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Abstract

We propose a model that generates permanent effects on economic growth following a

recession (super hysteresis). Recurrent bubbles are introduced to an otherwise standard

infinite-horizon business-cycle model with liquidity scarcity and endogenous productivity. In

our setup, bubbles promote growth because they provide liquidity to constrained investors.

Bubbles are sustained only when the financial system is under-developed. If the financial

development is in an intermediate stage, recurrent bubbles can be harmful in the sense that

they decrease the unconditional mean and increase the unconditional volatility of the growth

rate relative to the fundamental equilibrium in the same economy. Through the lens of an

estimated version of our model fitted to U.S. data, we argue that 1) there is evidence of

recurrent bubbles; 2) the Great Moderation results from the collapse of the monetary bubble

in the late 1970s; and 3) the burst of the housing bubble is partially responsible for the

post-Great Recession dismal recovery of the U.S. economy.

1 Introduction

Recent crises have left a lasting effect on the level of output around the world. The Great Recession

is an example of this scaring impact on economy activity. But recessions may also have an enduring

impact on the growth rate of the economy, a phenomenon referred as super hysteresis (Ball (2014)).

Indeed, Blanchard, Cerutti, and Summers (2014), using a sample of 23 advanced countries over

50 years, report that “about two thirds of recessions are followed by lower output relative to its

pre-recession trend.”More important, “in about one half of those cases, the recession is followed

not just by lower output, but by lower output growth relative to its pre-recession growth rate.”
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Figure 1: Super hysteresis in action. Real GDP taken from Blanchard, Cerutti, and Summers
(2014). Straight lines correspond to pre-recession trends.

In the U.S., the 5-year average growth rate of GDP before the 2001 and 2008 crises were 4.3%

and 2.9%, respectively. In the five years following the crisis, the average growth rates went down

to 2.9% and 1.9% (right panel in Figure 1). Portugal offers a more sobering example of super

hysteresis in action in recent years (left panel in Figure 1). Interestingly, Blanchard, Cerutti, and

Summers argue that it is “diffi cult to think mechanisms that lead to super-hysteresis.” In this

paper, we take on the task of understanding how and when hysteresis and super hysteresis arise

in the economy.

We generate super hysteresis using a tractable model of recurrent bubbles, liquidity scarcity,

and endogenous productivity. Investors are liquidity constrained in the sense of Kiyotaki and

Moore (2012), resulting in depressed investment and low growth. In this environment, bubbles

may mitigate the problem by providing extra liquidity, which in our endogenous growth model

enhances economic growth. But if bubbles are helpful, their burst is harmful because it is followed

by a sharp economic contraction and then prolonged low growth. The stagnation only ends when

a new bubble emerges.

Bubbles are intrinsically useless assets in our model; they contribute neither to production

nor households’utility. However, bubbles are particularly liquid, nothing prevents their trades

in spot markets when they exist, and liquidity service may convince people to hold them even

though their returns are clearly dominated by other less liquid assets. Yet the existence of bubbles
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requires special circumstances. They exist only if aggregate liquidity is in short supply, and only

if everyone believes that bubbles are traded at a positive price. For tractability, we assume that

there is a period of time in which bubbles cannot arise and be traded for exogenous reasons. Under

this assumption, we analyze an interesting regime-switching equilibrium in which bubbles exist

and are traded in one regime, and no such assets exist in the other.

In a calibrated version of our model, we find that the impact of bubbles on economic growth

critically depends on the fundamentals of the economy. Particularly important is the degree

of financial development, which is represented in the model by the tightness of the liquidity

constraints. If the economy is financially underdeveloped, investors cannot get enough funds from

selling equity on their capital. Because bubbles are liquid, they mitigate the problem of a weak

financial system and hence they enhance both growth and employment. These benefits, however,

come at the expense of volatility emanating from two sources. First, the economy switches between

periods of bubbles with high growth and bubbleless periods with low growth. Second, the bubbly

economy is more responsive to supply and demand shocks, implying that volatility is higher in the

bubbly regime than in the fundamental.1

In contrast, if the financial market is relatively developed from the beginning, bubbles lower

the growth rate of the economy. This is because bubbles strengthen the household’s incentive

to raise the capacity utilization rate, which results from bubbles and capital being substitutes

as sources of liquidity. As a result, investors depend less on capital to obtain funds. Excessive

capital utilization leads to fast depreciation, lowering net investment, and hence the growth of

the economy, even though gross investment increases. Interestingly, this channel operates not

only when bubbles actually exist but also in the bubbleless period because the price of capital is

affected by the possibility of bubbles arising in the future through the Euler equation.

We exploit these previous insights to map our model to the post World War II data in the U.S.

Our estimation reveals the existence of a persistent bubble prior to 1980. As we move through

the 1980s and forward, bubbles became less persistent with one coinciding with the housing boom

and a second one at the end of our sample. Through the eyes of our model, lower volatility

post-84 results in part from the absence of persistent bubbles. One possible interpretation of a

pre-Moderation bubble is the central bank’s attempt to exploit the Phillips curve by providing

easy money. The Fed’s realization that this was not possible led to the bubble burst, leading to

lower volatility but also lower growth. When we estimate our model, we find that demand shocks

are more volatile than technology shocks. In spite of the moderating effect of the bubble burst,

there is also a significant decline in the volatility of shocks post-1984.

Our model also provides an intuitive explanation of the slowdown in growth over the past

decades. As will become clear, bubbles enhances growth in our framework. To the extend that

the 1970s, 1990s, and mid 2000s were periods associated with monetary, IT, and housing bubbles,

1This is a natural consequence of the liquidity services provided by bubbles. In our model, bubbles increase
liquidity so investors find it easier to invest more. During recessions, liquidity is tighter, leading to deeper downturns.
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the collapse of these bubbles lead inevitably to slower growth. Furthermore, growth will remain

depress until a new bubble arises in the economy. Our model is rich enough that it can account for

the post-Great Recession downward shift in the trend of economic activity in the U.S. Indeed, a

temporary financial shock results in lower investment, which through an endogenous productivity

channel leads to permanently lower trend in output even though the growth rate of the economy

returns to its pre-crisis level.

Dealing with bubbles in DSGE models is intrinsically complicated. This is so because one must

track the history of booms and bursts to characterize the current state of the economy. In our

model, the states are capital, exogenous shocks, and an indicator of the regime: fundamental or

bubble. Since the economy switches between the two regimes, capital is regime dependent. But

because of endogenous productivity, capital is a suffi cient statistic for the history of bubbles. So

once we de-trend the model using capital, there is no longer regime dependence and the equilibrium

conditions depend on only the exogenous states of the economy. This model can be easily solved

by standard methods and is amenable to estimation.

The rest of the paper proceeds as follows. Next, we highlight the contributions of our model

to the existing literature. We describe the baseline model in section 3. In section 4 and 5, we

discuss issues such as existence of bubbles, their effect on growth and show dynamic responses

implied by our model. The empirical results with a discussion of the Great Moderation and the

Great Recession are in section 6.

2 Related Work in the Literature

Our paper is in line with the literature on rational bubbles in infinite horizon economies with im-

perfect financial markets. The seminal papers are Bewley (1980), Townsend (1980), Scheinkman

and Weiss (1986), and Woodford (1990).2 These papers study deterministic fiat money (or govern-

ment bonds) in an endowment economy when borrowing and lending are not allowed. Although

these studies prove the existence of deterministic bubbles in infinite horizon economies, they do

not necessarily show the necessary conditions explicitly. Kocherlakota (1992) derive the necessary

conditions for deterministic bubbles in an endowment economy when borrowing is allowed. Kocher-

lakota (2009) extends Kocherlakota (1992) to include a production economy without growth, and

examines the effects of land bubbles on production.

Based on these seminal papers, we develop an endogenous growth model with financial frictions,

and examine recurrent asset bubbles and their impact on long run economic growth. In this regard,

our paper is related to Hirano and Yanagawa (2017). There are, however, substantial differences.

First, we consider recurrent bubbles, i.e., bubbles are expected to arise and to collapse recurrently

2Samuelson (1958) is the first paper showing rational bubbles in an overlapping generations model. Tirole (1982)
extends the Samuelson model to include production. See Farhi and Tirole (2012), Miao (2014), and Allen, Barlevy,
and Gale (2017) for the recent devepment on rational bubbles in overlapping generations models.

4



in the future, while Hirano and Yanagawa study the stochastic bubbles developed by Weil (1987).

That is, a bubble is expected to collapse, but its reappearance is not expected at all. Second, the

role of bubbles is different between Hirano and Yanagawa’s paper and ours. Hirano and Yanagawa

emphasize the role of bubbles as speculative vehicles. Agents buy and sell bubble assets mainly

because they provide a high rate of return. In contrast, our paper emphasizes the role of bubbles

as liquid assets, i.e., bubbles can be sold quickly compared with illiquid capital. Our formulation

of bubbles is based on Kiyotaki and Moore (2012) where deterministic fiat money is described as

a liquid asset. We show under what conditions recurrent bubbles with high liquidity can arise in

equilibrium, and examine their impact on business cycles and the long-run economic growth rate.

Regarding recurrent bubbles, our paper is related to Gali (2014) and Miao and Wang (2017).

In their papers, only a fraction of the existing bubbles collapses every period, and new bubbles

are created right away so that aggregate supply of bubble assets is kept constant over time. This

means that the economy is always in the bubbly regime. There is no entire collapse of bubbles.

In our model, the emergence and entire collapse of bubbles is recurrent. As a consequence, the

economy repeatedly switches between the bubbly regime and the bubbleless regime.

