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Abstract

We take advantage of rich microdata on Colombian manufacturing
establishments to decompose growth over an establishment’s life cycle
into that attributable to fundamental sources of idiosyncratic growth—
physical productivity, demand shocks (firm appeal), and input prices—
and distortions that weaken the link between those fundamentals and
actual growth. We accomplish this using data on quantities and prices
for individual products for each manufacturing establishment. Pooling
all ages, measured fundamentals explain around 70% of the variability
of output relative to birth level, with the remaining 30% explained by
distortions and other unobserved factors. Demand shocks and TFPQ
are equally important in the explained part, while input prices play a
more minor role. Distortions explain more than 50% of the variance in
growth up to age seven, but their contribution falls to less than 25% by
around age 20. For the fraction explained by fundamentals, early life
growth variation is explained by TFPQ with demand and input prices
playing a minor role. But demand is the crucial factor in variation in
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long-run growth, with a contribution that surpases that of TFPQ and
unobserved factors by around age 15. In the 2000s compared to the
1980s, two decades separated by a wave of deep structural reforms,
the contribution of TFPQ to the variance in life cycle growth grows
by around 7 p.p , compensated by a lesser role for input prices and,
interestingly, distortions.
Keywords: post-entry growth; TFPQ; demand; distortions.
JEL codes: O47; O14; O39
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1 Introduction

The growing availability of detailed firm and establishment level data has
allowed researchers to investigate the empirical micro foundations behind
sluggish aggregate growth in many low- and middle-income economies. A
recent strand of the literature has focused on how businesses grow over their
life cycle, uncovering patterns that suggest that less developed economies
are characterized by post-entry business growth slower than that observed
in developed economies (Hsieh and Klenow, 2014; Buera and Fattal, 2014).
This observation has generated interest in understanding the role played
by distortions that detach a business’performance from its fundamentals —
productivity—, in explaining differential post-entry growth across countries.1

Detecting the role of distortions vs. fundamentals is often based on im-
posing assumptions about technology and demand to draw inferences from
dispersion in revenue productivity measures. For example, Hsieh and Klenow
(2009) assume Cobb-Douglas technology with constant returns to scale, ho-
mogeneous input prices, and a CES demand structure to decompose revenue
based measures into fundamentals vs. distortions. Under this assumptions,
all dispersion in average products of inputs is attributed to distortions. Be-
yond imposing structure that may not fit the data in all contexts, this type
of approach is limited relative to having firm-level data on prices and quan-
tities (as in Foster, Haltiwanger and Syverson, 2008 and 2016 and Eslava et.
al. (2013)). Price and quantity data permit not only direct measurement
of fundamentals but also decomposing the fundamentals into a rich set of
components including that of technical effi ciency (what the literature and
we often refer to as physical productivity or TFPQ) as well as quality or
other demand related factors, and input prices.2 With direct measurement
of these fundamentals, distortions can in turn be measured from the differ-
ences between optimal frictionless inputs and outputs (determined using the
measured fundamentals) and the actual measured inputs and outputs.
We take advantage of this direct measurement approach for the Colom-

bian manufacturing industry, for which there is rich establishment-level data
on prices and quantities for both outputs and inputs over a long period

1This approach has grown out of a recent literature highlighting the potentially impor-
tant role of idiosyncratic distortions in generating misallocation. See, e.g., Restuccia and
Rogerson (2008), Hsieh and Klenow (2009), and Bartelsman et. al. (2013).

2See, e.g., De Loecker, Goldberg, Khandelwal and Pavnic (2015); Foster, Haltiwanger
and Syverson (2008,2016); Hottman, Redding and Weinstein (2016).
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of time. Using these data, we conduct a decomposition of growth over an
establishment’s life cycle into that attributable to fundamental sources of
growth (physical productivity, demand shocks, and input prices) and idio-
syncratic distortions that weaken the link between those fundamentals and
actual growth.3 Since at least 1982, the Colombian Annual Manufacturing
Survey has been recording information on values and quantities for all in-
dividual products produced by an establishment and all individual material
inputs used by the establishment, besides information on input use and mone-
tary value of production. Establishment level price indices can be constructed
using this information. This allows us to measure establishment-level out-
put based on deflating establishment-level revenue with a quality-adjusted
establishment-level price deflator rather than the typical approach in the
literature of using industry-level deflators. The Manufacturing Survey has
census-type coverage of non-micro manufacturing establishments, and allows
following each of them longitudinally.
The ColombianManufacturing Survey also offers rich possibilities in terms

of following plants over their life cycle. Age of the establishment from the
time of the start of its operations is reported in the survey, and establish-
ments can be followed longitudinally, some of them for over 30 years. The
age indicator is not affected by restructuring or changes in ownership. One
key advantage of this data infrastructure is that, because we can follow each
plant over its own life cycle, we deal with selection bias that affects life
cycle growth estimates from cross sectional data. Estimates based on cross-
sectional information include in the set of early age observations a series of
likely small and unproductive plants that do not make it to the older ages.
Own-plant life cycle estimates are not subject to the same problem.
Our approach to decomposing growth driven by fundamentals into the

contributions of physical productivity and demand builds on the ideas pro-
posed by Foster et al. (2008), recently applied to the life-cycle growth con-

3By physical productivity, we refer to a production function residual, where production
is measured as plant-level revenue deflated with a quality adjusted plant-level deflator. The
term physical productivity to denote technical effi ciency or TFPQ at the plant-level has
been recently popularized by Foster, Haltiwanger and Syverson (2008). In their case, the
measure is literally physical productivity since they take advantage of physical quantity
data for selected products in the US. In our case, we use this same term but it reflects the
more traditional concept of measuring output by deflating revenues with a price deflator.
However, unlike the vast majority of studies we use a plant-level price deflator based upon
the direct collection of plant-level prices, and adjusted to allow for varying quality-appeal
across products within a plant.
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text by the same set of authors (2016). But we widen the sectoral scope
to all (non-micro) manufacturing plants and sectors, which requires an ex-
plicit treatment of the multi-product character of most establishments to
appropriately separate quantities and prices at the establishment level. We
rely on the nested firm-product demand setup proposed by Hottman et al
(2016), which allows us to construct quality-adjusted plant price indices to
then appropriately measure quantities at the plant level, constructed as val-
ues deflated by individual quality-adjusted prices. Beyond our different focus
on life-cycle growth over the medium and long run within a business, we also
follow a different methodological approach than Hottman et al (2016) to de-
compose technology vs. demand shocks. While they rely solely on data on
prices and quantities, and a structure that allows disentangling cost shocks
vs. markups using only these data, we add information on the plant’s pro-
duction process and input prices to obtain measures of fundamentals from
the side of technology, separating cost shocks from input prices and physical
productivity.
Post entry growth is highly skewed in our data, as it has been shown to be

in other contexts (e.g. Haltiwanger, Jarmin and Miranda, 2013). Thus, much
of our focus is on the decomposition of the variance in growth across plants
at different stages of the life cycle. But our methods also permit quantifying
the contribution of fundamentals vs. distortions to first moments such as the
mean and median growth as well as high growth (90th percentile) vs. low
growth (10th percentile) plants.
In trying to understand the reasons behind slow post-entry productivity

growth, much of the focus has been on dimensions external to the business,
such as institutions that discourage, or fail to encourage, healthy market se-
lection and investment in productivity growth (e.g.Hsieh and Klenow, 2014).
On the side of businesses, meanwhile, the focus has been on efforts conducive
to improvements in technical effi ciency. For instance, research on manage-
rial practices that impact productivity has focused on production processes
and employee management (e.g. Bloom and Van Reenen, 2007; Bloom et
al. 2016). Our approach highlights the multidimensional character of growth
drivers that are internal to the business. As theory increaslingly devotes
attention to endogenous investments in productivity, shedding light on the
role of these different dimensions of productivity becomes crucial. The en-
dogenous evolution of technical effi ciency vs. demand related factors likely
differs, as do frictions to investments in these different dimensions. The opti-
mal design of policies aimed at dealing with such frictions also likely depends
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on the nature and relative importance of demand side vs. technical effi ciency
factors in accounting for which businesses succeed.
Our approach should be viewed as a life cycle accounting exercise pro-

viding guidance about the relative importance of different fundamentals vs.
distortions for a business’choice of scale given fundamentals. As we note
above, the patterns of fundamentals such as TFPQ and demand shocks that
we detect likely reflect in part endogenous investments in process and prod-
uct innovation as well as related investments in organizational capital and
customer base (e.g. Atkeson and Burstein, 2010; Acemoglu et al. 2014; Hsieh
and Klenow, 2014; Foster, Haltiwanger and Syverson, 2016). There may be
distortions that impact such endogenous investments, in turn reflected in the
evolution of the measured fundamentals. The overall potential role of dis-
tortions in explaining to life cycle growth is a composite of their effect on
endogenous investments in fundamentals, and their effect on scale for given
evolution of fundamentals. Our focus is on the latter. We regard this ap-
proach as an important step in the direction of quantifying the overall role
of specific fundamentals vs. distortions. As our findings show, the different
components have quite different contributions to the variability of life cycle
growth across businesses.
For an average manufacturing plant in our Colombian data, compared to

its level at birth output has grown by a factor of 2.4 by age 5, almost four-fold
by age 10, and ten-fold by age 25. Employment grows at a slower pace, with
factors of growth relative to birth of around 1.5, 2, and 3 for ages 5, 10, and
25. Based on comparable data for the US and growth over cohorts, this pace
of employment growth in Colombia is approximately half as fast as that in
the US.
There is wide dispersion in the patterns of growth across firms, with av-

erage growth driven by a small fraction of rapidly growing businesses. We
find that, in the long run, such dispersion is mostly explained by dispersion
in fundamentals, rather than distortions and other unobserved factors, with
TFPQ and demand shocks both playing a crucial role. Pooling all ages, mea-
sured fundamentals explain around 70% of the variability of output relative
to birth level, with the remaining 30% explained by distortions and other
unobserved factors. Of the fraction explained by measured factors, input
price growth explains 7 p.p, with demand shocks and TFPQ being equally
important in explaining the rest.
Interestingly, distortions are particularly important to explain the vari-

ance of growth from birth to early ages, accounting for more than 50% of
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the variance of growth up to age seven. But, they lose importance for longer
horizons, with their contribution to the variance of growth falling to less
than 25% for a horizon of 20 years from birth. For the fraction explained by
fundamentals, variance in early life growth is explained mostly by TFPQ,
while demand is the crucial factor in accounting for the variation in long-run
growth from birth, with a contribution that surpases that of TFPQ and
unobserved factors for ages 15 and beyond.
In terms of other moments, we find that most of the increase in mean

growth (over 80%) over a 20- or 30- year life cycle is due to the growth in
demand. We also find that based on fundamentals alone, plants should be
exhibiting even higher mean growth but other factors such as distortions im-
ply a slower actual growth in production. We also find that there is a large
difference between mean and median growth over the life cycle. Underly-
ing this gap is considerable skewness in the growth rate distribution. The
90th percentile grows very rapidly compared to the median while the 10th
percentile is closer to the median. At the 10th percentile both TFPQ and
demand contribute about equally to growth to age 20-30 (which is negative),
while demand is more important for the median and much more for the 90th
percentile. Interestingly, it is at the 90th percentile where we find the largest
gap between the growth predicted by fundamentals and actual growth. This
finding is consistent with distortions playing an especially important role for
high growth plants over the life cycle.
We also observe changes in the contribution of technology vs. demand

and other factors over time in Colombia. The contribution of TFPQ to the
variance in life cycle growth grows by around 7 p.p in the 2000s compared
to the 1980s, while the contribution of input prices and distortions falls.
Moreover, life cycle growth appears faster in the 2000s compared to the 1980s.
Many underlying factors probably changed between those two decades, but
a crucial dimension is the implementation of wide market-oriented reforms
in the 1990s.
The paper proceeds as follows. Section 2 presents our conceptual frame-

work, defining each of the plant fundamentals that we characterize, and
our approach to decompose growth into contributions of those fundamen-
tal sources as well as distortions. We then explain the data used in our
empirical work, in section 3. Growth over establishments’life cycle in terms
of output, employment and other outcomes, which is the object we aim at
decomposing, is characterized in section 4). Section 5 explains the approach
we use to measure fundamentals. Results for our growth decomposition are
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presented in section 6. Section 7 presents extensions and robustness analysis.
Section 8 concludes.

