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Abstract

We study how individuals repay their debt using linked data on multiple credit cards from
�ve major issuers. We �nd that individuals do not allocate repayments to the higher interest
rate card, which would minimize the cost of borrowing. Instead, individuals seem to allocate
repayments using a balancing-matching heuristic by which the share of repayments on
each card is matched to the share of balances on each card. We show that balance matching
captures more than half of the predictable variation in repayments, performs substantially
better than other models, and is highly persistent within individuals over time. Consistent
with these �ndings, we show that machine learning algorithms attribute the greatest
variable importance to balances and the least variable importance to interest rates in
predicting repayment behavior.
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1 Introduction

Borrowing decisions underpin a broad set of economic behavior. Individuals borrow to smooth

their consumption over the life-cycle, invest in human capital, and purchase durable goods,

among other reasons. Thus, understanding how individuals borrow has implications for many

�elds of economic research, and for consumer �nancial policy.

This paper aims to shed light on this question by studying how individuals choose to

repay debt – and thus implicitly how to borrow – across their portfolio of credit cards. We

have a dataset with rich information on credit card contract terms, billing information and

repayments for 1.4 million individuals in the United Kingdom over a two-year period. Unlike

other leading credit card datasets, our data allows us to link multiple credit card accounts held

by the same individual.1 We study how individuals choose to allocate repayments across their

credit cards, holding the total repayment amount �xed.

The credit card repayment decision is an ideal laboratory for studying borrowing because

optimal behavior – that is, behavior that minimizes interest charges – can be clearly de�ned.

Consider individuals with exactly two cards. Holding the total amount repaid on both cards

in a particular month �xed, it is optimal for individuals to make the minimum payment on

both cards, repay as much as possible on the higher interest rate card, and only allocate further

payments to the lower interest rate card if they are able to pay o� the higher interest rate

card in full. What sets the credit card repayment decision apart from many other �nancial

decisions is that optimal behavior does not depend on preferences (such as risk preferences or

time preferences).2 This allows us to evaluate models of optimal and heuristic behavior without

having to jointly identify (heterogeneous) preferences.

We start by showing that Ponce et al.’s (2017) �nding of non-optimal credit card borrowing

1 For instance, neither the OCC’s Consumer Credit Panel nor the CFPB’s Credit Card Database are designed to
permit linking of accounts held by the same individual. The credit bureau datasets that combine information from
multiple accounts held by the same individual do not have information on interest rates or repayments. There are
a number of opt-in panels such as the Mint.com data and Lightspeed Research’s “Ultimate Consumer Panel” that
have information on multiple cards, but only for a self-selected sample of individuals.

2 For example, optimal mortgage choices are dependent on risk preferences (in the decision to use an adjustable
or �xed rate mortgage) and time preferences over the real option to re�nance in the future (see, Campbell and
Cocco, 2003). There are very few institutional settings in which optimal mortgage choices can be clearly de�ned,
such as in the Danish mortgage market (see, Andersen et al., 2015). The optimal credit card spending allocation is
dependent on rewards programs, such as cash-back or airline points. Even when the terms of the rewards program
are known, the optimal spending allocation depends on individuals’ (idiosyncratic) value of features.
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in Mexico is highly robust to the U.K. credit card market where we have data. Our baseline

analysis focuses on individuals who hold exactly two cards in our data. For these individuals,

the average di�erence in Annual Percentage Rate (APR) between the high and low interest

rate cards is 6.5 percentage points, approximately one-third of the average 19.7% APR in our

sample. If these individuals were completely unresponsive to interest rates, it is natural to

assume that they would allocate 50.0% of their payments to each card on average. To minimize

interest charges, we calculate that individuals should allocate 70.8% of the payments to the high

APR card.3 We show that individuals allocate only 51.2% of their payments to the high APR

card, behavior that is virtually indistinguishable from the completely non-responsive baseline.

Establishing this result is not the main focus of our analysis, but a necessary �rst step before

going on to investigate alternative models.

If individuals do not optimally allocate their credit card repayments, what explains their

repayment behavior? One potential explanation is that individuals face a �xed cost of opti-

mization – such as the time, psychological, or cognitive costs associated with determining the

optimal repayment allocation (Sims, 2003). For some individuals, the reduction in interest costs

may be too low to rationalize this �xed cost. We show, however, that the share of misallocated

repayments does not decline even for individuals with the largest di�erences in interest rates

across cards (more than 15 percentage points) or for individuals who repay the largest amounts

(more than £800 in a month). The observed behavior, thus, seems inconsistent with a �xed-cost

model of optimization. We also �nd that the degree of misallocation does not decrease with

time since account opening, indicating that learning cannot explain the observed behavior.

The main contribution of this paper is to evaluate heuristics that might better explain the

observed allocation of credit card payments. We �rst consider a balance-matching heuristic

under which individuals match the share of repayments on each card to the share of balances on

each card. Making payments in proportion to balances might result from the fact that balances

are saliently displayed on credit card statements. The balance-matching heuristic is also closely

related to “matching” behavior that has been observed in other domains (discussed below), and

3 The number is less than 100% because we require individuals to make the minimum payment on the low interest
rate card and because individuals who can pay o� the full balance on the high APR card should allocate remaining
payments to the low interest rate card.
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thus may result from a deeper underlying tendency for proportionality in decision-making.

We also consider four alternative heuristics, such as the “debt snowball method” (under which

payments are concentrated on the card with the lowest balance), which is recommend by some

�nancial advisors.

We assess the explanatory power of these di�erent repayment models using standard

measures of goodness-of-�t (root mean square error, mean absolute error) and by calculating

the correlation between predicted and observed repayments. To provide a lower benchmark,

we calculate goodness-of-�t under the assumption that the percentage of repayments on the

high APR card is randomly drawn from a uniform distribution with support on the 0% to 100%

interval. To provide an upper benchmark, we use machine learning techniques to �nd the

repayment model that maximizes out-of-sample �t using a rich set of explanatory variables.

We �nd that balance matching captures more than half of the “predictable variation” in

repayment behavior. That is, based on the the range determined by the lower benchmark of

random repayments and the upper benchmark of the machine learning models, we �nd that

balance matching is closer to the upper benchmark on all of our measures. We also show

that the optimal repayment rule and the other heuristic models do not come close to balance

matching in their ability to match the data, capturing less than a quarter of the predictable

variation for most of our measures.

In addition to providing us with an upper benchmark, the machine learning models also

provide use with a “model free” method for assessing the relative importance of interest rates

versus balances in predicting repayment behavior. Consistent with the poor �t of the optimal

repayment rule, we �nd that interest rates have the lowest variable importance (i.e., partial

R-squared) in our machine learning models. Indeed, in the decision tree model that maximizes

out-of-sample �t, interest rates do not even enter the model. Consistent with balance matching

results, we �nd that balances have the highest variable importance, with importance factors

nearly twice as large as any of the other explanatory variables.

We also evaluate each of our models in “horse race” type analysis where we determine

the best �t model on an individual ⇥ month basis. In binary tests, balance matching is the best

�t model for twice as many observations as either the uniform, optimal, and other heuristics
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models. Balance matching performs comparably to the machine learning models. We also

show that balance matching exhibits a high degree of persistence within individuals over time,

suggesting that balance matching is more than a good statistical model but is actually capturing

a stable feature of individual decision-making.

An alternative explanation for the balance-matching result could arise from individuals

anchoring their repayments to minimum payment amounts (Keys andWang, 2017). If minimum

payments are proportional to balances and individuals allocate repayments across cards based

on relative minimum payments (or set payments at multiples of minimum payment amounts),

then anchoring on minimum payments could produce the observed balance-matching behavior.

We evaluate this alternative explanation by exploiting non-linearities in minimum payment

rules. Most minimum payment amounts are calculated as the maximand of a �xed amount (the

“�oor”) and a percentage of the balance (the “slope”). For individuals with lower balances, the

�oor is binding and minimum payments do not vary with balances. We show that for individuals

with binding “�oors,” the allocation of repayments is strongly correlated with balance-matching

amounts but not with the ratio of minimum payments, indicating that minimum payments are

not driving our �ndings. We note that while minimum payments are not driving our �ndings,

our analysis does not imply that minimum payments are irrelevant for repayment behavior.

Our point is simply that minimum payments do not seem to be generating a spurious balance

matching result.

Our �ndings are related to a number of strands of literature. Our result on non-optimal

repayments is closely related to the aforementioned Ponce et al. (2017) study and a working

paper on the same topic by Stango and Zinman (2015). Ponce et al. (2017) study borrowing

using linked data from Mexico and also �nd that borrowing is highly non-optimal. Stango

and Zinman (2015) use data from Lightspeed Research’s “Ultimate Consumer Panel”, an opt-in

sample of U.S. borrowers. In contrast to our results, they �nd that individuals are much more

likely to make optimal allocations when the stakes are large. However, it is unclear whether

these �ndings are unique to the opt-in sample of individuals that they study. The �rst, modest,

contribution of our paper is to show that the non-optimal behavior documented in Ponce et al.