Moreover, Gali (2014) and Miao and Wang (2017) focus on a local analysis of the bubbly

steady state. In our model, however, the entire breaking of bubbles implies that the economy

no longer stays around the neighborhood of the bubbly steady-state. That is, the collapse of

bubbles causes a sudden regime shift to the bubbleless economy, generating highly non-linear

effects on macroeconomic activity. Importantly, these non-linear effects are anticipated by agents

ex-ante and have major consequences on the model’s dynamics. In this regard, our paper shares

a similarity with the non-linear effects emphasized by Brunnermeier and Sannikov (2014), He and

Krishnamurthy (2013), and Gertler and Kiyotaki (2015). In these papers, relatively large shocks

to an economy cause the economy to jump far away from steady state, producing highly non-

linear effects. They emphasize that this non-linearity is important to account for financial crisis

phenomena.

The recurrent bubbles in Martin and Ventura (2012) are more similar to ours, in the sense that

there is an entire collapse of bubbles. However, our papers differ in important dimensions. First,

their model is based on an overlapping generations model, and agents live for only two periods.

Hence anticipations about reappearance and recollapsing of bubbles in the future do not affect

decisions of the current young agents at all. Their recurrent bubbles are essentially the same as

the stochastic bubbles developed by Weil (1987), in which agents consider only the probability

of the bubble bursts. Unlike theirs, in our model, infinitely-lived agents fully anticipate both the

probability of reappearance and recollapsing in the future. Thus expectations about recurrent

bubbles affect consumption, investment, and economic growth in the current period, which in

turn affects bubble prices in the future. In this sense, there is a two-way feedback effect between

macroeconomic activity and recurrent bubbles across time. This is a unique property in our model

with infinitely-lived agents.
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Furthermore, Martin and Ventura (2012) use a linear utility function, and agents consume only

in old periods. Because of this assumption, agents do not care about the volatility arising from

the collapse of bubbles. In our paper, however, agents are risk averse, and they fully anticipate

the probability of recurrent bubbles. Hence, agents care about volatility arising from recurrent

bubbles, which is crucial in our welfare analysis. Finally, Martin and Ventura’s model does not

have mechanisms that are standard in the business cycle literature such as the intertemporal Euler

equation, endogenous labor supply, and endogenous capacity utilization. In contrast, our model

is a standard real business cycle model, in which both propagation through dynamic optimization

and amplification through intra-temporal optimization of time allocation and capacity utilization

are present. These features are important because we estimate our model using U.S. data.

Our paper is also related to the effects on long run economic growth of various types of financial

crises. For example, Cerra and Saxena (2008) show that most financial crises are associated with a

decline in growth that leaves output permanently below its pre-crisis trend. Our paper shows that

the collapse of bubbles causes permanently lower output level than its pre-bubble burst trend, but

also generates permanently lower long run economic growth, i.e., super-hysteresis. Furthermore

we relate to studies on the role of financial development and growth as in Aghion, Howitt, and

Mayer-Foulkes (2005). Unlike their paper, ours focuses on 1) the provision of liquidity as a way

to overcome underdeveloped financial systems; and 2) the impact of bubbles in economic growth.

Our study of hysteresis is connected to previous work such as Gali (2016). This paper studies

hysteresis in labor markets and the design of monetary policy. We view our papers as comple-

mentary since we highlight the role that bubbles may have in creating not only hysteresis but

also super hysteresis in economic activity. Finally, we relate to the literature on the solution and

estimation of Markov switching models as in Farmer, Waggoner, and Zha (2009), Bianchi (2013),

and Hamilton (2016).

3 Model

Our description of the model consists of regimes, firms, households, and endogenous productivity.

3.1 Regimes

Let zt denote a realization of the regime zt ∈ {b, f} where b and f denote a bubble and a

fundamental regime, respectively. There are no bubble assets in the economy in a fundamental

regime. If the regime switches to a bubble regime, M units of bubble assets are created and given

to households in a lump-sum way. There is no bubble creation in other contingencies. Bubble

assets last without depreciation as long as the economy stays in the bubble regime. They disappear

suddenly and completely once regime switches back to a fundamental regime. We assume that zt
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follows a Markov process satisfying

Pr (zt = f |zt−1 = f) = 1− σf (1)

and

Pr (zt = b|zt−1 = b) = 1− σb. (2)

Bubble assets are intrinsically useless. They contribute to neither production nor households’

utilities directly. Furthermore, they do not offer dividends to their owners either.

3.2 Firms

Output is produced using capital and labor services denoted by KSDt and L
D
t , respectively. The

production function is

Yt = At
(
KSDt

)α (
LDt
)1−α

where At is the technology level which agents in the economy take as given. Competitive firms

maximize profits defined as

Yt − rtKSDt − wtLDt

by choosing KSDt and L
D
t , taking rental price of capital rt and wage rate wt as given. First order

conditions are

rt = α
Yt

KSDt

and

wt = (1− α)
Yt
LDt

.

3.3 Households

The economy is populated by a continuum of households, with measure one. Each household has

a unit measure of members who are identical at the beginning of a period. During the period,

members are separated from each other, and each member receives a shock that determines the

role of the member in the period. A member will be an investor with probability π ∈ [0, 1] and

will be a saver with probability 1 − π. These shocks are i.i.d. among the members and across

time.

A period is divided into four stages: household’s decisions, production, investment, and con-

sumption. In the household’s decision stage, all members of a household are together and pool

their assets: nt units of equities and m̃t units of bubble assets. An equity is the ownership of

a unit of capital. Aggregate shocks to exogenous state variables are realized. The capacity uti-

lization rate ut is decided. Because all the members of the household are identical in this stage,

the household head evenly divides the assets among the members. The household head also gives
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contingency plans to each member as follows. If one becomes an investor, he or she spends it
units of final goods to invest, and brings back home xit units of final goods, n

i
t+1 units of equity

claims, and m̃i
t+1 units of bubble assets before the consumption stage. In contrast, if the member

becomes a saver, he or she supplies lt units of labor, and brings back home xst units of final goods,

nst+1 units of equity claims, and m̃
s
t+1 units of bubble assets before the consumption stage. After

receiving these instructions, members go to the market and remain separated from each other until

the consumption stage.

At the beginning of the production stage, each member receives the shock determining his

or her role in the period. Competitive firms produce final goods. Compensations to productive

factors are paid to their owners. A fraction δ (ut) of capital depreciates, where

δ (ut) = δ (1) +
δ′ (1)

1 + ζ

(
u1+ζt − 1

)
.

An advantage of this functional form is that the elasticity of δ (ut) is constant at ζ;

utδ
′′ (ut)

δ′ (ut)
= ζ

for all ut.

Investors seek finance and undertake investment projects in the investment stage. The tech-

nology is linear; they transform any amount it units of final goods into it units of new capital.

Asset markets close at the end of this stage.

Members of the household meet again in the consumption stage. An investor consumes cit units

of final goods and a saver consumes cst units of final goods.

The instructions must meet a set of feasibility constraints. First, they have to satisfy the

intra-temporal budget constraints, i.e.,

xit + it + qt
(
nit+1 − it − (1− δ (ut))nt

)
+ 1{zt=b}p̃t

(
m̃i
t+1 − m̃t

)
= utrtnt (3)

for an investor and

xst + qt
(
nst+1 − (1− δ (ut))nt

)
+ 1{zt=b}p̃t

(
m̃s
t+1 − m̃t

)
= utrtnt + wtlt (4)

for a saver, where qt and p̃t denote prices of equities and bubbles, respectively. The indicator

function in front of p̃t captures the idea that there is neither spot nor future market for bubbles

in a fundamental regime. One interpretation of this restriction is that it is impossible to predict

the nature of the next bubble while living in a fundamental state. Without markets, none can
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purchase bubbles in a fundamental regime, which we formalize by the following constraints;

1{zt=f}m̃
i
t+1 = 1{zt=f}m̃

s
t+1 = 0. (5)

There is a feasibility constraint in the consumption stage given by

πxit + (1− π)xst = πcit + (1− π) cst . (6)

An investor can issue new equity on at most a fraction φ of investment. In addition, she can

sell at most a fraction φ of existing capital in the market.3 Effectively, these constraints introduce

a lower bound to the capital holdings of an entrepreneur at the end of the period:

nit+1 ≥ (1− φ) (it + (1− δ (ut))nt) . (7)

Following Shi (2015), we call equation (7) a liquidity constraint. A similar constraint applies to
savers, but we omit it because it does not bind in equilibrium (they are net buyers of equities).

We also omit non-negativity constraints for ut, cit, it, n
i
t+1, x

s
t , c

s
t , lt, n

s
t+1, and m̃

s
t+1 for the same

reason. Exceptions are both a short-sale constraint for investors

m̃i
t+1 ≥ 0 (8)

and a borrowing constraint for investors

xit ≥ 0. (9)

The household problem is written as follows. They choose a sequence of ut, xit, c
i
t, it, n

i
t+1,

m̃i
t+1, x

s
t , c

s
t , lt, n

s
t+1, and m̃

s
t+1 to maximize

E0

[ ∞∑
t=0

βtebt

(
π

[cit]
1−ρ

1− ρ + (1− π)
[cst (1− lt)η]1−ρ

1− ρ

)]
subject to (3), (4), (5), (6), (7), (8), (9), and the laws of motions of assets given by

nt+1 = πnit+1 + (1− π)nst+1 (10)

and

m̃t+1 = πm̃i
t+1 + (1− π) m̃s

t+1 + 1{zt=f,zt+1=b}M (11)

for all t ≥ 0. Initial portfolio is {n0, m̃0} =
{
K0,1{zt=b}M

}
where Kt is capital stock in the

economy in period t. bt is a preference shock.

