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Abstract 

 

June 2017 

The Producer Price Index for microprocessors has shown a slower rate of decline since 2009 than in 

previous years. Between 2000 and 2009 the index fell, on average, 33.66 percent per year. Since 2009 

the index has only fallen, on average, 6.28 percent per year.  This shift in deflation is a result of a change 

in pricing behavior by a major producer. The current index is calculated with a matched model 

methodology.  While this methodology might have been effective in the past when microprocessors 

prices dropped steadily from product introduction to end-of-life, a revised methodology must be 

explored in the current environment of static prices to accurately account for the changes in quality.   

 

With a data set that includes processors from Q1 2015 to Q4 2016 and benchmark statistics from 

PassMark along with key characteristics for processors, we estimate seven two-period overlapping 

quarterly models.  To select specifications, we use statistical learning methods of selecting the model 

with the minimum Bayesian information criterion (BIC) score and the model with the lowest mean 

squared error (MSE) calculated using 10-fold cross validation.  The minimum BIC models yielded an 

average annualized price decline of 3.68 percent while the models selected with the minimum MSE 

yielded an average annualized price decline of 3.20 percent.  Constructing counterfactual indexes using 

the models, we estimated that for the period of August 2015 to November 2016, the PPI 

Semiconductors Primary products fell 4.6 percent with the minimum BIC model and 4.3 percent with the 

minimum MSE model.  The official index fell 3.6 percent. 

 

Introducing a hedonic model for microprocessors would be a novel approach for the PPI.  It could 

potentially serve as a template for hedonic quality adjustment for other industries that see rapid 

technological change.  It would also be the first use of a time dummy hedonic model and the first 

application of statistical learning methods in the PPI. 

 

 

 

 

 

 



3 
 

Introduction 

 The PPI is one of the nation’s principal Federal economic indicators that measures the average change 

over time of the selling prices received by domestic producers of goods and services.  This family of 

indexes is made up of approximately 10,000 PPIs for individual products and groups of products that are 

published each month, one of which is the PPI for semiconductor and related device manufacturing1.  

One subcomponent of semiconductor and related device manufacturing is the index for 

microprocessors2.  

To ensure the PPI measures only a “pure” price change based on market factors, it must exclude any 

price change or portion of a price change that is due to a change in the characteristics of a product.  A 

change in the characteristics of a product is also called a quality change.  The challenge that the PPI 

faces is how to split out this “pure” price change from the quality change.  For a product, such as a piece 

of luggage, the quality change from vinyl to leather trim can be easily measured and accounted for3 by 

removing the value of the switch to leather from the price change.  This is known as quality adjustment.  

However, quality adjusting for microprocessor characteristics is more difficult because of their 

technological complexity.  This challenge in properly accounting for the quality change has led to debate 

about whether the PPI for microprocessors is biased because it is not properly accounting for quality 

change. 

This debate has informed our efforts to develop new quality adjustment methods for microprocessors.  

Some of the quality adjustment methods proposed by other researchers have been helpful in guiding 

the general direction of our approach to quality adjustment which we then refine and develop to suit 

the needs of the PPI microprocessors index.  These methods involve using a type of statistical model for 

quality adjustment that has never been deployed in a PPI index before.  In addition, we use “statistical 

learning” techniques in the development of our quality adjustment method which is also a first for the 

PPI.   

In this article, we will (i) discuss the technical reasons for the debate over the possible magnitude of the 

bias of the PPI microprocessors index; (ii) reexamine some of the results from a study claiming 

                                                           
1 http://www.bls.gov/ppi/ppifaq.htm 
2 The PPI for Microprocessors (including microcontrollers) has not been published since March 2015, since it does 
not meet publication standards for the PPI.  
3 http://www.bls.gov/ppi/ppifaq.htm 
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substantial bias in the microprocessors index; and (iii) present a quality adjustment method that both 

uses new methods and is developed with new methods. 

Background 

The PPI for microprocessors is a matched model index.  Theoretically, a matched model index tracks 

price changes from period to period for the same set of products.  However, producers typically stop 

producing products after a certain amount of time and introduce new products with different 

characteristics; this creates a problem of price comparison between different products.  Prior to 2009, 

when new microprocessors were introduced, the prices of existing microprocessors would decline.  In 

this case, a matched model index still captures price changes due to factors such as technological 

improvements.  The market is effectively valuing the technological change.   

The index that includes microprocessors has shown a pronounced reduction in its rate of decline, 

primarily due to a change in the pricing behavior of a heavily weighted producer in the index.  After 

2009, when new products were introduced, the prices of existing products would usually remain 

unchanged.  Between 2000 and 2009, the annual rate of deflation of the PPI for microprocessors was 

33.66 percent per year. Between 2009 and 2014, it was 6.28 percent per year.  Some have interpreted 

slower rate of decline as a slowdown of technological innovation in the semiconductor industry and as a 

signal for the end of Moore’s Law.   

Moore’s Law states that the number of transistors on a chip doubles every two years, which is 

significant because it has driven “feature-size reduction (scaling) that leads to better performance and 

cost reduction”.4  This combination of decreasing cost per transistor5 and increasing performance was 

responsible for the large declines in the microprocessors index before 2009.  However, at very small 

feature sizes, which companies began to manufacture in the 2005-2007 timeframe, power usage for a 

given area of a processor begins to increase.6  This increase in power usage per area makes it difficult to 

continue increasing performance at the same rate as before.  While fabrication technology can address 

                                                           
4 Peter Van Zant, Microchip Fabrication: A Practical Guide to Semiconductor Processing, Sixth Edition, (New York: 
McGraw Hill, 2014), p. 394. 
5 Kenneth Flamm, “Has Moore’s Law Been Repealed?  An Economist’s Perspective”, Computing in Science and 
Engineering, March/April 2017, p. 33.  Flamm’s Table 1 shows for Intel, the cost per transistor has continued to 
decline even as wafer processing costs have increased. 
6 For a more in depth description of this phenomenon see Rambus, Understanding Dennard Scaling, 
https://www.rambus.com/blogs/understanding-dennard-scaling-
2/?nabe=4857318206603264:1,6583178454368256:0 
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the challenge of increasing power usage per area,7 it is clear the feature-size reduction no longer 

delivers the same decreases in cost and increases in performance8 as it did previously. 

