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Abstract

We develop a residential sorting model based on a panel of county-to-county migration
flows to estimate the marginal valuation of air pollution. Our approach exploits annual cross-
sectional variation in migration flows to estimate mean location utilities at the county level,
while flexibly controlling for moving costs. The mean utilities provide a time-varying, county
level index of residential attractiveness. We then use panel variation in county characteristics
to decompose mean utility into observable and unobservable components using county fixed
effects, which allows us to estimate the marginal value of local amenities. In our application
to air pollution, we use an instrumental variables approach to provide robust evidence that
the concentration of fine particulate matter (PM 2.5) is a disamenity that negatively impacts
location decisions. In our preferred specification, we find that the median household is willing
to forgo 2.65 percent of annual income for a 1 µg/m3 decrease in fine particulates.

*Contact Information: bclose@wisc.edu (Close), dphaneuf@wisc.edu (Phaneuf).
We would like to thank participants at seminars at the University of Wisconsin and attendees at the AERE Summer
Conference for helpful feedback. All remaining errors are our own.

1



Valuation of Local Public Goods Brett Close

1 Introduction

Local public goods such as clean air, quality public schools, and safe neighborhoods can provide

significant economic value. Though they are not purchased directly, households do in fact pay

for local public goods indirectly through spatially differentiated housing rents, wages, and local

taxes that vary with location characteristics. In choosing where to live, households implicitly

select their bundle of local public goods, meaning they must strike a balance between location-

specific amenities, and the private consumption goods they will be able to purchase with the

income they can earn in the location, net of rents and local taxes.

Selecting a location involves more than trading off income for desirable local amenities, how-

ever. Accessing a different bundle of local public goods requires moving, which is highly dis-

ruptive. There are pecuniary and nonpecuniary costs; the latter includes, for example, leaving

established social networks and familiar routines. Yet every year thousands of households do

migrate. What role do local public goods play in this decision? And what can we learn about

how much people value local amenities by their migration choices? In this paper, we address

these questions by developing a residential sorting model using a panel dataset of migration

flows between US counties. By exploiting a new dataset and methodology, we estimate mean

utilities for counties across space and time, and then explain the variation in utility using time-

varying county characteristics. In doing so, we contribute to the literature on residential sorting

models, non-market valuation, estimating quality of life indices, and the broader literature on

discrete-choice demand analysis.

Scholars have been interested in using location decisions to understand the value of local

public goods at least since Tiebout (1956). Modern approaches rely on either the hedonic prop-

erty value model, or residential sorting models. Hedonic approaches, based on Rosen (1974),

estimate an equilibrium price function for housing, based on characteristics of properties, in-

cluding neighborhood attributes such as local public goods. The gradient of the price function

with respect to an amenity is then taken to be the marginal willingness to pay, as housing options

varying along the price function should display this tradeoff.

Sorting models attempt to remedy a number of drawbacks of hedonic approaches, and have

been described in-depth by Kuminoff et al. (2013). The primary drawback of the hedonic model

is that it uses a costless mobility assumption to link the equilibrium price function to households’

marginal willingness to pay. With costly migration, the price gradient is not necessarily equal

to marginal willingness to pay. Horizontal sorting models address this problem by adopting a

discrete-choice framework that directly estimates preference parameters. Agents select among a

finite number of possible locations, trading off place-specific amenities against local wages and

rents. Estimation relies on the econometric framework developed in Berry et al. (1995), which

also accommodates household heterogeneity in preferences. The intuition from Roback (1982)

implies that variation in local amenities will be reflected in wages and rents, as prices adjust to
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maintain equilibria in the housing and labor markets. As such, migration in response to variation

in wages and amenities across space and time can be used to quantify household tradeoffs and

marginal willingness to pay for local amenities.

The horizontal sorting framework was first developed in Bayer et al. (2004) and subsequently

extended in a number of applications. Notable examples include Bayer et al. (2007) for public

school quality, Klaiber and Phaneuf (2010) for local land use, and Depro et al. (2015) for environ-

mental justice. Each of these papers model residential sorting within a metropolitan area. Sorting

models have also been applied at the national scale to estimate the marginal cost of air pollution.

The first contribution was from Bayer et al. (2009), who recognized the importance of including

moving costs to reduce bias in their estimates of marginal willingness to pay. This is because

the gains from moving to a higher-amenity location must compensate for the higher rents, lower

wages, and moving costs. Hamilton and Phaneuf (2015) build on Bayer et al. (2009), marrying it

to the micro-level sorting approaches by using a nested-logit formulation to represent two-stage

budgeting of the choice of an optimal metropolitan area and optimal neighborhood within it.

Other examples of sorting models include Tra (2010), Bayer and McMillan (2012), and Tra (2013).

Properties of the general estimator have been derived in Bayer and Timmins (2005) and Bayer

and Timmins (2007).

All of the models discussed above rely on observing where households’ live at specific points

in time, except Depro et al. (2015), who use population changes between census tracts in 2000

and 2010. Since the actual migration path is not known, they assume that the observed distri-

bution of location choices represents a spatial equilibrium, which was generated by households’

previously-made location choices. In contrast, our analysis relies on individual observation of

migration flows, so that that our preference parameters are identified off current-period deci-

sions to move or not move, and do not require a market-level spatial equilibrium to hold. We

contribute methodologically to the sorting model literature by developing a generalization of the

discrete choice approach that accommodates our flow data, exploits a multiple year panel, and

flexibly accounts for costly moving.

Our application examines the marginal willingness to pay for air quality, which has been

the focus of previous hedonic property value and sorting applications. Research in both the

economics and health literatures shows that air pollution has significant impacts on human health

and is an aesthetic disamenity in some locations. Concentrations of fine particulate matter can

cause respiratory and cardiovascular problems, leading to elevated fatality risks in vulnerable

populations, as well as increased symptoms for people with asthma and similar conditions. For

the Obama Administration’s Clean Power Plan, which is nominally a plan to reduce carbon

dioxide emissions that contribute to climate change, the EPA estimates that as much as 60% of

the benefits will actually come from reductions in health problems from co-pollutants, rather than

reductions in green house gases (Environmental Protection Agency, 2016). Current estimates of

the marginal willingness to pay for particulate matter reductions are based on the distribution
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of pollution and prices across space at a given time, or identified using changes in prices and

pollution within locations across time. Common spatial units include counties or metropolitan

statistical areas (MSAs) for national scale studies. For example, Chay and Greenstone (2005)

use the Clean Air Act Amendments non-attainment status to instrument for total suspended

particulates in a hedonic price model, using counties as the unit of observation. Bayer et al.

(2009) and Hamilton and Phaneuf (2015) use changes in PM10 (particulates less than 10 µm
in diameter) between 1990 and 2000 at the MSA level, along with 1990 and 2000 snapshots of

residential location shares, to estimate the value of pollution reductions using sorting models. We

contribute to this literature by providing a new estimate for the marginal value of fine particulate

reductions, using a novel source of data and research design.

To estimate our sorting model, we rely on a relatively untapped data source within the eco-

nomics literature: the Internal Revenue Service (IRS) data from tax filings that track the number

of households filing in different counties, in successive years. The data provide counts of county-

to-county migration flows for the years 2005-2006 through 2010-2011, which we combine with

repeated cross-sectional variation in county level wages to estimate the role that wage differen-

tials play in explaining annual migration flows. Our reliance on county-level data for the entire

US allows us to evaluate migration-wage tradeoffs using a broader sample than is possible using

metropolitan areas as the unit of analysis. In addition, because migration flows vary between

pairs of counties as well as year over year, we are able to identify mean utilities that exhibit panel

variation for each county. This allows us to estimate the determinants of mean utility using a sec-

ond stage panel regression with county fixed effects. The IRS data also allows us to separate the

extent to which counties draw migrants in, versus retaining current residents. With this we can

estimate welfare impacts separately for migrants and non-migrants, and separately test whether

changes in pollution levels impact households’ move versus stay decisions, and conditional on

moving, where a household goes.

We find strong evidence that fine particulate pollution has an impact on household migration

decisions. Across a wide array of specifications, we find that PM 2.5 (particulates less than 2.5

µm in diameter) functions as a disamenity to households. Our preferred specification implies

a non-migrant household earning $50,000 per year would be willing to forgo $1325 dollars to

reduce their exposure to PM 2.5 by 1 µg/m3 - about one-third of a standard deviation in con-

centrations. We also find some evidence that PM 2.5 concentrations have a negative impact on

the attractiveness of a county to migrating households, although this effect is smaller than for

non-migrant households.

By estimating a panel of mean utilities based on migration flows, our paper also contributes

to the quality of life literature that focuses on general explanations for the relative attractiveness

of different locations. This literature has used both sorting and hedonic approaches. In a sorting

application, Kahn (1995) uses observations of households’ wages and rents at their selected loca-

tion to impute wages and rents at alternative locations. These are used as explanatory variables
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in a discrete choice location model that estimates location fixed effects in a cross section, which

are then interpreted as an ordinal ranking of city quality. Work by Albouy and coauthors has

examined quality of life in a hedonic framework, focusing on adjustments for taxation and non-

rent prices (Albouy, 2012), and commuting costs (Albouy and Lue, 2015). Albouy et al. (2016)

use the framework to estimate marginal valuation for climate amenities. Our mean utilities can

be used to examine similar questions, without reliance on imputing location-specific variables or

an assumption of free mobility.