3These two constraints are different in nature. Kiyotaki and Moore (2012) carefully distinguish the two, calling
the former the borrowing constraint and the latter the resalability constraint. We however let a single parameter
φ govern them to simplify the model.
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3.4 Learning-by-doing

We assume that the technology level At is endogenous;

At = Ā (Kt)
1−α eat .

at is a productivity shock and Ā is a scale parameter. Following Arrow (1962), Sheshinski (1967),

and Romer (1986), we interpret the dependency of At on Kt as learning-by-doing; namely, knowl-

edge is a by-product of investment and in addition, it is a public good that anyone can access at

zero cost. With it, the long-run tendency for capital to experience diminishing returns is elim-

inated. We want to stress that the details behind the endogenous productivity mechanism are

largely irrelevant for our purposes. Similar results would attain if we relied on expanding-variety

or creative-destruction framework.

3.5 Market Clearing

Competitive equilibrium is defined in a standard way; all economic agents optimize given prices,

and markets clear;

nt+1 = Kt+1, (12)

LDt = (1− π) lt,

KSDt = utKt,

and

πcit + (1− π) cst + πit = Yt

for all t, and

πm̃i
t+1 + (1− π) m̃s

t+1 = M

in a bubble regime. Because πm̃i
t+1 + (1− π) m̃s

t+1 = 0 holds in a fundamental regime, we have

πm̃i
t+1 + (1− π) m̃s

t+1 = 1{zt=b}M (13)

for all t. The law of motion for capital is

Kt+1 = (1− δ (ut))Kt + πit,

which automatically holds by Walras’law.
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4 Permanent Fundamental

We first consider a special case in which the economy is always in a fundamental regime; i.e.,

z0 = f and σf = 0, and hence zt = f for all t ≥ 0. Guerron-Quintana and Jinnai (2015) use a

variant of this fundamental model to study the implications of the 2008/2009 financial crisis on

the level of output in the U.S. economy, showing that a temporary financial shock can trigger a

secular stagnation in an estimated model.

4.1 Equilibrium with no binding liquidity constraint

Let us consider an equilibrium in which the price of capital is always equal to its marginal costs,

i.e., qt = 1. The household is indifferent between investing in capital in-house and purchasing

capital in the market. Hence the liquidity constraint (7) does not bind in this equilibrium. The

borrowing constraint (9) does not bind either; if it does, the household can make it loose without

affecting other constraints or the amount of capital at the end of period t by increasing xit by∆ > 0,

decreasing xst by (π/ (1− π)) ∆, decreasing nit+1 by ∆, and increasing nst+1 by (π/ (1− π)) ∆.

With these observations, the household’s problem can be simplified to

maxE0

[ ∞∑
t=0

βtebt

(
π

[cit]
1−ρ

1− ρ + (1− π)
[cst (1− lt)η]1−ρ

1− ρ

)]

subject to

πcit + (1− π) cst + nt+1 − (1− δ (ut))nt = utrtnt + wt (1− π) lt.

This is a standard household problem, and so are the first conditions,

(
cit
)−ρ

= (cst)
−ρ (1− lt)η(1−ρ) , (14)

η
cst

1− lt
= wt, (15)

rt − δ′ (ut) = 0,

and

1 = Et

[
βebt+1−bt

(
cit
cit+1

)ρ
(ut+1rt+1 + 1− δ (ut+1))

]
.

The first equation states that the marginal utility from consumption has to be equalized across

members. The second equation states that the marginal rate of substitution of leisure for con-

sumption has to be equal to the real wage. The third equation states that the marginal benefit of

raising the capacity utilization rate, i.e, the rental price of capital, has to be equal to its opportu-

nity cost, i.e., the amount of capital depreciated at the margin. The last equation is the standard

Euler equation for capital accumulation.
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It will be reasonable to expect that this equilibrium realizes when the liquidity constraint is

suffi ciently loose (when φ is large). We confirm this intuition numerically in a subsequent section.

4.2 Equilibrium with binding liquidity constraint

Let us consider an equilibrium in which the price of capital always satisfies 1 < qt < 1/φ, which

guarantees that investing is profitable (return is bigger than marginal cost) but not enough to

allow the entrepreneur to invest with no down-payments. Under this scenario, the inequality con-

straints (7) and (9) always bind in this equilibrium for the following reasons. If (7) is not binding,

households can increase utility without violating any constraints or affecting their portfolio at the

end of the period by increasing it by ∆ > 0, increasing nit+1 by (qt − 1) ∆/qt, increasing both

xst and c
s
t by (π/ (1− π)) (qt − 1) ∆, and decreasing nst+1 by (π/ (1− π)) ((qt − 1) /qt) ∆, which is

a contradiction to the household’s optimization. If (9) is not binding, households can relax (7)

without violating any constraints or affecting their portfolio at the end of the period by decreas-

ing xit by ∆, increasing xst by (π/ (1− π)) ∆, increasing nit+1 by (1/qt) ∆, and decreasing nst+1 by

(π/ (1− π)) (1/qt) ∆. This is a contradiction to the household’s optimization because they can

increase utility if (7) is not binding.

Because (7) and (9) hold with equality, the optimal investment level is given by

it =
[utrt + φqt (1− δ (ut))]nt

1− φqt
. (16)

Substituting (7) and (16) into (10), we find

nt+1 = π
1

qt
(1 + λt) [utrt + φqt (1− δ (ut))]nt + π (1− φ) (1− δ (ut))nt + (1− π)nst+1 (17)

where λt is defined as

λt =
qt − 1

1− φqt
. (18)

λt is the variable Shi (2015) calls the liquidity service. Substituting (6) and (17) into (4), we

rewrite the household’s problem as follows;

maxE0

[ ∞∑
t=0

βtebt

(
π

[cit]
1−ρ

1− ρ + (1− π)
[cst (1− lt)η]1−ρ

1− ρ

)]

subject to

πcit + (1− π) cst + qtnt+1 = [utrt + (1− δ (ut)) qt + πλt (utrt + φqt (1− δ (ut)))]nt + (1− π)wtlt

for all t. The first order conditions with respect to both the intra-temporal consumption allocation

(14) and the labor supply by savors (15) are the same as before. The optimality condition with
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respect to the capacity utilization rate is

rt − δ′ (ut) qt + πλt (rt − φqtδ′ (ut)) = 0. (19)

The capital Euler equation is

qt = Et

[
βebt+1−bt

(
cit
cit+1

)ρ
(ut+1rt+1 + (1− δ (ut+1)) qt+1 + πλt+1 (ut+1rt+1 + φqt+1 (1− δ (ut+1))))

]
.

(20)

Note how the price of capital qt as well as the liquidity service λt affects (19) and (20). qt appears

in the second term in (19) because the opportunity costs of raising the capacity utilization rate

is the market value of depreciated capital at the margin. λt appears in the third term in (19)

because raising the capacity utilization rate provides additional liquidity to investors. In (20), λt
appears in the right-hand side because capital plays dual roles in the current environment with

binding liquidity constraints. Namely, capital is not only a production factor but also a means of

providing liquidity to its owners. (20) states that the capital should be valued based on both of

these contributions, i.e., dividends as well as liquidity services.

4.3 Calibration

The following parameters are directly set at standard values. We set π = 0.05, α = 0.4, β = 0.99,

and ρ = 1. We set the elasticity of δ′ (ut) at ζ = 0.33, a standard value in the business-cycle

literature (Comin and Gertler (2006)). We normalize the capacity utilization rate along the

balanced growth path at u = 1, and set the capital depreciation rate along the balanced growth

path at δ (1) = 0.025.

The rest of parameters are calibrated using the model with no binding liquidity constraint as

a benchmark. We calibrate η so that labor supply along the balanced growth path is l = 0.25.

Finally, we set Ā so that the rental rate of capital along the balanced growth path is r = 0.05.

We view this calibration as a reasonable one that allows us to study the main properties of the

alternative models. Furthermore, it is consistent with the settings in Del Negro, Eggertsson,

Ferrero, and Kiyotaki (2016) and Guerron-Quintana and Jinnai (2015). Table 1 summarizes the

parameter values.

4.4 Comparative Statics

Figure 2 plots the relation between the parameter affecting the liquidity constraint, φ, and the

growth rate, g, along the balanced growth path, assuming that both productivity and preference

shocks are constant at at = bt = 0 for all t. The green flat line on the right part of the envelope

shows that the growth rate is constant once φ reaches a certain threshold (indicated by a verti-

cal black line). Beyond this threshold neither liquidity nor borrowing constraints bind because
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Parameter Value Calibration Target
β 0.99 Exogenously Chosen
α 0.4 Capital Share=0.4
π 0.05 Exogenously Chosen
ρ 1 Exogenously Chosen
ζ 0.33 Exogenously Chosen

δ (1) 0.025 Annual Depreciation=0.10
η 2.78 Labor Supply=0.25
Ā 0.30 Rental Rate of Capital=0.05

Table 1: Parameters and Calibration Targets

investors can obtain enough liquidity by selling capital.

On the left part of the envelope (blue line), we see a nonlinear relation between liquidity

and growth. That is, when liquidity is scarce in the economy, providing additional liquidity (a

marginal increase in φ) enhances growth, but when it is relatively large, it is harmful to growth.

We interpret φ as the degree of financial development in the economy because this parameter

governs how much money investors can borrow from savers using capital as collateral. The result

points to the existence of an optimal level of financial development for the purpose of promoting

growth.

To understand this result, it is important to note that a marginal increase in φ has competing

effects on growth. On one hand, it promotes investment as plotted in the top left panel in Figure

3. But on the other hand, it accelerates capital depreciation (the top right panel). Depreciation is

high because capacity utilization rates are high (the bottom left panel). High capacity utilization

is justified by the price of capital, which decreases with φ (the bottom right panel). The price

of capital is low when φ is high because a large supply of liquidity in the aggregate reduces the

value of each unit of capital as collateral. Because the cost of a marginal increase in capacity

utilization rates is the market value of lost capital, the low price of capital means that households

raise capacity utilization rates with less reluctance. The non-linearity arises because the growth

enhancing effect through investment dominates if the liquidity shortage is severe, but otherwise,

financial development is harmful to growth because it leads to too intensive use of capital and

hence too fast capital depreciation.