(2017) in Mexico extends to the U.K. market that we study.
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Our main result on balance matching relates to a literature in psychology and economics

on heuristics in individual decision-making. The fact that individuals focus on balances, which

are prominently displayed on credit card statements, connects to a literature on how saliently

placed information can provide an anchor for choices (e.g., Tversky and Kahneman, 1974; Ariely

et al., 2003; Bergman et al., 2010). Our �nding on balance matching also shares a resemblance

with a long line of research on probability matching. For instance, Rubinstein (2002) shows, in an

experimental study, that subjects diversify when choosing between gambles with a 60% and 40%

chance of winning, even though the option with a 60% chance of winning dominates any other

strategy (see Vulkan, 2000 for a review of this literature). Balance matching is also reminiscent

of the classic Benartzi and Thaler (2001) result on how investors in de�ned-contribution saving

plans allocate funds such that the proportion invested in stocks depends strongly on the

proportion of stock funds in the choice set.4

The caveats to our analysis largely stem from the fact that we focus on the allocative

decision of how individuals split repayments across their portfolio of credit cards. While this

decision greatly simpli�es the analysis, our estimates of the degree of non-optimal behavior

should be interpreted as lower bounds relative to a counterfactual in which individuals could

additionally reallocate debt payments across non-credit card loans (such as mortgages or

automobile loans) or make adjustments on the extensive margin (e.g., by adjusting the tradeo�

between debt repayment and consumption). Our focus on the allocative decision also naturally

leads us to consider “allocative heuristics,” such as balance matching, rather than heuristics

that determine behavior on the extensive margin. For example, balance matching could arise

from individuals repaying a �xed percentage (e.g., 10%) of their balances, a rule-of-thumb that

would lead to ine�cient behavior on both the allocative and extensive margins.

The rest of the paper proceeds as follows. Section 2 describes our data and presents sum-

mary statistics for our baseline sample. Section 3 presents our results on the optimality of

repayment behavior. Section 4 examines rounding and a 1/n rule for repayments. Section 5 lays

out alternative heuristics for debt repayment, including the balance-matching heuristic. Sec-

tion 6 tests between these repayment models. Section 7 presents sensitivity analysis. Section 8

4 See DellaVigna (2009) for a review of the evidence on choice heuristics using �eld data.
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concludes.

2 Data

2.1 Argus Credit Card Data

Our data source is the Argus Information and Advisory Services’ “Credit Card Payments Study”

(CCPS). Argus provided us with detailed information on contract terms and billing records

from �ve major credit card issuers in the UK. These issuers have a combined market share of

over 40% and represent a broad range of credit card products and market segments. We have

obtained a 10% representative sample of all individuals in the CCPS who held a credit card

between January 2013 and December 2014 with at least one of the �ve issuers. Unlike other

leading credit card datasets, the CCPS provides us with anonymized individual-level identi�ers

that allow us to link multiple accounts held by the same individual.5

2.2 Sample Restrictions

Our interest lies in understanding how individuals make repayment decisions across their

portfolio of credit cards. Our unit of analysis is the individual ⇥ month. All of the credit cards

in our data require payments on a monthly basis. We consider cards to be in the same “month”

if their billing cycles conclude in the same calendar month. We examine sensitivity to this

assumption in Section 7.

For our baseline analysis, we focus our analysis on the roughly 250,000 individuals who

hold exactly two cards for at least part of the sample period.We do this to simplify the exposition.

Relative to individuals with three or more cards, it is easier to explain how we calculate optimal

repayments and easier to display deviations from optimality in �gures and tables in the two-

card sample. We do, however, show that our main �ndings are robust to considering individuals

with three or more cards.

We restrict our attention to observations in which individuals face economically meaningful

5 As discussed in Footnote 1, neither the OCC’s Consumer Credit Panel nor the CFPB’s Credit Card Database
are designed to permit matching of multiple individually-held accounts, and credit bureau datasets typically do
not have information on interest rates or repayments. Opt-in panels such as Lightspeed Research’s “Ultimate
Consumer Panel” have information on multiple cards, but only for a self-selected sample of individuals.
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decisions about how to allocate their repayment across cards. This is crucial for our analysis:

for instance, individuals who repay balances on both cards in full each month (“transactors”)

never generate interest charges and therefore do not face an allocative decision problem

with economic consequences. Speci�cally, we restrict the sample to observations where the

individual (i) holds a revolving balance on both of their cards, (ii) makes at least the minimum

repayment on both cards, (iii) pays more than the minimum repayment on at least one card,

and (iv) does not pay both cards down in full. For these observations, the individual faces a

choice over how much to repay on each card, with interest charges necessarily incurred on at

least one card. Applying these sample restrictions provides a baseline sample of approximately

108,000 individuals, 43% of all two-card individuals in the data, covering approximately 395,000

individual ⇥ month observations.

Table 1 provides summary statistics on the baseline sample. The average di�erence in

APR (for purchases) between the high and low interest rate card is 6.3 percentage points, or

approximately one-third of the 19.7% average purchase APR in the sample. Yet despite this

substantial di�erence in prices, by most measures, individuals borrow more on the high APR

card. While monthly repayments are marginally larger on the high APR card (£260 versus

£230), revolving balances are larger on the high APR card (£2,197 versus £2,049). This is all

the more striking given that average credit limits are almost three times larger than revolving

balances (£6,386 versus £6,010), indicating that the average borrower would be able to shift all

of their borrowing to the lower APR card without exceeding their credit limit.

3 Actual and Optimal Repayment

We start by comparing the actual and interest-cost-minimizing allocation of repayments across

cards. We refer to the interest-cost-minimizing allocation as the “optimal” allocation because

it is hard to think of a (reasonable) scenario where minimizing interest costs would not be

optimal. Holding the total repayment amount on both cards �xed, it is optimal for individuals

to make the minimum required payment on both cards, repay as much as possible on the card

with the higher interest rate, and only allocate further payments to the lower interest rate card
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if they are able to pay o� the high interest rate card in full.6

We focus on repayments, rather than other measures of credit card use like spending or

revolving balances, because, for repayments, we can clearly de�ne optimal behavior. In contrast,

optimal spending behavior may depend upon rewards programs, which we do not observe

in our data.7 We also do not focus on the optimality of revolving balance allocations because

revolving balances are a “stock” that cannot typically be quickly adjusted.8 Thus, determining

whether revolving balances are “optimal” would require us to take a stand on how individuals

could reallocate revolving balances through counterfactual spending and repayment decisions

over a sequence of months (if not years).

Figure 1 plots actual and optimal repayments for individuals with di�erent numbers of

cards. As discussed in Section 2, we restrict the samples to individual ⇥ months in which

individuals face an economically meaningful allocative decision. Panel A plots the distribution

of actual and optimal payments in the two-card sample. The distribution of actual repayments

appears close to symmetric, with a mass point at 50%, and smaller mass points 33% and 67%. In

contrast, the distribution of optimal repayments is heavily weighted towards the high APR

card.

Panels B to D show radar plots of the average percentage of actual and optimal payments

on each card for the samples of individual ⇥ months in which individuals hold 3, 4, and 5 cards.

In each of the plots, the cards are ordered clockwise from highest to lowest APR (starting at

the �rst node clockwise from 12 o’clock). As in the two-card sample, the actual percentage of

payments is very similar across cards, but it would be optimal to allocate a substantially higher

percentage of payments to the highest APR card and a substantially lower percentage to the

card with the lowest APR.

Summary data for actual and optimal repayments for the two-card sample is shown in

6We explicitly rule out the possibility that choosing not to make the minimum payment on the low interest rate
card could be optimal. Failing to repay the minimum repayment on the low-APR card would incur a penalty fee
and a marker on the individual’s credit �le.

7While issuers typically incur only a small cost for the rewards they provide – approximately 1%, see Agarwal et al.
(2015) – individuals might value rewards (such as airline points) at a high enough value to a�ect optimal spending
decisions.

8 In particular, with the exception of balance transfer products in the prime credit card market, individuals can only
reallocate their stock of revolving balances by adjusting the �ow of spending and repayment on a month-by-month
basis.
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Table 2. On average, individuals should allocate 70.8% of repayments to the higher-APR card,

whereas they actually allocate 51.2% to that card. Hence, individuals misallocate 19.6% of

their total monthly payment on average. In Figure A1 we plot misallocated repayments in

excess of the minimum payment. That is, we subtract out the amount required to make the

minimum payment on each card and then calculate the share of the remaining amount that is

allocated across cards. On average, individuals should allocate 97.1% of payments in excess of

the minimum to the high-APR card, whereas in practice they actually allocate 51.5% to that

card.9 Summary data for payments in excess of minimum are shown in Table A1.

