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Dynamic stochastic general equilibrium models with ex-post heterogeneity

due to idiosyncratic risk have to be solved numerically. This is a nontrivial task

as the cross-sectional distribution of endogenous variables becomes an element of

the state space due to aggregate risk. Existing global solution methods assume

bounded rationality in terms of a parametric law of motion of aggregate vari-

ables to reduce dimensionality. In this paper, we do not take that assumption

and compute a fully rational equilibrium depending on the whole cross-sectional

distribution. Dimensionality is tackled by polynomial chaos expansions, a pro-

jection technique for square-integrable random variables, resulting in a nonpara-

metric law of motion. In contrast to existing methods, we establish theoretical

convergence results and approximation error bounds. Economically, we find that

idiosyncratic risk does not aggregate in our fully rational approximate equilib-

rium, which contrasts the well-known aggregation result for the bounded rational

approximate equilibrium by Krusell and Smith (1998).
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1. INTRODUCTION

Economies consist of heterogeneous agents who are exposed to idiosyncratic

risks, the most prominent example of which is labor income risk for households.
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This was first modeled in a dynamic stochastic general equilibrium (DSGE) model

by Bewley (1977) where agents face idiosyncratic income shocks affecting their

wealth, and extended by Aiyagari (1994) to include a production technology.

They show that individual precautionary savings contribute to aggregate savings

because idiosyncratic risk cannot be fully insured. Hence, idiosyncratic risks gen-

erally affect aggregate variables in the economy. Other examples of idiosyncratic

risks are firm-specific productivity shocks in models of firm exit and entry as in

Hopenhayn (1992), or county-specific productivity shocks in real business cycle

models as in den Haan et al. (2011).

These models, however, do not feature aggregate risk as this makes the equi-

librium problem difficult to solve. The challenge in constructing a solution algo-

rithm lies in handling the cross-sectional distribution of the agents’ idiosyncratic

variables, which becomes an infinite-dimensional element of the state space. This

distribution changes over time depending on how the aggregate shocks realize. The

aggregate variables evolve, in turn, depending on how the cross-sectional distribu-

tion changes. In their seminal paper, Krusell and Smith (1998) were the first to

propose a global solution algorithm for the Aiyagari growth model with aggregate

risk. They handle the dimensionality problem in assuming bounded rationality,

which means that agents are not required to observe the whole cross-sectional

distribution to predict the movement of aggregate variables. They rather use a

parametric law of motion of the the aggregate variables depending on a finite

number of moments. Given that assumption, they then solve the model by iterat-

ing on the following two steps: Firstly, solve for the optimal policies given a guess

of parameters of the aggregate variables’ law of motion, and secondly, estimate

new parameters for the law of motion given a set of simulated data from the new

optimal policy. The main economic result from this seminal work is that, given

the bounded rationality assumption, adding higher moments than the mean to

the parametric law of motion does not change the equilibrium solution. Hence,

the idiosyncratic risk does not matter for aggregation. Various more recent papers

improve the original algorithm mainly by eliminating the agent dimension in the

simulation step, and by varying the parametric form of the law of motion. How-

ever, these works still rely on the bounded rationality assumption and a two-step

iterative procedure with a simulation.

The existing methodology of global solution methods for heterogeneous agent

models with aggregate risk has several drawbacks. Firstly, it is not clear whether

the assumed parametric law of motion of the aggregates in the bounded ratio-

nal expectations equilibrium is indeed close to its equivalent in the fully rational
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expectations equilibrium. Generally, it is unknown whether the bounded rational

solution is at all close to the fully rational solution since there is no theory on mea-

suring their distance. Secondly, it is not clear a priori how many moments are neces-

sary for the bounded rational equilibrium to exist. In fact, Kubler and Schmedders

(2002) show that there are models, for which recursive equilibria depending only

on aggregate wealth, i.e., the first moment of the cross-sectional distribution, do

not exist. Thirdly, it is unclear whether the existing algorithms converge to the

bounded rational equilibrium for every model setup as theoretical convergence

results are lacking.

The contribution of this paper is to construct a global solution algorithm for

DSGE models with heterogeneous agents and aggregate risk, which does not as-

sume bounded rationality, for which convergence is proven, and error bounds, i.e.,

the distance to the fully rational expectations equilibrium, are established. Rather

than assuming a parametric law of motion for the aggregate variables, we discretize

the space of cross-sectional distributions with a projection technique called gener-

alized polynomial chaos. This technique essentially extends the theory of project-

ing smooth functions on orthogonal polynomials to projecting square-integrable

random variables on orthogonal polynomials. This distinction is important because

the endogenous cross-sectional c.d.f. for models with hard borrowing constraints

typically features jumps whose locations are unknown a priori. Furthermore, with

the right choice of polynomials, the generalized polynomial chaos expansion con-

verges quite fast. We find that a projection on polynomials up to first order is

enough to obtain satisfactory precision of the solution. Overall, an advantage of

discretizing the cross-sectional distribution is that the aggregate variables emerge

automatically in a nonparametric fashion. Therefore, we do not require a separate

step in the solution algorithm to estimate their law of motion. No simulation is

necessary at all.

To obtain the theoretical convergence result, we leverage the convexity proper-

ties of the individual optimization problem. There is well established mathematical

theory that an iteration on the inverse of a modification of the Lagrangian con-

verges for convex optimization problems on Hilbert spaces. This results in the so

called proximal point algorithm. We adapt this algorithm to accommodate the

cross-sectional distributions. Hence, our algorithm converges to the fully rational

equilibrium when updating the theoretical, i.e., non-discretized, optimal policies.

As we have to discretize the policies for the implementation, we also derive ap-

proximation error bounds.

When comparing the results of our algorithm to existing methods for the bench-
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mark Aiyagari growth model with aggregate risk, we find a significant improve-

ment of precision for individual policies and aggregate variables in terms of Euler

equation errors. Furthermore, there is a significant improvement in precision when

truncating the polynomial chaos expansion in our algorithm at order one rather

than at order zero. Note that the latter leads to optimal policies, which solely de-

pend on the mean of the distribution, whereas the former leads to policies, which

depend on an approximation of the whole cross-sectional distribution. This implies

that idiosyncratic risk matters for aggregation in this fully rational equilibrium,

and therefore, contrasts the aggregation result by Krusell and Smith (1998) for

the bounded rational equilibrium. Truncating at higher orders does not lead to

further significant improvement for the growth model at hand.

This paper is related to several strands of literature, first and foremost of course,

the literature on numerical algorithms. In general, there are two types of algo-

rithms: Local solution methods are based on perturbation techniques whereas

global solution methods are based on projection techniques or a mixture of projec-

tion and simulation techniques. Our algorithm and the already mentioned seminal

algorithm by Krusell and Smith (1998) belong to the latter group. The algorithm

by Krusell and Smith (1998) has also been the subject of a special issue of the

Journal of Economic Dynamics and Control in January 2010. This special issue

presents various alternative algorithms, and compares them in den Haan (2010).

They have in common that they assume bounded rationality, and hence, use a

small finite number of moments instead of the full cross-sectional distribution to

approximate the policy function and the law of motion of aggregate variables.

One problem, which is addressed by Algan et al. (2008); Young (2010); Ŕıos-Rull

(1997) and summarized in Algan et al. (2010), is the cross-sectional variation due

to the simulation of a finite number of agents in Krusell and Smith (1998) when

estimating the law of motion parameters. They use parametric and nonparamet-

ric procedures to get around this issue. However, the variation due to simulating

over aggregate exogenous shocks remains. In contrast to the simulation approach,

den Haan and Rendahl (2010) use direct aggregation to obtain the law of mo-

tion. Interestingly, Algan et al. (2008) and Reiter (2010a) parameterizes the cross-

sectional distribution itself to obtain a better prediction of the law of motion but

their parametric functional forms are somewhat ad hoc and not closed under the

optimal savings policy. They do not span the space of square-integrable random

variables. I use the algorithm by Reiter (2010a) in my numerical comparison and

find that it performs significantly worse than the algorithm proposed herein.

Local solution methods based on perturbations do not assume bounded rational-
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ity. To reduce dimensionality, they first solve for the optimal policy and stationary

distribution of the model without aggregate shocks using projection methods, and

then, perturb this solution to accommodate aggregate shocks. The most promi-

nent perturbation algorithm goes back to Reiter (2009, 2010b). Childers (2015) in-

vestigates the theoretical underpinning of these perturbations. Mertens and Judd

(2013) use perturbations for the law of motion. Winberry (2016) combines the low

of motion approach in Algan et al. (2008) with the perturbation in Reiter (2009).

He also presents a model where the aggregation result by Krusell and Smith (1998)

does not hold. There are two major drawbacks for perturbation methods: Firstly,

the perturbation in aggregate shocks often is only linear or at most quadratic.

Therefore, any higher-order nonlinear effects of aggregate shocks are not accounted

for. Secondly, as for all perturbation methods, the solutions are only accurate for

small aggregate shocks. Crises scenarios in terms of a large aggregate shock or a

long series of aggregate shocks in one direction cannot be analyzed with confidence.

Apart from the numerical literature, this paper builds on the existence literature.

Generic existence of solutions to DSGEmodels has been shown by Duffie and Shafer

(1985, 1986) and Duffie et al. (1994). However, these results only apply to models

with ex-ante heterogeneity, i.e., where agents differ on finitely many model ingredi-

ents. Existence of a solution to the Aiyagari-Bewley growth model with aggregate

risk, which features ex-post heterogeneity due to idiosyncratic risk, has long been

an open research question. It has been first examined by Miao (2006). However,

a flaw in the theoretical argument has been discovered in Cheridito and Sagredo

(2016b) and corrected in Cheridito and Sagredo (2016a). They prove the existence

of a fixed point in the law of motion in order to prove the existence of the equilib-

rium. By construction, our law of motion of aggregate variables coincides with the

self-confirming aggregate capital predictions in Cheridito and Sagredo (2016a).

It is also worth pointing out the relation to the literature on mean field games

and their numerical solutions because they are essentially continuous-time versions

of DSGE models with ex-post heterogeneity. Achdou et al. (2014) show how to use

partial differential equations to solve heterogeneous agent models. Kaplan et al.

(2016) put forward a very interesting application of this methodology to monetary

policy questions. However, their models incorporate only idiosyncratic shocks but

no aggregate risk. Applying generalized polynomial chaos as in the algorithm pre-

sented herein to extend their framework to aggregate risk could yield interesting

results.

The paper proceeds as follows. In the next section, we present the Aiyagari-

Bewley growth model with aggregate risk, which serves as the benchmark model
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for our algorithm throughout the paper. In Section 3, we introduce the method-

ology behind the algorithm. This section explains the concept of proximal point

algorithms, which underlies our convergence result, and the polynomial chaos ex-

pansion, which is used to project the cross-sectional distribution. Section 4 then

proves both convergence for the iteration of the theoretical solution in the algo-

rithm, and approximation error bounds for the discretized solution. In Section

5, our numerical results are compared to three existing global solution methods

and economic implications are analyzed. The last section concludes. The appendix

contains all proofs.

2. THE MODEL

For illustration, we use the same growth model with aggregate shocks as in

den Haan et al. (2010), which is used for a comparison of Krusell-Smith-style al-

gorithms in the special issue of the Journal of Economic Dynamics and Control

in January 2010. We consider a discrete-time infinite-horizon model with a con-

tinuum of agents of measure one. There are two kinds of exogenous shocks, an

aggregate shock and an idiosyncratic shock. The aggregate shock characterizes

the state of the economy with outcomes in Zag = {0, 1} standing for a bad and

good state, respectively. The idiosyncratic shock with outcomes in Z id = {0, 1}

indicates that an agent is unemployed or employed, respectively. It is i.i.d. across

agents conditional on the aggregate shock. We denote the compound exogenous

process
(
zagt , zidt

)

t≥0
by (zt)t≥0 ∈ Z with Z = Zag ×Z id. The transition probabil-

ities are exogenously given by a four-by-four matrix.