The red dashed lines in Figures 2 and 3 confirm the aforementioned intuitions by plotting

the same relationships in an otherwise identical economy with fixed capacity utilization rate.

Note that financial development linearly enhances growth because more investment projects are

funded. Fixed capacity utilization rate, however, is not only arguably unrealistic, but the model

with this feature suffers from the well known comovement problem, i.e., a diffi culty in generating

aggregate comovement in response to shocks other than contemporaneous innovations to total

factor productivity (Barro and King (1984)).
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Figure 2: Liquidity and Growth in Permanent-Fundamental Model
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Figure 3: Effects of Liquidity in Permanent-Fundamental Model
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5 Recurrent Bubble

We now flesh out the general case in which bubbles are recurrent. We first characterize equilibria

of different properties.

5.1 Fundamental Equilibrium

If the price of bubble assets in the bubble regime is always p̃t = 0, they are free but useless. This

is an equilibrium price because households are indifferent to purchase such assets. We may call

it the fundamental equilibrium regime, because the allocation in it is essentially the same as in

the fundamental model we discussed in the previous section. But as Kiyotaki and Moore (2012)

show, this equilibrium may not be the only one.

5.2 Bubble Equilibrium

We argue that if the price of capital is always equal to qt = 1 (which is the case when liquidity

is plentiful), the fundamental equilibrium is the unique competitive equilibrium. If qt = 1, the

household finds it indifferent between investing in capital in-house or purchasing capital in the

market. As a result, the liquidity constraint (7) does not bind. Furthermore, the borrowing

constraint (9) does not bind either. If it did, the household could make it loose without affecting

other constraints or the amount of capital at the end of period t by increasing xit by ∆ > 0,

decreasing xst by (π/ (1− π)) ∆, decreasing nit+1 by ∆, and increasing nst+1 by (π/ (1− π)) ∆.

With both (7) and (9) unbound, the equilibrium price of bubble assets must be p̃t = 0 because

otherwise the demand for bubble assets is zero. This observation implies that bubbly assets may

have a strictly positive value only if the price of capital is strictly greater than one.

From now on, we argue by construction that there is an equilibrium having the following

properties if φ is suffi ciently small: (i) 1 < qt < 1/φ always hold and (ii) p̃t > 0 for all t with

zt = b. The inequality constraints (7), (8), and (9) always bind in such an equilibrium for

the following reasons. If (7) is not binding, households can increase utility without violating any

constraints or affecting their portfolio at the end of the period by increasing it by∆ > 0, increasing

nit+1 by (qt − 1) ∆/qt, increasing both xst and c
s
t by (π/ (1− π)) (qt − 1) ∆, and decreasing nst+1 by

(π/ (1− π)) ((qt − 1) /qt) ∆, which is a contradiction to the household’s optimization. (8) holds

with equality in a fundamental regime due to (5). If (8) is not binding in a bubble regime,

households can relax (7) without violating any constraints or affecting their portfolio at the end

of the period by decreasing m̃i
t+1 by ∆, increasing m̃s

t+1 by (π/ (1− π)) ∆, increasing nit+1 by

p̃t∆/qt, and decreasing nst+1 by (π/ (1− π)) (p̃t/qt) ∆. This is a contradiction to the household’s

optimization because they can increase utility if (7) is not binding. If (9) is not binding, households

can relax (7) without violating any constraints or affecting their portfolio at the end of the period

by decreasing xit by ∆, increasing xst by (π/ (1− π)) ∆, increasing nit+1 by (1/qt) ∆, and decreasing
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nst+1 by (π/ (1− π)) (1/qt) ∆. This is a contradiction to the household’s optimization because they

can increase utility if (7) is not binding.

Because (7), (8), and (9) hold with equality, optimal investment level is given by

it =
[utrt + φqt (1− δ (ut))]nt + 1{zt=b}p̃tm̃t

1− φqt
. (21)

Substituting (7) and (21) into (10), we find

nt+1 = π
1

qt
(1 + λt)

[
(utrt + φqt (1− δ (ut)))nt + 1{zt=b}p̃tm̃t

]
+π (1− φ) (1− δ (ut))nt+(1− π)nst+1.

(22)

Substituting (6), (11), and (22) into (4), we rewrite the household’s problem as follows;

maxE0

[ ∞∑
t=0

βtebt

(
π

[cit]
1−ρ

1− ρ + (1− π)
[cst (1− lt)η]1−ρ

1− ρ

)]

subject to

πcit + (1− π) cst + qtnt+1 + 1{zt=b}p̃t (1− π) m̃s
t+1 (23)

= [utrt + (1− δ (ut)) qt + πλt (utrt + φqt (1− δ (ut)))]nt

+1{zt=b}p̃t (1 + πλt)
[
(1− π) m̃s

t + 1{zt−1=f,zt=b}M
]

+ (1− π)wtlt

and

1{zt=f}m̃
s
t+1 = 0 (24)

for all t. The first order conditions with respect to the intra-temporal consumption allocation

(14), the labor supply by savors (15), the capacity utilization rate (19), and the pricing equation

for capital (20) are the same as before. The first order condition with respect to the demand for

bubbly assets by savers m̃s
t+1 is

1{zt=b}p̃t = 1{zt=b}Et

[
βebt+1−bt

(
cit
cit+1

)ρ
(1 + πλt+1) p̃t+11{zt+1=b}

]
.

This is a key equation in our model. If the economy is in the fundamental regime, this equation

is trivial because both sides are zero. Furthermore, the demand for bubbly assets is zero in this

case because the constraint (24) prohibits savers to purchase bubbly assets. If the economy is in

the bubbly regime in period t, the equation is rewritten as

p̃t = Et

[
βebt+1−bt

(
cit
cit+1

)ρ
(1 + πλt+1) p̃t+11{zt+1=b}

]
.

Two observations are worth noting. First, p̃t can be strictly positive only if p̃t+1 in expectation
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takes a strictly positive value in the bubbly regime. In other words, it is future resalability that

justifies a positive price in the current period. Second, the liquidity parameter φ is absent in the

equation. This is an attractive feature of bubbly assets that enables the no-arbitrage condition

for savers to hold. Namely, even though bubbly assets do not provide dividends to their owners,

savers find it indifferent to purchase bubbly assets and capital because bubbly assets carry a larger

liquidity premium.

Equation (21) can be rewritten as follows in the equilibrium:4

it =
[utrt + φqt (1− δ (ut))]Kt + p̃t1{zt=b}M

1− φqt
. (25)

The second term in the numerator shows that, other things being equal, the emergence of bubbles

increase investment. As we will show momentarily, equation (25) plays a key role in determining

whether bubbles are sustainable or not.

Competitive equilibrium is defined as a sequence of prices, wt, rt, qt, and p̃t, and quantities,

Yt, Ct, It, Kt+1, cit, c
s
t , lt, and ut, that satisfies the following conditions:

Yt = ĀeatuαtKt ((1− π) lt)
1−α ,

(
cit
)−ρ

= (cst)
−ρ (1− lt)η(1−ρ) ,

η
cst

1− lt
= wt,

rt − δ′ (ut) qt + πλt (rt − φqtδ′ (ut)) = 0,

qt = Et

[
βebt+1−bt

(
cit
cit+1

)ρ
(ut+1rt+1 + (1− δ (ut+1)) qt+1 + πλt+1 (ut+1rt+1 + φqt+1 (1− δ (ut+1))))

]
,

1{zt=b}p̃t = 1{zt=b}Et

[
βebt+1−bt

(
cit
cit+1

)ρ
(1 + πλt+1) p̃t+11{zt+1=b}

]
,

rt = α
Yt
utKt

,

wt = (1− α)
Yt

(1− π) lt
,

Yt = πcit + (1− π) cst + π
[utrt + φqt (1− δ (ut))]Kt + p̃t1{zt=b}M

1− φqt
,

4This is because the following relation holds in the equilibrium,

1{zt=b}m̃t = 1{zt=b}
[
πm̃i

t + (1− π) m̃s
t + 1{zt−1=f,zt=b}M

]
= 1{zt=b}

[
1{zt−1=b}M + 1{zt−1=f,zt=b}M

]
= 1{zt=b}M.
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Figure 4: Liquidity and Growth with Permanent Bubble

Kt+1 = (1− δ (ut))Kt + π
[utrt + φqt (1− δ (ut))]Kt + p̃t1{zt=b}M

1− φqt
,

and

λt =
qt − 1

1− φqt
for all t. We examine this equilibrium numerically in the following section.

5.3 Comparative Statics

We first consider the special case in which the economy is always in the bubble regime (z0 = b

and σb = 0 and hence zt = b for all t ≥ 0). Figure 4 plots the relation between the parameter

affecting the liquidity constraint φ and the growth rate g along the balanced growth path. The

solid blue line shows the fundamental equilibrium in which the price of bubble assets is always

zero. As we discussed, this equilibrium is essentially the same as the fundamental model in the

previous section. The blue line in Figure 4 is therefore identical to the envelope in Figure 2.

The red circles in Figure 4 show the equilibrium in which the price of bubbly assets is always

positive. Such an equilibrium exists only if φ is smaller than a threshold value shown in the

figure by the vertical line. At low values of φ, growth is higher in the bubbly equilibrium, which

is a consequence of the liquidity provision of bubbles. This feature in turn makes bubbles very

valuable. The top left panel in Figure 5 plots the market value of bubbly assets relative to the

capital stock mt ≡ p̃tM/Kt along the balanced growth path. It decreases with φ, implying that
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an economy with underdeveloped financial market (an economy with small φ) can sustain larger

bubbles relative to its capital stock. As shown in the top right panel of Figure 5, investment is

larger in the bubble equilibrium than the fundamental equilibrium at a given level of φ, confirming

the intuition obtained from equation (25).

