/∂e
π(G′|G, e)

.

Furthermore (see Marcet and Marimon (2017)), the FSF policy function takes the form:

FV (x, s) = xV bf (x, s) + V lf (x, s) , with

9Following Marcet and Marimon (2017), we only consider saddle-point solutions and their corresponding saddle-point

multipliers; that is, given F (a, λ), (a∗, λ∗) solves SP minλ maxa F (a, λ) if and only if F (a∗, λ) ≤ F (a∗, λ∗) ≤ F (a, λ∗),

for any feasible action a and Lagrangian multiplier λ.

9



V bf (x, s) = U(c(x, s), n(x, s) e(x, s)) + βE
[
V bf (x′, s′) | s

]
, and

V lf (x, s) = τ b(x, s) +
1

1 + r
E
[
V lf (x′, s′) | s

]
;

where τ b(x, s) = θf(nb(x, s))−G− cb(x, s). The policy functions defining the FSF contract are given

by the first-order conditions of (9). In particular, cb(x, s) and nb(x, s) satisfy

u′(cb(x, s)) =
1 + vl(x, s)

1 + vb(x, s)

1

x
and

h′(1− nb(x, s))
u′(cb(x, s))

= θf ′(nb(x, s))

The effort policy eb(x, s) is more complex since the first-order condition with respect to e is:

x
[
(1 + vb(x, s))v

′(e(x, s) + ξ̃(x, s)v′′(e(x, s)
]

(10)

=
1 + vl(x, s)

1 + r

∑
s′|s

πθ(θ′|θ)∂π
G(G′|G, e(x, s))

∂e

[
x′V bf (x′, s′) + V lf (x′, s′)

]
+

1

1 + r

∑
s′|s

πθ(θ′|θ)πG(G′|G, e)ηξ̃(x, s)x

[
∂2πG(G′|G, e(x, s))/∂e∂e

πG(G′|G, e(x, s))
−
(
∂πG(G′|G, e(x, s))/∂e

)2
πG(G′|G, e(x, s))2

]
V bf (x′, s′).

Notice that if the incentive constraint is not binding (i.e. ξ̃(x, s) = 0), then (10) reduces to:

x′v′(e(x, s) =
1

1 + r

∑
s′|s

πθ(θ′|θ)∂π
G(G′|G, e(x, s))

∂e

[
x′V bf (x′, s′) + V lf (x′, s′)

]
. (11)

Dividing (10) by x and rearranging terms becomes:

(1 + vb(x, s))v
′(e(x, s) + ξ̃(x, s)v′′(e(x, s)

=
∑
s′|s

πθ(θ′|θ)∂π
G(G′|G, e(x, s))

∂e

[
β (1 + vb + ϕ(G′ | G, e))V bf (x′, s′) +

1

1 + r

1 + vl(x, s)

x
V lf (x′, s′)

]

+β
∑
s′|s

πθ(θ′|θ)πG(G′|G, e)ξ̃(x, s)

[
∂2πG(G′|G, e(x, s))/∂e∂e

πG(G′|G, e(x, s))
−
(
∂πG(G′|G, e(x, s))/∂e

)2
πG(G′|G, e(x, s))2

]
V bf (x′, s′)

The left-hand side of (10) is the social marginal cost of effort, while the right-hand side are the

conditional rewards (or punishments) corresponding to the different states s′(·, G′). The contract

must stablish a system of punishments and rewards such that (10) is satisfied, while the intertemporal

incentive constraint (6) is also satisfied. Therefore, if we substitute (6) into (10) the remaining equation

must also be satisfied; that is,

ξ̃(x, s)v′′(e(x, s)

=
∑
s′|s

πθ(θ′|θ)∂π
G(G′|G, e(x, s))

∂e

[
βϕ(G′ | G, e)V bf (x′, s′) +

1

1 + r

1 + vl(x, s)

x
V lf (x′, s′)

]

+β
∑
s′|s

πθ(θ′|θ)πG(G′|G, e)ξ̃(x, s)

[
∂2πG(G′|G, e(x, s))/∂e∂e

πG(G′|G, e(x, s))
−
(
∂πG(G′|G, e(x, s))/∂e

)2
πG(G′|G, e(x, s))2

]
V bf (x′, s′),

10



which, using the definition of ϕ(G′ | G, e), simplifies to the following equality between the ‘non-

accounted’ marginal cost of effort and the ‘non-accounted’ expected marginal benefit of effort:

NMC(s)

≡ ξ̃(x, s)v′′(e(x, s)

=
1

1 + r

∑
s′|s

πθ(θ′|θ)πG(G′|G, e)
[
ξ̃(x, s)η

∂2πG(G′|G, e(x, s))/∂e∂e
πG(G′|G, e(x, s))

V bf (x′, s′)

+
1 + vl(x, s)

x

∂πG(G′|G, e(x, s))/∂e
πG(G′|G, e(x, s))

V lf (x′, s′)

]
≡ 1

1 + r
E [NMB(s′)|s]

In order to calibrate the model, we provide more structure by assuming that, given current govern-

ment liabilities Gc, there are two possible distributions of tomorrow’s liabilities, πb(·|Gc) and πg(·|Gc),
and πg(·|Gc) first-order stochastically dominates πb(·|Gc) for all G; in particular, there is ζ(e) with

ζ ′(e) < 0, such that πG(G′|Gc, e) = ζ(e)πb(G′|Gc) + (1− ζ(e))πg(G′|Gc). Therefore,

∂πG(G′|G, e)
∂e

= −ζ ′(e)
[
πg(G′|Gc)− πb(G′|Gc)

]
Furthermore, we also assume that v(e) = ωe2 and ζ(e) = exp(−ρe). In this case10 (12) becomes:

ξ̃(x, s)2ω

=
1

1 + r

∑
s′|s

πθ(θ′|θ)πG(G′|G, e)ρ exp(−ρe)π
g(G′|G)− πb(G′|G)

πG(G′|G, e(x, s))

[
1 + vl(x, s)

1 + r

1

x
V lf (x′, s′)− ρηξ̃(x, s)V bf (x′, s′)

]

4 Decentralization of the fund contract

We now show how to decentralize the optimal contract as a competitive equilibrium with endogenous

borrowing constraints, which will allow us to compare the different fund contracts with the debt

contract of the economy with incomplete markets. We build on the work of Alvarez and Jermann

(2000) and Krueger, Lustig and Perri (2008). To make it more comparable with the incomplete market

model we consider that agents trade in state-contingent bonds (assets); that is, agent trade portfolios

of S securities parameterized by (δ, κ, s), where (δ, κ) denote the common coupon and duration

probability but, in contrast with the long-term bond (δ, κ) the – Arrow type – security (δ, κ, s) only

pays the coupon or the maturity value if the state is s. As in the incomplete markets model, it is

assumed that agents hold a continuum of these portfolios, resulting that at period and state (t, s),

1−δ securities mature, although only the (δ, κ, s) redeem the value and only δ of them pay the coupon

κ. Note that other forms of decentralization are possible – for example, using an active management

of the debt maturity structure and partial forms of default to induce state contingent contracts, as in

Dovis 2016 – however our main purpose here is to have clear comparison between the two regimes.

10Notice that then,
∂πG(G′|G,e(x,s))

∂e
= ρ exp(−ρe)

(
πg(G′|G)− πb(G′|G)

)
and

∂2πG(G′|G,e(x,s))
∂e∂e

=

−ρ2 exp(−ρe)
(
πg(G′|G)− πb(G′|G)

)
.
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4.1 The competitive equilibrium

In the market equilibrium, the borrower has a home technology that produces θ(s)f (n(s)) with his

own labor. The borrower has access to long term state-contingent assets and solves the following

dynamic programming problem:

W b(a, s) = max
(c, n, e, a′(s′))

{
U(c, n, e) + βE

[
W b(a′, s′) | s

]}
s.t. c+

∑
s′|s

q (s′|s) (a(s′)− δa(s)) + τe(s) ≤ θ(s)f(n)−G(s) + (1− δ + δκ) a(s) + τ r(s| s−)

a′(s′) ≥ Ab (s′)

where ab (s′) the amount of the asset (δ, κ, s′) bought by the borrower, in state s, at the price q (s′|s),
while Ab (s′) is an endogenous borrowing limit defined below. We assume, without loss of generality,

ab (s0) = al (s0) = 0. Furthermore, τe(s) and τ r(s| s−) are Pigouvian taxes and rewards, respectively;

where τ r(s| s−) denotes a reward in state s conditional on the state the previous period being s−

and the following non-arbitrage condition is satified: τe(s) =
∑
s′|sQ(s′|s)τ r(s′|s), where Q(s′|s) =

q(s′|s)
1−δ+δκ+δq(s′) and q(s′) =

∑
s′′|s′ q(s

′′|s′). We assume τ r(s0| s−1) = 0. These taxes are designed to

align the individual and social value of effort, given that the individual choice is determined by:

v′(e) = β
∑
s′|s

∂π(s′|s, e)
∂e

W b(a′(s′), s′).

