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Abstract

We introduce and estimate a model that leverages a system-wide approach to iden-
tify systemically important financial institutions. Our Lasso penalized Vector Auto-
regressive (LVAR) model explicitly allows for the possibility of connectivity amongst
all institutions under consideration: this is in sharp contrast with extant measures
of systemic risk that, either explicitly or implicitly, estimate such connections using
pair-wise relationships between institutions. Using simulations we show that our ap-
proach can provide considerable improvement over extant measures. We estimate our
model for large financial institutions in the U.S. and show its usefulness in detecting
systemically stressful periods and institutions.
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1 Introduction

There has been a growing interest in understanding and measuring systemic risk, largely

driven by the events of the 2007-09 financial crisis. A number of such measures have been

proposed, including conditional Value-at-Risk (CoVaR) (Adrian and Brunnermeier (2011)),

CoRisk (Chan-Lau et al. (2009)), systemic expected shortfall (SES) (Acharya et al. (2012))

and, SRISK (Brownlees and Engle (2015)), to name a few. Another strand of literature

proposes network connectivity of large financial institutions as a way to identify systemically

important institutions based on the centrality of their role in an appropriately constructed

network, e.g., network of the corresponding firms’ stock returns (see Billio et al. (2012)).

There is broad agreement that systemic risk threatens the stability of the entire financial

system and hence any associated risk measures should provide a systemwide perspective.

However, there is relatively little theoretical guidance on how to measure systemic risk;

therefore, understanding the econometric properties of the proposed measures of this risk

becomes even more important.1

Since systemic risk represents a property of the entire financial system, interconnectedness

of the participants represents a key element. For example, highly interconnected institutions

that are likely to fail pose a higher risk to the system due to the presence of multiple channels

of transmission and contagion. Hence, at their core all proposed measures of systemic risk aim

to reflect connectivity. For example, SES and CoVaR assess the association between a given

financial institution’s condition with that of the rest of the financial system and more broadly

the economy. The larger the magnitude of these associations, the higher is the systemic

risk of a given institution. Network based approaches directly aim to measure connectivity

1Earlier theoretical work has mainly focused on banking and currency crises. These models provide
extremely valuable insights into the microeconomic foundations of crisis, but they do not take us all the
way to a measure of systemic risk that can be implemented in practice, e.g., see Allen and Gale (1998) and
Diamond and Dybvig (1983) for some early contributions. Papers by Battiston et al. (2012), Acemoglu et al.
(2015) and others have made considerable progress in the literature in recent years. These papers provide
valuable insights into the shape of network structure, the mechanism of the shock propagation, and the
resulting implications for the fragility of the system.
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between financial institutions and subsequently derive summary network measures as proxies

for systemic risk. However, extant measures of systemic risk often fall short of a true system-

wide measure of connectivity. Our paper highlights this limitation of the current literature,

and then proposes a solution.

We primarily focus on a network based approach akin to that adopted in Billio et al.

(2012) to illustrate our key point. Billio et al. (2012) estimates a bivariate Granger causal

association on the stock returns of large financial firms of the economy where firm A is said to

be connected to firm B if A Granger-causes B, i.e., return of firm A at time t has additional

predictive power in forecasting return of firm B at t+ 1, over and above the lagged returns

of firm B. While this is a useful starting point, such pairwise approach of learning network

structures misses out on the system-wide connections. Specifically, a pairwise measure of

statistical association between any two firms A and B gives the direct strength of connectivity

between A and B, as well as indirect effects through all the other nodes in the network. As

a result, a network based on such marginal effects of A on B does not pin down institutions

that are key in propagating the risk in the system. We illustrate this issue in Figure 1.

The figure plots the true network structure for a three firm system. In this hypothetical

system, there are 3 causal effects in the model: B → C, B → A, C → B. However, due to

indirect effect through B, there is additional (spurious) pairwise Granger causal effect C →

A. Measures such as SES and CoVaR partially mitigate this issue by considering statistical

relationships between an institution and the system as a whole. However, even with these

measures a similar concern arises since these models estimate the covariance of an institution

with the rest of the system without conditioning it on all other participants. While our focus

is on pairwise Granger causal network, we explore this issue for other measures further in

Section 4 of the paper.

Figure 1 around here
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The key issue in the above example is that the pairwise metric does not take into con-

sideration the effects of the third institution on the pair under consideration. Conceptually,

the misspecification problem of the pairwise Granger causal effect is analogous to the well

understood omitted variable bias in standard regression models. Statistically, the model

parameters end up being inconsistently estimated, which in turn may lead to large economic

costs; for example, a number of institutions that are not highly interconnected may end up

being wrongly classified as interconnected under such an approach. Hence policy designs,

such as linking a bank’s capital requirement based on their interconnectedness in the net-

work, are likely to be problematic with such a structure. Similarly, such an approach may

not be meaningful in identifying systemically important firms of the financial system.

One approach to correctly identify the interconnectedness structure of the system is

to fit a VAR model that takes into consideration all interactions amongst the system’s

components. This can be done, for example, by estimating the VAR model with all firms

simultaneously, instead of a pair-wise approach. However, the number of parameters to

be estimated even for the simplest lag-1 VAR model in this approach is quadratic in the

number of institutions under consideration. For example, to estimate a full VAR(1) model

for 100 financial institutions, we need over 10,000 time periods for estimation. In most

practical applications, this seems infeasible. We suggest a statistical approach based on

recent developments in higher dimensional statistics that overcomes this challenge.

We employ a regularized VAR model, using LASSO (Least Absolute Shrinkage and Se-

lection Operator) techniques, that only focuses on estimating the strongest interconnections,

while forcing weaker relationships to zero. The key statistical advantage of this approach is

that we need significantly lower number of time points to estimate this model as compared

to the classical estimation of the VAR model as long as the underlying network is approx-

imately sparse. We provide an in-depth discussion of our statistical approach in Section 3

with additional technical details in the appendix. The method provides statistically consis-
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tent estimates of the network’s interconnectedness, which constitutes the first step towards

gaining insights about interconnectedness patterns during periods of financial calmness and

juxtapose them to those during financial distress. As Glasserman and Young (2015) argue,

the role of growing interconnectedness of the financial system is one of its least understood

aspects.

On the methodological side, perhaps the closest to our system-wide approach is the one

in Demirer et al. (2017), which builds upon the framework of Diebold and Yılmaz (2014).

In a series of papers, Diebold and Yilmaz have advanced the literature by developing con-

nectedness measures based on variance decomposition of banks. Diebold and Yılmaz (2014)

used OLS estimation of VAR on a small number of firms (15 firms). To address the issue

of high-dimensionality, Demirer et al. (2017) use penalized VAR estimation techniques, in

particular an adaptive elastic net (AEnet) regularization term, to estimate the network of

150 global banks using daily data of their stock return volatility. The elastic net penalty has

the attractive feature of producing less erratic estimates than lasso when the covariates in

the regression model are highly correlated. However, we are not aware of any existing proce-

dure to formally assess uncertainty of AEnet coefficients in high-dimensions. Our approach

of debiased Lasso VAR comes with theoretically sound measures of statistical uncertainty,

which provides greater confidence in inferences based on this approach. Our approaches

complement each other to understand the underlying connectedness of financial institutions

in high dimension.

After discussing the statistical underpinnings of our model, we conduct some simulation

exercises to highlight the advantages of our measure over the existing ones. In our first

simulation exercise, we simulate data on lead-lag relationship between financial institutions

based on lag-1 VAR model. On the simulated data, we estimate connections based on both

our model (which we refer to as Network Granger Causal model) and the bi-variate VAR

model. Our model does considerably better in detecting the true network structure. We also
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compute CoVaR and MES measures on this simulated data and show the improvement our

model achieves.

The use of a first-order VAR model of stock returns may not be an innocuous assump-

tion. In efficient markets, past stock returns of other financial institutions should not have

any predictive power for explaining the return of any other institutions. Market inefficiency,

slow diffusion of information and frictions such as short-selling restrictions can be a potential

reasons for non-trivial dependence between the returns of different institutions over time.

However, our paper does not rely on this specific form of interdependence across the institu-

tions’ returns. Using the idea of partial correlations, a system-wide approach can be taken

to capture contemporaneous connectivity as well. Building on this idea, we next simulate

a model that only has contemporaneous correlations across institutions’ returns and con-

trast our approach with other models such as CoVaR and MES. Again, our model performs

better in capturing the true connections. Given the very infrequent occurrence of actual

systemic events that can be used to evaluate the relative performance of different models,

our simulation exercise is especially important in establishing the usefulness of our approach.

In the final part of the paper, we estimate our model using the stock return data of three

important sectors of the financial services industry, namely banks, broker-dealers and insur-

ance companies. The financial institutions in these sectors are intricately related through

both direct business relationships such as lending and borrowing, and through indirect rela-

tionship such as “spillover effects” through correlated trading or exposure to common assets.2

Theoretical works such as Allen and Gale (2000), Babus (2013), Acemoglu et al. (2015) dis-

cuss direct linkage formation among firms through lending. On the other hand, some recent

papers focus on connectedness via trading activities of firms. Colla and Mele (2010) dis-

cusses information network among investors while Brunnermeier and Pedersen (2009) shows

how funding of traders with capital constraints and risk limits are affected by destabilizing

2Billio et al. (2012) discusses increased financial linkages across these types of institutions.
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nature of margin-based trading . In this paper, we are agnostic about the reasons behind

connections in the first place. Rather, our focus is on the measurement of the resulting

interconnectedness.

Using our LASSO penalized lag-1 VAR model, we estimate the network structure over

time, on a rolling basis, from year 1992 to 2012. We show that different measures of con-

nectedness based on the number of firms connected to each other (degree) and the shortest

path length from one firm to another in the network (closeness), exhibit sharp peaks just

before important systemic events such as the dot-com related market crash in 2000 and the

Lehman Brothers’ failure in 2008.3 Thus our network is useful in providing information on

the buildup of systemic risk in the financial system. Needless to say, with limited number

of systemic events in the economy, we are unable to carry out any formal statistical test for

the predictive power of our network. However, it is clear that our results line up well with

identifiable periods of systemic risk in the economy.

Our network estimates allow us to detect institutions that are relatively more important

in the network at any given point in time. Higher the degree of a firm, larger is the number of

its immediate neighbors. Higher closeness, on the other hand, indicates how easily the firms

can be accessed by other firms in the network. We find that AIG becomes one of the most

important nodes in our network before and during the recent financial crisis. This finding

is consistent with anecdotal evidence that highlights the central role of AIG in the economy

during the 2007-2009 period. We provide the ranking of institutions at different points in

time during our sample period, and these rankings can be useful inputs to policy decisions

on the detection of systemically important institutions. Based on our estimates we find that

banks that were closely linked to AIG experienced larger negative returns in the immediate

aftermath of the failure of Lehman, providing confidence in our estimation method.