But larger investment does not necessarily mean higher growth. Going back to Figure 4, we

see that the otherwise identical economy grows faster in the bubble equilibrium than in the funda-

mental equilibrium if the underlying financial system is very weak, but the opposite is true if the

financial system is relatively developed. The price of capital and endogenous capital depreciation

are key to understand this result. As shown in the middle left panel of Figure 5, the price of capital

is lower in the bubbly equilibrium than in the fundamental equilibrium. This is because investors

can obtain funds for investment either by selling capital or bubbly assets; in other words, the two

types of assets are substitutes as a source of liquidity. Because of large supply of liquidity, the

liquidity service of capital is lower in the bubbly equilibrium than in the fundamental equilibrium

as shown in the middle right panel, and so is the price of capital. The low price of capital makes

households less reluctant to raise capacity utilization rate (bottom left panel), leading to a faster

capital depreciation (bottom right panel). Because it is net investment, not gross, that matters

for the speed of capital accumulation, the growth rate of the economy can be slower in the bubble

equilibrium than in the fundamental equilibrium.

Figure 6 plots the relation between the liquidity φ and the growth rate gt in the general case,

assuming that the probabilities of regime switches are σf = σb = 0.01.5 The red circles and crosses

show regime-dependent growth rates observed in the recurrent-bubble equilibrium, in which the

price of bubble assets in the bubble regime is always positive, p̃t > 0. The red circles denote

the growth rate in the bubble regime, whereas the red crosses denote the growth rate in the

fundamental regime. This equilibrium exists only if φ is smaller than a threshold value shown in

the figure by the vertical line.

One can see that the economy grows faster in the bubble regime (red circles) than in the

fundamental regime (red crosses) in the recurrent-bubble equilibrium. This is in great contrast to

the model without regime switches shown in Figure 4, in which we compare the growth rates in

two different equilibria with and without bubbles, finding that the otherwise identical economy

can grow more slowly with bubbles if its financial system is relatively developed, while in Figure

6, we compare growth rates in two different regimes in a single equilibrium, finding no growth

reversal occurring across regimes. Intertemporal substitution is the driver of this result. Namely,

households in the recurrent-bubble equilibrium have strong incentives to work and invest while

bubbles exist because the return on investment is higher and household know that bubbles are

only temporary. By the same token, households have weaker incentives to work and invest in the

fundamental regime because they know that bubbles will arise again. In other words, households

5Martin and Ventura (2012) impose a similar symmetric restriction on the switching probabilities.
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Figure 5: Effects of Liquidity in Permanent Bubble
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Figure 6: Liquidity and Growth in Recurrent-Bubble Model

substitute labor supply and consumption not only across time but also across regimes.

Figure 7 confirms the intuition discussed above. The top left panel shows that more investment

projects are funded in the bubble regime than in the fundamental regime. This is because bubbles

provide extra liquidity as shown in the top right panel. Utilization rate is higher in the bubble

regime (the left panel in the second row) because the price of capital is lower (the right panel

in the second row). The price of capital is lower because liquidity service is lower in the bubble

regime (the left panel in the third row). Liquidity service is lower because capital and bubble

assets are substitutes as sources of liquidity. Households work harder in the bubble regime than in

the fundamental regime (the left panel in the fourth row) as a result of intertemporal substitution.

The red dots in Figure 6 show the unconditional mean of the growth rates in the recurrent-

bubble equilibrium. Because we assume symmetric probabilities of the regime switch (σf = σb),

the red dot is the middle point between the red circle and cross. On the left part of the figure, the

red dots are located above the blue line. This means that conditional on having a weak financial

system, the otherwise identical economy grows faster in the long run if it is in the recurrent-

bubble equilibrium than in the fundamental equilibrium. This is because such an economy is

greatly benefited by the liquidity provided by bubbles, achieving additional growth in the bubble

regime. But this benefit comes at a cost. That is, because growth rates in the recurrent-bubble

equilibrium are regime dependent, the economy has to endure occasional shifts in the growth rates

between a high level (red circle, bubble regime) and a low level (red cross, fundamental regime).

In contrast, the growth rate in the fundamental equilibrium is not influenced by the regime at all.
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Therefore, if an economy with a weak financial system has bubbles, there is a trade-off between

the long-run growth and the short-run volatility.

As we move toward a relatively more developed financial system (higher φ), the otherwise

identical economy grows slower in the long run if it is in the recurrent-bubble equilibrium than

in the fundamental equilibrium. In addition, the economy in the recurrent-bubble equilibrium

has to endure changes in the growth rates associated with regime switches. Our model therefore

sheds light on seemingly contradictory observations; namely, bubbles are often considered to be

a potential subject of regulation in many developed economies, although bubbles raised growth

compared to other periods in the same economies. Japan’s high growth in the 80s with the real

estate bubble is a prime example. Our model suggests that this is not surprising because recurrent

bubbles may reduce the growth rate in the long run and increase the volatility in the short run.

Importantly, our findings indicate that policy intervention is fraught with perils. This is so because

policy makers need to know the existence of the bubble and the degree of financial development in

the economy before they intervene. As Figure 6 shows, for highly illiquid economies, the benefits

of allowing bubbles may overcome the excess volatility brought about by bubbles.

From Figure 6, we also learn that the objectively identical economy in the fundamental regime

(zt = f) grows faster if it is in the fundamental equilibrium (blue line) than in the recurrent-

bubble equilibrium (red crosses). The expectation for future bubbles is the key to understand this

result. First of all, it causes a wealth effect. Namely, anticipating that the economy will grow fast

once bubbles arise, people in the fundamental regime invest less (the top left panel in Figure 7),

consume more (the right panel in the third row), and work less (the left panel in the fourth row)

in the recurrent-bubble equilibrium (red cross) than in the fundamental equilibrium (blue line).

The wealth effect is only a part of the story because our model features a price effect as

well. Specifically, the price of capital in the fundamental regime is lower in the recurrent-bubble

equilibrium than in the fundamental equilibrium (the right panel in the second row) to the extent

that people anticipate that the emergence of bubbles will provide liquidity to the economy in the

future. Low price of capital leads to higher capacity utilization rate (the left panel in the second

row), larger output (the right panel in the fourth row), and higher capital depreciation rate (the

bottom left panel). Both low investment due to the wealth effect and high capital depreciation rate

due to the price effect lower the growth rate in the fundamental regime in the recurrent-bubble

equilibrium.

Finally, Figure 8 shows the case when the economy starts with bubbles, but they will burst

with a positive probability and no new bubbles will arise ever again (z0 = b, σb > 0, and σf = 0).

Comparing the pink and green circles, we see that the probability of bubble burst σb is positively

associated with the growth rate while the economy is still in the bubble regime. The intertemporal

substitution is crucial again because anticipating that bubbles will burst with a positive probability,

households have strong incentives to work hard and invest much while bubbles are still present;

and, this incentive is stronger as the bubbles become more short-lived. The model’s prediction
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Figure 7: Effects of Liquidity in Recurrent-Bubble Model

24



0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5
1.004

1.006

1.008

1.01

1.012

1.014

1.016

1.018

1.02

1.022

g

g

fundamental (permanent, absorbing state)
bubble (permanent)
bubble regime (stochastic, transition prob. 0.5%)
bubble regime (stochastic, transition prob. 1%)

Figure 8: Stochastic Bubble with Absorbing Fundamental

gf qf mf rf ŵf Ŷf Ĉf Îf lf λf uf δ (uf )
1.012 1.58 0 0.064 0.27 0.093 0.075 0.018 0.22 0.76 0.58 0.006
gb qb mb rb ŵb Ŷb Ĉb Îb lb λb ub δ (ub)
1.016 1.33 0.21 0.059 0.28 0.106 0.078 0.028 0.24 0.41 0.72 0.012

Table 2: Steady States in Recurrent-Bubble Equilibrium

with non-recurrent bubbles (stochastic bubbles with absorbing fundamental regime and initial

condition z0 = f) is similar to the permanent bubble.

5.4 Effects of a Regime Switch

Table 2 shows the regime-dependent steady state values in the recurrent-bubble equilibrium (for

this section, we set the degree of liquidity constraint at φ = 0.15.). They are defined as the

values of endogenous variables after detrending in an environment in which both productivity

and preference shocks are at their steady state values. The first row corresponds to the steady

state in the fundamental regime, whereas the second row corresponds to the steady state in the

bubbly regime. The results confirm the intuition discussed above; namely, the growth rate of the

economy, output, consumption, investment, labor hours, and capacity utilization rate are higher

in the bubbly regime than in the fundamental one. In addition, real wages are higher and the

rental price of capital is lower in the bubbly regime than in the fundamental regime.

Figure 9 shows the impact of regime switches to output, consumption, and investment in the
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recurrent-bubble equilibrium. We assume that the economy was originally in the bubbly regime,

having experienced regime switches every 10 years thereafter by chance. A bubble burst causes

a deep recession with output dropping as much as by 11 percentage points immediately after the

bubble’s collapse, and investment even by 35 percentage points. To a lesser degree, consumption

drops on impact too. Subsequently, the economy starts to grow again, but the recovery from the

crisis is very weak, which shows that our model generates super-hysteresis following the bubble

burst. The effects of bubble creation are symmetric in our model. That is, bubble creation brings

a large boom to the economy followed by persistent robust growth.

If the capacity utilization rate is fixed, consumption increases on impact of a bubble burst.

This result is not surprising because the diffi culty of generating comovement to a shock other than

a contemporaneous shock to total factor productivity is well known since Barro and King (1984)

as well as recently in the literature on news shocks (Beaudry and Portier (2004) and Jaimovich

and Rebelo (2009)). A regime switch in our model is similar to a news shock in the sense that it

is neutral to the current technology. But unlike previous work in the news shock literature, our

model is able to generate comovement to a regime switch without exotic utility functions but only

with variable capacity utilization.

