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Abstract

Existing methods for estimating nonlinear dynamic models are either too computa-

tionally complex to be of practical use, or rely on local approximations which often fail

to adequately capture the nonlinear features of interest. I develop a new method, the

discretization filter, for approximating the likelihood of nonlinear, non-Gaussian state

space models. I apply results from the statistics literature on uniformly ergodic Markov

chains to establish that the implied maximum likelihood estimator is strongly consistent,

asymptotically normal, and asymptotically efficient. Through simulations I show that

the discretization filter is orders of magnitude faster than alternative nonlinear tech-

niques for the same level of approximation error and I provide practical guidelines for

applied researchers. I apply my approach to estimate two models at the intersection of

macroeconomics and finance: the Wu and Xia (2016) shadow rate term structure model,

and the Gabaix (2012) asset pricing model of variable rare disasters. I provide the first

estimates of the Gabaix model and show that the estimated model fails to identify the

Great Recession as a disaster episode, suggesting the need to consider heterogeneity in

the nature of disasters. My estimates of the Wu and Xia shadow rate indicate that

unconventional monetary policy was more effective than previously thought.
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1 Introduction

Economists increasingly use nonlinear methods to confront their theories with data. The

switch from linear to nonlinear methods is driven, in part, by increased computing power,

but also by a desire to understand economic phenomena that cannot easily be captured

by linear models. Examples include models which incorporate the zero lower bound on

interest rates (ZLB), stochastic volatility, time-varying risk premia, Poisson jumps, credit

constraints, borrowing constraints, non-convex adjustment costs, Markov-switching dynam-

ics, and default.

Existing methods for estimating nonlinear dynamic models are either too computation-

ally complex to be of practical use, or rely on local approximations which fail to adequately

capture the nonlinear features of interest. In this paper, I develop a new method, the dis-

cretization filter, for approximating the likelihood of nonlinear, non-Gaussian state space

models.

The major difficulty that arises when studying nonlinear state space models is that the

likelihood cannot be evaluated recursively as it can in linear models with the Kalman filter.

The discretization filter solves this problem by constructing a discrete-valued Markov chain

that approximates the dynamics of the state variables. The dynamics of the system are

summarized by a transition matrix as opposed to an infinite dimensional transition kernel.

When there are finitely many states, the likelihood can once again be evaluated re-

cursively with an algorithm analogous to the Kalman filter. This computation involves a

sequence of matrix multiplications which is fast and simple to implement. The discretiza-

tion filter generates an approximation to the likelihood of any nonlinear, non-Gaussian state

space model that can be used to estimate the model’s parameters using classical or Bayesian

methods.

I apply results from the statistics literature on uniformly ergodic Markov chains to estab-

lish that the implied maximum likelihood estimator is strongly consistent, asymptotically

normal, and asymptotically efficient. I demonstrate through simulations that the discretiza-

tion filter is orders of magnitude faster than alternative nonlinear techniques for the same

level of approximation error and I provide practical guidelines for applied researchers. It is

my hope that the method’s simplicity will make the quantitative study of nonlinear models

easier for and more accessible to applied researchers.

I apply my approach to estimate two models at the intersection of macroeconomics and

finance. The first is the Gabaix (2012) asset pricing model of variable rare disasters. The

second is the Wu and Xia (2016) shadow rate term structure model. Both models are

inherently nonlinear and neither can be consistently estimated with linear methods.

Gabaix (2012) develops a model of asset pricing which posits that the time-varying
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probability and severity of rare disasters explain why risk premia are large, volatile and

time-varying. I provide the first quantitative estimates of the Gabaix model using data

on equities and government bonds to identify the parameters and construct a measure of

disaster risk for the U.S. economy. There have been several proposed explanations for

phenomena such as the equity premium puzzle, the excess volatility puzzle, and the riskfree

rate puzzle. Most existing research on this topic calibrates a model and evaluates its ability

to match a few select moments of the data. In contrast, the discretization filter allows

researchers to formally estimate a series of models and evaluate their relative abilities to

explain the data using model comparison statistics, thus facilitating model selection.

By using a likelihood-based method for estimation, I am able to construct estimates

of the hidden states relating to real and nominal risk, which allow me to study additional

implications of the model not captured by calibration or moment-matching procedures. In

particular, I use these estimates to construct time series for the probability of a disaster,

the conditional volatility of inflation, and the expected jump in inflation in the event of a

disaster for the U.S. economy. I show that the model fails to identify the Great Recession

as a disaster episode, assigning less than a 5% probability to a disaster having occurred

between December of 2007 and June of 2009. This is because the model requires a positive

jump in inflation in the event of disaster to match an upward sloping nominal yield curve.

The model is unable to match the fact that the U.S. experienced low inflation and even

deflation during the Great Recession in conjunction with an upward sloping nominal yield

curve. This suggests that it is important to consider heterogeneity in the nature of disasters

to capture the patterns of the U.S. data.