The paper is organized as follows. We begin by laying out the behavioral model of household

migration decisions and marginal valuations. We then present the data used in the estimation

and explain sources of cross-sectional and panel variation, followed by a description of the ap-

plication of the model to air pollution, including an instrumental variables strategy to address

endogeneity of air pollution. This is followed by a description of the mechanics of estimating the

model and the innovations we developed to the traditional horizontal sorting model. Finally, we

provide results from the first-stage estimation of county-level mean utilities and the second-stage

estimation of marginal willingness to pay to avoid air pollution, and offer concluding thoughts.

2 Behavioral Model

2.1 Choice Behavior

Consider household i residing in county k in year t. It faces a choice of which county to live in

during the following year among the full set of counties j = 0, . . . , J, including the choice to stay

in k. We assume that the utility from residing in location j is,

Vit
kj = δt

j + 1{k = j}αt
j + (log(waget

j)− log(waget
k))γ

t
wage + Zit

kjγ
t + εit

j

= Ṽit
kj + εit

j ,
(1)

where δt
j is the mean utility (alternative-specific constant or ASC) that anyone selecting county

j receives; 1{·} is the indicator function; αt
j is the mean utility that agents in county k receive

from staying in county k beyond what migrants receive; waget
j is the wage in county j in year t;

γt
wage is the marginal utility of income in year t; Zit

kj is the set of factors whose value depends on

characteristics of the agent and characteristics of county k relative to county j, and may include

interactions; γt is a vector of marginal utilities of Z; and εit
j is an idiosyncratic term reflecting

characteristics of county j for agent i. The household selects county j as its residence in the

following year if

Vit
kj = max

l=0,...,J
{Vit

l }. (2)

This model has three direct output parameters, δ, γ, and α. We can interpret them as follows:

δk represents the mean representative utility of the decision to move into county k in the following
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year, γg represents the slope of representative utility with respect to element g of Z, and αk

represents the mean representative utility among residents of county k to staying in county k,

apart from the benefits to newcomers.

Of these parameters, γ is a typical coefficient in a discrete-choice model. The primary

alternative-specific constant δ is similarly familiar from discrete choice models and a larger value

of δ makes a county unambiguously more desirable. As a choice-context-specific and alternative-

specific constant, α is less familiar and somewhat more ambiguous. A larger value of α could

be either positive, denoting a high quality of life due to rich local social networks or location

amenities that require local knowledge, or negative, due to chronic poverty that makes leaving

difficult. As such, it can be interpreted as a location-specific fixed (utility) cost of moving away,

beyond the cost embedded in γ. This contrasts with the traditional Roback-style approach which

assumes free mobility, and complements the approach introduced in Bayer et al. (2009) that in-

cludes a fixed cost to moving. Generally, we can think of δ as a measure of attractiveness of the

county, α as a measure of retentiveness, and −γ as variable moving cost. The sum α + δ is the

mean utility of residents of continuing to reside in the county. The main parameters of interest in

the model are α + δ and δ, as these correspond to the mean utility of non-migrants and migrants,

respectively.

2.2 Marginal Valuation

The county-level mean utility parameters can be decomposed as:

δt
j = Xt

j β1 + φ1j + ψt
1j + ξt

1j, (3)

αt
j = Xt

j β3 + φ3j + ψt
3j + ξt

3j, (4)

and

αt
j + δt

j = Xt
j β2 + φ2j + ψt

2j + ξt
2j, (5)

where X is a set of characteristics of counties that affect people’s valuation of locations, each β

is a parameter vector indicating the partial derivative of the value component with respect to

the elements of each X, and φ·j and ψt
·j are county and (possibly regionally varying) time fixed

effects.

Given these decompositions, we can can rewrite the utility function for a migrant as,

Vt
kj = Xt

j β1 + φ1j + ψt
1j + ξt

1j + (log(waget
j)− log(waget

k))γ
t
wage + Zt

kjγ
t + εt

j , (6)

and,

Vt
kj = Xt

j β2 + φ2j + ψt
2j + ξt

2j + Zt
kjγ

t + εt
j , (7)
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for a non-migrant. Taking a total differential for a migrant gives,

dVt
j = dXt

j β1 + d(log(waget
j))γ

t
wage + dZt

kjγ
t. (8)

Setting all differentials to zero except for elements g of X and the wage element,

0 = dXt
gjβ1g + d(log(waget

j))γ
t
wage =⇒

(
d(log(waget

j))

dXt
1gj

)]
dV=0

= −
βg1

γt
wage

, (9)

which is the marginal willingness to pay for changes in Xgj.

Equation 3 is the structural equation for the mean utility of migrants, whereas Equation 5

is the structural equation for the mean utility of non-migrants. Because the vast majority of

households do not migrate in any given year, Equation 5 is more relevant for welfare analysis.

Equation 3 still has welfare implications for households that do migrate, and is relevant for a

test of the Tiebout hypothesis that amenities drive location decisions: β1g > 0 implies people

“vote with their feet" for amenity g. Equation 5 provides the converse hypothesis:β2g > 0 implies

people are more likely not to leave a place with a high value for Xg.

2.2.1 Marginal Utility of Income and Willingness to Pay We estimate the marginal util-

ity of income in the first stage using the difference in the log of average wages. This allows us to

recover estimates based on variation across counties within a year, reflecting the tradeoffs people

are making. We then use these estimates to calculate the marginal willingness to pay.

The marginal utility of income is thus estimated separately for each year in the panel. In

order to compare across years, we directly estimate marginal willingness to pay for each element

of X by running our second stage model on δ̃t
j =

δt
j

γt
wage

, or the equivalent expression for other

parameters. Then the coefficient on X becomes a direct estimate of
β1

γwage
.

In addition to improving the estimate of marginal willingness to pay, it also provides scale

normalization to the model, ensuring that the error distribution is the same across years and all

values are comparable. Because the overall scale of utility is irrelevant in any discrete choice

model, parameters are only identified up to the scale of the unobserved utility term; in a logit

model, this scaling is done automatically by the distributional assumption. But we still cannot

distinguish between a model with parameter θ from a model with parameter estimate
θ

σ
for any

positive σ (which would simply reflect a different scale for the error term). Therefore, parameters

estimated from different data cannot be directly compared without accounting for scale, but

ratios of parameters can be directly compared because the scale parameter will cancel out. Thus,

while we cannot directly compare the magnitude of δt
j and δs

j , we can compare the magnitudes

of
δt

j

γt
wage

and
δs

j

γs
wage

(which, due to location normalization reflect comparisons to the mean utility
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of the reference location in years t and s). We assume that the true value of γwage is fixed (other

elements may change due to changes in technology or travel costs over the period), and each

estimate of γt
wage simply reflects differences in unobserved factors in different years.

2.3 Identifying Variation

By relying on migration flows and different migration shares for different origin counties, the

model uses rich variation for identification. In the first stage of the model, all parameters are

identified off of variation across counties in a year, specifically in the variation in differences be-

tween origins and destinations across all the origin counties. γ is identified off of the differences

between counties with respect to each other. If Z contains distance elements, the identification

comes from the fact that the set of distances to other counties is unique. For example, Los Ange-

les county in California will be a more desirable destination for people in Washington state than

people in Maine because of its closer proximity. In terms of wages, a destination with moder-

ate wages will be more desirable to residents of low-wage counties than residents of high-wage

counties.

The parameter δ is identified off of migrants moving from county to county. Larger migration

flows for destinations with equivalent values of Zγ indicate larger values of δ, and this variation

is what identifies the parameter. α + δ is identified off of the portion of the population that

chooses to remain in a county, relative to the desirability of all the other counties available; α is

then based off of the values of the other three parameters, as discussed below.

In the second stage, β1, β2 and β3 are identified off of panel variation across years using

county and time fixed effects models. That is, we look at how δj and αj vary across years, taking

into account differences across counties within a year.

3 Data

3.1 Migration Flow Data

The primary data source for this analysis is a data set of migration flow estimates produced by

the Internal Revenue Service (IRS) for the years 2005-2006 through 2010-2011. For each year, the

IRS produces tabulations for each county of the number of tax returns, the number of exemptions

and the total adjusted gross income associated with tax payer IDs that were filed in each other

county in the previous year. That is, the agency produces a dataset that quantifies the number of

households (proxied by returns) and individuals (proxied by exemptions) who moved from one

county to another and the number who stayed, and the income (proxied by the adjusted gross

income) of those households. In principle, each county pair would then be reflected twice in the

dataset: migrants from A to B, and from B to A.

The dataset does not report the direct county-to-county numbers for combinations of counties
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between which fewer than 10 returns moved. Thus, the reported values are censored. The

censored returns are reported in aggregate for each county to others in the same state, and to

each of four regions: Northeast, Midwest, South, and West. If any of these regional categories had

fewer than 10 returns, they are aggregated into an "all other regions" category. It is not possible

to distinguish a county pair between which no one moved and one between which fewer than 10

households moved. See Section 5.2.3 for details on how the censoring is addressed.

The IRS migration data are relatively untapped in the economics literature. While these data

have been used within the geography literature, the only study within economics that we are

aware of uses them to describe overall migration trends (Molloy et al., 2011).

The IRS migration data provide rich cross-sectional and temporal variation that our model

is able to exploit. Figure 1 shows rates of in-migration, out-migration, and net migration for

counties between 2005 and 2006, binned into nine quantiles with light yellow corresponding to

low values and dark blue corresponding to high values. There is clear cross-sectional variation,

both between regions and between counties near each other. For example, both in-migration and

out-migration rates are high in the inter-mountain West, but there is sufficient variation between

these rates that net migration was much more positive (more in-migration than out-migration)

in Nevada counties than Utah counties.