The security market consists of a claim to aggregate capital (Kt)t≥0. An agent’s

share of physical capital is denoted by (kt)t≥0. The aggregate endogenous variable

K is hence defined by

(1) Kt =
1∑

zid=0

∫ ∞

−∞

kdµt

(
zid, k

)
∀ t ≥ 0,

where µt is the cross-sectional distribution of idiosyncratic endogenous variables

at time t. It is simply the probability distribution of individual capital across the

unemployed and the employed agents given the trajectory of aggregate shocks

µt

(
zid, k

)
= P

({
zidt = zid

}
∩ {kt ≤ k}

∣
∣ zagt , . . . , zag0

)

for all t ≥ 0, zid ∈ Z id and k ∈ R. The aggregate shocks cause the cross-sectional

distribution to vary over time, which is indicated by the time subscript of µt.
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Each agent chooses her share of physical capital and consumption such that

they satisfy certain constraints. Firstly, individual consumption must be positive

at all times ct > 0, t ≥ 0, and capital holdings are subject to a hard borrowing

constraint kt ≥ 0, t ≥ 0. Secondly, given an initial capital endowment k−1 ≥ 0 and

an initial cross-sectional distribution µ−1
1 with non-negative support, each agent

adheres to a budget constraint, which equates individual consumption and current

capital stock to productive income and saved capital stock

(2) kt + ct = I (zt, kt−1, Kt−1) + [1− ρ] kt−1 ∀ t ≥ 0.

The time line underlying this equation is clarified in Figure 1.2 The parameters in

· · · · · ·

zt−2 ⇒ kt−2, ct−2

µt−2, Kt−2

t− 1

↓

zt−1 ⇒ kt−1, ct−1

µt−1, Kt−1

t

↓

zt ⇒ kt, ct
µt, Kt

t+ 1

↓

zt+1 ⇒ kt+1, ct+1

µt+1, Kt+1

Figure 1. Time line of events. Before period t, the agent observes how
much capital she saved in the previous period kt−1 and what the cross-sectional
distribution of individual capital savings µt−1 and hence, aggregate capital Kt−1

is. At period t, the agent first observes the exogenous shocks zt and then decides
how much to consume ct and how much capital kt to save in that period.

this budget constraint are defined as follows. The capital stock brought forward

from period t− 1 depreciates by a rate ρ ∈ (0, 1). The productive income is given

by

I (zt, kt−1, Kt−1) = R (zagt , Kt−1) kt−1(3)

+zidt π [1− τt]W (zagt , Kt−1) +
[
1− zidt

]
νW (zagt , Kt−1) .

It is composed of, firstly, the return on capital stock, and secondly, labor income,

which equals the individual’s wage W when the agent is employed and a propor-

1 The initial cross-sectional distribution µ−1 does not only imply the initial aggregate capital
K−1, but also the initial aggregate economic state due to pe

−1 = (1/K−1)
∫
∞

0
kdµ−1 (1, k), which

is an exogenously given quantity.
2Note that I specify the time line slightly differently than den Haan et al. (2010) and

Krusell and Smith (1998). These authors substitute kt with kt+1 in the budget constraint (2)
because this is the capital, which is put forward as start capital to period t+1. In contrast to that
notation, however, I want to emphasize the time period, at which the agent optimally chooses
the magnitude of her capital savings. Taking this view, the optimal consumption and capital
savings choice have the same time subscript. My time line therefore indicates, which filtration
the endogenous variables are adapted to.
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tional unemployment benefit νW otherwise. The agent’s wage is subject to a tax

rate τt = ν(1− pet )/(πp
e
t ) whose sole purpose it is to redistribute money from the

employed to the unemployed. The parameter ν ∈ (0, 1) denotes the unemployment

benefit rate whereas pet = P(zidt = 1|zagt ) is the employment rate at time t and π > 0

is a time endowment factor. It is reasonable to assume ν/π < 1 − τt ⇔ ν < πpet

for all t ≥ 0. The wage W and the rental rate R are derived from a Cobb-Douglas

production function for the consumption good

W (zagt , Kt−1) = (1− α) (1 + zagt a− (1− zagt )a)

[
Kt−1

πpet

]α

R (zagt , Kt−1) = α (1 + zagt a− (1− zagt )a)

[
Kt−1

πpet

]α−1

,

where a ∈ (0, 1) is the absolute aggregate productivity rate and α ∈ (0, 1) is the

output elasticity parameter. Labor supply is defined by the employment rate pet

scaled by the time endowment factor π.

We assume that all agents have time-separable CRRA utility with a risk aversion

coefficient γ > 1 and time preference parameter β ∈ (0, 1). Then, given an agent’s

initial capital endowment k−1 ≥ 0 and the initial cross-sectional distribution µ−1

with non-negative support, the individual optimization problem reads

max
{ct,kt}∈R2

E

[
∞∑

t=0

βt c
1−γ
t − 1

1− γ

]

(4)

s.t. kt + ct = I (zt, kt−1, Kt−1) + [1− ρ] kt−1 ∀ t ≥ 0

ct > 0, kt ≥ 0 ∀ t ≥ 0

where the productive income I is defined as in (3).

In a competitive equilibrium, the individual problems are solved subject to the

market condition (1) that aggregate capital equals the expected optimal individual

capital holdings. The question of existence of a competitive equilibrium, in par-

ticular one, which has a recursive form, has first been examined by Miao (2006)

and has later been solved by Cheridito and Sagredo (2016a,b). To define a recur-

sive equilibrium, let us switch to prime-notation for convenience, where a prime

denotes variables in the current period and variables with no prime refer to the

previous period.

Definition 1 (Recursive equilibrium) A solution to the agents’ individual op-

timization problems (4) subject to the market condition (1) given an initial cross-

sectional distribution of individual capital µ−1 with non-negative support is called

recursive if there exist functions hi : Z × R × P(Z id × R) → R, i ∈ {1, 2}, such

that, for any point in time, the current optimal consumption and capital savings
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choices equal c′ = h1(z
′, k, µ) and k′ = h2(z

′, k, µ) for any agent with previous-

period capital stock k who observes the previous-period cross-sectional distribution

µ and the current-period exogenous shock z′ = (zag
′

, zid
′

).

Recursive equilibria of models with ex-post heterogeneity can rarely be com-

puted in closed form such that they have to be numerically approximated. When

designing a numerical solution algorithm, it is important to show theoretically

that the algorithm converges to a true equilibrium. This is the goal of this work.

To obtain the theoretical convergence result, we have to change perspective. In

the existing literature, the optimal policy functions are approximated point-wise

w.r.t. the idiosyncratic arguments whereas here, we view these functions in terms

of distributions. Hence, I make the following assumption.

Assumption 2 (Square-integrability) (i) The initial idiosyncratic random vari-

ables distributed according to the initial cross-sectional distribution (ζ, κ) ∼

µ−1 are square-integrable.

(ii) Given any cross-sectional distribution µ, the corresponding functions for

the optimal consumption and savings choice hi(z
ag′ , ζ, κ, µ), i ∈ {1, 2}, are

square-integrable w.r.t. the idiosyncratic random variables (ζ, κ) ∼ µ, i.e.,

in short-hand notation h1, h2 ∈ L2(Z id × R,B(Z id × R), µ).

In order to obtain a full description of equilibrium, we need to define the con-

sistent law of motion of µ to µ′. Given a fixed distribution µ over the cross-section

of individual capital at the end of the previous period and a recursive equilibrium,

the distribution in the current period changes in two steps µ → µ̃′ → µ′. In the

first step, the new shocks z′ for all agents realize and shift the quantities of em-

ployed and unemployed agents depending on the outcome of the aggregate shock.

Formerly employed agents either stay employed or become unemployed, the same

holds for the formerly unemployed. Therefore, the distribution at the beginning

of the current period µ̃′ is given by

µ̃′
(

zid
′

, k
)

=
∑

zid∈Zid

p(z
ag′ ,zid

′

)|(zag ,zid)

pzag
′
|zag

µ
(
zid, k

)
(5)

=
∑

zid∈Zid

p(z
ag′ ,zid

′

)|(zag ,zid)

pzag
′
|zag

P
({

ζ = zid
}
∩ {κ ≤ k}

∣
∣ zag

)

for all zid
′

∈ Z id and k ∈ R. The multipliers in front of the previous distribution

are the probabilities that the employment status changes from zid to zid
′

given the

observed trajectory of zag to zag
′

. In the second step, the agents implement their
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optimal capital savings, which leads to the new current-period distribution

µ′
(

zid
′

, k
)

=
∑

zid∈Zid

p(z
ag′ ,zid

′

)|(zag ,zid)

pzag
′
|zag

(6)

P

({
ζ = zid

}
∩
{

h2

(

zag
′

, zid
′

, κ, µ
)

≤ k
}∣
∣
∣ zag

′

, zag
)

.

From this definition of the new distribution, the new aggregate capital K ′ follows

immediately due to (1). Now that all model ingredients are defined, the next

section lays out the methodology to compute the recursive equilibrium.

3. THE METHODOLOGY

The methodology proposed herein builds on the observation that the optimal

policy functions h1 for consumption and h2 for capital savings solve the Euler equa-

tion, which is equivalent to the first-order condition of the following constrained

optimization problem

min
{h1,h2}

− u(h1)−
∑

z′′∈Z

pz
′′|z′βu (I (z′′, h2, K

′) + [1− ρ]h2 − h′
2)(7)

s.t. 0 = I (z′, k,K) + [1− ρ] k − h1 − h2

0 ≥ −h1, 0 ≥ −h2.

The utility function u : R>0 → R, c 7→ 1
1−γ

(c1−γ − 1) is defined as in (4), pz
′′|z′ is

the exogenously given transition probability that z′ is followed by z′′ and I is as

in (3).

The standard way of solving a constrained optimization problem is to set up

the corresponding Lagrangian and to find a saddle point by minimizing over the

policies and maximizing over the Lagrange multipliers. This can be done using

the proximal point algorithm as explained subsequently. However, complications

arise due to the ex-post heterogeneity, which introduces the cross-sectional distri-

bution to the state space. We have to discretize the space of distributions, which

is an infinite-dimensional object. A solution to this challenge is discussed after

introducing the basic proximal point algorithm.

3.1. The Proximal Point Algorithm

Applying the proximal point algorithm to minimax problems on saddle functions

like Lagrangians goes back to a series of papers by Rockafellar (1970, 1976a,b) who

sets the theoretical base for the convergence of said algorithm. Let me first define

what a saddle function is in this context.
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Definition 3 (Saddle function (see Rockafellar, 1970)) (i) Let C and D be Hilbert

spaces over R. A saddle-function is an everywhere-defined function L : C ×

D → [−∞,∞] such that L(c, d) is a convex function of c ∈ C for any d ∈ D

and a concave function of d ∈ D for any c ∈ C.

(ii) A saddle function is called proper if there exists a point (c, d) ∈ C × D with

L(c, d̃) < +∞ for any d̃ ∈ D and L(c̃, d) > −∞ for any c̃ ∈ C.