Wu and Xia (2016) develop a tractable approximation to a shadow rate term structure

model. Their model provides a description of yield curve dynamics when the economy is

near the zero lower bound on interest rates and provides a way of summarizing the effects

of unconventional monetary policy. I show that when the model is estimated using the

discretization filter, the estimates of the shadow rate are substantially lower over the zero

lower bound period than those provided in their paper. This has important implications for

policy makers who use this series as an input to their decision making process. It implies,

for example, that their estimates understate the effectiveness of unconventional monetary

policy.

The paper is organized as follows. Section 2 reviews related literature. Section 3 explains

the discretization filter. Section 4 establishes the strong consistency, asymptotic normality,

and asymptotic efficiency of the approximate maximum likelihood estimator implied by

the discretization filter. Section 5 provides practical implementation advice for applied

researchers. Section 6 provides Monte Carlo comparisons with existing methods in the

case of a linear measurement error model and a stochastic volatility model. In section 7,
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I estimate the Gabaix (2012) model of variable rare disasters and illustrate a couple of its

shortcomings in explaining U.S. asset pricing data. Section 8 re-examines the Wu and Xia

(2016) shadow rate term structure model and constructs an updated version of their shadow

rate series. Section 9 concludes.

2 Related Literature

This paper is related to the literatures on the discretization of stochastic processes, filtering

algorithms for nonlinear state space models, and the statistical properties of maximum

likelihood estimators for state space models.

Tauchen (1986) proposed the first method for discretizing stochastic processes with an

application to first-order vector autoregressive (VAR) models. Tauchen and Hussey (1991)

develop an extension of this method using quadrature formulas, but both of these methods

fail to accurately approximate the dynamics of persistent processes (see Kopecky and Suen

(2010)). Rouwenhorst (1995) develops a method which accurately approximates highly

persistent processes. However, this method is limited to univariate first order Gaussian

autoregressive (AR) models. Gospodinov and Lkhagvasuren (2014) develop a method that

builds on the Rouwenhorst method to better approximate persistent Gaussian VARs by

matching low order conditional moments. Most recently, Farmer and Toda (2016) develop

a method for approximating general nonlinear, non-Gaussian first order Markov processes

by matching conditional moments using maximum entropy.

A special case of the filtering algorithm proposed in this paper was first considered

in Bucy (1969) and Bucy and Senne (1971), now referred to as the “point-mass filter.”

However, these papers and subsequent refinements only consider one specific method of

discretizing the state process. Furthermore, none of these papers consider the asymptotic

properties of estimators resulting from these filtering approximations. A comprehensive

summary of filtering methods for state space models, including the point-mass filter, can

be found in Chen (2003).

The theoretical results and proof techniques in this paper are most directly related to

the work of Douc et al. (2004) and Douc et al. (2011). Douc et al. (2004) establish the

consistency and asymptotic normality of the maximum likelihood estimator in autoregres-

sive models with a hidden Markov regime that has a compact support. Douc et al. (2011)

extend the consistency result to a setting with unbounded support. These papers build on

previous work which establish asymptotic properties of the maximum likelihood estimator

in several simpler state space models, Baum and Petrie (1966), Leroux (1992), Bickel and

Ritov (1996), Bickel et al. (1998), Bakry et al. (1997), and Jensen and Petersen (1999).
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3 The Discretization Filter

In this section I introduce the notation used in the remainder of the paper and provide a

brief overview of nonlinear state space models. I then explain how the state dynamics of

any nonlinear state space model can be approximated by a discrete-state Markov chain. I

show how this new state space system can be used to construct an approximation to the

maximum likelihood estimator for the parameters and filtering distributions of the original

model.

3.1 The Setting

In what follows I restrict attention to the analysis of Hidden Markov Models (HMMs). A

HMM is a special type of nonlinear state space model where the observables in any given

time period are a function only of the state variables in that time period. However, the

results can be generalized to the case when the observation equation additionally depends

on some finite number of lags of the observables. Much of the exposition and notation

follows Douc et al. (2004).

Let Xt denote the vector of hidden state variables of the state space system at time t. I

assume that {Xt}∞t=0 is a time-homogeneous, first-order1, stationary Markov chain and lies

in a separable, compact set X ,2 equipped with a metrizable topology and associated Borel

σ-field B (X ). Let Pθ (x,A), where x ∈ X and A ∈ B (X ), be the transition kernel of the

Markov chain. I further assume that for all θ ∈ Θ and x ∈ X , each conditonal probability

measure Pθ (x, ·) has a density qθ (· |x) with respect to a common finite dominating measure

µ on X .3

I assume that the observable sequence {Yt}∞t=1 takes values in a set Y that is separable

and metrizable by a complete metric. I assume that for t ≥ 1, Yt is conditionally independent

of {Ys}t−1
s=1 and {Xs}t−1

s=1 given Xt. Note that this excludes models where the observation

at time t depends on its own lagged values. This is purely for expositional simplicity and

all of the results can be generalized to the case where Yt depends on some fixed, finite

number of lags of itself, {Yt−1, . . . , Yt−k}, although this does complicate the construction of

the transition matrices. I also assume that the observations conditional on any value of the

state Xt = x, x ∈ X , have a density gθ (· |x) with respect to a σ-finite measure ν on the

Borel σ-field B (Y).