3There are several possible measures of centrality in networks such as degree, closeness, betweenness and
eignevector. Without a clear theoretical guidance, it is unclear which measure is most suited for systemic
risk applications. Hence we present our results for two most widely used measures used often in studies of
network model.
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Our network estimate picks up strong relationships, which are likely to be more meaning-

ful for policy decisions. We contrast our estimated network with that in Billio et al. (2012)

which is significantly more dense. Said differently, in their pairwise network, institutions on

average are connected to several others since the estimation does not parse out indirect rela-

tionships between institutions. Thus the pairwise Granger causal approach ends up with too

many connections between institutions as opposed to our network Granger causal approach.

In summary, our paper contributes to the literature by estimating the network structure

in a statistically principled way, specifically a measure of network that is consistent and

mitigates, to a large extent, the omitted variable bias inherent in pairwise methods. Since

any error in the misclassification of systemically important institution can be very costly for

the economy, our paper provides a considerable improvement in designing and implementing

efficient macro-prudential regulations. Our approach can be useful in a number of different

settings where researchers are likely to be interested in both direct and indirect linkages

between several firms in a network. For example, our methodology can be useful in detecting

supplier-customer stock return relationships for a large number of firms. Similarly, our

method can be helpful in estimating the effect of common owners or board members on firm

policies. Our paper provides self-contained guidance on estimating a true Network Granger

Causal model for applied researchers in different areas of finance and economics.

Section 2 expands on the biases created by pairwise approach and highlight the limitations

of extant measures of systemic risk. Section 3 proposes our Lasso penalized VAR measure.

In Section 4, we show the usefulness of our measure, compared to existing measures, on

simulated data sets. Section 5 presents the estimation result with actual data for 75 largest

financial institutions of the U.S. Section 6 concludes.
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2 Pair-wise versus system-wide approaches

We elaborate on the problem statement and potential biases created by extant measures in

this section. Throughout this paper, we use Ai: and A:j to denote the ith row and jth column

of a matrix A, respectively. We also use the standard notations for norms of a p-dimensional

vector ‖v‖∞ = maxj=1,...,p |vj|, ‖v‖1 =
∑p

j=1 |vj|. For a m × n matrix A, we denote its

Frobenius norm as ‖A‖F =
√∑m

i=1

∑n
j=1A

2
ij.

Consider a network of 15 institutions with 5 hubs, each with one central firm. In each hub,

the middle firm is central and propagates shocks to other firms. Firms on the periphery, on

the other hand, do not propagate any shocks to other firms (see Figure 2). Such a dynamics

can be modeled by assuming a data generating process in which the middle firm’s return in

period t affects the returns of both firms on the periphery in period t + 1. We capture this

idea by simulating data as per the dynamics below:

Rt+1
2 = 0.6 ∗Rt

2 + εt+1
2

Rt+1
j = 0.6 ∗Rt

j + 0.4 ∗Rt
2 + εt+1

j , j = 1, 3

εtj
i.i.d.∼ N(0, 1)

We simulate this model with 500 independent draws. Based on the simulated data, we fit

a pair-wise VAR model in line with Billio et al. (2012). For each pair of firms, we estimate

the lead-lag relationship between their returns using an OLS model. It is worth emphasizing

that in this approach each estimation exercise ignores the effect of all other firm’ returns on

the returns of the pair under consideration.

The true network as well as the estimated pairwise Granger causal network are depicted

in Figure 2. The estimated network structure detects significant relationships between the

adjacent peripheral firms in each hub in addition to the relationship between the central firm

and the rest. Thus, the estimated network structure provides an incorrect picture of the true
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network. The reason is simple. The pairwise model ignores the fact that returns of both

peripheral-firms are driven solely by the central firm. Ignoring the effect of the central firm’s

returns while estimating correlations between the returns of firms on the periphery, leads

to false positives connections. In other words, the pairwise model ignores the conditional

independence in returns of firms on the edges, conditional on the central firm’s returns.

Figure 2 around here

After estimating the network structure, researchers often use statistics such as the degree

of a node (i.e., number of important connections a particular node has) as a measure of the

importance of the node in the network. In the above example, the pair-wise model estimates

a degree of 2 for both the adjacent nodes, as compared to its true degree of 1. Thus, the

use of this network structure can lead to misleading inferences. An immediate solution to

this problem is to estimate the VAR model simultaneously with all firms in the system.

However, such an approach is not feasible with standard techniques due to data limitations.

For example, if we have 100 large institutions in the system, then a VAR(1) model needs

to estimate 10,000 (100 × 100) parameters! This is often impossible due to relatively fewer

samples and regime changes in the underlying system. Our proposed method overcomes this

problem of dimensionality and allows us to estimate the model structure in a very wide range

of situations.

While it is relatively straightforward to see the difference between a pair-wise and a

system-wide approach in the case of VAR model discussed above, even other models such as

MES and CoVaR face this challenge. For example, consider CoVaR. It measures the value-

at-risk of the entire financial system conditional on the value-at-risk of a given institution.

For firm i value-at-risk at a confidence level q represents the extent of losses that will not

be exceeded with a probability greater than q. CoVaR measures the probability that the

entire system is in distress (i.e., the return of the entire system is below some threshold)
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conditional of bank i hitting it VaR limit. A related measure, ∆CoV aR measures the

difference in CoVaR when the firm i is in its median state compared to the same firm being

in a distressful state. More formally:

P
(
Ri ≤ V aRi

q

)
= q

P
(
Rsystem ≤ CoV aR

system|Ri=V aRi
q

q | Ri = V aRi
q

)
= q

∆CoV aRsystem|i
q = CoV aR

system|Ri=V aRi
q

q − CoV aRsystem|Ri=V aRi
50%

q

As can be seen from the above discussion, CoVaR only conditions on the distress of one

financial institution at a time. Thus it misses out the effect of all other firm’s returns on the

system, and just like pairwise VaR it attributes all the indirect linkages as a direct linkage

between firm i and the system. For example, assume that JP Morgan Chase is the most

vital bank in the system in the sense that its distress leads to distress of the entire system

as well as a specific bank, Citi Bank. Even if Citi Bank, in our example, is systemically

unimportant, CoVaR is likely to pick it up as an important systemic bank. The underlying

issue is the same: CoVaR of Citi Bank does not consider the indirect effect of JP Morgan

Chase.

MES, defined as the expected return of firm i when the system is at its lower tail, provides

some improvement by conditioning on the system as a whole. However, it still computes a

pairwise measure. Formally, MES is defined as follows (we take negative of the expected

return so that the measure increases in systemic risk:

MES = −E(Ri|Rsystem <= Rsystem
q )

If firm j is the central node that affects both firm i and the system as a whole, then we will

find a significant relationship between firm i′s returns and the system as a whole in a model

that excludes firm j from it.
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Ideally, we want to compute the CoVAR and MES measures of an institution after con-

ditioning on the effect of all other firms in the system. For example, the notions of CoVaR

and MES can be generalized in a system-wide fashion by including the omitted firms in the

conditioning set as follows:

P
(
Rsystem ≤ CoV aRsystem|Ri

q | Ri = V aRi
q, R

j = V aRj
50%, R

k = V aRk
50%, . . .

)
= q

However, estimation of such measures will face similar statistical challenges due to over-

parameterization, which will require additional econometric considerations. For expositional

simplicity, we first discuss our modified VAR model and later return to a discussion of these

other measures of systemic risk.

3 Model and Method Description

To overcome the limitations presented above, we adopt an approach that has both sound

statistical and economic properties. At a very broad level, our statistical approach forces

weak relationships among institutions in the network to zero, allowing us to take a true

system-wide approach in estimating the model with limited data. In economic terms, this

approach is both sensible and useful for policy designs. As we discuss in detail later in the

paper, numerous studies have shown that financial institutions form trading or counter-party

relationships with only a handful of other institutions. Hence, the assumption of sparsity

that underlies our estimation is reasonable in our context. Second, when regulator have

limited resources, it is advantageous to focus on stronger connections in the network. Our

model allows us to do this.

We estimate the network connectivity among p institutions based on a p-dimensional

VAR(1) model of stock returns (after suitable transformation to reduce nonstationarity). The

transition matrix of this model reflects strengths of lead-lag relationships between returns
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of two institutions, conditional on the returns of all the other ones in the sample. To

ensure consistent estimation of our model with limited sample size (n � p), we assume

sparsity of the true underlying financial network, and motivate this assumption by pointing

to empirical evidence in section 3.1. The posited sparsity assumption implies that a large

number of elements in the transition matrix are zero, and hence fewer parameters need to

be estimated from the available data.

As we describe in section 3.2, such a sparse VAR model can be consistently estimated

using a penalized (Lasso) regression framework with small sample size. However, using the

sparse Lasso VAR estimates directly to assess network connectivity faces two issues - (i) this

estimate does not come with associated uncertainty measures (e.g. confidence intervals),

and (ii) sparsity of the network relies on a non-obvious choice of a tuning parameter. Our

proposed debiased Lasso VAR estimates mitigate both issues by allowing us to formally

test for Granger causality, and form a network with statistically significant relationships as

edges. The problem of selecting the critical tuning parameter then reduces to the familiar

specification of significance level in hypothesis testing. By varying the level of significance

(e.g., 1%, 5%, 10%), we can change the levels of sparsity in our estimated networks. Given

that we carry out simultaneously p2 tests (one for each debiased edge in the network), we need

to correct for the well known multiple comparisons problem. After doing so, the resulting

significant edges are used to construct the Granger causal network of interest, which is

summarized by using various standard network measures such as degree and closeness to

detect highly connected and thus systemically important institutions.
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3.1 VAR models and network Granger causality

We model the process of stock returns of p firms X t = (X t
1, . . . , X

t
p)
′ using a p-dimensional

Gaussian VAR(1) model.45

X t = AX t−1 + εt, εt ∼ N(0,Σε), Σε = diag
(
σ2

1, . . . , σ
2
p

)
(1)

In this model, the p× p transition matrix A can be viewed as a weighted, directed network

G = (V,E) amongst financial institutions, with the set of nodes V = {1, 2, . . . , p} and the set

of edges E = {(i, j) : Aij 6= 0}. The weight of an edge (i, j), denoted by |Aij| measures the

strength of connections. For ease of presentation, we work with the undirected, unweighted

skeleton of the network G, denoted by S(G), where there is an edge i−j between institutions

i and j if max{|Aij|, |Aji|} 6= 0.

The VAR model allows one to generalize pairwise Granger causality towards Granger’s

original definition of causality (Granger, 1969, 1980). A series X1 Granger-causes another

series X2 if

σ2(X t+1
2 |I(t)) < σ2(X t

2|I(t)− IX1(t)),

where σ2(A|B) denotes the variance of the prediction error, when predicting A using the

best linear predictor constructed from information set B, and I(t) captures all available

information in the universe up to time t. For pairwise Granger causality analysis, the

information set I(t) is restricted to the information in the two series X1 and X2 up to time

t. A joint VAR model allows one to expand the set I(t) to include information contained

in all p series X1, X2, . . . , Xp. Conditioning on this larger information set is the central

theme of our system-wide approach, as we also emphasize in section 4 in the context of

4We chose the VAR order to be 1 for ease of exposition. Networks can be estimated by combining
information of transition matrices from different lags in a VAR(d) models (Basu et al., 2015).