(iii) The operator associated with the saddle function L is defined as the set-valued

mapping

TL(c, d) = {(v, w)|L(c̃, d)− 〈c̃, v〉+ 〈d, w〉

≥ L(c, d)− 〈c, v〉+ 〈d, w〉

≥ L(c, d̃)− 〈c, v〉+ 〈d̃, w〉 ∀(c̃, d̃) ∈ C × D
}

,

where 〈., .〉 denotes the Hilbert space inner product. A saddle point is a point

(c∗, d∗) ∈ C × D such that 0 ∈ TL(c
∗, d∗).3

According to this definition, finding a recursive equilibrium translates into the

following task: Given that a zero of the operator TL associated with the saddle

function of (7) exists (see Cheridito and Sagredo, 2016a), we want to construct

a saddle point corresponding to the root of TL. This saddle point construction

relies on an important mathematical property called maximal monotonicity.4 The

operator TL associated with a saddle function L possesses this property if the

following corollary is satisfied.

Corollary 4 (Rockafellar (1970)) Let C and D be Hilbert spaces over R. If

L(c, d) is a proper saddle function on C ×D, which is lower semicontinuous in its

convex element c ∈ C and upper semicontinuous in its concave element d ∈ D,

then the operator TL associated with L is maximal monotone.

The reason for the importance of this property is that the resolvent5 of a maxi-

mal monotone operatorT is firmly nonexpansive.6 This fact is due to Minty (1962).

3 The operator TL is closely related to the subdifferential of the saddle function L as v equals
the subgradient of L(., d) at c ∈ C and w is the subgradient of −L(c, .) at d ∈ D.

4 Maximal monotonicity (see e.g., Phelps, 1997; Bauschke and Combettes, 2011): Let E be a
Hilbert space. An operator T : E → E is called a monotone operator if for any two elements of
its graph (e, f), (ẽ, f̃) ∈ G(T) = {(e, f) ∈ E2|f ∈ T(e)} it holds that 〈e − ẽ, f − f̃〉 ≥ 0. It is,
additionally, called maximal monotone if any (ẽ, f̃) ∈ E2 with 〈e− ẽ, f − f̃〉 ≥ 0∀ (e, f) ∈ G(T)
is necessarily also an element of the graph (ẽ, f̃) ∈ G(T).

5 Resolvent (see e.g., Bauschke and Combettes, 2011): Let E be a Hilbert space. The resolvent
of an operator T : E → E is the operator (Id+T)−1 where Id is the identity operator.

6 Nonexpansiveness (see e.g., Bauschke and Combettes, 2011): Let E be a Hilbert space. An
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It is well known that any firmly nonexpansive operator is equivalent to a mixture

(1/2)Id+ (1/2)R of the identity operator Id and a nonexpansive operator R (see

e.g., Bauschke and Combettes, 2011, Remark 4.24 (iii)). Weak convergence of the

iteration of such a mixture to its fixed point is well established (see e.g., Zeidler,

1986a, Proposition 10.16). This procedure is also known as damped fixed-point

iteration.

Iterating on the resolvent of a maximal monotone operator yields the proximal

point algorithm. This algorithm hence results in the fixed point of the resolvent,

which is equivalent to a root of the operator T itself. Therefore, it leads to a

recursive equilibrium when we consider the resolvent of the operator TL associated

with the saddle function of (7). To understand how such a resolvent is constructed,

let us look at a simplified example first.

Example (Resolvent of a subdifferential) Let E be a Hilbert space. Consider a

lower semicontinuous proper convex function F : E → [−∞,∞]. It is well known

that its subdifferential ∂F is maximal monotone (see e.g., Bauschke and Combettes,

2011, Theorem 20.40). We are looking for a fixed point e∗ ∈ E of the resolvent of

F , which can be computed by simple iteration with iteration count n,

en
n→∞
−→ e∗ with en+1 = (Id+ ∂F )−1 (en).

The resolvent (Id+ ∂F )−1 can be represented by

en+1 = (Id+ ∂F )−1 (en) ⇔ en = (∂F + Id) (en+1)

⇔ 0 = (∂F + Id) (en+1)− Id(en)

⇔ en+1 = argmin
e∈E

F (e) +
1

2
‖e− en‖

2.

The latter is the update of the proximal point algorithm.7

This example shows that the proximal point algorithm in our case translates into

an algorithm on augmented Lagrangians. To ensure convergence, a regularization

term containing the previous iterate has to be added to the Lagrangian. We define

the update of the proximal point algorithm for the Lagrangian of our agents in

the growth model in the following.

operator T : E → E is called nonexpansive if it is Lipschitz continuous with constant 1. It is
called firmly nonexpansive if for all e, ẽ ∈ E it holds that ‖T(e)−T(ẽ)‖2 ≤ 〈e− ẽ,T(e)−T(ẽ)〉.

7 The proximal point update presented here is a simplified version. Rockafellar (1976a) proves
convergence for a resolvent (Id + λn

T)−1 where {λn}∞
n=1 is either constant and bounded away

from zero or a series 0 < λn ր λ∞ ≤ ∞.
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3.1.1. The Proximal Point Algorithm for the Growth Model

We follow Rockafellar (1976b) for defining the proximal point algorithm’s up-

date. This algorithm iterates on the resolvent of the operator associated with the

Lagrangian of (7). Hence, each iteration on the resolvent updates the agents’ op-

timal choices for consumption h1 and individual capital h2 as well as the three

Lagrange multipliers y1 for the equality constraint and y2 and y3 for the inequal-

ity constraints of (7). Similarly to the simplified example in the previous section,

the [n+1]-th iterate of the agent’s optimal choices, i.e., hn+1
1 and hn+1

2 , is the min-

imizer of the Lagrangian, which is augmented by terms featuring the n-th iterate.

The augmented Lagrangian is a function LA :
∏5

i=1 L
2(Z id ×R,B(Z id ×R), µ) →

[−∞,∞] given by

LA (h1, h2, y1, y2, y3;h
n) =− u(h1)(8)

−
∑

z′′∈Z

pz
′′|z′βu (I (z′′, h2, K

′) + [1− ρ]h2 − h′
2)

+
1

2λ
(h1 − hn

1 )
2 +

1

2λ
(h2 − hn

2 )
2

+ y1 (I (z
′, k,K) + [1− ρ] k − h1 − h2)

+
λ

2
(I (z′, k,K) + [1− ρ] k − h1 − h2)

2

+







−y2h1 +
λ
2
(h1)

2 , h1 ≤
y2
λ

− 1
2λ
(y2)

2 , h1 >
y2
λ

+







−y3h2 +
λ
2
(h2)

2 , h2 ≤
y3
λ

− 1
2λ
(y3)

2 , h2 >
y3
λ

,

where hn = (hn
1 , h

n
2 ) and λ > 0 is the step size parameter of the proximal point

algorithm. Note that the next-period optimal capital savings are naturally given

by the composition h′
2 = hn

2 ◦h2. The first two lines of the Lagrangian features the

objective of (7), the fourth line contains its equality constraint with its Lagrange

multiplier. The third and fifth line consist of the objective’s and the equality con-

straint’s proximal point augmentations, which transform the saddle-point opera-

tor into its resolvent. The last two lines correspond to the inequality constraints.

They also consist of the Lagrange term and the augmentation but they are defined

piecewise to account for the case of a binding constraint.

With the augmented Lagrangian as above, we now state the algorithm to ap-

proximate a recursive equilibrium of the growth model in Algorithm 1. Note that

Rockafellar (1976a) shows that the proximal point algorithm converges to a sad-
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Algorithm 1 Proximal point algorithm for the growth model

⊲ A Initialization
1: Set n = 0. Initialize the agents’ choices of consumption and individual capital

and the Lagrange multipliers Hn = (hn
1 , h

n
2 , y

n
1 , y

n
2 , y

n
3 ).

2: Set the parameter λ > 0.
3: Set the termination criterion small τ > 0 and the initial distance larger d > τ .

⊲ B Iterative procedure
4: while d > τ do

5: Update Hn+1 by

hn+1 ≈ arg min
h1,h2

LA (h1, h2, y
n
1 , y

n
2 , y

n
3 ;h

n)

yn+1
1 = yn1 + λ

(
I (z′, k,K) + [1− ρ] k − hn+1

1 − hn+1
2

)

yn+1
2 = max

(
0, yn2 − λhn+1

1

)

yn+1
3 = max

(
0, yn3 − λhn+1

2

)

where LA is defined as in (8).
6: Compute the distance d = ‖Hn+1 −Hn‖.
7: Set n = n+ 1.
8: end while

dle point of the Lagrangian even if the update of the optimal consumption and

individual capital is only approximate. This is important as the minimizer of the

Lagrangian is often not known in closed form, but it can be approximated with

standard nonlinear solvers. Salzo and Villa (2012) extend this result to different

concepts of approximation. Let me define which kind of approximation applies in

this work.

Definition 5 (Resolvent approximation8) Let C be a Hilbert space over R. Con-

sider the resolvent (Id + λTL)
−1(c) of an operator λTL associated with a saddle

function L at c ∈ C with λ > 0. The approximation with ǫ-precision of this resol-

vent at c ∈ C is defined as c̃ ∈
(

Id+ λT
ǫ2/(2λ)
L

)−1

(c) where

T
ǫ2/(2λ)
L (c) =

{

v

∣
∣
∣
∣
L(c)− L(c̃) + 〈c̃− c, v〉 ≤

ǫ2

2λ
∀c̃ ∈ C

}

.

It is denoted by c̃ ≈ (Id+ λTL)
−1(c).

The convergence rate of Algorithm 1 is O(n−1) as is shown by Güler (1991).

8 This definition corresponds to the type 2 approximation with ǫ-precision in Salzo and Villa
(2012). Note that the approximation operator is not an approximate saddle function operator but
an approximate subdifferential operator. This is the case because we minimize the controls for
fixed Lagrange multipliers rather than computing a minimax problem immediately in Algorithm
1.



15

The proximal point algorithm can, however, be accelerated, which goes back to

Güler (1992). The convergence rate of the accelerated algorithm is O(n−2), which

was proven in Salzo and Villa (2012). In the following, I explain the acceleration.

3.1.2. The Accelerated Proximal Point Algorithm for the Growth Model

The idea behind the acceleration is to approximate the highly nonlinear aug-

mented Lagrangian with a sequence of simple convex quadratic functions {φn}∞n=1

such that the difference to the Lagrangian is reduced by a fraction (1−αn) ∈ (0, 1]

in every iteration step

φn+1 − LA ≤ (1− αn)(φn − LA).

The update for the agents’ optimal choices h = (h1, h2) is then determined such

that the following condition is satisfied

LA
(
hn+1, yn1 , y

n
2 , y

n
3 ;h

n
)
≤ φ̂n+1 = min

h
φn+1(h),

where φn+1 is of the form φn+1(h) = φ̂n+1 + (An+1/2)‖h− νn+1‖2.

Salzo and Villa (2012) show that this is achieved by Algorithm 2. Furthermore,

they show that this algorithm has a convergence rate of O(n−2) if the resolvent

approximation precision increases by ǫn = O(1/nq) with q > 3/2.

3.2. Discretizing the Space of Distributions

So far, I just introduced the standard methodology of the proximal point al-

gorithm. However, our model demands an extension. The recursive equilibrium,

we want to solve for, depends on the cross-sectional distribution, which is an ele-

ment of the state space. Therefore, we need to discretize the space of distributions.

If we simply use a spline interpolation on the distribution, the discretized state

space becomes very large very quickly. Another option would be a projection on

orthogonal polynomials, which is widely used in computational economics, but a

prerequisite is a smooth distribution. Due to the borrowing constraint, which is

occasionally binding, however, the cross-sectional distribution exhibits mass points

at the constraint and elsewhere as is proven in the following.

Proposition 6 (A condition for mass points9) Consider a recursive equilibrium

as in Definition 1 with an explicit debt constraint k ≥ δ with δ ∈ R. Suppose that

there exists a ẑ ∈ Z with pẑ|ẑ > 0 and a k̂ > δ such that h2(ẑ, k, µ) ≤ k for all

9The proof can be found in Appendix A.
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Algorithm 2 Accelerated proximal point algorithm for the growth model

⊲ A Initialization
1: Set n = 0. Initialize the agents’ choices of consumption and individual capital

and the Lagrange multipliers Hn = (hn
1 , h

n
2 , y

n
1 , y

n
2 , y

n
3 ). Set ν

n = hn = (hn
1 , h

n
2 ).