1Assuming that Xt is a first-order Markov chain is not restrictive, because the state space can always
be redefined to include additional lags of Xt as new state variables. For example, if Xt follows an AR(2)
process, one can redefine the state vector to be (Xt, Xt−1)′ and recover the first-order Markov assumption.

2Compactness of X simplifies much of the notation and proofs, however many of the results can be
generalized to the noncompact case using techniques developped in Douc et al. (2011)

3For two measures µ and ν, µ is said to dominate ν if for all A, µ (A) = 0 implies ν (A) = 0.
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Define the joint process {Zt}∞t=0 ≡ {(Xt, Yt)}∞t=0 on Z ≡ X × Y which has transition

kernel Πθ given by

Πθ (z,A) =

∫
A
gθ
(
y′
∣∣x′ ) qθ (x′ |x) dx′dy′

for any z ≡ (x, y) ∈ Z and A ∈ B (Z).

I am interested in conducting estimation and inference on the finite dimensional param-

eter θ ∈ Θ by maximum likelihood. Θ is assumed to be a compact subset of Rp. Denote

the true parameter as θ∗.

A HMM is characterized by the following two equations:

Xt |Xt−1 ∼ qθ (Xt |Xt−1 ) (1)

Yt |Xt ∼ gθ (Yt |Xt ) (2)

Equation (1) is the state equation, and it characterizes the distribution of the latent state

next period conditional on the current state. Equation (2) is the observation, or measure-

ment equation, and it characterizes the distribution of the observables conditional on the

current state.

Let xt and yt denote particular realizations of the random variables Xt and Yt. Given a

sample {yt}Tt=1, the goal is to obtain estimates of the parameter vector θ and the unobserved

states {xt}Tt=1, which I will denote by θ̂T and
{
x̂t|t
}T
t=1

respectively.4 In order to do this,

one must obtain an expression for the likelihood of the data:

LT (θ, x0) ≡ pθ
(
Y T

1 |X0 = x0

)
(3)

where Y T
1 ≡ (Y1, . . . , YT ), and X0 refers to the initial condition of the state. For the remain-

der of the paper, the notation pθ without explicit introduction will refer to a general density

where the arguments and meaning will be clear from the context. Define the corresponding

log-likelihood as

`T (θ, x0) ≡ log pθ
(
Y T

1 |X0 = x0

)
(4)

In the subsequent section, I show how to approximate equation (1) by a discrete-valued

Markov chain.

3.2 Approximating the State Dynamics

The idea of discretization to alleviate computational problems in economics is not new. One

of the first instances of this is Tauchen (1986). He proposes a simple way of approximating

4The notation x̂t|t denotes the estimate of xt conditional only on information through time t. Sometimes
smoothed estimates of the unobserved state x̂t|T , incorporating all of the data, are of interest.
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any Gaussian VAR(1) with a first-order, discrete-valued Markov chain. He then shows that

this approximation does a good job of matching unconditional and conditional moments for

relatively coarse discretizations. Tauchen’s approximation, along with several more recent

approximations proposed in the literature,5 have been widely used to solve asset pricing

and DSGE models where the ability to approximate the solutions to integral equations is

of key importance.

In this paper I apply this idea of discretization to the estimation of nonlinear, non-

Gaussian state space models. More specifically, I construct a discrete-valued, first-order

Markov process {Xt,M}∞t=1, whose dynamics mimic those of the original continuous-valued

process {Xt}∞t=1. This allows me to summarize the dynamics of the unobserved state by a

finite-dimensional transition matrix Pθ,M .6 Note that this is fundamentally different from

forecasting the next period’s state by taking a local approximation around the current

estimate as is done in the extended Kalman filter. My approximation method is global yet

does not rely on simulation techniques.

Define a discrete set ofM points in X , XM ≡ {xm,M}Mm=1, associated with sets {Am,M}Mm=1

which partition X , and define a transition matrix Pθ,M such that the mm′-th element:

Pθ,M
(
m,m′

)
= Pθ

(
Xt,M = xm′,M |Xt−1,M = xm,M

)
(5)

corresponds to the probability of transitioning from point xm,M to point xm′,M between

time t−1 and t. The matrix Pθ,M is assumed to be the same for all t, and thus Xt,M follows

a first-order, time homogeneous, M -state Markov chain.

Note that each row of the matrix Pθ,M can be interpreted as a conditional probability

distribution. Specifically, row m correponds to the distribution of Xt,M conditional on

being at point xm,M at time t− 1. It is critical that these conditional distributions be good

approximations to the true conditional distributions Xt |Xt−1 = xm,M .