5In the data analysis, we use residuals of a GARCH model fitted to the univariate series of returns. Other
suitable transformations can be applied to adjust for non-Gaussian heteroskedasticity in data. Our statistical
methodology is general and can be applied on other characteristics of the institutions; e.g., volatilities (after
log transformation), leverage ratios etc.
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contemporaneous dependence. To emphasize its importance in constructing the network

representation of the system, we refer to this notion as network Granger causality (Basu

et al., 2015). The entries of the VAR transition matrix A capture the network of Granger

causal relationships with respect to this larger information set.

The choice of the information set I(t) is an important consideration in multivariate

Granger causality analysis, well-known in the time series and econometrics literature. Failure

to include relevant information outside the two series under investigation often results in a

spurious Granger causal relationship among the observed series, which essentially captures

indirect effects coming via the unobserved omitted variables. Another view of using VAR

models to estimate network connectivity among stock returns of p financial institutions is also

related to the general theory of graphical models popular in statistics and machine learning

(Wainwright and Jordan, 2008), since the transition matrix A of a Gaussian VAR(1) model

with diagonal Σε determines the adjacency matrix of the Directed Acyclic Graph (DAG)

which characterizes the conditional independence relationships among firm characteristics in

their joint distribution (Eichler, 2012).

Sparsity of Financial Networks. We assume the network is sparse, i.e., the number

of edges present in the network (s := ||A||0 =
∑p

i,j=1 1[Aij 6= 0]) is very small compared

to the total number of possible edges p2. For example, in a network with 100 institutions,

we have 10,000 parameters in a first-order VAR model. We require the true number of

interconnections in a 100 institution network to be much smaller than 10,000. This is a

reasonable assumption for our application. First, each financial institution is unlikely to

form strong relationships with all others in the sample simply due to the costs involved in

starting and maintaining such relationships. This is especially true in information-sensitive

markets involving non-trivial search costs (e.g., see discussion in Gofman (2016)), where

institutions often rely on repeat transactions with a relatively smaller set of institutions.

Empirical evidence from inter-bank relationships provide strong support for this assertion.
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For example, Soramäki et al. (2007) analyze daily networks in the first quarter of 2004

using interbank payments transferred between commercial banks over the Fedwire. Based

on actual data they find few highly connected banks and the great majority of banks having

few counterparties. That the degree distribution (number of counterparties for each bank)

roughly follows the power law distribution with few core banks and several small banks is

reported for several interbank market across the world (e.g Bech and Atalay (2010), Boss

et al. (2004), Iori et al. (2008), Craig and Von Peter (2014), Blasques et al. (2015)). If

the underlying network structure is not very sparse but has a few strong and many weak

relationships, our model will be able to detect strong relationships forcing the weaker ones

to zero (Bühlmann and van de Geer, 2015; van de Geer and Stucky, 2016). Again, from an

economic viewpoint this is a reasonable property of our model since we are mainly interested

in strong connectivity relationships to begin with.

In the next section, we provide a short overview of the existing machinery for estimating

large VAR models and describe our method, which builds upon a bias-corrected Lasso pro-

cedure originally proposed in Javanmard and Montanari (2014) and extended in this paper

for time dependent data.

3.2 Estimating large VAR models

Historically, the most common method for estimating the transition matrix A is on an

equation-by-equation basis, by ordinary least squares (OLS) regression of X t
i on X t−1

1 , X t−1
2 ,

. . ., X t−1
p , for i = 1, . . . , p. However, the OLS estimate is ill-defined when the number of

predictors is larger than the number of observations i.e, p > n. A VAR(1) model with p

variables requires estimation of p2 free parameters, which in turn requires at least O(p2)

samples for meaningful estimation. Therefore, without imposing any additional restrictions

on the parameters, it is not possible to estimate such a VAR model.

Penalized VAR estimation with Lasso. Recent advances in high-dimensional statis-
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tics have established that it is possible to estimate a VAR model with relatively few samples,

if the underlying transition matrix is appropriately sparse. In the context of regression prob-

lems, several sparsity-inducing methods have been introduced, arguably the most popular

among them being the Least Absolute Shrinkage and Selection Operator (Lasso) (Tibshi-

rani, 1996). Recently Basu and Michailidis (2015) have established that the Lasso VAR

estimates are consistent in high-dimensional settings, i.e., assuming p grows with n, possibly

at a faster rate. More precisely, if the number of non-zero elements of the transition matrix

s� p2, then much fewer sample (than what is required for OLS estimation) is sufficient for

consistent estimation of A. An element of the estimated sparse transition matrix, Âi,j, can

then be used to denote the edge strength between nodes i and j. Barigozzi and Brownlees

(2013) proposed a similar Lasso based VAR estimation procedure for network estimation.

The equation-by-equation estimate of Lasso VAR is defined as

Âi: = argmin
β∈Rp

1

n
‖Y:i −Xβ‖2 + λi‖β‖1, i = 1, . . . , p

Here ‖β‖1 :=
∑p

j=1 |βj| is the `1-norm penalty, which encourages sparsity in the solution by

shrinking smaller coordinates to zero. Using Â to construct a sparse estimate of network

faces the following two issues. The first is the choice of tuning parameters. Lasso VAR

minimizes, for every i = 1, . . . , p, a residual sum of squared errors (RSS) plus λi times

the sum of
∑p

j=1 |Aij|, where λi is a tuning parameter controlling the degree of sparsity in

Âi:. Essentially, Lasso augments an OLS minimization with a penalty term that penalizes

non-zero coefficients, and higher values of λi encourage sparser estimates. Similar to OLS

estimates, Lasso penalized least squares estimates of VAR can be obtained by p separate

Lasso regressions and it entails selection of p tuning parameters λi’s. With limited sample

sizes, cross-validation and other data-driven strategies of selecting λi’s fail to provide robust

guidelines for such choices. The second issue is that Lasso estimates, unlike OLS, do not

come with an associated measure of uncertainty. The main reason is that the use of penalty
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introduces bias in the estimate, which is not easy to quantify in closed form. As a result,

developing central limit theorems and associated inference machinery (p-values, confidence

intervals) has been a challenge in the practice of Lasso.

Statistical Inference with debiased Lasso VAR. To address these two technical

issues, we build upon a recently proposed method of debiasing Lasso estimates (Javanmard

and Montanari, 2014). It provides a substantial correction to the bias of Lasso and in turn

allows assessing uncertainty of the estimated network edges. Also, in order to reduce the

degree of subjectivity in tuning parameter selection, this method uses a theory-driven choice

of λi’s obtained using the strategy of scaled Lasso (Sun and Zhang, 2012). In this work, we

extend this method to time dependent data settings.

We start by elaborating on the second point. The theoretical literature of Lasso suggests

that Lasso estimates are consistent for a choice of λi which scales with the noise standard

deviation σi, which is unknown in reality (Bühlmann and Van De Geer, 2011). The scaled

Lasso procedure (Sun and Zhang, 2012) suggests a work-around by minimizing a squared

error loss function penalized for both large |Aij| and σi, and provides an estimate σ̂i. De-

biased Lasso VAR starts by obtaining equation-by-equation Lasso estimates Âi:, obtained

by plugging-in σ̂i in the theory-driven choice of tuning parameters λi. In the next step,

we conduct a bias correction of Â using Ãi: = Âi: + 1
n
MX′(Y:i − XÂi:), where the matrix

M (see Appendix A for complete description) is a pseudo-inverse of the sample covariance

matrix 6. We show that the bias corrected estimates Ãi: have asymptotically zero mean,

finite variance and use the formula Pij = 2[1− Φ(
√
n|Ãij |

σ̂i[MΣ̂XM ′]jj
)] (Javanmard and Montanari,

2014) to calculate p-values for the hypothesis tests of itnerest H0 : Aij = 0 vs. HA : Aij 6= 0.

An estimate Â of the VAR transition matrix can be used to construct a weighted, directed

network. An edge is present from node j to node i if Aij is significant at a pre-specified

threshold α > 0.

6Such a bias correction is in the spirit of a single step of Newton-Raphson or Fisher scoring algorithms
in classical statistics, with suitable modifications to allow for lack of regularity in high-dimension
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The choice of the significance threshold α is important, since constructing the directed

network amounts to performing p(p− 1) hypothesis tests. For large p, this requires a correc-

tion for multiple testing to avoid the problem of high false positives. The standard Bonferroni

criterion for controlling the family-wise error rate (FWER) is the most conservative one, but

it suffers from low power. We use a less stringent criterion of muliple testing, proposed

in Benjamini and Hochberg (1995), to control the False Discovery Rate (FDR). FDR is the

expected proportion of falsely rejected hypotheses over the total number of rejected hypothe-

ses. Thus, a 20% false discovery rate would imply that, on average, 1 out of 5 selected edges

is falsely detected. The procedure was originally proposed for independent test statistics,

and its validity for test statistics with positive regression dependency was established in

Benjamini and Yekutieli (2001).

Network construction and Centrality with VAR estimates. The topology of a

weighted, directed network with edges significant at a level α (after correcting for multiple

testing), or its undirected, unweighted skeleton S(G), can be explored by standard visual-

ization software or by calculating network centrality measures. In Section 5, we have used

two centrality measures, degree and closeness, of S(G) to identify central institutions and

monitor the degree of connectedness in different components of the US financial sector (e.g.

banks, insurance companies and broker dealers). We provide more details on the centrality

measures in Section 5. However, before applying our model to the data, in the next section

we estimate our model on simulated data and contrast it with other measures of systemic

risk. This is an important exercise to gain insights on the performance of these measures

in stylized settings. Due to the limited number of systemic events, it is almost impossible

to empirically validate these measures. The next best alternative is to study the efficacy of

these measures on simulated data, which is presented next.
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4 Simulation Results

In this section, we conduct some simulation experiments to highlight the benefit of our

approach over existing measures. In Section 4.1, we focus on differences between pairwise

VAR and Lasso-VAR in estimating the network structure. In Section 4.2, we undertake

more extensive simulations to show that the limitations of pairwise approach apply more

broadly to other extant measures of systemic risk as well, including MES and CoVaR. The

key intuition is similar: these measures estimate the association between the system and

a firm, one firm at a time, which stops short of a true system-wide approach. Finally, in

Section 4.3, we change our data generating process from VAR to allow for contemporaneous

correlation structure, and argue that an appropriate statistical method for measuring partial

correlation is more suitable than extant pairwise approaches like MES and CoVaR. Thus,

our results are not specific to a given set of economic assumptions that result in a lead-lag

relationship in the returns of financial institutions. Rather, our model can be used to refine

a whole range of statistical estimation in this area.