While the slowdown of Moore’s Law is debatable, there is no question that microprocessors have 

changed significantly since 2009, both from a technological and pricing viewpoint.  These changes have 

led to discussions about the PPI match-model methodology for the microprocessors index and whether 

it is showing a slower rate of quality increase than a hedonic approach would.  Researchers have used 

regression modeling methods, or hedonic modeling methods, to generate estimates of quality adjusted 

price9 declines.  A hedonic model uses a regression to estimate the price of a good by breaking it down 

to its component parts.  Price is the dependent variable and the independent variables are the various 

characteristics of the product.  A recent example of a hedonic regression based critique of the PPI 

microprocessors index is a paper by Byrne, Oliner, and Sichel, henceforth referred to as BOS10.  The BOS 

paper uses a hedonic regression to construct a quality adjusted index of price change for Intel desktop 

microprocessors, which shows a 42 percent price decline per year from 2009-201311.  This suggests that 

the decline of under 10 percent for the PPI over this period may be quite biased. 

Data and Methods 

To understand the 42 percent price change, we attempt to reconstruct the model presented in the BOS 

paper.  We use Intel processors and prices to recreate a comparable data set to do this analysis12.  BOS 

uses a time dummy hedonic model in their analysis of microprocessor prices.  A time dummy hedonic 

model utilizes a dataset that consists of a panel of two time periods.  The BOS paper uses two adjacent 

overlapping years for each of their panels.  For instance, two of their panels are 2009-2010 and 2010-

2011.  Their specification uses a time dummy and one other regressor, the log of a performance 

benchmark (SPEC speed) with log price as the dependent variable.  The coefficient on the time dummy 

variable shows the price change between the two time periods in the panel that is not explained by the 

other independent variables and it can be used to calculate an annual inflation rate.  The benchmark 

                                                           
7 Peter Van Zant, Microchip Fabrication: A Practical Guide to Semiconductor Processing, Sixth Edition, (New York: 
McGraw Hill, 2014), p. 434. 
8 Performance implicitly includes power usage. 
9 A quality adjusted price accounts for technological change in a product. 
10 David M. Byrne, Stephen D. Oliner, and Daniel E. Sichel (2017).  “How Fast are Semiconductor Prices Falling?”, 
The Review of Income and Wealth, 2017. 
11 Ibid, p.18. 
12 Any reference to Intel in this paper is for this analysis only. 
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(SPEC speed) is a measure of performance of a microprocessor by calculating how long it takes a 

microprocessor to run a suite of software13.   

In putting together their dataset, BOS identified two possible problems.  The first possible problem is 

that Intel’s “posted prices do not represent true transactions prices because Intel offers progressively 

larger discounts to selected purchasers as models age”14.  The second possible problem is that Intel’s 

prices are unweighted which “would put too much weight on price observations for which there were 

few transactions”, especially for older processors.15  They contend that a newly introduced 

microprocessor will generate much more revenue than a microprocessor that is several years old, but an 

unweighted dataset will give them equal importance.  Their solution for both of these possible problems 

was to “use the first four quarterly prices for each model (or fewer prices if the model is in the market 

for less than a year), and refer to this as the ‘early-price’ hedonic regression”.16   They aggregate these 

quarterly prices into yearly panels.  By doing this, they will exclude any microprocessor introduced 

before the first year in a two year panel.   We believe that this truncation is too abrupt because the PPI 

tracks the entire production of companies, not just newly introduced products.  We implement a 

different interval which is explained in a later section.  

After recreating the BOS results, we explore the use of additional characteristics.   The data we use in 

our following research is derived from Intel’s publicly available price sheets.  Detail on processor 

characteristics were obtained from Intel’s ARK website.  In addition to SPEC “speed” (and SPEC “rate”, 

which we discuss in the next section), we look at:  

 Cores – the number of physical processing units, which read and execute program instructions. 

 Threads – Intel’s Hyper-threading technology allows each core to run more than one thread, 

essentially doubling the amount of programmed instructions/commands that each core can 

process.  

 Base Frequency – measures the processor’s speed in clock cycles per second.  The base 

frequency is the fastest a processor can run without manual overclocking17. 

                                                           
13 See Appendix A for more information on the SPEC benchmarks. 
14 David M. Byrne, Stephen D. Oliner, and Daniel E. Sichel (2017).  “How Fast are Semiconductor Prices Falling?”, 
The Review of Income and Wealth, 2017, p. 11. 
15 Ibid, p. 11. 
16 Ibid, p. 12. 
17 https://www.pugetsystems.com/labs/articles/Is-CPU-Base-Frequency-Still-a-Relevant-Spec-512/ 
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 Turbo Frequency – the highest possible speed a processor can run with manual overclocking.  

Intel’s Turbo Boost Technology allows processor cores to run faster than their base frequency if 

they are operating below power, current, and temperature specification limits18. 

 Cache – Central Processing Unit (CPU) caches are small pools of memory that store information 

the CPU is most likely to need next.  The information loaded into cache depends on 

sophisticated algorithms and certain assumptions about programming code.  The goal of the 

cache system is to ensure that the CPU has the next bit of data it will need already loaded into 

cache by the time it goes looking for it19. 

 TDP – Thermal Design Power, is the maximum amount of heat generated by the processor that 

the cooling system is designed to dissipate20.  Typically, when comparing processors with the 

same architecture, the one with lower TDP will consume less power, while the one with higher 

TDP will have a better performance.  

 Graphics – Microprocessors can have an integrated graphics processing unit (GPU) 

All regressions in this paper have log price as the dependent variable and include a time dummy 

variable. 

Criticisms of PPI Microprocessors Index 

The 42-percent decline per year results from the BOS are the result of using only a single regressor, the 

log of the SPEC speed performance benchmark.  When additional characteristics are added to the 

regression, the rate of price decline becomes much smaller. 

We are able to replicate the BOS result using publicly available Intel data from 2009 to 2015, and 

applying their specification on “early prices”.  We obtain an average annual price decline of 46.50 

percent with an average adjusted R2 of 0.7518.  This result is comparable to the result obtained by BOS.  

It serves as a check on data compatibility and is shown in Table 1 below. 