Define st,M to be the state of the approximate system at time t. In particular, I will say

that the system is in state st,M = m and let ζt,M = em when Xt,M = xm,M , where em is the

m-th column of the (M ×M) identity matrix. The system outlined above is characterized

by the equations:

ζt,M = P ′θ,Mζt−1,M + ṽt,M (6)

Yt |Xt,M ∼ gθ (Yt |Xt,M ) (7)

where ṽt,M = ζt,M − Eθ [ζt,M |ζt−1,M ] and P ′θ,M is the transpose of the matrix Pθ,M . Equa-

5See e.g. Tauchen and Hussey (1991), Rouwenhorst (1995), Adda and Cooper (2003), Flodén (2008),
Tanaka and Toda (2013), Gospodinov and Lkhagvasuren (2014), and Farmer and Toda (2016).

6This is similar to the idea proposed in Tauchen and Hussey (1991). However, there the primary focus
was on computing conditional expectations: here it is approximating the dynamics of a state space model.
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tions (6) and (7) are the state and observation equations of the new approximate model.

The sequence {Yt} has the same distribution, conditional on the state Xt,M , as the sequence

{Yt} generated by the original model. However, in the approximate model, the Xt,M have

been restricted to live on a discrete grid.

3.3 Evaluating the Likelihood

In the previous section, I showed how to approximate any HMM by replacing the state

equation, equation (1), with a discrete-state Markov chain, equation (6). In this section,

I apply the results of Hamilton (1989) to construct an approximation to the likelihood

function of the HMM. Hamilton (1989) shows that when the state dynamics of a HMM are

characterized by a discrete-state Markov chain, simple prediction and updating equations

exist that are analogous to the Kalman filter in the linear case. I use the notation developed

in Hamilton (1994). I review these results here and show how they can be used to develop

an approximation to the maximum likelihood estimator for θ.

Let ζ̂t,M |t = Eθ
[
ζt,M

∣∣Y t
1

]
be the econometrician’s best inference about the discretized

state ζt,M conditional on time t information. Inuitively, ζ̂t,M |t is an (M × 1) vector of

probabilities where each element represents the probability of being at a particular point

in the state space at time t conditional on observations up to time t. The forecast of the

approximate state today given the previous period’s information is given by:

ζ̂t,M |t−1 = Eθ
[
ζt,M

∣∣Y t−1
1

]
= P ′θ,M ζ̂t−1,M |t−1 (8)

Also define

ηt,M =


gθ (Yt |Xt = x1,M )

...

gθ (Yt |Xt = xm,M )

 (9)

The m-th element of ηt,M is the likelihood of having observed Yt conditional on being in

state m at time t, i.e. st,M = m.

Note that the marginal likelihood of Yt given Y t−1
1 is then simply given by:

pθ,M
(
Yt
∣∣Y t−1

1

)
= 1′

(
ηt,M � ζ̂t,M |t−1

)
(10)

where � is element by element multiplication of conformable matrices and 1 is an (M × 1)

vector of ones. The updated inference about the state at time t is

ζ̂t,M |t =
ηt,M � ζ̂t,M |t−1

1′
(
ηt,M � ζ̂t,M |t−1

) =
ηt,M � ζ̂t,M |t−1

pθ,M
(
Yt
∣∣Y t−1

1

) (11)
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By iterating these equations from period 1 to the sample size T , one can obtain estimates

of the filtering distributions
{
ζ̂t,M |t

}T
t=1

and the parameters θ̂T,M by maximizing the log

likelihood of the discretized system

`T,M (θ) =

T∑
t=1

log pθ,M
(
Yt
∣∣Y t−1

1

)
(12)

Alternatively, given a prior distribution for the paramter vector θ, Bayesian methods can

be used to sample from its posterior distribution.

Algorithm 1 summarizes the procedure for constructing the discrete approximation to

the likelihood and the filtering distributions. This can then be embedded in either a classical

or Bayesian procedure for performing likelihood-based estimation.

Algorithm 1: Discretization Filter

1 Approximate the State Dynamics: Construct a discrete grid {xm,M}Mm=1 and its

associated transition matrix Pθ,M using algorithm 2 in appendix B or any other

method appropriate for the process Xt being considered.

2 Initialization: Set the initial distribution of the state ζ̂0,m|0 = πXθ,M or any

arbitrary distribution. Set t 1.

3 Prediction: Construct the forecast of the time t state ζ̂t,M |t−1 = P ′θ,M ζ̂t,M |t−1 .

4 Updating 1: Evaluate the contemporaneous likelihood of having observed data yt

conditional on each possible value of the state, ηt,M , using equation (9). Compute

and save the marginal likelihood of observation yt given by equation (10).

5 Updating 2: Compute the time t filtered estimate of the state ζ̂t,M |t using (11). If

t < T , set t t+ 1 and go to step 3. Otherwise go to step 6.

6 Likelihood: Compute the approximate likelihood of the data, `T,M (θ), using

equation (12).

Note that the parameter estimates θ̂T,M and the log-likelihood function `T,M (θ) are

indexed by the number of discrete points M in addition to the sample size T to indicate

that the estimates will depend on exactly how the space is discretized. I have omitted the

explicit dependence of the likelihood function on the distribution of the initial state x0,M .