2 Decomposing firm growth into fundamen-
tals vs distortions

We start with a very simple model of firm optimal behavior given firm fun-
damentals, to derive the relationship that should be observed between size
growth and growth in fundamentals as a firm ages. We also permit firm
size to be impacted by distortions. For consistency with the literature on
business dynamics, we refer to a business as a “firm”, even though the unit
of observation for our empirical work is an establishment or plant. The
main fundamentals we consider are the productivity of the firm’s productive
process (often termed TFPQ in the literature) and a demand shock. The
conceptual framework below makes clear what we mean by each of these,
and the sense in which they are “fundamentals”. Beyond measuring TFPQ
and demand shocks, we observe unit prices for inputs, in particular material
inputs and labor.
In the model, the firm chooses its size optimally given TFPQ, demand

shocks, input prices and distortions. As a result, growth over its life cycle is
driven by growth in each of them. This is the basis of our analysis. In the
spirit of a growth accounting exercise and of much of the literature on firm
dynamics, we take growth of fundamentals as exogenous.4

We don’t explicitly model adjustment frictions but take the shortcut in
recent literature on misallocation to permit wedges or distortions between
frictionless static first order conditions and actual behavior (e.g. Hsieh and
Klenow, 2009). Such distortions and wedges might capture factors such as

4For instance, the seminal models of Hopenhayn (1992) and Melitz (2003), and much of
the work that has since followed in Macroeconomics and Trade. Endogenous productivity-
quality growth has made its way to these models more recently (e.g. Atkenson and
Burstein, 2010; Acemoglu et al. 2014; Hsieh and Klenow, 2014; Fieler, Eslava, and Xu,
2016). The firm’s efforts to strengthen demand may include investments in building its
client base (Foster et al., 2016), and adding new products and/or improving the quality
of its pre-existing product lines. Those to strangthen TFPQ may include better manage-
ment of the production process (e.g. Bloom and Van Reenen, 2007) or acquiring better
machines. The results of our decomposition shed light on the relative role and character-
istics of each of these accumulation processes, useful for providing guidance about future
research that explores the determinants of these fundamentals.
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adjustment frictions, technlogical frictions, and distortions arising from reg-
ulation.5 This shortcut enables us to use a simple static model of optimal
input determination to frame our analysis of growth between birth and a
future period t, where t is far away into the future. We permit the wedges
or distortions to vary by firm age which could be viewed as a proxy for
permitting adjustment frictions to vary by firm age.

2.1 Technology

Consider a firm indexed by f , that produces output Qft using a composite
input Xft to maximize its profits, with technology

Qft = AftX
γ
ft = aftAtX

γ
ft (1)

Aft is the firm’s physical total factor productivity TFPQ, and γ the returns
to scale parameter. In turn, Aft = aftAt where At is an aggregate technology
shock, and aft is an idiosyncratic component. Equation (1) makes clear that
aft captures the (idiosyncratic) physical effi ciency of the productive process:
how much physical product the firm expects to obtain from a unit of a basket
of inputs, beyond that obtained by the average firm.
Some firms are multiproduct, and for them output Qft is a composite of

individual products (see section 2.2). But though process effi ciency is likely
to vary across products in the firm, some aspects of it, such as production
management and average worker ability for basic tasks, are common to differ-
ent product lines within the firm. We focus on these firm-level components of
effi ciency, captured by aft, a crucial focus when trying to understand growth
at the firm level.

2.2 Demand

As in Hottman et al. (2016), in the context of multiproduct firms we de-
fine firm output Qft as a CES composite of individual products Qft =

5This shortcut has limitations as the idiosyncratic distortions that we permit don’t
provide the discipline that formally modeling dynamic frictions imply. See, e.g., Asker,
Collard-Wexler and DeLoecker (2014), Decker et. al. (2017) and Haltiwanger, Kulick and
Syverson (2017). But it has the advantage in subsuming in a simple measure different
types of frictions and distortions.
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∑
Ωft

dfjtq
σJ−1

σJ
fjt


σJ
σJ−1

, where qfjt is period t purchases of good j produced

by firm f , the weights dfjt reflect consumers’relative preference for different
goods within the basket offered by firm f , and Ωf

t is the basket of goods pro-
duced by f in year t. In particular, consumers derive utility from a nested
CES utility function, with a CES nest for firms and another for products
within firms. Consumer’s utility in period t is given by:

U (Q1t, ..., QNt) =

(
NFt∑
f=1

dftQ
σF−1

σF
ft

) σF
σF−1

(2)

where Qft =

∑
Ωft

dfjtq
σJ−1

σJ
fjt


σJ
σJ−1

(3)

s.t.

NFt∑
f=1

∑
Ωft

pfjtqfjt = Et (4)

where pfjt is the price of qfjt, and NFt is the number of firms in period t. We
refer to dfjt and dft as, respectively product (within firm) and firm appeal
or demand shocks, defined as in equations 2 and 3: the weight, in consumer
preferences, of product fj in firm f ′s basket of products, and of firm f in the
set of firms. Product appeal dfjt captures the valuation of attributes specific
to good fj relative to other goods produced by the firm, while firm appeal
dft captures attributes that are common to all goods provided by firm f,,
such as the firm’s costumer service and average quality of firm f’s products.
Both firm and product appeal may vary over time. Parameters σF and σJ
capture, respectively, elasticities of substitution across firms and across goods
produced by the same firm, where σJ is assumed constant across firms within
a sector.
Consumer optimization implies that the period t demand for product fj

and the firm revenue are, respectively, given by
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qfjt = dσFft d
σJ
fjt

(
Pft
Pt

)−σF (pfjt
Pft

)−σJ Et
Pt

(5)

and

Rft = dσFft P
1−σF
ft

Et

P 1−σF
t

(6)

where

Pft =

∑
Ωft

dσJfjtp
1−σJ
fjt

 1

(1−σJ )

(7)

is the firm’s exact price index, and Pt =
(∑NF

f=1 d
σF
f P 1−σF

f

) 1
1−σF is an aggre-

gate price index. Given the properties of CES demand, Qft =
Rft
Pft

(which
can be shown using these optimal demands and equation (2)).6

Dividing (6) through by Pft, and solving for Pft we obtain demand equa-
tion (8), which we use in our empirical application:

Pft = DftQ
−ε
ft = DtdftQ

−ε
ft (8)

where ε = 1
σF

is an inverse elasticity of demand, and Dft is a demand

shifter, with aggregate and idiosyncratic components Dt = Pt

(
Et
Pt

)ε
and dft.

A crucial insight on the measurement of firm appeal emerges from equation
(8): dft is the price charged holding quantities constant, beyond aggregate
effects. We refer to dft generically as the firm’s (idiosyncratic) demand shock.

6Unlike Hottman et. al. (2016) we do not formally model the decision to add and
subtract products. In their setting using UPC code level data, modeling product turnover
this is a critical issue. For our purposes, we do make adjustments for product turnover
in the manner suggested by Redding and Weinstein (2016). The latter paper does not
formally model the decisions to add and substract products but rationalizes the entry and
exit of products through assumptions on the patterns of product specific demand shocks.
That is, they assume products enter when the product specific demand shock switches
from zero to positive and exits when the reverse occurs. We can rationalize product entry
and exit in the same manner. We consider multi-product firms mostly for the purpose of
obtaining a firm-level price deflator that takes into account multi-product activity.

11



Inverting this equation and multiplying through by Pft to obtain Rft =

P
1− 1

ε
ft D

1
ε
ft (where revenue Rft = PftQft), one obtains the analogous inter-

pertation of measured firm appeal (dft) used by Hottman et al (2016): dft
captures sales holding prices constant. This is akin to quality as defined by
Khandelwal (2010), Hallak and Schott (2011), Fieler, Eslava and Xu (2016),
and others. Foster et al (2016), in turn, interpret firm appeal as capturing
the strength of the business’client base.

2.3 Determination of Firm Size

The firm chooses its scale Xft to maximize profits

Max
Xit

(1− τ ft)PftQft − CftXft = (1− τ ft)DftA
1−ε
ft X

γ(1−ε)
ft − CftXft

taking as givenAft,Dft, and unit costs of the composite input, Cft. There
may be idiosyncratic distortions τ ft, that affect a firm’s choice of size given all
of these fundamentals.7 These distortions capture, for instance, adjustment
costs, product-specific tariffs, and size-dependent regulations or taxes. For
adjustment costs, we take a reduced-form approach that recognizes costs that
break the link between actual adjustment and the “desired adjustment” in
an environment where the absence of such costs turns the dynamic problem
into a series of static ones, as in our approach.8 Profit maximization yields
optimal input demand of

Xft =

(
γ (1− ε) (1− τ ft)DftA

1−ε
ft

Cft

) 1
1−γ(1−ε)

(9)

Bear in mind that unit cost shocks also contain aggregate and idiosyn-
cratic components: Cft = cftCt. In addition, measured TFPQ, demand
shocks and cost shocks may deviate from aft, dft and cft due to measure-
ment error, shocks realized by the firm after choosing Xft, and other sources

7As in Restuccia and Rogerson, 2009 and Hsieh and Klenow, 2009. Further below, we
also considered factor-specific distortions that, for given choice of Xit, affect the relative
choice of a given input with respect to others.

8See, for instance, Caballero, Engel and Haltiwanger (1995, 1997), Eslava, Haltiwanger,
Kugler, and Kugler (2010).
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of noise. We denote noise in each of these three dimensions (TFPQ, demand
and cost) by αft, δft and ζft respectively, and include these noise terms in
the derivations below to later help in the interpretation of empirical results.

2.4 Life cycle growth

It follows from equation (9) that input growth over the life cycle of the firm,
Xft
Xf0

where 0 is the year of start of operations for plant f , can be attributed
to growth in the different fundamentals:

Xft

Xf0

=

(
dft
df0

)κ1
(
aft
af0

)κ2
(
cft
cf0

)−κ1

κtκft (10)

where dft
df0
,
aft
af0

and cft
cf0
are, respectively, life cycle growth in idiosyncratic de-

mand shocks, TFPQ and input price shocks. Here, κt =
(
Dt
D0

)κ1
(
At
A0

)κ2
(
Ct
C0

)−κ1

captures growth between birth and age t in the aggregate components of
fundamentals, and κft captures distortions as well as residual variation from
noise in fundamentals not observed by the firm at the time of choosing its

scale in each period, κft =
δ
κ1
ft α

κ2
ft ζ
−κ1
ft (1−τft)

κ1

δ
κ1
f0α

κ2
f0ζ
−κ1
0t (1−τ0t)

κ1
. Notice that idiosyncratic dis-

tortions τ ft decouple the choice of scale from fundamentals. The distortions
that a firm faces may vary as it ages (that is, distortions may be considered
age-specific), and thus also decouple life-cycle growth in output from the
growth of fundamentals. This aspect is captured in our decomposition in the
residual term κft. Parameters κ1, and κ2, with κ1 = 1

1−γ(1−ε) , κ2 = (1− ε)κ1,
are constant across firms that face the same demand elasticity and same fac-
tor elasticities in production.
Equation (10) decomposes growth in firm size into the contribution of firm

level fundamentals, aggregate effects, and firm level unexpected shocks. An
analogous decomposition applies in terms of output, directly derived from

Qft = AftX
γ
ft.Further assuming that Xft = K

β
γ

ftL
α
γ

ftM
φ
γ

ft, moreover, we can
decompose cft

cf0
into the growth of specific dimensions of input prices, among

which two are observed in the data: the price of material inputs, pmft, and
average wage per worker, wft.9 There may also be distortions to the use of one
input relative to other. Taking these aspects into account, the decomposition
of life cycle output growth can be written (see Appendix B):

9wft is measured as payroll divided by the number of workers.
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Qft

Qf0

=

(
dft
df0

)γκ1
(
aft
af0

)1+γκ2
(
pmft

pmf0

)−φκ1
(
wft
wf0

)−βκ1

χtχft (11)

Equation (11) is our central object of interest. It decomposes life cycle
growth in output into the contribution of different idiosyncratic fundamen-
tals, as well as unobservables, including aggregate effects, distortions, and
measurement error. In particular, we focus on four measured souces of funda-
mental idiosyncratic growth: growth in demand shocks dft

df0
, TFPQ aft

af0
, ma-

terial input prices pmft
pmf0

, and wages wft
wf0
. Moreover, χt = κγt

(
At
A0

)
captures ag-

gregate growth, and χft =

(
(1−τft)