3.1 Fixed Costs of Optimization

One potential explanation for the non-optimality of repayments is that some individuals face a

�xed cost of optimization – such as the time, psychological, or cognitive costs associated with

determining the optimal repayment strategy (Sims, 2003). For some individuals, the reduction

in interest payments from cost-minimizing may be too low to rationalize incurring this �xed

cost.

To investigate this potential explanation, we examine the correlation between the percent-

age of misallocated repayments and the economic stakes of the repayment decision. We de�ne

misallocated payments as di�erence between optimal and actual payments on the high APR

card. We examine two measures of the economic stakes: (i) the di�erence in APR across cards

and (ii) the total repayments made that month. Since the gains from optimizing are increasing

in the economic stakes, under the �xed cost explanation, the percentage of misallocated repay-

ments should be declining in both measures. Moreover, for individuals with large economics

stakes, we would expect the degree of misallocation to be close to zero.

Panel A of Figure 2 shows a binned-scatter plot of the percentage of misallocated payments

against the di�erence in APR between the high and low interest rate cards. The binned-scatter

plot is constructed by partitioning the x-axis variable into 20 equal-sized groups and plotting

the mean of the y-axis and x-axis variables for each group.10 The �at relationship indicates

9 The number is not exactly 100% because sometimes individuals can pay o� the full balance by allocating a smaller
amount, in which case they should allocate the remaining amount to the low interest rate card.

10 See Chetty et al. (2014) for more details on the binned-scatter plot methodology.
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that individuals are not less likely to misallocate repayments even when there is a large APR

di�erence (more than 15 percentage points).11

Panel B of Figure 2 shows a binned-scatter plot of the percentage of misallocated payments

against total repayments across both cards. Again, there is no evidence of a decreasing relation-

ship. Indeed, the relationship is increasing due to the fact that individuals who make the largest

payments can cover the minimum on the low interest rate card with a smaller percentage of

their overall allocation and thus should allocate an even larger fraction of payments to the high

APR card.12

Another potential explanation for the observed non-optimal behavior is that individuals

learn over time (e.g., since opening a card), and that our analysis of the cross-sectional distri-

bution of repayments masks this learning behavior. A model with time-varying adjustment

costs (in the spirit of Calvo, 1983) would also generate a gradual reduction in the degree of

misallocation over time.

Panel C of Figure 2 examines this explanation by showing a binned-scatter plot of the

percentage of misallocated payments against the age (in months) of the high APR card. For this

analysis, we restrict the sample to individuals who open a high APR during our sample period

and for whom we can observe economically meaningful allocation decisions for 10 consecutive

months. In the plot, the horizontal axis starts in the second month after opening, since this is

the �rst month in which individuals could have a balance on the high APR card to repay. The

plot shows no evidence of a reduction in the percentage of misallocated repayments over time.

This �nding suggests that neither learning nor time-varying adjustment costs can explain the

observed non-optimizing behavior.13

11 Panel A of Figure A1 illustrates the relationship between misallocated payments in excess of the minimum
payment and the di�erence in APR across cards.

12 Panel B of Figure A1 illustrates the relationship between misallocated payments in excess of the minimum
payment and the total repayment across both cards. There is a slight downward slope, but certainly not the type
of relationship that would be predicted by a �xed-cost-of-optimization model.

13 Panel C of Figure A1 illustrates the relationship between misallocated payments in excess of the minimum payment
and the age (in months) of the higher APR card.
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4 Rounding and the 1/n Rule

The spike in repayments at 50% (see Panel A of Figure 1) suggests that some individuals use a

simple 1/n heuristic in which they make equal-sized repayments across cards, analogous to the

1/n heuristic documented in de�ned-contribution savings decisions (Benartzi and Thaler, 2001).

However, an alternative explanation is that individuals round payments to £50, £100, £200, and

so on. If an individual rounds up a payment on card A from £80 to £100 and rounds down a

payment on card B from £120 to £100, then the individual would appear as if she intended to

make equal-sized payments, even though, absent rounding, the share of payments on each card

would be substantially di�erent from 50%.

Figure 3 investigates this competing explanation for the spike at 50%. Panel A plots the

distribution of payments in £s, and shows substantial evidence of rounding. We calculate that

19.2% of payments take on values that are multiples of £100, and 33% of payments take on

values that are multiples of £50 (which obviously includes payments that are multiples of £100).

Panel B shows the percentage of payments on the high APR card for the subset of accounts

that make payments that are multiples of £50; Panel C shows the percentage of payments on

the high APR card for the subset of accounts that pay other (“non-round”) amounts.

The plots show that the peaks at 50% repayment on the high APR card (as well as 33%

and 66%) are heavily concentrated among individuals who make round number repayments

(de�ned as multiples of £50). Among the remainder of the sample, who do not make round

number payments, there is only a small spike at 50%, and no discernible spike at 33% or 66%.

We therefore view the spike at 50% as a red herring that, while temping to over-interpret,

does not provide compelling evidence for the 1/n heuristic. Instead, we think that the more

likely explanation for the spike at 50% is rounding behavior. Of course, since we do not have

random variation in whether individuals round, we cannot rule out the possibility that some

individuals would have allocated 50% on the higher APR card if they had counterfactually not

rounded their payments. Thus, although we view this behavior as unlikely, we include the 1/n

rule in some of the analysis that follows.
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5 Balance Matching and Other Heuristics

If individuals do not optimally allocate their credit card repayments, what explains their

behavior? In the remainder of this paper, we evaluate heuristics that might better explain the

allocation of credit card repayments. In this section, we introduce the set of heuristics that we

consider. In Section 6, we evaluate the explanatory power of these models.

5.1 Balance Matching

We �rst consider a balance-matching heuristic by which individuals match the share of re-

payments on each card to the share of balances on each card. Let k = {A,B} index cards, qk

indicate balances and pk indicate payments. In a two-card setting, balance-matching payments

are given by

pA
pB
=
qA
qB
. (1)

Why would repayments follow a balance-matching heuristic? First, as shown in Figure A3,

balances are perhaps the most prominently displayed element on credit card statements. The

psychological theory of anchoring (Tversky and Kahneman, 1974) suggests that individuals

might make payments in relation to this saliently displayed amount (instead of less saliently

displayed interest rates).14,15

Second, the balance-matching heuristic is closely related to “matching” behavior that has

been observed in other domains, and thus may result from a deeper underlying tendency for

proportionality in decision-making. For instance, the probability matching literature �nds that

individuals place bets in proportion to the probability of payo�s, even though betting on the

option with the highest probability of payo� �rst-order stochastically dominants any other

decision.16 Herrnstein’s (1961) matching law is based on the observation that pigeons peck

14 A second reason why balances may be more salient is that balances are denote in the same units as repayments
(£s), whereas APR take on di�erent units (%).

15 Balances also enter the minimum payment formula. Therefore, at least in principle, repayments might depend on
balances indirectly through the minimum payment amount. We discuss this issue in Section 7 and show that this
channel is unlikely to explain our results.

16 For example, Rubinstein (2002) shows in an experimental study that subjects diversify across independent 60%-40%
gambles even though betting on the gamble with a 60% probability of payout is a strictly dominant strategy. See
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keys for food in proportion to the time it takes the keys to rearm rather than concentrating

their e�ort on the key that rearms most quickly. Balance matching is also reminiscent of the

classic Benartzi and Thaler (2001) result on how investors in de�ned-contribution saving plans

allocate funds such that the proportion invested in stocks depends strongly on the proportion

of stock funds in the choice set.17

Of course, we do not propose balance matching as a precise description of individual

repayment behavior. Pigeons do not measure the time is takes keys to rearm with a stopwatch

and we do not mean to suggest that individuals use long division to calculate the share of repay-

ments that should be allocated to each card. Instead, we propose that individuals approximate

balance matching in their repayment behavior. Indeed, since credit card balances are fairly

stable over time, an individual could approximate a balance matching rule without knowing

the exact balance on each card in any given month.

5.2 Other Heuristic Models of Repayment

We also consider four alternative heuristics that capture intuitive economic and non-economic

approaches to the allocation of payments. Some of these heuristics are based on the capacity of

a credit card, which we de�ne as the di�erence between the credit limit and current balance in

£s.

• Heuristic 1: Repay the card with the lowest capacity. Allocate payments to the lowest

capacity card, subject to paying the minimum on both cards. Once capacity is equalized

across cards, allocate additional payments to both cards equally. Intuitively, by focusing

payments on the card with the lowest capacity, this heuristic reduces the risk that an

accidental purchase will put an individual over their credit limit, which would incur an

over-limit fee.