2: Set the parameters λ > 0, An > 0 and b ∈ [0, 2).
3: Set the resolvent approximation precision {ǫn}∞n=0.
4: Set the termination criterion small τ > 0 and the initial distance larger d > τ .

⊲ B Iterative procedure
5: while d > τ do

6: Update αn = 1
2

(√

(bλAn)2 + 4bλAn − bλAn
)

.

7: Update xn = (1− αn)hn + αnνn.
8: Update Hn+1 by

hn+1 ≈ arg min
h1,h2

LA (h1, h2, y
n
1 , y

n
2 , y

n
3 ; x

n)

yn+1
1 = yn1 + λ

(
I (z′, k,K) + [1− ρ] k − hn+1

1 − hn+1
2

)

yn+1
2 = max

(
0, yn2 − λhn+1

1

)

yn+1
3 = max

(
0, yn3 − λhn+1

2

)

where LA is defined as in (8).
9: Update An+1 = (1− αn)An.
10: Update νn+1 = νn − αn

(1−αn)λAn (x
n − hn+1).

11: Compute the distance d = ‖Hn+1 −Hn‖.
12: Set n = n+ 1.
13: end while

k ∈ [δ, k̂]. Furthermore, assume that the optimal capital savings function has a

kink at k∗ := max{k ≥ δ |h2(ẑ, k, µ) = δ} > δ, i.e., the debt constraint is binding,

and that h2 is strictly increasing in k ≥ k∗. Then, the cross-sectional distribution

has a mass point at the constraint δ. If, additionally, there exists a z̄ ∈ Z with

pz̄|ẑ > 0 and h2(z̄, δ, µ) > δ, then the cross-sectional distribution has multiple mass

points.

This result implies jumps in the cross-sectional distribution µ. Hence, standard

orthogonal polynomial projection methods do not work here. There is, however,

an efficient way of approximating distributions called polynomial chaos. This is

a technique, which projects the distribution on orthogonal polynomials of ran-

dom variables rather than the real line. As such, it can also handle discontinuous

distributions. In the following, I will summarize polynomial chaos in general and

subsequently, I explain how this technique is applied to our growth model.



17

3.2.1. Polynomial Chaos

The standard polynomial chaos expansion is an approach to represent random

variables by a series of polynomials mapping basic random variables into the space

of square-integrable random variables L2. Originally, this approach yields the so-

called Wiener-Hermite expansion, i.e., a projection onto Hermite polynomials,

which take Gaussians as basic random variables. The well known Cameron-Martin

theorem (see e.g., Ernst et al., 2012, Theorem 2.1) shows that this construction

spans all square-integrable random variables, which are measurable w.r.t. the basic

random variables. Xiu and Karniadakis (2002) extend this concept to sets of or-

thogonal polynomials mapping more general basic random variables, e.g., uniform,

gamma or binomial variables, into L2. The L2-convergence result for these gen-

eralized polynomial chaos expansions is proven in Ernst et al. (2012). The main

purpose of this generalization is the gain in convergence speed when the basic ran-

dom variables are chosen such that they are similar to the approximated random

variable. To summarize, given a basic random variable ξ ∈ L2 with distribution

ξ ∼ F , which has finite moments of all orders, and a set of orthogonal polynomi-

als {Φi}
∞
i=0, where i denotes the order of each polynomial, we can represent any

random variable κ ∈ L2 with distribution κ ∼ µ by

(9) κ =
∞∑

i=0

ϕiΦi (ξ) ,

where ϕi are constant projection coefficients.

It is important to note that there is a specific connection between the basic

random variable and the set of orthogonal polynomial used. The orthogonality

condition of the polynomials reveals this relation. For polynomials of order i, j ∈

{0, 1, . . .}, it reads

(10) 〈Φi,Φj〉 =

∫ ∞

−∞

Φi (ξ) Φj (ξ) dF (ξ) =
δij
a2i

,

where δij denotes the Kronecker symbol and ai 6= 0 are constants. One can see

that the weighting function, which defines the orthogonal polynomials, has to

equal the distribution of the basic random variable. Once a basic random variable

is fixed, we can generate the corresponding orthogonal polynomials by the three-

term recurrence relation (see e.g., Gautschi, 1982; Zheng et al., 2015)

(11) Φi+1 (ξ) = (ξ − θi) Φi (ξ)− ωiΦi−1 (ξ) , i ∈ {0, 1, . . .},
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where the starting polynomials are defined as Φ−1(ξ) = 0 and Φ0(ξ) = 1 and

θi, ωi ∈ R are constant parameters with ωi > 0.

The projection coefficients in the polynomial chaos expansion of a random vari-

able κ ∈ L2 with distribution κ ∼ µ are defined as usual by ϕi = 〈κ,Φi〉/〈Φi,Φi〉

for all i ∈ {0, 1, . . .}. If κ is not a direct function of the basic random variable

ξ, one uses the fact that both c.d.f.s µ, F ∼ U [0, 1] are uniform to compute the

coefficients

(12) ϕi =
1

〈Φi,Φi〉

∫ ∞

−∞

µ−1 (F (ξ)) Φi (ξ) dF (ξ) ∀ i ∈ {0, 1, . . .},

where µ−1 is the generalized inverse distribution function of κ. Hence, with the

polynomial chaos expansion, we can translate any square integrable random vari-

able κ ∼ µ into a countable series of constant projection coefficients {ϕi}
∞
i=0. For

computational reasons, we later truncate the series of projection coefficients.

3.2.2. Applying Polynomial Chaos to our Growth Model

We apply the polynomial chaos expansion to discretize the cross-sectional distri-

bution of our growth model. Let us first condition the distribution on the employ-

ment status, i.e., µ0(k) = µ(0, k)/pz
id=0|zag denotes the cross-sectional distribution

of the unemployed. Accordingly, we denote the basic random variable, the projec-

tion coefficients and the polynomials of the unemployed with superscript 0 and

of the employed with superscript 1, respectively. The optimal consumption and

capital savings choices can then be rewritten as c′ = h1(z
′, k, {ϕ0

i }
∞
i=0, {ϕ

1
i }

∞
i=0) and

k′ = h2(z
′, k, {ϕ0

i }
∞
i=0, {ϕ

1
i }

∞
i=0). Similarly ,we can derive the law of motion of the

projection coefficients from (12), (9) and (6). W.l.o.g. we will write down formulas

only w.r.t. the distribution of the unemployed in the following. The law of motion

for the projection coefficients of the unemployed reads

ϕ0
i
′
=

1

〈Φ0
i ,Φ

0
i 〉

∫ ∞

−∞

[

µ0′
]−1 (

F 0
(
ξ0
))

Φ0
i

(
ξ0
)
dF 0(ξ0), ∀ i ∈ {0, 1, . . .}

with

µ0′ (k) =
1

pzid
′
=0|zag

′

1∑

j=0

p(z
ag′ ,0)|(zag ,j)

pzag
′
|zag

P ({ζ = j}∩

{

h2

(

zag
′

, 0,
∞∑

i=0

ϕj
iΦ

j
i

(
ξj
)
, {ϕ0

i }
∞
i=0, {ϕ

1
i }

∞
i=0

)

≤ k

}∣
∣
∣
∣
∣
zag

′

, zag

)

.(13)



19

3.2.3. A Specific Choice of the Basic Random Variables

It was illustrated in Xiu and Karniadakis (2002) that the speed of convergence

significantly improves if the distribution of the basic random variable is not too

far from the distribution we want to approximate. Since the cross-sectional distri-

bution in our growth model is an endogenous object, we do not know its shape

a priori. We do know, however, that it will have mass points according to Propo-

sition 6. Also, we know that the same growth model without aggregate shocks,

i.e., where zag is fixed at either 0 or 1, has an endogenous cross-sectional distribu-

tion, which stays constant as time goes on. This case is easy to compute because

K ′ = K in the agents’ optimization problem (7). Therefore, one just has to solve

the individual optimization problem at different values of aggregate capital K.

In a second step, given these optimal responses, one can compute the stationary

distribution as a fixed point of the distribution’s law of motion (6). Naturally, this

cross-sectional distribution will have features similar to the distribution of the

model with aggregate shocks. Hence, we fix ξ0 as the cross-sectional distribution

of the unemployed in the model without aggregate shocks averaged over the two

cases of keeping zag fixed as 0 or 1. Analogously, ξ1 is fixed as the distribution

of the employed. I compute these stationary distributions using histograms. They

are displayed in Figure 2. The distributions exhibit several mass points measured

as the local extrema in the histogram representation. One can observe that the

distribution of the unemployed is shifted to the left compared to the distribution

of the employed as they generally have lower capital savings. Note that the cap-

ital constraint at the beginning of the period is binding for a small fraction of

employed agents as well because these are agents who were unemployed in the

previous period. But the constraint will not be binding at the end of the period

because all employed agents optimally choose positive capital savings. To obtain

an accurate approximation of these stationary distributions, one should choose a

reasonably small bin size for the histogram.

3.2.4. Generation of the Corresponding Orthogonal Polynomials

As our basic random variables are represented by histograms, they are essentially

discrete distributions where the end points of the bins {ξ0n}
N
n=1 have probability

{p0n}
N
n=1. Generally, orthogonal polynomials w.r.t. a discrete distribution with finite

support are considered discrete as well in the sense that their maximal degree is

N . Furthermore, the highest-order polynomial Φ0
N has the points {ξ0n}

N
n=1 as roots.

In Zheng et al. (2015), different methods for generating polynomials correspond-

ing to discrete distributions are compared. Of their suggested methods, we use the
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Figure 2. Stationary cross-sectional capital distribution for the

growth model without aggregate shocks. Panel A shows the histogram rep-
resentation with bin size 0.1 of the stationary distribution conditional on the
employment status of the agents. A mass point is identified as a bin whose prob-
ability is higher than the ones of its direct neighbors, but the global maxima are
excluded. Panel B zooms into the left tail of the distribution.Note that the dis-
tribution displayed here is the beginning-of-period distribution µ̃′ from (5), i.e.,
before the optimal savings are chosen.

Stieltjes method, which performs well in terms of precision. It directly computes

the parameters θi and ωi in (11) using the standard inner product of L2 and is

explained in detail in Gautschi (1982). The constant parameters are given by

θi =
〈Φi, ξΦi〉

〈Φi,Φi〉
, i ∈ {0, 1, . . .}

ωi =
〈Φi,Φi〉

〈Φi−1,Φi−1〉
, i ∈ {1, 2, . . .}

with 〈., .〉 denoting the standard inner product of L2 w.r.t. the corresponding basic

distribution. As these distributions are represented as discrete distributions, the

inner product is a sum rather than an integral. The definitions of these parameters

follow from inserting the three-term recurrence relation (11) into the orthogonality

condition (10). With the parameters defined as above, the orthogonal polynomials

are easily constructed using (11). They are displayed in Figure 3. As usual, the

number of roots of each polynomial corresponds to its degree. Note that each first-

order polynomial has its root at the mean of the distribution of the corresponding

basic random variable.