In addition to cross-sectional variation, there is also significant panel variation. Figure 2

shows net migration for 2005-06 and for 2009-10, again with yellow indicating more out-migration

and blue indicating more in-migration. For 2005-06 rates are generally negative in the Plains

states, but positive in the Southwest. However, the rates are relatively lower in the Southwest

in 2009-10, while many of the Plains counties see relatively high rates of in-migration, although

with significant variation county-to-county. This panel variation can be seen, for example, in

California, as shown in Figure 3. Coastal counties had much higher rates of net in-migration in

2009-10 compared with 2005-06.

Table 1 provides summary statistics for each year of the panel, including the average, and 5%

and 95% quantiles of out-migration and in-migration rates; the correlation between in-migration

and out-migration rates at the county level; the average number and standard deviation of ob-

served destination counties for each source county; and the average and standard deviation

distance households moved. We can see that approximately 8% of households migrate in a year,

meaning that approximately 92% remain in their current county. The correlation between in-

and out-migration is high for all years except 2005, meaning that the overall pattern is of high

turnover in some locations, as opposed to movement primarily away from certain counties into

others. The anomaly in 2005 is likely due to disruption from Hurricane Katrina. Migrants from

each county move to an average of about 27 counties each year (among counties where at least

10 households are observed to migrate), at an average distance of about 100 miles.

These figures and tables highlight the cross sectional and panel variation in aggregate mi-

gration at the county level, but one of the major strengths of our model is the ability to deal

Page 9 of 54



Valuation of Local Public Goods Brett Close

with county-to-county migration, rather than just aggregate migration rates. That is, it allows

for variation in the in-migration rates for each county, from each other county. Figure 4 shows

2005-06 migration rates from Los Angeles and Santa Clara Counties in California, and New York

County in New York (the Borough of Manhattan in New York City). Counties in white have

fewer than 10 returns moving between them in those years. All three share some similar patterns

with the majority of migration going to the West Coast, Florida, and the Northeast corridor from

Washington, D.C. to Boston. But there is signficant variation between them as well. Los Angeles

County, which had the highest number of migrants of any county, has a more broad-based out-

migration than the others. Santa Clara County migrants moved primarily along the West Coast,

while New York County migrants moved primarily along the Northeast Corridor and to Florida.

We can see the differences more clearly by focusing on migration to California counties, as

shown in Figure 5. Unsurprisingly, New York County migrants moved to a much smaller set of

counties than Los Angeles County or Santa Clara County migrants, focusing along the coasts.

Los Angeles County migrants focused more on Southern California, while Santa Clara County

migrants moved more around the Bay Area, and to Northern California and the Central Valley.

In addition to migration flows, we draw population estimates from the IRS dataset as the

category "All U.S. Migrants and Non-migrants." Thus, it does not correspond to the traditional

definition of the population of the county, but reflects the total sample observed. In a small

number of cases, the number of migrants to counties and regions was less than the population

due to aggregation between counties. In these cases, the shortfall in observed migration was

added to the "all other regions" category.

Certain returns are not included in the dataset, including those that are filed extremely late,

which, according to IRS documentation, tend to be complicated returns associated with extremely

wealthy households. In addition, households that do not file federal income taxes will not be

reflected.

3.2 Control Data

We include controls in both the first and second stage estimations. First-stage controls, which

must vary at the county-to-county level, include distances; indicators for whether the counties are

in the same Core-based Statistical Area (CBSA, roughly equivalent to an MSA), state, and region;

relative log wages; and the squared difference in relative rurality. Second-stage controls, which

vary at the county level year over year, include industry composition controls, air pollution,

housing market characteristics, and unemployment rate. Distance data come from NBER county-

to-county distance files. County-to-region and county-to-state distances were calculated as the

mean distance between a county to the set of counties in a region, or within the same state,

which were not directly reflected in the IRS database. Thus, while the distance between any two

counties is fixed throughout time, the distance from a county to a region will vary between years,

based on which counties in that region had observed migration and which did not.
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Over the study period, certain county definitions changed due to renaming, or the creation or

dissolution of existing counties. In the case of renaming, the new county inherited distance from

the old county. In the case of creation, the new county’s distances to any county is calculated as

the average of the distances of the predecessor counties. Any counties that have been dissolved

prior to a year have no observed migration and are dropped from the analysis.

Industrial composition and wage data come from the Bureau of Labor Statistics Quarterly

Census of Employment and Wages. Figure 6 shows average wage quantiles at the county level

for 2005, with high wages shown in dark blue and low wages shown in light yellow. Again, there

is significant variation in the cross-section. This includes regional variation, but also variation

between near-by counties. While there is a clear rural-urban difference, with high wages in many

of the urban areas, there is also variation between rural areas. For example, wages in rural

eastern Oregon are much higher than in rural northern Nebraska.

Rurality index data come from Waldorf and Kim (2015). Their Index of Relative Rurality is a

composite index reflecting county population, population density, distance to a major population

center, and percent of land built up. Values are between zero and one and reflect the average

placement of the county between the maximum and minimum value for each of the criteria. We

rely on the 2010 estimates and use the absolute difference between counties’ indexes.

Industry composition controls include the number of establishments, aggregate employment

levels, and annual wages overall and for the set of industries for which data are available at

the county level and that we assume to be most polluting, based on NAICS classification: 23

(Construction), and 31-33 (Manufacturing). Unemployment data are the county level annual

average from the Bureau of Labor Statistics.

Air pollution data are from the EPA’s AirData project.1 The variable of interest is the average

concentration of particulate matter (PM 2.5). These value are not monitored in all counties, so

these analyses restrict the data set. Figure 7 shows quantiles of average PM 2.5 concentrations

in 2009. Higher concentrations are dark blue and lower concentrations are light yellow, while

counties in white do not have any EPA monitoring of PM 2.5. The figure demonstrates both the

geographic extent of the monitoring and the amount of variation within regions. Monitoring is

not limited to urban counties, but includes both rural and urban counties from across the country.

There is variation in particulate concentration across time as well as across space. This can be

seen in concentrations for California counties in 2005 and 2009, as shown in Figure 8. Concentra-

tions in northern California have decreased, relative to concentrations in the Central Valley and

southern California.

Housing data come from the American Community Survey conducted by the US Census

bureau. Data include median rents, median property values, average number of rooms in a

dwelling, and the average year built.

Emissions data used in the calculation of the instrument, as discussed in Section 4.1, come
1http://aqsdr1.epa.gov/aqsweb/aqstmp/airdata/download_files.html
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from EPA’s national emissions inventory (NEI). Because county-level data are not available for

all years, annual data at the state level are used for each emissions source tier for interpolations.

Table 2 provides summary statistics for the 2005 cross section, while Table 3 gives measures of

variation in the panel, including the overall standard deviation, the “within" standard deviation

(the standard deviation after subtracting the county mean), and the mean range within a county,

reflecting another measure of total variation at the county level. PM 2.5 concentrations and

unemployment rate have significant variation within the panel, as well as overall in the cross

section. Wages, on the other hand, have significantly more variation in the cross-section than in

the panel.

4 Application: Particulate Pollution

We use our model framework to investigate marginal valuation of fine particulate pollution for

the years 2005 through 2011. Fine particulate matter, particles with diameter less than 2.5µm
known as PM 2.5, has been shown to have serious implications for health. It can cause irritation of

the eyes, nose, throat, and lungs. When inhaled these very small particles can travel deep into the

lungs and enter the bloodstream. Exposure has been linked to increased health problems such

as asthma and heart disease as well as increased hospital admissions. Fine particulate matter

is produced by fuel combustion as well as created by chemical reactions in the atmosphere,

especially due to the presence of sulfur dioxide (SO2).

We look at concentrations of fine particulate matter to estimate their impact on the structural

parameters α̃ + δ̃ and δ̃ and to estimate average marginal willingness to pay to avoid PM 2.5

concentrations. Our first-stage structural equation, representing Equation 1, includes: the log

of the distance between the two counties; indicators for whether the counties are in the same

core-based statistical area (CBSA), and census region; and the difference in log of average wages.

Our second-stage structural equations of interest are,

δ̃t
j = β1,pmPMt

j + β′1Xt
j + φ1j + ψt

1j + ξt
1j,

α̃t
j + δ̃t

j = β2,pmPMt
j + β′2Xt

j + φ2j + ψt
2j + ξt

2j,
(10)

where β1,pm and β2,pm are the parameters of interest, representing the proportion of income that

households are willing to trade off to receive a unit decrease in pollution concentrations; PMt
j is

the average PM 2.5 concentration in county j in year t; Xt
j is a vector of controls for job market

and housing conditions, and industry composition within the county; β1, and β2 are coefficients

on the controls; and ξt
1j and ξt

2j are disturbances.

The controls included in Xt
j include industry controls, housing controls, and the unemploy-

ment rate. Industry controls include the number of private employers, average employment,

and average wages for all private businesses and for establishments classified as construction

or manufacturing. Housing controls include the median rent, the median housing value, the
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median number of rooms per home, and the median year built.

Because much of the pollution in a location is produced by economic activity, such as man-

ufacturing and construction, which is correlated with job market outcomes, pollution and job

market outcomes are likely to be endogenous and direct estimation of Equation 10 by linear

panel methods is likely to lead to biased estimates of the parameters of interest. That is, having

more factories producing at higher levels means a county has more jobs that pay well, which is

desirable, but also more pollution, which is not. Direct estimation of the impact of pollution on

desirability will likely yeild inconsistent estimates because PMt
j is likely correlated with ξt

1j and

ξt
2j.