We conjecture that our model could be modified to accommodate additional regimes with

bubbles providing different levels of liquidity but at the expense of losing tractability. Furthermore,

we can consider bubbles that partially collapse but not completely. Specifically, a fraction of the

bubble assets in the economy depreciates but new bubbles are injected every period too. The

aggregate supply of bubble assets is always positive in this case. This extension corresponds

to the bubble models studied, for example, by Miao and Wang (2017) and Gali (2014). These

papers analyze the local dynamics around the steady state with bubbles, just as we did in the

permanent-bubble version of our model. Our notion of recurrent bubbles, in contrast, admits both

a complete collapse and a re-emergence of bubbles. The corresponding economic dynamics are

highly non-linear because they are associated with transitions between steady states. Martin and

Ventura (2012) study the non-linearity caused by the recurrent bubbles. But they study it in an

overlapping generation model in which utility linearly depends on the old-age consumption alone.

As a result, their framework is silent about the effects of the recurrent bubbles on the household’s

inter-temporal substitution of consumption and labor.

5.5 Impulse Responses

Let us bring back supply and demand shocks into the analysis. We continue to assume that

σf = σb = 0.01 and φ = 0.15. There are multiple equilibria under these parameter values, i.e., the

recurrent-bubble equilibrium in which the price of bubble assets is always positive in the bubble

regime, and the fundamental equilibrium in which the price of bubble assets is always zero in

the bubble regime. Computing the impulse response functions in the fundamental equilibrium
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Figure 9: Effects of Regime Switch in Recurrent-Bubble Equilibrium
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is just standard. For the recurrent-bubble equilibrium, we compute impulse response functions

by linearizing the system of equations summarizing the equilibrium around the regime-dependent

steady states (please see the appendix for detail).

The top panel in Table 3 shows the impact of the productivity shock. We assume that the

exogenous component of the productivity at increases by 1 percent in period t, slowly coming back

to the steady state level thereafter with the autocorrelation coeffi cient being 0.95 quarterly. We

report the contemporaneous responses in period t alone because they are enough to summarize

the impulse responses. This is because there is no endogenous state variables in our model once

endogenous variables are detrended byKt, implying that both the regime zt ∈ {f, b} and the levels
of the exogenous shocks {at, bt} are suffi cient to pin down detrended-endogenous variables. Note,
however, that the persistence of the shock does affect responses in period t because the model has

forward looking variables and households are infinitely lived.

The first two columns show the IRFs in the recurrent-bubble equilibrium. A positive pro-

ductivity shock generally raises macroeconomic variables in both regimes, but the magnitudes

are different. Specifically, output, consumption, investment, hours worked, and capacity utiliza-

tion all increase more in the bubble regime than in the fundamental regime. Asset prices play

an important role. Namely, the size of the bubble increases when a positive productivity shock

hits the economy in the bubble regime. This is because the demand for liquidity is strong when

productivity is high. With more liquidity provided by bubbles, the price of capital does not rise

as much as in the fundamental regime. With the price of capital cheaper, households are less

reluctant to raise the capacity utilization rate, making the fluctuation larger in the bubble regime.

The productivity shock, however, increases the growth rate of the capital gt = Kt+1/Kt because

net investment increases.

The right column in Table 3 shows the impulse responses in the fundamental equilibrium.

Broadly speaking, the responses are similar to those in the fundamental regime in the recurrent-

bubble equilibrium. Looking closer, however, we see the wealth effects working in the recurrent-

bubble equilibrium. Namely, households in the recurrent-bubble equilibrium enjoy more consump-

tion and leisure because they understand that new bubble will arise in the future making them

rich.

The bottom panel in Table 3 shows responses to the preference shock. bt increases by 1 percent

in period t, slowly coming back to the steady state level with the autocorrelation coeffi cient being

0.8 quarterly. Tilting the relative weights on the utility flow, this shock effectively makes the

households impatient, consume more, work less, and invest less. But the magnitudes of the

responses are again larger in the bubble regime than in the fundamental regime. Asset prices are

important. That is, the size of the bubble shrinks in the bubble regime after the shock because the

households become impatient. With the amount of liquidity provided by the bubble decreases, the

price of capital does not drop as much as it does in the fundamental regime. Because the price of

capital is relatively high, the households are reluctant to raise the capacity utilization rate, making
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Supply Shock (∆at = 1%, Corr(at, at−1) = 0.95)
Recurrent-Bubble Equilibrium Fundamental Equilibrium

Bubble Regime Fundamental Regime Both Regimes
output 1.24% 1.09% 1.09%

consumption 1.08% 1.04% 1.03%
investment 1.69% 1.28% 1.32%
hours 0.12% 0.04% 0.05%

utilization 0.41% 0.16% 0.16%
capital price 0.74% 0.96% 0.98%
bubble size 2.29% 0% 0%
capital growth 0.033% 0.019% 0.022%

Demand Shock (∆bt = 1%, Corr(bt, bt−1) = 0.8)
Recurrent-Bubble Equilibrium Fundamental Equilibrium

Bubble Regime Fundamental Regime Both Regimes
output 0.03% 0.11% 0.09%

consumption 0.31% 0.30% 0.31%
investment -0.78% -0.71% -0.73%
hours -0.22% -0.15% -0.17%

utilization 0.39% 0.49% 0.47%
capital price -0.53% -0.60% -0.60%
bubble size -0.87% 0% 0%
capital growth -0.034% -0.024% -0.025%

Table 3: Effects of Supply and Demand Shocks

drops in investment and hours worked larger in the bubble regime than in the fundamental regime.

5.6 Existence Condition

From the discussion above, it should be apparent that depending on the degree of financial tightness

bubbles may or may not be valuable. In this section, we highlight other elements that may affect

bubbles’valuation.

5.6.1 Permanent Bubble

The steady state investment condition (25) is useful to understand when bubbles arise (are valued

positively). To this end, let’s re-write it as follows:

m = ı̂(1− φq)− ur − φq(1− δ (u)). (26)

Here, m and ı̂ are the size of the bubbles and investment relative to the capital stock, i.e., mt =

p̃tM/Kt and ı̂t = it/Kt, in the steady state respectively. The first term in the right-hand side

of equation (26) is the down payment each investor pays for investment. The second term is the
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rental rate of capital, and the third term is the proceeds from selling capital up to the limit.

Therefore, this equation says that bubbles have positive valuation (the left-hand side is positive) if

and only if the amount of liquidity an investor can withdraw from capital is less than the amount

of liquidity investors need to undertake investment project.

To convey more intuition, let’s assume that utilization is 1 and there is full depreciation. Under

these assumptions, equation (26) is rewritten as

m = g(1− φq)− r (27)

because ı̂ = g where g is the growth rate of the economy in the steady state. Bubbles are valued

when the rental rate of capital is suffi ciently low. This implication is in line with the previous

work on bubbles; if we further assume that φ is equal to φ = 0, the first term in the right-hand

side collapses to g, and g > r is the familiar dynamic ineffi ciency condition for the existence of

bubbles in OLG models.

If φ is strictly positive, investors can borrow money from savers using capital as collateral. By

making the first term in the right-hand side smaller, a larger value of φ makes it more diffi cult to

support bubbles. This implication is also in line with previous work; i.e., Tirole (1982) shows that

bubbles cannot arise in infinite horizon economies in which agents can borrow and lend freely. In

other words, a tight enough friction in the financial market is necessary for the economy to have

bubble equilibrium.

5.6.2 Recurrent Bubble

Let us briefly discuss the existence condition when bubbles come and go. Assuming full deprecia-

tion and fixing the utilization at one, we arrive to the following expression,

mb = ı̂b(1− φqb)− rb.

Other things being equal, bubbles are sustained (mb is positive) when the liquidity constraint is

tight, the rental price of capital is high, and/or the investment (and hence the growth rate) in the

bubble regime is high. These implications are similar to the permanent bubble model.

But people take the possibility of the bubble burst into account when they are in the bubble

regime, evaluating assets accordingly. The opposite is true in the fundamental regime. Therefore,

both prices and behaviors are affected not only by the actual occurrence of the regime switch but

also by the sheer possibility of the regime switch. For instance, under full depreciation the steady

state price of equity in the bubbly regime is

qb = (1− σb) βg−ρb (rb + πλbrb) + σbβ

(
ĉib
ĉif

1

gb

)ρ

(rf + πλfrf ) .
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Clearly, the dynamic link between the two regimes makes the existence condition complicated, but

it sheds a new light on the study of bubbles.

6 Taking the model to the data

We use our model to revisit the post-world war II U.S.’s economic performance. Specifically,

we use U.S. data on the growth rate of output and the consumption-to-investment ratio for the

period 1947.Q2 - 2016.Q4 to estimate the paths of supply and demand shocks in our model. We

choose these observables because in our model these variables are sensitive to both the regime

switch and shock processes. Specifically, we estimate the persistence and volatility of productivity

and preference shocks. For this section, except for the liquidity parameter, φ, all other parameter

values are those in table 1. Recall that the liquidity parameter was a free parameter in the previous

sections since our objective was to analyze its impact on different versions of our model. For our

quantitative section, we choose φ = 0.19, which is in line with Del Negro, Eggertsson, Ferrero,

and Kiyotaki (2016).

Our model follows within the class of MS-DSGE models discussed in Farmer, Waggoner, and

Zha (2009). We find a fundamental minimum-state-variable equilibrium. The absence of endoge-

nous state variables greatly simplifies the solution method as otherwise we would have to rely on

the methods in Farmer, Waggoner, and Zha (2011).

6.1 A Regime Switching World

As an initial step, we estimate the model using maximum likelihood and Kim’s filter,6 assuming

that the economy is in the recursive-bubble equilibrium. Our identification of the regimes relies on

the implications we showed in both Table 3 and Figure 6; i.e., the bubbly regime is characterized

by both higher volatility and higher economic growth. Although these two elements were present

in the pre-1980s sample, there is a clear tension in the last decades. For instance, the housing

boom epoch displayed higher growth but lower volatility. Hence, the importance of taking the

model to the data to discipline the switches in the model.