With the basic random variables defined and the corresponding polynomials

generated, the polynomial chaos expansion is fully defined up to order N . Any
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Figure 3. Orthogonal polynomials corresponding to the stationary

distribution for the model without aggregate shocks. Panel A shows the
polynomials Φzid

i corresponding to the distribution of the unemployed (zid = 0)
and the employed (zid = 1), respectively, up to order i ≤ 1 and Panel B displays
the polynomials Φzid

i of order i = 2 and i = 3.

square integrable distribution measurable w.r.t. the basic random variables can

now be projected. The polynomials with different degrees have different effects in

this projection as can be seen in Figure 4. In this figure, we consider a polyno-

mial chaos expansion with fixed projection coefficients {ϕi}
∞
i=0, which is truncated

at different orders. The zeroth-order polynomial results in a mass point at ϕ0,

which, due to its definition, is the mean of the projected distribution. Adding

the first-order polynomial simply stretches or compresses the distribution of the

basic random variable depending on the projection coefficient. Adding the second-

order polynomial modifies the skewness of the basic random variable whereas the

third-order polynomial adjusts the kurtosis. Higher orders further refine the tails.

4. THEORETICAL CONVERGENCE RESULTS

With the methodology laid out in the previous section, we now show conver-

gence of the proposed accelerated proximal point algorithm, which uses polyno-

mial chaos to discretize the cross-sectional distribution. This is done in two steps.

Firstly, the convergence for the theoretical resolvent, i.e., the iteration on the pol-

icy functions c′ = h1(z
′, k, {ϕ0

i }
∞
i=0, {ϕ

1
i }

∞
i=0) and k′ = h2(z

′, k, {ϕ0
i }

∞
i=0, {ϕ

1
i }

∞
i=0) is

shown. In the second step, we show that also the discretized resolvent, i.e., the

iteration on the discretized policy functions c′ = hD
1 (z

′, k, {ϕ0
i }

M
i=0, {ϕ

1
i }

M
i=0) and

k′ = hD
2 (z

′, k, {ϕ0
i }

M
i=0, {ϕ

1
i }

M
i=0), converges. The superscript D denotes the finite-

element discretization w.r.t. the arguments k and ϕj
i , i ∈ {0, 1, . . .}, j ∈ {0, 1},
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Figure 4. Example distributions resulting from truncated polynomial

chaos expansions. The graph displays the histogram representations with bin
size 0.1 of distributions, which result from the polynomial chaos series truncated
at different orders ranging from order 0 to 3. The basic random variable used
is the stationary cross-sectional distribution of the unemployed in the growth
model without aggregate shocks as in Figure 2. The projection coefficients for this
example are fixed as [ϕ0, . . . , ϕ3] = [36, 1, 0.01, 0.0002].

whereas M ≤ N denotes the order, at which the polynomial chaos is truncated.

4.1. Convergence of the Theoretical Solution Operator to the Recursive

Equilibrium

According to the theory on the proximal point algorithm (i.e., Rockafellar, 1970,

1976a,b; Güler, 1992; Salzo and Villa, 2012) summarized in Section 3.1, it suffices

to show that the Lagrangian of the agents’ optimization problem (7) satisfies the

conditions of Corollary 4. This guarantees the nonexpansiveness of the correspond-

ing resolvent and hence, convergence of the proximal point algorithm.

Theorem 7 (Convergence) Consider the growth model from Section 2. Consider

the function space H defined in Proposition 10 for the consumption and capital

savings choice. The Lagrangian L : H×
∏3

i=1 L
2(Z id×R,B(Z id×R), µ) → [−∞,∞]

of the agents’ optimization problem (7) in the growth model given by

L (h1, h2, y1, y2, y3) =− u(h1)(14)

−
∑

z′′∈Z

pz
′′|z′βu (I (z′′, h2, K

′) + [1− ρ]h2 − h′
2)

+ y1 (I (z
′, k,K) + [1− ρ] k − h1 − h2)− y2h1 − y3h2
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satisfies the conditions of Corollary 4 and therefore, Algorithm 1 and Algorithm 2

converge to a recursive equilibrium of the growth model.

4.2. Convergence of the Discretized Solution Operator

When implementing the proximal point algorithm, we need to use approxima-

tions of two different categories. Firstly, we approximate the minimizer of the

resolvent in each iteration of the proximal point algorithm since this optimization

problem doesn’t have a closed-form solution. Secondly, we have to approximate

the policy functions with a finite-dimensional representation. Let me explain the

first approximation category. We already pointed out in Section 3.1 that the re-

solvent can be approximated without affecting convergence if the approximation

satisfies Definition 5. This can be achieved as follows.

Proposition 8 (Implementation of the resolvent approximation) Computing

the next iterate hn+1 in Algorithm 1, line 5, or Algorithm 2, line 8, as a solution

to the formula

(15) X (z′, k,K) ‖∇LA (h1, h2, y
n
1 , y

n
2 , y

n
3 ;h

n)‖1 ≤
ǫ2

2λ

for any (z′, k,K) ∈ Z × R
2
≥0 results in an approximation with ǫ-precision of the

resolvent according to Definition 5. Note that X is the total wealth, i.e., productive

income plus savings, of the agent with start capital k

X (z′, k,K) = I (z′, k,K) + [1− ρ] k

with the income I as in (3). Furthermore, LA is the augmented Lagrangian as

defined in (8) and ∇ denotes its gradient w.r.t. (h1, h2).

Remark Equation (15) is easily implemented by any root solver using a toler-

ance level of ǫ2/(2λ).

Now, let us investigate the second category of approximation: We have to en-

sure convergence when using approximations for the functions of optimal con-

sumption h1(z
′, k, {ϕ0

i }
∞
i=0, {ϕ

1
i }

∞
i=0) and capital savings h2(z

′, k, {ϕ0
i }

∞
i=0, {ϕ

1
i }

∞
i=0)

in each dimension. Approximation of these policies occurs in two steps. Firstly,

we truncate the polynomial chaos expansion, and secondly, we discretize all di-

mensions and apply the finite element method with first-order Lagrange ele-

ments, which amounts to linear interpolation. We denote the truncated policy
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by hM = h1(z
′, k, {ϕ0

i }
M
i=0, {ϕ

1
i }

M
i=0). Its interpolant, denoted by hM,D, is defined

on a tensor product of finite grids of the state space elements

D =
{(

ki0 , ϕ
0
1,i1

, . . . , ϕ0
M,iM

, ϕ1
1,iM+1

, . . . , ϕ1
M,i2M

)∣
∣
∣

im = 1, . . . , Im < ∞∀m = 0, . . . , 2M} .

It is clear that such an interpolant stays within the admissible set of the poli-

cies H defined in Proposition 10. Therefore, convergence follows from a vanishing

approximation error. The total policy function approximation error is composed

of two parts corresponding to the truncation and interpolation error

‖h− hM,D‖L2 ≤ ‖h− hM‖L2 + ‖hM − hM,D‖L2 .

The following theorem derives bounds on these two parts of the error. The bound

on the second part is a well established result from the theory on finite elements

(see e.g., Brenner and Scott, 2007) whereas the bound on the first part is more

involved. It follows the methodology of the error analysis in Babuška et al. (2007).

Theorem 9 (Error bounds of the approximation) Consider the growth model

from Section 2 with the function space H defined in Proposition 10 for the con-

sumption and capital savings choice. Consider Algorithm 1 or Algorithm 2 with

polynomial chaos extension as in Section 3.2, i.e., using the basic random vari-

ables ξj and the corresponding orthogonal polynomials Φj to project any square-

integrable κj ∼ µj with κj =
∑N

i=0 φ
j
iΦ

j
i (ξ

j), j ∈ {0, 1}. Note that the polynomial

chaos expansion is real analytic, i.e., it holds that

(16)

∥
∥
∥
∥
∥

∂p

[∂ξj]p

N∑

i=0

φj
iΦ

j
i

(
ξj
)

∥
∥
∥
∥
∥
≤ cΦ,jp!, j ∈ {0, 1}, p ∈ {1, 2, . . .},

where cΦ,j is a constant. Assume that, for any fixed exogenous shock, start capital

and individual capital distribution (z′, k, µ), the initial guess of the consumption

policy h0
1, the savings policy h0

2 and the Lagrange multipliers (y01, y
0
2, y

0
3) for the

proximal point algorithm are real analytic and hence, satisfy

(17)

∥
∥
∥
∥

∂p

[∂ξj]p
f

∥
∥
∥
∥
≤ cf,jp!, j ∈ {0, 1}, p ∈ {1, 2, . . .},

for some constant cf,j where f is a handle for h0
1, h

0
2, y

0
1, y

0
2 and y03. Consider the
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following subsets of the complex plane

Σ
(
τ j,Γj

)
=

{

x ∈ C

∣
∣
∣
∣
inf

ξj∈Γj
|x− ξj| ≤ τ j

}

, j ∈ {0, 1},

where Γj is the range of ξj and 0 < τ j < 1/‖A‖∞ < ∞ with the matrix A given in

(26) in the proof. Then, the approximation error bound resulting from truncating

the polynomial chaos expansion at order M and using linear interpolation on a

rectangular tensor-product grid

D =
{(

ki0 , ϕ
0
0,i1

, . . . , ϕ0
M,iM

, ϕ1
0,iM+2

, . . . , ϕ1
M,i2(M+1)

)∣
∣
∣ kin < kin+1 ,

ϕj
m,in

< ϕj
m,in+1

∀ in ∈ {1, . . . , dn}, m ∈ {1, . . . ,M}, j ∈ {0, 1}
}

with maximum mesh-size s are given by

‖h− hM,D‖L2 ≤
1∑

j=0

bj
2

ηj − 1
e−M log(ηj) max

f∈{h0
1,h

0
2,y

0
1 ,y

0
2 ,y

0
3 ,Φ}

∣
∣cf ,j

∣
∣

1

1− τ j‖A‖∞

+ b2s
2





2(M+1)
∑

i=0

∥
∥
∥
∥

∂2hM

[∂Di]2

∥
∥
∥
∥

2

L2





1
2

,

where bj, j ∈ {0, 1, 2}, are constants and

ηj =
2τ j

|Γj|
+

√

1 +
4(τ j)2

|Γj|2
> 1, j ∈ {0, 1}.

Remark The theorem implies that the error from the truncation of the poly-

nomial chaos expansion decreases exponentially with the order of the expansion.

Furthermore, the error from the interpolation decreases proportionately to the

step size of the discretization.

5. NUMERICAL RESULTS

We compute the recursive equilibrium solution of Algorithm 2 truncating the

polynomial chaos expansion at different orders using Matlab R2016b.10 We also

compute the solutions of existing algorithms for comparison. We choose the algo-

rithm by Krusell and Smith (1998) as it is the most prominent existing method.

We use its Matlab implementation by Maliar et al. (2010). Furthermore, there has

been an effort to improve on this original algorithm with a special issue of the Jour-

10The computations were performed on the Baobab cluster at the University of Geneva.



26

nal of Economic Dynamics and Control in January 2010. From these more recent

methods, we use the backward induction algorithm by Reiter (2010a) and the ex-

plicit aggregation algorithm by den Haan and Rendahl (2010), both implemented

in Matlab, since they perform best in the comparison by den Haan (2010).

To ensure comparability, we run all these methods using the same grid for in-

dividual capital and the same termination criterion 5e-5. Additionally, I configure

the discretizations of the cross-sectional distribution so that they are as close as

possible. The Krusell-Smith and the Reiter method use total aggregate capital

whereas the den Haan-Rendahl algorithm uses the aggregate capital of the unem-

ployed and employed. In our algorithm, the aggregate capital of the unemployed

and employed is equivalent to the projection coefficients φ0
0 and φ1

0 of the polyno-

mial chaos expansion. We use 3 grid points for aggregate capital per idiosyncratic

shock such that the latter two algorithms have 3× 3 grid points in aggregate cap-

ital. For the former two algorithms, we compute the total aggregate capital from

each combination of these 3 × 3 grid points weighted by the employment rate,

which results in 9 grid points. Keep in mind that the proximal point algorithm

has additional dimensions to discretize the cross-sectional distribution depending

on the order of truncation. The different methods are summarized in Table 1.