As part of the results in section 4, I will show why this initial condition is irrelevant for the

asymptotic properties of θ̂T,M .

Section 4 establishes the strong consistency, asymptotic normality, and asymptotic ef-

ficiency of the discretization filter approximation to the maximum likelihood estimator.

Those who are interested in applications of the discretization filter may wish to skip ahead

to section 5.
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4 Asymptotic Properties of the Maximum Likelihood Esti-

mator

In this section I establish strong consistency, asymptotic normality, and asymptotic effi-

ciency of my proposed estimator. I consider joint asymptotics in both the sample size T

and the number of discrete points M . I show that the accuracy of my approximation is

governed to first order by the proximity of the infinite history filtering distributions of the

approximate and true chains Xt,M

∣∣Y t
−∞ and Xt

∣∣Y t
−∞ . The distance between these dis-

tributions is proportional to h∗ (M), where h∗ (M) is related to the approximation error

between the approximate and true one-step-ahead conditional distributions of Xt. Strong

consistency simply requires that T → ∞ and M → ∞. Asymptotic normality and asymp-

totic efficiency further require that T × h∗ (M) → 0 as M → ∞ and T → ∞, i.e. that

M →∞ “fast enough.”

A key new theoretical contribution of my paper is to establish a rate of convergence of

the ergodic distribution of the approximate discrete chain to the true ergodic distribution.

This result represents a new contribution to the literature on discrete approximations of

Markov chains with continuous valued states. All proofs can be found in Appendix A.

4.1 Preliminaries and Assumptions

Define the notations Pθ, Eθ, and pθ to denote probabilities, expectations, and densities eval-

uated under the assumption that the initial state X0 is drawn from its ergodic distribution

πXθ , or analogously X0,M from πXθ,M in the discrete case.

Before continuing, it is useful to define the extension of the transition kernel Pθ,M to X .

For x ∈ X and A ∈ B (X ), let

Pθ,M (x,A) ≡
M∑
m=1

M∑
m′=1

Pθ,M
(
m,m′

)
1 {x ∈ Am,M}1

{
xm′,M ∈ A

}
Similarly, define the extension of the ergodic measure πXθ,M to X . For A ∈ B (X ), let

πXθ,M (A) ≡
M∑
m=1

πXθ,M (m)1 {xm,M ∈ A}

Lastly, I define the limit as M →∞ of these objects in the natural way:

Pθ,∞ (x,A) ≡ lim
M→∞

M∑
m=1

M∑
m′=1

Pθ,M
(
m,m′

)
1 {x ∈ Am,M}1

{
xm′,M ∈ A

}
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and

πXθ,∞ (A) ≡ lim
M→∞

M∑
m=1

πXθ,M (m)1 {xm,M ∈ A}

I will impose assumptions such that these limiting objects are well defined. For the remain-

der of the section, I will use both the versions of Pθ,M and πXθ,M , defined over X and XM ,

interchangeably and the meaning will be clear from the context.

I now list and discuss my basic assumptions. Assumptions that overlap with Douc et al.

(2004) are labeled with an A, and assumptions that are new to this paper are labeled with

a B. Assumptions labeled A and B are paired by number, e.g. (A1) and (B1). Each B

assumption can be thought of as an analog to the A assumption for the sequence of discrete

approximations Xt,M .

(A1) (a) 0 < σ− ≡ infθ∈Θ infx,x′∈X qθ (x′ |x) and σ+ ≡ supθ∈Θ supx,x′∈X qθ (x′ |x) <∞.

(b) For all y′ ∈ Y, 0 < infθ∈Θ

∫
X gθ (y′ |x) dx and supθ∈Θ

∫
X gθ (y′ |x) dx <∞.

(B1) Q−+ ≡ infθ∈Θ infM∈Z+ infm,m′,m′′,m′′′
Pθ,M (m,m′)
Pθ,M (m′′,m′′′) > 0

Assumption (A1)(a) implies that there is a positive probability that the state variable

can move from any part of the state space to any other part of the state space. This means

that the state space X of the Markov chain {Xt} is what’s known as 1-small, or petite. This

further implies that for all θ ∈ Θ, {Xt} has a unique invariant measure πXθ and is uniformly

ergodic (see Meyn and Tweedie (1993) for a proof).

Assumption (B1) guarantees that the discrete process {Xt,M} has a unique invariant

distribution πXθ,M and is uniformly ergodic for every value M < ∞. Additionally it is

needed so that the bound on the mixing rate of Xt,M is independent of M and θ. This

will be satisfied for any stochastic process satisfying (A1)(a) that is approximated using the

methods reviewed in section 3.2. Note that while all elements of the transition matrix Pθ,M

converge to 0 individually as M → ∞, the limits of the ratios of these elements are still

well defined.

(A2) For all θ ∈ Θ, the transition kernel Πθ is positive Harris recurrent and aperiodic with

invariant distribution πθ.

(B2) For all θ ∈ Θ, the transition kernel Πθ,∞ is positive Harris recurrent and aperiodic

with invariant distribution πθ,∞.