The left upper panel in Figure 10 presents the filtered and smoothed probabilities of the

economy being in a bubble regime. They suggest that the economy had been in a bubble regime

prior to the 1980s, had moved to the fundamental regime and stayed until the late 1990s, and

have returned to the bubble regime again. These patterns are reminiscent of the long-run trend in

output growth reported by Comin and Gertler (2006). That is, as a secular trend, the U.S. output

growth was generally robust until the 1970s, was generally weak until the mid-1990s, and reversed

course again until the Great Recession. Identifying the cause of these medium-term cycles is a

challenging task. The pioneering work of Comin and Gertler (2006) attribute them to exogenous

6We thank Dongho Song for helping setting up the Markov Switching estimation routine.
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changes to wage markups, which in their model are amplified by prominent mechanisms in the

growth literature such as product innovations and costly implementations of new ideas. Our model

offers a novel explanation; the medium-term cycles might be caused by non-fundamental factors,

i.e., regime switches between bubble and fundamental. It does not have to assume changes to the

underlying technologies or the model parameters.

The timings of the regime switches in our model look different from estimates from alternative

regime switching models. For example, Sims and Zha (2006) fit U.S. data to a regime switching

VAR with drifting coeffi cients and variances. They report the existence of four distinct regimes:

the Greenspan state prevailing during the 1990s and early 2000s; the second most common regime

emerges in the early 1960s and parts of the 1970s; the last two regimes corresponds to sporadic

events such as 9/11. Our regimes are unlike those estimated to account for the Great Moderation

with a high volatility regime prior to 1984s and a calmer one post 1984 (Stock and Watson (2002)).

Finally, our bubble regime bears little resemblance to recession regimes (See Hamilton (2016) for

an extensive review of regime switching in macroeconomics).

Going into the details, the estimated probability path suggests that prior to the 1980s the

likehood of being in a bubble regime was consistently high. But as we move through the 1980s

and forward, the fundamental regime became more prevalent. Indeed, the bubble regime is less

likely during the 1990s with a short-lived increase during the mid 1990s. Importantly, the estimated

model captures the rise of the housing bubble during the early 2000s and its subsequent collapse

in 2008-2009. Additionally, our estimation points to the rise of a post Great Recession bubble,

which some economic commentators have attributed to the extremely loose monetary policy of the

last years. However, our model struggles to pinpoint the rise and collapse of the IT bubble. This

is most likely a result of the short duration of this bubble and that the housing bubble arose fairly

close. That is, the estimation gives more weight to the housing bubble over the IT bubble. The

curious reader may have noticed the bubble’s temporary and abrupt collapse in the early 1960s.

This seems to capture Kennedy’s Slide of 1962 (the stock market flash crash from December 1961

to June 1962).

The right upper panel in Figure 10 shows the filtered path of the bubble’s price (in red the

HP-filtered trend). It plots the expected value calculated by the probability of the economy being

in the bubble regime in a period times the price of bubble assets realized if the economy is in the

bubbly regime in the same period. Measured this way, a unit of bubble asset was priced highly

during most of the pre-1980s sample. But with the arrival of the Great Moderation epoch (the

mid-1980s), the bubble’s price became more volatile. In addition, remember that trading bubble

assets occurs only in the bubble regime. Because the estimated probabilities suggest that there

were regime switches to the fundamental in the mid-1980s and to the bubble in the late-1990s,

the actual trade volume of bubble assets is likely to be even more volatile in the latter half of the

sample. Interestingly, both the estimated probabilities and the bubble price correctly capture the

housing boom-bust episode. As a trend over the entire sample, we observe that the bubble price
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has been declining since the 1960s. This is precisely at the core of our model. Namely, because

periods of high valuation are associated with periods of faster growth in our model, the growth

slowdown of the recent decades could be attributed in part to smaller size the bubbles.

A natural question at this point is what these bubbles are capturing in reality. Although there

is very little arguing about the housing and IT bubbles, it is less clear where the bubbles arose

prior to 1980. For the 1970s, the obvious candidate is loose monetary policy (the Burns-Miller’s

dove regime estimated in Fernandez-Villaverde, Guerron-Quintana, and Rubio-Ramirez (2015)).

Interestingly, Contessi and Kerdnunvong (2015) report stock and housing markets exuberance

(based on cyclically adjusted price earning and cyclically adjusted price rent ratios) during the

period 1965:Q3-1968Q4. Shiller (2015) also pointed out an instance of a high price-earnings ratio

occurring in January 1966, calling it the “Kennedy-Johnson Peak.”

The bottom panels in Figure 10 display the paths of productivity and preference shocks (the

red lines correspond to 5-year rolling window volatilities). In spite of the moderating effect of

the fundamental regime, there is still a role for less volatile shocks to account for the Great

Moderation. By the same token, the high volatility episode during the 2008-2009 recession calls

for larger disturbances, particularly so in the demand side of the economy.

6.2 A Permanent-Bubble World

We read the same observations through a different lens. Specifically, we assume that the economy

is best described by the permanent bubble model. In this variant, the volatility of both supply

and demand shocks declined by a factor of 2 during the Great Moderation. The bubble is about

6 times more volatile than output. The post-1984 moderation results from less volatile structural

shocks. This view of the Great Moderation is consistent with Stock and Watson (2002).

Figure 11 displays the bubble’s real valuation over the entire sample. In general, the bubble is

more valuable during expansions like the 1970s, 1990s, and the first part of 2000s. Crucial for our

purposes, the bubble’s value declines in the early 1980s just as the Great Moderation started. It

recovered during the technology bubble of the 1990s, which in our model implies higher growth.

Except for this episode, the bubble’s path is broadly consistent with the one estimated in our

benchmark formulation (Figure 10).

The housing bubble in the early 2000s is captured by our model both during the pre-crisis

years and the bust. At the end of the sample, we see some recovery but it is far from previous

other recoveries. As we argued above, the less valuable the bubble is, the lower the liquidity

services it provides, which results in weaker growth. By the end of our sample, we observe that

the bubble’s price is recovering. This finding is consistent with some economic observers’view

that the quantitative easing measures implemented by the Federal Reserve Board are fueling a

new bubble.7

7See for example the PBS column http://www.pbs.org/newshour/making-sense/column-the-monetary-bubble-
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6.3 A Bubbleless World

Now, let’s imagine there was never a bubble in the economy. Supply and demand shocks became

less volatile post-1984, with the volatility of the productivity declining by a factor of 1.7 while the

volatility of the second disturbances shrinking by half. In all, this version of our model reflects

the good-luck hypothesis behind the Great Moderation as in the permanent bubble model.

6.4 Three Models Side-By-Side

The smoothed shocks for the three versions of our model are in Figure 12. The dynamic paths

for preference shocks are very similar across the different variants although the shocks from the

bubbleless model are slightly more volatile. Productivity shocks in the permanent bubble model

display significantly more variability than demand shocks. Moreover, supply shocks in this model

are more volatile than the same shocks but in the other two variants. Finally, the post-1984

moderation is apparent in the two shocks.

7 Conclusions

We advance a model of recurrent bubbles, liquidity, and endogenous productivity. Unlike previous

work in the literature (Martin and Ventura (2012)), we introduce recurrent bubbles in an infinite

horizon business cycle model. We find that recurrent bubbles in this environment have non-trivial

impact on the model’s dynamics because prominent mechanisms emphasized in the business cycle

literature, such as the intertemporal substitution of consumption and leisure, the endogenous time

allocation, and the endogenous capacity utilization rate, are greatly influenced by bubbles. We

find that bubbles enhances long-run growth when the degree of financial development is limited.

However, if the financial sector is developed enough from the beginning, bubbles may be detri-

mental to growth due to its general equilibrium effect through the price of capital and endogenous

capacity utilization rate. Our model of recurrent bubbles and endogenous productivity attributes

the slowdown post-1984 to the collapse of an unproductive bubble.
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8 Appendix

8.1 Model with no binding constrains

The household’s problem is

maxE0

[ ∞∑
t=0

βtebt

(
π

[cit]
1−ρ

1− ρ + (1− π)
[cst (1− lt)η]1−ρ

1− ρ

)]

subject to

πcit + (1− π) cst + nt+1 − (1− δ (ut))nt = utrtnt + wt (1− π) lt.

The equilibrium conditions are summarized as follows;

Yt = ĀeatuαtKt ((1− π) lt)
1−α ,

(
cit
)−ρ

= (cst)
−ρ (1− lt)η(1−ρ) ,

η
cst

1− lt
= wt,

δ′ (ut) = rt,

1 = Et

[
βebt+1−bt

(
cit
cit+1

)ρ
(ut+1rt+1 + 1− δ (ut+1))

]
,

rt = α
Yt
utKt

,

wt = (1− α)
Yt

(1− π) lt
,

and

πcit + (1− π) cst +Kt+1 − (1− δ (ut))Kt = Yt

for all t.

Detrend variables by Kt;

Ŷt = Āeatuαt ((1− π) lt)
1−α ,(

ĉit
)−ρ

= (ĉst)
−ρ (1− lt)η(1−ρ) ,

η
ĉst

1− lt
= ŵt,

δ′ (ut) = rt,

1 = Et

[
βebt+1−bt

(
ĉit
ĉit+1

1

gt

)ρ
(ut+1rt+1 + 1− δ (ut+1))

]
,
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rt = α
Ŷt
ut
,

ŵt = (1− α)
Ŷt

(1− π) lt
,

and

πĉit + (1− π) ĉst + gt − (1− δ (ut)) = Ŷt.