Note that the proximal point algorithm is implemented with parallelized Matlab

Algorithm # Grid Points for µ # CPUs Compute Time

Krusell-Smith (K-S) 9 4 38s
Reiter (R) 9 4 2m 41s
den Haan-Rendahl (D-R) 9 4 13s
PPA M=0 (PPA0) 9 16 1m 15s
PPA M=1 (PPA1) 36 16 3m 12s
PPA M=2 (PPA2) 144 16 15m 36s
PPA M=3 (PPA3) 576 16 2h 12m 44s

Table 1. Summary of the algorithms to be compared. In the first col-
umn, M denotes the order of truncation of the proximal point algorithm. The
abbreviation in the parenthesis is the algorithm identifier used in the comparison
analysis, which follows. The second column displays the total number of grid points
to discretize the cross-sectional distribution. Note that the methods of discretizing
the distribution vary across algorithms.

code run on a HPC cluster whereas the other three algorithms are implemented

with serial code run on a desktop computer. This is the reason for the differences

in the number of CPUs used. The compute time is higher for the proximal point

algorithm. This is mainly due to the fact that it solves a full optimization problem

in each iteration to ensure convergence. Also, it uses a nonparametric law of mo-
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tion, which adds to the complexity. I argue that the goal of being more accurate

and having a theoretically sound algorithm justifies the increased compute time.

These features are especially important for solving models with a higher degree of

nonlinearity, which is ultimately the goal of our algorithm.

In the following, I investigate whether the proximal point algorithm really yields

higher precision than the existing methods to compensate its slower performance.

Furthermore, we examine the order of truncation of the polynomial chaos expan-

sion resulting in sufficient precision and which economic implications the proximal

point algorithm yields.

5.1. Precision of the Proximal Point Algorithm versus Existing Algorithms

One way of comparing these sets of numerical solutions is to analyze their Euler

equation errors. There have been two different Euler equation error tests put

forward in the literature (see e.g., den Haan, 2010), the standard Euler equation

error test and the dynamic Euler equation error test. The standard Euler equation

errors are calculated by comparing the numerical solution for optimal consumption

c against the explicitly calculated conditional expectation in the Euler equation

denoted by c̃. It is the absolute percentage error

ǫSEee =
|c− c̃|

c̃
.

In contrast to the standard Euler equation error, the dynamic equivalent denoted

by ǫDEee is computed for several consecutive periods. This test is more stringent

as the numerical solution and the explicit conditional expectation usually diverge

with more periods. We compute the standard and the dynamic Euler equation

error for a random sample of aggregate shocks over N periods for the different

numerical solutions from Table 1. We choose the number of periods such that

the power of the subjective discount factor βt, t = 0, . . . , N − 1, is always above

machine precision. Our configuration leads to N = 3587. Otherwise, we would

only add noise to the infinite sum of utility. Note that we compute the standard

Euler Equation error test also over multiple periods but it is reset every period

and hence, does not accumulate. The errors’ summary statistics are displayed in

Table 2, Panel A. One can see that the proximal point algorithm irrespective of

the truncation order improves the median error by one order of magnitude and the

maximum error by two orders. When looking at the dynamic error, the den Haan-

Rendahl algorithm produces a median error of the same order of magnitude. The

summary statistics can be deceiving in that respect. The improvement becomes
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clearer when displaying the full error distribution in terms of boxplots in Figure 5.

One can see that the existing algorithms produce much wider error distributions

Figure 5. Boxplots of the Euler equation error distributions of indi-

vidual capital. Panel A shows the standard Euler equation error and Panel B
displays the dynamic Euler equation error for the numerical solutions from Ta-
ble 1. The error is computed over all grid points in the dimension of individual
capital and the idiosyncratic shock for a random sample of aggregate shocks over
N = 3587 periods. The initial cross-sectional distribution is the same for all algo-
rithms. The red lines mark the medians whereas the blue boxes denote the 25th to
75th percentiles. The whiskers indicate the range of the distribution and the red
dots outside are outliers.

for both the standard and the dynamic Euler equation error. It is interesting to

observe that the Reiter algorithm, although improving on the extreme points of

the error distribution, does not lead to any significant improvement compared to

the Krusell-Smith algorithm. The same is true for the den Haan-Rendahl method,

which performs even worse. It seems that the reason why they performed well in

the comparison by den Haan (2010) is that they use considerably more grid points

whereas here we deliberately run all methods on the same discretization.
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K-S R D-R PPA1 PPA2 PPA3 PPA4

Panel A: Individual consumption

ǫSEee Median 1.74e-04 3.04e-04 -1.67e-04 -3.92e-05 -1.26e-05 -1.42e-05 -1.55e-05
ǫSEee Min -6.24e-03 -2.61e-03 -7.05e-03 -2.21e-03 -2.22e-03 -2.21e-03 -2.21e-03
ǫSEee Max 1.67e-02 2.08e-03 6.44e-03 1.38e-05 2.65e-05 3.17e-05 3.54e-05
ǫDEee Median 1.72e-04 3.18e-04 8.25e-05 7.48e-05 6.91e-05 8.67e-05 8.60e-05
ǫDEee Min -6.22e-03 -2.61e-03 -6.95e-03 -2.15e-03 -2.17e-03 -2.15e-03 -2.15e-03
ǫDEee Max 1.67e-02 2.36e-03 7.33e-03 2.25e-04 2.34e-04 2.21e-04 2.23e-04

Panel B: Aggregate consumption

ǫSEee Median 5.23e-05 2.99e-04 -1.27e-03 -3.27e-05 -4.87e-06 -1.16e-05 -1.42e-05
ǫSEee Min -5.08e-05 -6.73e-04 -2.45e-03 -6.37e-05 -5.16e-05 -5.67e-05 -5.69e-05
ǫSEee Max 1.44e-04 5.08e-04 2.16e-03 -5.01e-06 2.19e-05 1.57e-05 9.79e-06
ǫDEee Median 1.33e-06 2.64e-04 1.89e-04 1.72e-04 1.60e-04 1.70e-04 1.70e-04
ǫDEee Min -1.03e-04 -7.53e-04 -3.89e-03 -3.74e-05 -1.26e-06 -4.86e-06 -8.38e-06
ǫDEee Max 1.41e-04 1.13e-03 2.75e-03 2.80e-04 2.51e-04 2.65e-04 2.68e-04

Table 2. Euler equation errors for the numerical solutions from Table 1. This table displays the summary statistics of
the standard Euler equation error ǫSEee and of the dynamic Euler equation error ǫDEee . Panel A displays the error for individual
consumption where it is computed over all grid points in the dimension of individual capital and the idiosyncratic shock for a
random sample of aggregate shocks over N = 3587 periods. Panel B displays the error for aggregate consumption, i.e., the percentage
deviation of the aggregate consumption implied by the algorithms from the aggregate consumption implied from the Euler equation.
The initial cross-sectional distribution is the same for all algorithms.
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In comparison, all proximal point solutions produce much narrower error bands.

As one would expect, they become wider for the dynamic Euler equation error,

but are still much narrower than the Krusell-Smith error. This is mainly due to

the better anticipation of the cross-sectional distribution’s law of motion in the

proximal point algorithms.

One can argue that the Euler equation error computed from individual con-

sumption can result in a distorted picture because the number of agents grouped

by different start capitals are weighed equally. However, there will be fewer agents

with high start capital than agents with medium start capitals depending on the

cross-sectional distribution. A remedy is to compute the Euler equation errors

w.r.t. aggregate consumption, i.e., taking the relative difference of the mean of the

cross-sectional distribution of individual consumption implied by the algorithms

and the mean implied by the Euler equation. The summary statistics of these er-

rors are displayed in Table 2, Panel B, and the corresponding boxplots are shown

in Figure 6.

K-S R D-R PPA0 PPA1 PPA2 PPA3
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Figure 6. Boxplots of the Euler equation error distributions of ag-

gregate capital. Panel A shows the standard Euler equation error and Panel B
displays the dynamic Euler equation error for the numerical solutions from Table
1. The error is computed from aggregate consumption implied by the algorithms
versus the Euler equation implied aggregate consumption for a random sample of
aggregate shocks over N = 3587 periods. The initial cross-sectional distribution
of start capital is the same for all algorithms. The red lines mark the medians
whereas the blue boxes denote the 25th to 75th percentiles. The whiskers indicate
the range of the distribution and the red dots outside are outliers.

Interestingly, the Krusell-Smith algorithm’s performance is now closer to the

proximal point algorithm than it is to the Reiter and den Haan-Rendahl algo-

rithms, which perform much worse. It means that its large Euler equation errors
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for individual capital occur in regions of the cross-sectional distribution with lit-

tle mass. All in all, we see that the proximal point algorithm yields much higher

precision in terms of Euler equation errors both for the individual agents as well

as for aggregate variables.

5.2. Order of Truncation

An important question is which order of truncation of the polynomial chaos

expansion will yield sufficient precision for our algorithm. To investigate that, we

look again at the Euler equation errors for individual and aggregate consump-

tion in Figure 7. One can see that there is a significant shift of the whole error

Figure 7. Boxplots of the Euler equation error distributions for dif-

ferent orders of truncation for proximal point algorithm. Panel A shows
the standard Euler equation error for individual capital whereas Panel B displays
the dynamic Euler equation error for individual capital for the different proximal
point algorithms in Table 1. The errors are computed for a random sample of
aggregate shocks over N = 3587 periods. The initial cross-sectional distribution
of start capital is the same for all algorithms. The red lines mark the medians
whereas the blue boxes denote the 25th to 75th percentiles. The whiskers indicate
the range of the distribution and the red dots outside are outliers.

distribution towards zero from order zero to one. With higher orders than one,

the error distribution for individual capital stays almost the same. It narrows fur-

ther to a smaller extend for the dynamic error on individual consumption but

does not change substantially. Therefore, a polynomial chaos expansion of solely

first order seems to be enough to produce a satisfactory precision for the growth

model at hand. Recall that order zero implies that the optimal policies depend

on the aggregate capital of the employed and unemployed. Order one and higher,
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however, imply a dependance on the full approximated distribution. Therefore,

to approximate the rational expectations equilibrium of the growth model suf-

ficiently, the agents need to know more than the aggregate capital. However, a

crude approximation of the cross-sectional distribution seems to be enough.

5.3. Economic Implications

Let me now compare the economic implications of the different numerical solu-

tions. As the Euler equation errors for the Reiter and den Haan-Rendahl algorithm

were much worse, especially in the aggregates, I will compare the proximal point

algorithm only to the Krusell-Smith algorithm. The largest conceptual difference

between these two types of algorithms is that the Krusell-Smith method assumes

bounded rationality in terms of a ”rule of thumb”, i.e., a parametric law of mo-

tion for the aggregate variables depending on a finite number of moments. Our

algorithm, however, just uses the nonparametric law of motion of the aggregate

variables.

To compare the implications of these conceptual differences, we look at the

cross-sectional distributions, which the different numerical solutions produce on

average. We cannot compute the full stationary state distribution for this model

though, since this is a distribution of distributions P(z′, k, µ). However, we can

look at the expected conditional cross-sectional distribution E
µ(P(z′, k|µ)), which

is essentially the average stationary cross-sectional distribution. It is computed as

a fixed point of the cross-sectional distribution’s law of motion and displayed in

Figure 8. Similar to the Euler equation errors, one can see a significant change of

the distribution of the proximal point algorithm with order zero compared to all

higher orders producing distributions, which are indistinguishable. This confirms

that higher orders of truncation of the polynomial chaos expansion than one do

not have a high impact on the approximate solution of the growth model but it

is crucial to use an approximation of the whole distribution rather than only the

mean. Economically, this means that even for this simple growth model, there is

no aggregation in the approximate fully rational expectations equilibrium. This

stands in stark contrast to the aggregation result by Krusell and Smith (1998)

for the approximate bounded rational expectations equilibrium. They find that

the solutions do not differ if one adds more moments to their parametric law of

motion.