4.1 Instrumental Variables Approach

To address this challenge, we develop an instrument for PM 2.5 concentrations, adopting a prac-

tice used elsewhere, including Hamilton and Phaneuf (2015). The logic of the instrument is that

local emissions are likely to be correlated with positive job market outcomes, but some of the

pollution in a location is due to emissions elsewhere that flow in via weather patterns. This

pollution is unlikely to be correlated with local job market outcomes or other components of

Equation 10, conditional on included fixed effects.

This instrument is calculated by aggregating emissions at the county level for large point

source polluters with smoke stacks greater than 500 feet high, primarily power plants, which

are monitored by the EPA. Pollutant inflow is then calculated based on a matrix of transfer

coefficients describing the fraction of emissions that will flow from the point source to each

county in the country. Because a major source of PM 2.5 pollution is particles that are created

from SO2, which is emitted primarily from coal-fired power plants, we use SO2 emissions from

all counties outside of a band around the county of 100 miles, with dead-bands of 30, 50, and 75

miles as robustness checks.

Because the NEI does not produce estimates each year at the source level, we interpolate

values for 2006, 2007, 2009, and 2010 based on NEI data for 2005, 2008, and 2011. Because the

2008 and 2011 databases do not include the stack height at the facility level, we estimate high-

stack emissions based on the distribution of stack heights in each county from 2005. We use a

second-order Taylor polynomial with the second derivative estimated based on NEI state-level

emissions for each source tier (type of emissions source). So for year t, state s and emissions tier

r, we estimate the proportional second derivative in the emissions rate as,

∆2
srt =

Esr,t+1 + Esr,t−1 − 2Esrt

Esrt
, (11)

where Esrt is the emissions from state s, tier r and year t. The first derivative of emissions

for county k is estimated based on the county-level emissions in the next year for which data

are available, t̄, and the most recent year for which data are available, t (for example, the first
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derivative for 2006 is based on 2005 and 2008), as,

∆krt =
Ekrt̄ − Ekrt

3
(12)

Then the emissions for county k are estimated for the year for which data are not available as,

Êkrt = Ekrt + ∆krt(t− t) +

(
.5(t− t)2∆2

s(k)rtEkrt + .5(t̄− t)2∆2
s(k)rt̄Ekrt̄

)
2

, (13)

where s(k) is the state of county k. These county-level emissions are then multiplied by a trans-

mission factor calculated by the EPA that estimates the quantity of emissions in a county that

flow to each other county, based on prevailing weather patterns. For each receptor county j, these

individual contributions are summed up across source counties outside of a deadband distance.

That is, inflow SO2 is calculated as,

SO2t
−j =

J

∑
k=0

1{distkj > D}bkjÊkrt, (14)

where distkj is the distance between county k and county j, D is the deadband distance, and bkj

is the transfer coefficient between county k and county j.2

Figure 9 shows the quantiles of the calculated values of the instrument for New York County,

NY and Allegheny County, PA, home to Pittsburg, in 2005 from surrounding states. For New

York County, much of the inflow comes from western Pennsylvania. But for Allegheny county,

the sources in Western Pennsylvania are within the deadband and excluded in the calculation of

the instrument. Although these emissions sources are far distant, the instrument is quite strong,

as shown in Section 6.3.

The structural equation for PM 2.5 pollution is then,

PMt
j = Γ1,SO2SO2t

−j + Γ′1Xt
j + µt

1j, (15)

where SO2t
−j is SO2 inflow from far-away counties, Γ1,SO2, and Γ1 are the projection coefficients

for SO2 inflow and the vector of controls discussed above, respectively. This gives the reduced-

form estimating equations,

δ̃t
j = β1,pmP̂M

t
j + β′1Xt

j + φ1j + ψt
1j + νt

1j,

α̃t
j + δ̃t

j = β2,pmP̂M
t
j + β′2Xt

j + φ2j + ψt
2j + νt

2j,
(16)

2An early study using this source receptor matrix is Shadbegian et al. (2007). These authors worked with EPA
staff and analysts at Abt Associates to document appropriate use of the matrix, which was originally described in
Latimer (1996), with additional technical information in Abt Associates (2000). Bayer et al. (2009) and Hamilton
and Phaneuf (2015) received necessary files and documentation from Wayne Gray, which we have used for this
paper. Documentation, including email correspondence between developer Douglas Latimer and Shadbegian et al.,
are available upon request.
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where P̂M
t
j is the predicted PM 2.5 concentration from Equation 15, which is uncorrelated with

stochastic disturbance terms νt
1j and νt

2j.

5 Estimation

5.1 Model Likelihood

Based on the behavioral model laid out in 2.1, assuming that εit
j is distributed type 1 extreme

value, the probability that agent i decides to reside county j in the following year is,

Prit
j =

exp(Ṽit
j )

∑J
l=0 exp(Ṽit

l )
. (17)

Now, consider not only agent i in county k but Nk agents living in county k, who are identical

up to the idiosyncratic terms and act according to the behavioral model laid out above. Because

agents are identical we can rewrite Zit
kj = Zt

kj and Prit
j = Prt

kj. The likelihood of observing a

migration flow for county k from year t to year t + 1 is,

Lk =
Nk

∏
i=1

Prit
j(i) =

Nk

∏
i=1

Prt
k,j(i) =

J

∏
j=0

(Prt
kj)

Mkj , (18)

where j(i) is the county selected by agent i and Mkj is the number of agents observed moving

from county k to county j. The second equality is due to agents being identical within a county,

and the third equality from the probabilities for a destination being the same within the same

origin county. Taking the log gives the log-likelihood,

Lk =
J

∑
j=0

Mkj ∗ ln(Prit
kj). (19)

The log-likelihood of the full set of national migration is then the sum of the log-likelihood

contributions from each source county,

L =
J

∑
k=0
Lk =

J

∑
k=0

J

∑
j=0

Mkj ∗ ln(Prt
kj). (20)

Rewriting Mkj = Nk ∗ mjk in terms of population Nk and migration share mkj, gives the log-
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likelihood function for the model:

L(δ, α, γ|M) = ∑J
k=0 Nk ∗

(
∑J

j=0 mkj ∗ ln(Prt
kj)
)

= ∑J
k=0 Nk ∗

(
∑J

j=0 mkj ∗ ln

(
exp(Ṽit

j )

∑J
l=0 exp(Ṽit

l )

))
= ∑J

k=0 Nk ∗
(

∑J
j=0 mkj ∗

(
δt

j + 1{k = j}αt
j + γtZt

kj−

ln
(

∑J
l=0 exp(δt

l + 1{k = l}αt
l + γtZt

kl)
)))

(21)

where δ is full set of δj for j = 0, . . . , J, α is the full set of αj for j = 0, . . . , J, and M is the full set

of Mkj for k = 0, . . . , J and for j = 0, . . . , J. To normalize the model, fix δ0 = 0, so the dimension

of the estimable parameter δ is J.

5.2 Contraction Mapping

With more than 3000 counties in the United States, direct estimation of the maximum likelihood

estimator of {δ, α, γ} is infeasible. The contraction mapping algorithm due to Berry et al. (1995),

hereafter BLP, provides a tractable alternative in the case of a vector of market shares, but this

model includes J + 1 vectors of market shares, each of length J + 1, making direct adoption of

this approach impossible. Fortunately, the logic of the approach can be adapted to provide a

solution.

The general logic of the BLP approach is that the first-order conditions for the maximum

likelihood estimator in a logit-type model imply that the predicted market shares equal the

observed market shares. The approach splits estimation into two parts: first, holding constant

the coefficients on exogenous variables that vary at the individual level, estimate the values of

the alternative specific constants via a simple algorithm that is guaranteed to converge to a fixed

point that maximizes the log likelihood. Second, fix the value of the alternative-specific constants

and estimate the coefficients on the individual variables by gradient or other traditional methods.

Our model requires two generalizations: two sets of alternative-specific constants, and a matrix

of market shares rather than a vector of market shares.

5.2.1 New Alternative-Specific Constant The first generalization is straight forward. The

parameter δ functions as the traditional alternative-specific constant in the BLP formulation,

while α is new. The value of the full vector δ is relevant to choice probabilities across all choice

occasions (i.e. in every county), whereas αk is only relevant for agents currently in county k.

Fortunately, there is a closed-form solution for the maximum-likelihood estimator of each αk
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from the first-order conditions:

∂L
∂αt

k
= Nk ∗

(
∑J

j=0 mt
kj ∗
(

1{k = j} −
exp(δt

k + 1{k = l}αt
k + γZkk)

∑J
l=0 exp(δt

l + 1{k = l}αt
l + γZlk)

))

= Nk

(
mt

kk ∗
(

1−
exp(δt

k + 1{k = l}αt
k + γZkk)

∑J
l=0 exp(δt

l + 1{k = l}αt
l + γZlk)

)

−(1−mt
kk) ∗

(
exp(δt

k + 1{k = l}αt
k + γZkk)

∑J
l=0 exp(δt

l + 1{k = l}αt
l + γZlk)

))
= mt

kk −
exp(δt

k + 1{k = l}αt
k + γZkk)

∑J
l=0 exp(δt

l + 1{k = l}αt
l + γZlk)

= mt
kk − Prt

kk = 0.