The choice of consumption and assets determines the following Euler condition:

q (s′|s) ≥ βπ (s′|s) u
′ (c (s′))

u′ (c (s))

1− δ + δκ+ δ
∑
s′′|s′

q (s′′|s′)

 ,
with equality if ab (s′) > Ab (s′) . Notice that the last component on the left-hand side accounts for

the fact that long-term assets are part of the portfolio next period, even when their state does not

realize. Switching back to the time-notation, the transversality condition guarantees that

lim
t→∞

∑
st

βtπ
(
st
)
u′
(
c
(
st
)) [

ab
(
st
)
−Ab

(
st
)]
≤ 0

The lender receives the coupon and can trade long-term assets and receives the net Piguvian revenues:

W l(a, s) = max
(c, a′(s′))

{
c+

1

1 + r
E
[
W l(a′, s′) | s

]}
s.t. c+

∑
s′|s

q (s′|s) (a(s′)− δa(s)) = (1− δ + δκ) a(s) + τe(s)− τ r(s| s−)

a′ (s′) ≥ Al (s′)

The corresponding Euler conditions is:

q (s′|s) ≥ 1

1 + r
π (s′|s)

1− δ + δκ+ δ
∑
s′′|s′

q (s′′|s′)


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with equality if al (s
′) > Al (s

′) and, by the transversality condition,

lim
t→∞

∑
st

(
1

1 + r

)t
π
(
st
) [
al
(
st
)
−Al

(
st
)]
≤ 0

In particular, in equilibrium

q (s′|s) =
1

1 + r
π (s′|s) max

u′ (c (s′)) η

u′ (c (s))

(1− δ + δκ) + δ
∑
s′′|s′

q (s′′|s′)

 ,
(1− δ + δκ) + δ

∑
s′′|s′

q (s′′|s′)


=

1

1 + r
π (s′|s)

(1− δ + δκ) + δ
∑
s′′|s′

q (s′′|s′)

max

{
u′ (c (s′)) η

u′ (c (s))
, 1

}

=
1

1 + r
π (s′|s) [(1− δ + δκ) + δq (s′)] max

{
u′ (c (s′)) η

u′ (c (s))
, 1

}
≡ q̄ (s′|s) max

{
u′ (c (s′)) η

u′ (c (s))
, 1

}
Note that:

q (s) =
∑
s′|s

q (s′|s) ≥ 1

1 + r
[(1− δ + δκ) + δq (s′)] ,

which iterating the right-hand side forward, using iterative expectations, results in:

q (s) ≥ q̄ (s) ≡ 1− δ + δκ

1− δ + r
;

with the corresponding interest rate:

r(s) =
1− δ + δk

q (s)
− (1− δ)

which results in a negative spread: r(s)− r ≤ 0.

Let cb (ab, s), n(ab, s), e(ab, s) and ab (ab, s
′) , and cl (al, s) and al (al, s

′) be the optimal policies of

the borrower and the lender, respectively. Market clearing implies that:

cb (ab, s) + cl (al, s) = θ(s)f (n(ab, s))−G (s)

ab (ab, s
′) + al (al, s

′) = 0

We assume that the borrowing limits are properly tight in the sense that satisfy:

W b(Ab (s) , s) = V a(s) (12)

W l(Al (s) , s) = Z (13)

We conclude our characterization of competitive equilibria, with Arrow-securities and endogenous

borrowing limits, by restricting them to those with allocations satisfying the high implied interest rate

condition, namely:
∞∑
t=0

∑
st

Q
(
st|s0

) [
c
(
st
)

+ cl
(
st
)]
<∞,

where present value prices are defined by Q(s0) = [1− δ + δκ+ δq(s0)]
−1

and

Q
(
st|s0

)
= Q(s0)Q

(
s1|s0

)
Q
(
s2|s1

)
...Q

(
st|st−1

)
.
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4.2 Decentralization

Now we show how a FSF contract can be decentralized as a competitive equilibrium with long-term

assets and endogenous borrowing limits. This allow us to obtain asset prices and holdings supporting

the FSF contract, which we can compare to the debt prices and holdings of the incomplete markets

economy. It will also allow us to define the Pigou taxes and rewards that implement the efficient level

of effort.

Let (c∗ (x, s) , n∗ (x, s) , e∗ (x, s) , τ∗ (x, s)) be the optimal policy allocations of the FSF. First, we

use the allocations to price the long-term assets as follows:

q∗ (s′|s) =
1

1 + r
π (s′|s) u

′ (c (s′)) η

u′ (c (s))

1− δ + δκ+ δ
∑
s′′|s′

q∗ (s′′|s′)

 if vb (x′, s′) = 0 & vl (x
′, s′) ≥ 0; while

q∗ (s′|s) =
1

1 + r
π (s′|s)

1− δ + δκ+ δ
∑
s′′|s′

q∗ (s′′|s′)

 if vl (x
′, s′) = 0 and vb (x′, s′) > 0.

Therefore, using the FSF allocation we obtain:

q∗ (s′|s) =
1

1 + r
π (s′|s) [(1− δ + δκ) + δq∗ (s′)] max

 1 + vl(x
′, s′)

1 + vb(x′, s′)

1

1 + ϕ(s′|x,s)
1+vb(x,s)

, 1


≡ q̄∗ (s′|s) max

 1 + vl(x
′, s′)

1 + vb(x′, s′)

1

1 + ϕ(s′|x,s)
1+vb(x,s)

, 1

 .

Since we impose borrowing limits that bind exactly when the participation constraints are bind-

ing in the optimal fund contract, asset prices q (s′|s) = q∗ (s′|s) satisfy the Euler conditions in the

competitive equilibrium characterized above. Therefore, we obtain the price of a long-term bond

qf (s) =
∑
s′|s q

∗ (s′|s), the implicit interest rate rf (s) = 1−δ+δk
q(s) − (1− δ), and the negative spread :

rf (st)− r ≤ 0.

Note that both, the lender and the borrower, intertemporal participation constraints cannot be

simultaneously binding, as long as there are positive expected rents to be shared. Without moral

hazard ϕ(s′|x, s) = 0 and, therefore, the negative spread reflects the fact that the lender intertemporal

participation constraint is binding; that is, q∗ (s′|s) > q̄∗ (s′|s) only if vl(x
′, s′) > 0, in which case

τ(x′, s′) ≥ 0, otherwise the lender could simply relax the costly constraint by lending less. However

with moral hazard, if s′ is a bad state it may be the case ϕ(s′|x, s) < 0, resulting in a negative spread

even if the the lender intertemporal participation constraint is not binding

In sum, the negative spread, rf (s)−r < 0, reflects a the wedge that aligns the market price with the

lender unwillingness to lend in some states of the future. Furthermore, if the lender is unconstrained,

the borrower must be constrained in those states which are less likely when effort is exercised.

Note also that, given our assumptions, there is a one-to-one correspondence between the state

variable x in the FSF problem and a in the decentralized problem, given by:

u′(c(a, s)) =
1 + vl(x, s)

1 + vb(x, s)

1

x
;

that is, if at s, a and x satisfy this one-to-one correspondence, then c(a, s) = c∗(x, s), and, similarly,

for the the value functions: W b(a, s) = V bf (x, s).
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We now define the Pigou taxes and rewards. Let:

τe(s) = NMC(s) = ξ̃(x, s)v′′(e(x, s)

and

τ r(s′|s) =
NMB(s′|s)

max
{
u′(c(s′))η
u′(c(s)) , 1

}
=

[
ξ̃(x, s)η

∂2πG(G′|G, e(x, s))/∂e∂e
πG(G′|G, e(x, s))

V bf (x′, s′) +
1 + vl(x, s)

x

∂πG(G′|G, e(x, s))/∂e
πG(G′|G, e(x, s))

V lf (x′, s′)

]

×

max

 1 + vl(x
′, s′)

(1 + vb(x′, s′))

1

1 + ϕ(s′|x,s)
1+vb(x,s)

, 1


−1

≤ NMB(s′|s).

To see that the non-arbitrage condition, τe(s) =
∑
s′|sQ

∗(s′|s)τ r(s′|s), implies NMC(s) = 1
1+rE [NMB(s′|s)]

(i.e. condition (12)) notice that:

NMC(s) = τ e(s) =
∑
s′|s

Q∗(s′|s)τ r(s′|s)

=
∑
s′|s

q∗(s′|s)
1− δ + δκ+ δq∗(s′)

τ r(s′|s)

=
1

1 + r

∑
s′|s

π(s′|s) max

{
u′ (c (s′)) η

u′ (c (s))
, 1

}
τ r(s′|s)

=
1

1 + r

∑
s′|s

π(s′|s)NMB(s′|s).

Finally, we use the intertemporal budget constraints to construct the asset holdings that make

the allocations in the optimal contract satisfy the present value budget, namely:

ab
(
st
)

=

∞∑
n=0

∑
st+n|st

Q∗
(
st+n|st

) [
c∗
(
st+n

)
+ τe(st+n)−

(
θ(st+n)f

(
n∗(st+n)

)
−G

(
st+n

)
+ τ r(st+n|st+n−1)

)]
= −

∞∑
n=0

∑
st+n|st

Q∗
(
st+n|st

)
τ∗
(
st+n

)
al
(
st
)

=

∞∑
n=0

∑
st+n|st

Q∗
(
st+n|st

)
cl
(
st+n

)
=

∞∑
n=0

∑
st+n|st

Q∗
(
st+n|st

)
τ∗
(
st+n

)
al
(
st
)

= −ab
(
st
)
.