A second economic implication is that the distribution by the Krusell-Smith

algorithm has a much thicker tail to the right than the distributions of the proximal

point algorithms. The corresponding Lorenz curves also confirm that the inequality
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Figure 8. Average cross-sectional distributions produced by by the

Krusell-Smith algorithm and the proximal point algorithms from Table

1. This graph displays the average stationary cross-sectional distribution, i.e., the
expectation of the stationary distribution of the state space (z′, k, µ) conditional
on µ. Panel A shows the p.d.f.s with a histogram approximation with bin size 0.1
whereas Panel B displays the corresponding Lorenz curves.

in the economies resulting from the proximal point algorithms is less than in the

Krusell-Smith economy. This implies that the bounded rationality assumption

introduces more inequality.

6. CONCLUSIONS

In this paper, I develop a novel global solution algorithm for DSGE models

with ex-post heterogeneity and aggregate risk, which is purely based on projec-

tion methods. What sets this algorithm apart from existing methods is that, rather

than approximating the law of motion of aggregate variables with a more or less

parametric formula, it approximates the cross-sectional distribution of individual

variables. I use generalized polynomial chaos expansions to do so. This projec-

tion technique essentially extends orthogonal polynomial projection from spaces

of smooth functions to the space of square-integrable random variables.

Furthermore, the algorithm in this paper extends the proximal point algorithm

for convex saddle point problems in a way, which preserves its convergence prop-

erties. To go beyond the convergence of the iteration on the theoretical operator,

I also derive approximation error bounds concerning the truncation of the polyno-

mial chaos expansion and the interpolation of the optimal policies. This ensures

that the approximate solution is indeed close to the rational expectations equilib-
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rium.

By taking this conceptually quite different approach with a sound theoretical un-

derpinning, we are able to increase the precision of the solution in terms of its Euler

equation errors by a significant amount. Additionally, we obtain the surprising re-

sult that, even for the comparatively simple growth model from Krusell and Smith

(1998), we do not obtain aggregation for our approximate fully rational expecta-

tions equilibrium. The agents need to know more than the aggregate capital in

order to have a sufficiently precise approximation of the optimal policies. This con-

trasts the aggregation result by Krusell and Smith (1998) for their approximate

bounded rational expectations equilibrium.

Overall, my approach provides a new tool to analyze numerical solutions of

DSGE models with ex-post heterogeneity and nonlinearities. This type of models

is crucial for analyzing wealth effects. An interesting application are macro-finance

models, which investigate systemic risk in financial markets and its effect on the

real economy. Future research should, hence, be aimed at extending the algorithm

in this paper to accommodate more complex models, e.g., models with occasion-

ally binding constraints or a higher number of variables. In terms of the former,

one needs to ensure convexity of the overall problem, which actually means that

nonconvexity in some parts of the problem might be feasible. In terms of the latter,

one can explore the integration of sparse grids (see e.g., Brumm and Scheidegger,

2016).

APPENDIX A: PROOFS

A.1. Proof of Proposition 6

Proof: Let us denote the support of the marginal distribution w.r.t. k of the

cross-sectional distribution by suppµk. The minimum value of k, which has posi-

tive probability, is denoted by k = mink suppµ
k. First, let us show that the con-

straint has positive probability δ ∈ suppµk. Because of pẑ|ẑ > 0, eventually we have

ẑag in the previous and the current period. Suppose that the start capital, at which

the constraint starts binding, is not in the support k∗ < k ≤ k̂. Applying the opti-

mal capital savings function, we obtain that k′ = h2(ẑ, k, µ) ≤ k. By induction, this

contradicts k∗ /∈ suppµk. Now let us show that there is a mass point at δ. Assume

that δ < k∗ = k. Because h2 is continuous and strictly increasing to the right of its

kink, there exists an interval [k∗, k̄] with k̄ := max{k ≥ δ |h2(ẑ, k, µ) = k∗} > k∗

and positive measure µk([k∗, k̄]) > 0. Due to pẑ|ẑ > 0, a strictly positive part of

this mass will stay at ẑ and have future value δ. Hence, µk(δ) > 0 and k = δ. This

yields the mass point at the constraint for the cross-sectional distribution. Using
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the same reasoning, one can easily see that this mass point at zero propagates to

higher levels of individual capital at z̄ ∈ Z. Q.E.D.

A.2. Proof of Theorem 7

In order to proof Theorem 7, we need the following preliminary result.

Proposition 10 (Admissible Set of the Growth Model) Consider the growth

model from Section 2. Define a subspace H of the intersection of the square-

integrable functions w.r.t. µ ∈ L2, i.e., L2
(
Z id × R,B(Z id × R), µ

)
, and the func-

tions with bounded first and second variation11 such that for any element h =

(h1, h2) ∈ H, the following inequalities are satisfied almost surely for any z, z′ ∈ Z

and (zid, κ) ∼ µ

(i) Nonnegative consumption: h1 (z
′, κ, µ) ≥ 0

(ii) Limited capital savings: h2 (z
′, κ, µ) ≤ I (z′, κ) + [1− ρ]κ

(iii) Lower bound on the average second variation of capital savings:

∑

z′∈Z

P (z′, z, κ) δ2h2 (z
′, κ, µ; κ̃) ≥

∑

z′∈Z

P (z′, z, κ)

[

δ2I (z′, κ; κ̃)− γ
[δC (z′, κ; κ̃)]2

C (z′, κ)

]

where P denotes the probability operator, C denotes the consumption operator and

I denotes the income operator defined as follows

P (z′, z, κ) =
pz

′|zC(z′, κ)−γ

∑

z′∈Z pz′|zC(z′, κ)−γ

C (z′, κ) = I (z′, κ) + [1− ρ]κ− h2 (z
′, κ, µ)

I (z′, κ) = αã(zag
′

)

[
〈κ,1〉

πpe′

]α−1

κ+ [1− α]ã(zag
′

)ν̃ (z′)

[
〈κ,1〉

πpe′

]α

with

ã(zag
′

) = 1 + zag
′

a− [1− zag
′

]a

ν̃ (z′) = ν + zid
′

[

1−
ν

pe′

]

.

Then, H is a Hilbert space.

Proof: It is well known that the subspace of functions with bounded variation

11 nth variation (see e.g., Zeidler, 1986b): Let E be a Hilbert space. The nth variation of
an operator T : E → E at a point e ∈ E in the direction ẽ ∈ E is defined by δnT(e; ẽ) =
dn/dtnT(e+ tẽ)|

t=0
.



36

within L2 is complete and hence, a Hilbert space itself. With conditions (i)− (iii),

we take yet another subset of functions with bounded variations. It is easy to see

that any limiting element h∗ of a Cauchy sequence hn ∈ H, n ∈ {1, 2, . . .}, satisfies

conditions (i)− (iii) as well. The subspace H is therefore complete and a Hilbert

space itself. Q.E.D.

Remark Note that condition (iii) implies that the expected second variation

of capital savings in a nonnegative direction κ̃ ≥ 0 is greater equal a nonpositive

threshold if K ≥ ([2 − α]πpe
′

)/([1 − α]ν). In our calibration, this translates into

K ≥ 18.2222, which seems to be a reasonable minimum value for aggregate capital.

Due to this fact, additionally to convex capital savings functions, the subspace also

allows for capital savings functions with concave sections.

Proof of Theorem 7: It suffices to show that the Lagrangian (14) of the

agents’ optimization problem (7) satisfies the conditions of Corollary 4. This guar-

antees the nonexpansiveness of the corresponding resolvent and therefore implies

convergence of the (accelerated) proximal point algorithm.

Saddle function: Let us start by specifying the Hilbert spaces C × D the La-

grangian is defined on. L depends on the optimal controls h = (h1, h2). Hence, we

define the first Hilbert space by H as given in Proposition 10. The Lagrange multi-

pliers lie in the corresponding dual space, which implies D ⊆ L2(Z id×R,B(Z id×

R), µ), such that y2, y3 ≥ 0 for any exogenous shock and start capital.

Now it remains to show that the Lagrangian is convex in the optimal controls

and concave in the Lagrange multipliers. The latter is trivial as the Lagrangian

is linear in the multipliers. The former means that the Hessian (in terms of sec-

ond variations) w.r.t. h1 and h2 is positive semidefinite (see e.g., Zeidler, 1986b,

Corollary 42.8). As the cross-variation is zero and the second variation of the La-

grangian w.r.t. h1 is nonnegative, we need to show that the second variation of

the operator

U(h2) =
∑

z′′∈Z

pz
′′|z′βu (I (z′′, h2) + [1− ρ]h2 − h′

2)

is nonpositive. Defining C (z′′, h2) = I (z′′, h2) + [1− ρ]h2 − h′
2, we have

δ2U
(

h2; h̃
)

=
∑

z′′∈Z

pz
′′|z′β

{

ucc (C (z′′, h2))
[

δC
(

z′′, h2; h̃
)]2

+uc (C (z′′, h2)) δ
2C
(

z′′, h2; h̃
)}
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and therefore convexity is achieved by a next-period consumption choice with

second variation bounded from above

∑

z′′∈Z

pz
′′|z′βC

(
z′′, h2

)−γ
δ2C

(

z′′, h2; h̃
)

≤ γ
∑

z′′∈Z

pz
′′|z′βC

(
z′′, h2

)−γ

[

δC
(

z′′, h2; h̃
)]2

C (z′′, h2)
.

This condition is equivalent to our condition (iii) of bounded second variation for

h ∈ H and is therefore satisfied. Applying the resolvent corresponding to the La-

grangian amounts to finding the minimum of the augmented Lagrangian (8). Any

such minimum stays in H (see e.g., Bauschke and Combettes, 2011, Proposition

23.2), which ensures convexity throughout the algorithm.

Properness: We proceed in two steps. First we show that there exist Lagrange

multipliers y = (y1, y2, y3) ∈ D such that L(h, y) > −∞ for all h ∈ H. Let y = 0,

then L(h, y) > −∞ by definition because any h ∈ H results in a number on the

real line including +∞. Secondly, there exists a capital savings and consumption

choice h = (h1, h2) ∈ H such that L(h, y) < ∞ for all y ∈ D. For any µ with

aggregate capital K > 0, the productive income for any agent is positive I > 0.

Fix a constant 0 < ǫ < I and set h1 = ǫ for any exogenous shock and start

capital. Set capital savings according to the budget constraint. Then, the value of

y1 does not change the value of the Lagrangian. The nonnegativity of the other

two multipliers ensures L(h, y) < ∞.

Semicontinuity: What is missing to conclude, is the continuity property of

the Lagrangian in the policies h ∈ H as well as in the Lagrange multipliers y ∈ D,

which simply follows from the definition of the Lagrangian. Q.E.D.

A.3. Proof of Proposition 8

Proof: Because maxh∈H(h
n+1−h) = hn+1 ≤ X(z′, k,K), Equation (15) implies

that

〈hn+1 − h,∇L̃
(
hn+1, yn;hn

)
− v〉 ≤

ǫ2

2λ
, ∀h ∈ H,

where

L̃
(
hn+1, yn;hn

)
=LA

(
hn+1, yn;hn

)
−

1

2λ
(h1 − hn

1 )
2 −

1

2λ
(h2 − hn

2 )
2

v =
1

λ

(
hn − hn+1

)
.
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Adding a zero and applying the definition of the gradient then implies

[

L̃
(
hn+1, yn;hn

)
− L̃ (h, yn;hn)

]

−
[

L̃
(
hn+1, yn;hn

)
− L̃ (h, yn;hn)

]

+ 〈h− hn+1, v −∇L̃
(
hn+1, yn;hn

)
〉 ≤

ǫ2

2λ

⇒







L̃ (hn+1, yn;hn)− L̃ (h, yn;hn) + 〈h− hn+1, v〉 ≤ ǫ2

2λ

L̃ (hn+1, yn;hn)− L̃ (h, yn;hn) + 〈h− hn+1,∇L̃ (hn+1, yn;hn)〉 ≤ 0

for all h ∈ H. Note that L̃(., yn;hn) = L(., yn+1) with L as in (14). Therefore, we

have that v ∈ T
ǫ2/(2λ)
L (hn+1), which leads to hn+1 ∈

(

Id+ λT
ǫ2/(2λ)
L

)−1

(hn) and

concludes the proof. Q.E.D.

