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Abstract

We study the welfare implications of scalable price targeting, an extreme form of third-degree price
discrimination, for a large, digital firm. Targeted prices are computed by solving the firm’s Bayesian
Decision-Theoretic pricing problem based on a database with a high-dimensional vector of customer
features that are observed prior to the price quote. To identify the causal effect of price on demand,
we first run a large, randomized price experiment. These data are used to train our demand model. We
use lasso regularization to select the set of customer features that moderate the heterogeneous treatment
effect of price on demand. We use a weighted likelihood Bayesian bootstrap to quantify the firm’s
approximate statistical uncertainty in demand and profitability. Theoretically, both firm and customer
surplus could rise with scalable price targeting. We test the welfare implications out of sample with a
second randomized price experiment with new customers. Optimized uniform pricing improves revenues
by 64.9% relative to the control pricing, whereas scalable price targeting improves revenues by 81.5%.
Customer surplus declines by less than 1% with price targeting; although nearly 70% of customers are
charged less than the uniform price. Our weighted likelihood bootstrap estimator also predicts demand
and demand uncertainty out of sample better than several alternative approaches. Keywords: price
discrimination, targeting, scalable price targeting, welfare, lasso regression, weighted likelihood
bootstrap, data-mining, field experiment



1 Introduction

A long literature has studied the theoretical implications of the use of targeted pricing, a form of “price
discrimination” that varies the price charged to customers based on differences in their willingess-to-
pay (e.g. Pigou (1920); Varian (1980); Stole (2007)). In practice, most targeted pricing practices are
limited to third-degree price discrimination, using a coarse segmentation strategy that varies prices across
broad groups of customers. Examples include seniors discounts at the movies and geographic or “zone”
pricing by retailers across communities in a metropolitan area. Third degree price discrimination has
been thought of as a practical way to increase firm profitability:

“[The monopolist] cannot, except in extraordinary circumstances, introduce either the
first or the second degree of discrimination, and that the third degree is of chief practical
importance.” (Pigou, 1920, Part II, chapter XVI, section 6)

Theorists have long recognized the possibility that with a very granular segmentation scheme, third-
degree price discrimination could approximate first-degree, or “perfect,” price discrimination:

“Furthermore, it is evident that discrimination of the third degree approximates towards
discrimination of the first degree as the number of markets into which demands can be di-
vided approximate toward the number of units for which any demand exists.” (Pigou, 1920,
Part II, chapter XVI, section 14)

In recent years, “...big data and electronic commerce have reduced the costs of targeting and first-
degree price discrimination.” (CEA, 2015, page 12). In this vein, we study scalable price targeting

(SPT), a form of price discrimination that leverages the large quantities of observable customer features
often available in digital environments to predict individual differences in willingness-to-pay. Like first-
degree price discrimination, SPT consists of differential pricing across individual customers. However,
SPT typically does not involve differential pricing across each marginal unit sold. In addition, statistical
uncertainty typically limits the segmentation to an imperfect form of targetability. Customers with iden-
tical, obserable features are targeted the same prices even if they differ along unobservable dimensions.
SPT is effectively an extreme form of third-degree price discrimination. To the best of our knowledge,
the literature has not yet produced (experimental) field evidence that SPT generates incremental profits
in practice.

The extant empirical literature on price targeting has developed econometric methods for devising
targeted pricing mechanisms based on a retrospective analysis of detailed customer shopping histories
(Rossi, McCulloch, and Allenby, 1996; Chintagunta, Dubé, and Goh, 2005; Shiller, 2015). The impli-
cations for targeted pricing are typically studied through model simulations based on demand estimates.
These methods have limited applicability beyond markets for fast-moving consumer goods due to the
limited availability of customer purchase panels in most markets. Surprisingly, more practical approaches
that target based on observable customer features (as opposed to shopping histories) are considered to
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be of limited value. For example, Rossi, McCulloch, and Allenby (1996) conclude that “...it appears
that demographic information is only of limited value” for the targeting of prices of branded consumer
goods. Similarly, Shiller and Waldfogel (2011) claim that “Despite the large revenue enhancing effects
of individually customized uniform prices, forms of third degree price discrimination that might more
feasibly be implemented produce only negligible revenue improvements.” In the internet domain, Shiller
(2015) finds “...demographics alone to tailor prices raises profits by 0.8% [at Netflix].”

In addition to the perceived challenges in implementing a practical form of SPT, consumer advocates
warn of the potentially harmful effects of price discrimination:

“[Differential pricing] transfers value from consumers to shareholders, which generally
leads to an increase in inequality and can therefore be inefficient from a utilitarian stand-
point.” (CEA, 2015, page 6)

In fact, theoretically the move from uniform to SPT can increase total welfare (Varian, 1989), and can
also increase total consumer surplus specifically (Cowan, 2012). The targeting of prices re-allocates
value from strong consumers (who are targeted more than the uniform price) to weak consumers (who
are charged less than the targeted price). Whether the re-allocation is sufficient to increase total consumer
surplus is an empirical question regarding the curvature of demand.

We propose a practical and scalable approach to implement targeted pricing for a firm with access
to a large cross-section of customer purchase data and detailed, customer-specific variables. On the
demnd side, our approach is structural in the sense that we impose parametric structure on our demand
model to ensure the necessary smoothness in prices for implementing price optimization by the firm. We
assume that the heterogeneity in customers’ price sensitivities can be characterized by a sparse subset of
an observed, high-dimensional vector of observable customer characteristics. The firm’s empirical goal
consists of making statistical inferences about demand from heterogeneous customers, as opposed to
making inferences about specific underlying parameters associated with customer characteristics. Thus,
we cast our demand analysis as a heterogeneous treatment effects problem using price as a continuous
treatment variable.

On the supply side, we accomodate the fact that the firm bases its pricing decisions on statistical
estimates of demand. Following Wald (1950) and Savage (1954), we characterize the firm’s pricing
decision as a Bayesian Decision-Theoretic problem that uses posterior expected profits as the reward
function. A simpler “plug-in” approach that optimizes prices based on point estimates of demand would
fail to account for this uncertainty correctly and could lead to biased decisions.

To approximate the firm’s statistical uncertainty about demand across customers with different ob-
servable profiles, we use a weighted likelihood bootstrap (WLB) version of a Lasso logistic regression.
WLB provides us with approximate samples from the appropriate posterior density of the parameters
of interest. We use these draws to quantify the uncertainty around the firm’s demand and profits under
different pricing decisions. In principle, we can compute the approximate posterior profitability of any
desired optimized pricing structures using the results.
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We implement the approach through a collaboration with Ziprecruiter.com, a large, online recruiting
firm, to conduct a sequence of experiments with the goal of designing and implementing a real-time,
scalable business-to-business pricing algorithm that optimized prices for each potential customer that
arrived at their website. The analysis was conducted at the customer acquisition stage, with a focus on
the segment of small, “starter” sized firms arriving at Ziprecruiter.com for the first time and seeking a
price quote for the website’s online job-posting services.

For the analysis, we developed a pricing analytics template consisting of three phases. In practice,
price targeting requires estimating a model of demand with differences across customers in their price
sensitivities: a heterogeneous treatment effects problem. Therefore, in phase I, we conducted a price
experiment for the purposes of measuring the causal effect of price on purchase behavior. The exper-
iment randomly assigned each new starter arriving at the website’s paywall throughout the duration of
the experimental period to one of ten price buckets ranging from $19 to $399, including a control con-
dition of $99 which was the firm’s regular base price at that time. We ran the experiment for an entire
month and collected between 750 and 825 starters (subjects) per cell. Descriptive analysis of the data
revealed (i) model-free evidence for a downward-sloping demand relationship, (ii) that status quo pric-
ing of $99 was on the inelastic region of demand, and (iii) model-free evidence of an opportunity to
raise prices profitably. Our model-free analysis of demand provides prima facie empirical evidence of
the downward-sloping demand relationship in the field. In this regard, we add to a small and growing
literature using firm-sanctioned field experiments to obtain plausible estimate of the treatment effect of
marketing variables on demand (see Einav and Levin 2010). The fact that Ziprecruiter has authorized us
to disclose its identity and the details of the underlying experiment also supports the growing importance
of transparency and disclosure when using firm-sponsored experiments for scientific research (see Einav
and Levin 2014).

In Phase II, we used the experimental data to estimate a demand model that calibrated price-response
as a function of job and starter-firm characteristics. Demand estimation was conducted using the WLB
estimator. In our study of “starter firms,” we included 266 potential covariates in the model1. Our model
estimates reveal a considerable degree of heterogeneity in willingness-to-pay across starter firms. The in-
sample targeted prices that maximize the posterior expected profit from each starter range from as low as
$142 to as high as $499; but all the prices exceeded the regular price of $992. Based on our optimization,
we predicted expected gains posterior in profits of 56% and 80% for our uniform and targeted pricing
structures, respectively, relative to Ziprecruiter’s status quo price of $99. Moreover, we predicted that our
targeting scheme would capture over 40% of the potential profitability from the theoretical benchmark
of perfect price discrimination.

1These variables were chosen from larger set of over 120,000 covariates available to the firm. This particular subset was
relevant to the subset of customers involved in the experiment. The methods proposed herein scale well with larger sets -
we have implemented a version for the firm with the complete set of covariates. Others have had success with the general
approach, e.g. Taddy (2015a) successfully implements the approach in a distributed computing environment for applications
with thousands of potential covariates.