4.1 Granger causality and Network Granger causality

Figure 3 around here

Figure 4 around here

In this section, we conduct a small numerical experiment to demonstrate the advantage

of network Granger causal estimates using debiased Lasso VAR (referred to as “LVAR”)

over pairwise Granger causal estimates with standard pairwise VAR models. We simulate

100 datasets, each of size n = 500, from a 15-dimensional Gaussian VAR(1) model (1) (i.e.,

p = 15). The transition matrix A has the following structure: Aj−1,j = Aj+1,j = 0.6, for

j = 2, 5, 8, 11, 14; Aii = 0.8 for i = 1, . . . , 5; and Aij = 0 otherwise. The noise variance is
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set to σ2 = 1. This model captures a directed network with five hubs of size 3 each, with

1 central node affecting 2 neighbors. Thus, in this hypothetical network, only 5 of the 15

firms are systemically important.

The average performances of LVAR and pairwise VAR estimates in recovering the true

network skeleton are displayed in Figures 3 and 4. The left Panel of Figure 3, shows the

skeleton of the true network, with 5 non-overlapping hubs. In the right panel, we plot

the “average” network estimated by Lasso VAR (BH correction used with a threshold 20%),

where the grayscale of each edge represents the proportion of times (out of 100 datasets) that

edge was significant. Similarly, the middle panel shows that “average” network estimated by

pairwise VAR (significance threshold set at 5%). The results in the midle panel clearly show

that the pairwise VAR model detects too-many connections compared to the true network.

In this model, the edges are significant either through direct connectivity or through indirect

effects of connectivity emanating from a common neighbor. For instance, the estimated

pairwise VAR networks select edges between firms 1 and 3, which share a common neighbor

2. Networks estimated using LVAR do not show any such patterns, and thus they are closer

to the true network.

Figure 4 illustrates that this pattern of selecting high false positive is stable across

datasets, and is not an artifact of a few simulated runs. The number of edges selected

by pairwise VAR (blue) and debiased Lasso VAR (red) on each of the 100 estimated net-

works are plotted. The figure clearly shows that pairwise VAR method selects at least 15

edges in all the datasets, while LVAR selects only 10−15 edges. This is expected since LVAR

takes into consideration the partial dependence between firms while pairwise VAR captures

the marginal dependence.

The above results demonstrate the potential limitation of pairwise approach in identifying

systemically important institutions. As shown in Figure 3, the pairwise VAR approach iden-

tifies all three firms 1, 2 and 3 as central, while in truth only firm 2 is central to the economy.
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Such misclassification of systemically important institutions can have crucial implications

for the detection of risk and a range of policies that depend on systemic risk.

4.2 Comparison with MES and CoVaR

In the next simulation experiment, we simulate firm returns from a Gaussian VAR(1) model,

where the transition matrix corresponds to the adjacency matrix of a network described in

Figure 5. To enrich our experiment we now add five firms in the network that are isolated:

i.e., not at all connected to the system. The network has p = 20 firms, of which {1, 2, 3, 4, 5}

are isolated, i.e., they are not affected by shocks on the other firms. There are 3 central/risky

firms in this universe {8, 13, 18}, each of which transmits shock to four other firms. Based

on n = 500 returns simulated from this model, we calculate MES, CoVaR and degrees of

different firms in pairwise and Lasso VAR networks. The results are reported in Figure 6.

The top panel shows that except the five isolated firms, all the firms are deemed as risky

in MES, CoVaR and pairwise VAR. Moreover, with a slight exception to MES, the true

central firms {8, 13, 18} are hard to detect among the 15 connected firms in this universe. In

contrast, Lasso VAR captures the true network structure and ranks the three central firms

as highly risky compared to the other 15 firms.

Figure 5 around here

Figure 6 around here

4.3 Contemporaneous Correlation Structure

In this section, we show that the importance of delineating direct vs. indirect associations

amongst firms is prominent even when the connection among firm returns is contempora-

neous instead of intertemporal (i.e., the lead-lag relationship). This exercise is also useful
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in stressing the point that our approach does not depend on whether one takes a strong

view on the informational efficiency of the markets or not. To demonstrate this, we generate

firm returns from a multivariate Gaussian distribution, where the partial correlation among

firms encode the conditional relationship described in the network 5. We simulate T = 500

returns from this distribution, and report the estimated MES, CoVaR and firm degrees in

pairwise VAR in Figure 7. We simulate data from a p = 20-dimensional Gaussian distri-

bution with correlated components, where the conditional independence among the nodes

follows the network structure in Figure 5. In particular, we construct a matrix Θ as follows:

for each j ∈ {8, 13, 18}, we set Θij = Θji = 0.5, where j ∈ {i − 2, i − 1, i + 1, i + 2}. For

every other pairs {i, j}, Θij = 0. To ensure the positive definiteness preserving the network

structure, the inverse covariance matrix is generated as Θ + (|λmin| + 0.2)I, where λmin is

the minimum eigenvalue of Θ. The inverse covariance matrix is contain information on the

partial correlations and is routinely used in Gaussian graphical modeling (see Appendix B

for more details).

Figure 7 around here

Since MES and ∆CoVaR measure contemporaneous association between each firm and

the system, these measures are highest for the central firms {8, 13, 18}, however the firms af-

fected by these three central firms are also close. Since there is no intertemporal dependence,

pairwise VAR does not detect any Granger causal relationship as expected. The same holds

for LVAR. However, we show that a bias corrected version of Graphical Lasso (Friedman

et al. (2008); Jankova et al. (2015)), a method for calculating partial correlation in high-

dimension, correctly detects the central firms as more risky than the other 15 firms. Similar

to the network Granger causality, partial correlation measures the correlation between each

pair of firm returns, conditioning on the returns of all the other firms under consideration.

The firm pairs (i, j) with strong partial correlation relationships can be recovered using node-
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wise regression, i.e., regressing Ri on the returns of all the other firms, and looking at the

coefficient of Rj (Meinshausen and Buhlmann, 2006). An alternative approach utilizes the

fact that the partial correlation structures among the components of a multivariate Gaussian

random variable X ∼ N(0,Σ) can be obtained from the inverse covariance matrix Θ = Σ−1.

Based on these connections, the graphical Lasso (Glasso) estimates Θ use a Lasso penalized

maximum likelihood method to estimate Θ:

Θ̂ := argmax
Θ�0

log det Θ− tr(SΘ)− λ
∑
i 6=j

|Θij|,

where S is the sample covariance matrix, λ is a tuning parameter controlling the degree of

sparsity and � 0 denotes that the function is maximized over non-negative definite matrices.

Both of these approaches are commonly used in the statistics literature to build partial

correlation networks from high-dimensional data sets. In recent work, Brownlees et al.

(2015) used Glasso based estimates to construct a network amongst firms based on their

realized volatilities. We use a bias corrected version of Graphical Lasso, recently proposed

in Jankova et al. (2015), which provides a measure of uncertainty of the edge weights. We

provide further details on the estimation exercise in Appendix B.

Overall, these simulation results establish the usefulness of our approach in estimating

the true network structure. We now proceed with the estimation exercise with actual data

on stock returns of large financial firms in the U.S.

5 Empirical Application

We estimate the LVAR model to detect the Network Ganger Causality structure on a subset

of the data set used by Billio et al. (2012).

24



5.1 Data Description and Summary Statistics

We use monthly returns data from January, 1990 to December, 2012 for three financial

sectors, namely banks (BA), primary broker/dealers (PB) and insurance companies (INS)

available at the University of Chicago’s Center for Research in Security Prices (CRSP) and

retrieved from Wharton Research Data Service (WRDS). We denote firms with Standard In-

dustrial Classification (SIC) from 6000 to 6199 as banks, from 6200 to 6299 as broker/dealers

and from 6300 to 6499 as insurance companies. We divide the data into 3-year rolling win-

dows, retaining only the institutions that have complete data in that window. To create our

final data set, we keep the top 25 institutions in terms of market capitalization in each sector

in every time window.

Our final sample covers 225 different institutions spanned over 23 years period. Figures 8

and 9 show the mean and standard deviation (in %) of monthly stock returns across different

sectors in each 3-year rolling window. As expected, the average returns are significantly lower

and the standard deviations significantly higher during the 2007-2009 period, compared to

any other period in our sample. Another period of significant volatility in the sample is the

Russian financial crisis in 1998. Also, looking across sectors, all three experienced stress

during the 2007-2009 crisis, whereas around 1998 it was predominantly the broker-dealers

(PB) who exhibit high volatility.

Figure 8 around here

Figure 9 around here

5.2 Network estimation and Measures of connectedness

In order to estimate our network, we consider the Generalized AutoRegressive Conditional

Heteroscedaticity (GARCH(1,1)) as our baseline model for returns of individual firms. This
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allows us to remove any effect of heteroskedasticity from contaminating our LVAR measure.

Since accurate estimation of Granger causal relationships relies crucially on the station-

arity of the underlying data generating process (Lütkepohl, 2005), raw returns with high

heteroskedasticity are not appropriate for constructing Granger causal networks. The ap-

proach of using GARCH fitted residuals was also adopted in Billio et al. (2012). Multivariate

GARCH models like Dynamic conditional correlation (DCC) (Engle, 2002) were not appli-

cable due to high-dimensionality in our data set with (n = 36 time points, p = 75 firms),

but are potential alternatives to univariate GARCH ones, if the sample size is sufficiently

large. We note that by denoting an institution’s return at time t as Ri,t, a GARCH(1,1)

specification implies the following.

Ri,t = µi + σi,tεi,t, εi,t ∼ N(0, 1)

σ2
i,t = α0 + α1ε

2
i,t−1 + β1σ

2
i,t−1 (2)

We estimate the GARCH(1,1) parameters µi, σi,t, α0, α1 and β1 for each of the 75

institutions in every time window. Then we fit our debiased Lasso VAR (LVAR) model to the

estimated Garch fitted returns, namely ε̂i,t =
Ri,t−µ̂i
σ̂i,t

in every window. Our LVAR network

thus defined has 75 nodes, each corresponding to a financial institution and unweighted

non-directional edges such that an edge between institution i and j denotes either that i

Granger-causes j, or j Granger-causes i or both, after a BH p-value correction at a 20%

threshold level of FDR in the estimated LVAR model.

5.3 Comparison of Pairwise and Lasso Penalized VARs

We estimate the model on a rolling basis every month with data from the previous 36-months.

Thus we obtain a network structure for every month in the sample. Similarly, following Billio

et al. (2012), we estimate pairwise VARs for the 75 largest firms in every time window as
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before and define unweighted non-directional edges such that an edge between institution i

and j denotes either that i Granger-causes j, or j Granger-causes i or both at the 5% level

of significance.

In Figure 10 we plot the graphs of networks estimated using the pairwaise VAR and

the LVAR models for two periods overlapping financial crises. The upper and lower panel

depict the networks estimated for windows October 1995 - September 1998 and August

2006 - July 2009, respectively. Both types of network plots show high connectivity during

crises. However, as expected, the pairwise VAR model estimates a far denser network. In

comparison, the LVAR network is sparse and identifies AIG and Goldman Sachs as key

central nodes during the 2007-09 period. The benefit of the LVAR model over traditional

techniques can be easily seen from these figures. First, it allows us to pin down highly

interconnected periods in a cleaner manner and second, it provides a stronger separation

between important institutions such as AIG and Goldman Sachs and the rest, compared to

the pair-wise model.