In this economy, binding participation constraints provide us with the borrowing limits given by
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(12) and (13). More precisely,

Ab
(
st
)

= −
∞∑
n=0

∑
st+n|st

Q∗
(
st+n|st

) [
θ(st+n)f

(
n∗b(s

t+n)
)
−G

(
st+n

)
+ τ r(st+n|st+n−1)− τe(st+n)

]
= −

∞∑
n=0

∑
st+n|st

Q∗
(
st+n|st

) (
τ∗
(
st+n

)
+ c∗

(
st+n

))
Al
(
st
)

= Z

=

∞∑
n=0

∑
st+n|st

(
1

1 + r

)t
τ∗
(
st+n

)
where the first equality refers to histories {st+n}∞n=0 following a state st where the limited enforcement

constraint of the borrower is binding (i.e. the borrower is indifferent between remaining in the FSF

contract and autarky) and, similarly the last equality corresponds to histories following a state where

the limited enforcement constraint of the lender, who values transfers at the risk-free interest rate, is

binding.

The corresponding recursive competitive equilibrium for these FSF decentralized economies is also

defined in the standard way as a set of policy functions: c(ab, s), n(ab, s), e(ab, s), a
′
b(ab, s), τ(al, s), a

′
l(al, s)

and value functions, W bf ,W lf , that solve the agents problems for the corresponding Arrow secu-

rity prices, q (s′|s) and, finally, markets clear. In particular, as we have seen, the value functions

(W bf (ab, s), W
lf (al, s)) are the mirror image of the value functions (V bf (x, s), V lf (x, s)), since, given

that al = −ab, the dimension of the state (co-state) is the same and, as we have seen the allocations

are the same.

To conlude some FSF accounting is also useful. Paralleling the discussion of the incomplete

markets, the primary surplus (primary deficit if negative) is given by∑
s′|s

q (s′|s) (a(s′)− δa(s))− (1− δ + δk) a(s) = τ∗(x, s).

5 Calibration

5.1 Functional Forms, Shock Processes and Parameter Values

The model period is assumed to be one year. To make the different contracts comparable, we choose

the same parameter values across economies whenever this is possible.

The utility of the borrower is additively separable in consumption and leisure. In particular, we

assume

log(c) + γ
(1− n)1−σ − 1

1− σ
− ωe2

The preference parameters are set to σ = 0.6887 and γ = 1.4. These are used, together with the

discount factor β = 0.945, to match the average hours, in together with the volatility of consumption

and hours relative to GDP. The interest rate is set to r = 2.48%, the average short-term real interest

rate of German. Note that this implies a different discount factor for the lender of 1
1+r = 0.9758,

as well as a growth rate for the relative Pareto weight of the borrower of η = 0.9684 in the optimal

contract. Regarding the technology, we assume that f(n) = nα with the labor share of the borrower
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Table 1: Parameter Values

α β σ γ r λi ψ δ κ Z

0.566 0.945 0.6887 1.4 0.0248 0.15 0.8099 0.814 0.083 0

set to α = 0.566 to match the average labor share across the Euro Area ‘stressed’ countries. The

ω(e) function determining how effort increases the likelihood of good realizations of the Gc shock

is − exp(−ρe). The participation constraint of the lender in the FSF contract is set to Z = 0, a

very tight level. Finally, the probability that the borrower comes back to the market upon default is

set it to λi = 0.15 in the incomplete market model with default, while we assume that FSF-exit is

irreversible, therefore we set λf = 0. Furthermore, in both models, the default penalty takes the form

θp =

θ̄, if θ ≥ θ̄

θ, if θ < θ̄
with θ̄ = ψEθ,

where ψ = 0.8099. The latter two parameters, together with the discount factor β are chosen to

match jointly the PIIGS average debt to GDP ratio, spread level and spread volatility. Finally, the

parameters of the long term bond (δ, κ) are set to δ = 0.814 and κ = 0.083 to match the average

maturity and the average coupon rate (coupon payment to debt ratio) of long term debt. The following

table summarizes all the parameter values.

The log labor productivity log θ is assumed to be a Markov regime switching (MRS) AR(1) process.

In our calibration, we fit the labor productivity log(θit) of five PIIGS countries to the following panel

MRS AR(1) model:

log θit = (1− ρ(ζit))µ(ζit) + ρ(ζit) log θit + σ(ζit)εit,

where ζit ∈ {1, . . . , R} denotes the regime of country i at time t, µ(ζit), ρ(ζit), and σ(ζit) are functions

of the regime, and εit
iid∼ N(0, 1). The country specific regime sit is independent in the cross-section,

and follows a Markov chain over time, with an R×R regime transition matrix P .

Since our model does not have any capital accumulation, we first calculate time series for the labor

productivity data for the 5 Euro Area ‘stressed’ countries. We then estimate the model above by

adapting the expectations maximization (EM) algorithm outlined in Hamilton (1990) to our setup,

combined with a more efficient procedure of Hamilton (1994) to calculate the smoothed probabilities

of latent regimes. We set R = 3 for the panel MRS model in our estimation. Because the likelihood

function of the model is highly nonlinear, the EM algorithm of likelihood maximization may be stuck

at a local maximum. To overcome this potential deficiency, we randomize the initial point in the

parameter space for 1,000 times. The estimated parameters of the Markov Switching Process are

displayed below:

Finally, the process is then discretized into a 27-state Markov chain, with 9 values in each regime.

In the benchmark calibration without moral hazard, we consider a simple specification for the

cyclical component Gc of the government consumption shock G. In particular, Gc has a state space of

Gc = {Gc(1), Gc(2), Gc(3)}, with Gc(1) > Gc(2) > Gc(3), and the transition matrix for Gc is pinned
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Table 2: Parameters of the labor productivity process

µ(ζ) ρ(ζ) σ(ζ) P ζ = 1 ζ = 2 ζ = 3

ζ = 1 6.35 0.93 0.02 ζ = 1 0.90 0.10 0.00

ζ = 2 6.94 0.92 0.01 ζ = 2 0.06 0.87 0.07

ζ = 3 7.09 0.81 0.02 ζ = 3 0.01 0.08 0.91

down by two parameters11:

πGc =

 φ
2
3 (1− φ) 1

3 (1− φ)

2η φ 1− φ− 2η

η 1− φ− η φ


The parameters of the transition matrix are set to φ = 0.965 and η = 0.015. These parameters,

together with the state space for the shock, are used to match several moments of current government

expenditures, such as the G to GDP ratio, the persistence of the observed government consumption,

and the relative volatility of government consumption with respect to output. The resulting transition

matrix and government shock values of Gc are given below:

πGc =

0.9650 0.0233 0.0117

0.0300 0.9650 0.0050

0.0150 0.0200 0.9650


Gc =

[
0.038 0.029 0.025

]
For the iid component Gd to government expenditures, we simply assume that is uniformly dis-

tributed over [−m̄, m̄] = [−0.0005, 0.0005]. In particular, we discretize Gd into Nd = 11 equally spaced

grid points {Gd(1), . . . , Gd(Nd)} over the previous interval, and set Pr(Gd(i)) = 1/Nd for all i. Using

Gc and the discretized values of Gd, the discretized G shock can be constructed according to:

G(i−1)Nc+j = Gd(i) +Gc(j), i = 1, . . . , Nd, j = 1, . . . , Nc,

where Nc = 3. Moreover, with some slight abuse of notation, we define the transition matrix πG of

the discretized G shock to be the Kronecker product of two matrices:

πG = πGc ⊗ πGd ,

where πGd is simply an Nd ×Nd matrix with all entries equal to 1/Nd. Defining πG this way follows

directly from the fact that Gc is independent of Gd. As noted by Chatterjee and Eyigungor (2012),

the iid component improve considerably the convergence properties of the model with incomplete

markets and default. We also use it to match, together with Gc, the relative volatility of government

expenditures.

When moral hazard is effective, we assume that effort only affects the cyclical government liabilities

Gc. Given the current Gc there are two possible distributions of tomorrow’s πb(·|Gc) and πg(·|Gc),
and πg(·|Gc) first order stochastically dominates πb(·|Gc) for all G, with πG(G′|s, e) = πG(G′|Gc, e)
and

πG(G′|Gc, e) = exp(−ρe))πb(G′|Gc) + (1− exp(−ρe))πg(G′|Gc)
11See Appendix for further details.
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Recall that that government expenditure is ordered in a decreasing way. This implies that increas-

ing effort, ceteris paribus, increases the probability of low government expenditure. Note that this

functional form implies simple expressions for ∂πG(G′|G,e)
∂e and ∂2πG(G′|G,e)

∂e2 as follows:

∂πG(G′|G, e)
∂e

= ρ exp(−ρe)[πg(G′|G)− πb(G′|G)]

and
∂2πG(G′|G, e)

∂e2
= −ρ2 exp(−ρe)[πg(G′|G)− πb(G′|G)]

5.2 Data Sources and Measurement

The primary data source we use is the AMECO dataset. We use annual data for the 5 Euro Area

‘stressed’ countries, and except for a few series, the sample coverage is 1980–2015. Table 5 provides a

summary of the data sources and definitions. We construct model consistent measures based on the

raw data. In what follows, we detail on the sources and measurement methods.

5.2.1 National accounts variables

For the aggregate output Yit and government consumption expenditure Git of each country, we use

directly the corresponding data series from AMECO over 1980–2015, measured in constant prices

of 2010 euros. Since there is no capital accumulation in the model, we interpret consumption in

the model as standing for private absorption, and define the model consistent measure in the data

as the sum of the private consumption and gross capital formation. For the aggregate labor input

nit, we use two series from AMECO, the aggregate working hours Hit and the total employment

Eit of each country over the period 1980–2015. We calculate the normalized labor input according

to nit = Hit/(Eit × 5200), assuming 100 hours of allocatable time per worker per week. However,

for most parts of the data moments computations, we use Hit directly, since the per worker annual

working hours do not show a significant cyclical pattern and both the level and the trend do not affect

the computation of the moments.