 

 

                                                           
18 http://www.intel.com/content/www/us/en/architecture-and-technology/turbo-boost/turbo-boost-
technology.html 
19 https://www.extremetech.com/extreme/188776-how-l1-and-l2-cpu-caches-work-and-why-theyre-an-essential-
part-of-modern-chips 
20 https://ark.intel.com/ - Thermal Design Power 

https://ark.intel.com/
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Table 1: log Performance (“speed”) Model on “Early Prices” 

  2009-10 2010-11 2011-12 2012-13 2013-14 2014-15 

Year Dummy  -0.6936* -1.1810* -0.4715* -0.3011* -0.3705* -0.7348* 
  (0.1368) (0.0926) (0.0554) (0.0361) (0.0462) (0.1364) 

log Performance ("speed")  3.0977* 3.3130* 2.9087* 3.0155* 3.4819* 3.7546* 
  (0.2962) (0.1949) (0.1132) (0.1127) (0.1651) (0.2686) 

Observations (Year 1, Year 2) 68 (18, 50) 143 (50, 93) 166 (93,73) 150 (73, 77) 141 (77, 64) 93 (64, 29) 

Adjusted R2 0.6645 0.6267 0.6772 0.8604 0.8479 0.8342 

*Significant at the 5-percent level 
 

The SPEC speed benchmark only measures the performance of a single core of a microprocessor.  Since 

microprocessors have multiple cores, a better measure of performance is the log of the SPEC “rate” 

benchmark that measures multi-core performance.  The difference between the speed and rate tests is 

clear.  For example, consider the following three processors, all with speed scores in the low-to mid-70s: 

          Table 2: SPEC Speed and SPEC Rate Benchmark Comparison 

Processor Model i3-6100 i7-4790K i7-5960X 

SPEC Speed benchmark 73 71 72 

SPEC Rate benchmark 132 183 328 

Price 117 339 999 

 

As we can see in Table 2, the SPEC speed benchmarks are similar for these three processors, while the 

SPEC rate score better reflects the increase in performance with the increase in price from the i3-6100 

to the i7-5960X.  The disparity in rate scores is due mostly to different numbers of physical cores, which 

are two, four, and eight respectively.  The cache is another factor, increasing at even greater rate than 

the core count: three, eight, and 20 megabytes.  Intel, of course, charges for these features, as the large 

price spread illustrates.  Running a regression with only the log of the SPEC rate benchmark drops the 

average annual price decline to 28.91 percent with an average adjusted 𝑅2 of 0.8891.  The results are 

shown in Table 3 below. 
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Table 3: log Performance (“rate”) Model on “Early Prices” 

 2009-10 2010-11 2011-12 2012-13 2013-14 2014-15 

Year Dummy -0.2548* -0.7709* -0.2965* -0.1298* -0.1902* -0.4051* 
  (0.1031) (0.0515) (0.0368) (0.0267) (0.0279) (0.0411) 

log Performance ("rate") 1.6022* 1.7785* 1.6729* 1.5878* 1.7195* 1.8554* 

  (0.1068) (0.0776) (0.0595) (0.0416) (0.0381) (0.0439) 

Observations (Year 1, Year 2) 68 (18, 50) 143 (50, 93) 166 (93,73) 150 (73, 77) 141 (77, 64) 93 (64, 29) 

Adjusted R2 0.7899 0.8430 0.8667 0.9324 0.9433 0.9593 

*Significant at the 5-percent level 
 

However, there are reasons to not solely rely on SPEC benchmarks.  SPEC does not register the graphical 

improvements to many Intel desktop processors in the last decade.  In more recent years, Intel has been 

integrating a GPU onto their microprocessors.  For this reason, a hedonic regression examining Intel 

CPUs should include controls for graphics.  The performance of a GPU can be gauged by the number of 

execution units it has.  The regressor we use for graphics is the log of the number of execution units; if it 

does not have an onboard GPU, a zero will be assigned.  

Additional controls can also be added to distinguish processors with equivalent benchmark 

performances that differ in operating frequencies, power consumption, thread counts, and cache.  The 

nine-regressor model seen in Table 4 includes; log Cores, log Threads, log Base Frequency, log Turbo 

Frequency, log Cache per Core, log TDP, log Graphical statistic along with the single and multi-core SPEC 

benchmarks.  With these specifications, the average annual price decline slips to 14.56 percent and the 

average adjusted 𝑅2 rises to 0.9775.   
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Table 4: Full Model on “Early Prices” 

 2009-10 2010-11 2011-12 2012-13 2013-14 2014-15 

Year Dummy -0.1378* -0.1971* -0.1563* 0.0193 -0.0991* -0.3028* 

  (0.0602) (0.0824) (0.0216) (0.0184) (0.0165) (0.1089) 

log Performance ("speed") -3.0198* -1.8465* -2.2244* -2.9583* -1.3128* 0.0673 

  (0.7128) (0.3215) (0.2688) (0.3172) (0.4113) (0.6721) 

log Performance ("rate") 5.1822* 1.7636* 1.7798* 2.7927* 1.3274* 0.9937* 

  (0.7433) (0.3694) (0.3105) (0.2657) (0.3613) (0.3409) 

log Cores  -1.3143* 0.5202* 0.1979 -0.2068 0.7375* 0.7218* 

  (0.3243) (0.1745) (0.1471) (0.1321) (0.1978) (0.1894) 

log Threads -0.6364* 0.0134 0.1606* 0.0308 0.2559* 0.1997* 

  (0.2168) (0.0673) (0.0627) (0.0570) (0.0737) (0.0642) 

log Base Frequency 5.1094* 1.8304* 0.8376* 0.8175* 1.9080* 1.1522* 

  (0.5128) (0.2583) (0.1737) (0.1611) (0.2716) (0.3806) 

log Turbo Frequency -0.0671 0.9584* 1.3078* 1.2467* 0.3412 -0.2960 

  (0.5156) (0.1338) (0.1225) (0.1381) (0.2174) (0.6015) 

log (Cache/Cores) -1.5895* 0.3799* 0.4650* 0.4033* 0.3521* 0.4113* 

  (0.2362) (0.1102) (0.0637) (0.0917) (0.0599) (0.0979) 

log TDP -0.7807* -0.9251* -0.5072* -0.5062* -0.6867* -0.4931* 

  (0.1718) (0.0719) (0.0435) (0.0552) (0.0524) (0.0676) 

log Graphics -0.1869* -0.1529* -0.1448* -0.0405* -0.0827* -0.0367 

  (0.0300) (0.0268) (0.0159) (0.0165) (0.0120) (0.0205) 

Observations (Year 1, Year 2) 68 (18, 50) 143 (50, 93) 166 (93,73) 150 (73, 77) 141 (77, 64) 93 (64, 29) 