κ1(1+τMft)
−φκ1(1+τLft)

−βκ1δ
κ1
ft α

1+κ2
ft ζ

−κ1
ft r

−ακ1
γ

ft

(1−τf0)
κ1(1+τMf0)

−φκ1(1+τLf0)
−βκ1δ

κ1
f0α

1+κ2
f0 ζ

−κ1
ft r

−ακ1
γ

f0

)γ

captures residual variation from a number of sources, such as noise in fun-
damentals not observed by the firm at the time of choosing its scale in each
period; growth in unobserved user cost of capital; and changes over the life
cycle in distortions faced by the firm, both common across inputs and specific
to the use of particular inputs. Here, τMft and τ

L
ft are idiosyncratic distortions

to the use of materials and labor relative to capital, such as factor-specific ad-
justment costs, and subsidies/taxes to the use of one input. Beyond growth
of fundamentals, equation 11 makes clear that growth over the life cycle also
responds to changes over time in the distortions faced by the firm. Age-
dependent distortions are a clear example of such changes.10

Notice that dispersion in the growth of fundamentals relates to dispersion
in the average product of inputs, as well as in TFPR, two concepts high-
lighted in Hsieh and Klenow’s work. TFPR has been defined by Foster et
al (2008) as TFPRft = PftAft. As is apparent, in the absence of idiosyn-
cratic distortons, dispersion in TFPR is driven by that in TFPQ, as well
as by dispersion in output prices for given TFPQ. In particular, assuming

τ ft = 0, TFPRft =
Cft

γ(1−ε)

(
γ(1−ε)DftA1+εγ

ft

Cft

) 1−γ
1−γ(1−ε)

. It is clear from the last

expression that the particular case of constant returns to scales, γ = 1, is one
where dispersion in TFPR arises only if there is dispersion in input costs.

10Some young firms may, for instance, have more dificulty in accessing financing, or
face greater adjustment costs than their older counterparts. Also, many startups enjoy
benefits that older firms do not face. This is the case, as an example, of small young firms
in Colombia who at times have been exempted from specific labor taxes.
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For any γ 6= 1, meanwhile, TFPR dispersion is also driven by both TFPQ
and firm appeal dispersion. This is the case even in absence of distortions
to both the process of accumulation of TFPQ and demand, and to the op-
timal allocation of resources. As noted by Haltiwanger (2016), by allowing
for γ 6= 1, the above derivation explicitly adds idiosyncratic TFPQ, demand
and cost shocks to potential sources of TFPR dispersion already identified
in Hsieh and Klenow’s original framework.11

3 Data

3.1 Annual Manufacturing Survey

We use data from the Colombian Annual Manufacturing Survey (AMS) from
1982 to 2012. The survey, collected by the Colombian offi cial statistical bu-
reau DANE, covers all manufacturing establishments belonging to firms that
own at least one plant with 10 or more employees, or those with production
value exceeding a level close to US$100,000. The unit of observation in the
survey is the establishment. A manufacturing establishment (or plant) is a
specific physical location where production occurs. Given the nature of the
data, in the actual empirical application we refer to the plant rather than
the firm. It is worth noting that over 90% of plants in the survey correspond
to single-plant firms.
Each establishment is assigned a unique ID that allows us to follow it over

time. Since a plant’s ID does not depend on an ID for the firm that owns
the plant, it is not modified with changes in ownership, and such changes are
not mistakenly identified as births and deaths. Plant IDs in the survey were
modified in 1992 and 1993. We use the offi cial correspondence that maps one
into the other to follow establishments over that period.12

11Furthermore, dispersion in the average product of inputs is not influenced by demand
shock dispersion even under our general assumptions: Rft

Xft
= Cit

γ(1−ε) . Notice that TFPR
and average product are equivalent only if γ = 1. Another case with TFPR dispersion in
the absence of distortions is one where demand is not CES. See Haltiwanger, Kulick and
Syverson (2017). While we do not permit departures from CES demand, our approach
does not suffer from some of the limitations discussed in this latter study since we don’t
back out TFPQ from measures of TFPR alone.
12Though there is supposedly a one-to-one mapping between the two correspondences,

there seems to be some degree of mismatch, as suggested by higher measured exit rates in
1991 and 1992 compared to other years, as well as higher measured entry in 1993. DANE
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Surveyed establishments are asked to report their level of production and
sales, as well as their use of employment and other inputs, their purchases of
fixed assets, and the value of their payroll. We construct a measure of plant-
level wage per worker by dividing payoll into number of employees. Sector
IDs are also reported, at the 3-digit level of the ISIC revision 2 classification.13

Since 2004, respondents are also asked about their investments in innovation,
with bi-annual frequency.
A unique feature of the AMS, crucial for our ability to decompose fun-

damental sources of growth, is that inputs and products are reported at a
detailed level. Plants report separately each material input used and product
produced, at a level of disaggregation corresponding to seven digits of the
ISIC classification (close to six-digits in the Harmonized System). For each
of these individual inputs and products, plants report separately quantities
and values used or produced, so that plant-specific unit prices can be com-
puted for both individual inputs and individual outputs. We thus directly
observe idiosyncratic input costs for individual materials. Furthermore, by
taking advantage of product-plant-specific prices, we can produce plant-level
price indices for both inputs and outputs, and as a result generate measures
of productivity based on physical output, estimate demand shocks, and con-
sider the role of input prices in plant growth. Details on how we go about
these estimations are provided in section 5.
Importantly for this study, the plant’s initial year of operation is also

recorded—again, unaffected by changes in ownership—. We use that informa-
tion to calculate an establishment’s age in each year of our sample. Though
we can only follow establishments from the time of entry into the survey, we
can determine their correct age, and follow a subsample from birth. We de-
nominate that subsample, composed of the establishments we observe from
birth, as the restricted life cycle sample. Based on the restricted life cycle
sample, we generate measurement adjustment factors that we then use to

does report having undertaken efforts to improve actual coverage (compliance) in 1992,
which may explain higher entry in 1993, but not higher exit in 1991 and 1992. Even
for actual continuers that are incorrectly classified as entries or exits, however, our age
variable is correct (see further below). That is, we may fail to properly identify entry
into the survey and exit for a fraction of plants over 1992-1993, but this does not lead to
mistaken age assignments in our calculations.
13The ISIC classification in the survey changed from revision 2 to revision 3 over our

period of observation. The three-digit level of disaggregation of revision 2 is the level at
which a reliable correspondence between the two classifications exists.

16



estimate life-cycle growth even for plants that we do not observe from birth
(more on this in section 3.3).
With respect to studies that rely on data from economic censuses, one

clear limitation of our approach is that we only observe a fraction of estab-
lishments from birth (about 30% of establishments in the sample), and that
fraction is selected: it corresponds to establishments born at or beyond a
given size. Moreover, we only observe establishments that satisfy exclusion
criteria based on size, though those criteria cover all SMEs and large estab-
lishments, leaving out only microestablishments. And, while being formal
is not a criterion for inclusion in the Manufacturing Survey, it is likely that
many, of not most, informal establishments are micro, so our results under-
represent informal plants. The crucial upside from these data, however, is
that we observe prices and quantities and can follow each establishment lon-
gitudinally, and do it at higher frequencies (annual, rather that inter-census).
We also observe a census of SMEs and large manufacturing establishments,
which are likely to account for a large fraction of any sustained growth actu-
ally observed.
We attempt to deal with selection biases using a variety of approaches,

from adjusting for expected accumulated life cycle growth at time of entry
into the survey, to contrasting our findings for plants observed from birth to
analogous figures for all of the other plants in the manufacturing survey. One
reassuring piece of information is that a healthy fraction of the firms that
own plants recorded in our data (close to 20%) cannot be found in the offi cial
business registry, which is suggestive of the ability of the Survey’s framework
to cover informal establishments that satisfy size inclusion criteria.14

Table 1 presents basic descriptive statistics for our sample. It is composed
of over 170,000 observations, with numbers of plants per year fluctuating
around 7,500. The average plant has just over 50 employees.

14See Eslava and Haltiwanger (2017). Figure based on 2002-2009 data. The offi cial
business registry, kept by the Federation of Chambers of Commerce, includes all firms that
are or ever were registered as merchants (a firm is defined by a tax ID; a firm may own
several plants, though as noted most plants in our data belong to single-plant firms). Such
registration is mandatory, and necessary to become a government provider and for access
to different government services. Business formality in Colombia is frequently measured
on the basis of appearing in the business registry.
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Mean Std. Dev.
Log output 10.573 1.717
Log revenue 11.765 1.556
Employment 52.935 110.184
Log capital 10.134 1.836
Log material expenditure 10.865 1.839
Log material 9.937 1.912
Log input prices (SV) 0.296 0.809
Log output prices (SV) 0.062 0.863
Log TPFQ 2.545 1.046
Log Demand shock 7.102 1.653
N (baseline sample)
N (life cycle sample)

Table 1: Descriptive Statistics

172,734
43,747

3.2 Plant-level prices

Our ability to separate TFPQ from demand shocks—both defined as in sec-
tion 2—depends on being able to appropriately capture plant level prices.
The exact plant level price index that can be used as a quality-adjusted (or

appeal-adjusted) deflator for plant output, Pft =
(∑

Ωft
dσJfjtp

1−σJ
fjt

) 1

(1−σJ ) , de-

pends on unobservable σJ and {dfjt}. We follow here insights from a long
and active literature on economically motivated price indices to construct
appropriate price indices from observable information.15 We describe in this
section our approach to measure Pft. The underlying derivations and a sum-
mary catalogue of definitions are included in Appendix A. In implementing
this approach empirically, we assume for the remainder of the analysis that
σF = σJ for plants and products in the same 2-digit sector.16 For ease of
exposition, we refer to this as σ. The nested CES structure is critical for
our analysis since it permits us to track product entry and exit at the plant
level. Moreover, it permits us to track plant appeal dft as well as the relative

15See Redding and Weinstein (2016), and references therein to Sato (1976), Vartia
(1976), and Feenstra (2004), whose insights are key in our derivation.
16This assumption is not critical for what follows and we only impose this restriction

for the IV based method we use for estimating the demand equation. We will relax this
restriction in future drafts.
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product appeal across products within the same plant, dfjt. Tracking both
is critical for quality adjusted price indices at the plant level.
Denoting by Ωf

t,t−1 the set of goods produced by plant f in both period t

and t−1, P ∗ft =
(∑

Ωft,t−1
dσfjtp

1−σ
fjt

) 1
(1−σ)

, and P ∗
ft−1,Ωft,t−1

=
(∑

Ωft,t−1
dσfjt−1p

1−σ
fjt−1

) 1
1−σ
,

we take advantage of Feenstra’s (2004) insight, that

Pft
Pft−1

=

( ∑
Ωft,t−1

sfjt∑
Ωft,t−1

sfjt−1

) 1
σ−1 P ∗ft

P ∗
ft−1,Ωft,t−1

(12)

where sfjt =
pfjtqfjt∑
Ω
f
t
pfjtqfjt

. Building recursively from a base year B this

implies:

Pft = PfB ∗
t∏

l=B+1

 P ∗fl
P ∗
fl−1,Ωfl,l−1

 ∗( t∏
l=B+1

∑
Ωfl,l−1

sfjl∑
Ωfl,l−1

sfjl−1

) 1
σ−1

(13)

= P̃ ∗ft ∗
(

ΛQ
ft

) 1
σ−1

where PfB is the plant-specific price index at the plant’s base year B,
and we have defined a consecutive-common-basket price index: P̃ ∗ft ≡ PfB ∗

t∏
l=B+1

(
P ∗fl

P ∗
fl−1,Ω

f
l,l−1

)
and an adjustment factor (the Feenstra-adjustment) ΛQ

ft =

t∏
l=B+1

( ∑
Ω
f
l,l−1

sfjl∑
Ω
f
l,l−1

sfjl−1

) 1
σ−1

.