5.2.2 Government bond variables

We use the end-of-year government debt to GDP ratios in AMECO to measure the indebtedness

of the Euro Area ‘stressed’ countries. The government debt is defined as the general government

consolidated gross debt. This is conceptually different from the debt in the model, which corresponds

to national debt more closely. nevertheless, we use the gross debt measure, as it provides a consistent

measure across countries and is arguably an upper limit on the indebtedness of the government.

We use the nominal long-term bond yields in AMECO to measure the nominal borrowing costs

of the Euro Area ‘stressed’ countries, and use short-term interest rates in German to measure the

funding cost of international investors. The risk-free rate is measured as the real short-term interest

rate of Germany, which equals to the average of the nominal rate minus GDP deflator from 1980–

2015. To arrive at a meaningful measure of the real spread, i.e., a spread unaffected by expected

inflation hence rightly reflect ‘stressed’ countries’ credit risk, we split the sample into to parts by the

introduction of the euro. For the first part, 1980–1998, we use spot and forward exchange rates to

convert German nominal risk free rate into each stressed country’s local currency, hence deriving a
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synthetic local currency risk free rate, and then take the difference between the local nominal long-

term bond yield with the synthetic risk free rate. Since the synthetic risk free rate is denominated

in the local currency as well, so it is subject to the same inflation expectations as the long-term

bond yield, and consequently, the difference is equivalent to the real spread. For the second part,

1998–2015, we can directly use the spread between the ‘stressed’ countries’ long-term bond yields and

German short-term interest rates, since all rates are denominated in the euro, hence subject to the

same inflation expectation.

The information on the maturity structure of the government debt for the Euro Area ‘stressed’

countries is not comprehensive. We are able to find average years to maturity for the five countries

from 3 sources.12 The overall time coverage is unequal across countries: 1998–2010 and 2014–2015 for

Ireland, 1998–2015 for Greece, 1991–2015 for Spain, 1990–2015 for Italy, and 1995–2015 for Portugal.

5.2.3 Fiscal positions

For the model, the theoretically consistent measure of the primary surplus is simply y − c − G, i.e.,

the total saving of the economy. Recall that the primary surplus is defined as government surplus

minus interest payments. Alternatively, by the government’s budget constraint, the primary surplus

can be expressed as the net lending by the government, i.e., the difference between revenue of newly

issued debt and payments on interests and retiring debt. For the economy with incomplete markets

and default we are considering, this equals to qt(bt−1 − bt) − (1 − δ + δκ)bt, and by the economy’s

budget constraint, the last expression is just equal to yt − ct − Gt, which is the measure we use for

primary surplus in the model.

To be consistent with the model, we also measure the primary surplus in the data according to

the last expression. Since ct is already measured as the private absorption, i.e., sum of the private

consumption and gross capital formation, the empirical measure of the primary surplus is equivalent

to the net export by the national accounting identity.

5.2.4 Labor share

We use various data series from AMECO to construct the labor share of annual output for each of

the Euro Area ‘stressed’ countries over the period 1980–2015. First, we use nominal compensation

to employees of the total economy in AMECO (labeled by UWCD) to measure the labor income

for employees. Second, to measure the labor income for self-employed people, we take the difference

between two AMECO series, UOGD and UQGD, where the former is gross operating surplus and

the latter is the same measure net off imputed compensation for the self-employed population. We

define the total labor income as the sum of the labor income for employees and self-employed, i.e.,

UWCD + UOGD − UQGD. Finally, the labor share is calculated as the ratio of labor income to

nominal GDP.

5.2.5 Labor productivity

Given the production function, y = θnα, we measure the labor productivity of country i at time t

according to θit = Yit/H
α
it, or equivalently, log θit = log yit − α log nit. Note that we use a common α

for all ‘ Euro Area ‘stressed’ countries. Let θ̂oit, or log θ̂oit, denote the original measured level for labor

12See the appendix for more details.
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productivity. To compute the data moments involving the labor productivity, we use the HP-filter

to detrend the sample productivity {log θ̂oit}. Moreover, as described earlier, we use a Markov regime

switching model to estimate the productivity process. Before taking the data to the model, we adjust

the original sample in the following two steps:

1. We take out a common linear time trend in the {log θ̂oit} series.

2. After detrending, we further standardize {log θ̂oit} for each i so that the resulting series has the

same sample mean and volatility over i. This is to prevent the level and volatility differences in

{log θ̂oit} across i to induce spurious regime switching behavior in the estimation process.

We denote the adjusted sample productivity by {log θ̂it}, which is then used in the estimation of

the MRS model discussed earlier.

6 The IMD vs. the FSF regimes without moral hazard

This section discusses the numerical results without moral hazard (i.e. v(e) = 0). We compare

the incomplete markets economy with default (IMD) and the economy with a FSF with two sided

limited of commitment (2S). We first present calibration results in Table 3 and the policy functions

for both economies in Figures (1) - (2). To better understand how these economies work, we show

representative paths of both economies, subject to the same sequence of shocks in steady state, in

Figures (5) - (6).Finally, we study how both economies respond to a combined negative shock when

they are in steady state: Figures (7) - (8). TFP shocks are labeled ei, i = 1, . . . , 27 where ei < ei+1

and G shocks are labeled gj , j = 1, . . . , 3 where gj > gj+1 –that is (e1, g1) is the worst combination

of shocks and, increasingly, (e27, g3) is the best combination of shocks.

6.1 Calibration results

The following Table 3 provides an exhaustive account of our benchmark calibration for the Euro

Area ‘stressed’ countries with the incomplete markets economy defaultable debt (IMD) and also the

comparison of these economies with the Fund economy, subject to the same shock processes that the

ones calibrated for the IMD economy. Note that our IMD economy matches remarkably well most

most moments, with the notable exception of the behaviour of the primary surplus – both, its mean

and its correlation with output. However, this seems to be more a problem of the Euro Area ‘stressed’

countries than of our model, since our IMD economy, even with its default events (consistent with

the level of debt to GDP and the bond spread), seems to be more efficient – its fiscal policy more

countercyclical – than the observed economies.

The quantitative comparison between the IMD economy and the economy with a Fund is striking.

Even if the fund contract is designed to prevent persistent redistribution from the fund to the borrower

country, the amount of average debt is almost two and one-half times higher with the fund and the

contrast even larger when primary surpluses are compared and, consistently, the fund implements a

strong counter-cyclical fiscal policy in comparison with the IMD, no to mention in relation with the

pro-cyclical budget policies of the ‘stressed’ countries.
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Table 3: Benchmark calibration with IMD and comparison with Fund

Moments Data IMD Fund

Mean

Debt to GDP ratio 77.29% 76.56% 186.65%

Real bond spread 3.88% 3.76% −0.02%

G to GDP ratio 20.18% 19.62% 19.31%

Percentile: 1 & 99 [13.48%, 32.79%] [11.56%, 33.02%] [10.65%, 36.77%]

Primary surplus to GDP ratio −0.78% 1.30% 3.57%

Fraction of working hours 36.74% 37.28% 38.09%

Volatility

σ(C)/σ(Y ) 1.49 1.47 0.35

σ(N)/σ(Y ) 0.92 0.69 0.62

σ(G)/σ(Y ) 0.91 0.86 0.53

σ(PS/Y )/σ(Y ) 0.65 0.80 0.94

σ(real spread) 1.53% 0.93% 0.21%

Correlation

ρ(C, Y ) 0.88 0.76 0.57

ρ(N,Y ) 0.67 −0.13 0.94

ρ(PS/Y, Y ) −0.29 0.11 0.95

ρ(G, Y ) 0.35 0.07 0.03

ρ(real spread, Y ) −0.35 −0.29 −0.05

ρ(G, θ) 0.13 0.00 0.00

ρ(Gt, Gt−1) 0.94 0.94 0.94

6.2 Policy Functions

The core of the analysis is given by the study of the different optimal policy functions. Figures (1)

and (2) display the policy functions for the main variables for the incomplete markets economy with

default IMD and for the FSF, as function of the level of debt for selected (intermediate) values of

shocks (s = (θ, G) = (e, g)).
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Figure 1: IMD policy functions.
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Figure 2: FSF policies as functions b.

The left panels of Figures (1) and (2) show the end-of-period debt and primary surplus policies for

the IMD economy and the FSF. As it can be seen for a relatively bad state (e5gj), the IMD economy

only allows a minimum level of debt, while more is borrowed in the FSF, this is true at any state –

as it is also true that, within a regime, more can be borrowed in better states. But it can also be

seen that in the relatively good state the IMF economy requires to run a (positive) primary surplus

for levels of debt for which the FSF has a primary deficit. The upper-right panel shows bond prices

for both regimes, in relation to the riskless bond price qo: positive spreads and price collapses, with

default, in the IMD economy and, in contrast, negative spreads in the FSF regime. The lower-right

panel shows how in the IMD economy the labor supply is distorted even at values of debt below the

default threshold. It also shows that even in the FSF regime the efficient allocation of labor may be

distorted (e.g. at b = −0.2 the supply of labor is higher when productivity is lower), although the

distortion is more severe in the IMD economy. It also should be noted that expenditure shocks g do

not play a major role, in comparison with the productivity shocks e.