2Ziprecruiter capped the targeted prices at $499.
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In Phase III, Ziprecruiter implemented a second field experiment with a new sample of prospective
starter firms to test the recommended pricing structures against its status quo of $99 per month. The
implementation computed a given starter’s targeted price using a fast contraction-mapping that converged
in less than 20 milliseconds and obviated the need for optimization software. This practical aspect played
an important role for implementation since Ziprecruiter does not have optimization software integrated
with its customer paywall. We observed profits gains of 68% and 84% for uniform and targeted pricing,
respectively, relative to the status quo. Typically, researchers explore the potential counter-factual gains
using simulations based on their model estimates. Our second experiment provides a novel opportunity
to test the performance of our microeconomic-based counterfactuals out of sample (see also Misra and
Nair 2011; Ostrovsky and Schwarz 20163).

We also use Phase III to analyze the impact of SPT on consumer surplus. In the targeting cell of
our experiment, 67% of the customers are targeted a lower price than the optimal uniform price. Even
though total consumer surplus falls by a small amount (less than 1%), the majority of customers benefit
from SPT. Interestingly, the strong customers who are targeted higher prices than the optimal uniform
price nevertheless exhibit a higher conversion rate on average than weak customers.

Finally, we use the Phase III experimental data to evaluate the performance of our approximation of
the uncertainty in our estimates. We apply the parameter estimates obtained from the Phase I “training
data” to the distribution of customers observed in the Phase III experiment. The predicted uncertainty
in profits are very close to the empirical distribution of “realized” profits, providing an out-of-sample
assessment of our WLB method.

Our empirical analysis of individually-targeted prices builds on a growing empirical literature study-
ing third-degree price discrimination by firms (see the survey by Verboven 2008). To the best of our
knowledge, only a few studies have looked specifically at more individualized pricing whereby a firm
targets different prices to each customer even though it lacks the complete information required for per-
fect (or first degree) price discrimination (e.g. Rossi, McCulloch, and Allenby 1996; Chintagunta, Dubé,
and Goh 2005; Zhang, Netzer, and Ansari 2014; Waldfogel 2015; Shiller 2015). Our work is closest to
Shiller (2015) who also uses machine learning to estimate heterogeneous demand. An advantage of our
data is that we observe the entire set of customer features that is available to the firm when it sets prices.
Unlike this literature, we run field experiments both to estimate demand, to train our SPT structure and to
test the performance of our approach out-of-sample, comparing conversion and profits relative to alterna-
tive pricing structures. In contrast to past work on SPT, we find that targeting on customer characteristics
(as opposed to customer behavior) leads to substantial profit increases. Our work also contributes to
the broader marketing literature on targeting prices and other non-price instruments to heterogeneous
customers (e.g., Ansari and Mela, 2003; Simester, Sun, and Tsitsiklis, 2006; Dong, Manchanda, and
Chintagunta, 2009; Kumar, Sriram, Luo, and Chintagunta, 2011).

3Misra and Nair (2011) test the performance of a more efficient incentives-based compensation scheme for sales agents in
a large firm, and Ostrovsky and Schwarz 2016 test the performance of optimally-derived reserve prices for Yahoo!’s sponsored
search auctions
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Our analysis does not consider the possibility that a strategic customer might alter her behavior to
game the firm’s targeting strategy (e.g., Fudenberg and Villas-Boas, 2006). In our setting, it is unlikely
that a customer would deliberately mis-report its business type at the registration stage since this could
interfere with the quality of the service it receives on the platform. Moreover, it is unlikely that a customer
would know which of its features to misreport since it would not be able to invert the firm’s targeting
strategy from the quoted price.

Our work is also related to the recent literature conducting inference when machine learning algo-
rithms are used to analyze heterogeneous treatment effects (e.g., Wager and Athey, 2015; Chernozhukov,
Chetverikov, Demirer, Duflo, Hansen, Newey, and Robins, 2016; Athey and Imbens, 2016a). The extant
literature has developed procedures for inference in the context of discrete (typically binary) treatment
effects. In contrast, our SPT structure requires conducting inference over the heterogeneous effects of
price, a continuous treatment, on customer demands.

The remainder of the paper is organized as follows. In section 2, we set up the prototypical decision-
theoretic formulation of monopoly price targeting based on demand estimation. In section 3, we derive
our empirical approach for estimating the demand parameters and quantifying uncertainty. We summa-
rize our empirical case study of targeted pricing at Ziprecruiter.com in section 4. In section 5, we explore
several extensions of our findings and we conclude in section 6.

2 A Model of Decision-Theoretic Monopoly Price Targeting

In this section, we outline the key elements of a data-based approach to monopoly targeted pricing. We
cast the firm’s pricing decision as a Bayesian statistical decision theory problem (e.g., Wald 1950; Savage
1954; Berger 1985 and also see Hirano 2008 for a short overview along with Green and Frank 1966 and
Bradlow, Lenk, Allenby, and Rossi 2004 for a discussion of Bayesian decision theory for marketing prob-
lems). The firm faces opportunity costs from sub-optimal pricing decisions in terms of missed potential
profitability. However, the firm typically faces uncertainty about the sales and profit consequences asso-
ciated with different prices. We treat the firm’s uncertainty as statistical knowledge about customers and
demand. Bayes theorem provides the most appropriate manner for the firm to use available data to update
its beliefs about customers and make informed pricing decisions. Failure to incorporate this uncertainty
into pricing decisions could lead to bias, as we discuss below. We also discuss herein the potential short-
comings of a simpler approach that “plugs in” point estimates of the uncertain quantities instead of using
the full posterior distribution of beliefs. For an early application of Bayesian decision theory to pric-
ing strategy see Green (1963). For a more formal econometric treatment of Bayesian decision-theoretic
pricing that integrates consumer demand estimation, see Rossi, McCulloch, and Allenby (1996); Dubé,
Fang, Fong, and Luo (2017)4.

We start by describing the demand setup and defining the sources of statistical uncertainty regarding

4See Hitsch (2006) for an application of Bayesian decision-theoretic sequential experimentation.
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customers and their demand. The demand model represents the firm’s prior beliefs about the customer.
On the supply side, we then define the firm’s information set about the customer. By combining the
firm’s prior beliefs (the demand model) and its information (the customer dat), we then define several
decision-theoretic (or “data-based”) optimal pricing problems for the firm.

2.1 Demand

On the demand side, we start with a relatively agnostic, multi-product derivation of demand to illustrate
the generalizability of our approach across a wide class of empirical demand settings. Consider a popu-
lation of i = 1, ...H customers. Each customer i chooses a consumption bundle q = (q1, ...,qJ) ∈ RJ

+ to
maximize her utility as follows:

q̄(pi;Ψi,εi) = argmax
q

{
U (q;Ψi,εi) : p′iq 6 I

}
(1)

where U (q;Ψi,εi) is continuously differentiable, strictly quasi-concave and increasing in q, I is a budget,
pi = (pi1, ...,qiJ)∈RJ

+ is the vector of prices charged to customer i, Ψi represents customer i′s potentially
observable “type” (or preferences) and εi ∼ i.id. Fε (ε) is an i.i.d. random vector of unobserved, random
disturbances that are independent of Ψi.

2.2 Firm Beliefs and Pricing

Suppose a firm knows the form of demand, 1, and has prior beliefs about Ψi described by the density
fΨ (Ψi). Let D denote the customer database collected by the firm. We assume the firm uses Bayes Rule
to construct the data-based posterior belief about the customer’s type:

fΨ (Ψi|D) =
`(D|Ψi) fΨ (Ψi)∫
`(D|Ψi) fΨ (Ψi)dΨi

(2)

where `(D|Ψi) is the log-likelihood induced by the demand model, 1 and the uncertainty in the random
disturbances, εi. Let FΨ (Ψi|D) denote the corresponding CDF of the posterior beliefs. Note that we
assume the firm does not update its beliefs Fε (ε) about the random disturbances, εi.

Given the posterior FΨ (Ψi|D), the firm makes decision-theoretic, data-based pricing decisions. We
assume the firm is risk neutral and faces unit costs c = (c1, ...,cJ) for each of its products. For each
customer i, the firm anticipates the following posterior expected profits from charging prices pi :

π (pi|D) = (pi− c)′
∫ ∫

q̄(p;Ψi,ε)dFε (ε)dFΨ (Ψi|D) . (3)

The firm’s optimal targeted prices for customer i, p∗i , must therefore satisfy the following first-order
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necessary conditions:

p∗i = c−
[∫ ∫

∇pq̄(p∗i ;Ψi,ε)dFε (ε)dFΨ (Ψi|D)

]−1 ∫ ∫
q̄(p∗i ;Ψi,ε)dFε (ε)dFΨ (Ψi|D) . (4)

Using the terminology from the literature on price discrimination (e.g. Tirole, 1988; Pigou, 1920),
we are technically implementing a form of third-degree price discrimination. In our model, the firm can
never learn εi even with repeated observations on the same customer (i.e. panel data). Therefore it will
never be possible for the firm to extract all of the customer surplus even when all the uncertainty in Ψi

is resolved. Unlike most practical implementations of third-degree price discrimination, however, our
proposed approach will potentially allow for customer-specific, or “personalized” pricing (e.g. Shiller,
2015). However, in practice the pricing is not exactly personalized since customers with the same poste-
rior expected Ψi would be charged the same price even if they differ along unobserved dimensions.