Defining s∗fjt =
pfjtqfjt∑

Ω
f
t,t−1

pfjtqfjt
, s∗

fjt−1,Ωft,t−1

=
pfjt−1qfjt−1∑

Ω
f
t,t−1

pfjt−1qfjt−1
, and ωft,t−1 =

(s∗fjt−s
∗
fjt−1,t)

ln s∗
fjt
−ln s∗

fjt−1,t∑
Ω
f
t,t−1

(
(s∗
fjt
−s∗
fjt−1

)

ln s∗
fjt
−ln s∗

fjt−1,t

) (the “Sato-Vartia” weights, for Sato (1976) and Var-

tia (1976)), we furthermore rely on the assumption that
∏

Ωft,t−1

d
ωfjt,t−1

fjt =
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∏
Ωft,t−1

d
ωfjt,t−1

fjt−1 to obtain (see Appendix A)17

P ∗ft
P ∗ft−1,t

=
∏

Ωft,t−1

(
pfjt
pfjt−1

)ωfjt,t−1

(14)

After obtaining plant-level price changes for the Ωf
t,t−1 basket of goods in

each pair of consecutive years using 14, the consecutive-common-basket price

index in log-levels is constructed recursively as ln P̃ ∗ft = P̃ ∗ft−1+ln

(
P ∗ft

P ∗
ft−1,Ω

f
t,t−1

)
=

ln

(
PfB ∗

t∏
l=B+1

(
P ∗fl

P ∗
fl−1,Ω

f
l,l−1

))
.

The initial level PfB, where B is the base year for plant f , is constructed

17The assumption that
∏

Ωft,t−1

d
ωfjt,t−1
fjt =

∏
Ωft,t−1

d
ωfjt,t−1
fjt−1 , is weaker than the common

assumption that individual product appeal at is constant over time, dfjtdfjt−1
= 1. We also

note that Hottman et. al. (2016) make a related but different normalization in their
nested CES structure. They assume

∏
Ωft,t−1

d
1/Nfjt−1,t
fjt =

∏
Ωft,t−1

d
1/Nfjt,t−1
fjt−1 where Nfjt−1,t

is the number of common products produced in both t − 1 and t. The key difference is
that Hottman et. al. (2016) normalization uses equal weights based on the number of
products firm f produces in both t − 1 and t. Our normalization may be problematic
as Redding and Weinstein (2016) note that the Sato-Vartia weights may be correlated
with the relative demand shocks. Our assumption simplifies the relative price change for
goods the firm produces in both t − 1 and t and permits us to construct our plant-level
price index for multi-product firms based on observables. We think our assumption is
a reasonable approximation given we are implementing this methodology for plant-level
price indices while Redding and Weinstein (2016) is implementing their unified price index
across all goods in the same product group. Moreover, as noted we make this normalization
regarding the relative demand shocks within firms while permitting general dft to change
over time. Thus, even if we assumed that for products that the firm is producing in
both t − 1 and t that the relative demand does not change, it would still be the case
that product appeal varies across firms and in turn specific products produced by firms
through the variation in dft. Still as we discuss further in Appendix A, this normalization
potentially implies we are not capturing all quality adjustments within firms. Consistent
with the discussion in Redding and Weinstein (2016), this implies there may be a potential
upward bias in the Sato-Vartia price index that we use, which may induce a mistakenly
low growth in quantities and therefore in TFPQ. This bias is likely to underestimate the
contribution of TFPQ to output growth relative to that of demand shocks.In future drafts
of the paper we plan to explore alternatives that will permit us to relax this assumption.
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as: PfB =
∏
ΩfB

(
pfjB
p
jB

)sfjB
, where p

jB
is the average price of product j in

year B across plants, and year B is the first year in which plant f is present
in the survey. Notice that this approach takes advantage of cross sectional
variability across plants for any given product or input j. In the plant’s base
year B,

(
PfjB
PjB

)
= 1 for the average producer of product j. For other plants,

it will capture dispersion in price levels around that average.
From 13, to move from our calculated P̃ ∗ft to the exact price index Pft,

we need to adjust for the factor
(

ΛQ
ft

) 1
σ−1

=

(
t∏

l=B+1

∑
Ω
f
l,l−1

sfjl∑
Ω
f
l,l−1

sfjl−1

) 1
σ−1

. While

this factor can be built from observables, the elasticity of substitution σ is yet
to be estimated, and its estimation requires information on Pft (see section

5). We thus work initially with P̃ ∗ft and carry the adjustment factor
(

ΛQ
ft

) 1
σ−1

into the derivations of section 5, where its contribution to price variability is
flexibly estimated. In particular, we use output prices at the level of the plant
to obtain a measure of the plant’s output, by deflating the plant’s revenue

Q∗ft =
Rft

P̃ ∗ft
= Qft

(
ΛQ
ft

) 1
σ−1

(15)

In logs this implies that lnQ∗ft = lnQft + 1
σ−1

ln ΛQ
ft. That is, by tracking

the dynamics of lnQ∗ft but controlling for ln ΛQ
ftwe can quantify the contri-

bution of factors that (such as age, fundamentals and distortions) to lnQft.
We similarly obtain a measure of materials by deflating material expen-

diture by plant-level price indices for materials, pmft. The index pmftis
constructed on the basis of information on individual prices and quantities
of material inputs, using an analogous approach to that used to construct
output prices. The underlying assumption is thatMft, the index of materials
quantities used, is a CES aggregate of individual inputs. pmft is also one of
the fundamentals we consider in our decomposition. As is the case with out-
put prices, before estimating the elasticity of substitution we can only build
a consecutively-common-basket price index p̃m∗ft for plant f , and carry an

adjustment factor ΛM
ft =

t∏
l=B+1

∑
Ω
Mf
l,l−1

sfml∑
Ω
Mf
l,l−1

sfml−1
to adjust prices for the turnover

of materials of different appeals, which is controlled for in estimating the
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contributions of different factors to plant growth.
In an alternative approach against which we compare our baseline quality-

adjusted prices, we examine the robustness of our results to using “statis-
tical”price indices based on either constant baskets of goods, or on divisia
approaches. These are discussed in section 7.

3.3 Life cycle growth

We focus on life cycle growth defined as Qft
Qf0
, where 0 is the year of start of

operations for plant f and t is any post-entry year in which we observe the
plant. Suppose at year t plant f is of age a. To avoid confusion between cal-
endar time and plant age when using cross-plant information, in this section
we switch to notation Qfa

Qf0
rather than Qft

Qf0
, keeping in mind that t is the year

in which plant f is aged a.
We do not observe all plants from the actual time of their birth, though

we do know what that actual year is. To address the problem of missing
information when calculating Qfa

Qf0
for a plant that was born before entering

the survey, we proceed in the following manner:
Suppose B is the age of plant f when we first observe it in the survey.

For variable Z (Z = Q,L, TFPQ, etc), we estimate size at age a relative to
birth as:

Zfa
ZfB

=

(
Zf,a
Zf,B

)(
ZB
Z0

)
life_cycle

(16)

where the last term is an adjustment factor based on what we observe for
the sample of plants that we do observe from birth, which we have denom-

inated the restricted life cycle sample. That is,
(
ZB
Z0

)
life_cycle

is relative Z

at age B compared to birth averaged over all plants that we observe from
birth, controlling for year and sector (three-digit level) effects. We conduct
robustness analysis restricting the sample to that of plants observed from
birth (the restricted life cycle sample), for which we observe actual Zfa

Zf0
. We

restrict all of our analyses to plants born after 1969.
If we just defined Zfa

Zf0
=
(
Zf,a
Zf,B

)
as our estimate of post entry growth for

age a for plant f we would bias our estimate of actual growth up to a. Since
at age a = B the ratio

(
Zf,a
Zf,B

)
is one, the presence of plants that we observe

for the first time at age B biases our estimate of average post entry growth
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for age B towards one (which is, most frequently, downwards), with the size
of this bias growing with the number of plants that appear for the first time
in our sample at age B. Going to the alternative extreme of simply using(
Za
Z0

)
life_cycle

as an estimate of the true post-entry growth at age a would also

be problematic. On the one hand, it reduces our numbers of observations to
about a third of all of the plants that we observe, affecting the precision of
our estimates. On the other hand, because the restricted life cycle sample is
a selected sample of the plants that are born suffi ciently large to surpasss the
inclusion threshold already at birth, these estimates are biased towards the
post-entry growth of these selected plants, which may be faster or slower.
By using equation (16) to estimate post-entry growth for plants that enter
the sample after birth we expand our sample away from these selected plants.

4 Growth over the life cycle

We start by characterizing outcome growth over the life cycle of a manufac-
turing establishment (the left hand side of our growth decomposition). Our
main outcome is output Qft =

Rft
Pft
. Because recent literature has focused

on life cycle growth in terms of employment, we also describe employment
growth for our sample for comparison with that literature.

4.1 Average life cycle growth

To characterize output growth for the average establishment in our sample,
we estimate a full set of φage coeffi cients in equation:

Qft

Qf0

= αt + αs +

age=30+∑
age=3

φagedage,f,t + εft (17)

where Qft
Qf0

is the ratio between plant f ′s output level in year t and the level
at plant’s birth; dage,f,t is a dummy variable that takes the value of 1 if plant
f is of age age in year t; and εft is an estimation error. We control for
(three-digit) sector effects and aggregate time effects. We define age as the
difference between the current year, t , and the year when the plant began
its operations, and define the plant’s output level at birth Qf0 as the average
output it reported in ages 0 to 2. By averaging over the plant’s first few
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Figure 1: Life Cycle Growth

years in operation we deal with measurement error coming, for instance,
from partial-year reporting (e.g. if the plant was in operation for only part
of its initial year).
Figure 1, left panel, presents the coeffi cients associated with different ages

in the estimated equation (17). As in the rest of figures, we use a logarithmic
scale. The average establishment in our sample grows by a factor of 2.4 in
terms of production by age 5, almost four times from birth by age 10, and
more than ten times by age 25.18 For comparison with existing literature on
life-cycle growht, the right panel presents analogous results for employment:
Lft
L0t
. By age 5 the average establishment has reached about 1.4 times its

initial employment, by age 10 it has almost doubled, and 25 years after birth
employment has grown three-fold.
By construction we focus on survivor growth: growth from birth to age a

of plants that have survived to age a. Because we are able to follow life cycle
growth directly at the plant level—by contrast to cross sectional comparisons

18More precisely, QfaQf0
= 2.4 when a = 5, QfaQf0

= 3.95 when a = 10, and Qfa
Qf0

= 10.35

when a = 25.
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of cohorts—the usual concern that selection drives average growth because size
at the initial age is biased down by exits-to-be does not apply. In our case,
size at the initial age is that of the same plant which has survived to an older
age. It is the case, however, that plants that eventually exit may grow slower
than others before they exit and, in that sense, even true life-cycle average
growth is affected by selection: if the exiting plant had instead continued to
the following age, average growth would be lower. Figure 1 already illustrates
that this is indeed the case, since the life-cycle growth of plants that exit
does depart significantly, downwards, from that of continuers. But, this
growth of plants that exit only affects marginally the overall average. That
is, the average patterns described in the previous paragraph are driven by
continuous plants (plants of age t that continue on to age t + 1). Still, in
section 7.3 we also explore how fundamentals relate to selection vs. continuer
growth.
To provide perspective about where these average patterns fit in the in-

ternational spectrum, Figure 2 compares the cross sectional patterns of em-
ployment growth with US cross sectional patterns, calculating the two in an
analogous manner, and including only manufacturing plants of 10 or more
employees. US data is from the publicly available information in the Bureau
of the Census’Business Dynamics Database, which shows average size for
given age categories. The period is limited to 2002-2012, which is the time
span for which we can assign age tags in the US data. The cross sectional
version of life cycle growth, used for this graph, is calculated by dividing
the average employment level of plants of a given age by the average size of
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plants at birth.19 Results indicate that the growth speed of the average US
establishment basically doubles that in Colombia for comparable manufac-
turing plants. For instance, in the US employment in the 16-20 age category
more than doubles that of the 0-5 category, while for Colombia the analogous
figure is 1.5 times. This is consistent with results in Hsieh and Klenow (2014)
indicating that less developed economies are characterized by less dynamic
post-entry growth.20

Hsieh and Klenow (2009) and Buera and Fattal (2014) attribute such
cross-country differences to poor institutions in developing economies, that
fail to encourage investments in productivity, as well as healthy market se-
lection. Identifying the actual role that specific institutions play is an in-
teresting area of future research. Within-country changes in institutions,
either across businesses or over time (or both) offer a fruitful ground for such
exploration, to the extent that they keep constant other factors potentially
influencing business dynamics, from the macroeconomic environment to busi-
ness culture. We undertake that exploration for Colombia, taking advantage
of changes in import tariffs, in a separate paper.
The average growth dynamics described above, however, hide consider-

able heterogeneity. Figure 3 shows different moments of the distribution of

19The estimated growth dynamics are considerably dampened in the cross sectional
approach compared to the longitudinal one (compare scales in Figures 1 and 2), which
hints at the importance of being able to follow individual units longitudinally. Cross-
sectional comparisons of cohorts, by contrast to our focus on Lft