While the IMD policies are given as functions of (b, s), as in Figure (1), the FSF functions of

Figure (2) are derived – through ‘decentralization’– from underlying policies as functions of (x, s).

Therefore, to better understand how the FSF mechanism works it is useful to analyse these policies,

which are illustrated in Figures (3) and (4) for the same (intermediate) values of shocks. The upper-left
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panel of Figure (3) shows the core of the FSF mechanism. In an economy without limited enforcement

or moral hazard constraints a line from the origin with slope η will determine the evolution x → x′,

therefore the borrower’s relative Pareto weight will monotonically decrease. Such a decay – x′(x, s) =

ηx – is stopped by the borrower’s intertemporal participation constraints, which define the horizontal

lines to the left of the ‘decay line’ – we denote them by x(s), i.e. x′(x(s), s) = x(s). On the other hand,

the lender’s limited enforcement constraints deter x′ from being too high, which define the horizontal

lines to the right of the ‘decay line’ – we denote them by x(s) – i.e. x′(x(s), s) = x(s). In particular,

if x(e27, g3) > x(e1, g1) then the support of the steady-state distribution of x is [x(e1, g1), x(e27, g3)]

and the lender’s participation constraint is occasionally binding. The other panels show the asset

holding and primary surplus policies, as functions of µb, as well as the bond price. The patterns

of these policies can be traced back to the upper-left panel. Take, for example, the state (e23, g3),

increasing x towards the value of the lender’s participation constraint binds (above 0.2) the bond

price jumps – i.e. negative spread – the primary surplus becomes a primary deficit – i.e. the borrower

transfers to the lender – and, consequently, debt is drastically reduced; alternatively, decreasing x to

the value that the borrower’s participation constraint binds (around 0.15) gives, in the lower-left panel

the maximum level of debt that the FSF can have at this state (circa −0.42). Figure (4) shows the

FSF consumption and labor policies, as well as the value functions, for the same intermediate states.

Again, the patterns of these policies and values can be traced back to the upper-left panel of Figure

(3) – in particular, the consumption policy and, more smoothly, the value of the borrower mimic the

Pareto weight policy and, obviously the value of the lender mirrors the value of the borrower since

both share the surplus of the FSF.
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Figure 3: FSF policy functions: Pareto weights and assets.
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Figure 4: FSF policy functions: allocations and values.

6.3 Running the FSF in normal times and in times of crisis.

It is illustrative to simulate the risk-sharing outcomes of the FSF in normal times and in times of

crisis. We do it here with two experiments. The first, denoted Business Cycle Paths – Figures (5) and

(6)– is a long-run simulation at the steady state. In the second, denoted Impulse Responses – Figures

(7) and (8) – we assume that, independently and simultaneously many independent economies are hit

by negative (θ, G) shocks (e1, g1) but then all shocks after the initial period follow a realization of

the (θ, G) stochastic process; therefore we report the average impulse response from 500 simulations.

The initial endogenous conditions are randomly chosen from the stationary distribution.
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Figure 5: IMD vs. FSF Business Cycle Paths: shocks and allocations.
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Figure 6: IMD vs. FSF Business Cycle Paths: shocks and assets.

In Figure (7), the upper-left panel shows the history of shocks for three hundred years. The

grey periods correspond to periods of default in the IMD economy – defaults are associated with

drops in productivity, but not all drops of productivity trigger defaults. The allocations in the IMD

and FSF regimes are shown in the other panels. As it can be seen, there is more consumption

smoothing in the FSF and default periods are periods of austerity where output, employment and

consumption plunge. Figure (8) shows the asset allocations and prices. These panels are very revealing

of why some particular productivity drops trigger defaults in the IMD economy. Just observing the

evolution of shocks the first default seems puzzling since not much had happened – a small increase

in government expenditures followed of a small drop in productivity, – however these were not normal

times: the productivity level was medium-low but spreads were high even if there was a primary

surplus: the economy was ‘stressed’ and transfers were countercyclical; fortunately, it was a short

default episode. The other two default episodes follow a very familiar pattern: a productivity drop

following relatively good years in which debt built up. Life is very different in the FSF regime: debt

capacity is substantially larger and good years are years of primary surpluses; transfers from the

debtor to the lender are procyclical and only a small episode of negative spreads happens towards the

end of the series, mirroring the largest positive spread in the IMD economy.
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Figure 7: IMD vs. FSF: combined shock impulse-responses: allocations.
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Figure 8: IMD vs. FSF: combined shock impulse-responses: assets.

As it has already been seen in default episodes, life is particularly different in times of crisis. To

analyse this in more detail we induce an unexpected negative shock to our economies. Figures (7) and

(8) show how the two economies react to a transitory combination of bad (θ, G) shocks. If Figure (7)

everything looks very smooth is because the figure depicts average paths – for example, behind the

smooth growth of output in the IMD economy there are many episodes of default, as it is reflected in

the positive spreads of Figure (8). Nevertheless, the averages do not hide that the crisis is more severe

in the incomplete markets economy with default (IMD) than in the economy with a FSF. While the

crisis is a severe austerity crisis in the IMD economy, consumption is higher and labor supply lower in

the FSF regime, as the immediate response to the negative shock. More remarkable is the fact that

in the FSF economy a large primary deficit is allowed following the shock and, consequently, there

is debt accumulation. Two facts are behind these patterns. One is the the fact that the borrower is

more impatient than the lenders – being the market lenders or the FSF, – the other that the severe

negative shock is a rare event. The first explains the wish to front-load consumption, which is partially

satisfied with a FSF, but not in the IMD economy; the second the fact that being a rare event the

borrower has ample borrowing capacity in the FSF, and none in the IMD economy, as a result in the

long-run the primary surplus is higher with a FSF than in the IMD economy, showing that the former

is more efficient. We now take a closer look at the relative efficiency, and the associate debt capacity,
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Table 4: Welfare comparison at zero debt

Shocks (θ,Gc) Welfare Gain (b′/y)max: M (b′/y)max: F

(θl, Gh) = (0.148, 0.038) 8.90 1.71 97.42

(θm, Gh) = (0.299, 0.038) 7.03 107.55 187.16

(θh, Gh) = (0.456, 0.038) 4.68 217.43 336.77

(θl, Gl) = (0.148, 0.025) 7.87 1.84 101.89

(θm, Gl) = (0.299, 0.025) 6.56 111.40 187.93

(θh, Gl) = (0.456, 0.025) 4.46 217.80 334.47

Average 6.53

of these economies.

6.4 Welfare implications and confronting ‘debt overhang’ problems

Table 4 shows the increased capacity to absorb debts and the welfare gains of the FSF regime in

comparison with the IMD economy. The table is constructed as follows:

• Welfare gains are in (annual) consumption equivalent terms at b = 0 (%).

• b′/y is the end-of-period debt (i.e., next period debt) to output ratio in percentage, for Market

or Fund. For the fund solution, b′ denotes the expected value of assets in terms of the next

period goods. More specifically, we define

b′(s) =

∑
s′|s q(s

′|s)a′(s′)∑
s′|s q(s

′|s)
.

Conceptually, this is the closest measure of country’s indebtedness in the fund economy to the

counterpart in the incomplete market with default economy.

Comparison of b′/y across the IMD economy and the economy with a FSF shows the difference of the

debt and risk-sharing capacities between the two economic regimes; in particular (b′/y)max shows the

maximum amount of debt to output ratio the country can have in any of the two. Only the FSF is

able to absorb close to ratios close to 100% in all the states, while the capacity to absorb debts in the

IMD economy is substantially smaller particularly in bad states. Welfare gains are very substantial, a

consumption equivalent steady-state average welfare gain of 6.5 is a very high number and, even more

relevant, a 8.9 in the worst state. Nevertheless, this is the order of magnitude that we have obtained

in many other simulations that we had run as robustness check.

Table 4 suggests the following experiment: how would a highly indebted economy behave in the two

different regimes? In other words, which economy will be able to deal better if there is a ’debt overhang’

problem? While the table already gives an answer to this question, the details are illustrative and

can be seen, for example, in Figures (9) and (10), where we started an economy with steady-state

average shocks and a 100% b′/y. The IMD economy almost immediately goes into default, getting

rid of its debt liabilities, and after that there is a negative widening gap on output and consumption
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in comparison with the defaultess economy with a FSF. In fact, the mirror of the pre-default in the

IMD economy is a small negative spread and a subsequent increase in debt in the FSF regime. Telling

figures!
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Figure 9: IMD vs. FSF in highly indebted economy: debts and spreads

33



0 50 100

0.1

0.2

0.3

0.4

Productivity & G shock

 

 

θ
g

0 50 100

0.1

0.15

0.2

0.25

Output

0 50 100

0.1

0.15

0.2

Consumption

0 50 100
0.25

0.3

0.35

0.4

Labor

 

 

Fund
IMD

Figure 10: IMD vs. FSF in highly indebted economy: allocations

7 The IMD vs. the FSF regimes with moral hazard

In the previous simulations the distribution of the G shock was exogeneous. In this Section the distri-

bution of G depends on the effort, e, that the borrower exercises. In particular we analyse how FSF

policies change when the moral hazard problem is also accounted for. As we know from our calibrated

exercises, that only accounted for limited enforcement constraints, government expenditure shocks, G,

do not play a major role. Since in our formulation the unobservable effort only affects the distribution

of Gc shocks, we should not expect substantial differences if the incentive compatibility constraint is

introduced, but it is illustrative to quantify the effect. Furthermore, we want to understand how the

different constraints interact and, as we know from our theory, with moral hazard negative spreads

may be more frequent, but how much bond prices are distorted by the introduction of the incentive

compatibility constraint? To answer these questions we study the policy functions in an economy with

two-sided limited commitment (limited enforcement) with observable effort and without observable

effort. Without, the economy with the FSF is the same than the economy studied in the previous

Section, except in two features: first, the distribution of G is endogenous – although, the calibration is

parameterised as to have similar G distributions at the steady-state, – and, second, the outside value

for the borrower upon quitting the fund is autarky without the possibility to borrow in the market in
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the future; however, since the default penalty is very similar the difference should not be significant13

Figure 11 plots the Pareto weight policies with observable and unobservable effort (i.e. with moral

hazard). With observable effort, as in the previous analysed case of an exogenous Gt process, there

is no incentive compatibility constraint, while with unobservable effort the contract must account for

the ϕ(Gt+1|Gt) multiplier (the effect of this is shown for g1 and g3). As it can be seen, there is a

small spread for the participation constraints.
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Figure 11: Pareto weight policies with exogenous and non-observable endogenous effort.