These assumptions guarantee that the original joint Markov process {Zt} and the lim-

iting approximating Markov chain {Zt,∞} are themselves uniformly ergodic. Note that

assumption (B2) is needed in addition to assumption (B1) to account for the limiting case

of the chain.
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Assumption (A2) implies that for any initial measure λ,

lim
t→∞

∥∥∥λΠ
(t)
θ − πθ

∥∥∥
TV

= 0 (13)

where ‖ · ‖TV is the total variation norm, defined for any two probability measures µ1 and

µ2 as

‖µ1 − µ2‖TV = sup
A
|µ1 (A)− µ2 (A)|

and Π
(t)
θ is the t-th iterate of the transition kernel Πθ. In words, for any initial measure of

the joint process {Zt}, the probability of being in any measurable set A ∈ B (Z) approaches

the ergodic probability of being in that set uniformly over all measurable sets A as t→∞.

This convergence is also independent of the initial measure λ. An analogous property holds

for the process {Zt,∞} by assumption (B2). Developing a bound on this rate of convergence

will be critical for the coming developments.

Lastly, assume that

(A3) b+ ≡ supθ∈Θ supy1,x gθ (y1 |x) <∞ and Eθ∗ (|log b− (y1)|) <∞, where

b− (y1) ≡ infθ∈Θ

∫
X gθ (y1 |x)µ (dx).

(B3) Eθ∗ (|log c− (y1)|) <∞, where

c− (y1) ≡ infθ∈Θ infM∈Z+ inf1≤m≤M
∑M

m′=1 Pθ,M (m,m′) gθ
(
y1

∣∣xm′,M )
Assumptions (A3) and (B3) are additional boundedness conditions involving the ob-

servation density gθ which will be necessary to establish the existence of certain limits.

Additional assumptions will be introduced and explained as needed.

4.2 Consistency

The proof of consistency can be broken down into two main parts. The first is to show that

the approximation to the likelihood function implied by the discretization filter, properly

normalized, converges to a well defined asymptotic criterion function `M (θ), for fixed M ,

as the sample size T → ∞. It is important that this convergence be uniform with respect

to the parameter θ ∈ Θ, the initial condition x0 ∈ XM , and the number of discrete points

M ∈ Z+. This step relies largely on the analysis in Douc et al. (2004), with the additional

requirement that the conditions be strengthened so that the convergence is uniform with

respect to the number of discrete points M used to construct the approximation. This will

be a consequence of the uniform ergodicity of the filtering distributions
{
Xt,M

∣∣Y t
1

}∞
M=1

,

which follows from the uniform ergodicity of the discrete Markov chains {Xt,M}∞M=1.

The second part, which is new to this paper, is to show that this approximate limiting

criterion function `M (θ), which is defined for any M , converges to the true limiting criterion
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function ` (θ) as the number of points used in the approximation M →∞. I will show that

this holds for any discretization method whose one-step-ahead conditional distributions

Xt,M |Xt−1,M = x converge in distribution to the one-step-ahead conditional distributions

of the original continuous process Xt |Xt−1 = x as M →∞.

Together, these two pieces will imply that T−1`T,M (θ) converges uniformly to ` (θ) as

T,M →∞. Under some additional regularity conditions, this will imply that the estimator

θ̂T,M converges to the true parameter θ∗ almost surely as T,M →∞.

Following Douc et al. (2004), I first establish that the distribution of Xt,M given a

history of observations Y s
r is itself a uniformly ergodic (inhomogeneous) Markov chain with

minorizing constant independent of the parameter θ ∈ Θ and the number of discrete points

M ∈ Z+. This is the analogous result to Lemma 1 in their paper. Note that a Markov

chain with transition kernel Pθ is said to satisfy a uniform minorization condition if there

exist a probability measure µQ, a positive integer n, and ε > 0 such that

P
(n)
θ (x,A) ≥ εµQ (A)

for all x ∈ X and A ∈ B (X ), where P
(n)
θ is the n-step ahead transition kernel of the Markov

chain.

Define Q−M ≡ infm,m′ Pθ,M (m,m′), Q+
M ≡ supm,m′ Pθ,M (m,m′), and Q−+ ≡

Q−M
Q+
M

for

M ∈ Z+. I now state the first lemma

Lemma 1. Assume (A1) and (B1). Let s, r ∈ Z, with r ≤ s, θ ∈ Θ, and M ∈ Z+. Under

Pθ, conditionally on Y s
r , {Xt,M}t≥r is an inhomogeneous Markov chain, and for all t > r

there exists a function µt,M (yst , A) such that:

(i) for any A ∈ B (XM ), yst 7→ µt,M (yst , A) is a Borel function;

(ii) for any yst , µt,M (yst , ·) is a probability measure on B (XM ). In addition, for all yst it

holds that µt,M (yst , ·) � µc,M (where µc,M is counting measure on XM ) and for all

Y s
r ,

inf
x∈XM

Pθ (Xt,M ∈ A |Xt−1,M = x,Y s
r ) ≥ Q−+µt,M (Y s

t , A)

The major difference between this Lemma and the one established in Douc et al. (2004)

is that for the following results, it will be crucial that the minorizing constant be the same

for all M , in order to establish uniform convergence over M ∈ Z+ of the approximate

likelihood function. Note that although the minorizing measure, µt,M (Y s
t , ·), does depend

on both the number of points, M , and the observations the chain is conditioned on, Y s
t , it

doesn’t affect the mixing rate. The previous lemma leads to the following corollary, using

standard results for uniformly minorized Markov chains (see e.g. Lindvall (1992) Sections

III.9-11).