A.4. Proof of Theorem 9

In order to proof Theorem 9, we first need to establish that the optimal policies

h2 and h1 as computed in the proximal point algorithm are analytic in the basic

random variables ξ0 and ξ1. It is clear from equation (12) that the optimal policies

depend on the basic random variables through the projection coefficients ϕj
i , i ∈

{0, 1, . . .}, j ∈ {0, 1}.

Proposition 11 (Analytic policies) Under the assumptions of Theorem 9, all

iterates of the consumption policy, the savings policy and the Lagrange multipliers

as functions of ξj admit analytic extensions in the complex plane, namely in the

region Σ (τ j,Γj) given in Theorem 9. Furthermore, it holds that

max
x∈Σ(τ j ,Γj)

|f(x)| ≤ max
f

∣
∣cf ,j

∣
∣

A

A− τ

where f is a handle for the policies and Lagrange multipliers.

Proof: The proof proceeds in two steps. First, we establish that all iterates of

the policies and hence, Lagrange multipliers are real analytic functions of the basic

random variables. Secondly, we construct the complex analytic extension.

Real analytic: Equation (15) implies that the (n + 1)-th iterate of the con-

sumption policy hn+1
1 and the savings policyhn+1

2 in the proximal point algorithm
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solve the following first-order conditions

X
∂LA

∂hn+1
1

= e1(18)

X
∂LA

∂hn+1
2

= e2(19)

with constants ‖e1‖, ‖e2‖ ≤ ǫ2

2λ
for any fixed exogenous shock and start capital

(z′, k) . Now let us take the derivatives of the first-order conditions (18) and (19)

w.r.t. ξ0 and ξ1. It is obvious that X, e1 and e2 do not depend on the basic

random variables. The partial derivatives of the augmented Lagrangian, however,

do because the optimal policies and hence, also the Lagrange multipliers depend

on ξ0 and ξ1. Additionally, the next-period aggregate capital K ′ depends on the

basic random variables, which is due to (6). Using polynomial chaos as in (13),

the next-period aggregate capital can be written as

K ′ =
1∑

g,j=0

p(z
ag′ ,g)|(zag ,j)

pzag
′
|zag

∫ ∞

−∞

hn+1
2

(

zag
′

, g,
∞∑

i=0

ϕj
iΦ

j
i

(
ξj
)
,
{
ϕ0
i0
, ϕ1

i1

}∞

i0,i1=0

)

dF j
(
ξj
)
.

The derivatives of the first-order conditions w.r.t. ξ0 and ξ1 hence satisfy

∂2LA

[∂hn+1
1 ]2

︸ ︷︷ ︸

=:LA
1

∂hn+1
1

∂ξj
+ λ

∂hn+1
2

∂ξj
=

∂

∂ξj

(
1

λ
hn
1 + yn1 + {hn+1

1 ≤yn2 /λ}
yn2

)

︸ ︷︷ ︸
=:g1

λ
∂hn+1

1

∂ξj
+

∂2LA

[∂hn+1
2 ]2

︸ ︷︷ ︸

=:LA
2

∂hn+1
2

∂ξj
=

∂

∂ξj

(
1

λ
hn
2 + yn1 + {hn+1

2 ≤yn3 /λ}
yn3

)

︸ ︷︷ ︸
=:g2

−
∂2LA

∂hn+1
2 ∂K ′

︸ ︷︷ ︸

=:LA
K′

∂K ′

∂ξj
,

where j ∈ {0, 1}. This system of equations is easily solved:

∂hn+1
1

∂ξj
=

1

LA
1 L

A
2 − λ2

(

LA
2

∂g1
∂ξj

− λ
∂g2
∂ξj

+ λLA
K′

∂K ′

∂ξj

)

∂hn+1
2

∂ξj
=

1

LA
1 L

A
2 − λ2

︸ ︷︷ ︸

=:d

(

LA
1

∂g2
∂ξj

− LA
1 L

A
K′

∂K ′

∂ξj
− λ

∂g1
∂ξj

)

.

Note that ∂K ′/∂ξj is well defined since our admissible set from Proposition 10

requires h2 to have bounded first variation and the polynomial chaos expansion
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∑∞
i=0 ϕ

j
iΦ

j
i is real analytic. Now, applying conditions (16) and (17) results in
∥
∥
∥
∥

∂hn+1
1

∂ξj

∥
∥
∥
∥

≤
1

d

{
LA
2

λ
ch

n
1 ,j + ch

n
2 ,j +

(
LA
2 + λ

)
cy

n
1 ,j + LA

2 c
yn2 ,j + λcy

n
3 ,j(20)

+λLA
K′c

Φ,j
}
1!

∥
∥
∥
∥

∂hn+1
2

∂ξj

∥
∥
∥
∥

≤
1

d

{

ch
n
1 ,j +

LA
1

λ
ch

n
2 ,j +

(
LA
1 + λ

)
cy

n
1 ,j + λcy

n
2 ,j + LA

1 c
yn3 ,j(21)

+LA
1 L

A
K′c

Φ,j
}
1!

Furthermore, by taking the derivative of the Lagrange multipliers, defined in line

5 of Algorithm 1 or line 8 of Algorithm 2, and applying condition (17) together

with (20) and (21), we obtain
∥
∥
∥
∥

∂yn+1
1

∂ξj

∥
∥
∥
∥

≤
λ

d

{
LA
2 + λ

λ
ch

n
1 ,j +

LA
1 + λ

λ
ch

n
2 ,j +

(
d

λ
+ LA

1 + LA
2 + 2λ

)

cy
n
1 ,j(22)

+
(
LA
2 + λ

)
cy

n
2 ,j +

(
LA
1 + λ

)
cy

n
3 ,j +

(
LA
1 + λ

)
LA
K′c

Φ,j
}
1!

∥
∥
∥
∥

∂yn+1
2

∂ξj

∥
∥
∥
∥

≤
λ

d

{
LA
2

λ
ch

n
1 ,j + ch

n
2 ,j +

(
LA
2 + λ

)
cy

n
1 ,j +

(
d

λ
+ LA

2

)

cy
n
2 ,j(23)

+λcy
n
3 ,j + λLA

K′c
Φ,j
}
1!

∥
∥
∥
∥

∂yn+1
3

∂ξj

∥
∥
∥
∥

≤
λ

d

{

ch
n
1 ,j +

LA
1

λ
ch

n
2 ,j +

(
LA
1 + λ

)
cy

n
1 ,j + λcy

n
2 ,j +

(
d

λ
+ LA

1

)

cy
n
3 ,j(24)

+LA
1 L

A
K′c

Φ,j
}
1!.

The equations for higher-order derivatives are analogous. Therefore, as condition

(17) is equivalent with f being analytic in ξ0 and ξ1, the iterates in the proximal

point algorithm stay analytic in ξ0 and ξ1 on the whole domain except at the

points hn+1
1 = yn2 /λ and hn+1

2 = yn3 /λ due to the inequality constraints. As we

have flexibility on the error (e1, e2) in the first-order conditions (18) and (19),

however, we can always achieve hn+1
1 6= yn2 /λ and hn+1

2 6= yn3 /λ so that there are

no singularities. That all iterates are real analytic follows by induction.

Complex continuation: We define the following power series for the (n+1)-th

iterate on the complex plane

f(x) =
∞∑

p=0

(x− ξj)
p

p!

∂p

[∂ξj]p
f
(
ξj
)
,

where f = [h1 h2 y1 y2 y3 κj]T , where κj denotes the polynomial chaos ex-

pansion of the cross-sectional distribution. Note that we dropped the iteration

count superscript for notational ease here. Taking norms and exploiting equations



41

(20)-(24) leads to

|fi(x)| ≤
∞∑

p=0

∥
∥
(
x− ξj

)
Id
∥
∥
p

∞
‖A‖p∞ max

i=1,...,5

∣
∣cfi,j

∣
∣

≤ max
i=1,...,6

∣
∣cfi,j

∣
∣

∞∑

p=0

∣
∣x− ξj

∣
∣
p
‖A‖p∞ , i ∈ {1, . . . , 5},(25)

where Id denotes the identity matrix and the matrix A directly results from

equations (20)-(24) and (16)

(26)

A =
λ

d














LA
2

λ2
1
λ

LA
2 +λ

λ

LA
2

λ
1 LA

K′

1
λ

LA
1

λ2

LA
1 +λ

λ
1

LA
1

λ

LA
1 LA

K′

λ
LA
2 +λ

λ

LA
1 +λ

λ
d
λ
+ LA

1 + LA
2 + 2λ LA

2 + λ LA
1 + λ

(
LA
1 + λ

)
LA
K′

LA
2

λ
1 LA

2 + λ d
λ
+ LA

2 λ λLA
K′

1
LA
1

λ
LA
1 + λ λ d

λ
+ LA

1 LA
1 L

A
K′

0 0 0 0 0 1














.

Note that all entries of matrix A are bounded due to the assumptions in Propo-

sition 10. The power series in (25) converges for |x − ξj| ≤ τ j < 1/‖A‖∞ such

that

|fi(x)| ≤ max
i=1,...,6

∣
∣cfi,j

∣
∣

1

1− τ‖A‖∞
.

Therefore, by continuation the iterates can be extended analytically in the whole

region Σ(τ j,Γj), which concludes the proof. Q.E.D.

Remark Note that we follow the proof of Theorem 4.1 in Babuška et al. (2007)

with bounded range of the basic random variables for our proof of Theorem 9. We

use bounded range since we choose a histogram approximation of the basic random

variables. For other types of approximation, one might need to modify the error

bound estimates to accommodate an unbounded range. We refer to Babuška et al.

(2007) for that case.

Proof of Theorem 9: The last term of the bound is the interpolation error

from tensor-product finite elements of order 1 on a rectangular discretization D.

It is well established (see e.g., Brenner and Scott, 2007, Theorem 4.6.14). The er-

ror bound due to truncation of the polynomial chaos expansion is a little more

involved. Due to the fact that the continuous functions of the basic random vari-
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ables are a subset of the square-integrable functions, i.e., C0(Γj) ⊂ L2(Γj), we

have that the truncation error is bounded by the best approximation error (see

Babuška et al., 2007, Lemma 4.3)

∥
∥h− hM

∥
∥
L2 ≤ b inf

w∈HM
‖h− w‖C0 ,

where constant b is independent of the order of truncationM . Given that h admits

an analytic extension on the complex plane Σ(τ j ,Γj), the best approximation error

is bounded by (see Babuška et al., 2007, Lemma 4.4)

inf
w∈HM

‖h− w‖C0(Γj) ≤
2

ηj − 1
e−M log(ηj) max

x∈Σ(τ j ,Γj)
|h(x)| , j ∈ {0, 1},

where

ηj =
2τ j

|Γj|
+

√

1 +
4(τ j)2

|Γj|2
> 1.

Combining this with Proposition 11 and keeping in mind that we truncate once

for the unemployed distribution and once for the employed distribution leads to

the truncation error bound. Q.E.D.
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