• Heuristic 2: Repay the card with highest capacity. Allocate payments to the highest ca-

pacity card, subject to paying the minimum on both cards. Once the highest capacity card

is fully repaid, allocate remaining payments to the other card. Intuitively, by allocating

payments to the card with the highest capacity, this heuristic creates maximum “space”

Vulkan (2000) for a review on this literature.
17 See DellaVigna (2009) for a review of the evidence on choice heuristics using �eld data.
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for making a large purchase on a single card (e.g., buying a television).

• Heuristic 3: Repay the card with the highest balance. Allocate payments to the highest

balance card, subject to paying the minimum on the other card. Once balances are

equalized across cards, allocate additional payments to both cards equally. If individuals

dislike having a credit card with a large balance, this heuristic reduces the maximum

balance they are carrying, and thus might explain repayment behavior.

• Heuristic 4: Repay the card with the lowest balance (“debt snowball method”). Allocate

payments to the lowest balance card, subject to paying the minimum on the other card.

Once the balance on the lowest balance card is paid down to zero, allocate any additional

payments to the other card. This heuristic is sometimes referred to as the debt snowball

method by �nancial advisors. Proponents argue that paying o� a card with a low balance

generates a “win” that motivates further repayment behavior.

6 Testing Repayment Models

We evaluate balance matching and the other models using two statistical approaches. First, we

assess the explanatory power of each of the models using standard measures of goodness-of-�t.

Second, we evaluate the performance of our models in “horse race” type analysis where we

determine the best �t model on an individual ⇥ month basis.

6.1 Goodness-of-Fit

For our analysis of goodness-of-�t, we focus on the two-card sample. We also drop the 14.6%

observations where predicted repayments under balance matching would result in a payment

of less than the minimum or more than the full balance on at least one card.18 We consider

three measures of goodness-of-�t: the square root of the mean squared error (RMSE), the mean

absolute error (MAE), and the correlation between predicted and actual payments (Pearson

correlation).19 Our �ndings are consistent across each of these measures.

18We considered including these observations and assigning repayments to a corner solution (e.g., an individual
who would be predicted to repay less than the minimum would be assigned the minimum payment). However,
these individuals are typically predicted to be at corners under multiple models of behavior, and so including
these individuals does help us distinguish between models.

19 The Pearson correlation is the square root of the R-squared.

15



We start by establishing lower and upper benchmarks for model �t. For a lower benchmark,

we calculate goodness-of-�t under the assumption that the percentage of repayments on the

high APR card is randomly drawn from a uniform distribution with support on the 0% to 100%

interval. To provide an upper benchmark, we use machine learning techniques to construct a

set of purely statistical models of repayment behavior. Speci�cally, we estimate decision tree,

random forest, and extreme gradient boosting models of the percentage of payments allocated

to the high APR card. We use APRs, balances, and credit limits on both cards as input variables

and “tune” the models to maximize out-of-sample power. Technical details are provided in

Appendix I.

Table 3 shows our measures of goodness-of-�t under each of the models. The lower

benchmark of uniformly distributed payments has a RMSE of 36.4, MAE of 29.9, and a Pearson

correlation of 0. The optimal model yields only a very small improvement in the RMSE and a

modest improvement in theMAE. The optimal model does generate an economically meaningful

increase in the Pearson correlation, although this is partly due to the fact that the lower

benchmark is constructed to have a Pearson correlation of 0.

The balance-matching model �ts repayments substantially better than both the lower

benchmark of uniformly distributed payments and the optimal repayment model. Panel A of

Figure 4 shows the distribution of actual and balance matching payments on the high APR

card. The balance-matching heuristic naturally does not �t the spike in repayments at 50%,

but otherwise �ts the marginal distribution of actual payments fairly well. Panel B of Figure 4

displays the joint distribution of actual and balance matching payments using a contour plot.

The ridge along the 45-degree line indicates that the distributions are correlated. Figure A4

shows that the balance-matching heuristic �ts actual repayments particularly well in the

samples of 3, 4, and 5 cards.20 As shown in Table 3, the goodness-of-�t measures for the balance

matching model fall slightly more than halfway between the lower and upper benchmarks,

suggesting that balance matching captures more than half of the predictable variation in

repayment behavior.

The other heuristics do not come close to balance matching in their ability to �t the data.

20 Summary statistics for balance matching repayments on the higher cost card and actual repayments are shown in
Table A2.

16



Figure A5 shows the marginal density (left column) and joint density (right column) under

each of the other heuristics. One common feature of these other heuristics is that they predict

that individuals should often concentrate their repayments on a single card only. For instance,

under Heuristic 1 (repay the card with the lowest capacity), individuals should fully allocate

repayments, in excess of the minimum, to the card with the lowest capacity until the point

where both cards have equal capacity remaining. Individuals, however, seem to avoid “corner

solutions” in their repayment behavior. The marginal density plots (left column) show that

these heuristics over-predicted the share of individuals who allocate a very small (less 10%) or

very large (great than 90%) share of payments to the high APR card.21 Based on our measures

of goodness-of-�t, Table 3 shows that these heuristically typically fall less than a quarter of the

way between the lower and upper benchmarks, or capture less than a quarter of the predictable

variation in repayment behavior.

There are two ways to view this analysis from the perspective of the balance-matching

model. The glass half full view is is that being able to capture more than half of the predictable

variation in repayment behavior with a simple balance matching model is useful. Balance

matching is a useful description of behavior because it is easy to understand, reinforces existing

theories of behavior (e.g., probability matching, Herrnstein’s matching law), and might provide

intuition for individual behavior in yet-to-be-studied environments. The glass half empty

perspective is that machine learning techniques provide substantially higher predictive power.

Thus, if the goal is prediction – rather than understanding human behavior – machine learning

techniques may be preferable.

6.1.1 Balances and APRs in Machine Learning Models

In addition to providing us with an upper benchmark, the machine learning models also provide

use with a “model free” method for assessing the relative importance of di�erent variables in

predicting repayment behavior. Consistent with the balance matching results, the machine

learning models con�rm that balances are hugely important for predicting behavior. Table A4

shows that for the random forest and extreme gradient boosting models, balances have highest

21 Summary data for repayments under each heuristic is shown in Table A3.
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variable importance (i.e., partial R-squared), with importance factors nearly twice as large as

any of the other explanatory variables. This indicates for any model to have high predictive

power, it would need to have balances play an important role.

Consistent with the poor �t of the optimal repayment rule, we �nd that APRs have the

lowest variable importance. In particular, Figure A6 shows that APRs (on either card) do not

enter the decision tree model that maximizes out-of-sample �t. Alternatively put, while optimal

behavior depends almost fully on “prices,” the decision tree model completely ignores prices

in predicting the allocative decision. Table A4 shows that for the random forest and extreme

gradient boosting models, the variable importance is lowest for APRs.22 Table A5 shows that

including the APR variables only marginally improves the goodness-of-�t of these models.

6.2 Horse Races Between Alternative Models

The goodness-of-�t analysis e�ectively measures the distance between observed repayments

and predicted repayments under each of our models. An alternative approach to evaluating

the models is to conduct “horse race” type analysis where we determine the best �t model on

an observation-by-observation basis. A model that �ts a small number of observations very

poorly, but a larger number quite well, would perform poorly under most distance metrics (and

especially those with increasing loss functions) but might perform well using this alternative

approach.

6.2.1 Methodology

Let i denote individuals and t denote months. Let pit indicate the actual share of payments that

is allocated to the high APR card and let p̂jit indicate the share of payments on the high APR

card predicted by model j 2 � . To test between alternative models, we estimate speci�cations

of the form:

pit =
✓X

j2�

�jit p̂
j
it

◆
+ �it s.t. �jit 2 {0, 1} and

X

j

�jit = 1, (2)

22 Table A6 con�rms that APRs and balances on cards are not collinear. In cases where variables are collinear the
interpretation of variable importance may be spurious.
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where the �jit are indicators that “turn on” for one and only one of the candidate models j 2 � .

We vary the set of alternatives � to allow for horse races among di�erent competing sets of

models. Intuitively, for each observation pit , this procedure picks the model j that best �ts

observed repayment behavior at the individual ⇥ month level.

It is worth pointing out that our ability to identify the best-�t model at the individual ⇥

month level is due to the unique nature of the credit card repayment decision. As discussed in

Section 1, what sets credit card repayments apart from many other �nancial decisions is that

optimal behavior does not depend on preferences (such as risk preferences or time preferences).

If we needed to recover preferences, then identifying the best �t model would require jointly

estimating preferences and behavior under the di�erent models. The best we could do would

be to estimate heterogeneous preferences for di�erent demographic subgroups and then ask

which model best �ts behavior on a subgroup-by-subgroup level. What allows us to perform

this exercise at the individual ⇥ month level is that we do not need to recover preferences to

generate predicted behavior under the di�erent repayment models.

There are a few subtle issues involved in the estimation. The �rst involves “corner solutions.”