(22)

That is, the maximum likelihood estimator for αk is the value that predicts non-migration per-

fectly. The second-to last line of Equation 22 implies that

mt
kk =

exp(δt
k + αt

k + γZkk)

∑J
l=0 exp(δt

l + 1{k = l}αt
l + γZlk)

=⇒

mt
kk ∑J

l=0 exp(δt
l + 1{k = l}αt

l + γZlk) = exp(δt
k + αt

k + γZkk) =⇒
mt

kk ∑J
l 6=k exp(δt

l + γZlk) = (1−mt
kk)exp(δt

k + αt
k + γZkk) =⇒

mt
kk

1−mt
kk

∑J
l 6=k exp(δt

l + γZlk) = exp(δt
k + αt

k + γZkk),

(23)

which can be solved to find the maximum-likelihood estimator,

α̂t
k = ln

(
mt

kk
1−mt

kk

J

∑
l 6=k

exp(δt
l + γZlk)

)
− δt

k − γZkk. (24)

5.2.2 Generalized Contraction The BLP methodology is attractive because it is guaranteed

to find the maximum likelihood estimate of the parameters (given suitable starting values), and

has low computational requirements. The first is because the algorithm is a contraction and will

lead to a fixed point, which is equal to the maximum likelihood estimate. The second is because

the algorithm relies on very simple calculations. In this section, we describe the traditional

approach, lay out a generalization for the current model, and show that the generalization still

constitutes a contraction.

The traditional application of the BLP estimator involves only the parameters δ and γ, but not

α, and proceeds in two parts. The maximum-likelihood estimate in a logit model has the property

that the predicted probabilities (in the form of predicted market shares) equal the observed

probabilities (in the form of observed market shares). This provides an intuitive logic to the

estimator. Given a value of γ and a starting estimate δ0, an updated estimate of δ is calculated as

δr+1 = δr − (ln(σ)− ln(σ̂r)) , (25)
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where σ̂r is the vector of the model’s predicted market shares (based on δr and γ), and σ is the

vector of observed market shares. This algorithm is repeated until a fixed point is found in δ,

which occurs when the predicted market shares are equal to the observed market shares. This

is guaranteed to converge to a fixed point because Equation 25 constitutes a contraction. Then

δ is held fixed, and the estimate of γ is found via gradient or other methods. These two steps,

the contraction on δ and the gradient search on γ, are repeated until a fixed point is found in the

two parameter sets, which is the maximum likelihood estimate.

In the national migration model, both σ̂ and σ take on matrix values (i.e. one vector for each

source county). To accommodate this, the contraction can be updated to the form,

δr+1
j = δr

j +

(
ln

(
∑k 6=j Nk ∗mkj

∑k 6=j Nk

)
− ln

(
∑k 6=j Nk ∗ Prkj(δ

r|γ)
∑k 6=j Nk

))
= δr

j +
(

ln
(

∑k 6=j Nk ∗mkj

)
− ln

(
∑k 6=j Nk ∗ Prkj(δ

r|γ)
))

= δr
j + Sj(δ

r),

(26)

where the time dependence has been dropped for clarity, and S(δr) is the step for iteration r.

The value of δ is updated based on the total number of people moving into a county versus the

number predicted to move into it, the average national migration share, rather than an origin-

county-specific migration share for the destination county.

Berry et al. (1995, Appendix I) showed conditions under which a function constitutes a con-

traction and showed that their algorithm satisfies those conditions. The theorem is as follows:

consider metric space (RJ , d) with d(x, y) = ‖x − y‖ and let f : RJ → RJ have the following

properties:

1. ∀x ∈ RJ , f (x) is continuously differentiable, with ∀j and l, ∂ f j(x)
∂xl
≥ 0 and ∑J

l=1
∂ f j(x)

∂xl
< 1.

2. min
j

inf
x

f (x) ≡ x > −∞.

3. There is a value, x̄, with the property that if for any j, xj ≥ x̄, the for some l (not necessarily

equal to j), fl(x) < xl .

Then there is a unique fixed point, x0, to f in RJ . Further, let the set X = [x, x̄]J , and define the

truncated function, f̂ : X → X, as f̂ j(x) = min{ f j(x), x̄}. Then f̂ (x) is a contraction of modulus

less than one on X.

To show that f (·) = S(·) satisfies this definition, we show that property 1 holds. The other
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two properties follow exactly the proof in Berry et al. (1995). For property 1:

∂Sj(δj)

∂δj
= 1−

∑k 6=j Nk ∗
∂Prkj(δ

r |γ)
∂δj

∑k 6=j Nk ∗ Prkj(δr|γ)

= 1−
∑k 6=j Nk ∗

(
Prkj −

(
Prkj

)2
)

∑k 6=j Nk ∗ Prkj

=
∑k 6=j Nk

(
Prkj

)2

∑k 6=j Nk ∗ Prkj
> 0,

(27)

and for l 6= j

∂Sj(δl)

∂δl
= −

∑k 6=l Nk ∗
∂Prkj(δ

r |γ)
∂δl

∑k 6=l Nk ∗ Prkj(δr|γ)

=
∑k 6=l Nk ∗ Prkl ∗ Prkj

∑k 6=l Nk ∗ Prkl
> 0.

(28)

Each of these partial derivatives is the weighted sum of probabilities. And because one of the

counties is held out as an outside option to provide normalization of the model, for any k,

∑J
j=1 Prkj < 1. Therefore, the full sum is a weighted sum of probabilities that sum to strictly less

than 1:
J

∑
l=1

∂Sj(δj)

∂δl
=

J

∑
l=1

∑k 6=l(Nk ∗ Prkl) ∗ Prkj

∑k 6=l(Nk ∗ Prkl)
< 1, (29)

and the second part of the first property holds.

5.2.3 Censoring and Zeros The elements laid out above in Subsection 2.3 are in principal

all that are needed for estimating the model. But in the present empirical application, there is

censoring in the data that must be dealt with. This leaves the reported migration between many

pairs of counties within a year (and the true migration for many, no doubt) as zero. This is not

a problem for the algorithm as long as each county has some in-migration, but there are cases

where counties do not receive measurable in-migration from any county in a year, but do in-

clude observations of out-migration. Rather than drop these counties from the analysis and lose

their observations of out-migration which are used in identifying parameters for other counties,

we utilize the "numerical patch" technique from Timmins and Murdock (2007) for estimation of

the model. This amounts to adding a very small increment to each migration value and each

predicted probability and equivalently adjusting the denominator of Equation 26. For 2005-

06, roughly 99% of the approximately 9.8 million cells in the migration matrix were zeros, but

roughly 98.5% of locations decisions were observed at the county-level, rather than an aggregate

level, and 162 counties had no observed in-migration. This adjustment only affects the param-

eter values of counties with no observed in-migration, which are not used in the second-stage

analysis.
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5.2.4 Numerical Refinements While Equation 26 is a contraction that is guaranteed to lead

to a fixed point, it may converge slowly. This makes intuitive sense as the model is trying

to fit approximately J2 migration shares with approximately 2 ∗ J parameters, compared to a

traditional BLP model where J shares are fit with approximately J parameters. To aid in the

estimation, we adopt a hybrid approach: changes in δ are always in the same direction as in

Equation 26, but the step size is shortened in some cases. The algorithm becomes,

δr+1
j = δr + l̂r

(
ln

(
∑
k 6=j

Nk ∗mkj

)
− ln

(
∑
k 6=j

Nk ∗ Prr
kj

))
= δr + l̂rSr, (30)

where l̂r ∈ [0, 1] is a step length modifier.

Rather than continue the contraction in Equation 26 until a fixed point is found, at each

step of the algorithm the log-likelihood is calculated. After the step Sr is calculated, the log-

likelihood is then recalculated for δr + Sr. If the log-likelihood has improved, the new value of

δ is accepted with l̂r = 1 and the algorithm proceeds to the next iteration. If the log-likelihood

has not improved, then the optimal step length modifier is calculated. Because this step length

modifier is constrained between zero and one, the algorithm is still a contraction, but avoids

taking steps that are not improving the likelihood.

6 Results

This section presents the findings of the migration model applied to PM 2.5 pollution concen-

trations. General patterns from the first-stage estimation are presented in Section 6.1. They are

consistent with stylized facts about what locations attract people, as well as the findings in the

Quality of Life literature. Direct estimates of a Quality of Life index are presented in Section

6.2. Results from the second-stage estimation of marginal willingness to pay to avoid PM 2.5

pollution are presented in Section 6.3. We find a significant willingness to pay to avoid PM 2.5

pollution that is robust to changes in specification.

Because estimation of the model proceeds in two stages, with the second stage being a two-

stage instrumental variables model itself, it is easy to create confusion in discussing results. To

avoid this confusion, we refer to the overall first stage involving the estimation of δ, α, and γ as

the first stage; the estimation of the structural equation for the endogenous regressor (commonly

called the “first-stage") as the endogenous projection; and the estimation of the reduced-form

relationship to estimate the parameters of interest as the reduced-form. The last two together are

the second-stage.
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6.1 First-Stage Results

Figure 10 shows a map of counties split into nine categories based on the quantile in δ̃ for 2005

and 2010. Darker blue corresponds to a higher value and yellow to a lower value. The map

indicates attractive counties along the West Coast, in the Southwest, South Florida, the Northeast

Corridor, and around urban centers. A swath of the Plains state from the Dakotas to Texas has

low attractiveness. The overall pattern is very similar in 2005 and 2010.