Lf0
, implicitly give more

weight to plants born larger, which results in the dampened cross-sectional dynamics for
Colombia observed in Figure 2b compared to figure 2 (despite the exit of smaller businesses
over time):

Lage

L0

=

Nage∑
i=1

Li,age

N0∑
i=1

Li,0

=

Nage∑
i=1

Li,age
Li,0

∗ Li,0

N0∑
i=1

Li,0

=

Nage∑
i=1

Li,age
Li,0

Li,0
N0∑
i=1

Li,0

In addition, Figure 2 is apt to be much more impacted by selection than Figure 1.
20Though similar to Hsieh and Klenow’s, our numbers for the US are not identical to

theirs, even if we focused on the same year, because of several differences in the calculation.
We use data from the Business Dynamics Statistics, which directly records the age of an
establishment. It also records employment for establishments of all sizes. Meanwhile, Hsieh
and Klenow impute age based on previous appearance in Census, and rely on the Census’
approach of imputing employment for small businesses.
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Figure 2: Employment over the life cycle of manufacturing plants
Colombian vs. the US, 20022012

life-cycle growth. For each age the figure depicts the respective moment of
the distribution of Qit

Qi0
and Lit

Li0
. Median growth falls under mean growth,

highlighting the fact that it is a minority of fast-growing plants that drive
mean growth; that is, the distribution of plant growth is highly skewed. By
age 5, while the average plant has multiplied its output at birth by a 2.4
factor, the plant in the 90th percentile has multiplied it by 3.75, the median
plant by 2.1, and the plant in the 10th percentile has shrank to 60% of its
original size. At age 10 the 90th percentile of life cycle similarly more more
than doubles the median (6.78 rather than 3.1). Employment growth is also
characterized by similarly wide dispersion.
Figure 4 further characterizes life cycle growth for other plant charac-

teristics: revenue deflated by an industry level deflator, the capital stock,
purchases of material inputs, the share of non production workers and prod-
uct scope.21 The capital stock and material inputs grow much faster than
output and, especially, than employment (notice the different scales). This

21The capital stock is obtained using perpetual inventory methods, initializing at book
value of the year the plant enters the survey.
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partly explains why output grows faster than employment: use of other fac-
tors is outgrowing that of labor inputs. At age 25 the real capital stock has
multiplied by a factor of about 45 with respect to its level at birth for the
average plant, and the use of material inputs is almost 20 times that of birth
time. As noted, the corresponding figures for output and employment are
close to 10 and 3.
Plants also seem to become more sophisticated as they age: both the

share of non-production workers and the number of products grow over the
life cycle. Ten years after starting operating, the average plant increases the
number of 8-digit product categories in which it produces by about 30%.
Keep in mind, however, that the level of disaggregation of products in the
Manufacturing Survey is insuffi cient to capture product introduction as cap-
tured, for instance, in bar code data (e.g. Hottman et al. 2016). Skill
composition also increases, at a slightly larger pace (1.6 times the birth level
by age 10).
As with output and employment growth, there is wide dispersion and

marked skewness in the patterns described by Figure 4. Mean growth over-
takes median growth for all of the plant characteristics presented. At age
25, the 90th percentile of growth doubles the mean for all of the outcomes
explored. Some plants also become less sophisticated as they age, as seen
in a 10th percentile of life cycle growth below one in both the share of non
production workers and product scope, even 25 years after birth.

5 Estimation strategy

5.1 Decomposing firm level growth

This section explains our approach to estimating the fundamental dimensions
into which we then decompose output and input growth. A key feature of
our analysis is the availability prices and quantities sold at the product-firm
level, constructed as explained in section 3.2. Taking advantage of this key
feature, we proceed sequentially in the following way:

5.2 Physical productivity

With physical quantities of output (materials) constructed by deflating nomi-
nal output (material expenditures) by the plant-level output price index, and
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direct reports of the number of employees and the stock of physical capital,
we estimate plant total TFPQ as the (log) residual of production function

(1) Qft = AftX
γ
ft,where Xft = K

α
γ

ftL
β
γ

ftM
φ
γ

ft. A usual concern in the literature
is that researchers observe values, rather than quantities, of output and in-
puts, so that the residual from estimating the (revenue) production function
cannot be interpreted as Aft (or TFPQ). The fact that we use theory-based
plant-level prices to deflate output and materials deals with this concern. We
estimate the log production function:

lnQft = α lnKft + β lnLft + φ lnMft + lnAft (18)

Qft =
(
Rft
Pft

)
, but we have an estimate of P̃ ∗ft rather than Pft. From

equation (13) lnPft = ln P̃ ∗ft + 1
σ−1

ln ΛQ
ft, where B is the year in which plant

f is initially observed in the survey. We rely on these facts and estimate the
coeffi cients of 18 by estimating:

ln

(
Rft

P ∗ft

)
= α lnKft + β lnLft + φ lnMft + ρ ln ΛQ

ft +ϕ ln ΛM
ft + lnAft (19)

where ΛM
ft is the adjustment factor for the prices of materials analogous

to ΛQ
ft, and Mft = materials expenditure

p̃m∗ft
. See section 3.2 for details.

A remaining concern in estimating the production function is simultaneity
bias: the fact that X is chosen as a function of the residual Aft. We estimate
the production function for each two-digit sector, using proxy methods. In
particular, we follow the approach proposed by Ackerberg, Caves and Frazer
(2015, ACF henceforth). Our control function includes lagged materials,
current employment, current capital, plant input prices, ΛQ

ft−1 and ΛM
ft−1.

22

Our inclusion of plant input prices follows De Loecker et al (2015), though
in our case we take advantage of both output and input plant level prices as
deflators.23

22Declaring labor, besides materials, as a free input, yields somewhat unplausible results
for some sectors. Under that assumption, returns to scale are frequently (i.e. for several
sectors and some periods of estimation) estimated to be increasing, and the coeffi cient for
labor shoots up. Such implausible results support our prior that treating labor as a free
input is not appropriate in the context in which we carry our estimation.
23De Loecker et al (2015), deflate output but not inputs using plant-level deflators. This
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Sector β  (L) α  (K) φ  (M)
Returns
to scale σ

Overall 0.372 0.173 0.508 1.053 1.403
31 0.296 0.139 0.614 1.049 2.066
32 0.265 0.120 0.609 0.994 1.650
33 0.360 0.154 0.471 0.985 1.321
34 0.629 0.273 0.198 1.101 1.318
35 0.437 0.211 0.464 1.112 1.332
36 0.449 0.187 0.438 1.074 1.613
37 0.437 0.223 0.461 1.121 1.348
38 0.368 0.109 0.585 1.061 1.166
39 0.330 0.180 0.503 1.013 1.582

Table 2: Estimated factor and demand elasticties

This table reports estimates of the factor elasticities in the production
function, and the demand elasticity in the demand function. The production
function is estimated following ACF methods, with lagged materials, current
employment, current capital, and plant input prices in the control function.
The demand function is estimated using IV methods and TFPQ as an
instrument for Q. Sectors are classified at the two digit level of the ISIC
classification, revision 2.

We obtain ̂lnAft as a residual from this estimation. We then use Âft =

exp
( ̂lnAft) as our estimate of total TFPQ. Table 2 presents the results of

our estimation of the production function, carried at the two-digit level of
ISIC revision 2.

5.3 Demand shocks

Our (log) demand shock, lnDft, is the residual from the (log) demand func-
tion (8)

induces biases that they address by including plant level prices in their control function.
Though we do make use of plant-level materials prices, a bias may persist from the lack
of access to plant-level capital deflators (not for labor, for which we use physical units).
Moreover, the inclusion of additional information in the control function helps deal with
the concern that proxy methods based on materials as single invertible proxy may fail
to properly identify the coeffi cient for materials in a gross output production function
(Ghandi et al, 2013). We therefore include our plant-level prices in the control function.
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lnPft = α− ε lnQft + lnDft (20)

ln P̃ ∗ft +
1

σ − 1
ln ΛQ

ft = α− 1

σ

[
lnQ∗ft −

1

σ − 1
ln ΛQ

ft

]
+ lnDft (21)

ln P̃ ∗ft = α− 1

σ

(
lnQ∗ft + ln ΛQ

ft

)
+ lnDft (22)

We thus estimate

ln P̃ ∗ft = α− ε
(

lnQ∗ft + ln ΛQ
ft

)
+ lnDft (23)

Estimating (20) by OLS would yield a biased estimate of ε = 1
σ
, to the

extent that Q∗ft, and consequently Q
∗
ft + ΛQ

ft, may be correlated with the
residual price for reasons beyond demand shocks. We thus estimate this
demand function using IV methods. In particular, we use the log physical
productivity shock lnAft as an instrument for the plant’s output, as in Foster
et al (2008, 2016) and Eslava et al (2013). In the current context, however, we
explicitly recognize the multi-product character of plants by using a theory-
based price index that quality-adjusts (or appeal-adjusts) our measure of
output. To the extent that our approach does appropriately deal with this
adjustment, TFPQ obtained as a residual from this adjusted Q measure
should be stripped of apparent changes in productivity related to appeal
changes. This adjustment is thus crucial for the exclusion restriction to hold
when using TFPQ as an instrument to estimate (20).
By using lnAft as an instrument we focus on pure demand: the variability

that is orthogonal to supply side shocks. The estimate that we recover for εit
is an unbiased estimate of the ability of the firm to charge a different price
when observing a shock to its sold quantity that is unrelated to the effi ciency
of its production process. Orthogonality between demand and supply shocks
is also the main identifying assumption in the estimation of elasticities of
substitution in research that uses data on product prices and sales (Broda
andWeinstein, 2006; Redding andWeinstein 2016; and Hottman et al. 2016).
The last column of Table 2 reports obtained estimates of the elasticity of

demand, 1
ε

= σ. We estimate elasticities between 1.2 and 2.1 for the different

sectors. We obtain our demand shock as D̂ft = exp
( ̂lnDft

)
, where the

latter is the estimation residual from (20).
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The lower part of Table 1 presents basic descriptive statistics for our
estimates of lnAft and lnDft on a log basis. As found by Eslava et al.
(2013) for an earlier period, TFPQ is negatively correlated with output
prices, which is intuitive to the extent that more effi cient production allows
charging lower prices. Both TFPQ and D are positively correlated with
plant size (captured in the table by output). TFPQ is highly correlated
with TFPR. By construction, our estimate for logDft captures only the
part of the price effect that is uncorrelated with TFPQ, so the correlation
between lnTFPQ and lnD is zero. Interestingly, Foster et. al. (2008,2016)
find very similar correlations for prices, TFPQ, D, and TFPR using US
data for a selected number of commodity-like products.