8.2 Fundamental Model

The household’s problem is

maxE0

[ ∞∑
t=0

βtebt

(
π

[cit]
1−ρ

1− ρ + (1− π)
[cst (1− lt)η]1−ρ

1− ρ

)]

subject to

πcit + (1− π) cst + qtnt+1 = [utrt + (1− δ (ut)) qt + πλt (utrt + φqt (1− δ (ut)))]nt + (1− π)wtlt

A competitive equilibrium is defined as a sequence of prices, wt, rt, and qt, and quantities, Yt,

it, Kt+1, cit, c
s
t , lt, and ut, that satisfy the following conditions:

Yt = ĀeatuαtKt ((1− π) lt)
1−α ,

(
cit
)−ρ

= (cst)
−ρ (1− lt)η(1−ρ) ,

η
cst

1− lt
= wt,

rt − δ′ (ut) qt + πλt (rt − φqtδ′ (ut)) = 0,

qt = Et

[
βebt+1−bt

(
cit
cit+1

)ρ
(ut+1rt+1 + (1− δ (ut+1)) qt+1 + πλt+1 (ut+1rt+1 + φqt+1 (1− δ (ut+1))))

]
,

rt = α
Yt
utKt

,

wt = (1− α)
Yt

(1− π) lt
,

Yt = πcit + (1− π) cst + π
[utrt + φqt (1− δ (ut))]Kt

1− φqt
,

and

Kt+1 = (1− δ (ut))Kt + π
[utrt + φqt (1− δ (ut))]Kt

1− φqt
for all t.
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Since the model displays endogenous productivity, it is necessary to detrend it before we solve

it numerically. Dividing quantities by Kt, we obtain the following equations.

Ŷt = Āeatuαt ((1− π) lt)
1−α ,

(
ĉit
)−ρ

= (ĉst)
−ρ (1− lt)η(1−ρ) ,

η
ĉst

1− lt
= ŵt,

rt − δ′ (ut) qt + πλt (rt − φqtδ′ (ut)) = 0,

qt = Et

[
βebt+1−bt

(
ĉit
ĉit+1

1

gt

)ρ
(ut+1rt+1 + (1− δ (ut+1)) qt+1 + πλt+1 (ut+1rt+1 + φqt+1 (1− δ (ut+1))))

]
,

rt = α
Ŷt
ut
,

ŵt = (1− α)
Ŷt

(1− π) lt
,

Ŷt = πĉit + (1− π) ĉst + π
utrt + φqt (1− δ (ut))

1− φqt
,

and

gt = 1− δ (ut) + π
utrt + φqt (1− δ (ut))

1− φqt
for all t, where hat variables denote the original variable divided by Kt, i.e., Ŷt ≡ Yt/Kt and so

on, and gt ≡ Kt+1/Kt.

8.3 Recurrent Bubble Model

Competitive equilibrium is summarized by the following equations;

Yt = ĀeatuαtKt ((1− π) lt)
1−α ,(

cit
)−ρ

= (cst)
−ρ (1− lt)η(1−ρ) ,

η
cst

1− lt
= wt,

rt − δ′ (ut) qt + πλt (rt − φqtδ′ (ut)) = 0,

qt = Et

[
βebt+1−bt

(
cit
cit+1

)ρ
(ut+1rt+1 + (1− δ (ut+1)) qt+1 + πλt+1 (ut+1rt+1 + φqt+1 (1− δ (ut+1))))

]
,

1{zt=b}p̃t = 1{zt=b}Et

[
βebt+1−bt

(
cit
cit+1

)ρ
(1 + πλt+1) p̃t+11{zt+1=b}

]
,
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rt = α
Yt
utKt

,

wt = (1− α)
Yt

(1− π) lt
,

Yt = πcit + (1− π) cst + π
[utrt + φqt (1− δ (ut))]Kt + p̃t1{zt=b}M

1− φqt
,

Kt+1 = (1− δ (ut))Kt + π
[utrt + φqt (1− δ (ut))]Kt + p̃t1{zt=b}M

1− φqt
,

and

λt =
qt − 1

1− φqt
.

Dividing variables by Kt, we find

Ŷt = Āeatuαt ((1− π) lt)
1−α ,

(
ĉit
)−ρ

= (ĉst)
−ρ (1− lt)η(1−ρ) ,

η
ĉst

1− lt
= ŵt,

rt − δ′ (ut) qt + πλt (rt − φqtδ′ (ut)) = 0,

qt = Et

[
βebt+1−bt

(
ĉit
ĉit+1

1

gt

)ρ
(ut+1rt+1 + (1− δ (ut+1)) qt+1 + πλt+1 (ut+1rt+1 + φqt+1 (1− δ (ut+1))))

]
,

mt = 1{zt=b}Et

[
βebt+1−bt

(
ĉit
ĉit+1

1

gt

)ρ
(1 + πλt+1)mt+1gt

]
,

rt = α
Ŷt
ut
,

ŵt = (1− α)
Ŷt

(1− π) lt
,

Ŷt = πĉit + (1− π) ĉst + π
utrt + φqt (1− δ (ut)) +mt

1− φqt
,

gt = 1− δ (ut) + π
utrt + φqt (1− δ (ut)) +mt

1− φqt
,

and

λt =
qt − 1

1− φqt
where mt ≡ p̃t1{zt=b}M/Kt.

It is convenient to make the dependence on the regime explicit;

Ŷf,t = Āeat (uf,t)
α ((1− π) lf,t)

1−α , (28)
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Ŷb,t = Āeat (ub,t)
α ((1− π) lb,t)

1−α , (29)(
ĉif,t
)−ρ

=
(
ĉsf,t
)−ρ

(1− lf,t)η(1−ρ) , (30)(
ĉib,t
)−ρ

=
(
ĉsb,t
)−ρ

(1− lb,t)η(1−ρ) , (31)

η
ĉsf,t

1− lf,t
= ŵf,t, (32)

η
ĉsb,t

1− lb,t
= ŵb,t, (33)

rf,t − δ′ (uf,t) qf,t + πλf,t (rf,t − φqf,tδ′ (uf,t)) = 0, (34)

rb,t − δ′ (ub,t) qb,t + πλb,t (rb,t − φqb,tδ′ (ub,t)) = 0, (35)

qf,t = Et

 (1− σf ) βebt+1−bt
(

ĉif,t
ĉif,t+1

1
gf,t

)ρ
(uf,t+1rf,t+1 + (1− δ (uf,t+1)) qf,t+1 + πλf,t+1 (uf,t+1rf,t+1 + φqf,t+1 (1− δ (uf,t+1))))

(36)
+Et

 σfβe
bt+1−bt

(
ĉif,t
ĉib,t+1

1
gf,t

)ρ
(ub,t+1rb,t+1 + (1− δ (ub,t+1)) qb,t+1 + πλb,t+1 (ub,t+1rb,t+1 + φqb,t+1 (1− δ (ub,t+1))))

 ,

qb,t = Et

 (1− σb) βebt+1−bt
(

ĉib,t
ĉib,t+1

1
gb,t

)ρ
(ub,t+1rb,t+1 + (1− δ (ub,t+1)) qb,t+1 + πλb,t+1 (ub,t+1rb,t+1 + φqb,t+1 (1− δ (ub,t+1))))

(37)
+Et

 σbβe
bt+1−bt

(
ĉib,t
ĉif,t+1

1
gb,t

)ρ
(uf,t+1rf,t+1 + (1− δ (uf,t+1)) qf,t+1 + πλf,t+1 (uf,t+1rf,t+1 + φqf,t+1 (1− δ (uf,t+1))))

 ,
mf,t = 0, (38)

mb,t = Et

[
(1− σb) βebt+1−bt

(
ĉib,t
ĉib,t+1

1

gb,t

)ρ

(1 + πλb,t+1)mb,t+1gb,t

]
(39)

+Et

[
σbβe

bt+1−bt

(
ĉib,t
ĉif,t+1

1

gb,t

)ρ

(1 + πλf,t+1)mf,t+1gb,t

]
,

rf,t = α
Ŷf,t
uf,t

, (40)

rb,t = α
Ŷb,t
ub,t

, (41)

ŵf,t = (1− α)
Ŷf,t

(1− π) lf,t
, (42)
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ŵb,t = (1− α)
Ŷb,t

(1− π) lb,t
, (43)

Ŷf,t = πĉif,t + (1− π) ĉsf,t + π
uf,trf,t + φqf,t (1− δ (uf,t)) +mf,t

1− φqf,t
, (44)

Ŷb,t = πĉib,t + (1− π) ĉsb,t + π
ub,trb,t + φqb,t (1− δ (ub,t)) +mb,t

1− φqb,t
, (45)

gf,t = 1− δ (uf,t) + π
uf,trf,t + φqf,t (1− δ (uf,t)) +mf,t

1− φqf,t
, (46)

gb,t = 1− δ (ub,t) + π
ub,trb,t + φqb,t (1− δ (ub,t)) +mb,t

1− φqb,t
, (47)

λf,t =
qf,t − 1

1− φqf,t
, (48)

and

λb,t =
qb,t − 1

1− φqb,t
(49)

where subscripts f and b denote realizations of the variables in a fundamental and bubble regime,

respectively; for instance, Ŷf,t is the realization of Ŷt in a fundamental regime.

The impulse response functions are calculated by linearizing the equations (28) to (49) around

Ŷf,t = Ŷf , ĉif,t = ĉif , ĉ
s
f,t = ĉsf , lf,t = lf , gf,t = gf , qf,t = qf , λf,t = λf , uf,t = uf , rf,t = rf , ŵf,t = ŵf ,

Ŷb,t = Ŷb, ĉib,t = ĉib, ĉ
s
b,t = ĉsb, lb,t = lb, gb,t = gb, qb,t = qb, λb,t = λb, ub,t = ub, rb,t = rb, ŵb,t = ŵb and

mb,t = mb.

46