Table 4 shows the 25 counties with the highest δ̃ values averaged from 2005-2010. Many of

the counties on the list are in the Southwest, California, Texas, and Florida, and most are home to

major cities, including Honolulu, HI, Phoenix, AZ, Las Vegas, NV, El Paso, TX, and Los Angeles,

CA in the top five spots. Table 5 displays the 25 counties with the lowest identified δ̃ values.

Fourteen of the top 25 are in a swath of land in the center of the country from the Dakotas to

Texas.

There are many similarities between these results and the ranking reported in Albouy (2012),

including Honolulu as the number one location, and the general favorability of areas on the West

Coast and Southwest. Our estimates show less favorability for the many of the other up-market

communities that dominate the top of Albouy’s list, and we find Phoenix, AZ and Houston,TX

to be much more attractive. But it should be noted that quality of life, as measured by wage-rent

differentials, and attractiveness are distinct concepts. Some of the places that are highly attractive

in our model are attractive because of high wages and low rents, which may compensate for lower

amenities. And very expensive communities are not attractive due to costs, despite the quality

of amenities there.

Figure 11 shows the values for α̃ + δ̃ with the same color scheme as in Figure 10. Retentive

counties are clustered in the Rust Belt and Upper South. The West has generally low retentive-

ness. Again the overall pattern is very similar between 2005 and 2010.

Fourteen of the top 25 counties are in Tennessee, Kentucky, or Missouri. Counties in which

there was no observed in-migration do not have δ̃ and α̃ identified separately, do have α̃ + δ̃

well-identified.

While α is highly negatively correlated with δ, and is a function of δ, α + δ and δ have very

small correlation at about −0.046 for all estimated parameters from 2005 through 2010.

Parameter values also appear to be highly correlated over time. The correlation between δ̃ for

2005 and for 2010 is 0.80 and between α̃ + δ̃ for 2005 and for 2010 is 0.94. Figure 12 shows the

quantiles of the differences in δ̃ and α̃+ δ̃ between 2005 and 2010. While there is no strong pattern

among the change in α̃ + δ̃, the areas that saw the highest increase in attractiveness appear to be

in the same region with the least attractive counties, indicating the largest improvements were at

the bottom of the distribution.

Values of γt, the gradient of the utility function equal to the marginal utility of income,

are also very stable across years. Results are presented in Table 6. As expected, distance has

a negative marginal utility, while being in the same CBSA or the same state, and wages have
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positive marginal utility. Being in the same census region has a small negative impact, likely due

to also conditioning on distance and the other indicators. The coefficient on wages is higher in

2007 than for other years.

6.2 Quality of Life

In addition to estimation of marginal valuations for local public goods, our model provides a

framework for estimating aggregate local amenities in the spirit of the literature on quality of

life. The basic idea of that literature is that people value consumption and quality of life. Then,

under an assumption of free mobility, people do not need to be compensated to live where they

do beyond what they earn in income. This leads to an implication that the quality of life is equal

to the overall expenditure level in a location minus after-tax wages. Albouy (2012) suggests

constants to adjust housing costs to estimate the overall price level and after-tax income, as well

as a number of additional refinements.

We adopt the adjustments for housing costs and wages, but are not forced to rely on the free

mobility assumption and simplify the model to rely on only a single type. From our behavioral

model and assuming the marginal utility of income is the marginal utility of consumption, the

utility to move to county j if one is compensated for moving costs is,

Vt
j = γwageQj + Vct

j + µt
j = γwageQj + γt

wage ∗ (.51 ∗ log(waget
j)− .33 ∗ log(housingt

j)) + µt
j, (31)

where Vct is the value of consumption and Q is the quality of life, normalized for convenience

by γwage, and housing is median housing costs. Setting this equal to our estimated value Vt
j =

δt
j + γwage ∗ log(waget

j) + εt
j from a model without county rurality, we can rearrange to calculate

the quality of life as,

Qj =
δt

j

γt
wage

+ .49 ∗ log(waget
j) + .33 ∗ log(housingt

j) + εt
j − µt

j. (32)

Then the quality of life can be estimated as the mean values of
δt

j

γt
wage

+ .49 ∗ log(waget
j) + .33 ∗

log(housingt
j) in the county over the study period (equivalent to the fixed effect in a fixed-effect-

only model). Note that because δ is calculated already accounting for the full value of mean

wages, we add that value back in and subtract off the net income in calculating the quality of life

index.

Results are shown in Table 7. It should be noted that quality of life in this context does not

mean the quality of the life people lead there, but the quality of the local amenities after adjusting

for prices. The list is very similar to the list of most attractive counties with the top four spots

being identical. But the ordering is somewhat different, with some of the Texas counties dropping

in the rankings, and urban coastal counties like King, WA (Seattle); San Diego, CA; and Miami-
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Dade, FL rising.

6.3 Second-Stage Results

The parameter values discussed in Section 6.1 provide inputs for a second-stage regression to

explain α̃ + δ̃ and δ̃ in terms of the characteristics of counties. This second stage is based on the

subset of counties for which control data are available, whereas the first stage is based on migra-

tion flows for nearly all counties in the US. Concerns about sample selection issues are discussed

in Appendix A. We do not find evidence of selection effects that would cause inconsistency of

estimate parameters.

A naive implementation of the model would estimate a second stage using an OLS fixed ef-

fects model. Results for such an implementation are given in Table 8. Coefficients are quite small

in magnitude across models with little statistical significance, although with a fairly constant

magnitude across models.

As discussed in Section 4.1, PM 2.5 is likely to be endogenous in the structural equation due

to correlation with unobserved job market characteristics. Because of this, a better approach is a

linear panel instrumental variables model that instruments for particulate concentrations using

pollution inflow from distant counties. We find very consistent coefficient values for PM 2.5

across a variety of specifications.

The endogenous projection (i.e. panel first stage) is quite strong, as shown in Table 9. The

table presents results for three models: each has the same included regressors (discussed above),

and county fixed effects. The first includes year fixed effects, the second census region-by-year

fixed effects, and the third EPA region-by-year fixed effects. The census categorizes four regions:

Northeast, Midwest, South, and West. The EPA categorizes 10 regions. In each case, the F-statistic

is well above the rule of thumb threshold, indicating that inflow SO2 is not a weak instrument.

Table 10 shows coefficients on PM 2.5 for a progression of model specifications, starting

with only census region-by-year fixed effects, then sequentially adding the unemployment rate,

average wage, median rent, housing controls and industry controls. The parameter values are

very similar across specifications, giving a strong indication that the reduced-form coefficient is

well-identified. These results imply that PM 2.5 concentrations influence households’ decisions

of whether to migrate away from their current county of residence.

Reduced-form results are given in Table 11 for the same models as Table 9 and the final model

of Table 10. The coefficients reflect marginal valuations of non-migrant households and, due to

the normalization based on the first-stage coefficient on log wages, reflect semielasticities with

respect to income, giving the proportional change in income households will accept for a unit

change in air pollution. The first two models show significant coefficients with the expected

sign for the parameter of interest on average dissolved PM 2.5. The third does not have the

expected sign and is not significant at conventional levels. With only 461 clusters, there may

not be sufficient variation in pollution after accounting for 60 time fixed effects. Our preferred
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results are the model with census region-by-year fixed effects which provides greater robustness

to differential time trends, without soaking up all the useful variation into fixed effects.

The coefficient on wage is negative and significant across the models. This is likely due to the

inclusion of cross-sectional wages in the first stage so that there is no structural interpretation

to the coefficient, but it acts as a proxy for other unobserved job market characteristics. The

coefficient on median rent is negative, but not significant for all three models. While rents are an

equilibrium outcome that is endogenous to the structural equation, we do not believe that rents

are meaningfully partially correlated with PM 2.5, which is required for the endogeneity to cause

inconsistency of the parameter of interest.

Equivalent results for a progression of models of δ̃ are shown in Table 8. Again, the coeffi-

cient on PM 2.5 is largely stable across the models, though of varying significance. Results for

models with a full set of controls and varying time fixed effects are given in Table 13. These coef-

ficients reflect the valuations of households that decide to migrate between counties. A negative

coefficient indicates support for the Tiebout hypothesis that location decisions reflect the value

of PM 2.5 pollution and people “vote with their feet" to select lower PM 2.5 concentrations, all

else equal. These results are consistent with the Tiebout hypothesis, but not strong evidence for

it. Again, wages have negative coefficients, with an ambiguous structural interpretation. Both

housing costs and unemployment have negative coefficients, as expected, though the housing

cost coefficients are not significant for the first two models.

Table 14 shows F-statistics for the endogenous projection at deadbands of 30, 50, 75, 150,

and 200 miles, in addition to the base specification of 100. That is, it provides evidence that the

instrument has remained strong even as we exclude counties from a larger and larger radius

in estimating the amount of SO2 that is flowing in. Table 15 shows the reduced-form results

for these varied deadband instruments, including the base specification. The coefficient on PM

2.5 concentrations increases with larger deadbands, possibly reflecting the fact that emissions

from closer counties may be more correlated with local job market conditions, weakening the

exclusion restriction on the instrument. We retain the 100 mile deadband as we believe the

exclusion restriction remains valid and the instrument remains strong.

6.3.1 Marginal Willingness to Pay Table 16 provides estimates of marginal willingness to

pay to avoid PM 2.5 concentrations in 2005 dollars. Because the coefficients are semielasticities,

the value depends on an income level. The table reflects value for a household earning $50,000

per year, close to the median income during the middle of our study period. Results are presented

for non-migrants and for migrants based on the census region-by-year fixed effects models for

a one standard deviation change, a one unit change, and a one percent change. A one standard

deviation change in PM 2.5 concentrations is roughly equivalent to moving from New York City

to St. Paul, MN. The results reflect annual values based on the tradeoff on wage levels.