Figure 10 around here

Consistent with our simulation results, the pairwise network captures both direct and

indirect linkages between the two firms in the real data as well. This in turn results in

several false positives. Our refined measure, on the other hand, is able to separate out

weaker connections from stronger ones, and hence it provides a more meaningful measure.

Since there are limited systemic events during the sample period, it is hard to empirically

assess the validity of these models with any reasonable degree of precision. It is, therefore,

even more important to rely on statistically principled techniques for future applications of

network models. In the remainder of this section we discuss our results and findings in more

details to establish the usefulness of our measure in understanding system-wide connectivity.
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5.4 Time Series of Summary Statistics

In our first test, we study the evolution of system connectivity based on our measure. In order

to do so, we summarize the estimated networks using two primary measures of centrality

well known in the network literature, namely degree and closeness.

Degree of node i = deg(i) = number of edges adjacent to node i

Closeness of node i =
1∑

i 6=j
d(i, j)

where d(i, j) = shortest path length between node i and j, i.e., number of edges constituting

the shortest path between i and j. If there is no path between nodes i and j, then the

total number of nodes is used as the shortest path length. While average degree measures

the average number of direct neighbors, i.e., connectivity in the network, average closeness

measures the shortest number of steps in which a node can be accessed from another node.

Figure 11 and Figure 12 plot average degree and closeness, respectively of our estimated

network over 3-year rolling windows. These time series plots show that connectivity, mea-

sured either by count of neighbors or distance between nodes, increases before and during

systemically important events. In both figures, we mark a few key events of the last decade

at the time window when it is first included in the sample. In both figures we see two bigger

cycles, one starting around 1998 and another around 2008. The former coincides with the

Russian default and LTCM bankruptcy in late 1998 and the latter marks the financial crisis

of 2007-2009. In between the two, there is another prominent cycle of increased connectivity

starting around 2002 that coincides with the growth of mortgage-backed securities (e.g., see

the pattern in MBS growth over this time period in Ashcraft et al. (2010), Figure 3) and the

increased connectivity of different sectors of the market through holdings of these securities

as well as increased interlinkages through insurance contracts.

Figure 11 around here
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Figure 12 around here

The time-series results show that our network measure is sensible in detecting large

systemic events. To contrast our measure with pairwise network model, in Fig 13 we plot

the evolution of connectedness based on the two models. Note that it is not useful to directly

compare the number of connections over time based on the two models, since the pairwise

VAR has always significantly higher number of connections. A meaningful measure should

be based on deviation from historical levels of connections – disproportionate increase or

decrease in connectivity measures compared to historical numbers provides more meaningful

information on the buildup of systemic risk in the economy. Thus, we scale the degree

centrality of both network models in different rolling windows by the historical average of

degree centrality over all rolling windows spanning 1990-2012. Figure 13 provides the results.

Both models are able to detect the 2008-09 financial crisis, however, LVAR model does a

much better job around the Russian/LTCM default. It is comforting to see the sharp spike in

LVAR model-based connectivity in periods leading up to both the important events during

our sample period.

Figure 13 around here

It is clear that the key feature of our model is to separate out relatively stronger con-

nections from the weaker ones. Hence, a key benefit of our approach is cross-sectional in

nature, namely our model better identifies firms that are systemically more important than

the others in a stressful situation. We had shown this advantage with simulated data in Sec-

tion 4. Now, we identify the important institutions in real data using our model. In Figure

14 we show the list of important firms based on our connectivity measures, and Table 1 con-

tains firm names with ticker symbols. Since the estimated networks exhibit different levels

of overall sparsity in different time periods, raw degree centrality of a firm is not ideal to
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capture its relative importance in the system. So in each time period, we take the normalized

degree of firms, i.e., (degree - average node degree)/(standard deviation of node degrees), as

a measure of systemic importance of the firm in that time period. We list firms with highest

degree in networks estimated using 3 year historical data starting May, 2007 and then re-

estimating the network every two months. We see that AIG emerges as one of the highest

degree nodes as early as July, 2008. We also see the increasing connectivity of Goldman

Sachs from March, 2009 onwards. These estimates line up well with the anecdotal evidence

on the importance of these institutions, especially AIG, during the financial crisis period.

More importantly from a regulatory perspective, the separation between AIG and the second

most important institution in our network is stark. Figure 15 reproduces the figure based

on pair-wise VAR. In this model too, AIG and GS come up as important institutions, but

the separation between AIG and the next firm is much smaller than our model. Thus, when

we separate out all the indirect connections in the network, AIG emerges as a significantly

more important institution than what one would conclude based on a model that captures

the effect of both direct and indirect connections. Second, our model continues to identify

AIG as a relatively more important institution even in 2009-2010 period, compared to the

corresponding estimation based on pairwise VAR model. Again, the result shows that there

are non-trivial practical implications emanating from the estimation method employed.

Figure 14 around here

Figure 15 around here

Table 1 around here
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5.5 Results around the Lehman Brothers Failure Event

We exploit the failure of Lehman Brothers in September 2008 as a shock to the system, and

use this event to shed light on the usefulness of our network in detecting interconnected firms.

On September 10, 2008 Lehman Brothers puts itself up for sale, but does not find a buyer.

The U.S. government refuses to step in and ultimately the firm announced its bankruptcy

filing on the eve of September 15, 2008. There was considerable government intervention

immediately following its collapse. However, in the short window of time from September

10 – September 16, there was significant ambiguity about the bailout possibility. We expect

firms connected to Lehman to experience large negative returns during this period. That is

indeed the case based on our network estimation. Lehman has two direct connections in the

network – AIG and Cigna. As shown in Table 2, AIG experienced large negative returns of

-60.8% on September 15. CIGNA had a negative return of -2.9% on the day. Both these

firms continue to experience large negative returns till September 18, 2008, when the U.S.

government announced a rescue package for AIG. Extending the analysis to the neighbors

of Lehman’s neighbors, the Table also produces returns for this event window for firms

connected to AIG and CIGNA. They all experience large negative returns on September

15, 2008, with AIG’s neighbors experiencing generally more negative returns than CIGNA’s

neighbors. As this analysis illustrate, a useful feature of our model is that we can trace

the effect of a negative shock on a firm on the entire network by tracing its effects through

the direct linkages. Pairwise analysis doesn’t lend itself to such an experiment due to the

confounding indirect effects.

Table 2 around here
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5.6 Inter-sectoral Connectivity

Our model allows us to study both within and across sector connectivity. Even since great

depression, there has been a number of policy interventions in banking industry that are

primarily motivated by concerns about connections across banking, broker-dealer, and in-

surance sector. A prominent example is the imposition of the Glass-Stegall Act in 1933 that

prohibited commercial banks from engaging in investment banking activities, such as under-

writing of securities or investment in certain class of securities with their own money or their

client’s money. Some of the key provisions of the Act were repealed during our estimation

period through the enactment of Gramm-Leach-Bliely (GLB) Act of 1999. The GLB Act

removed barriers between the commercial banks, broker-dealers and insurance sector. Thus

we expect the inter-sectoral connectivity to increase around this period. While the Act itself

was finally passed in 1999, the real effect of this act was felt in the market starting from 1998

itself. In 1998, Citicorp, a commercial bank, merged with the insurance company Travelers

Group to form a conglomerate combining banking, securities and insurance services under

one large group. This merger was in violation of the original Glass-Stegall Act at the time,

but after the enactment of GLB Act a year later, it was given a legal status on a retro-

spective basis. For our network, this is an important event: by law banking, insurance, and

broker-dealer sectors are expected to show increased connectivity during this period.

We plot the evolution of inter-sector linkage between the insurance sector and the other

two sectors in Figure 16. The figure demonstrates that insurance sector became more con-

nected with both the broker-dealer and banking sector in 1998-1999. These results show

that our network topology is consistent with the intended consequence of the repeal of Glass-

Stegall Act that increased the connectivity across sectors. Overall our results are consistent

with broad changes in the markets and regulations.
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6 Conclusions

We propose a measure of network connectivity based on a system-wide approach. Unlike

extant measures that rely on pairwise approach, we estimate the connections across all firms

in a system-wide sense. Such an improvement is important for measures of risk that are

designed to detect system-wide effects. While we use measure based on stock returns to

illustrate the usefulness of our approach, our model can also be applied to other sensible

measures of firm characteristics such as volatility and value-at-risk.

Our simulation exercises highlight the usefulness of taking a systemic approach suggested

by our model – it separates out direct linkages from the indirect ones, which in turn allows

us to pin down the source of shock propagation in a system. Several policy proposals, such

as linking capital requirements to measures of systemic risk, crucially depend on an accurate

measure of this risk. Any misclassification, therefore, is likely to be costly to the economy.

Our measure minimizes the possibility of such misclassifications. Finally, we apply our

method to large financial institutions of the U.S. and show that our model is able to capture

both systemic events and systemically important institutions in a meaningful manner.

A Estimation of large VAR models

We discuss statistical issues for estimating VAR models using ordinary least squares (OLS)

when the sample size (n) is small compared to the number of time series (p), and describe

how Lasso based penalized estimation methods can be used to overcome them. We conclude

with a description of our multiple testing correction methods to construct networks based

on fitted VAR models.

In low-dimensional problems (n > p), the most common method for estimating VAR

models is ordinary least squares (OLS) regression of X t on X t−1 (Lütkepohl, 2005). Formally,

given n+ 1 observations {X0, X1, . . . , Xn} from the stationary VAR process (1), one forms
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autoregressive design


(Xn+1)′

...

(X1)′


︸ ︷︷ ︸

Y

=


(Xn)′

...

(X0)′


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X

A′ +


(εn+1)′

...

(ε1)′


︸ ︷︷ ︸

E

(3)

The OLS estimate of the VAR transition matrix A is then obtained by conducting p separate,

equation-by-equation OLS regressions to estimate the rows of A. Formally,

ÂOLSi: = argmin
β∈Rp

1

n
‖Y:i −Xβ‖2, for i = 1, . . . , p. (4)

In classical, low-dimensional asymptotics (p fixed, n→∞), ÂOLS is a consistent estimate of

A and
√
n(ÂOLS −A) is asymptotically normal with finite variance-covariance matrix. This

allows conducting formal hypothesis tests of Granger causality H0 : Aij = 0 vs. H1 : Aij 6= 0,

for all 1 ≤ i, j ≤ p, and construct a network of significant Granger causal estimates in a

system-wide fashion 7.

In a high-dimensional setting with n < p, equation-by-equation estimation (4) with OLS

is no longer possible. Even for p < n, the overall estimation error ‖ÂOLS − A‖2
F is of the

order of O(p2/n), which means one needs at least O(p2) samples for meaningful estimation.