When a model predicts that an individual should pay less than the minimum amount or more

than the entire balance on a given card, we set the payments to the corner value and assign

the remaining payments to the other card (leaving total repayment across both cards �xed).

The second issue involves “ties”. When there are multiple models that are tied for closest to

the actual repayments, the �jit are not identi�ed, and so we drop these observations from our

analysis. We estimate the model by minimizing the absolute deviation between the observed

and predicted values.23

6.2.2 Results

Table 4 shows results of this horse race analysis in the pooled sample of individual ⇥ months.

Panel A compares each of our models one-by-one against the lower benchmark where the

percentage of repayments on the high APR card is randomly drawn from a uniform distribution

with support on the 0% to 100% interval. In a binary comparison, balance matching is the best

23 In practice, since we are estimating a separate set of coe�cients for every individual ⇥month, the estimates would
be identical under a quadratic (or any other monotonically increasing) loss function.
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�t model for 67% of observations, or about twice the percentage of the uniform benchmark. The

optimal model and the other heuristics are closest for slightly more than half of the observations,

and therefore only perform slightly better than the uniform benchmark. In binary comparisons,

the machine learning models have the best �t for between 63% and 72% of observations, which

is similar to balance matching.24

Panel B of Table 4 compares each of the models one-by-one to the balance matching

model.25 In a horse race with the optimal model, balance matching has the best �t for slightly

more than two-thirds of observations. When compared with the other heuristic models, balance

matching is also the best �t model for approximately two-thirds of observations. Balance match-

ing performs comparably to the machine learning models, with balance matching exhibiting

the best �t for 45% to 56% of observations.

To the extent that we think of the competing models as actually representing di�erent

models of individual decision-making, we would naturally expect the best-�t model to be

persistent within individuals over time. Table 5 shows the within-person transition matrix for

the best-�t model. The sample is restricted to individual ⇥months where we observe repayment

behavior for at least two months in a row. For this exercise, we allow the set � to encompass all

of the candidate models, and we �x the uniformly distributed repayment to be constant within

a individual over time.

The table shows the balance matching exhibits a high degree of persistence – both in

absolute value and relative to the other models of repayment behavior. Among individuals

whose repayments are best �t by the uniform model in a given month, 24% make repayments

that are closest to the uniform model in the next month. This persistence likely re�ects the

fact that balances and repayments are sticky over time – if the uniform model happens to be

accurate in a given month, and balances and payments are sticky, then the uniform model will

mechanically be accurate in the next month as well.

The balance-matching model exhibits three-fold greater persistence than the uniform

model. Among individuals whose repayments are closest to balance matching in a particular

24 Since the machine learning models were tuned to minimize RMSE, it is natural for these models to perform
relatively better when evaluated using RMSE (and other distance metrics) than when evaluated using this type of
horse race analysis.

25We exclude a comparison of balance matching and the uniform model, since it was shown in Panel A.
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month, 83% make payments that are closest to balance matching in the next month. The high

degree of persistence suggests that balance matching is more than a good statistical model but

is actually capturing a stable feature of individual decision-making. The optimal model and the

other heuristics exhibit persistence in the same range as the uniform model, which may just

re�ect stickiness in balances and repayments over time. The only other model that exhibits

strong persistence is the 1/n rule, suggesting that this model also captures a stable feature of

individual behavior (or that there is a stable tendency tendency to round repayments).

Taken together, our goodness-of-�t analysis supports the view that balance matching is

a powerful predictor of credit card repayments, capturing more than half of the predictable

variation in repayment behavior and performing substantially better than the alternative

models. In the horse race analysis, balance matching performs at a similar level to the machine

learning models, and is highly persistent over time, suggesting it is more than a good statistical

model but is actually capturing a stable feature of individual decision-making.

7 Sensitivity Analysis

7.1 Balance Matching and Minimum Payments

An alternative explanation for the balance-matching result could arise from individuals anchor-

ing their repayments to minimum payment amounts (Keys and Wang, 2017). Like balances,

minimum payments are prominently displayed on credit card statements (see Figure A3). If

minimum payments are proportional to balances and individuals allocate repayments across

cards based on relative minimum payments (or set payments at multiples of minimum payment

amounts), then anchoring onminimum payments could produce the observed balance-matching

behavior.

We evaluate this alternative explanation by exploiting non-linearities inminimum payment

rules. Most minimum payment amounts are calculated as the maximand of a �xed amount (the

“�oor”) and a percentage of the balance (the “slope”). For instance, a typical minimum payment
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formula might be:

Minimum Payment = max{£25, 2% ⇥ Balance}.

Consider an individual with two cards that both use this formula to calculate minimum payment

amounts. De�ne the minimum payments-matching heuristic as the payment allocation under

which the share of repayments on each card matches the share of minimum payments amounts

on each card. If minimum payments are on the “slope” part of the formula (balances greater

than £1,250), and the slopes are identical (2% for both cards), then the balance-matching

payments will be perfectly correlated with minimum payments-matching payments and it will

be impossible to tease apart these mechanisms. If, however, minimum payments are on the

“�oor” part of the formula (balances less than £1,250), then the balance-matching allocation will

not be correlated with the minimum payment-matching allocation, and it should be possible to

separately identify these mechanisms.

Figure 5 shows binned scatter plots of the correlation between the actual percentage of

payments on the high APR card and predicted payments under the balance-matching and

minimum payments-matching heuristics. The top row shows these relationships for individuals

where both cards are on the slope of the minimum payment formula and the bottom row shows

these relationships for individuals where both cards on the �oor part of the formula.

In the slope sample, the balance matching and the minimum payment matching payments

are highly correlated (� = 0.83).26 As a result, actual payments exhibit a similar correlation

with balance-matching payments (� = 0.51) and minimum payment matching payments

(� = .49), and we cannot identify whether the observed behavior stems from balance matching

or minimum payment matching behavior.

In the �oor sample, there is a much weaker correlation between the balance matching

payment and the minimum payment matching payment (� = 0.41). The correlation between

actual and balance matching payments in the �oor sample (� = 0.53) is similar to that in the

slope sample (� = 0.51). However, the correlation between actual and minimum payment

matching is much weaker in the �oor sample (� = 0.15) than in the slope sample (� = 0.49).

26 The correlation is not perfect because the magnitude of the slope term di�ers across cards.
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It thus follows that observed repayment behavior is driven by balance matching and not by

individuals setting payments in relationship to minimum payments.27

We note that while minimum payments do not seem to be driving our �ndings, our analysis

does not imply that minimum payments are irrelevant for repayment behavior. Our point is

simply that minimum payments do not seem to be generating a spurious balance matching

result. Indeed, while not directly comparable, our �nding of a modest correlation between

actual and minimum payments matching repayments is consistent with (Keys and Wang, 2017),

who estimate that 9% to 20% of account-holders anchor their repayments to minimum payment

amounts.

8 Conclusion

In this paper, we used linked data on multiple cards from �ve major credit card issuers in the

U.K. to study borrowing behavior in the credit card market. We showed that the allocation of

repayments is highly non-optimal, with individuals allocating only 51.5% of their payments to

the high APR card, relative to optimal repayments of 70.5%. This �nding builds on Ponce et al.

(2017), who showed evidence of similar non-optimal behavior in credit card data from Mexico.

The main contribution of our paper was to show that, in contrast to the optimal repayment

rule, actual repayment behavior can be explained by a balance matching heuristic by which

individuals match the share of repayments on each card to the share of balances on each card. In

particular, we showed that balancematching captures more than half of the predictable variation

in repayments, performs substantially better than other models, and is highly persistent within

individuals over time.