Figure 12 shows the effort policies. The differences ‘at the participation constraints’ are noticeable

– in particular with moral hazard, effort, conditional on a relatively good (e23g2) and bad (e5g2)

state, varies more when the lender’s participation constraint is binding and less when the borrower’s

participation constraint is binding. The effect of binding incentive compatibility constraints – in

particular, ‘at, and near, the participation constraints’- translates into negative spreads with moral

hazard that do not exist when effort is observable, as it is shown in the bottom two panels of Figure 12.

In sum, the main differences of introducing moral hazard are the distortions created by the interplay

between participation and incentive compatibility constraints and in the existence of more frequent

negative spread episodes.

13This difference on default values will be eliminated in future versions.
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Figure 12: Effort and bond price policies: observable vs. non-observable effort

8 Simplifying the Fund contract

The Financial Stability Fund (FSF) described in Section 3 is complete in the sense that, subject to

enforcement and incentive compatibility constraints, the contract is contingent to all shocks. However

it may be difficult to implement a contract with many contingencies, even more to decentralize it.

In this section we show how the Fund contract can be simplified by making it less contingent. That

is, even if the economy is subject to many shocks, the fund only provides risk-sharing to a coarse

set of shocks. For instance, in insurance contracts, having non-insured states for which insurance

premium still needs to be paid, is equivalent to having insurance on a coarse set of states, we apply

the same principle here. Within non-insured states the borrowing country may still be able to smooth

consumption by allowing the intertemporal government budget constraint to fluctuate, having small

deficits and surpluses, which can be implemented using debt. However, the total amount of debt –

with the Fund and outside the fund – must be constrained, since the total liabilities determine its

intertemporal participation constraint. We also calibrate the simpler contract to quantify the loss of
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efficiency due to the loss of contingency or, in other words, the more limited risk-sharing14.

First, we number the states of the Markov chain: {s1, . . . , sr}, e.g. sm = (θi, G
c
j). Second, we

partition the set of states into n disjoint subsets; e.g, {s1, . . . , sk}, {sk+1, . . . , sm}, . . . , {sp+1, . . . , sr}
(where the subindeces do not reflect their alphabetic number). Third, if si ∈ {sk+1, . . . sm} then we

denote its partition {sk+1, . . . sm} by s̄i – that is, if sj ∈ {sk+1, . . . sm} then s̄j = s̄i. We will also

use the notation s̄t = (s0, s̄1, . . . , s̄t). Finally to simplify the exposition, when there is moral hazard

we will only consider full-contingent G shocks – (θ,Gi) 6= (θ,Gj) if j 6= i. With this notation, as an

intermediate step to characterize a simplified Fund contract, we consider the following problem:

max
{c(st),n(st),e(st)}

E

[
µb,0

∞∑
t=0

βt
[
U(c(st), n(st), e(st))

]
+ µl,0

∞∑
t=0

(
1

1 + r

)t
τ(st) | s0

]

s.t. E

[ ∞∑
r=t

βr−t [U(c(sr), n(sr), e(sr))] | st
]
≥ max

s∈s̄t
V a (s) , (14)

v′(e(st)) = β
∑

st+1|st
πθ(θ′|θ)∂π(st+1|st, e(st))

∂e(st)
V bf (st+1), (15)

E

[ ∞∑
r=t

(
1

1 + r

)r−t
τ(sr) | st

]
≥ Z, (16)

and τ(st) = θ(st)f
(
n(st)

)
− c(st)−G(st), ∀st, t ≥ 0. (17)

Note that the borrower’s limited enforcement constraints (14) are robust to deviations within subsets

of states. That is, the highest outside value that the borrower can achieve within the states in

s̄ s̄ becomes the effective common outside value. An alternative interpretation is to consider (14)

as an incentive compatibility constraint when differences among states in s̄ are not contractable – for

example, because these differences cannot be verified by the lender. An immediate consequence is that

in the recursive contract formulation γb,t(s) = γb,t(s
′) if s′ ∈ s̄, and we will use the notation γb,t(s̄).

This follows from the monotonicity of contracts between two agents with limited enforcement and

‘downward slopping’ Pareto frontier, which in the Fund contract takes the form: V a(s) ≥ V a(s′) =⇒
V bf (x, s) ≥ V bf (x, s′). In particular, consider the case that s′ ∈ s̄ and V a (s) > V a (s′) with the

limited enforcement constraint in the full-contingent fund contract (5) binding in state s but not in

state s′; by the monotonicity property, in the current contract, (14) is binding for both states and,

therefore, γb,t(s) = γb,t(s
′) ≡ γb,t(s̄). In this formulation, transfers are residual and, therefore, fully

state-dependent. The rest of the contract has the same characterization of the Fund contract discussed

in Section 3. In particular, cb(x, s) and nb(x, s) satisfy:

u′(cb(x, s)) =
1 + vl(x, s)

1 + vb(x, s̄)

1

x
,

h′(1− nb(x, s))
u′(cb(x, s̄))

= θf ′(nb(x, s)) and

τ(x, s) = θ(s)f
(
nb(x, s)

)
− cb(x, s)−G(s).

That is, as long as the lender’s limited enforcement constraint is not binding cb(x, s) = cb(x, s̄) and, if

in addition the borrower’s limited enforcement constraint is not binding: cb(x, s) = cb(x). Similarly,

14Work in progress.
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the lender’s limited enforcement constraint (16) may only depend on s̄. We consider two possibilities.

In the first, (16) is substituted by:

E

[ ∞∑
r=t

(
1

1 + r

)r−t
τa(s̄r) | s̄t

]
≥ Z, (18)

where τa(s̄t) =
∑
st|s̄t

π(st|s̄t)
[
θ(st)f

(
n(st)

)
− c(st)−G(st)

]
, ∀st, t ≥ 0,

and τ̂a(st) ≡ τ(st)− τa(s̄t), if st ∈ s̄t, τ̂a(st) = 0 otherwise.

Since (18) is only conditional on s̄ the corresponding Lagrange multiplier is γl,t(s̄). Therefore,

cb(x, s) = cb(x, s̄),

τa(x, s̄) =
∑
s|s̄

π(s|s̄)
[
θ(s)f

(
nb(x, s)

)
−G(s)

]
− cb(x, s̄),

and τ̂a(x, s) = τ(x, s)− τa(x, s̄).

If the Fund is the residual claimant of the output, τ̂a(x, s) is also transferred to the Fund and, therefore,

when τ̂a(x, s) < 0, the stricter intertemporal participation constraint (16) is not satisfied. It will if,

instead, (16) is substituted by:

E

[ ∞∑
r=t

(
1

1 + r

)r−t
τm(s̄r) | s̄t

]
≥ Z, (19)

where τm(s̄t) = min
st∈s̄t

[
θ(st)f

(
n(st)

)
− c(st)−G(st)

]
− cb(x, s̄),

and τ̂m(st) ≡ τ(st)− τm(s̄t), if st ∈ s̄t, τ̂m(st) = 0 otherwise.

As with (18) the Lagrange multiplier of (19) is only conditional on s̄, i.e. γl,t(s̄). In sum, either

with (18) or (19) the policies of the simplified Fund contract take the form: cb(x, s̄), τ r(x, s̄) – where

r = a,m if it is (18) or (19) respectively, – while labour and effort are fully state contingent, nb(x, s)

and eb(x, s), although we assume that with moral hazard the partition of states preserves the full

contingency of Gc shocks, in order keep the same incentive compatibility constraint – that is, eb(x, s̄)

(more generally, either ϕ(s′|x, s) = 0 or ϕ(s′|x, s) = ϕ(s̄′|x, s̄)). In any case, with the simplified

Fund contract a residual transfer, τ̂ r(x, s), r = a,m, needs to be assigned, even if this assignment

does not affect the constrained efficient Fund allocation. Here we have assumed that it is assigned

to the Fund, effectively making Fund transfers fully state-contingent: τ r(x, s), r = a,m. However,

in a decentralized version of the simplified Fund contract it is more reasonable to assume that Fund

transfers are not fully state-contingent, as we do next.