Unfortunately, without further assumptions on the network structure, this is the minimal

requirement since we are indeed estimating p2 free parameters.

Under assumption of sparsity of the true network A (‖A‖0 :=
∑p

i,j=1 1[Aij 6= 0] = s,

s � n), classical subset selection procedures like best subset, forward, backward and step-

wise regression can potentially be used to replace OLS in (4). However, their statistical

properties in the n < p setting are unknown, and they are found to be unstable in empirical

7Note that this is different from the approach of Billio et al. (2012), who fit separate bivariate VAR
models for different pairs of firms (i, j), 1 ≤ i, j ≤ p.
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applications (Breiman, 1995). Another alternative to OLS in such situations is shrinkage

methods like ridge regression which also appears in the literature of Bayesian VAR. Ridge

regression shrinks weak coefficients towards zero to reduce the variance of Â and produce

meaningful estimates, but introduces bias in them. More importantly, interpretation of

ridge estimates is not obvious since it does not perform explicit variable selection. Also, due

to the added bias of ridge regression, inference machinery in high-dimension has not been

developed.

Our choice of Lasso (Least Absolute Selection and Shrinkage Operator) is motivated by

its ability to provide an attractive middle ground - it shrinks regression coefficients to reduce

variance and make consistent estimation possible in high-dimension, and at the same time

performs automatic variable selection by setting weaker coefficients exactly to zero. The

resulting estimates are sparse and easier to interpret. Similar to ridge, lasso estimates are

biased and statistical inference with them remained a challenging problem for a long time.

However, recent developments in high-dimensional statistics have provided means to correct

the bias and carry out formal tests of significance of Lasso coefficients in a regression problem.

We use Lasso, followed by a bias correction, to estimate our VAR model.

Penalized VAR estimation with Lasso: The equation-by-equation estimate of Lasso

VAR is defined as

Âi: = argmin
β∈Rp

1

n
‖Y:i −Xβ‖2 + λi‖β‖1, i = 1, . . . , p (5)

Here ‖β‖1 :=
∑p

j=1 |βj| is the `1-norm penalty, which encourages sparsity in the solution,

by shrinking smaller coordinates to zero. The tuning parameter λi controls the degree of

sparsity in the estimate, larger values of λi result in sparser Âi:.

Note that under the model (1) with diagonal Σε, equation-by-equation estimate of Lasso
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VAR indeed coincides with the penalized maximum likelihood estimate (MLE)

Â := argmin
A∈Rp×p

1

2n
‖Â− A‖2

F +

p∑
i=1

λj‖Ai:‖1 (6)

Since the equation-by-equation estimate is equivalent to p separate Lasso estimates, in our

discussion we focus on the generic Lasso estimation of a linear model Yn×1 = Xβ0
p×1 + εn×1,

given by

β̂ := argmin
β∈Rp

1

2n
‖Y −Xβ‖2 + λ‖β‖1. (7)

For estimating the ith row of A using Lasso, the errors in the above regression take the form

ε = [εni : . . . : ε1i ]
′, the true coefficients β0 = A′i:, and the penalty λi is chosen based on

σi = sd(ε1i ) (see next section). The design matrix X = [Xn : . . . : X0]′ is the same across

all p regressions. The facts that the rows of the design matrix are not i.i.d. and the error

vector ε is correlated with the design matrix X are specific to VAR estimation problems,

and violate the assumptions under which statistical properties of Lasso and debiased Lasso

have been studied in literature. We provide some new theoretical analysis to justify their

validity in the context of VAR estimation.

Choice of tuning parameters: In practice, choosing the “best” tuning parameter λ is

cumbersome and depends on the context of the problem. AIC, BIC or Cross-validation

(CV) guided choice of λ are commonly used, although they are known to perform poorly

in high-dimensional problems, where n � p. Since our sample size is small, we use a

theory-driven, plug-in estimate rather than cross-validation or data-driven strategies. The

theoretical choice of λ ∝ σ
√

log p/n (Bühlmann and Van De Geer, 2011) requires knowledge

of the error standard deviation σ =
√

Var(ε1), which is seldom available in practice. To

mitigate these problems, we use the scaled lasso algorithm in (Sun and Zhang, 2012) to

obtain an estimate of σ̂, and choose λ = Cσ̂
√

log p/n. Scaled Lasso solves the following
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convex optimization problem

(β̂, σ̂) ≡ argmin
β∈Rp,σ>0

1

2σn
‖Y −Xβ‖2 +

σ

2
+ λ̃

p∑
j=1

|βj|. (8)

with λ̃ = C
√

log p/n, for some constant C that does not depend on model parameters.

Scaled Lasso enjoys similar theoretical properties as Lasso in high-dimensional problems, but

does not require knowledge of error standard deviation σ in the choice of tuning parameter.

Rather, it provides as a by-product an estimate of σ which can be used for follow-up analyses

as in hypothesis testing and confidence interval construction for the regression coefficients

β̂j.

Consistency of Lasso VAR in high-dimension. Basu and Michailidis (2015) have

established that the Lasso VAR estimates are consistent in high-dimensional settings, i.e.,

assuming p grows with n, possibly at a faster rate. In particular, under a double asymptotic

framework where both p, n→∞, p = O(nα) for any α > 0, and the true sparsity s = o(n),

it follows from the results of Section 4 in Basu and Michailidis (2015) that ‖β̂ − β0‖2 =

OP (s log p/n) with a choice of λ ∝
√

log p/n and the underlying Gaussian VAR process is

stable (Lütkepohl, 2005). This rate of convergence demonstrates the remarkable advantage

of Lasso (also reported in several other works involving i.i.d. data): modulo a cost of

log(p2) = 2 log(p) for searching the locations of non-zero coordinates in A, one needs merely

O(s) samples to estimate the VAR coefficients, which is the same as if one a priori knew

the positions of the s non-zero edges and were only estimating the s free parameters of edge

strengths. So, for problems where s log p� p2, Lasso VAR achieves comparable estimation

accuracy as OLS with much smaller sample size.

Bias Correction of Lasso VAR estimates:

Despite the nice estimation accuracy of Lasso VARs as above, there are two limitations

of using it directly for network construction. First, the shrinkage effect of Lasso introduces a
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bias in estimating the edge strength, which can be potentially large in a finite-sample setting.

Second, the Lasso VAR estimates Âij do not come with any measure of uncertainty.

(Javanmard and Montanari, 2014) proposes a methodology to bias-correct the VAR esti-

mates so as to draw statistical inference. Bias correction of nonlinear estimates is a common

technique in classical statistics (Cordeiro and McCullagh, 1991; Cordeiro and Vasconcellos,

1997). For high-dimensional regression problems, Zhang and Zhang (2014) first proposed

a bias correction method for constructing confidence intervals of the individual regression

coefficients. In parallel lines of work, van de Geer et al. (2014); Javanmard and Montanari

(2014) also proposed bias corrected versions of Lasso for linear regression. For a more de-

tailed discussion of the intuition behind bias correction, we refer the readers to the excellent

review article Dezeure et al. (2015).

In order to correct the bias of Lasso VAR estimates, we first construct a matrix M , which

can be viewed as an approximate inverse of the sample covariance matrix Σ̂X = X′X/n.

Given a tuning parameter µ > 0 (chosen in the order of
√

log p/n), the jth row of the matrix

M , 1 ≤ j ≤ p, is obtained by solving the following convex program

minimize m′Σ̂m

subject to
∥∥∥Σ̂m− ej

∥∥∥
∞
≤ µ, (9)

where ej ∈ Rp is the vector with 1 at the jth position and zero at all the other coordinates.

If any one of the p convex programs is not feasible, the matrix M is set to identity 8.

With the new matrix M , for any given j ∈ {1, . . . , p}, the debiased Lasso estimate is

given by

β̃ = β̂ +
1

n
MX′(Y −Xβ̂), (10)

8Using arguments of Lemma 23 in Javanmard and Montanari (2014) together with Proposition 2.4 in
Basu and Michailidis (2015), we can show that Σ−1 = (V ar(X1)−1) is a solution to 9 (hence the constrained
optimization problem is feasible) with high probability.
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where β̂ is a solution of (7).

The intuition of debiasing is simple and can be explained in a low-dimensional context

assuming M is exactly Σ̂−1. Let δ = β̂ − β denote the bias of lasso estimate β̂. Then (10)

can be expressed as

β̃ = β0 + δ + (X′X)−1X′(−Xδ + ε)

= β0 + (X′X)−1X′ε,

which is identical to the ordinary least squares estimate. Since ε is zero mean Gaussian,

under suitable regularity assumption on X which ensures that the variance does not blow

up, the second term is asymptotically negligible, making the bias of β̃ orders of magnitude

smaller than the bias of β̂. Another way to motivate the debiasing procedure is to view

the bias correction step as an approximate Newton-Raphson iterate, since (1/n)X′(Y −Xβ̂)

and Σ̂ can be viewed as approximate gradient and Hessian of the least-squares loss function

evaluated at the current iterate β̂. The classic method of Fisher’s scoring uses a similar one-

step update to a consistent estimate to reduce its variance and make it efficient (Le Cam,

1956).

The estimation error of debiased Lasso, after proper rescaling, allows the decomposition

√
n
(
β̃ − β0

)
=

1√
n
MX′ε+ ∆, where ∆ = −

√
n
(
MΣ̂− I

)
(β̂ − β0). (11)

Suppose the tuning parameters λ and µ are chosen to be of the order
√

log p/n. In a double

asymptotic regime p, n → ∞ mentioned above, Proposition 4.1 in Basu and Michailidis

(2015) established that ‖β̂ − β0‖1 is OP (s
√

log p/n). This, together with (9), implies that

‖∆‖∞ is of the order OP (s log p/
√
n). Hence, the bias term ∆ is asymptotically negligible

when s log p = o(
√
n), and it is possible to conduct inference using only the asymptotic

distribution of the first term.
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Inference with debiased Lasso. We discuss construction of p-values for the hypothesis

H0 : βj = 0 vs. HA : βj 6= 0, for a fixed j ∈ {1, . . . , p}, under the double asymptotic regime

n, p→∞ where s
√

log p/n→ 0. Leveraging the asymptotic negligibility of the bias term in

(11), we use the method proposed in Javanmard and Montanari (2014) to construct p-values

for testing significance of the individual edges Aij. Formally, for every i, j ∈ {1, . . . , p}, the

p-value for testing

H0 : β0
j = 0 vs. HA : β0

j 6= 0

is given by

Pj = 2

[
1− Φ

( √
n|β̃j|

σ̂[MΣ̂XM ′]jj

)]
(12)

where Φ(.) is the standard normal cdf, and σ̂ is a consistent estimate of error standard

deviation σ obtained using scaled Lasso (8) with λ̃ := 10
√

2 log p/n, as suggested in the

theoretical analysis of Javanmard and Montanari (2014).