Adjusted R2 0.9657 0.9587 0.9836 0.9812 0.9895 0.9864 

*Significant at the 5-percent level 
 

We perform a standard F-test on the two nested models, the restricted model with just the time dummy 

and SPEC speed and the unrestricted model which includes all our additional characteristics: 

log 𝑝𝑟𝑖𝑐𝑒 =  𝛽0 + 𝛽1 𝑌𝑒𝑎𝑟 𝐷𝑢𝑚𝑚𝑦 +  𝛽2 log 𝑃𝑒𝑟𝑓𝑜𝑟𝑚𝑎𝑛𝑐𝑒 ("𝑠𝑝𝑒𝑒𝑑") +  𝜀 

log 𝑝𝑟𝑖𝑐𝑒 =  𝛽0 + 𝛽1 𝑌𝑒𝑎𝑟 𝐷𝑢𝑚𝑚𝑦 +  𝛽2 log 𝑃𝑒𝑟𝑓𝑜𝑟𝑚𝑎𝑛𝑐𝑒 ("speed") + 𝛽3 log 𝑃𝑒𝑟𝑓𝑜𝑟𝑚𝑎𝑛𝑐𝑒 ("rate")

+ 𝛽4 log 𝑐𝑜𝑟𝑒𝑠 + 𝛽5 log 𝑇ℎ𝑟𝑒𝑎𝑑𝑠 + 𝛽6 log 𝐵𝑎𝑠𝑒 𝐹𝑟𝑒𝑞𝑢𝑒𝑛𝑐𝑦 + 𝛽7 log 𝑇𝑢𝑟𝑏𝑜 𝐹𝑟𝑒𝑞𝑢𝑒𝑛𝑐𝑦

+ 𝛽8 log 𝑐𝑎𝑐ℎ𝑒/𝑐𝑜𝑟𝑒𝑠 + 𝛽9 log 𝑇𝐷𝑃 +  𝛽10 log 𝐺𝑟𝑎𝑝ℎ𝑖𝑐𝑠 +  𝜀 

For every time panel 2009-10 through 2014-15 we test the null hypothesis that our restricted 

parameters are equal to zero against the alternative hypothesis that at least one parameter does not 

equal zero. 

𝐻0: 𝛽3 =  𝛽4 =  𝛽5 = 𝛽6 = 𝛽7 = 𝛽8 = 𝛽9 = 𝛽10 = 0 

𝐻𝐴: 𝑎𝑡 𝑙𝑒𝑎𝑠𝑡 𝑜𝑛𝑒 𝛽 ≠ 0 
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The F-statistic measures the reduction of the residual sum-of-squares per additional parameter in the 

unrestricted model.  

𝐹0 =  
(𝑅𝑆𝑆𝑅 − 𝑅𝑆𝑆𝑈𝑅) 𝑞⁄

𝑅𝑆𝑆𝑈𝑅 (𝑛 − (𝑘 + 1))⁄
 

Where RSSR and RSSUR are the residual sum-of-squares of the restricted and unrestricted models 

respectively.  The variable n is the number of observations, k is the number of independent variables 

and q is the number of restrictions.  Blackwell notes that “if the residuals are larger in the restricted 

model, then our F-statistic will also be large.  When the residuals are large we know that the fit of the 

regression is worse; therefore, the F-statistic is larger when the restrictions reduce the fit of the model.  

If these variables had no predictive power, then removing them should not affect the residuals”21.   

Table 5: F-statistic for all time periods 

 2009-10 2010-11 2011-2012 2012-2013 2013-14 2014-15 

F-Statistic 72.31 141.61 382.63 119.34 234.26 126.37 

 

From the above results the null hypothesis is rejected in all the time periods even at the one percent 

level. This result confirms our regression outputs in Table 4 where most of our additional characteristics 

are significant at the five percent level from 2009 to 2015. 

Given the statistical significance of variables excluded by BOS, it seems that their model may be subject 

to omitted variable bias.  The BOS estimate of inflation is not robust to changes in specification.  Indeed, 

inflation varies greatly with specification changes.  This raises the question of how different model 

specifications perform with respect to one another and with respect to the time dummy coefficient that 

represents the annual price decline for microprocessors.  To provide perspective on this question, we 

create every possible subset of the nine regressors, which gives 512 different linear regression 

specifications.  We then take these 512 specifications and estimate them for all six of the two-year 

panels.  Finally, for every one of the 512 specifications, we calculate its average annual rate of inflation 

and average adjusted 𝑅2 across the six two-year panels.  We get a mean inflation rate of -18.74 percent.  

As mentioned earlier, the model with only the log of SPEC speed as a regressor has an inflation rate of 

negative 42. 

                                                           
21 Blackwell. “Multiple Hypothesis Testing: The F-test”, p. 4. 
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Figure 1: Six-year Average Annual Inflation from all 512 models for Overlapping 2-year Time 
Dummy Models, 2009-2015 

 

In Figure 1, the blue dashed line shows the average price change for all 512 models.  The dotted red line 

shows the price change using the BOS specification, which is a clearly larger rate of decline than the vast 

majority of possible models.  In fact, only 4 other models, less than 1 percent, show a sharper rate of 

annual price decline than the BOS result. This lends evidence that the BOS specification does not include 

variables that are important and that it may be an outlier.  The bottom section of Figure 1 arrays the 512 

models by average adjusted 𝑅2 and average annual price decline.  Most cluster above the average 

adjusted 𝑅2 of 0.7518 of the BOS specification.  More significantly is the range of differences in average 

annual price declines relative to the BOS result, which appears to be an outlier.  This is even more clearly 

seen in the top section histogram of Figure 1. 
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The annual deflation results obtained from our data are in line with the anecdotal evidence reported by 

industry observers.  For instance, an article in Anandtech, detailing 6th generation processors, states that 

there was around a 25-percent increase, in total, in performance between 2011 and 201522. 

From our findings and the results of real world performance testing from well-known technology 

publications, we find little empirical support that the 42-percent annual price decline from BOS is an 

accurate representation of the microprocessor industry.  However, the BOS criticism of the PPI 

microprocessors index has sparked an evaluation of PPI’s semiconductor index methodology and an 

examination of alternative quality adjustment methods that PPI could implement.  

Constructing a Hedonic Model for PPI Microprocessors 

PPI has studied quality adjusting microprocessors in the past, most notably in a paper by Michael 

Holdway23, but none of the methods examined were feasible for implementation.  Despite our findings, 

we think the BOS paper lays out a useful framework for developing a hedonic model appropriate for use 

in the PPI.   

Before we look at estimating a model for use in the PPI microprocessors index, we need to put together 

a different dataset than the one used by BOS.  First, we only look at microprocessors from 2015 and 

2016.  Since we are interested in seeing what the impact of a hedonic model would be on the 

microprocessors index currently (2017), we see little value in building datasets that contain observations 

from more than two years ago.  We are also unable to calculate counterfactual indexes for years prior to 

2015, which is an important method for evaluating models that is shown later in this section.  We 

estimate models with overlapping two-period quarterly data.  PPI indexes are published monthly which 

means models need to be updated more often than annually.   