13



Corollary 1. Assume (A1) and (B1). Let r, s ∈ Z with r ≤ s, θ ∈ Θ, and M ∈ Z+. Then

for all t ≥ r, all probability measures µ1 and µ2 on B (XM ), and all Y s
r ,∥∥∥∥∫

XM
Pθ (Xt,M ∈ · |Xr,M = x,Y s

r )µ1 (dx)−
∫
XM

Pθ (Xt,M ∈ · |Xr,M = x,Y s
r )µ2 (dx)

∥∥∥∥
TV

≤ ρt−r

where ρ ≡ 1−Q−+.

This corollary establishes that the Markov chain “uniformly forgets” its history at an

exponential rate. That is, no matter where the chain is started, it converges to its ergodic

distribution exponentially fast. The fact that the bound is deterministic will be important

for establishing strong consistency.

The next step consists of showing that the approximate likelihood function `T,M (θ, x0,M )

with an arbitrary initial condition x0,M stays within a deterministic bound of `T,M (θ) where

x0,M is drawn from its ergodic distribution.

Lemma 2. Assume (A1)-(A2) and (B1)-(B2). Then, for all x0,M ∈ XM and M ∈ Z+,

sup
θ∈Θ
|`T,M (θ, x0,M )− `T,M (θ)| ≤ 1/ (1− ρ)2 , Pθ∗-a.s.

Next I show that T−1`T,M (θ) can be approximated by the sample mean of a Pθ∗-
stationary ergodic sequence of bounded random variables which has a well defined limit.

To this end I first define the quantities:

∆t,r,M,x (θ) ≡ log pθ,M
(
Yt
∣∣Y t−1
−r , X−r,M = x

)
∆t,r,M (θ) ≡ log pθ,M

(
Yt
∣∣Y t−1
−r

)
=

∫
log pθ,M

(
Yt
∣∣Y t−1
−r , X−r,M = x

)
Pθ
(
dx−r,M

∣∣Y t−1
−r

)
Consider the thought experiment of fixing the number of points M , but letting T → ∞.

Define the limiting object as

`M (θ) ≡ Eθ∗ [∆0,∞,M (θ)]

I will show that such a limiting object is well-defined and that the sample analogue converges

to this limit almost-surely. In particular, I will show that {∆t,r,M}r≥0 and {∆t,r,M,x}r≥0

converge uniformly w.r.t. θ ∈ Θ Pθ∗-a.s. by showing they are uniform Cauchy sequences.

Lemma 3. Assume (A1)-(A3) and (B1)-(B3). Then for all t ≥ 1, r, r′ ≥ 0, and M ∈ Z+,
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Pθ∗-a.s.,

sup
θ∈Θ

sup
x,x′∈XM

∣∣∆t,r,M,x (θ)−∆t,r′,M,x′ (θ)
∣∣ ≤ ρt+min(r,r′)−1/ (1− ρ) , (14)

sup
θ∈Θ

sup
x∈XM

|∆t,r,M,x (θ)−∆t,r,M (θ)| ≤ ρt+r−1/ (1− ρ) , (15)

sup
θ∈Θ

sup
r≥0

sup
x∈XM

|∆t,r,M,x (θ)| ≤ max (|log b+| , |log c− (Yt)|) (16)

Equation (14) of Lemma 3 shows that {∆t,r,M,x}r≥0 is a uniform Cauchy sequence w.r.t.

θ ∈ Θ and thus converges Pθ∗-a.s. to a limit which does not depend on the initial value x.

I label this limit ∆t,∞,M and intuitively this can be thought of as log pθ,M
(
Yt
∣∣Y t−1
−∞

)
, the

marginal likelihood of an observation Yt given an infinite history of data.

Equation (16) of Lemma 3 shows that {∆t,r,M,x (θ)}r≥0 is uniformly bounded in L1
(
Pθ∗
)

and thus its limit ∆t,∞,M (θ) is also in L1
(
Pθ∗
)
. Furthermore, note that {∆t,∞,M (θ)} is a

Pθ∗-stationary ergodic process.

By setting r = 0 and letting r′ →∞ in equation (14), it follows that

sup
θ∈Θ
|∆t,0,M,x (θ)−∆t,∞,M (θ)| ≤ ρt−1/ (1− ρ)

Furthermore, setting r = 0 in equation (15) implies that

sup
θ∈Θ
|∆t,0,M,x (θ)−∆t,0,M (θ)| ≤ ρt−1/ (1− ρ)

By combining these two inequalities, applying the triangle inequality, and summing from 1

to T , I obtain Corollary 2.