Network construction with VAR estimates: Using the estimates of p lasso problems

as row vectors, we construct our debiased Lasso VAR estimate Ã. This matrix can be used

to estimate the weighted, directed network described in section 3. An edge is present from

node j to node i if Aij is significant at a pre-specified threshold α > 0.

Choice of the significance threshold α is important, since constructing the directed net-

work amounts to performing p(p− 1) hypothesis tests. For large p, this requires a correction

for multiple testing to avoid the problem of high false positives. The standard Bonferroni

criterion for controlling the family-wise error rate (FWER) is the most conservative one, but

it suffers from low power. We use a less stringent criterion of multiple testing, proposed in

Benjamini and Hochberg (1995), to control the False Discovery Rate (FDR). False Discov-

ery Rate is the expected proportion of falsely rejected hypotheses over the total number of

rejected hypotheses. Thus, a 20% false discovery rate would imply that, on average, 1 out of

5 selected edges is falsely detected. The procedure was originally proposed for independent
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Algorithm 1: Network GC using Debiased Lasso VAR

Input: Data: {X0, . . . , Xn}, Xt ∈ Rp, upper bound on false discovery rates (FDR): α
X← [Xn−1 : . . . : X0]′

for i← 1 to p do
Y ← [Xn

i : . . . : X1
i ]

Estimate noise standard deviation σ̂i using scaled Lasso (8)

Set tuning parameter of Lasso λ← σ̂i
√

log p/n

Calculate Lasso VAR estimate Âi: using (7)

Calculate debiased Lasso VAR estimate Ãi: using (10)
for j ← 1 to p do

Calculate p-value Pij for testing H0 : Aij = 0 vs. HA : Aij 6= 0 using (12)
end

end
Adjust p-values Pij , for 1 ≤ i, j ≤ p, for multiple testing using Benjamini-Hochberg
procedure, controlling for FDR at α

Set Ãij ← 0, for all i, j with Pij ≥ α
Output: Estimated weighted adjacency matrix Ã

test statistics, and its validity for test statistics with positive regression dependency was

established in Benjamini and Yekutieli (2001).

The Benjamini-Hochberg (BH) procedure works as follows. Suppose we are testing m

null hypotheses H1, H2, . . . , Hm with p-values P1, . . . , pm. Given the sequence of ordered

p-values P(1) ≤ . . . ≤ P(m), the following twp-step procedure controls the FDR at a level

α > 0:

1. find the largest integer k ≥ 1 such that P(k) ≤ k
m
α;

2. reject all null hypotheses H(i), for i = 1, . . . , k.

The topology of a weighted, directed network with edges significant at a level α (after

correcting for multiple testing), or its undirected, unweighted skeleton S(G), can be explored

by standard visualization software or by calculating network centrality measures described

in section 5.

The complete algorithm for calculating weighted adjacency matrix Ã based on debiased

Lasso VAR is described in Algorithm 1.
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B Estimating Contemporaneous Dependence with de-

biased graphical Lasso

We assume the stock returns of p firms across n time points, after appropriate transformations

(log, GARCH filter etc.) to reduce nonstationarity, are stored in a n × p matrix X, where

Xij denotes the return of firm j at time point i. We center the columns of X to have zero

mean and unit variance.

Assuming the returns are independent across time, and the p-dimensional vector of re-

turns follow a N(0,Σ) distribution, returns of firms i and j are conditionally independent

given the rest of the firms if and only if their partial correlation is zero. Since Θ = Σ−1

contains partial covariances between firm returns, returns of firms i and j are partially un-

correlated if and only if Θij = 0. Hence, the set E = {(i, j)|Θij 6= 0} can be used as the set

of edges of a graph among the p firms. This procedure is also known as Gaussian graphical

modeling.

In classical low-dimensional setting (p fixed, n→∞), the maximum likelihood estimate

of Θ is given by S−1, where S := X ′X/n is the sample covariance matrix. In high-dimensional

setting (n � p), S is not invertible and the MLE is not uniquely defined. In such cases,

under sparsity assumption on Θ, the graphical Lasso (Glasso) estimate (Friedman et al.,

2008) Θ̂ is defined as the minimizer of penalized negative log likelihood

Θ̂ = argmin
Θ�0

tr(SΘ)− log det(Θ) + λ
∑
i 6=j

|Θij|,

where λ is a tuning parameter controlling the level of sparsity in Θ̂, and Θ � 0 indicates

that we minimize over the set of nonnegative definite matrices.

The Glasso estimate is known to be consistent for Θ in high-dimensional settings, as long

as Θ is sufficiently sparse (Ravikumar et al., 2011). However, just like Lasso, the Glasso
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estimate is also known to be biased, and formal statistical inference (confidence intervals,

hypothesis testing) with Θ̂ij is not possible without correcting the bias.

The debiased graphical Lasso (DGlasso), proposed recently in Jankova et al. (2015),

corrects the bias of Glasso and provides a method for formally testing presence or absence

of an edge between firms i and j (H0: Θij = 0 vs. HA: Θij 6= 0 ). Below we provide a brief

description of DGlasso and refer the readers to Jankova et al. (2015) for more details.

Since columns of X are scaled to have zero mean and unit variance, we set λ =
√

log p/n,

as suggested in Jankova et al. (2015). Starting with the Glasso estimate Θ̂ and the sample

covariance S, the debiased Glasso estimate is defined as

T̂ = vec(Θ̂)− Θ̂⊗ Θ̂vec(S − Θ̂),

where vec(A) = [A11, . . . , Ap1, . . . , A1p, . . . , App]
′ is a vector formed by stacking the columns

of a p×p matrix A, and A⊗B = ((AijB))1≤i,j≤p is the p2×p2 Kronecker product of matrices

A and B. Similar to the bias correction of Lasso described in Appendix A, the above bias

correction can also be viewed as an approximate Newton-Raphson step.

Under some regularity conditions on Θ, Jankova et al. (2015) established that the entries

of the debiased estimate T̂ have the following asymptotic distribution

√
n
(
T̂ij −Θij

)
/σ̂n

d→ N(0, 1), σ̂2
n := Θ̂2

ij + Θ̂iiΘ̂jj.

Leveraging this asymptotic distribution, we can formally test presence or absence of individ-

ual edges in the Gaussian graphical model

H0 : Θij = 0 vs. HA : Θij 6= 0

and calculate p-values using the formula 1 − Φ
(√

n|T̂ij|/σ̂n
)

, where Φ(.) is the cumulative
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distribution function of standard normal density.

The network of partial correlations among the returns of p firms can be constructed using

only statistically significant edges after correcting for multiple comparisons using Benjamini-

Hochberg procedure described in appendix A. Unlike the directed network constructed using

thetransition matrix of a VAR model, the network of contemporaneous relationships is undi-

rected since Θ is already a symmetric matrix. So we can work with the estimated network

directly and calculate centrality measures.

C Computing debiased Lasso and Glasso

The simulation and real data analyses in this paper using the statistical software R. We

calculated debiased Lasso using the R codes available on the webpage of the authors of

Javanmard and Montanari (2014) at http://web.stanford.edu/ montanar/sslasso/ with the

default choices of tuning parameters, and implemented the algorithm of Jankova et al. (2015)

for debiased graphical Lasso ourselves. We used the R function p.adjust() to implement the

Benjamini-Hochberg procedure for multiple testing corrections. For the empirical analysis,

univariate GARCH models were fitted using R package fGarch.
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Figure 1: A schematic representation of VAR(1) model with p = 3 firms A, B, C. There are
3 network Granger causal effects in the model: B → C, B → A, C → B. However, due to
indirect effect through B, there is additional pairwise Granger causal effect C → A.
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firms and forming a network with 5 hubs. In addition to
the true network edges, the pairwise GC method picks up
additional edges between each pair of non-central firms in
each hub. The shade of the edges are darker proportional to
the number of times they are estimated.
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Figure 3: A simulated network estimation (n = 500, p = 15) with pairwise VAR and de-
biased Lasso VAR (LVAR). The true network (left) has 5 hubs, each of size 3. Pairwise
VAR (middle) estimates marginal association and captures indirect effects, and hence the
estimated network (middle panel) has 5 complete cycles. Lasso VAR (right), on the other
hand, estimates conditional dependence and accurately identifies the structure of the 5 hubs,
including the central node and the neighbors. The grayscales of edges represents the pro-
portion of times an edge was detected by Lasso VAR and pairwise VAR in 100 simulated
datasets from the true network.
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Figure 4: Edge discovery in the simulated network estimation problem of Figure 3. The total
number of significant edges discovered by Lasso VAR and pairwise VAR in 100 simulated
datasets from the true network are plotted. Pairwise VAR (blue) selects at least 15 edges
in all instances, while debiased Lasso VAR (red) selects much fewer edges, between 10 and
15, consistently across different datasets. The number of edges in the true network is 10, as
shown in the left panel of Figure 3.
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Figure 5: True Network with 5 isolated firms {1, 2, 3, 4, 5}, three central firms {8, 13, 18}
each with 4 neighbors. The returns were simulated based on a Gaussian VAR(1) model with
a transition matrix A with the above network structure. In particular, we set Aii = 0.7 for
i = 1, . . . , 20. Also, for every j ∈ {8, 13, 18} and i ∈ {j − 2, j − 1, j + 1, j + 2}, we set

Aij = 0.6 + ηij, where ηij
i.i.d.∼ uniform(0, 0.05). For all other pairs {i, j}, we set Aij = 0.
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Figure 6: Boxplots of systemic risk measures based on 100 simulated datasets of size n = 500
generated from a VAR(1) model described in Figure 5. For the pairwise measures MES,
∆CoVaR and pairwise VAR, the first 5 isolated firms have the lowest systemic risk measure.
However, the systemic risk measures of the central nodes {8, 13, 18} are not significantly dif-
ferent from the peripheral nodes. In LVAR, the degrees of the central nodes are significantly
different from the rest, and hence identification of risky nodes is easier.
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Figure 7: Boxplots of systemic risk measures based on 100 simulated datasets of size T = 500
with only contemporaneous dependence among nodes. The data are generated from a Gaus-
sian graphical model with a true network structure of Figure 5, see Section 4.3 for more
details. We report the performance of three pairwise measures: MES, ∆CoVaR, pairwise
VAR, and a system-wide measure, viz., debiased graphical lasso. For the pairwise measures
MES, ∆CoVaR and pairwise VAR, the first 5 isolated firms have the lowest systemic risk
measure. However, the systemic risk measures of the central nodes {8, 13, 18} are not sig-
nificantly different from the peripheral nodes. In networks estimated by debiased graphical
lasso, the degrees of the central nodes are significantly different from the rest, and hence
identification of risky nodes is easier.
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Figure 8: Average monthly return of firms used in the empirical analysis of Section 5 over
3-year rolling windows spanning 1990− 2012. In each window, 25 largest firms (in terms of
market capitalization) from three sectors - Banks (BA), primary broker-dealers (PB), and
insurance firms (INS), are included.
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Figure 9: Standard deviation of monthly returns of firms used in the empirical analysis of
Section 5 over 3-year rolling windows spanning 1990−2012. In each window, 25 largest firms
(in terms of market capitalization) from three sectors - Banks (BA), primary broker-dealers
(PB), and insurance firms (INS), are included.
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Figure 10: Networks estimated by pairwise VAR and lasso VAR on the time horizons (a) Oct
1995 - September 1998, and (b) August 2006 - July 2009. During both crisis periods, networks
estimated by Lasso VAR have substantially fewer connections than the networks estimated
by pairwise VAR. During the 2007-2009 crisis, AIG, Bank of America and Goldman Sachs
emerge as the three highly connected firms in the three sectors - Insurance (INS), Banks
(BA) and primary Broker/Dealer(PB).
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Figure 11: Average degree of LVAR networks based on monthly returns of 75 largest firms,
estimated separately for 3-year rolling windows spanning 1990− 2012. Vertical dotted lines
indicate important systemic events. Average degree increases around systemic events, show-
ing higher connectivity among financial institutions.
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Figure 12: Average closeness of LVAR networks based on monthly returns of 75 largest firms,
estimated separately for 3-year rolling windows spanning 1990− 2012. Vertical dotted lines
indicate important systemic events. Average closeness increases around systemic events,
showing higher connectivity among financial institutions.
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Figure 13: Evolution of average degree of return networks, scaled by their historical average
(over 1990 − 2012), for LVAR and pairwise VAR. Around LTCM crisis and Russian effec-
tive default, connectivity of LVAR networks increased sharply compared to a pairwise VAR
network.