As stated earlier, BOS use “early prices” to address two possible problems.  The first possible problem, 

posted prices not equaling transaction prices for older microprocessors, has been examined by Flamm 

(2017).  Flamm found that for the retail microprocessors market, which is 20 percent24 of Intel’s 

microprocessors sales by volume, there was “no evidence to support the suggestion that there was 

some structural change after 2006 in the relationship between observed Intel list price and observed 

                                                           
22 Cutress, Ian.  “The Intel 6th Gen Skylake: Core i7-6700K and i5-6600K Tested”.  Anandtech, August 5, 2015.  
http://www.anandtech.com/show/9483/intel-skylake-review-6700k-6600k-ddr4-ddr3-ipc-6th-generation 
23 Michael Holdway, “An Alternative Methodology: Valuing Quality Change for Microprocessors in the PPI”, Bureau 
of Labor Statistics, https://www.bea.gov/papers/pdf/mpuvqa.pdf. 
24 Kenneth Flamm, “Has Moore’s Law Been Repealed?  Empirical Analysis of Innovation in Semiconductors”, p. 24. 

http://www.anandtech.com/show/9483/intel-skylake-review-6700k-6600k-ddr4-ddr3-ipc-6th-generation
https://www.bea.gov/papers/pdf/mpuvqa.pdf
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retail market prices”25.  This gives proof that at least some of Intel’s sales for older microprocessors are 

being accurately represented by its posted price list, while solid evidence that Intel’s posted prices for 

older microprocessors are unrepresentative is lacking.  On that basis, we do not think that truncating the 

sample from the full dataset as the BOS “early prices” does is appropriate for the PPI. 

The second problem that BOS cite, that of the sales of microprocessors falling over time, we fully 

recognize, but we do not think that “early prices” are the best way to address it.  For example, in a 

regression for 2012-2013, a processor introduced in the fourth quarter of 2011 would not be included 

even though it would likely have sales similar to processors introduced in the first quarter of 2012.  We 

think this cutoff is too abrupt.  Intel will continue to sell a processor even after the introduction of a 

newer, more technologically advanced version of it is introduced.  As mentioned earlier, the PPI tracks 

the entire production of companies, not just newly introduced products.  Furthermore, when Intel 

introduces a microprocessor, shipments typically start off at a low level and increase several months 

before peaking.  Figure 2 below shows this pattern. 

Figure 2: Intel Microprocessor Shipments26

 

                                                           
25 Ibid, p. 26.  
26 Thanks to Ana Aizcorbe for this data which was first used in Aizcorbe, Corrado, and Doms (2000) 
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A better approach would be to include all microprocessors Intel is selling that were introduced within a 

certain interval from a given quarter.   This approach should better be able to capture the pattern of 

microprocessor shipments shown in Figure 2 and yield a more representative dataset.  For some 

microprocessors geared towards businesses, Intel guarantees that these microprocessors will be 

available and supported for 15 months27.  It is reasonable to assume that if Intel is actively supporting a 

processor, it should be still be selling at a significant volume.  We use this 15-month interval when 

building our dataset.  For example, for the first quarter of 2015, we include all microprocessors that 

were introduced from the fourth quarter of 2013 or later that are still being sold in the first quarter of 

2015.   

Instead of the SPEC performance benchmarks, we use the PassMark28 CPU performance benchmark.  

While SPEC is a well-known benchmarking tool, it is primarily used by manufacturers and vendors to 

performance test their server or workstation computer systems.  Many power-efficient versions of the 

i3, i5, and i7 chipsets do not have SPEC benchmark scores; low-end desktop processors such as the 

Pentium and Celeron chipsets are also missing scores from SPEC.  While compiling the quarterly 2015 

and 2016 data we noticed that only eight processors did not have a PassMark score, while the SPEC 

score was missing for 72 processors.  PassMark also is able to capture the performance gain from 

multicore microprocessors, as Table 6 shows below. 

          Table 6: SPEC Speed, SPEC Rate, and PassMark Benchmark Comparison 

Processor Model i3-6100 i7-4790K i7-5960X 

SPEC Speed benchmark 73 71 72 

SPEC Rate benchmark 132 183 328 

PassMark benchmark 5454 11184 15972 
Price 117 339 999 

  

In the first section of this article, we questioned the BOS model because it had a different inflation rate 

than most of the models with much higher adjusted 𝑅2s.  A first step in evaluating our quarterly data is 

reproducing Figure 1 with it.  Please note that we constrain the log PassMark variable to be in every 

model we estimate with our quarterly data because we know for certain that microprocessor 

performance is increasing over time.  We also think that the PassMark benchmark may be able to 

                                                           
27 Intel.  “Intel Stable Image Platform Program [Intel SIPP].  http://www.intel.com/content/www/us/en/computer-
upgrades/pc-upgrades/sipp-intel-stable-image-platform-program.html 
28 See Appendix A for more information on PassMark 
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account for improvements to microprocessors that are not associated with changes in any of the 

characteristic variables.  Microprocessors are complex products with many attributes so it is not possible 

to estimate a model that includes their every aspect.  Since the PassMark benchmark shows total 

microprocessor performance, it may be able to show quality improvements to microprocessors caused 

by changes to the characteristics we are unable to include in our models. 

Figure 3: Annual Inflation and Average Adj. 𝑅2 from All 12829 Models for Overlapping 2-Quarter 

Time Dummy Models, 2015-2016 

 

The blue dashed line in Figure 3 shows the average annual inflation of -0.58 percent. 

Another method to evaluate models is to use an information criteria.  We use the Bayesian information 

criterion (BIC) value.  Information criteria, in general, can be defined as “choosing the model with the 

                                                           
29 With our quarterly data, there are only 128 possible models since the PassMark benchmark replaces the two 
SPEC benchmarks and it is included in every model.  This means that subset models of only the seven 
characteristics are being estimated. 
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best penalized log-likelihood”.30  For our purposes BIC is useful because it is a widely-known measure of 

model performance and it can be used for variable selection for both nested and non-nested models.  

The main risk of using BIC for model selection is underfitting31, which would be selecting fewer 

characteristics than exist in the “true” model.  When we calculate the BIC for all possible models for 

every two-quarter overlapping panel, and then select the model with the minimum BIC for every period, 

we get an average annual price decline of 3.68 percent for 2015-16. 