These results are not directly comparable to findings from Bayer et al. (2009) or Hamilton and
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Phaneuf (2015) due to their use of a different class of particulate matter, PM 10. But based on the

average ratio of PM 10 to PM 2.5 in our sample, and converting to 1982-84 dollars, our preferred

estimate is $360 for a one unit change, compared a range of $149 to $185 in Bayer et al. (2009)

and $114 to $413 in Hamilton and Phaneuf (2015).

As a point of comparison, we have also estimated marginal willingness to pay using the

hedonic framework. That is, we regress various measures of housing prices on instrumented PM

2.5 pollution and a similar set of county-level controls. This approach does not take into account

sorting due to preference heterogeneity or moving costs. None of these models had statistically

significant coefficients when including census region-by-year fixed effects, so the results in Table

17 reflect models with year fixed effects. The table presents estimates of marginal willingness

to pay based on the migration sorting model as well as hedonic models using median rent,

median housing costs (based on both renters and owners), median owner costs, and median

property values. The first four are each annual measures of willingness to pay, while the final

represents a long-run estimate. Each of the annual hedonic estimates is significantly smaller than

the sorting estimate, as is the property value estimate for reasonable long-run time scales. This

result highlights the importance of accounting for heterogeneous preference sorting and moving

costs.

7 Conclusions

This study develops an innovative model to address the important and relevant question of

the value of air quality and local public goods. By tapping a rich but unused data source, it

uses county-level variation in migration shares to estimate mean utility parameters, and cross-

sectional variation in wages to estimate a marginal utility of income, and then uses panel varia-

tion of county characteristics to estimate marginal valuations for clean air. By relying on migra-

tion flow data, including households who remain in the same county, we are able to separately

estimate impacts on households that do not move and households that move with changes in

local amenities, and allow for flexible heterogeneous average moving costs. By relying on IRS

migration estimates, we are able to broaden our analysis beyond large cities to include a larger

cross-section of the country.

We find that the most attractive counties on average across the sample are located primarily

in urban areas along the coasts and in the Southwest and Texas, with Honolulu, HI claiming

the most attractive spot. The least attractive counties lie mostly in a band in the Planes States

from the Dakotas south to Texas. But the largest increases in attractiveness occurred in this same

region over our study period.

Our preferred specification gives a marginal willingness to pay to avoid 1µg/m3 of $1325 for

non-migrant households, and $484 for migrant households. This estimate of marginal willingness

to pay is not directly comparable to Chay and Greenstone (2005), Bayer et al. (2009), or Hamilton
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and Phaneuf (2015) because they rely on broader classes of particulate matter, but they find

smaller values, though of the same order of magnitude. Our result has the advantage of being

based on a panel of mean utilities developed using the decisions households make each year due

to the pollution concentrations they face and the costs of benefits of moving to other locations.

The model we develop could be used to address a wide array of questions regarding valua-

tion of local amenities beyond the current focus on air quality. An ideal extension of the model

would be to marry the aggregate migration data to micro-level data to deal directly with greater

household heterogeneity. By generalizing the estimation framework of Berry et al. (1995), the

model provides a method for estimating demand for goods and services that are mutually ex-

clusive during fixed periods of time and where there could be loyalty effects,including insurance

policies and phone, Internet, and cable providers.

8 Tables and Figures

Table 1: Migration Summary Statistics

Year 2005 2006 2007 2008 2009 2010
Mean Out-migration Rate 0.084 0.079 0.078 0.078 0.074 0.074
5% Out-migration Percentile 0.050 0.048 0.048 0.047 0.044 0.045
95% Out-migration Percentile 0.124 0.119 0.120 0.115 0.110 0.112
Mean In-migration Rate 0.082 0.078 0.077 0.076 0.073 0.071
5% In-migration Percentile 0.044 0.044 0.044 0.043 0.041 0.041
95% In-migration Percentile 0.137 0.129 0.125 0.118 0.113 0.113
Correlation, In- and Out-migration 0.590 0.935 0.946 0.985 0.980 0.975
Mean Migration Distance 97.2 94.6 95.1 93.8 91.3 96.5
SD Migration Distance 146.2 141.8 144.4 143.6 143.6 147.2
Mean Observed Destination Counties 28.3 27.8 28.4 27.6 26.1 27
SD Observed Destination Counties 58.1 57.6 58.1 56.6 53.9 55
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Table 2: Summary Statistics for Controls, 2005 Cross-section

Statistic Mean St. Dev. Min Max

PM 2.5(µg/m3) 12.7 3.1 3.3 21.6
Total Establishments (1,000s) 12.6 22.9 1.0 367.4
Average Employment (1,000s) 209.6 332.5 13.0 4,082.5
Average Wage (1,000s) 36.9 7.9 24.8 84.2
Construction Establishments 1,161.7 1,372.0 102 13,047
Construction Employment (1,000s) 11.3 17.6 0.0 161.0
Construction Wage (1,000s) 39.7 8.0 22.4 74.2
Manufacturing Establishments 542.7 1,019.0 27 15,889
Manufacturing Employment (1,000s) 20.3 33.5 0.0 467.3
Manufacturing Wage (1,000s) 48.0 12.1 26.5 123.1
Median Monthly Rent 700.6 170.1 412 1,287
Median Property Value (100,000s) 189.1 125.7 53.1 763.1
Median Rooms 5.5 0.4 3.2 7.0
Median Year Built 1972 10.6 1940 1993
Unemployment Rate 5.2 1.5 2.3 16.1

Note: Wages, rent, and property values are in 2005 dollars

Table 3: Panel Variation for Key Variables

Mean Standard Within Standard Mean
Deviation Deviation Range

PM 2.5 Concentration (µg/m3) 11.1 2.9 1.5 3.7
Mean Wage 39, 938 8, 918 1, 961 5, 015
Median Monthly Rent 769 196 49.8 125.4
Unemployment Rate 6.5 2.9 2.2 4.9

Note: Wages and rent are in 2005 dollars
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Table 4: Most Attractive Counties on Average, 2005-2010

County State

1 Honolulu County HI
2 Maricopa County AZ
3 Clark County NV
4 Los Angeles County CA
5 Harris County TX
6 El Paso County TX
7 Bexar County TX
8 San Diego County CA
9 Anchorage Borough AK
10 Cook County IL
11 Riverside County CA
12 Salt Lake County UT
13 Bernalillo County NM
14 King County WA
15 Pima County AZ
16 San Bernardino Count CA
17 Broward County FL
18 Tarrant County TX
19 Spokane County WA
20 El Paso County CO
21 Miami Dade County FL
22 Dallas County TX
23 Hidalgo County TX
24 Franklin County OH
25 Orange County FL
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Table 5: Least Attractive Counties on Average, 2005-2010

County State

1 Hartley County TX
2 Wheeler County TX
3 Real County TX
4 Haskell County KS
5 Boone County NE
6 Hamilton County NY
7 Ontonagon County MI
8 Wayne County UT
9 Kimble County TX
10 Hettinger County ND
11 Pendleton County WV
12 Sierra County CA
13 Sharkey County MS
14 Randolph County GA
15 Hancock County TN
16 Nelson County ND
17 Grant County OR
18 Harper County OK
19 Pocahontas County WV
20 Edwards County KS
21 Sanborn County SD
22 Custer County ID
23 Oneida County ID
24 Corson County SD
25 De Baca County NM

Table 6: First Stage Gradient Estimates

2005 2006 2007 2008 2009 2010

Log Distance -1.279 -1.266 -1.281 -1.286 -1.295 -1.245
Same CBSA 0.749 0.727 0.725 0.714 0.758 0.727
Same State 1.379 1.385 1.392 1.421 1.444 1.446
Same Census Region -0.064 -0.071 -0.095 -0.099 -0.115 -0.101
Log Wage 1.947 1.888 2.542 1.816 1.703 1.801
Difference in Rurality -2.346 -2.353 -2.102 -2.292 -2.348 -2.412
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Table 7: Highest Quality of Life

County State

1 Honolulu County HI
2 Maricopa County AZ
3 Clark County NV
4 Los Angeles County CA
5 San Diego County CA
6 Anchorage Borough AK
7 Harris County TX
8 King County WA
9 Riverside County CA
10 Broward County FL
11 Bexar County TX
12 Cook County IL
13 San Bernardino Count CA
14 Miami Dade County FL
15 Salt Lake County UT
16 El Paso County TX
17 El Paso County CO
18 Tarrant County TX
19 Bernalillo County NM
20 Pima County AZ
21 Palm Beach County FL
22 Orange County CA
23 Washoe County NV
24 Orange County FL
25 Spokane County WA
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Table 9: Endogenous Projection:PM2.5

Instrumental Variable:

Inflow SO2 Beyond 100 Miles

(1) (2) (3)

Cragg-Donald Wald F statistic 139.1 81.8 41.0

Stock-Yogo 10% Critical Value 16.38
County Fixed-Effects X X X
Time Fixed-Effects Yr Census Reg-Yr EPA Reg-Yr
Observations 2597 2597 2597
Clusters 461 461 461
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Table 11: IV Alpha+Delta Models

Dependent variable:

Normalized Alpha+Delta

(1) (2) (3)

Average Dissolved PM2.5 -0.0345∗∗∗ -0.0265∗∗∗ 0.00128
(0.00498) (0.00667) (0.00803)

County Fixed-Effects X X X
Time Fixed-Effects Yr Census Reg-Yr EPA Reg-Yr
Observations 2597 2597 2597
Clusters 461 461 461
R2 0.860 0.900 0.937

Note: ∗p<0.05; ∗∗p<0.01; ∗∗∗p<0.001
Standard errors clustered at the county level.