8.1 Decentralization of the simplified Fund contract

As in Section 4 the simplified Fund contract can be decentralized in many ways, here we will use a

decentralization consistent with the one discussed in Section 4 and the bond market of Section 2. In

particular, we consider an economy where there is trading of s̄ state-contingent long-term bonds (i.e.

a portfolio of n bonds a(s̄) and not of r bonds a(s), n < r, as in Section 4), supporting the Fund

allocation and a long-term non-contingent bond b, as in Section 2, accounting for the residual transfers

τ̂ r(x, s), with the difference that if the borrower’s limited enforcement constraint also accounts for b

there is no default in equilibrium. More precisely, the borrower’s problem is:
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W̃ b(a, b, s) = max
(c, n, e, a′(s̄′),b′)

{
U(c, n, e) + βE

[
W̃ b(a′, b′, s′) | s

]}
s.t. c+

∑
s̄′|s̄

q (s̄′|s̄) (a(s̄′)− δa(s̄)) + qb(s, b, b′)(b′ − δb) ≤ θ(s)f(n)−G(s) + (1− δ + δκ) (a(s̄) + b)

a′(s̄′) + b′ ≥ Ab (s̄′) ,

where q (s̄′|s̄) is defined as before, with s̄ instead of s. That is,

q (s̄′|s̄) = q̄ (s̄′|s̄) max

{
u′
(
cb (x′, s̄′)

)
η

u′ (cb (x, s̄))
, 1

}
= q̄ (s̄′|s̄) max

 1 + vl(x
′, s̄′)

1 + vb(x′, s̄′)

1

1 + ϕ(s̄′|x,s̄)
1+vb(x,s̄)

, 1

 .

Assuming that the uncontingent bond is traded in the market, with a risk-free rate r, and given that

the constraint on borrowing prevents default (i.e. W̃ b (Ab(s̄)− b, b s) = maxs∈s̄ V
a(s)), the price of

the uncontingent bond is:

qb(s̄) =
1− δ + δκ

1− δ + r

Assuming that the Fund-lender does not trade uncontingent bonds, his problem is the simplified

portfolio version of Section 4:

W l(a, s̄) = max
(c, a′(s̄′))

{
c+

1

1 + r
E
[
W l(a′, s̄′) | s̄

]}
s.t. c+

∑
s̄′|s̄

q (s̄′|s̄) (a(s̄′)− δa(s̄)) = (1− δ + δκ) a(s̄)

a′ (s̄′) ≥ Al (s̄′) ,

where W l (Al (s̄) , s̄) = Z.

Finally, primary surpluses or transfers are given by:∑
s̄′|s̄

q (s̄′|s̄) (a(s̄′)− δa(s̄))− (1− δ + δk) a(s̄) = τ r(x, s̄),

q(s, b, b′)(b′ − δb)− (1− δ + δκ)b = τ̂(x, s).

In sum, the simplified Financial Stability Fund provides risk-sharing limited to a pre-specified, and

verifiable, set of states, while other contingencies (or shocks) must be accounted for directly by the

countries (borrowers) – for example, allowing for some budget fluctuations supported by uncontingent

borrowing and lending. This is a very flexible design that can implement the constrained efficient al-

location, provided that two basic conditions are satisfied: i) there is full commitment to fund transfers

(i.e. in good and bad times) or, alternatively, the market for contingent bonds works competitively

accounting for endogenous participation constraints, and ii) that while participant borrowers can use

other financial instruments in order to achieve a better risk allocation (e.g. borrowing in the market),

the total amount of liabilities must be accounted for in determining its endogenous borrowing limits.

9 Conclusions

By developing and computing a model of a Financial Stability Fund as a constrained efficient mechanism we

have contributed to the existing literature on risk-sharing and sovereign debt, and provided a useful instrument
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to study how to design it – with more engineering and legal detail – and the gains of implementing it. In

particular, we have quantitatively shown that the visible welfare gains can be substantial, even if we have

calibrated the model to euro area ‘stressed countries’, and we have set a ‘tight constraint’ on risk-sharing

transfers: the fund should always have non-zero expected profits from the FSF contract. We have also

shown that accounting for moral hazard does not substantially change the FSF allocations, whereas incentive

compatibility constraints interact with limited enforcement constraints, distorting effort and making negative

spreads more likely to emerge. In our economies, the moral hazard problem only affects the distribution of

government expenditures. If, however, it were to affect productivity shocks too (e.g. through costly structural

reforms) the effect may be greater. More work needs to be done, in particular in making our FSF model a

workable proposal within the EU or EA legal and institutional framework. As we have seen, the FSF can also

be used to address sovereign ‘debt overhang’ problems. In our formulation, the self-enforcing stabilisation

nature of the FSF is what gives it its credibility and its capacity to absorb large existing debts – or provide

generous credit in times of crisis – in contrast with existing debt market instruments. On the other hand,

existing crisis-resolution institutions – such as the ESM – may be able to absorb relatively large debts, but

they are not usually designed as constrained efficient mechanisms15. Our work may be useful to them.

Appendix

9.1 Data sources

9.2 Solution Method

9.2.1 The Solution of the IMD

In what follows, we describe the computational algorithm to solve for the IMD model with no moral hazard.

Solving for the labor supply For given (s, b) and b′, we can solve for the optimal labor from the optimality

condition. If the borrower chooses not to default, the optimal labor supply n∗ solves:

h(n) ≡ (θnα − χ)n1−α − ϑ(1− n)σ = 0

where ϑ = (θα)/γ > 0 and χ = G− (1− δ + δκ)b+ q(s, b′)(b′ − δb). Since h(1) = (θ − χ) and h(0) = −ϑ < 0,

there exists an n∗ ∈ (0, 1) such that h(n∗) = 0 and c∗ > 0 if and only if θ − χ > 0. It is easy to show that n∗

is unique. If the borrower chooses to default, we can use the same condition with ϑ = θpα/γ and χ = G.

In what follows, we denote by Nnd(s, b, b′) the optimal labor supply in the case of no default, given the

current state (s, b) and the bond choice for the next period b′; and we use Nd(s) to denote the optimal labor

supply in the case of default. Here we have chosen to suppress the dependence of Nnd on the bond price

q(s, b′) for two reasons: first, given any pricing function q(·), the specific value of the bond price is determined

by (s, b′); and second, to enhance computational efficiency, we will rewrite Nnd(·) as a function of θ and χ,

where χ summarizes all the dependence of Nnd on G, b, b′, and q(s, b′).

Solving the Bellman Equation To find a solution to the model, we combine equations (1)-(3) as well

as the pricing equation in (4) into one Bellman equation of four functions: three value functions and one

pricing function. We can then use backward induction to solve the functional equation. More precisely, let

15For example, as of May 2017, the ESM is holding 49.4% of Greece’s sovereign debt (which amounts to 88.5% of

Greece GDP) as long-term, over 30 years, unconditional debt.
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Table 5: Data sources and definitions

Series Time periods Sources Unit

Output 1980–2015 AMECO (OVGD)a 1 billion 2010 constant euro

Private consumption 1980–2015 AMECO (OCPH) 1 billion 2010 constant euro

Government consump. 1980–2015 AMECO (OCTG) 1 billion 2010 constant euro

Working hours 1980–2015 AMECO (NLHT)b 1 million hours

Employment 1980–2015 AMECO (NETD) 1000 persons

Government debt 1980–2015 AMECO EDPc end-of-year percentage of GDP

Primary surplus 1980–2015 AMECO (UBLGIE)d end-of-year percentage of GDP

Bond yields 1980–2015 AMECO (ILN)e percentage, nominal

Inflation rate 1980–2015 AMECO (PVGD) percentage, GDP deflator

Debt maturity 1990–2010 OECDf years

Labor share 1980–2015 AMECO† percentage

a Strings in parentheses indicate AMECO labels of data series.

b PWT 8.1 values for Greece in 1980–1982.

c General government consolidated gross debt; ESA 2010 and former definition, linked series.

d AMECO linked series for 1995–2015; European Commission General Government Data (GDD 2002) for

1980–1995.

e A few missing values for Greece and Portugal replaced by Eurostat long-term government bond yields.

f Differing time coverage across countries; see the text for details.

† Calculated based on various series on labor compensation; see the text for details.

V bi(s, b; k−1), V bin (s, b; k−1), V ai(s; k−1), and q(s, b′; k−1) denote the value and pricing functions obtained

in the k’th iteration. We first solve

V bin (s, b; k) = max
c,b′

U(c, 1−Nnd(s, b, b′; k)) + βE
[
V bi(s′, b′; k − 1)|s

]
(1)

s.t. c+ q(s, b′; k)(b′ − δb) ≤ θ[Nnd(s, b, b′; k)α −Gc −Gd + (1− δ + δκ)b,

and

V ai(s; k) = U(c, 1−Nd(s)) + βE
[
(1− λ)V ai(s′; k − 1) + λV bi(s′, 0; k − 1)|s

]
(2)

s.t. c = θp[Nd(s)]α −Gc −Gd,

so that

V bi(s, b; k) = max{V bin (s, b; k), V ai(s; k)}. (20)

As explained earlier, we denote the labor supply function in the no default case by Nnd(s, b, b′; k) to make

explicit the dependence of Nnd(·) on the bond pricing function q(·; k) in each iteration. This is a standard

dynamic programming problem that delivers value and policy functions for consumption, labor and bond

choices, as well as default decisions. Once we have these, we can update the pricing function via

q(s, b′; k + 1) = E
[
(1−D(s′, b′; k))

(1− δ) + δ[κ+ q(s′, b(s′, b′; k); k)]

1 + r
|s
]
, (21)

where D(s, b; k) and b(s, b; k) are the default and bond holding decisions obtained in iteration k. In general,

this shows that q(·; k) is obtained in iteration k − 1.
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To implement the backward induction algorithm, we use discrete space value function iteration. Since

(θ,Gc) is discrete by assumption, we only need to discretize Gd and b. In particular, we set Gd to be

equally spaced over [−m̄, m̄] with Nd grid points, and with equal probability on each grid point for simplicity.