Suppose the firm uses a uniform pricing strategy across all its H customers. The posterior expected
profit-maximizing prices if the firm uses uniform prices, p∗, must satisfy the following first-order neces-
sary conditions:

p∗ = c−

[
H

∑
i

∫ ∫
∇pq̄(p∗i ;Ψi,ε)dFε (ε)dFΨ (Ψi|D)

]−1 H

∑
i

∫ ∫
q̄(p∗i ;Ψi,ε)dFε (ε)dFΨ (Ψi|D) . (5)

The integration of the profit function over the firm’s posterior distribution of beliefs adds computa-
tional complexity. Consider a simpler “plug-in” approach that instead maximizes the profits evaluated
at point estimates of Ψ. For instance, consider the plug-in estimate of profits evaluated at the point
estimates Ψ̂i = E (Ψ|D):

π
(

pi|Ψ̂i
)
= (pi− c)′ q̄

(
p;Ψ̂i,ε

)
. (6)

with corresponding optimal targeted prices p̃i, where

p̃i = c− [∇pq̄(p̃i;Ψi,ε)]
−1 q̄(p̃i;Ψi,ε) . (7)

The price recommendation in equation 7 is computationally simpler to determine than those in 4 because
the former avoids the integration of the profit function over the entire posterior distribution. However, by
Jensen’s inequality, we also know that in general the plug-in approach is biased:

π
(

p|Ψ̂i
)
6= π (p|D) .

This bias could lead to the manager misestimating the degree of uncertainty and consequently setting sub-
optimal pricing rules. In our empirical case study below, we will analyze the extent of bias associated
the plug-in approach.
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2.3 Welfare

For our monopoly SPT, we know by revealed preference that the firm’s profits must increase weakly.
This is because the optimal targeted prices in 4 could always accommodate charging every customer the
uniform price in 5: p∗i = p∗, ∀i.

The impact of targeted prices on consumer surplus is less straightforward. Cowan (2012) proposes a
novel approach that interprets the shift from uniform prices, p∗, to a targeted price, p∗i as an equivalent
change in marginal cost. Under targeted prices, the firm sets the price p∗i to equate the marginal revenue
from customer i with the marginal cost, c. Under the uniform price, the firm sets the price p∗, which
generates marginal revenue M̄Rifrom customer i. We can therefore think of the shift from p∗ to p∗i as
the equivalent change in price associated with a cost shift from c to M̄Ri: pi (M̄Ri) versus pi (c) . This
interpetation of targeting as an equivalent cost shift enables the use of pass-through comparative statics,
as in Weyl and Fabinger (2011).

Following Cowan (2012), we define the following pass-through condition whereby the price-elasticity
of demand is larger in magnitude than the curvature of the pass-through over the range from c to M̄Ri:

∣∣ηi,p
∣∣> pi (k)

p′′i (k)(
p′i (k)

)2 (8)

where pi (k) is the optimal price charged to consumer i at virtual cost k. When the pass-through condition
holds, the consumer surplus function CS (pi (k)) is convex in the virtual cost k. The change in total
consumer surplus can therefore be bounded:

∑
i
(M̄Ri− c) p′i (c) q̄i (c)≥ ∆CS≥∑

i
(M̄Ri− c) p′i (M̄Ri) q̄i (pi (M̄Ri)) . (9)

For many demand models, including the one we study in section 4.1 below, the lower bound can be
positive, implying that consumer surplus can increase theoretically.

3 Empirical Approach

The execution of the firm’s data-based pricing strategies in equations 4 and 5 depends on the ability to
construct an estimate of the posterior distribution F (Ψi|D). The extant literature on price targeting has
developed non-linear panel data methods to estimate F (Ψi|D) using repeated purchase observations for
each customer panelist (e.g. Rossi, McCulloch, and Allenby 1996; Chintagunta, Dubé, and Goh 2005).
In practice, many firms may not have access to panel databases. In many business-to-business and e-
commerce settings, for instance, firms are more likely to have access to data for a broad cross-section of
customers, but not with repeated observations.5 We consider a scenario with cross-sectional customer

5Ideal panel data would allow the firm estimate types using fixed effects estimators but there would remain the issue of
pricing to new customers which is our focus here.
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information that includes a detailed set of observable customer characteristics. Our approach consists of
using these characteristics to approximate Ψi.

3.1 Approximating Individual Types

Suppose we observe data
D = {(qi,xi, pi)}N

i=1

for a sample of N customers, where qi ∈ RJ
+ is a vector of purchase quantities, pi ∈ RJ

+ are the prices
and xi ∈ RK is a vector of customer characteristics. We assume that xi is high-dimensional and fully
characterizes the preferences, Ψi. We consider the projection of the individual tastes, Ψi, onto xi:

Ψi = Ψ(xi;Θ0)

where Θ0 is a vector of parameters. Note that for our pricing problem in section 2.2, above, we are not
interested in the interpretation of the arguments of the functionΨ(xi;Θ) . So we could be agnostic with
our specification. For instance, we could represent the function Ψ(xi;Θ) as a series expansion:

Ψ(xi;Θ0) =
∞

∑
s=1

θ0sψs (xi)

where {ψn (xi)}n≥0 is a set of orthonormal basis functions and Θn0 = (θ1, ...,θn) are the parameters for an
expansion of degree n. We are implicitly assuming that some sparse subset of the vector xi is informative
about Ψi and that we posses some methods to identify this sparse subset.

We focus on applications where, potentially, K � N and Θn0 is relatively sparse. Even though
our approach consists of a form of third-degree price discrimination, in practice, it can capture very
rich patterns of heterogeneity. We assume the firm has a very high-dimensional direct signal about
demand, x. For instance, if the dimension of xi is K = 30, our approach would allow for as many as
2K = 1,073,741,824 distinct customer types and, hence, targeted prices.

3.2 Approximating F (Ψi|D): The Weighted Likelihood Bootstrapped Lasso

With K�N, maximum likelihood is infeasible unless one has a theory to guide the choice of coefficients
to include or exclude. Even for large K and K� N, maximum likelihood could potentially produce bi-
ased estimates due to over-fitting. The literature on regularized regression provides numerous algorithms
for parameter selection with a high-dimensional parameter vector, Θ (e.g. Hastie, Tibshirani, and Fried-
man (2009)). Most of this literature is geared towards prediction. Our application requires us to quantify
the uncertainty around our estimated coefficient vector, Θ̂, and around various economic outcomes such
as price elasticities, firm profits and customer value, to implement decision-theoretic optimized pricing
structures. In addition, the approach must be fast enough for real-time demand forecasting and price
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recommendations.
To address these practicality concerns, we use an idea from Taddy, Gardner, Chen, and Draper (2016)

to approximate the posterior FΨ (Ψ|D) using a variant of the Bayesian Bootstrap (e.g. Rubin (1981);
Newton and Raftery (1994); Chamberlain and Imbens (2003); Efron (2012)). The approach generates
both a point estimate of Ψ and an approximate sample from the full posterior distribution FΨ (Ψ|D) .

The approach provides an approximation of the posterior distribution required for the decision-theoretic
pricing problem. In addition, the approach does not require large-sample approximations. Alternative
approaches using asymptotic approximations have been developed but are cumbersome to implement
and not easily scalable to the types of scenarios discussed in this paper.

3.2.1 The Bayesian Lasso

We start with our regularization procedure. Following Tibshirani (1996), suppose each model parameter,
Θ j, is assigned an i.i.d. Laplace prior with scale τ > 0: Θ j ∼ La(τ) where τ = Nλ . We can write the the
posterior distribution of Θ analytically:

FΘ (Θ|D) ∝ `(D|Θ)−
J

∑
j=1

τ j|Θ j| (10)

where `(D|Θ) is the log-likelihood of the demand data as before. This framework is termed the Bayesian
Lasso (Park and Casella 2008) on account of the Bayesian interpretation of the Lasso penalized objective
function. The MAP (maximum a posteriori) estimator that optimizes (10) can be shown to be equivalent
to the Lasso regression:

Θ
Lasso = argmax

Θ∈RJ

{
`(D|Θ)−Nλ

J

∑
j=1
|Θ j|

}
. (11)

In Appendix A, we describe the path-of-one-step estimators procedure used to select λ and generate
estimates of Θ and its sparsity structure (see also Taddy (2015b)).

3.2.2 Quantifying Uncertainty

While the MAP estimator generates a point estimate of the posterior mode it does not offer a simple
way to calibrate the uncertainty in these estimates. Park and Casella (2008) propose a Gibbs sampler
for a fully Bayesian implementation of the Lasso, but the approach would not scale well to settings with
very large-dimensional xi

6. Instead, we simulate the approximate posterior using a Weighted Likeli-
hood Bootstrap (WLB) of the Lasso problem. The Weighted Likelihood Bootstrap (Newton and Raftery
(1994)) is an extension of the Bayesian Bootstrap originally proposed by Rubin (1981). As discussed in

6Challenges include drawing from a large-dimensional distribution, assessing convergence of the MCMC sampler, tuning
the algorithm and storing a non-sparse simulated chain in memory.
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Efron (2012), the BB and the WLB are computationally simple alternatives to MCMC approaches. In
our context, the approach is scalable to settings with a large-dimensional parameter space, and is rela-
tively fast, making customer classification and price discrimination practical to implement in real-time.
Conceptually, the approach consists of drawing weights associated with the observed data sample and
solving a weighted version of (11). The application of Lasso to each replication will ensure a sparsity
structure that facilitates the storage of the draws in memory. This approach has also found its way into
econometrics (see e.g. Chamberlain and Imbens (2003)) and is a promising approach to approximating
uncertainty in complex models.