We provided additional support for the importance of balances – and irrelevance of interest

rates – using machine learning models. Consistent with the poor �t of the optimal repayment

rule, we �nd that interest rates have the lowest variable importance in our machine learning

models. Indeed, in the decision tree model that maximizes out-of-sample �t, interest rates do

27 To complement the analysis above, Table A7 shows horse race analysis separately for the “�oor” and ‘slope”
samples. In binary tests against the optimal repayment model, the share of observations best �t by balance
matching is very similar in both samples. These results further support our conclusion that the observed behavior
is driven by balance matching and not anchoring on minimum payments.
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not even enter the model. Consistent with balance matching results, we �nd that balances have

the highest variable importance, with importance factors nearly twice as large as any of the

other explanatory variables.
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Figure 1: Actual and Optimal Payments
(A) Two Cards
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(C) Four Cards

60

60

60

60

Card 1 = Lowest APR

Card 2

Card 3

Card 4 = Highest APR

●

●

●

●

●

●

●

●

●

●

Actual Payment

Optimal Rule

(D) Five Cards
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Note: Panel A shows the distribution of actual and optimal payments on the high interest rate card in the two-card
sample. Panels B to D show radar plots of mean actual and optimal payments in the samples with 3 to 5 cards.
In the radar plots, cards are ordered clockwise from highest to lowest APR (starting at the �rst node clockwise
from 12 o’clock). All samples are restricted to individual ⇥ months in which individuals face an economically
meaningful allocative decision. See Section 2 for details.
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Figure 2: Misallocated Payments by Economics Stakes
(A) Misallocated vs. Di�erence in APR
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(B) Misallocated vs. Total Payments
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(C) Misallocated vs. Age of High-APR Card
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Note: Figure shows binned scatterplots (with 20 equally sized bins) of misallocated payments against the di�erence
in annualized percentage interest rate (APR) across cards (Panel A) and the total value of payments within the
month in pounds (Panel B), and the age of the high-APR card (Panel C). Local polynomial lines of best �t, based
on the non-binned data, are also shown. Two-card sample restricted to individual ⇥ months in which individuals
face an economically meaningful allocative decision. See Section 2 for details.
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Figure 3: Rounding and the 1/n Rule
(A) Density of Payments (£s)
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(B) Density of Payments (%), Round Number Values
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(C) Density of Payments (%), Non-Round Number Values
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Note: Panel A shows the distribution of payments on the high-APR card in £s (excluding the top decile). Panel B
plots the distribution of payments on the high-APR card in percent, among individuals who make round number
payments (exact multiples of £50). Panel C plots the distribution of payments on the high-APR in percent, among
individuals who do not make paments in exact multiples of £50. Two-card sample restricted to individual ⇥
months in which individuals face an economically meaningful allocative decision. See Section 2 for details.
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Figure 4: Balance Matching
(A) Marginal Densities of Actual and Balance-Matching Payments
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(B) Joint Densities of Actual vs. Balance-Matching Payments

Note: Panel A shows the distribution of actual and balance-matching payments on the high APR card. Panel B
plots the joint density of actual and balance-matching payments. Two-card sample restricted to individual ⇥
months in which individuals face an economically meaningful allocative decision. See Section 2 for details.
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Figure 5: Balance Matching and Minimum Payment Matching in the Floor and Slope Samples
(A) Balance Matching, Slope Sample
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(B) Minimum Payment Matching, Slope Sample
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(C) Balance Matching, Floor Sample
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(D) Minimum Payment Matching, Floor Sample
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Note: Panels show binned scatterplots of the actual percentage of monthly payment allocated to the high APR
card (y-axis) and the percentage of total monthly payment allocated to the high APR card under di�erent rules
(x-axis). “Floor” sample comprises account ⇥ months in which the minimum payment determined by the �oor
value on both cards held by the individual, e.g. £25. “Slope” sample comprises account ⇥ months in which the
minimum payment is determined by the percentage formula on both cards.
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Table 1: Summary Statistics
(1) (2) (3)

High APR card Low APR card Di�erence

Mean Std. Dev. Mean Std. Dev. Mean Std. Dev.

Card Characteristics

APR: purchases (%) 22.86 4.80 16.56 6.40 6.30 5.85

APR: cash advances (%) 26.08 4.12 23.72 5.27 2.36 6.31

Monthly credit limit (£) 6,385.65 4,443.43 6,010.49 4,090.44 375.16 4,861.46

Spending (£)

Purchases 128.04 432.21 116.88 399.07 11.15 570.92

Purchases if > £0 380.50 672.82 360.70 631.81 -3.15 798.61

Cash advances 6.44 73.42 5.84 73.99 0.60 97.66

Cash advances if > £0 216.44 368.41 215.82 396.14 -8.50 350.25

Payments (£)

Repayments 259.85 735.98 230.14 660.25 29.72 916.19

Interest paid (£)

Purchases 38.44 59.51 28.89 48.27 9.55 61.68

Cash advances 1.48 10.75 0.91 7.11 0.58 11.87

Card cycle (£)

Closing balance 3,018.47 3,116.00 3,026.54 2,961.87 -8.07 3,479.06

Balance revolving 2,197.68 2,892.93 2,049.44 2,791.24 148.24 3,084.89

Minimum amount due 63.19 68.91 56.65 57.91 6.54 71.42

Card Status

Account charge-o� rate (%) 1.80 3.03 1.65 2.57 0.13 3.12

Tenure (months since account opened) 104.81 78.15 78.59 70.22 26.23 84.63

Number of account-months 394,061 394,061 394,061

Note: Summary statistics for two-card analysis sample, de�ned as account ⇥ months in which the individual
enters the account cycle with i) revolving debt on both cards, ii) pays at least the minimum on both cards, iii)
pays more than the minimum on at least one card, and iv) ends the cycle with revolving debt on at least one card.
Account charge-o� rate is the predicted probability of the credit card charging-o� within the next six months.
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Table 2: Actual and Optimal Payments on the High APR Card
Percentiles

Mean Std. Dev. 10th 25th 50th 75th 90th

i) As % Total Monthly Payment

Actual Payments (%) 51.21 24.21 16.85 33.33 50.00 67.94 84.77

Optimal Payments (%) 70.77 22.15 38.13 55.96 75.25 89.51 95.83

Di�erence (%) 19.56 23.76 0.00 0.72 9.98 32.50 54.64

ii) Payments in £

Actual Payments (£) 259.85 735.98 25.00 45.64 100.00 200.00 450.00

Optimal Payments (£) 377.76 852.12 32.78 65.00 138.44 307.09 808.84

Di�erence (£) 117.91 422.71 0.00 1.00 17.99 75.00 238.51

Note: Summary statistics for actual and optimal payments on the high APR card. The top panel shows
values as a percentage of total payments on both cards in that month. The bottom panel shows values
in £. Two-card sample restricted to individual ⇥ months in which individuals face an economically
meaningful allocative decision. See Section 2 for details.
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Table 3: Goodness-of-Fit for Di�erent Models
RMSE MAE Correlation

i) Main Models
Uniform Draw (0, 100) 36.77 30.21 0.01
Optimal 35.25 25.48 0.32
Balance Matching 24.06 17.06 0.45

ii) Alternative Heuristics
Heuristic 1 (Pay Down Lowest Capacity) 36.75 27.30 0.05
Heuristic 2 (Pay Down Highest Capacity) 33.20 23.63 0.31
Heuristic 3 (Pay Down Highest Balance) 35.56 25.99 0.24
Heuristic 4 (Pay Down Lowest Balance) 33.55 24.03 0.14

iii) Machine Learning
Decision Tree 18.76 14.46 0.58
Random Forest 15.31 10.62 0.75
XGBoost 12.67 9.09 0.84

Note: Goodness-of-�t for di�erent models of the percentage of payments on
the high-APR card. The �rst column shows the Root Mean Squared Error
(RMSE), the second column shows that Mean Absolute Error (MAE), and third
column shows the Pearson Correlation Coe�cient, which can also be inter-
preted as the square root of the R-squared. Two-card sample restricted to
individual ⇥ months in which individuals face an economically meaningful
allocative decision. See Section 2 for details.
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Table 4: Horse Races Between Alternative Models

Panel (A) Uniform vs. Other Rules
(1) (2) (3) (4) (5) (6) (7) (8) (9)

Win %
Uniform 33.26 45.24 49.71 44.44 46.69 46.00 37.76 29.90 28.13
Balance Matching 66.74
Optimal 54.76
Heuristic 1 (Pay Down Lowest Capacity) 50.29
Heuristic 2 (Pay Down Highest Capacity) 55.56
Heuristic 3 (Pay Down Highest Balance) 53.31
Heuristic 4 (Pay Down Lowest Balance) 54.00
Decision Tree 62.24
Random Forest 70.10
XGB 71.87

Panel (B) Balance Matching vs. Other Rules
(1) (2) (3) (4) (5) (6) (7) (8)

Win %
Balance Matching 67.28 72.32 65.67 74.92 63.59 56.19 45.71 44.97
Optimal 32.72
Heuristic 1 (Pay Down Lowest Capacity) 27.68
Heuristic 2 (Pay Down Highest Capacity) 34.33
Heuristic 3 (Pay Down Highest Balance) 25.08
Heuristic 4 (Pay Down Lowest Balance) 36.41
Decision Tree 43.81
Random Forest 54.29
XGB 55.03

Note: Table shows percentage of individual ⇥month observations that are closest-�t in a horse race between payment rules. Target
variable is the percentage of monthly repayment on the high APR card. Each column shows a pairwise horse race between rules,
with cells reporting the percentage of observations closest-�t to the rule (shown by row). For individual ⇥ months in which the
payment rule predicts a level of payment outside the feasible range, values are adjusted to minimum or maximum corners. Horse
race uses two-card sample restricted to individual ⇥ months in which individuals face an economically meaningful allocative
decision. See Section 2 for details
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Table 5: Transition Matrix for Best-Fit Model