Moreover, we discretize the bond holding space B with Nb grid points. We iterate on the value function and

the pricing function on the discretized space Θ× Gc × Gd × B until convergece, namely, until

max |V bi(s, b; k)− V bi(s, b; k + 1)| and max |q(s, b′; k)− q(s, b′; k + 1)|

are both smaller than some convergence criterion. Moreover, we use two parameters ζV , ζq ∈ [0, 1] to control

the updating speed of V bi(·) and q(·) as follows:

V bi(s, b; k + 1) = ζV V
bi(s, b; k) + (1− ζV )RHS of (20),

q(s, b′; k + 1) = ζqq(s, b
′; k) + (1− ζq)RHS of (21).

Setting ζq > 0 is useful for the convergence of q(·) as well.

Note that it is important to have a continuously distributed Gd to smooth off discrete changes in D(s, b)

and enhance the convergence properties of the model. In principle, we could keep Gd as a continuous state

variable in the computation, and use the involved procedure of Chatterjee and Eyigungor (2012) to obtain

the functions D(·, Gd, ·) and b(·, Gd, ·) accurately. Instead, we use a discrete approximation of Gd, which is

straightforward to implement, and we find that such an approximation works good enough to improve the

convergence properties of the algorithm to compute our model.

Note also that q(s, b′) does not depend on Gd, and this simplifies the iterations of q(s, b′; k). Also, in

the backward iteration, we use the fact that q(s′, b(s′, b′; k); k) is simply the equilibrium bond price in state

(s′, b′), the value of which has already being computed in solving for the optimal bond choice b(s′, b′; k). Let

qe(s, b; k) denote the equilibrium bond price in state (s, b) under optimal bond choice b(s, b; k), then (21) can

be simplified into

q(s, b′; k + 1) = E
[
(1−D(s′, b′; k))

(1− δ) + δ[κ+ qe(s′, b′; k)]

1 + r
|s
]
.

The above expression implies that two equivalent ways of updating the bond prices. The first is to compute

q(·; k+1) in the k’th iteration, after obtaining the default decision D(·; k). The second is to compute q(·; k+1)

in iteration k+ 1 for each bond choice b′, using default decisions obtained in the previous iteration. The latter

will be useful when we implement the moral hazard case.

Improving on Efficiency In the preceeding algorithm, we do the computation of optimal labor supply

Nnd(s, b, b′) under no default within the main loop. To improve on efficiency we can use an approximation of

Nnd(s, b, b′; k). As shown before, for given (s, b, b′) and bond pricing function q(s, b′; k), the optimal labor n∗

can be written as a function of θ and χ. Since G > 0, 0 ≤ q(s, b′) ≤ q̄ = 1−δ+δκ
1−δ+r and bmin < 0 ≤ bmax, we have

χmin ≤ χ ≤ χmax, where

χmin = Gmin + q̄[bmin − (1 + r)bmax],

χmax = Gmax + q̄[bmax − (1 + r)bmin].

Therefore, we can discretize the interval [χmin, χmax] into a fine grid X with Nχ equally spaced points,

and then solve for n∗ over the grid Θ × X once and for all outside the main loop. Denote this solution by

N∗nd(θ, χ). To evaluate Nnd(s, b, b′; k) within the loop, we can simply interpolate N∗nd for the level of χ implied

by (s, b, b′).
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9.2.2 The Solution of the FSF

Using the functional forms above, the equilibrium conditions for the FSF can be rewritten as:

c (x, s) =
1 + υb(x, s)

1 + υl(x, s)
x,

c (x, s) γ (1− n (x, s))−σ = θαn (x, s)α−1 ,

x
(
s′
)

=
1 + υb(x, s) + ϕ(x, s′)

1 + υl(x, s)
ηx,

where ϕ(x, s′) is given by

ϕ(x, s′) = ξ̃(s)
ρ exp(−ρe)

[
πg(G′|G)− πb(G′|G)

]
πG(G′|G, e)

and ξ̃(s) is the Lagrange multiplier of the incentive constraint in the normalized problem; i.e. ξ̃(s) = ξ(s)
µb(s)

.

Furthermore,

2ωe = βρ exp(−ρe)
∑
G′,θ′

[
πg(G′|G)− πb(G′|G)

]
πθ(θ′|θ)V bf (x′, s′),

0 = ρ exp(−ρe)
∑
G′,θ′

[
πg(G′|G)− πb(G′|G)

]
πθ(θ′|θ)

[
1 + υl(x, s)

(1 + r)x
V lf (x

(
s′
)
, s′)− ξ̃(x, s)βρV bf (x(s′), s′)

]
−ξ̃(x, s)2ω

V bf (x, s) = log(c(x, s)) +
γ(1− n(x, s))1−σ

1− σ − ωe2 + β
∑
s′∈S

πG(G′|G, e)πθ(θ′|θ)V bf (x(s′), s′).

V lf (x, s) = θn(x, s)α − c(x, s)−G+
1

1 + r

∑
s′∈S

πG(G′|G, e)πθ(θ′|θ)V lf (x(s′), s′).

V af (s) = max
n

{
log(θnα − (1− φ)G) + γ(1−n)1−σ

1−σ − ωe2+

+β
∑
s′∈S π

G(G′|G, e)πθ(θ′|θ)V af (s′)

}

The solution to this system of equations is found numerically using a policy iteration algorithm. More

precisely, we discretize the relative pareto weight for the borrower x. For each grid point, we can calculate the

value of autarky by solving for the optimal labor in autarky first and calculating V af (s) from the previous

equation.

We then define the region of pareto weights between which none of the participation constraints are

binding. In that region, for each shock s = (θ,G), the solution is characterized by the first full commitment

solution with unobservable effort but no participation constraints:

c(x, s) = x

c (x, s) γ (1− n (x, s))−σ = θαn (x, s)α−1 ,

x
(
s′
)

=

[
1 + ξ̃

∂π(G′|G, e)/∂e
π(G′|G, e)

]
ηx,
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0 =
∑
s′|s

πθ(θ′|θ)ρ exp(−ρe)
(
πg(G′|G)− πb(G′|G)

) 1

1 + r

1

x
V lf (x′, s′)

+ξ̃(x, s)

−∑
s′|s

πθ(θ′|θ)ρ exp(−ρe)
(
πg(G′|G)− πb(G′|G)

)
ρβV bf (x′, s′)− 2ω



2ωe = βρ exp(−ρe)
∑
G′,θ′

[
πg(G′|G)− πb(G′|G)

]
πθ(θ′|θ)V bf (x′, s′),

where

V bf (x, s) = log(c(x, s)) +
γ(1− n(x, s))1−σ

1− σ − ωe2 + β
∑
s′∈S

πG(G′|G, e)πθ(θ′|θ)V bf (x(s′), s′).

V lf (x, s) = θn(x, s)α − c(x, s)−G+
1

1 + r

∑
s′∈S

πG(G′|G, e)πθ(θ′|θ)V lf (x(s′), s′).

V af (s) = max
n

{
log(θnα − (1− φ)G) + γ(1−n)1−σ

1−σ − ωe2+

+β
∑
s′∈S π

G(G′|G, e)πθ(θ′|θ)V af (s′)

}

To find the region for which the participation constraint binds for the borrower, for each shock s = (θ,G),

we find c (xb, s) = xb such that V bf (xb, s) = V af (s). For the decentralization, using one-period Arrow

securities, the bond price simplifies to:

q
(
s′|s
)

= max

{
βπ
(
s′|s
) u′ (c (x′, s′))

u′ (c (x, s))
,

(
1

1 + r

)
π(s′|s)

}
= π

(
s′|s
)

max

{
β
c (x, s)

c (x′, s′)
,

(
1

1 + r

)}
The price of a one period bond is then equal to:

qf (s) =
∑
s′∈S

q
(
s′|s
)

which in turn implies a risk free rate of rf (s) = 1δ+δκ
qf (s)

. Finally, we can recover the asset holdings numerically

by iterating to find the asset holding function that satisfies:

ab (x, s) =
∑
θ′∈S

q
(
s′
)
ab
(
x′, s′

)
+ c (x, s)− θf (n (x, s)) +G

al (x, s) = −ab (x, s)

Moreover, we define the repayment as:

ab
(
x′, s′

)
−
∑
s′∈S

q
(
s′|s
)
ab
(
x′, s′

)
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9.3 Further notes on the calibration procedure

On the transition matrix of the G shock. Note that this specification of the transition matrix is motivated

by the one-period-crash Markov chain of Rietz (1988):

πR =

0 1
2

1
2

η φ 1− φ− η
η 1− φ− η φ

 ,
where the first state is labeled as the “crash” or “crisis” state, and the associated stationary distribution is

µR =
[

η
1+η

1
2(1+η)

1
2(1+η)

]
.
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