We construct a novel WLB type procedure to derive the posterior distribution of Θ̂|λ ∗, F (Θ). Con-
sider our data sample D = (D1, ...,DN). We assume that the data-generating process for D is discrete
with support points (ζ1, ...,ζL) and corresponding probabilities φ = (φ1, ...,φL) : Pr (Di = ζl) = φl. We
can allow L to be arbitrarily large to allow for flexibility in this representation. We assume the following
Dirichlet prior on the probabilities

φ ∼ Dir (a) ∝

L

∏
l=1

φ
al−1
l , al > 0.

Following the convention in the literature, we use the improper prior distribution with al → 0. This
assumption implies that any support points, ζl, not observed in the data will have φl = 0 with posterior
probability one: Pr (φl = 0) = 1, ∀ζl /∈ D. This prior is equivalent to using the following independent
exponential prior: Vl ∼ Exp(1) where Vl = ∑

L
k=1 φkφl.

We can now write the posterior distribution of observing a given data point, D as follows

f (D) =
N

∑
i=1

Vi1{D=ζi}, Vi ∼ i.i.d.Exp(1) .

The algorithm is implemented as follows. For each of the bootstrap replications b = 1, ...,B:

1. Draw weights:
{

V b
i
}N

i=1 ∼ Exp(1N)

2. Run the Lasso

Θ̂
b|λ = argmin

Θ∈RJ

{
`b (Θ)+Nλ

J

∑
j=1
|Θ j|

}
where `b (D|Θ) = ∑

N
i=1V b

i `(Di|Θ), using the algorithm (20) in Appendix A

(a) Construct the regularization path,
{

Θ̂b|λ
}λT

λ=λ1

(b) Use k-fold-cross validation to determine the optimal penalty, λ ∗

3. Retain Θ̂b ≡ Θ̂b|λ b∗ .

We can then use the bootstrap draws,
{

Θ̂b}B
b=1, to simulate the posterior of interest, FΨ (Ψi). We con-

struct draws
{

Ψb
i
}B

b=1, where Ψb
i = Ψ

(
xi;Θb), which can be used to simulate the posterior FΨ (Ψi) . We
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will use this sample to quantify the uncertainty associated with various functions of Ψi such as profits
and demand elasticities.

Discussion

One useful interpretation of our proposed model would have us consider the Lasso penalization
(

λ ∑
J
j=1 |Θ j|

)
as well as the Dirichlet weighting ( f (D)) as components of our overall prior. Under this interpretation,
the proposed sampling algorithm obtains approximate samples,

{
Θ̂b}B

b=1, from the posterior of interest.
While the prior used here is non-standard the framework is coherent from a Bayesian perspective.

Our proposed algorithm deals with two sources of uncertainty simultaneously. In particular, by re-
peatedly constructing weighted Lasso type estimators we are in effect integrating over the model space
spanned by the set of covariates. As such, our draws can also be used to construct posterior probabilities
associated with the set of covariates retained in the model. At the same time, the sampling procedure
also accounts for usual parameter uncertainty.

The extant literature has often followed a two-step approach based on the oracle property of the
Lasso (Fan and Li, 2001; Zou, 2006). When the implementation of the LASSO is an oracle procedure,
it will select the correct sparsity structure for the model and will possess the optimal estimation rate.
Accordingly, in a first step we would use a Lasso to select the relevant model (i.e. the subset of relevant
x) and in a second step we would obtain parameter estimates after conditioning on this subset. We
term this procedure Post-Lasso-MLE and use it as a benchmark in later sections. The post-Lasso-MLE
is somewhat of a strawman since several authors have already found poor small-sample properties for
such post-regularization estimators (e.g. Leeb and Potscher, 2008) that, effectively, ignore the model
uncertainty by placing a degenerate prior with infinite mass on the model selected by the first stage
Lasso.

4 Scalable Price Targeting at Ziprecruiter.com

We conduct a case study of targeted pricing at Ziprecruiter.com to illustrate the implementation of the
WLB estimator, the application to SPT and to validate our proposed approximation of the posterior of
Θ. The case study involves a sequence of two randomized controlled price experiment using a sample of
Ziprecruiter’s prospective enterprise customers. The data from the first experiment are used to train our
demand model and to produce price recommendations. A second experiment is then conducted using
a new sample of Ziprecruiter’s prospective enterprise customers to validate our recommended pricing
structures as well as our inference procedure.

Ziprecruiter.com is an online firm that specializes in matching jobseekers to potential employees. The
firm caters to a variety of potential employers across various industries that subscribe to Ziprecruiter.com
to gain access to a stream of resumes of matched and qualified candidates from which they might be able
to recruit. These firms pay a monthly subscription rate that they can cancel at anytime. Job applicants can
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use the Ziprecruiter.com platform for free. In a typical month in 2015, Ziprecruiter hosted job postings
for over 40,000 registered paying firms.

Our analysis focuses on prospective customers who have reached the paywall at ziprecruiter.com
for the first time. Amongst all prospective customers, Ziprecruiter’s largest segment consists of the
“starters,” small firms with less than 5 employees. Since starters represent nearly 50% of the customer
base, we focus our attention on prospective starter firms. At the beginning of this project the base rate
for a “starter” firm (a small business with less than 5 employees) looking for candidates was $99/month.

Each prospective new firm that registers for Ziprecruiter’s services navigates a series of pages on
the ziprecruiter.com website until they reach the paywall. At the paywall, they must use a credit card
to pay the subscription fee. Immediately before the request for credit card information, a firm is asked
to input details of the type of jobs they wish to fill as well as characteristics describing the firm itself.
During the registration process, the customer reports several characteristics of its business and the spe-
cific job posting. Table 2 summarizes the variables we retained for our analysis from the much larger
set of registration features. While the set looks small, it generates 133 variables7. After completing this
registration process, the customer reaches a paywall and receives a price quote. Ziprecruiter currently
uses a non-linear price schedule based on the number of months of service for which a new customer is
willing to pre-commit to service. The first row of Table 1 reports Ziprecruiter’s regular pricing schedule
used prior to the experimental period.

4.1 Empirical Model of Demand

In our case study of prospective customers that have reached Ziprecruiter’s paywall, demand consists
of a binary decision yi = 1 (if purchase) or 0 (if do not purchase). A customer i obtains the following
incremental utility from purchasing versus not purchasing

∆Ui = αi +βi pi + εi

= α (xi;θα)+β
(
xi;θβ

)
pi + εi (12)

where α (xi;θα) is an intercept and β
(
xi;θβ

)
is a slope associated with the price, Pi. To conform with

our notation in section 2, we re-write equation 12 as follows

∆Ui = p̃′iΨi + εi (13)

where Ψi =
(
α (xi;θα) , β

(
xi;θβ

))′ and p̃i = (1 pi)
′ .

7We used marginal regressions to select these variables for the demand analysis
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A customer i has the following probability of buying conditional on xi

P(xi, pi;Ψi) =
∫

1(∆Ui > 0)dFε (εi)

= 1−Fε

(
−p̃′iΨi

)
.

For our analysis below, we use a linear specification of the functions α and β

α (xi;θα) = x′iθα

β
(
xi;θβ

)
= x′iθβ .

However, in principle, one could use any arbitrary function of xi. We also assume that the random util-
ity disturbance εi is distributed i.i.d. logistic with scale parameter 1 and location parameter 0. These
assumptions give rise to the standard binary Logit choice probability

P(pi;Ψi) =
exp(p̃′iΨi)

1+ exp
(

p̃′iΨi
) . (14)

Note that for our demand specification, the treatment effect of price on choice is continuous. In
most data-mining applications, variables are treated as categorical. Our structural approach, which will
involve optimizing the price on the supply side, motivates our use of a smooth and continuous price
effect.

4.2 Pricing

Suppose Ziprecruiter collects a database for a sample of N consumers, D = (D1, ...,DN), where Di =

(yi,xi, pi). Suppose also that Ziprecruiter uses the WLB approach described in section 3.2 to estimate the
posterior beliefs about the demand parameters, FΨ (Ψi|D) . For SPT, we use the following contraction
mapping to enable the real-time calculation of customer-specific prices when a new customer reaches
the paywall at ziprecruiter.com. We start with an initial guess p0 and then iterate the following sequence

pk+1
i = c−

∫
P
(

pk
i ;Ψi

)
FΨ (Ψi|D)dΨi∫ ∂P(pk

i ;Ψi)
∂ p FΨ (Ψi|D)dΨi

(15)

until |pk+1
i − pk

i |< 1.e−6. We simulate the integrals over the posterior, FΨ (Ψi|D) using our WLB draws{
Ψb

i
}B

b=1 . Using Ziprecruiter’s online system, the evaluation of a typical prospective customer’s optimal
targeted price takes approximately 18.6 microseconds using (15) above. Therefore, the approach is not
only fast enough for real-time implementation, it also obviates the need for integrating optimization
software with Ziprecruiter’s paywall.
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4.3 Customer Surplus

We now revisit the lower bound on the change in consumer surplus when the firm switches from uniform
to SPT under our logit demand. We assume throughout that marginal cost is 0. First consider the case
where there are two customers and the firm has resolved all the uncertainty in the demand parameters so
that its posterior is degenerate at α (x) = (−0.9,0.3)′ and β (x) = (−0.01,−0.011)′ . It is straightforward
in this case to show that the pass-through condition holds as long as the purchase probability is less than
0.5. The purchase probability is less than 0.3 for both consumers under both uniform pricing and SPT.
Moreover, the lower bound on ∆CS is 0.024 and, thus, total consumer surplus and total welfare increase.
In fact, consumer surplus increases by $0.038.