6 Results: Decomposing growth into funda-
mental sources

To start, the distributions of the evolution over the life cycle of these plant
fundamentals, measured by Âft, D̂ft , are displayed in Figure 5, which also
shows the life cycle growth of input prices. The average growth of demand
shocks over the life cycle dominates that of TFPQ, as well as that of material
input prices (notice the different scales). While, for the average plant, de-
mand shocks grow more that three-fold over a thirty year period, compared
to the level at birth, TFPQ and unit prices of both input and output grow
by less than 50% over the same horizon. The dominant role of demand in
accounting for mean growth over the life cycle is consistent with the findings
of Foster, Haltiwanger and Syverson (2016).
The interplay between output prices (Figure 4) and demand shocks is

particularly interesting: with growing output over the life cycle, downward
sloping demand would imply that the plant would have to charge ever shrink-
ing prices over its life cycle, unless the appeal of f to constumers changed
over time. We do not observe such fall in output prices, signaling increasing
ability of the firm to sell more at given prices. By construction, this is what
the life cycle growth of the demand shock, D̂t, captures.
There is also considerable dispersion in the growth of both TFPQ and

demand shocks. The 90th-10th gap, however, is much wider for demand
shocks. Moreover, even the 10th percentile grows modestly in the case of the
demand shocks, while TFPQ falls markedly for the 10th percentile.
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We now decompose the variance of Qft
Qf0

into contributions associated
with different fundamental sources, most notably TFPQ and demand shocks
(equation 11). We run a two stage procedure, similar to that in Hottman et
al. (2016):
1. We estimate

ln
Qft

Qf0

= βD ln

(
Dft

Df0

)
+βA ln

(
Afa
Af0

)
+βM ln

(
pmft

pmf0

)
+βw ln

(
wft
wf0

)
+υft

(24)
where we include sector and time effects, so that υft = υt + υs + υ′ft. and
coeffi cients βD, βD, βM and βw capture the contribution of idiosyncratic
growth of demand shocks, TFPQ, material input prices and wages. As made
clear by 11 υ̂′ft captures distortions, beyond noise.
2. We then estimate the following equations:

βD ln

(
Dft

Df0

)
= ρD ln

Qft

Qf0

+ νft,D (25)

βA ln

(
Aft
Af0

)
= ρA ln

Qft

Qf0

+ νft,A

βM ln

(
pmft

pmf0

)
= ρM ln

Qft

Qf0

+ νft,M

βw ln

(
wft
wf0

)
= ρw ln

Qft

Qf0

+ νft,w

υ̂
′
ft = ρυ ln

Qft

Qf0

+ νft,υ

by the properties of OLS, ρD + ρA + ρM + ρw + ρυ = 1 . As with the
estimation of demand and TFPQ we deal with the fact that we are using
P ∗ft rather than Pft by including ΛQ

ft and ΛM
ft as additional factors in each

stage of the decomposition.24

24In particular, we add ln ΛQft and ln ΛMft as additional variables in the RHS of 24, and

add two equations to the equation system 25, one where the dependent varible is βΛQ ln ΛQft
and another where it is βΛQ ln ΛMft .
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The first bar in Figure 6 depicts the result of this decomposition, pooling
across ages, and reporting (ρM + ρw) together to simplify the figure. We
find that dispersion in life cycle growth is mostly explained by dispersion in
fundamentals, rather than distortions and other unobserved factors. Mea-
sured fundamentals explain around 70% of the variability of output relative
to birth level pooling across ages.25 The remaining 30% is explained by the
error term χft which, from equation (11), captures distortions and other
unobserved factors, such as measurement error.26

Concentrating on the fraction explained by measured factors, input price
growth explains 7 p.p, with the remaining variability accounted for by de-
mand shocks and TFPQ, with each of them accounting for approximately 30
p.p. That is, demand shocks and TFPQ are both equally important drivers
of life cycle growth in pooled horizons.
Both the contribution of fundamentals relative to distortions, and the rel-

ative contribution of different fundamentals within the former, vary markedly
over different time horizons from birth (Figure 7, with shades representing
confidence intervals).27 Distortions (dotted line) are particularly important
to explain the variance in early age growth, explaining more than 50% of the

25Contribution of fundamentals calculated as 0.697
0.964 = 0.72, since the turnover adjustment

factors are simply included to control for the fact that the deflators we are using at this
point include only consecutive-common-baskets of outputs/inputs. Figures 6 and 7 as well
as subsequent related figures with decompositions of the variance of growth are in fact
depicting the variance of the growth of Q∗ft controlling for product turnover. This yields
the relative contribution of fundamentals and distortions to the variance of growth of Qft
after adjusting for the contribution of product turnover.

26In particular, χft =

(
(1−τft)κ1(1+τMft)

−φκ1(1+τLft)
−βκ1δ

κ1
ft α

1+κ2
ft ζ

−κ1
ft r

−ακ1
γ

ft

(1−τf0)κ1(1+τMf0)
−φκ1(1+τLf0)

−βκ1δ
κ1
f0α

1+κ2
f0 ζ

−κ1
ft r

−ακ1
γ

f0

)γ
. The ag-

gregate growth term χt == κγt

(
At
A0

)
is absorbed by (calendar) time effects.

27To conduct the decomposition by ages, we expand equations 24 and 25 to include
interactions with the different age groups. Suppose there are two mutualy excusive gruops:
B and C, then we redefine the equation 24 as:

ln
Qfa
Qf0

= β0 + βCXCdfC + βBXfBdfB + εi (26)

where XfA is the vector of log growth of fundamentals, and dfA = 1 if f belongs to
group A (say, an age), and everything else as defined previously.
The new decomposition equation will be given by:

βA1XfdfA + βB1XfdfB = γA1YfdfA + γB1YfdfB + ν1fA (27)
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variance of growth up to around age seven. But, they lose importance for
longer horizons, with their contribution falling to less than 25% by around
age 20. For the fraction explained by fundamentals, variance in early life
growth is fully explained by TFPQ, but the contribution of demand grows
rapidly over the life cycle, reaching around 20% by age 10 and close to 40%
by age 20. Since the fraction explained by TFPQ and distortions follows
the opposite pattern, falling over the life-cycle, the importance of demand
surpases that of TFPQ and unobserved factors by around age 15.
As is probably not surprising, the growth of input prices (both for mate-

rials and employment) plays a more minor role than any of the other factors
in explaining the variance of life cycle growth. Still, their contribution is 7%
for the sample of pooled ages, growing from negative to almost 10% for the

εf = γAεYfdfA + γBεYfdfB + νεi (28)

Just as before ˆγA1 + ˆγAε = ˆγB1 + ˆγBε = 1
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older ages. This is a dimension not previously explored as a driver of post
entry growth. For instance, Hsieh and Klenow (2014) assume that all plants
face the same input prices, an assumption under which all average revenue
dispersion is atributable to distortions. Our finding that the role of life cycle
input price growth is non negligible suggests that, at least in the context
of life cycle growth, dispersion in average products is not solely driven by
distortions. In our data, it is the growth of wages, as opposed to material
input prices, that drives most of this contribution.
Figure 8 directly depicts the different terms in decomposition (11) for

alternative moments of life cycle output growth. Actual output growth is also
depicted. The upper left panel shows the components of the decomposition
for plant with average Qft

Qf0
. The upper right panel, meanwhile shows each of

this components for plants in the lowest decile of Qft
Qf0
. The two lower panels

proceed similarly for the 45th to 55th percentile and the upper decile of Qft
Qf0
.

The black solid line represents actual outcome growth, Qft
Qf0

.The dotted

grey line in each of the panels corresponds to
(
aft
af0

)1+γκ2

, while the dashed

line adds the (generally negative) contribution of input prices by depicting(
aft
af0

)1+γκ1
(
pmft
pmf0

)−φκ1
(
wft
wf0

)−βκ1

. The solid grey line further adds the con-

tribution of demand shocks:
(
dft
df0

)γκ1
(
aft
af0

)1+γκ1
(
pmft
pmf0

)−φκ1
(
wft
wf0

)−βκ1

. The
difference between this solid grey line and the solid black line is the contri-
bution of unmeasured factors, χft, which we attribute mainly to distortions.
It is clear from Figure 8 that, as previously illustrated, both TFPQ

and demand shocks play crucial roles in explaining how high growth plants
different from low-growth ones. But in terms of the first moment of growht,
the upper left panel shows that it is especially demand that accounts for the
rising average growth over the life cycle. From our analysis above, we know
that it is the high growth plants that are driving the rising mean. The lower
right panel of Figure 8 suggests that demand is particularly important to
explain the increase in output for high growth plants.
Part of the reason for the importance in demand in explaining high growth

in Figure 8 may have to do with these demand shocks being more persistent
than technology. Table 3, for instance, illustrates that, though high, the
degree of TFPQ persistence fails to explain the extremely high persistence
pervasively for both production and sales—similar to that reported for other
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Table 3: Persistence of TFP and demand shocks vs. persistence in production and sales.
(1) (2) (3) (4) (5) (6) (7) (8)

VARIABLES
Period 1980s 2000s 1980s 2000s 1980s 2000s 1980s 2000s

Lagged TFPQ 0.857*** 0.934***
(0.00280) (0.00144)

Lagged Demand Shock 0.965*** 0.974***
(0.00122) (0.000769)

Lagged lnQ 0.985*** 0.989***
(0.00101) (0.000694)

Lagged ln(P*Q) 0.990*** 0.987***
(0.000834) (0.000615)

Observations 36,050 75,336 36,826 81,531 36,826 81,531 41,365 93,354
Rsquared 0.817 0.887 0.981 0.983 0.972 0.967 0.979 0.971
Sector FE Yes Yes Yes Yes Yes Yes Yes Yes
Time FE Yes Yes Yes Yes Yes Yes Yes Yes
pvalue (H0: unit root) 0 0 0 0 0 0 0 0

TFPQ Demand Shock lnQ ln(Q*P)

Standard errors in parentheses. *** p<0.01, ** p<0.05, * p<0.1

countries. By contrast, the demand shock process does match that extreme
degree of persistence. We further illustrate distinctive characteristics of de-
mand shocks vs. TFPQ in Appendix C.
The central finding that idiosyncratic demand shocks play a key role in

the average growth of output, at least as important as that of TFPQ and
especially for rapid growers, is in line with Foster et al’s (2016) argument that
consolidating a solid client basis is more central to post-entry business growth
than physical effi ciency gains, and their consistent results for selected US
manufacturing industries. Our findings that demand shocks play a dominant
role in the variance of growth over the life cycle also square well with the
findings in Hottman et al (2016) pointing at demand shocks as a major
determinant of sales variability in the US.
Figure 8 also sheds light on other factors such as distortions for mean

growth as well as growth for other parts of the distribution. The role of
other factors such as distortions is captured by the difference between the
solid grey line capturing all fundamentals and the solid black line capturing
actual growth. It is striking that this gap is the largest in the lower right
panel for the high growth plants. This is consistent with distortions playing
an especially important role in being a drag on high growth plants.
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7 Robustness and extensions

7.1 Quality adjustment

All of the results discussed so far use quality-adjusted price indices calcu-
lated as explained in section 3.2. We examine now robustness of our results
to two different alternative formulations of the price index. We first use a
“statistical” approach based on Törnqvist indices for a constant basket of
goods or, alternatively, on the divisia price index that allows that basket to
change and uses average t, t−1 expenditure shares (see section 3.2). In each
of these approaches, TFPQ and demand shocks are obtained from estimat-
ing production and demand functions 18 and 20, rather than their versions
adjusted for product turnover, 19 and 23, with the Q (M) calculated as rev-
enue (materials) deflated by the respective price index in the Törnqvist or
Divisia version. Product turnover is only considered as a separate factor in
the growth decompostion. For comparison, we also run a version of the de-
composition where TFPQ and demand shocks are obtained without product
adjustments but output is deflated using P ∗ft (the Sato-Vartia prices).
Our first alternative version of prices uses a basket of goods that is fixed

over the life cycle, and constant weights for them. In particular, Törnqvist
indices for the growth of prices of plant f at time t are constructed, as
Pft
Pft−1

=
∏
Ωf

(
pfjt
pfjt−1

)sfj
, where Ωf is a basket of all products produced (or

materials used) by plant f at any point in which we observe f , and sfj is the
average share of j in that basket of products (or materials) plant f produces
over the whole period. In this approach, the plant level index is initialized at
lnPfA =

∑
Ωf

sfj (ln pfjA − ln pjA). If product j is not produced (or used as

input) in years t or t−1 (or both), ∆ ln(Pfjt) is inputed at the average growth
of the price of that product (or input) for other plants within the sector. If
no plant in the sector produces that good in t, then the average over all
plants is used, independent of sector. Notice that this version of prices does
not quality-adjust prices in any way, and does not take into account product
turnover. Compared to this version, all versions allowing for evolving baskets
of goods have the advantage of capturing evolving expenditure shares over
time and therefore quality-adjusting prices, but the disadvantage of being
more biased by errors from product coding and coarse aggregation, which
are more likely in our context than in that of prices from scan bar codes
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(Hottman et al 2016). Compared to our baseline estimation, even versions
with changing baskets quality-adjust in a less precise (i.e. not exact) manner.
The second bar of Figure 6 presents results using this alternative fixed-

basket, pooling observations across ages. Ignoring quality (more precisely,
appeal) adjustment results in two important differences in the results using
a fixed basket of goods over the life cycle, compared to our baseline, for the
pooled sample (Figure 6, bars “constant weights” vs baseline). First, the
error term is assigned a contribution 5 p.p. smaller in the version with a
constant basket of goods, possibly reflecting the fact, mentioned above, that
this version is less prone to measurement error from product coding error and
aggregation. Second, demand appears twice as important as TFPQ. That
is, ignoring quality adjustments does lead to an overestimation of the role
of physical effi ciency in life cycle growth. Figure 9 shows that these three
features are present for different time horizons (the upper left panel of Figure
9 simply reproduces Figure 7). The fixed basket deflator, however, preserves
the patterns of increasing importance of demand and decreasing importance
of TFPQ and the error term.
The other versions of prices (divisia and Sato Vartia) progressively move

towards our baseline. In the divisia version we consider the current basket at
each period t, and use average t, t− 1 shares of sales (materials expenditure)
as weights for the respective products. Divisia prices do allow for changing
baskets of goods over the life cycle, but the weights given to different products
are not exact, in the sense of not capturing the exact shares derived from
our demand theory. Sato-Vartia prices, in turn, ignore the product turnover
adjustment (λQft and λ

M
ft , which capture turnover over pairs of years) in the

estimation of TFPQ and demand shocks. Not surprisingly, then, the results
of decompositions based on these alternative approaches stand between those
in our baseline and those in the constant weights version of prices. The divisia
price index, by failing to quality-adjust prices in an exact manner, attributes
more importance to demand relative to TFPQ than our baseline.