Figure 4: Annual Inflation and Average BIC from All 128 Models for Overlapping 2-Quarter Time 

Dummy Models, 2015-2016 

 

The average annual inflation rate is again shown by the blue dashed line.  The dotted red line shows the 

annual inflation rate that is calculated from selecting the minimum BIC model from every two-quarter 

panel.  Please note that the dotted red line in Figure 4 does not intersect the lowest BIC point because 

                                                           
30 Dziak, John J., Donna L. Coffman, Stephanie T. Lanza, and Runze Li.  “Sensitivity and specificity of information 
criteria”.  The Methodology Center, The Pennsylvania State University, 
https://methodology.psu.edu/media/techreports/12-119.pdf, p. 2. 
31 Ibid, 23. 

https://methodology.psu.edu/media/techreports/12-119.pdf


18 
 

the lowest BIC model changes from period to period.   Table 7 shows data resulting from the selected 

models. 

Table 7: Minimum BIC Selected Models Q12015 - Q42016 

 15Q1-15Q2 15Q2-15Q3 15Q3-15Q4 15Q4-16Q1 16Q1-16Q2 16Q2-16Q3 16Q3-16Q4 

Quarter Dummy 0.0059 0.0235 0.0084 -0.0556   -0.0005 -0.0474 
  (0.0257) (0.0273) (0.0330) (0.0352)  (0.0386) (0.0373) 

log PassMark -0.2386 0.4295* 0.2986 0.1016  -0.1573 -0.2331 

  (0.2489) (0.1957) (0.1859) (0.1149)  (0.1437) (0.1604) 

log Cores  0.9721* 1.0864* 0.6907* 0.3721*  0.7310* 0.8177* 

  (0.1019) (0.1246) (0.0706) (0.1301)  (0.1448) (0.1496) 

log Threads 0.5248* 0.2830* 0.5136* 0.6222*  0.6368* 0.6438* 

  (0.0930) (0.0810) (0.0979) (0.0678)  (0.0648) (0.0634) 

log Base Frequency  0.7982*  -1.3323*  -0.9775* -0.7959* 

   (0.1556)  (0.3558)  (0.3276) (0.3234) 

log Turbo Frequency 1.2687*  0.6776* 2.2484*  2.2187* 2.0403* 

  (0.2445)  (0.2696) (0.4814)  (0.4100) (0.3747) 

log (Cache/Cores) 0.7386* 0.4538*    0.2829* 0.4079* 

  (0.1338) (0.1453)    (0.1299) (0.1317) 

log TDP -0.2599* -0.5620* -0.2187*      

  (0.0761) (0.0779) (0.0674)      

log Graphics         
               

Observations 97 104 97 84   78 71 

Adjusted R2 0.9652 0.9546 0.9408 0.9245   0.9339 0.9550 

BIC -81.1238 -66.6948 -46.2510 -29.8551  -11.3687 -16.5014 

*Significant at the 5 percent level 
 

The first and second quarters of 2016 are composed of the same microprocessors with the same prices; 

consequently, no model is estimated for this panel.  Across quarters, there is a fair amount of 

consistency in the variables chosen and their magnitude.  Log Threads, log Turbo Frequency, and log 

Cores are selected for every model.  Interestingly, log Graphics is never selected.  This implies that 

graphics is not playing an important role in differentiating the price between microprocessors even 

though Intel uses up to half the silicon for the integrated GPU on many microprocessors.  Lastly, log TDP 

was included and significant in half the models.  For a given level of performance, a processor that uses 

less power should sell at a premium compared to one that uses more.  The negative sign on log TDP 

supports this assumption. 
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Using BIC to select a model specification has several advantages for the PPI.  Since it is a widely-known 

technique for model evaluation, it makes the process of model selection easy to explain to users of our 

data.  Users of PPI indexes will have more confidence and trust in our data when our methods are clear 

and transparent.  Using BIC for model specification selection is also quick and easy to implement.  This is 

important if a model is going to be used in the PPI.  A PPI industry analyst (IA) would need to re-estimate 

the model quarterly.  IAs already have heavy workloads with the various activities needed to calculate 

PPI indexes every month.  For it to be practical to implement a hedonic model operationally in the PPI, 

the development of the model needs to be efficient. 

BIC is a traditional technique for model evaluation.  Since there is no definitive method of specification 

selection, we will also use a technique that comes from the field of statistical learning.  If we are able to 

estimate similar rates of inflation from specifications chosen using different techniques, this consistency 

would be a sign that we are selecting a reasonable model.  The following from Elements of Statistical 

Learning gives a basic overview behind statistical learning methods: 

The generalization performance of a learning method relates to its prediction capability on 

independent test data.  Assessment of this performance is extremely important in practice, 

since it guides the choice of learning method or model, and gives us a measure of quality of the 

ultimately chosen model32. 

It is important to emphasize that although statistical learning methods look at the predictive power of 

the model on the dependent variable, they are evaluating the overall quality of the model, including the 

independent variables.  We are using these methods to perform model selection by “estimating the 

performance of different models in order to choose the best one”33.    

Statistical learning evaluates a model by its predictive ability on data not used to estimate the model.  In 

other words, out of sample prediction.  Models that are over-fitted may have a high adjusted 𝑅2, but 

they have poor out of sample predictive performance.  One way to test for over-fitting is to use a 

procedure known as validation.  This involves splitting a dataset, estimating the model on one part of 

the dataset (the training set) and then predicting the dependent variable on the other part of the 

dataset (the test set) using the coefficients from the model estimated on the training set.  The test set 

                                                           
32 Trevor Hastie, Robert Tibshirani, and Jerome Friedman, Elements of Statistical Learning: Data Mining, Inference, 
and Prediction, Second Edition, Springer, 
http://statweb.stanford.edu/~tibs/ElemStatLearn/printings/ESLII_print10.pdf, p.219. 
33 Ibid, p. 222. 

http://statweb.stanford.edu/~tibs/ElemStatLearn/printings/ESLII_print10.pdf
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predictions of the dependent variable are then compared to the actual test set values of the dependent 

variable to give the prediction errors; the prediction errors are squared and then averaged which gives 

the mean squared error (MSE).  The lower the MSE is, the better the predictive performance of the 

model.   

The disadvantage of validation is that part of the dataset is not used to estimate the model, which 

increases the variability of the estimated model parameters.  An alternative option is to use cross-

validation.  With k-fold cross-validation, the data set is split into k parts.  Each of the k parts is held out in 

turn (the test set) and the model is estimated on the remaining data (the training set).  Then, just as 

with validation, the MSE is calculated by making predictions on the test set by using the model 

estimated on the training set.  This procedure yields 𝑘 MSEs which are averaged together to produce an 

overall MSE. 