Now suppose the firm faces uncertainty in the demand parameters. For instance, suppose the uncer-

tainty consists of additive Gaussian noise such that α̃i (x) ∼ N

([
αi (x)

βi (x)

]
,

[
1.e−4 0

0 1.e−6

])
(to

ensure that most of the posterior mass over β is negative we set the standard error to about 1
10th of the

value of the mean). In this case, we verify numerically that the pass-through condition holds over the
range of interest. The lower bound on ∆CS is 0.023 and, thus, total consumer surplus and total welfare
increase. In fact, consumer surplus increases by $0.034. These examples illustrate that, theoretically,
SPT can increase total consumer surplus for our framework.

4.4 Experiment One

The first phase of the case study consists of a price experiment to generate choice data with exogenous
price variation. The experiment was conducted between August 28, 2015 and September 29, 2015. Dur-
ing this period, 7,867 unique prospective customers reached Ziprecruiter’s paywall. Each prospective
customer was randomly assigned to one of ten experimental pricing cells. The control cell consisted of
Ziprecruiter’s standard pricing schedule, row one of Table 1. To construct our test cells, we changed
the monthly rate by some percentage amount relative to the control cell. The corresponding quarterly
and annual rates were computed by using the same percentage deviation from the control cell. Fol-
lowing Ziprecruiter’s practices, we then rounded up each rate to the nearest $9. The nine test cells are
summarized in rows two to ten of Table 1.

4.4.1 Model-free analysis

The results from the first stage experiment appear in Figure 1. As expected, we observe a statistically
significant, monotonically downward-sloping pattern of demand. Demand is considerably less price
elastic than Ziprecruiter’s current pricing would imply. A 100% increase in the price from $99 to $199
generates only a 25% decline in conversions. Given that most of Ziprecruiter’s services are automated
and it currently has enough capacity to increase its current customer base by an arbitrary amount, the
marginal cost per customer is close to $0. This means that Ziprecruiter is likely under-pricing its service.
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In practice, many firms are reluctant to run field experiments because of the opportunity costs of
testing a sub-optimal price (Anderson and Simester (2011)). Figure 2 plots Ziprecruiter’s monthly rev-
enues per customer at each tested price level. Interestingly, the experiment itself generated incremental
revenues for Ziprecruiter. By running the experiment, Ziprecruiter increased the average monthly rev-
enue per prospective customer by 14% relative to what it would have earned had it charged everyone
$99. The incremental profitability of the higher tested price levels more than offset the high conversion
at extremely small test price levels that are well below the control level of $99.

Figure 2 visualizes Ziprecruiter’s pricing incentives. Along our grid of tested price levels, the average
monthly revenue per prospective customer is maximized $399. Although, once we take into account
statistical uncertainty, we cannot rule out that the revenue-maximizing price lies somewhere between
$249 and $399. Ziprecruiter could increase its monthly revenues from new customers by raising its
prices by more than 100%. However, the experiment alone may be insufficient to help Ziprecruiter
determine the optimal price increase. A model is ultimately needed to design the optimized pricing
structures.

4.4.2 Demand estimation

The second phase of the case study consists of using the choice data from the field experiment to estimate
the Logit demand model using our WLB estimator discussed in section 4.18. The price experiment
avoids the usual concerns about price endogeneity that plague the demand estimation literature. During
the registration stage, our prospective customers provided responses on 12 categorical variables. We
break the different levels of these variables into 133 dummy variables, xi. We include the main effects of
these 133 dummy variables in the intercepts of our model, α, and the 133 interaction effects with price
in the slopes, β . For comparison, we also report results for the MLE estimates of a model including all
266 covariates, which we expect would suffer from over-fitting. In addition, we report results from the
unweighted Lasso penalized regression estimates with optimal penalty selected by cross-validation. In
section 5.1 below, we apply the WLB to a much higher-dimensional xi vector using all the main effects
and interaction effects. 9

In Table 3, we report the Bayesian Information Criterion (BIC) associated with the MLE estimator
that includes all 266 coefficients and with the Lasso estimator. The BIC includes a penalty for the number
of model parameters. We also report the range of BIC values across the 100 bootstrap replications of
the Lasso estimator used for constructing our Bayesian Bootstrap estimate of the posterior, F (Θ) . As
expected, the switch from MLE to Lasso improves the in-sample BIC considerably: 10,018 versus 8,366.
This improvement suggests over-fitting with the MLE. Across our 100 bootstrap replications, our WLB

8We use the gamlr function in the R package “gamlr” to implement the logistic Lasso at each iteration of our Bayesian
Bootstrap. We simulate the weighted Lasso procedure as follows. For each iteration, we draw a vector of weights for each
observation in our sample. We then draw a subsample by drawing with replacement from the original sample using our
weights. The logistic Lasso is then applied to this new subsample.

9The Lasso algorithm can easily accommodate much larger dimensions in a distributed computing environment. For
instance, Taddy (2015a) presents a case study with 11,940 attribute dimensions.
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estimator produces a range of BIC values from 7,805 to 8,940.
To see the important role of both variable selection and model uncertainty, note that across the 100

bootstrap replications, we retain as few as 58 to as many as 188 variables in the active set. 172 of the
parameters have more than a 50% posterior probability of being non-zero. If we look at the 6 parameters
with a more than 90% posterior probability of being non-zero, these include diverse factors such as
“price”, “job in British Columbia”, “company type: staffing agency,” “employment type: full_time” and
“is resume required.” There is no a priori “obvious” candidate types of variables that emerge suggesting
that the variable selection is important.

As an additional verification, we also examine the out-of-sample fit of each of our estimators. We
randomly sample 90% of the firms (with replacement) from the original 7,866 as a training sample. The
remaining 10% of firms are held out as a prediction sample. The second column of Table 3 reports
the out-of-sample fit for each estimator. Once again, the entire range of BIC values from the WLB is
below the BIC of the MLE. These findings are consistent with our concern that MLE may suffer from
over-fitting, generating potentially less reliable estimates of the firm’s posterior uncertainty.

4.4.3 Price Optimization

We now use our demand estimates to calibrate Ziprecruiter’s decision-theoretic price optimization prob-
lem. Since we do not impose any restrictions on the range of parameter values, we cannot rule out the
possibility of positive price coefficients or excessively large willingness-to-pay, two issues that could
interfere with the optimization. During the price optimization procedures, we drop any draws for which
β̂ (x)≥ 0 or α̂(x)

β̂ (x)
≥ 200010. A summary of the various pricing scenarios analyzed is provided in Table 4.

We begin with an analysis of optimal uniform pricing. At the current price of $99, the posterior
expected own-price elasticity of demand is only -0.36 with a 90% posterior credibility interval of (-0.43,-
0.3). Consistent with our model-free analysis above, Ziprecruiter.com is pricing on the inelastic region
of demand. Optimal pricing for an information good like Ziprecruiter would be set at the unit-elastic
point of demand. Recall from Figure 2 that the revenue-maximizing price appears to lie between $249
and $399. We can rule out $399 as being too high since there is close to a 100% posterior probability
that the own-elasticity is well above -1 at that point. At a price of $249, the posterior expected own-price
elasticity is -0.91 and the 90% posterior credibility interval is (-1.09,-0.74). Therefore, we cannot rule
out the probability that this price maximizes expected revenues. More formally, the optimized uniform
price, as defined in equation 5, is $280.52. Figure 4 displays Ziprecruiter’s posterior expected revenue
function under uniform pricing. The plot visualizes that Ziprecruiter is currently underpricing its service
by nearly 63%, when charging $99 instead of $280.53.

An important component of the decision-theoretic approach consists of the integration of profits over
the firm’s posterior distribution FΨ (Ψ|D) . As explained in section 2.2, a simpler plug-in approach will
be biased towards lower profitability, possibly leading to under-pricing. The plug-in approach produces

10In total, we only drop 6% of the posterior draws across Ψb
i for all i = 1, ...,N and b = 1, ...,B..
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a recommended price of $241. If we compute the posterior profits at a price of $241, the range is not
very different from the range in posterior profits at our WLB-based optimized price of $281. There is
nevertheless a 96% posterior probability that $281 is more profitable than $241.

In fact, Ziprecruiter subsequently decided to implement a uniform price of $249 instead of $281.
Taking into account the parameter uncertainty, there is a 96% probability that the $218 price is more
profitable than the $249 price. But, Table 4 indicates that the two prices produce very similar ranges of
posterior profits at the 95% credibility level. Ziprecruiter concluded that $249 was a more conservative
recommendation.

We now explore targeted pricing. Figure 3 summarizes the estimates of heterogeneity. In panel (a),
we report the distribution of customers’ posterior mean price sensitivities11

β̂i =
1
R

R

∑
r=1

xiβ̂ r.

The dispersion across customers suggests a potential opportunity for Ziprecruiter to price discriminate.
In panel (b), we report the distribution of customers’ posterior mean surplus when Ziprecruiter prices its
monthly service at $99:

ˆWT Pi =
1
R

R

∑
r=1

log
(

1+ exp
(

xi ˆ′α
r−$99× x′iβ̂

r
))

β̂ r
.

The measure of surplus measures the dollar value created to a customer by the availability of Ziprecruiter’s
service (versus only the no-purchase option). Panel (b) illustrates the wide dispersion in value consumers
derive from the availability of Ziprecruiter when it costs $99. The 2.5th percentile, median and 97.5th

percentile customers derive $20.49, $74.84 and $280.95 in surplus respectively. The magnitudes and
degree of dispersion in value indicate an opportunity for Ziprecruiter to target different prices across
customers reflecting differences in the value they derive from the service.