Pr
ev
io
us

Pe
rio

d

Current Period

Balance
Uniform Matching Optimal H 1 H 2 H 3 H 4 1/n Rule

Uniform 21.64% 59.62% 0.43% 2.39% 0.87% 1.59% 1.09% 12.37%
Balance Matching 8.15% 82.40% 0.30% 1.43% 1.53% 1.23% 1.15% 3.81%
Optimal 17.14% 51.43% 28.57% 0.00% 0.00% 0.00% 0.00% 2.86%
Heuristic 1 (Pay Down Lowest Capacity) 9.64% 51.00% 0.40% 20.88% 0.40% 3.21% 6.02% 8.43%
Heuristic 2 (Pay Down Highest Capacity) 5.77% 61.06% 0.00% 0.00% 27.88% 3.37% 0.00% 1.92%
Heuristic 3 (Pay Down Highest Balance) 10.27% 50.19% 1.52% 3.42% 3.80% 19.77% 0.38% 10.65%
Heuristic 4 (Pay Down Lowest Balance) 11.70% 54.39% 0.00% 5.26% 0.00% 0.00% 25.73% 2.92%
1/n Rule 14.72% 27.22% 0.16% 2.14% 0.47% 1.98% 0.63% 52.69%

Note: Table shows transition matrix for the best-�t payment model. Two-card sample restricted to individual ⇥ months in which individuals that face an economically
meaningful allocative decision for at least two consecutive months. See Section 2 for details.
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Online Appendix

I Machine Learning Models

This section provides details of machine learning models we use to �t repayment behaviors. We

estimate decision tree, random forest and extreme gradient boosting. For all of these models,

our target variable is the percentage of payments allocated to the high APR card in the two-card

sample. We use APRs, balances, and credit limits on both cards as explanatory variables, and

tune the models with cross-validation to maximize out-of-sample power.

Decision Tree Tree-based methods partition the sample space into a series of hyper-cubes,

and then �t a simple model in each partition. The decision tree is grown through iteratively

partitioning nodes into two sub-nodes according to a splitting rule. In our case, the splitting

criterion is to �nd one explanatory variable as well as a cut-o� value that minimize the sum of

squared errors in the two sub-nodes combined. In theory, the tree can have one observation

in each �nal node, but this tree will have poor performance out-of-sample. In practice, the

decision tree is grown until the reduction in squared error falls under some threshold. Then, it

calculates the average percentage of payments allocated to high APR cards in each �nal node.

We use the r package “rpart” to �t the decision-tree model.28 To avoid over�tting the data,

we “prune” the decision tree by tuning the complexity parameter through cross-validation.

The complexity parameter requires each split to achieve a gain in R-squared greater than the

parameter value. We pick the complexity parameter threshold that minimizes mean squared

error in 10-fold cross-validation. That is, we split the sample randomly into 10 disjoint subsets.

For each of these 10 subsets, we use the remaining 90% of the data to train the tree, and calculate

the error on each 10% subset.29

Random Forest The machine learning literature has proposed several variations on the tree

model. One approach which has been found to work very well in practice is random forest

28 See https://cran.r-project.org/web/packages/rpart/vignettes/longintro.
pdf for a complete description of the function.

29 See Friedman et al. (2001) Chapter 9, for further information on tree-based methods.
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(Breiman, 2001). Random forest builds a large number of trees and averages their predictions.

It introduces randomness into the set of explanatory variables considered when splitting each

node. The algorithm �rst draws a number of bootstrapped samples, and grows a decision tree

within each sample. At each node, it randomly selects a subset of m explanatory variables in

the split search, and chooses the best split among those m variables. Lastly, it makes predictions

by averaging the results from each tree.

We use the r package “randomForest” to grow a forest of 100 trees.30 For each tree, we

calculate the out-of-sample error using the rest of the data not included in the bootstrapped

sample. The average prediction error over these 100 trees is minimized to �ne tune “m”, the

number of explanatory variables in the subset we consider in each split search. Increasing the

number of trees does not signi�cantly improve prediction accuracy.

Extreme Gradient Boosting Extreme gradient boosting and random forest are both based

on a collection of tree predictors. They di�er in their training algorithm. The motivation for

boosting is a procedure that combines the outputs of many “weak” classi�ers to produce a pow-

erful “committee” (Friedman et al., 2001). Instead of growing a number of trees independently,

boosting applies an additive training strategy, by adding one new tree at a time. At each step,

the new decision tree puts greater weights on observations that are misclassi�ed in the previous

iteration. Finally, it averages predictions from trees at each step. This algorithm e�ectively

gives greater in�uence to the more accurate tree models in the additive sequence. We use the r

package “xgboost” and �ne tune the number of iterations over a 10-fold cross-validation.31 The

rest of parameters such as the learning rate are kept at their default values. Perturbation of

these values does not have material impact on out-of-sample errors.32

30 See https://cran.r-project.org/web/packages/randomForest/randomForest.
pdf for a complete description of the function.

31 See http://cran.fhcrc.org/web/packages/xgboost/vignettes/xgboost.pdf for a
complete description of the function.

32 For a more detailed introduction of extreme gradient boosting, see http://xgboost.readthedocs.io/
en/latest/model.html. Friedman (2001) is the �rst paper that introduced the term “gradient boosting”.
Friedman et al. (2001), Chapter 10 also introduces a boosting algorithm.
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Figure A1: Actual and Optimal Excess Payments
(A) Two Cards
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(C) Four Cards
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Note: Panel A shows the distribution of actual and optimal excess payments on the high interest rate card in the
two-card sample. Panels B to D show radar plots of mean actual and optimal excess payments in the samples of
individuals with 3 to 5 cards. Excess payments are calculated as the percentage of payments on a given card
after subtracting out repayments needed to pay the minimum amounts due. In the radar plots, cards are ordered
clockwise from highest to lowest APR (starting at the �rst node clockwise from 12 o’clock). Samples restricted to
individual ⇥ months in which individuals face an economically meaningful allocative decision. See Section 2 for
details.
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Figure A2: Misallocated Excess Payments by Economics Stakes
(A) Misallocated vs. Di�erence in APR
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(B) Misallocated vs. Total Payments
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(C) Misallocated vs. Age of High Cost Card
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Note: Figure shows binned scatterplots (with 20 equally sized bins) of misallocated payments against the di�erence
in annualized percentage interest rates across cards (Panel A) and the total value of payments within the month
in pounds (Panel B), and the age of the high-cost card (Panel C). Local polynomial lines of best �t, based on
the non-binned data, are also shown. Excess payments are calculated as the percentage of payments on a given
card after subtracting out repayments needed to pay the minimum amounts due. Two-card sample restricted to
individual ⇥ months in which individuals face an economically meaningful allocative decision. See Section 2 for
details.
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Figure A3: Example Credit Card Statement

Note: The �gure shows an extract of one of the author’s credit card statements, with card issuer branding, contact
details and card holder personal identifying information obscured.
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Figure A4: Distribution of Actual and Balance-Matching Payments on Multiple Cards
(A) Three Cards
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(E) Five Cards
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Note: Left column shows the marginal distributions of actual and balance-matching payments on the high APR
card. Right column shows radar plots of the mean percentage of actual and balance-matching payments allocated
to each card. In the radar plots, cards are ordered clockwise from highest to lowest balance (starting at the
�rst node clockwise from 12 o’clock). Sample is restricted to individual ⇥ months in which individuals face an
economically meaningful allocative decision. See Section 2 for details.
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Figure A5: Payments Under Di�erent Heuristics
(A) Heuristic 1: Pay Down Lowest Capacity
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Note: Left column shows the marginal distributions actual payments and payments under the heuristics. Right
column shows the joint density. See Section 5 for de�nitions of the heuristics. Two-card sample restricted to
individual ⇥ months in which individuals face an economically meaningful allocative decision. See Section 2 for
details.
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Figure A6: High APR Card Payment Decision Tree
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Note: Figure shows the decision (regression) tree for high APR card repayment. Top row is tree root. Nodes show
variable and split value at each branch. Bottom rows show predicted values at end of each branch.
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Figure A7: Misallocated Payments and Balance Matching by Di�erence in Due Dates
(A) Misallocated Payments vs. Di�. Due Dates
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(B) Excess Misallocated Payments vs. Di�. Due Dates
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(C) Histogram of Di�erence in Due Dates
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Note: Panels A shows a binned-scatter plot of misallocated payments against the absolute di�erence in due
dates of each of the credit cards. Panel B shows a binned-scatter of misallocated excess payments against the
absolute di�erence in due dates. Panel C shows the distribution of the absolute di�erence in due dates. Panel D
shows a binned-scatter plot of the percentage of observations that are best �t by balance-matching payments
(instead of optimal payments) against the absolute di�erence in due dates. Local polynomial lines of best �t,
based on the non-binned data, are also shown in the binned-scatter plots. Excess payments are calculated as the
percentage of payments on a given card after subtracting out repayments needed to pay the minimum amounts
due. Two-card sample restricted to individual ⇥ months in which individuals face an economically meaningful
allocative decision. See Section 2 for details.
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Table A1: Actual and Optimal Excess Payments on the High APR Card
Percentiles