7.2 Life cycle growth: 1980s vs 2000s

Hsieh and Klenow (2014) have explained cross country differences in pat-
terns of life cycle growth from differences in institutions that may enhance or
weaken the link between market fundamentals and growth, in turn affecting
market selection and incentives to invest in improving those "fundamentals".
Colombia, as many other countries in Latin America and around the
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globe, undertook wide market-oriented reforms during the 1990s. These in-
cluded unilateral trade openning, financial liberalization, and flexibilization
of labor regulations. Eslava et al (2004, 2013, 2010) present evidence that
these reforms did generate changes in business dynamics consistent with a
reduction in the distortions to business incentives: allocative effi ciency im-
proved, the market selection mechanism was enhanced, capital and labor
adjustment became more flexible (though in an apparently capital-biased
way).
We now ask whether the contribution of our measured plant fundamen-

tals to life cycle dynamics for Colombian manufacturing plants, and in turn
whether life cycle growth seems affected by these differences. Figure 10 de-
picts results of our decomposition of life cycle growth separating the 1980s
(actually 1982-1992) and the 2000s (2002 to 2012). The 1980s analysis contin-
ues to be constrained to plants born starting in 1970, and the 2000s analysis
leaves out plants born before 1990.
We leave out the years between 1993 and 2001 for two reasons: 1) Two the

extent that the comparison provides meaningful information about changes
related to the reforms, it is not clear whether firms born just as the reforms
are being adopted behave in their first few years as pre-reform or post-reform
firms. 2) Between 1997 and 2001, the country went through its deepest reces-
sion in 70 years. The 2002-2012 period displays macroeconomic conditions
that are not as widely different from those in the first decade of our sample
as is the case for the years between 1993 and 2001. Still, of course, market
reforms are not the only conditions that changed between the 1980s and the
2000s. We do not claim that the differences between the two decades in life
cycle growth and in the contribution of fundamentals to life cycle growth are
to be attributed to the reforms of the 1990s. But those reforms are clearly
an important factor.
The contribution of TFPQ to the life cycle output growth grows by

almost 7 p.p. betwen the 2000s and the 1980s, for all horizons. This greater
contribution of TFPQ is offset by a composed decrease in the contribution
of input prices and, interestingly, the error term, which falls by about 4 pp.
Moreover, the average plant’s life cycle output growth is faster in the

2000s compared to the 1980s, markedly in the case of employment growth
and timidly in the case of output (Figure 11).28 Facts in Figure 11, and the
slightly greater importance of fundamentals (by contrast to the error term)

28For the left panel of figure 11, we pool the two samples, and run the regression
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as determinants of growth in Figure 10, square with the expectation that
the 2000s in Colombia are characterized by less distortive institutions than
the pre-reform decades, in light of Hsieh-Klenow’s view that less distortive
institutions enhance life-cycle growth.

7.3 Selection

As noted in relation to Figure 1, the life cycle growth patterns that we
attempt to explain are mainly driven by the growth of continuers. It is
interesting to see whether fundamentals and distortions play similar roles in
explaining continuer growth and exits.

Qft
Qf0

= αt + αs +

age=10∑
age=1

φagedage,f,t +

age=10∑
age=1

φage,postdage,f,t ∗ dpostt + εit (29)

where dpostt = 1 if t ∈ [2002, 2012] and dpostt = 0 otherwise. The right panel is produced
in an analogous manner for Lft

Lf0
.

47



1

2

3

4

5

02 3 4 5 6 7 8 9 10 11 12
Age

19821990 20022012

Current to initial Production

1

1.5

2

2.5

02 3 4 5 6 7 8 9 10 11 12
Age

19821990 20022012

Current to initial Employment

Includes year and sector fixed effects, 90% confidence interval for the difference 1980's vs. 2000's
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Figure 13 illustrates average growth of fundamentals separately for plants
that continue for at least one additional year and those that exit the following
year. The most noteworthy difference is poorer growth in demand shocks for
plants about to exit compared to those that will continue.
Figure 14 further carries our decomposition of drivers of output growth

for these two groups of plants. Because exits occur at earlier ages and we
know the contribution of fundamentals varies across ages, we compute the
decomposition for each group at specific ages. We present three-year moving
averages because the patterns for plants about to exit are noisy.29 Figure
15 shows the average across years of the contribution of each of the funda-
mentals. Fundamentals still play an important role in explaining the growth
of plants from birth to the moment in which they are about to exit, but
TFPQ plays a much more significant role, detracting from both demand
and distortions.
29Since each point (age) in a figure for plants about to exit contains the plants that will

exit at age+1, the plants included in a given line are different for each age. This explains
the noisy patterns.
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7.4 Restricted Life cycle sample

We have conducted most of our analysis characterizing and decomposing
the determinants of life cycle growth where the latter reflects the growth of
individual plants relative to their initial size. However, as discussed in detail
in section 3.3, for some plants we don’t observe them at birth but when they
cross a minimal size threshold. We use what we refer to as the restricted
life cycle sample to generate adjustment factors that enable our life cycle
growth analysis. In this section, we confine our analysis to the restricted life
cycle sample, as a robustness check. Figure 12 reproduces the decomposition
by ages of Figure 7 for the restricted life cycle sample, composed of plants
that we observe from birth. Those plants represent about a third of the
overall sample (Table 1). The restricted life cycle sample has the advantage
of allowing a precise measurement of growth from birth, both in terms of
outcomes and in terms of fundamentals. This comes at the cost of biasing
the sample towards firms that are born larger. We do not know ex-ante what
the direction of that bias is, neither for the patterns of outcome growth nor
for the contribution of fundamentals to that growth.
The basic patterns we have found are robust to focusing on the restricted

life cycle sample: 1) the unexplained part of growth, which captures the
role of distortions, is less important than the explained part averaging across
horizons; 2) that unexplained part accounts for over 50% of variation for early
ages, and becomes progressively less important for longer horizons; 3) the role
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of both TFPQ and demand is crucial, explaining most life cycle growth; 3)
TFPQ is particularly important for early life growth, but quickly becomes
less important than demand, whose contribution grows markedly for longer
horizons. Two important quantitative differences emerge with respect to the
full sample, however: 1) the measured contribution of distortions falls (from
33.6% to 29.6% in the pooled sample); and 2) the weight of demand shocks
relative to TFPQ grows. In particular, while TFPQ and demand are equally
important in the baseline decomposition pooling ages, the contribution of
demand shocks is 1.5 times that of TFPQ in the life cycle sample pooling
ages.

8 Conclusion

We take advantage of rich microdata on Colombian manufacturing estab-
lishments to decompose growth over an establishment’s life cycle into that
attributable to fundamental sources of growth—physical productivity, demand
shocks, and input prices—and distortions that weaken the link between those
fundamentals and actual growth. We rely on a nested CES structure for pref-
erences over products by multiproduct businesses, and data on quantities and
prices for individual products for each manufacturing establishment, to de-
compose profitability shocks into physical productivity and demand shocks.
Pooling all ages, measured fundamentals explain around 70% of the variabil-
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ity of output relative to birth level, with the remaining 30% explained by
distortions and other unobserved factors. Demand shocks and TFPQ are
equally important in the explained part, while input prices play a more mi-
nor role. Distortions explain more than 50% of growth up to age seven, but
their contribution falls to less than 25% by around age 20. For the fraction
explained by fundamentals, early life growth is explained by TFPQ with de-
mand and input prices playing a minor role. But demand is the crucial factor
in the variance of long-run growth, with a contribution that surpasses that of
TFPQ and unobserved factors by around age 15. In the 2000s compared to
the 1980s, two decades separated by a wave of deep structural reforms, the
contribution of TFPQ to the variance in life cycle growth grows by around
7 percentage points, with distortions falling in importance by 4 percentage
points.
In addition to providing new insights into the determinants of the variance

of life cycle growth over different stages of the plant life-cycle, we also quantify
the contribution of the fundamentals to average plant-level growth as well
as growth at different percentiles of the plant growth rate distribution. We
find that growth in plant-level demand is the dominant factor accounting for
average plant-level growth as well as for high growth plants. We also find
that distortions act, not surprisingly, as a drag on average plant-level growth.
Interestingly, we find that this drag is especially relevant for the high growth
plants that are critical for the average plant-level growth.
Our analysis focuses on the decomposition of the variance of life cycle

growth into fundamentals vs. distortions and in turn on the relative con-
tribution of different fundamentals. We regard part of our contribution as
highlighting the importance of using price and quantity data at the firm
level in order to conduct this decomposition. Indirect methods that use only
revenue data must infer fundamentals vs. distortions less through direct mea-
surement but instead decompose revenue productivity measures based upon
strong assumptions about the structure of technology and demand.
Our findings raise a number of questions and point to important areas

for future research. First, while we can directly measure fundamentals like
TFPQ and demand shocks with price and quantity data, we still infer distor-
tions from indirect methods (using the terminology of Restuccia and Roger-
son (2017)). Identifying the distortions that account for 50% of the variance
of early life growth is one potential area of research. More generally, we are
taking the evolution of TFPQ and the demand shocks we measure as exoge-
nous in our analysis. Their evolution is presumably endogenous over the life
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cycle and reflect investments in process innovation on the TFPQ side and
in developing product innovations as well as a customer base on the demand
side. Our findings provide insights into the relative importance of the vari-
ance in these fundamentals but not the ultimate sources of the variance in
these fundamentals. Following the insights of Restuccia and Rogerson (2017),
we capture only the effect of distortions on scale given fundamentals, but do
not account for the fact that the variance in the fundamentals we detect over
the life cycle may reflect distortions that impact the investments that lead
to this variance. Of course, we don’t know that much about the life cycle
dynamics of these fundamentals. Recent research on U.S. firms highlights
that in the cross section (Hottman et. al. (2016)) demand factors account
for a large fraction of variance in the size distribution and over the life cycle
demand side factors play a dominant role (Foster et. al. (2016)). But that
research, like ours, does not provide guidance about what determines the
variance in these fundamentals in the U.S. Research that sheds light on the
endogenous determinants of the the variance in the supply side (TFPQ) and
demand side fundamentals should have a high priority in future research.
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10 Appendix A: measuring exact price in-
dices

The change in prices from one period to the next is, from 7:

Pft
Pft−1

=

( ∑
Ωft
dσfjtp

1−σ
fjt∑

Ωft
dσfjt−1p

1−σ
fjt−1

) 1
1−σ

(30)
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Recall that we are making the assumption that σF = σJ . Defining as
Ωf
t,t−1 the set of goods that is common to both periods, and multiplying both

the numerator and the denominator by
(∑

Ωft,t−1
dσfjt−1p

1−σ
fjt−1 ∗

∑
Ωft,t−1

dσfjtp
1−σ
fjt

) 1
1−σ

we obtain:

Pft
Pft−1

=

( ∑
Ωft
dσfjtp

1−σ
fjt∑

Ωft,t−1
dσfjtp

1−σ
fjt

∑
Ωft,t−1

dσfjt−1p
1−σ
fjt−1∑

Ωft−1
dσfjt−1p

1−σ
fjt−1

∑
Ωft,t−1

dσfjtp
1−σ
fjt∑

Ωft,t−1
dσfjt−1p

1−σ
fjt−1

) 1
1−σ

(31)

=
λft−1,t

λft,t−1

( ∑
Ωft,t−1

dσfjtp
1−σ
fjt∑

Ωft,t−1
dσfjt−1p

1−σ
fjt−1

) 1
1−σ

(32)

where λft−1,Ωft,t−1
=

(∑
Ω
f
t,t−1

dσfjt−1p
1−σ
fjt−1∑

Ω
f
t−1

dσfjt−1p
1−σ
fjt−1

) 1
1−σ

and λft,Ωft,t−1
=

(∑
Ω
f
t,t−1

dσfjtp
1−σ
fjt∑

Ω
f
t
dσfjtp

1−σ
fjt

) 1
1−σ

.