Figure 5 summarizes the targeted pricing results. Ziprecruiter wanted to ensure that the targeted
prices seemed natural to customers and also did not create a back-lash. Hence, they rounded all the
targeted prices down to the closest $9. For instance, a targeted price of $251 would be rounded down to
$249. They also capped the prices at $499. We use our demand estimates to assess the predicted per-
formance of this scheme for our September 2015 customer sample. We observe considerable dispersion
in the targeted prices, ranging from as low as $119 to as high as $499. The upper bound of $499 binds
for 455 of our customers, or 5% of the sample. All of the targeted prices are strictly larger than the
$99 baseline price. Interestingly, the mean targeted price, $272.95, is almost identical to the optimized
uniform price, $280.57. Figure 6 plots the relationship between the estimated price sensitivity of each

11For each customer, we drop positive draws, i.e. we do not average over draws r where xiβ̂ r < 0. This trimming is
important for the pricing analysis since positive support of the price sensitivity will lead to unbounded pricing. Across our
entire sample of customers, we end up dropping only 4.5% of the draws. Without trimming, only 15 of our 7,867 customers
would have a positive posterior mean price sensitivity (about 0.19% of our sample).
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customer and the corresponding targeted price. As expected, we observe a strong positive correlation
between the targeted prices are the price sensitivities. In Table 4, we compare the profits for the Imple-
mented Targeting scheme and the theoretical Targeting scheme without any rounding or capping. The
Implemented Targeting scheme While there is a 95% posterior probability that the unrestricted Targeted
prices are more profitable than the Implemented Targeted prices, the expected profit difference is only
about 4%. Ziprecruiter concluded that this small difference justified the simplicity of the implemented
scheme.

Once again, we can compare our decision-theoretic price recommendations to a plug-in approach.
Figure 7 displays the density of targeted prices using our decision-theoretic approach and the WLB char-
acterization of uncertainty. The figure also displays the targeted prices using the plug-in approach. As
expected, the distribution of prices is shifted to the left using the plug-in estimator, which (by Jensen’s
Inequality) under-estimates the posterior profitability at any given price. There is a 99% posterior proba-
bility that our WLB-based targeted prices generate higher overall profits than the plug-in based targeted
prices. In spite of this bias, all of the prices are strictly greater than $99.

We now compare the expected posterior profits per customer from our various pricing structures. The
posterior mean profits from the implemented uniform price of $249 and the implemented targeted prices
are 56% higher and 71% higher respectively than the profits under the control monthly price level of
$99. Taking into account our posterior statistical uncertainty around the parameter estimates, there is
a more than 99% posterior probability that baseline profits are lower than uniform and targeted profits,
respectively. In the next section, we discuss the follow-up experiment to test the relative profitability of
these three pricing structures.

Based on conversations with Ziprecruiter management, we also do not expect any competitive re-
sponse from other platforms. Since our recommendations involve raising prices, mitigating any concerns
about triggering a price war. Furthermore, pricing is not transparent in this industry since prices are not
posted in a public manner. At Ziprecruiter, for instance, a firm must complete the registration process
to obtain a price quote. Since our targeting is based on a complex array of customer characteristics, it
also seems unlikely that our SPT structure would lead to unintended strategic behavior by Ziprecruiter’s
customers (e.g., (Fudenberg and Villas-Boas, 2006; Chen, Li, and Sun, 2015)). Moreover, customers
need to report their registration characteristics truthfully to ensure that Ziprecruiter’s matching algorithm
identifies the most appropriate CVs for recruiting purposes.

4.4.4 Degree of Targetability

As explained above, our proposed targeting scheme is imperfect in the sense that we cannot estimate a
prospective customer’s logistically-distributed idiosyncratic utility shock, ε , as in equation 12. There-
fore, our targeted pricing structure, while granular, is a form of third-degree price discrimination. Any
set of customers with the same observable traits, x, would all be targeted the same price. We now assess
our targeting scheme by comparing it to the theoretical benchmark of perfect price discrimination, or
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first-degree price discrimination.
Suppose the firm was able to estimate each customer’s utility shock, ε. Consumer i’s maximum

willingness-to-pay (WTP) for Ziprecruiter service is

WT Pi =
(α (xi)+ ε)

β (xi)
. (16)

Under perfect price discrimination, the firm would set the targeted price

pPD
i = max(WT Pi,0)

and consumer i would deterministically buy as long as WT Pi ≥ 0.
Since the researcher (unlike the firm in this case) does not observe ε , the expected probability that a

consumer with preferences (α,β ) would purchase at the perfect price discrimination price is

Pr
(
buy|p,= pPDα,β

)
= Pr (WT P≥ 0)
= 1− 1

1+exp(α) .
(17)

The corresponding expected profit from this consumer is

π
(

pPD|α,β
)

= E (WT P|WT P≥ 0,α,β )Pr
(
buy|p = pPDα,β

)
. (18)

In Appendix B, we show that

E (WT P|WT P > 0,α,β ) = α

β
+ 1

β

(
−α + [1+exp(α)]ln[1+exp(α)]

exp(α)

)
.

We can now assess how well our proposed targeting scheme performs relative to the theoretical
benchmark of perfect price discrimination. In the final row of Table 4, we report the results if the firm
was able to price discriminate. The expected conversion, equation 17, increases considerably, more
than double the rate under targeted pricing, since every consumer with a positive WT P would buy. The
expected profit per lead, equation 18, also increases considerably to $98.58. Nevertheless, our proposed
targeting scheme is expected to generate 46% of the potential profits under perfect price discrimination.
There is a 90% posterior probability that our proposed targeting structure could generate as much as 55%
of the profits under perfect price discrimination. These profit differences are visualized in Figure 8 where
we plot the posterior CDF of profits in our control, Implemented Uniform and Implemented Targeting
pricing structures respectively. In sum, targeting on the observed customer features at the registration
stage explain almost half of the customer willingness-to-pay according to our model estimates.
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4.5 Experiment Two

The third phase consisted of a second price experiment to validate the price recommendations out of
sample and to validate the approximate inference procedure. The experiment was conducted between
October 27, 2015 and November 17, 2015 using a new sample of prospective customers that arrived to
the ziprecruiter.com paywall during this period and had not previously paid for the firm’s services. Each
prospective customer during this period was randomly assigned to one of the three following pricing
structures:

1. Control pricing – $99 (25%)

2. Uniform pricing – $249 (25%)

3. Targeted pricing (50%).

We over-sampled the targeted pricing cell to obtain more precision given the dispersion in prices charged
across customers. For our optimal uniform pricing cell, all customers were charged a monthly rate of
$249. This price was chosen given the fact that (i) the profit implications relative to the optimum were
minimal and (ii) the management believed that $249 would be more palatable on account of similar
prices being used elsewhere in the industry. For our targeted pricing cell, customers were targeted a
price based on the values of xi they reported during the registration stage. As explained in the previous
section, we then rounded the targeted price down to the nearest $9, discretizing the targeted prices into
$10 buckets ranging from $119 to $499. For instance, a customer with a targeted price of $183 would be
charged $179.

During this period, 12,381 prospective customers reached Ziprecruiter’s paywall. Of these prospec-
tives, 5,315 were starters and the remainder were larger firms. Amongst our starters in the November
2015 study, 26% were assigned to control pricing, 27% to the uniform pricing and 47% to the targeted
pricing. In the targeting cell, the lowest targeted price was $99 and, hence, neither of our test cells ever
charged a prospective customer less than the baseline price of $99.

To verify that our three experimental cells are balanced, we compare the targeted prices that would
have been used had we implemented our targeting method in each cell. Figure 9 reports the density of
targeted prices in each cell. The three densities are qualitatively similar, indicating that the nature of
heterogeneity and willingness-to-pay is comparable in each cell. This comparison provides a compelling
test for the balance of our randomization as it indicates that our distribution of targeted prices would look
the same across each of the experimental cells.

4.5.1 Model-free analysis

We begin by comparing the realized conversion and subscription revenue across our three pricing struc-
tures, control ($99), Optimal Uniform ($249) and SPT. To account for sampling error in our analysis, we
bootstrap our sample 1,000 times (sampling with replacement).
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Results are summarized in Table 5. As expected, average conversion is higher in the control cell
which has the lowest monthly price. Average conversion is almost identical in the uniform and targeted
cells, at 15%. However, the average profit per customer is higher in the targeted cell, as one would
theoretically expect. Overall, the uniform pricing increases expected profits per customer by 67.74%
relative to control pricing; although our bootstrapped confidence interval admits a change as low as
46%. Targeted pricing increases expected profits by 84.4% relative to control pricing; although our
bootstrapped confidence interval admits a change as low as 64%. These improvements from targeting
exceed our predictions based on the September sample discussed above in section 4.4.3. Finally, although
not reported, our bootstrap generates an 87% probability that targeted profits will exceed uniform profits.
These profit differences are visualized in Figure 10 where we plot the posterior CDF of profits in our
control, Uniform and Targeted pricing structures respectively. The CDF is computed using our bootstrap
draws of the mean profits per customer. Although not reported in the table, a Kolmogorov-Smirnov test
easily rejects the hypothesis of identical profit distributions for control and uniform (p < 0.01) and of
identical profit distributions for uniform and targeted (p < .01).