Performing k-fold cross-validation on every possible model is computationally intensive.  To reduce the 

number of models to evaluate, we can first prescreen the dataset.  It is important to note that the 

prescreening is only performed on the training set, and not the full dataset.  With our dataset, we have 

seven possible regressors to choose from (the time dummy and log PassMark are always included).  We 

start by calculating the residual sum of squares (RSS) for every model that contains just one regressor 

(plus the time dummy and log PassMark) and the one-regressor model with the lowest RSS makes it 

through the prescreening.  We then repeat this procedure for every model that contains two regressors 

(plus the time dummy and log PassMark), and the two-regressor model with the lowest RSS makes it 

through the prescreening.  We continue this process, increasing the number of regressors by one each 

time, until we have prescreened a model that contains seven regressors (plus the time dummy and log 

PassMark).  At the end of the prescreening procedure, we have seven models, which contain from one 

to seven regressors.  We then use cross validation to calculate the MSE for each of the seven models34.  

Since we used 10-fold cross validation, we repeat this procedure (including prescreening) 10 times. 

                                                           
34 We used code from An Introduction to Statistical Learning (ISL) to implement this procedure.  See Appendix B for 
more detail. 
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When the dataset is split into 10 folds, it is done so randomly.  To average the random variation from 

splitting the dataset, we perform the above procedure 500 times and take the average MSE for each of 

the seven models.  The best model is the one with the minimum MSE35.  

Table 8: Minimum MSE Selected Models Q12015 - Q42016 

 15Q1-15Q2 15Q2-15Q3 15Q3-15Q4 15Q4-16Q1 16Q1-16Q2 16Q2-16Q3 16Q3-16Q4 

Quarter Dummy 0.0059 0.0260 0.0084 -0.0556   0.00268 -0.0443 
  (0.0257) (0.0269) (0.0330) (0.0352)  (0.0379) (0.0374) 
log PassMark -0.2386 0.2787* 0.2986 0.1016  -0.2707 -0.3118 
  (0.2489) (0.2458) (0.1859) (0.1149)  (0.1637) (0.1590) 
log Cores  0.9721* 1.0173* 0.6907* 0.3721*  0.8597* 0.9135* 
  (0.1019) (0.1130) (0.0706) (0.1301)  (0.1576) (0.1536) 

log Threads 0.5248* 0.3536* 0.5136* 0.6222*  0.6745* 0.6762* 
  (0.0930) 0.0951 (0.0979) (0.0678)  (0.0706) (0.0710) 
log Base Frequency  0.4691  -1.3323*  -0.6968 -0.5853 
   (0.2673)  (0.3558)  (0.3729) (0.3668) 
log Turbo Frequency 1.2687* 0.5461 0.6776* 2.2484*  1.9030* 1.7867* 
  (0.2445) (0.4002) (0.2696) (0.4814)  (0.4112) (0.4089) 

log (Cache/Cores) 0.7386* 0.4337*    0.3498* 0.4521* 
  (0.1338) (0.1323)    (0.1226) (0.1207) 
log TDP -0.2599* -0.4771* -0.2187*      
  (0.0761) (0.0795) (0.0674)      

log Graphics      0.0431* 0.0299  
            (0.0339)  (0.0302) 

Observations 97 104 97 84   78 71 

Adjusted R2 0.9652 0.9554 0.9408 0.9245   0.9340 0.9547 

*Significant at the 5 percent level 

 

The average annual price decline for 2015-16 is 3.20 percent.  For most of the two-quarter panels, log 

Cores, log Turbo Frequency and log (Cache/Cores) were selected and significant.  This finding is 

consistent across the two years of data.  Log Graphics was included in two of the models and significant 

in one of them.   

Table 9 summarizes the inflation rates and the corresponding indexes for the models chosen using the 

minimum BIC method and the minimum MSE method. 

 

                                                           
35 To be more precise, the best model is selected by determining the model with the smallest number of variables 
whose standard error is within range of the lowest MSE value.  This is called the “one-standard-error-rule”.  See 
page 214 of ISL for more detail. 
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Table 9: Inflation Rates 

 15Q1-15Q2 15Q2-15Q3 15Q3-15Q4 15Q4-16Q1 16Q1-16Q2 16Q2-16Q3 16Q3-16Q4 

Min BIC inflation 0.0059 0.0238 0.0084 -0.0541 0.0000 -0.0005 -0.0463 

Min MSE inflation 0.0059 0.0263 0.0084 -0.0541 0.0000 0.0027 -0.0433 

Min BIC index 100.59 102.98 103.85 98.24 98.24 98.19 93.64 

Min MSE index 100.59 103.24 104.11 98.48 98.48 98.74 94.46 

Indexes start at 100 in 14Q4-15Q1 
    

The minimum BIC index shows a greater decline than the minimum MSE index.  In Figure 5, we compare 

the actual PPI semiconductors index for primary products, 334413P, with counterfactual hedonic 

indexes that adjust desktop microprocessor items with the inflation rates in Table 9. 

Figure 5: Counterfactual Microprocessors Index Comparison  

 

 

The hedonic indexes show an overall greater decline than the official PPI index.  The magnitudes of 

decline are modest, as would be expected from the time dummy coefficients, but they do suggest that 

the matched-model index is not fully accounting for quality improvements in processors.  The hedonic 

indexes are also very similar, which suggests that our hedonic estimates of price change are consistent 

even when selected using two different techniques.  It is also likely that if the notebook and server 

processors were also adjusted with hedonic time dummy models that the rate of decline for the hedonic 
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indexes would be greater, assuming, of course, that the time dummy coefficients on the time dummy 

models for the notebook and server models were similar to the desktop models. 

Conclusion 

While we do not agree that a time dummy hedonic model with a performance benchmark as its single 

regressor is suitable for the PPI, the work presented by BOS has provided a very good framework for us 

to expand upon.  It has also sparked a discussion on how BLS can improve the PPI methodology for 

measuring the changing technology and pricing strategies in the microprocessor industry.  After 

consulting the data evidence, we believe that the dramatic price decline shown by BOS is an artifact of 

excluding several significant processor product characteristics.  The BOS result is an outlier when 

compared to all other possible models generated from the nine regressors we identify.  Further, the BOS 

model has a comparatively poor fit. 

The PassMark benchmark is also better suited for implementation in a model that the PPI could 

potentially use.  The coverage across all low-end and high-end processors bolsters the already small 

sample sizes that we encounter when working with this data.  Using this benchmark and quarterly data 

is necessary to ensure that we meet the operational goals of the PPI program. 