Furthermore, since

sfjt =
pfjtqfjt
Rft

=
p1−σ
fjt

(
dσfjt
)

P 1−σ
fjt

(33)

we have that:

λft−1,Ωft,t−1
=

∑
Ωft,t−1

dσfjt−1p
1−σ
fjt−1∑

Ωft−1
dσfjt−1p

1−σ
fjt−1


1

1−σ

=

∑
Ωft,t−1

sfjt−1


1

1−σ

That is,
(
λft−1,Ωft,t−1

)1−σ
is the share of period t − 1 expenditures devoted

to goods that are common to both periods. Similarly,
(
λft,Ωft,t−1

)1−σ
is the

share of period t expenditure devoted to goods common to both periods.
With this, the change in prices between the two periods can be written:

Pft
Pft−1

=

( ∑
Ωft,t−1

sfjt∑
Ωft,t−1

sfjt−1

) 1
σ−1 P ∗ft

P ∗
ft−1,Ωft,t−1

(34)
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where P ∗ft =
(∑

Ωft,t−1
dσfjtp

1−σ
fjt

) 1
1−σ

is a period t price index for the basket

of goods common to t and t−1 for firm f , and P ∗
ft−1,Ωft,t−1

=
(∑

Ωft,t−1
dσfjt−1p

1−σ
fjt−1

) 1
1−σ

is a period t− 1 price index for that same basket.

Now define the Sato-Vartia growth of prices as
∑

Ωft,t−1

ln
(

pfjt
pfjt−1

)ωfjt,t−1

with

ωfjt,t−1 =

(s∗fjt−s
∗
fjt−1,t)

ln s∗
fjt
−ln s∗

fjt−1,t∑
Ω
f
t,t−1

(
(s∗
fjt
−s∗
fjt−1,t

)

ln s∗
fjt
−ln s∗

fjt−1,t

) , where s∗fjt =
pfjtqfjt∑

Ω
f
t,t−1

pfjtqfjt

and s∗
fjt−1,Ωft,t−1

=

pfjt−1qfjt−1∑
Ω
f
t,t−1

pfjt−1qfjt−1

are the ratio of period t (resp. t − 1) sales of product j for

firm f to firm f ′s sales in period t (resp. t− 1) of goods that belong to the
basket Ωt,t−1.

TheMarshalian demands 5, given by qfjt = dσFft d
σJ
fjt

(
Pft
Pt

)−σF (pfjt
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Et
Pt
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imply
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fjt is a weighted geometric mean of individual prod-

uct appeals for the constant basket of goods. Under the assumption that this

geometric mean is invariant over time (
d̂∗ft
d̂∗ft−1

= 1), the consecutively common

good price index growth

(
P ∗ft

P ∗
ft−1,Ω

f
t,t−1

)
can be calculated as in Sato-Vartia

ln

 P ∗ft
P ∗
ft−1,Ωft,t−1

 =
∑

Ωt,t−1

ln

(
pfjt
pfjt−1

)ωfjt,t−1

As we discuss in the main text and above, our approach involves a sim-

plifying normalization. Specifically, we assume
d̂∗ft
d̂∗ft−1

= 1). If d̂∗t
d̂∗t−1

6= 1,

ln
(

P ∗t
P ∗t−1

)
=
∑

Ωt,t−1

ln
(

pfjt
pfjt−1

)ωfjt,t−1

− σ
σ−1

ln

(
d̂∗ft
d̂∗ft−1

)
. The Sato-Vartia price

index
∑

Ωt,t−1

ln
(

pfjt
pfjt−1

)ωfjt,t−1

ignores the negative term − σ
σ−1

ln

(
d̂∗ft
d̂∗ft−1

)
. As

Redding and Weinstein (2016) indicate, it is possible that product demand

shocks dfjt
dfjt−1

are positively correlated with the weights ωfjt,t−1 so that
d̂∗ft
d̂∗ft−1

>
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1. Such a correlation will yield a demand bias that implies we may be over-
stating price inflation for the common goods produced in both t − 1 and
t. Such overstatement of price inflation implies understatement of quantity
growth and therefore TFPQ growth.
What are assumptions under which our normalization would hold so that

there is no bias? We could assume that the dfjt−1 = dfjt for all products
the firm produces in both t − 1 and t. This would still permit entry and
exit of goods. For example, suppose that dfjt is a draw from a two point
distribution with one value being zero and the other being a positive value.
Then the firm would exhibit entry and exit of goods as good j switches from
these two values. Moreover, there would be quality changes as the mix of
goods changes. Alternatively, if relative product demand changes for goods
produced in both t − 1 and t keep the overall joint distribution of relative
product demands and prices the same (this is in the spirit of the Hottman
et. al. (2016) normalization) for goods produced by the firm in both periods
then our normalization holds.
Still we are sympthetic to the arguments in Redding andWeinstein (2016)

that there may be a correlation between changes in relative product demands
and the Sato Vartia weights. We plan to explore ways to accommodate this
in our estimation approach in future drafts of the paper.

11 Appendix B: firm problemwith Cobb Dou-
glas production function

Firm chooses Xt to solve:

Max
{Xft}

πft = Rft − CftXft = DftA
1−ε
ft X

γ(1−ε)
ft − CftXft

where Rft = PftQft.Optimal input demand is

Xft =

(
γ (1− ε)DftA

1−ε
ft

Cft

) 1
1−γ(1−ε)

Suppose Xft = K
α
γ

ftL
β
γ

ftM
φ
γ

ft where K, L and M are, respectively, capital,
labor and material inputs, and γ = α + β + φ. The firm’s problem is
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Max
{Kft,Lft,Mft}

DftA
1−ε
ft K

α(1−ε)
ft L

β(1−ε)
ft M

φ(1−ε)
ft − Cft (Lft, Kft,Mft)

where Cft (Lft, Kft,Mft) = wftLft+rftKft+pmftMft . wft is the wage rate,
rft is the unit cost of capital, and pmft is an index of material input prices.
First order conditions for Lft, Kft,Mft, yield the following optimal demands:

βRft

Lft
=

wft
(1− ε)

βKft

αLft
=

wft
rft

φLft
βMft

=
pmft

wft

Rewriting, and replacing the last two equations into the first one:

wft
(1− ε) = βDftA

1−ε
ft

Kα
ftL

β
ftM

φ
ft

L
1

1−ε
ft

1−ε

= βDftA
1−ε
ft

(Kft

Lft

)α(
Mft

Lft

)φ
1

L
1

1−ε−(β+α+φ)

ft

1−ε

L
1

(1−ε)−γ
ft =

(
(1− ε) βDftA

1−ε
ft

wft

) 1
(1−ε) (

αwft
βrft

)α(
φwft
βpmft

)φ

L
1−γ(1−ε)

(1−ε)
ft = $L

D
1

(1−ε)
ft Aftw

− 1
(1−ε) +(α+φ)

ft

rαftpm
φ
ft

where $L is a function of parameters. Proceeding similarly for capital

and materials, we obtain demandsM
1

(1−ε)−γ
ft = $M

D

1
(1−ε)
ft Aftpm

− 1
(1−ε) +(α+β)

ft

rαftw
β
ft

and

K
1

(1−ε)−γ
ft = $K

D

1
(1−ε)
ft Aftr

− 1
(1−ε) +(β+φ)

ft

wβftpm
φ
ft

.
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As a consequence:

X
1−γ(1−ε)

(1−ε)
ft = $

β
γ

L$
α
γ

K$
φ
γ

MD
1

1−ε
ft Aft

∗

pm− φ
γ(1−ε) +φ

γ
(α+β)

ft

r
φ
γ
α

ft w
φ
γ
β

ft

r
− α
γ(1−ε) +α

γ
(β+φ)

ft

w
α
γ
β

ft pm
α
γ
φ

ft

w
− β
γ(1−ε) +β

γ
(α+φ)

ft

r
β
γ
α

ft pm
β
γ
φ

ft


= $

β
γ

L$
α
γ

K$
φ
γ

M

 D
1

1−ε
ft Aft

w
β

γ(1−ε)
ft pm

φ
γ(1−ε)
ft r

α
γ(1−ε)
ft


and

Xft

Xf0

=

(
dft
df0

)κ1
(
aft
af0

)κ2
(
pmft

pmf0

)−φ
γ
κ1
(
wft
wf0

)−β
γ
κ1

κtκ̂ft (35)

Lft
Lf0

=

(
dft
df0

)κ1
(
aft
af0

)κ2
(
pmft

pmf0

)−φκ2
(
wft
wf0

)−κ1+(α+φ)κ2

t

ξtξft (36)

Qft

Qf0

=

(
dft
df0

)γκ1
(
aft
af0

)1+γκ2
(
pmft

pmf0

)−φκ1
(
wft
wf0

)−βκ1

χtχft (37)

where κ1 = 1
1−γ(1−ε) ; κ2 = (1− ε)κ1; κt =

(
Dt
D0

)κ1
(
At
A0

)κ2
(
Ct
C0

)−κ1

cap-

tures aggregate growth between birth and age t, and ;κ̂ft =
δ
κ1
ft α

κ2
ft ζ
−κ1
ft r

−ακ1
γ

ft

δ
κ1
f0α

κ2
f0ζ
−κ1
ft r

−ακ1
γ

f0

captures residual variation from noise in fundamentals not observed by the
firm at the time of choosing its scale in each period, as well as from unob-
served user cost of capital. ξt, ξft, χt and χft are analogous residuals for the

specific cases of employment and output. In particular: χt == κγt

(
At
A0

)
and

χft = κ̂γft
αt
α0
.30 Notice also that Cft = w

β
γ

ftpm
φ
γ

ftr
α
γ

ft.

12 Appendix C: demand shocks vs TFPQ

We have taken fundamentals as given, but noted that our results should help
guide future work, both theoretical and empirical, about the specific drivers

30ξft = κft

(
rft
rf0

)−α 1−γ(1−ε)
(1−ε)
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Table A1: TFPQ, demand shocks and Innovation by Type of Innovation

VARIABLES TFPQ Demand Shock

Dummy product innovation 0.0107 0.535***
(0.0227) (0.0279)

Dummy process innovation 0.0127 0.320***
(0.0242) (0.0299)

Dummy organizational innovation 0.0199 0.202***
(0.0336) (0.0425)

Number  product innovation 0.000244 0.00556***
(0.000451) (0.000841)

Number process innovation 0.00833** 0.0352***
(0.00372) (0.00651)

Number organizational innovation 0.0234* 0.0171
(0.0136) (0.0193)

Constant 2.043*** 5.331***
(0.0202) (0.0313)

Observations 41,053 44,528
Rsquared 0.155 0.627
Sector FE Yes Yes
Time FE Yes Yes
Robust standard errors in parentheses
*** p<0.01, ** p<0.05, * p<0.1

of measured productivity. To further understand the nature of TFPQ vs.
demand shock, and potential mechanisms through which businesses accu-
mulate each of them, we have studied the relationship between these fun-
damentals and reported innovation efforts. The Colombian Manufacturing
Survey can be merged with the Innovation Survey at the level of the firm
(tax ID). Firms report number of innovations by type, defined by categories
named "product", "process", and "organizational" innovation. They also
report innovation expenditures, unfortunately not broken down in the same
categories.
We regress plant TFPQ and demand shocks on the parent firm’s reports

of having obtained at least one innovation, and on numbers of innovation by
type. TFPQ increases with process and organization innovation, but only
with suffi ciently large numbers of both. Demand shocks positively correlate
with innovations of any type, incrementally with their number except for
organizational innovations. Both fundamentals are positively correlated with
innovation expenditures.
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