0.
5

1.
0

1.
5

2.
0

2.
5

            Average Degree  (Scaled by Historical Average over 1990−2012)

M
ay

'9
0

−A
pr

'9
3

O
ct

'9
0

−S
ep

'9
3

M
ar

'9
1

−F
eb

'9
4

Au
g'

91
−J

ul
'9

4
Ja

n'
92

−D
ec

'9
4

Ju
n'

92
−M

ay
'9

5
N

ov
'9

2
−O

ct
'9

5
A

pr
'9

3
−M

ar
'9

6
Se

p'
93

−A
ug

'9
6

Fe
b'

94
−J

an
'9

7
Ju

l'9
4

−J
un

'9
7

D
ec

'9
4

−N
ov

'9
7

M
ay

'9
5

−A
pr

'9
8

O
ct

'9
5

−S
ep

'9
8

M
ar

'9
6

−F
eb

'9
9

Au
g'

96
−J

ul
'9

9
Ja

n'
97

−D
ec

'9
9

Ju
n'

97
−M

ay
'0

0
N

ov
'9

7
−O

ct
'0

0
A

pr
'9

8
−M

ar
'0

1
Se

p'
98

−A
ug

'0
1

Fe
b'

99
−J

an
'0

2
Ju

l'9
9

−J
un

'0
2

D
ec

'9
9

−N
ov

'0
2

M
ay

'0
0

−A
pr

'0
3

O
ct

'0
0

−S
ep

'0
3

M
ar

'0
1

−F
eb

'0
4

Au
g'

01
−J

ul
'0

4
Ja

n'
02

−D
ec

'0
4

Ju
n'

02
−M

ay
'0

5
N

ov
'0

2
−O

ct
'0

5
A

pr
'0

3
−M

ar
'0

6
Se

p'
03

−A
ug

'0
6

Fe
b'

04
−J

an
'0

7
Ju

l'0
4

−J
un

'0
7

D
ec

'0
4

−N
ov

'0
7

M
ay

'0
5

−A
pr

'0
8

O
ct

'0
5

−S
ep

'0
8

M
ar

'0
6

−F
eb

'0
9

Au
g'

06
−J

ul
'0

9
Ja

n'
07

−D
ec

'0
9

Ju
n'

07
−M

ay
'1

0
N

ov
'0

7
−O

ct
'1

0
A

pr
'0

8
−M

ar
'1

1
Se

p'
08

−A
ug

'1
1

Fe
b'

09
−J

an
'1

2
Ju

l'0
9

−J
un

'1
2

D
ec

'0
9

−N
ov

'1
2

 Thai baht D
evaluation

 Russian e�ective default

 LTCM 

 Dot com bubble

 Bear Stearns

 Lehman Brothers LVAR
PWVAR

Figure 14: Firms with highest number of connections in LVAR networks, estimated using 3
years of monthly returns. The horizontal axis plots the last month of each window, and the
vertical axis displays the degree of a firm, standardized by the mean and standard deviation
of degrees of all the firms in the network.
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Figure 15: Firms with highest number of connections in pairwise VAR networks, estimated
using 3 years of monthly returns. The horizontal axis plots the last month of each window,
and the vertical axis displays the degree of a firm, standardized by the mean and standard
deviation of degrees of all the firms in the network.
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Figure 16: Comparison of within- and between- sectoral connectivities for the Insurance
sector in estimated LVAR networks. The lines plot, for each of the three sectors, the total
number of connections (edges) with firms in other sectors, as a ratio of the number of edges
among firms within the sector.

0
20

40
60

INS−INS, INS−others

N
o.

 o
f E

dg
es

M
ay
'9
0−
Ap

r'9
3

O
ct
'9
0−
Se

p'
93

M
ar
'9
1−

Fe
b'

94
Au

g'
91
−J

ul
'9

4
Ja
n'
92
−D

ec
'9
4

Ju
n'
92
−M

ay
'9

5
N

ov
'9
2−
O
ct
'9
5

Ap
r'9
3−
M
ar
'9
6

Se
p'
93
−A

ug
'9

6
Fe
b'
94
−J

an
'9

7
Ju
l'9
4−

Ju
n'

97
D
ec
'9
4−
N

ov
'9

7
M

ay
'9
5−
Ap

r'9
8

O
ct
'9
5−
Se

p'
98

M
ar
'9
6−

Fe
b'

99
Au

g'
96
−J

ul
'9

9
Ja
n'
97
−D

ec
'9
9

Ju
n'
97
−M

ay
'0

0
N

ov
'9
7−
O
ct
'0
0

Ap
r'9
8−
M
ar
'0
1

Se
p'
98
−A

ug
'0
1

Fe
b'
99
−J

an
'0

2
Ju
l'9
9−

Ju
n'

02
D
ec
'9
9−
N

ov
'0

2
M

ay
'0
0−
Ap

r'0
3

O
ct
'0
0−
Se

p'
03

M
ar
'0
1−

Fe
b'

04
Au

g'
01
−J

ul
'0

4
Ja
n'
02
−D

ec
'0
4

Ju
n'
02
−M

ay
'0

5
N

ov
'0
2−
O
ct
'0
5

Ap
r'0
3−
M
ar
'0
6

Se
p'
03
−A

ug
'0

6
Fe
b'
04
−J

an
'0

7
Ju
l'0
4−

Ju
n'

07
D
ec
'0
4−
N

ov
'0

7
M

ay
'0
5−
Ap

r'0
8

O
ct
'0
5−
Se

p'
08

M
ar
'0
6−

Fe
b'

09
Au

g'
06
−J

ul
'0

9
Ja
n'
07
−D

ec
'0
9

Ju
n'
07
−M

ay
'1
0

N
ov
'0
7−
O
ct
'1
0

Ap
r'0
8−
M
ar
'1
1

Se
p'
08
−A

ug
'1
1

Fe
b'
09
−J
an
'1
2

Ju
l'0
9−

Ju
n'
12

D
ec
'0
9−
N

ov
'1
2

INS−INS
INS−OTHERS

60



Table 1: Firm Names, Sectors and Ticker Symbols

Ticker Sector Firm Name
AB PB ALLIANCEBERNSTEIN HOLDING L P
AIG INS AMERICAN INTERNATIONAL GROUP INC

AMTD PB T D AMERITRADE HOLDING CORP
AOC INS AON CORP
AXP BA AMERICAN EXPRESS CO
BAC BA BANK OF AMERICA CORP
BEN PB FRANKLIN RESOURCES INC
BK BA BANK OF NEW YORK MELLON CORP

BMO BA BANK MONTREAL QUE
BNS BA BANK OF NOVA SCOTIA
BX PB BLACKSTONE GROUP L P
CB INS CHUBB CORP

CFC BA COUNTRYWIDE FINANCIAL CORP
CI INS C I G N A CORP

CME PB C M E GROUP INC
COF BA CAPITAL ONE FINANCIAL CORP
FII PB FEDERATED INVESTORS INC PA

FRE BA FEDERAL HOME LOAN MORTGAGE CORP
GNW INS GENWORTH FINANCIAL INC

GS PB GOLDMAN SACHS GROUP INC
HIG INS HARTFORD FINANCIAL SVCS GRP INC
HUM INS HUMANA INC
IVZ PB INVESCO LTD
JNS PB JANUS CAP GROUP INC
LEH PB LEHMAN BROTHERS HOLDINGS INC
LM PB LEGG MASON INC
MBI INS M B I A INC
MS PB MORGAN STANLEY DEAN WITTER & CO

NCC BA NATIONAL CITY CORP
NDAQ PB NASDAQ O M X GROUP INC

STI BA SUNTRUST BANKS INC
TD BA TORONTO DOMINION BANK ONT

TROW PB T ROWE PRICE GROUP INC
UNH INS UNITEDHEALTH GROUP INC
WB BA WACHOVIA CORP 2ND NEW

WDR PB WADDELL & REED FINANCIAL INC
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Table 2: Lehman Brothers Failure Event

Lehman Brothers Neighbors

AIG CIGNA S&P500 Return
9/10/2008 -4.7% 1.4% 0.6%
9/11/2008 0.3% 1.9% 1.4%
9/12/2008 -30.8% 0.0% 0.2%
9/15/2008 -60.8% -2.9% -4.6%
9/16/2008 -21.2% -3.9% 1.7%
9/17/2008 -45.3% -6.2% -4.7%

Panel A: Returns of Most Connected AIG neighbors

Invesco
Ltd

Suntrust
Banks

Morgan
Stanley

Bank of
New York

Citi

9/10/2008 1.7% -4.9% -3.7% 1.5% -1.1%
9/11/2008 1.9% 1.5% -0.5% 3.4% -0.4%
9/12/2008 1.0% 3.0% -3.8% 0.4% -3.5%
9/15/2008 -6.6% -3.0% -13.5% -8.5% -15.1%
9/16/2008 4.4% 6.7% -10.8% 3.2% 3.3%
9/17/2008 -5.9% -2.7% -24.2% -12.3% -10.9%

Panel B: Returns of Most Connected CIGNA neighbors

Bank of
New York

Regions
Financial Corp

Chubb
Corp

Ace Ltd
New

9/10/2008 1.5% -2.7% 2.0% -0.5%
9/11/2008 3.4% -1.1% 0.3% 0.3%
9/12/2008 0.4% 5.1% 0.4% 0.8%
9/15/2008 -8.5% -4.0% -2.1% 1.2%
9/16/2008 3.2% 5.6% 13.5% 8.5%
9/17/2008 -12.3% -7.4% -5.0% -3.0%
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