Controls include unemployment rate, mean wages, median rents,
housing controls, and industry controls.
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Table 13: IV Delta Models

Dependent variable:

Normalized Delta

(1) (2) (3)

Average Dissolved PM2.5 -0.0276∗∗∗ -0.00968 0.0000971
(0.00664) (0.00797) (0.0109)

County Fixed-Effects X X X
Time Fixed-Effects Yr Census Reg-Yr EPA Reg-Yr
Observations 2597 2597 2597
Clusters 461 461 461
R2 0.595 0.687 0.720

Note: ∗p<0.05; ∗∗p<0.01; ∗∗∗p<0.001
Standard errors clustered at the county level

Controls include unemployment rate, mean wages, median rents,
housing controls, and industry controls.

Table 14: Endogenous Projection At Various Deadbands

Cragg-Donald Wald F statistic

30 Mi 50 Mi 75 Mi 100 Mi 150 Mi 200 Mi

Year FE 137.1 137.7 138.2 139.1 127.3 113.0
Census Reg-Year FE 76.5 77.6 79.7 81.8 69.8 55.9

Stock-Yogo 10% Critical Value 16.38
County Fixed-Effects X X X X X X
Observations 2597 2597 2597 2597 2597 2597
Clusters 461 461 461 461 461 461

Controls include unemployment rate, mean wages, median rents,
housing controls, and industry controls.
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Table 15: Comparison of Various Pollution Flow Deadbands

Dependent variable:

Normalized Alpha + Delta

(1) (2) (3) (4) (5) (6)

Avg. Dissolved -0.0193∗∗ -0.0210∗∗∗ -0.0248∗∗∗ -0.0265∗∗∗ -0.0309∗∗∗ -0.0401∗∗∗

PM 2.5 (0.00613) (0.00625) (0.00644) (0.00667) (0.00789) (0.0102)

Deadband 30 50 75 100 150 200
County FE X X X X X X
Time FE Cen. Reg-Yr Cen. Reg-Yr Cen. Reg-Yr Cen. Reg-Yr Cen. Reg-Yr Cen. Reg-Yr
Observations 2597 2597 2597 2597 2597 2597
R2 0.914 0.911 0.904 0.900 0.890 0.863

Note: ∗p<0.05; ∗∗p<0.01; ∗∗∗p<0.001
Standard errors clustered at the county level.

Controls include unemployment rate, mean wages, median rents,
housing controls, and industry controls.

Table 16: Estimated Marginal Willingness to Pay

Group:

Non-migrants Migrants
Decrease in Average PM2.5 (Alpha+Delta) (Delta)

1 s.d. of overall mean $3800 $1388
1 µg per m3 $1325 $484
1% of overall mean $146 $53

County FE X X
Time FE Census Reg-Yr Census Reg-Yr

Note: Estimates reflect marginal willingness to pay in 2005 dollars avoid the
indicated average concentration of PM 2.5 for a family with $50,000 per year income.

Table 17: Comparison of Sorting and Hedonic Estimates

Model:

Sorting Hedonic: Hedonic: Hedonic: Hedonic:
Decrease in Average PM2.5 Rent Housing Cost Owner Cost Property Value

1 µg per m3 $1725 $81 $153 $161 $4645

Time Scale Year Year Year Year Long-run
County FE X X X X X
Time FE Year Year Year Year Year

Note: Estimates reflect marginal willingness to pay in 2005 dollars avoid the indicated average concentration
of PM 2.5 for a family with $50,000 per year income, or at the average of the indicated housing cost measure.
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Figure 1: Migration Cross-sections for 2005-06
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Figure 2: Net Migration for 2005-06 and 2009-10
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Figure 3: California Net Migration for 2005-06 and 2009-10
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Figure 4: County-to-county Migration Rates for 2005-06 from Los Angeles, Santa Clara, and New York

counties
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Figure 5: County-to-county Migration Rates to California in 2005-06 from Los Angeles, Santa Clara, and

New York counties
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Figure 6: County-level Average Wages, 2005
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Figure 7: Average PM 2.5 Concentrations, 2009
Counties in white do not have EPA monitoring
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Figure 8: Average California PM 2.5 Concentrations, 2005 and 2009
Counties in white do not have EPA monitoring
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Figure 9: SO2 Point Source Emissions Flowing to New York County, NY and Allegheny County, PA, 2005
Counties in white do not have point source emitters
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Figure 10: County Attactiveness, 2005 and 2010
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Figure 11: County Retentiveness, 2005 and 2010
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Figure 12: Changes in Parameter Values, 2005-2010
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A Selection

While the first stage model is evaluated on nearly all counties, the endogenous projection and

reduced form are evaluated only on the counties for which the control variables are available.

This raises two potential concerns: an overall concern about incidental truncation that there

may be unobserved factors causing inconsistency in estimated parameter, and that the panel is

unbalanced and counties that enter the sample may do so due in a manner correlated with the

characteristic of interest. We assess both of these issues.

A.1 Incidental Truncation

Of the roughly 3100 counties and county-equivalents in the US, only 461 enter our main analysis

in estimating marginal willingness to pay. If selection into the panel with the full data, which is

limited primarily by American Community Survey housing data and EPA particulate pollution

data, is related to the unobserved idiosyncratic error in the model, then the parameter estimates

will not be consistent for the full population’s parameters. As this sample represents the vast

majority of the population, the parameters would still be of interest, but not universally appli-

cable. Because inclusion in the panel is restricted by multiple data sources, we cannot fully test

for incidental truncation, but we can conduct a partial test comparing counties that have all the

relevant data to counties that have all relevant data except the pollution data.

Testing for an impact of incidental truncation involves estimating a probit selection equation

and including the Inverse Mills Ratio (IMR) for the included observations in the full second

stage regression. Then a test of the significance of coefficient for the IMR is a test for effects

of incidental truncation. There is no need to make additional adjustments for the asymptotic

distribution due to the IMR being a calculated regressor, and the selection equation doesn’t even

need to be correct. It does need to reflect the control values from each year and not just the

contemporaneous values, but this can be accomplished by using the mean value for each county

for each variable. (Remedying problems of incidental truncation require more care.)

Results are shown in Table 18. The coefficient on the IMR is not significantly different from

zero at any conventional level for any of the models. Thus there is no evidence from this test that

incidental truncation is causing inconsistency of our estimates for the population parameters.

A.2 Changing Panel Composition

The results presented in Section 6.3 are for the sample of observations where full data are avail-

able, which is an unbalanced panel due primarily to the changing set of EPA monitoring data

over the study period. A second concern is that counties are entering the panel in an a way that

correlated with the error term. This can be tested by including a lagged indicator of whether

the county is in the sample in the full second stage. Results are shown in Table 19. The lagged

sample inclusion indicator is not significant any of the models, so there is not an indication of
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problems with the unbalanced panel. Additionally, Table 20 shows results that rely only on a

balanced panel, excluding counties that are not included in all years. The parameter estimates

are very similar between the models.

A.3 Selection Tables

Table 18: Incidental Truncation

Dependent variable:

Normalized Alpha+Delta

(1) (2) (3)

Inverse Mills Ratio -0.0148 -0.0594 -0.0322
(0.0520) (0.0492) (0.0449)

County Fixed-Effects X X X
Time Fixed-Effects Yr Census Reg-Yr EPA Reg-Yr
Observations 2574 2574 2574
Clusters 445 445 445
R2 0.850 0.890 0.936

Note: ∗p<0.05; ∗∗p<0.01; ∗∗∗p<0.001
Standard errors clustered at the county level

Controls include unemployment rate, mean wages, median rents,
housing controls, and industry controls.

Table 19: Test of Effect of Unbalanced Sample

Dependent variable:

Normalized Alpha+Delta

(1) (2) (3)

Lagged PM 2.5 Sample Indicator -0.00283 0.0101 0.00258
(0.0217) (0.0126) (0.0122)

County Fixed-Effects X X X
Time Fixed-Effects Yr Census Reg-Yr EPA Reg-Yr
Observations 2145 2145 2145
Clusters 444 444 444
R2 0.780 0.909 0.935

Note: ∗p<0.05; ∗∗p<0.01; ∗∗∗p<0.001
Standard errors clustered at the county level

Controls include unemployment rate, mean wages, median rents,
housing controls, and industry controls.
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Table 20: Comparison of Balanced and Unbalanced Panels

Dependent variable:

Normalized Alpha+Delta

(1) (2) (3) (3)

Average Dissolved PM2.5 -0.0345∗∗∗ -0.0358∗∗∗ -0.0265∗∗∗ -0.0266∗∗∗

(0.00498) (0.00512) (0.00667) (0.00684)

Balanced Panel X X
County Fixed-Effects X X X X
Time Fixed-Effects Yr Yr Census Reg-Yr Census Reg-Yr
Observations 2597 2404 2597 2404
Clusters 461 403 461 403
R2 0.860 0.858 0.900 0.902

Note: ∗p<0.05; ∗∗p<0.01; ∗∗∗p<0.001
Standard errors clustered at the county level

Controls include unemployment rate, mean wages, median rents,
housing controls, and industry controls.
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