In sum, the November experiment demonstrates the large, permanent increase in profitability achiev-
able by optimized prices and, moreover, by targeting different prices across customers based on their
identifiable traits at the registration stage. The targeting scenario performs even better than we had pre-
dicted based on our September sample.

4.5.2 Welfare

To analyze the impact of SPT on customer surplus, we focus on the 2,485 customers assigned to the
targeting cell. Using the model estimates, we use (9) to compute the bounds on the change in consumer
surplus associated with switching from the optimal uniform price ($281) to the optimized targeted prices.
Over 98% of the customers satisfy the pass-through condition in (8). We obtain an upper bound of -$3.39
and hence customer surplus is predicted to fall for this sample of customers.

Another advantage of our November experiment is that we can analyze the “actual” behavior of
targeted customers. Recall that customers were in fact charged a simplified version of the targeted
prices, rounded as explained above. Even though total surplus is predicted to fall, 67% of the prices
targeted to these customers are lower than the optimal uniform price. Therefore, SPT strictly benefits the
majority of the customers. Furthermore, total predicted conversion increases by close to 1%, meaning
that more of the market will likely be covered under SPT. Figure 12 reports the total surplus across all
customers assigned to each targeted price cell. As a comparison, we also report the total surplus for
those customers had they instead been charged the optimal uniform price. The figure indicates that a
small group of customers with very high willingness-to-pay ($499 or above) are subsidizing the majority
of customers who are targeted a price less than the uniform rate.

In Figure 13, we look at the realized conversion rate in each cell. In spite of the fact that strong cus-
tomers subsidize weak customers, the realized conversion rate is actually higher for the strong customers
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(16.54%) than for the weak customers (13.9%). Moreover, for the extreme strong customers targeted a
price of $499, conversion is higher than in any of the weak customer cells, even though most of the latter
are charged prices that are less than half of $499.

Interestingly, there is no a priori obvious type of variable that drives the differences in targeted
prices. As an exporatory exercise, we correlate the 133 non-price registration features with an indicator
for whether each of the 2,485 firms is charged a targeted price lower than the optimal uniform price. The
features “Company Type: Small” and “Employment Type: part time” both correlate positively with being
targeted prices lower than uniform (correlations of 0.22 and 0.23 respectively). Interestingly, several of
the features related to job benefits are strongly negatively correlated with being targeted prices below
uniform: “job total benefits,” “job medical benefit,” “job vision benefit” and “job dental benefit” (with
correlations of -0.48, -0.44, -0.40 and -0.44 respectively). These diverse findings suggest an important
role for variable selection in determining which of the 133 registration features is best-suited to price
targeting.

4.6 Validation of the Proposed Inference Procedure

We now compare the predictions and sampling properties from our WLB estimates and the realized
outcomes from the November data. These comparisons allow us to judge how well our proposed WLB
approach worked. Since the sample of prospective customers changes in November 2015, we apply
the WLB estimates obtained from the September 2015 sample to predict the purchase behavior for the
November 2015 sample. Table 6 summarizes our predictions for conversion and profits per customer.
The profit predictions are comparable to our predictions from the end of September (see Table 4). The
posterior mean conversions do not differ by more than 1 percentage point across cells. The posterior
mean profits never differ by more than $1 across cells. Most important, our posterior credibility intervals
on profits are very similar, suggesting that the population of prospective customers in November is not
too different from the training sample in September.

By comparing Table 6 and Table 5, we can evaluate the properties of our inference approach. The
realized mean profits per customer in each of the three cells (Table 5) falls within the predicted 95%
credibility intervals for each of the cells (6). The predicted mean conversion rates are also very close to
the realized mean conversion rates and fall within the predicted 95% credibility intervals. In sum, the
WLB inference approach appears to have produced reliable predictions regarding both conversion and
profits in each of the cells.

In Figure 11, we compare the empirical distribution of the realized conversion rates in each of the
November pricing structure test cells to the predicted distribution using WLB, post-Lasso MLE and
MLE respectively. As described earlier, the post-Lasso MLE follows a two-step approach - the first step
implements a Lasso to select the relevant model (i.e. the subset of relevant x) and in a second step obtain
parameter estimates after conditioning on this identified subset. The MLE estimator simply uses all
available covariates (feasible for the current problem). All confidence intervals for these methods rely on
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standard Bootstraps. Each panel compares the densities of conversion for each of our compared methods
in a given pricing cell. For SPT, we report densities for 6 of the 39 price tiers. The density of realized
conversion rates is computed by bootstrapping with replacement from the November data in a given cell.

The figures indicate a relatively good match between our approximate posterior using WLB and the
actual observed data. In contrast, the post-Lasso MLE approach predicts considerably less uncertainty
than our WLB approach. The post-Lasso MLE would likely lead to managerial over-confidence when
compared to the actual conversion rates, which exhibit much more variation. This overconfidence is
particularly striking under SPT, where we have much smaller samples for each of the targeted price
tiers. Furthermore, comparing to the actual mean conversion, the mean conversion under post-Lasso
MLE is systematically less accurate than for the WLB. The figure illustrated additional out-of-sample
performance for our WLB procedure.

In each of the three panels, we also report the Kullback-Leibler divergence measure for (1) WLB rel-
ative to the true distribution (DKL (true||WLD)), and (2) post-Lasso MLE relative to the true distribution
(DKL (true||post−Lasso MLE)). The KLD

DKL (A||B) =
∫

Θ

a(θ) log
(

a(Θ)

b(Θ)

)
,

where a and b denote the densities of A and B respectively, measures the amount of information lost when
distribution B is used to approximate distribution A. We find that the KLD is considerably higher for post-
Lasso MLE than for WLB, suggesting that WLB is a much better approximation of the true distribution
of conversion. Across each of the panels, the percentage difference between the KLD for post-Lasso
MLE and for WLB ranges from 50% to 746%. Perhaps not surprisingly, the largest improvements for
WLB arise in the control and uniform pricing cells where we have more observations per cell.

The relatively poor performance of post-Lasso MLE reveals the important roles of both variable se-
lection and model uncertainty. Even when we take the best features from the Lasso, the corresponding
MLE still performs worse than WLB both on prediction and uncertainty quantification. Although not
reported herein, a naive approach that includes all the features in the MLE leads to considerably worse
prediction and uncertainty quantification. These findings indicate that price targeting based on registra-
tion features is a big data problem for Ziprecruiter.

5 Robustness of Results

5.1 Higher-dimensional Characteristics

Design of second experiment targets based on observables, xi. So we can evaluate additional pricing
structures out of sample. We focus on more granular targeted pricing using higher-dimensional xi that
include all the interaction effects. Our results suggest that the incorporating interactions has limited
incremental power. More details to be added.
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5.2 Lifetime Value of the Customer

Our analysis of the September 2015 sample above, in section 4.4.3, was based on myopic pricing geared
towards instantaneous profits. A potential concern is that raising the price, thereby lowering conversion,
might be to lower long-term profitability if there is sufficient repeat business. In this section, we re-
investigate the September sample based on four months of renewal behavior for each starter firm up to
the end of December 2015.

Figure 14 reports the expected net present value of profits in September over a 4-month horizon. The
top panel assumes a discount factor of δ = 0 and corresponds to our static analysis above. The bottom
panel assumes a discount factor of δ = 0.996 and assumes a monthly interest rate of 0.4% (or an annual
interest rate of 5%). While the net present value of profits is much higher in each cell under δ = 0.996,
our ranking of prices is quite similar. To understand this finding, it is helpful to look at both the initial
conversion rate along with the retention rates. In Table 7, we report the acquisition and retention rates
for each of the experimental price cells. As expected, conversion and retention both fall in the higher-
price cells. However, survival rates are still low enough that the profit implications in the first month
overwhelm the expected future profits from surviving customers. As a result, the optimal Uniform price
does not look much different from the myopic (one-month-horizon) case.

6 Conclusions

A long theoretical literature has studied the potential profit improvements associated with monopoly price
discrimination. While the extant literature has developed methods to estimate demand and simulate the
profitability of price discrimination, we are not aware of a field implementation that demonstrates these
profit improvements out of sample. Through a sequence of pricing field experiments, we measure the
realized profit improvements from SPT by a large online recruiting company. We find that Ziprecruiter’s
status quo pricing was on the inelastic region of demand. A substantially higher, uniform optimal price
raises the firm’s monthly profits by over 60% out of sample. Using machine learning methods, we design
a SPT scheme that is fast and scalable. SPT raises monthly profits by about 80% out of sample. Our field
experiment also allows us to validate the properties of our proposed method out of sample.

In addition to our substantive evidence, we have also developed a Bayesian Decision Theoretic scal-
able price targeting method that can accommodate large-dimensional, observable heterogeneity. The
approach bridges basic microeconomic principles with machine learning in a manner that is practical
and scalable. The approach is potentially generalizable to more complex demand environments with
multiple products and non-discrete-choice. An interesting extension would be the application of the
method to an oligopolistic setting in which the firm not only faces uncertainty about demand, it also
faces uncertainty about its rival’s likely actions.