We also believe that the methods we use to calculate any PPI index should be borne out by the data and 

not be exclusively determined by prior assumptions.  It is vital that the data analysis we provide adheres 

to the BLS mission of providing objective products to the public.   

The two techniques used to select the models we developed for the PPI index produced similar models, 

thus confirming that the data consistently support our estimations of inflation.  We prefer to use 

statistical learning for model specification selection because it is intuitively easier to understand and 

explain to data users.  Statistical learning techniques are continually improving which will allow us to 

refine our use of them over time. 

The work in this paper offers a solution to the challenge of measuring quality change in the PPI 

microprocessor index and we hope that this research will lead to eventual implementation of new 

methods for quality adjustment.  We also realize that the focus of this research is solely on desktop 

processors and developing a model for both mobile and server microprocessors is important to 

accurately measure all the outputs of the industry.   
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Appendix A: SPEC and PassMark benchmarks 

Our data set includes the SPEC CPU 2006 benchmark score for desktop microprocessors.  SPEC 

benchmarks were obtained from their website in January 2016.  Both Speed and Rate benchmarks were 

collected; the Speed metrics are used for comparing the ability of a computer to complete a single task.  

This metric measures the performance of the system using a single core of the system processor which 

is greatly affected by the clock speed of the processor and its cache size.  The SPEC rate metric measures 

the throughput of a machine carrying out several simultaneous tasks.  This metric provides a good 

overall measure of performance of modern multi-core processors.  SPEC rate metrics are typically most 

affected by the number of processor cores on a system.  We include the SPEC rate benchmark to our 

evaluation because a key price determining characteristic of today’s processors is based on the number 

of cores it has36.  The SPEC benchmark suite is used primarily by server and workstation manufacturers 

to performance test their products.  Many low-end desktop CPUs do not have SPEC benchmark scores.  

To better reflect all the desktop CPUs that Intel produces we turn to PassMark. 

PassMark CPU benchmark results are gathered from users’ submission to the PassMark website as well 

as from PassMarks own internal testing. The PerfomanceTest software is available for purchase on the 

PassMark website, this benchmarking software conducts eight different tests and then averages the 

results together to determine the CPU Mark rating for a system.  PassMark runs one simultaneous CPU 

test for every logical CPU physical CPU core or physical CPU package.  The eight tests include an Integer 

Maths test, a Compression Test, a Prime Number Test, an Encryption Test, a Floating-Point Math Test, 

an Extended Instructions Test, a String Sorting test and a Physics Test37.  

 

 

 

 

 

 

 

 

 

 

                                                           
36 ftp://ftp.hp.com/pub/c-products/servers/benchmarks/SPEC_CPU2006_Overview_101907.pdf 
37 https://www.cpubenchmark.net/cpu_test_info.html 
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Appendix B: ISL Model Specification Selection  

The basic steps we use for prescreening and cross-validation come from page 205 of ISL: 

1. Let 𝑀0 denote the null model, which contains no (p) predictors.  This model simply predicts 

the sample mean for each observation. 

2. For k=1,2,…p: 

(a) Fit all (
𝑝

𝑘
) models that contain k predictors. 

(b) Pick the best among these (
𝑝

𝑘
) models, and call it Mk.  Here best is defined as having 

the smallest RSS, or equivalently R2. 

3. Select a single best model from among𝑀0, …, 𝑀𝑝 using cross-validated prediction error, 𝐶𝑝 

(AIC), BIC, or adjusted 𝑅2. 

For step 3, we only use cross-validation (10 fold).  We repeat the steps 500 times and we calculate the 

standard errors for each of the 1 through 𝑝 models.  The model with the smallest number of predictors 

whose standard error was within range of the lowest MSE value is selected. 

The code we use to implement this technique is based on code from page 250 of ISL.  We added code to 

repeat the process 500 times and to calculate the standard errors. 
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Appendix C: Calculating Inflation Rates from Time Dummy Coefficients 

Let 𝑦𝑖  denote the log of price for processor 𝑖.  Let 𝑥𝑖𝑘, 𝑘 = 1, … , 𝐾 denote a set of regressors.  Let 𝑡 =

1, … , 𝑇 denote time periods.  To describe the indexes we construct from our annual data, each period is 

one year and 𝑇 = 7.  Consider the two year time dummy model: 

                                                     𝑦𝑖 = 𝛼𝑡 + ∆𝑡𝑑𝑖 + 𝛽1𝑥𝑖1 + ⋯ + 𝛽𝐾𝑥𝑖𝐾 + 𝑢𝑖                                               (1) 

where 

𝑑𝑖 = {
0  if 𝑖 was introduced in 𝑡        
1  if 𝑖 was introduced in 𝑡 + 1

 

Letting ∆̂𝑡 denote the OLS estimate of the time dummy coefficient, an index �̂�𝑡 of quality adjusted prices 

between 𝑡 and 𝑡 + 1 is defined by: 

                                                                           𝑒𝑥𝑝(∆̂𝑡) = 1 + �̂�𝑡                                                                     (2) 

Solving explicitly gives: 

                                                                               �̂�𝑡 = 𝑒𝑥𝑝(∆̂𝑡) − 1                                                                  (3) 

Using overlapping two year regressions, 𝑇 − 1 indexes like this can be formed from 𝑇 years of data.  An 

average annual rate of inflation �̂� is defined by: 

                                                      (1 + �̂�1)(1 + �̂�2) … (1 + �̂�𝑇−1) = (1 + �̂�)𝑇−1                                        (4) 

Solving for an explicit formula gives: 

                                                                              �̂� = 𝑒𝑥𝑝(∆̅) − 1                                                                       (5) 

where 

                                                                            ∆̅=
∆̂1+∆̂2+⋯+∆̂𝑇−1

𝑇−1
                                                                   (6) 

To describe the indexes we construct from our quarterly data, we redefine each period 𝑡 to be a quarter, 

with 𝑇 = 8.  Noting that �̂�1, … , �̂�𝑇−1 now denote quarterly estimates, we obtain an average annual 

index �̂� by first rearranging equation (4) as 

                                                             [(1 + �̂�1)(1 + �̂�2) … (1 + �̂�𝑇−1)]
1

𝑇−1 = 1 + �̂�𝑄                                    (7) 

where �̂�𝑄 is the average quarterly rate of inflation, and then solving          

                                                                                 (1 + �̂�𝑄)4 = 1 + �̂�                                                                  (8) 

which can be solved as     

                                                                                �̂� = (𝑒𝑥𝑝 ( ∆̅))4 − 1                                                              (9) 

where ∆̅ is now the average of quarterly estimates.  