Mean Std. Dev. 10th 25th 50th 75th 90th

i) As a % Total Monthly Payment

Actual Excess Payments (%) 51.46 34.74 0.88 19.91 51.23 84.80 99.82

Optimal Excess Payments (%) 97.08 12.93 100.00 100.00 100.00 100.00 100.00

Di�erence (%) 45.61 35.04 0.00 11.48 45.44 75.71 98.41

ii) Payments in £

Actual Excess Payments (£) 196.66 731.51 0.23 2.32 22.78 88.79 351.00

Optimal Excess Payments (£) 314.57 845.95 1.92 14.48 66.65 223.30 739.02

Di�erence (£) 117.91 422.71 0.00 1.00 17.99 75.00 238.51

Note: Summary statistics for actual and optimal excess payments on the high APR card. Excess pay-
ments are calculated as the percentage of payments on a given card after subtracting out repayments
needed to pay the minimum amounts due. The top panel shows values as a percentage of total excess
payments on both cards in that month. The bottom panel shows values in £. Two-card sample restricted
to individual ⇥ months in which individuals face an economically meaningful allocative decision. See
Section 2 for details.
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Table A2: High APR Card Actual, Optimal and Balance Matching Payments, Multiple Cards
Percentiles

Mean Std. Dev. 10th 25th 50th 75th 90th

i) 2 Cards

Actual Payments (%) 51.57 25.23 15.35 33.33 50.00 69.47 87.35

Optimal Payments (%) 76.46 19.75 47.91 65.43 81.93 92.27 96.82

Balance Matching Rule Payments (%) 49.63 22.88 17.97 32.19 49.78 66.91 81.11

i) 3 Cards

Actual Payments (%) 35.05 21.49 8.70 19.71 33.25 46.67 64.86

Optimal Payments (%) 62.76 24.34 28.14 44.60 65.22 83.39 93.58

Balance Matching Payments (%) 32.79 19.77 7.75 17.33 31.13 45.47 59.86

i) 4 Cards

Actual Payments (%) 26.97 18.67 6.06 14.04 23.62 35.71 50.65

Optimal Payments (%) 56.55 24.16 23.10 37.94 57.46 75.85 89.27

Balance Matching Payments (%) 25.32 16.44 5.33 13.32 23.30 34.51 47.05

i) 5 Cards

Actual Payments (%) 21.23 16.87 4.66 10.04 17.78 27.12 40.63

Optimal Payments (%) 51.99 23.76 19.25 33.23 53.13 70.30 84.48

Balance Matching Payments (%) 18.41 12.51 3.12 8.92 17.22 25.18 34.39

Note: Summary statistics for actual payments, optimal, and balance-matching payments on the high-APR
card in the samples with 2 to 5 cards. Samples are restricted to individual ⇥ months in which individuals face
an economically meaningful allocative decision. See Section 2 for details.
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Table A3: High APR Card Payments Under Heuristics Models, Two Cards
Percentiles

Mean Std. Dev. 10th 25th 50th 75th 90th

i) Heuristic 1 (Pay Down Lowest Capacity Card)

Heuristic 1 Rule Payments (£) 202.79 500.38 14.65 30.14 75.00 174.61 390.06

Actual � Heuristic 1 Rule Payments (£) 49.08 512.93 �93.79 �20.52 0.00 32.01 175.15

Heuristic 1 Rule Payments (%) 48.91 29.29 7.38 23.16 49.98 73.27 89.70

Actual � Heuristic 1 Rule Payments (%) 2.81 33.36 �37.50 �12.20 0.00 17.48 46.93

ii) Heuristic 2 (Pay Down Highest Capacity Card)

Heuristic 2 Rule Payments (£) 260.13 704.25 17.00 33.38 82.59 199.21 500.00

Actual � Heuristic 2 Rule Payments (£) �0.26 439.71 �101.00 �20.60 0.00 15.00 88.91

Heuristic 2 Rule Payments (%) 51.97 30.01 9.13 25.36 53.18 79.28 92.31

Actual � Heuristic 2 Rule Payments (%) �0.76 29.32 �37.50 �10.62 0.00 8.07 35.04

iii) Heuristic 3 (Pay Down Highest Balance Card)

Heuristic 3 Rule Payments (£) 246.99 659.84 11.78 25.18 73.11 195.62 500.00

Actual � Heuristic 3 Rule Payments (£) 12.58 425.02 �102.33 �20.00 0.00 25.00 131.89

Heuristic 3 Rule Payments (%) 49.67 32.28 6.33 18.52 49.87 80.65 93.00

Actual � Heuristic 3 Rule Payments (%) 1.55 31.16 �36.22 �10.48 0.00 14.31 40.81

iv) Heuristic 4 (Pay Down Lowest Balance Card)

Heuristic 4 Rule Payments (£) 250.28 631.74 25.00 42.83 90.31 195.00 471.92

Actual � Heuristic 4 Rule Payments (£) 9.59 463.11 �104.00 �19.56 0.00 18.26 107.14

Heuristic 4 Rule Payments (%) 51.65 25.33 15.36 32.24 52.15 71.50 86.80

Actual � Heuristic 4 Rule Payments (%) �0.44 29.73 �38.90 �10.71 0.00 9.14 37.50

Note: Summary statistics for actual payments on the high interest card as a percentage of total monthly repayments
and payments under heuristic rules.
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Table A4: Machine Learning Models Variable Importance
Random Forest Gradient Boost

Variable Importance Variable Importance

High Card Balance 0.20 High Card Balance 0.23
Low Card Balance 0.18 Low Card Balance 0.23
Low Card CL 0.13 Low Card Purchases 0.14
High Card CL 0.13 High Card Purchases 0.12
High Card Purchases 0.10 Low Card CL 0.10
Low Card Purchases 0.10 High Card CL 0.08
High Card APR 0.08 High Card APR 0.05
Low Card APR 0.07 Low Card APR 0.05

Note: Table summarizes the importance of input variables in explaining high
card repayments in random forest and extreme gradient boosting models.
Rows show the proportion of the total reduction in sum of squared errors in
the outcome variable resulting from the split of each variable across all nodes
and all trees.
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Table A5: Goodness of Fit Measures for
Machine Learning Models

RMSE MAE Correlation
i) Decision Tree
Without APR 18.76 14.46 0.58
With APR 18.76 14.46 0.58
ii) Random Forest
Without APR 15.95 11.23 0.72
With APR 15.31 10.62 0.75
iii) Gradient Boosting
Without APR 13.37 9.73 0.82
With APR 12.67 9.09 0.84
Note: Table shows the godness of �t for the machine
learning algorithms with and without the high and
low card APR variables included in the dataset fed into
the machine. The target variable is the fraction of pay-
ment to the card with higher APR. We show Root Mean
Squared Error (RMSE), Mean Absolute Error (MAE) and
Pearson Correlation Coe�cient in each of the three
columns.
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Table A6: Correlation Matrix Machine Learning Model Input Variables

APR(H) APR(L) Bal(H) Bal(L) Pur(H) Pur(L) Lim(H) Lim(L)

APR(H) 1

APR(L) 0.471*** 1

Bal(H) 0.108*** 0.136*** 1

Bal(L) 0.0769*** 0.0829*** 0.382*** 1

Pur(H) -0.0695*** -0.0640*** 0.0472*** 0.0685*** 1

Pur(L) -0.0603*** -0.0310*** 0.0889*** 0.0473*** 0.00957 1

Lim(H) -0.0378*** 0.0247*** 0.633*** 0.250*** 0.160*** 0.0989*** 1

Lim(L) -0.0665*** 0.0448*** 0.267*** 0.687*** 0.0752*** 0.128*** 0.383*** 1

Note: Table shows correlation matrix (Pearson correlation coe�cients) for input variables to the machine
learning models.
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Table A7: Horse Race by Minimum Payment
“Floor” Sample “Slope” Sample

Optimal 30.95 35.15

Balance Matching 69.05 64.85

Note: Table shows percentage of individual ⇥ month ob-
servations that are closest-�t in a horse race between pay-
ment rules. Target variable is the percentage of monthly
repayment on the high APR card. Each column shows a
pairwise horse race between rules, with cells reporting the
percentage of observations closest-�t to the rule (shown by
row). For individual ⇥ months in which the payment rule
predicts a level of payment outside the feasible range, val-
ues are adjusted to minimum or maximum corners. “Floor”
minimum sample comprises account ⇥ months in which
the minimum payment determined by the �oor value on
both cards held by the individual, e.g. £25. “Slope” mini-
mum sample comprises account ⇥ months in which the
minimum payment is determined by the percentage for-
mula on both cards.
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