In this paper, we approximate the posterior distribution of demand using a weighted likelihood boot-
strap of the lasso estimator. Subsequent to our analysis, new research has emerged with formal results on
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the sampling properties of similar machine-learning estimators applied to settings with high-dimensional
observed heterogeneity with discrete treatments (Athey and Imbens, 2016b,a) and, more recently, with
continuous treatments (Hansen, Kozbur, and Misra, 2017). We believe this to be a fertile area for future
work on both the theoretical and applied fronts.
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Monthly Quarterly Annual
Control 99 249 590
Test 1 19 49 119
Test 2 39 99 239
Test 3 59 149 359
Test 4 79 199 479
Test 5 159 399 999
Test 6 199 499 1199
Test 7 249 629 1499
Test 8 299 759 1789
Test 9 399 999 2379

Table 1: Experimental Price Cells for Stage One

Variable Name
job state

company type
hascomm

company declared job slots needed
job total benefits
employment type
is resume required
job medical benefit
job vision benefit

job life insurance benefit
job category

Table 2: Company/Job Variables

Model In-Sample BIC Out-of-Sample BIC
MLE 10018.78 4430.65
Lasso 8366.47 2286.63

WLB range (7805.11,8940.06) (3249.34,4071.96)

Table 3: Predictive Fit from MLE, Lasso and Weighted Likelihood Bootstrap estimation (WLB) (for
WLB we report the range across all 100 bootstrap replications). In-Sample results are based on en-
tire September 2015 sample with 7,866 firms. Out-of-Sample results are based on a randomly-selected
(without replacement) training sample representing 90% of the firms, and a hold-out sample with the
remaining 10% of the firms.
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Figure 1: Stage One Experimental Conversion Rates. Each bar corresponds to one of our 10 experimental
price cells. The height of the bar corresponds to the average conversion rate within the cell. Error bars
indicate the 95% confidence interval for the conversion rate.
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Figure 2: Stage One Experimental Revenues per Customer. Each bar corresponds to one of our 10 exper-
imental price cells. The height of the bar corresponds to the average revenue per prospective customer
within the cell. Error bars indicate the 95% confidence interval for the revenues per customer.
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Figure 3: Distribution across customers of posterior mean price sensitivity and posterior surplus from
the provision of the service (N=7,867).
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Figure 6: Targeted Prices vs Posterior Mean Price Sensitivities
(

β̂i

)
(N=7,867).

Pricing Structure Price Range Conversion Rate Profit per Lead ($)
Mean 95% Credibility Interval Mean 95% Cred. Interval

Control $99 0.26 (0.24,0.28) $25.34 ($23.29,$27.68)
Optimized Uniform $280.57 0.15 (0.12,0.17) $40.82 ($33.98,$48.58)

Implemented Uniform $249 0.16 (0.14,0.18) $39.69 ($33.93,$45.42)
Targeted ($125.45,$2465.71) 0.15 (0.13,0.18) $47.61 ($36.86,$62.02)

Implemented Targeted ($119,$489) 0.16 (0.13,0.19) $45.50 ($36.47,$55.91)
Perfect ($1.87,$60.5) 0.36 (0.32,0.4) $98.58 ($85.97,$113.5)

Table 4: Stage one posterior profitability by pricing structure (Targeted and Perfect price discrimination
cap the prices charged at $499).

Pricing Structure # subjects Conversion Rate Profit per Customer ($)
Mean 95% Conf. Interval Mean 95% Conf. Interval

Control 1360 0.23 (0.21,0.25) 22.55 (20.75,24.39)
Implemented Uniform 1430 0.15 (0.14,0.17) 37.73 (33.78,41.79)

Targeted 2485 0.15 (0.14,0.16) 41.67 (38.34,45.10)

Table 5: Stage two conversion and profitability by pricing structure. (Bootstrapped confidence intervals
obtained using 1,000 replications draw with replacement from entire sample in each of the cells).
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Figure 7: Distribution of Targeted Prices using WLB and “plug-in.” Plug-in estimates are the posterior
mean values of Ψi.
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Pricing Structure # subjects Conversion Rate Profit per Lead ($)
Mean 95% Credibility Interval Mean 95% Cred. Interval

Control 1360 0.26 (0.24,0.29) 25.76 (23.74, 28.5)
Implemented Uniform 1430 0.16 (0.13,0.19) 40.05 (32.97, 47.5)

Targeted 2485 0.15 (0.13,0.18) 44.74 (35.24, 54.09)

Table 6: Stage Two posterior profitability predictions by pricing structure
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Figure 8: CDFs of Profit Per Customer in Each Cell (September, 2015)
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H0 :   πControl = πuniform  (p − value < 0.01)
    H0 :   πUniform = πTargeted  (p − value < 0.01)
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Figure 9: Density of Targeted Prices in Each Cell (November, 2015)
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Figure 10: CDFs of Profit Per Customer in Each Cell (November, 2015)
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H0 :   πControl = πuniform  (p − value < 0.01)
    H0 :   πUniform = πTargeted  (p − value < 0.01)
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Figure 11: Comparison of Predicted and Realized Conversion
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(c) scalable price targeting
The plots compare the empirical density of realized conversion, for a given pricing structure, to the corresponding predicted densities for WLB, post-Lasso

MLE and MLE respectively. The density of realized conversions is computed by bootstrapping (with replacement) from the Nov data.
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Figure 12: Comparison of Predicted Total Customer Surplus (by price cell) for Scalable Price Targeting
and Uniform Pricing
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Results pertain to the 2,485 customers in the targeting cell of the November 2015 experiment. For each of the targeted price cells, we report total surplus
across all customers in that cell under SPT (blue). As a comparison, we also report the total surplus had those customers instead been charged the optimal

uniform price.

Figure 13: Realized Conversion by Targeted Price Cell
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Results pertain to the 2,485 customers in the targeting cell of the November 2015 experiment. Strong customers are targeted a price higher than the uniform
price. Weak customers are targeted a price lower than the uniform price.

Table 7: Acquisition and Retention Rates (September 2015)
Price ($) Acquisition at least 1 month at least 2 months at least 3 months at least 4 months

19 0.36 0.8 0.77 0.61 0.56
39 0.32 0.75 0.73 0.52 0.47
59 0.27 0.65 0.63 0.49 0.4
79 0.29 0.69 0.64 0.5 0.39
99 0.24 0.69 0.66 0.48 0.38

159 0.2 0.63 0.61 0.43 0.34
199 0.18 0.56 0.5 0.31 0.19
249 0.17 0.63 0.59 0.39 0.27
299 0.13 0.58 0.53 0.35 0.29
399 0.11 0.54 0.52 0.37 0.25
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Figure 14: Expected Net Present Value of Monthly Revenues Per Lead over a 4-Month Horizon (Septem-
ber 2015)
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A Appendix: Lasso Regression

The penalized Lasso estimator solves for

Θ̂|λ = argmin
Θ∈RJ

{
`(Θ)+Nλ

J

∑
j=1
|Θ j|

}
(19)

where λ > 0 controls the overall penalty and |Θ j| is the L1 coefficient cost function. Note that as λ → 0,
we approach the standard maximum likelihood estimator. For λ > 0, we derive simpler “regularized”
models with low (or zero) weight assigned to many of the coefficients. Since the ideal λ is unknown a
priori, we derive a regularization path,

{
Θ̂|λ
}λT

λ=λ1
, consisting of a sequence of estimates of Θ corre-

sponding to successively lower degrees of penalization. Following Taddy (2015b), we use the following
algorithm to construct the path:

1. λ1 = in f
{

λ : Θ̂|λ1 = 0
}

2. set step size of δ ∈ (0,1)

3. for t = 2, ...,T :
λ t = δλ t−1

ω t
j =

(
|Θt−1

j |
)−1

, j ∈ Ŝt

Θ̂t = argmin
Θ∈RJ

{
`(Θ)+N ∑

J
j=1 λ tω t

j|Θ j|
}
.

(20)

The algorithm produces a weighted-L1 regularization, with weights ω j. The concavity ensures that the
weight on the penalty on Θ̂t

j falls with the magnitude of |Θ̂t
j|. As a result, coefficients with large values

earlier in the path will be less biased towards zero later in the path. This bias diminishes faster with
larger values of γ .

The algorithm in 20 above generates a path of estimates corresponding to different levels of penaliza-
tion, λ . We use K-fold cross-validation to select the “optimal” penalty, λ ∗. We implement the approach
using the cv.gamlr function from the gamlr package in R.

B Appendix: Conditional Expectation of Truncated Logistic Ran-
dom Variable

The random utility component of equation 12 is assumed to be i.i.d. logistic with pdf

f (∆ε) =
exp(−∆ε)

[1+ exp(−∆ε)]2
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and CDF
F (∆ε) =

1
1+ exp(−∆ε)

.

The truncated density for ∆ε when it is known to be strictly greater than k > 0 is

f (∆ε|∆ε ≥ k) =
f (∆ε)

Pr (∆ε ≥ k)
=

[
exp(−k)

1+ exp(−k)

]−1 exp(−∆ε)

[1+ exp(−∆ε)]2

We can then compute the conditional expectation of the truncated random variable∆ε when k > 0 as
follows:

E (∆ε|∆ε ≥ k) = [Pr (∆ε ≥ k)]−1 ∫−∞

k ∆ε f (∆ε)d∆ε

=
[

exp(−k)
1+exp(−k)

]−1 ∫−∞

k ∆ε
exp(−∆ε)

[1+exp(−∆ε)]2
d∆ε

=
[

1+exp(−k)
exp(−k)

][
kexp(−k)+[1+exp(−k)]ln[1+exp(−k)]

1+exp(−k)

]
= k+ [1+exp(−k)]ln[1+exp(−k)]

exp(−k)

where

∆ε
exp(−∆ε)

[1+ exp(−∆ε)]2
=

d
(
−∆εe(−∆ε)+[1+e(−∆ε)]ln[1+e(−∆ε)]

[1+e(−∆ε)]

)
d∆ε

.
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