Corollary 2. Assume (A1)-(A2) and (B1)-(B2). Then

T∑
t=1

sup
M∈Z+

sup
θ∈Θ
|∆t,0,M (θ)−∆t,∞,M (θ)| ≤ 2/ (1− ρ)2 , Pθ∗-a.s.

Corollary 2 shows that T−1`T,M (θ) can be approximated by the sample mean of a

stationary ergodic sequence, uniformly w.r.t. θ. Since ∆0,∞,M ∈ L1
(
Pθ∗
)
, the ergodic

theorem implies that T−1`T,M (θ)→ `M (θ) Pθ∗-a.s. and in L1
(
Pθ∗
)

as T →∞. Note that

this convergence is uniform over M ∈ Z+. This will be important when I start considering

joint asymptotics in T and M .

Define ` (θ) ≡ Eθ∗
[
log pθ

(
Y0

∣∣Y 0
−∞
)]

. The next step towards establishing consistency is

to show that `M (θ) → ` (θ) as M → ∞. The difference in these two quantities is related

to the difference in the approximate and true filtering distributions for infinite histories of
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observations, Xt,M

∣∣Y t
−∞ and Xt

∣∣Y t
−∞ .

I first prove that the ergodic distribution of the approximate discrete Markov chain

converges weakly to that of the original continuous Markov chain, i.e. that Xt,M
d−→ Xt as

M →∞. Proposition 1 establishes this convergence and provides a bound on the difference

between the two distributions as a function of the number of points M .

Define A as the collection of all continuity sets of Xt. I make one further assumption

regarding the approximation quality of the sequence of transition kernels {Pθ,M}.

(BT) For all A ∈ A, the sequence of approximations Pθ,M satisfy

sup
θ∈Θ

sup
x∈X
|Pθ,M (x,A)− Pθ (x,A)| = O (h (M)) (17)

where h (M) satisfies limM→∞ h (M) = 0.

This assumption allows the practitioner to use all of the discretization methods outlined

in 3.2 to construct Pθ,M . I have chosen to illustrate the case where the Farmer and Toda

(2016) method with trapezoidal quadrature rule is used. In this case, assumption (BT) is

satisfied with h (M) = M−2/d, where d is the dimension of the state space X .7

Proposition 1. Assume (A1)-(A3), (B1)-(B3), and (BT). Then it follows that for any

A ∈ A,

sup
θ∈Θ

∣∣πXθ,M (A)− πXθ (A)
∣∣ = o (h∗ (M))

where h∗ (M) satisfies limM→∞ h
∗ (M) = 0. If the transition kernel is approximated as

proposed in Farmer and Toda (2016) with a trapezoidal quadrature rule,

h∗ (M) = M−(2−δ)/d

for any δ > 0.

Note that even faster rates can be achieved through clever choice of the quadrature

formula and the assumptions one is willing to make about the smoothness of the likelihood

function.8 By combining Proposition 1 with uniform ergodicity of Xt,M and Xt, it can be

shown that this approximation error directly translates to probabilities computed under the

filtering distributions Xt,M

∣∣Y t
r and Xt

∣∣Y t
r .

7For a discussion of error convergence properties see Tanaka and Toda (2015).
8There has been substantial research in the field of Quasi Monte-Carlo integration methods, which seek

deterministic sequences to approximate high dimensional integrals which break the curse of dimensionality.
These are referred to as low discrepancy sequences and their accuracy for numerical integration has been
shown to depend only polynomially on the dimension d rather than exponentially. The use of these sequences
to approximate the dynamics of high dimensional state processes is a promising area of study which I
investigate in ongoing research. Further, there are no known convergence rates for the Tauchen or point
mass filter approximations to the transition kernel and I leave this for future work.
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Lemma 4. Assume (A1)-(A3), (B1)-(B3), and (BT). Then

sup
θ∈Θ
|`M (θ)− ` (θ)| = o (h∗ (M))

Combining Corollary 2, Lemma 2, and Lemma 4 leads to the following pointwise con-

vergence result

Corollary 3. Assume (A1)-(A3), (B1)-(B3), and (BT). Then for all sequences of initial

points {x0,M} and θ ∈ Θ,

lim
M,T→∞

T−1`T,M (θ, x0,M ) = ` (θ) , Pθ∗-a.s. and in L1
(
Pθ∗
)

The final step before I can state the strong consistency result involves showing that

`M (θ) is continuous w.r.t. θ for all M ∈ Z+. This will allow me to strengthen Corollary

3 from pointwise convergence to uniform convergence in θ. Note that by (16) and the

dominated convergence theorem,

`M (θ) = Eθ∗
[

lim
r→∞

∆0,r,M,x (θ)
]

= lim
r→∞

Eθ∗ [∆0,r,M,x (θ)]

It suffices to show that ∆0,r,M,x (θ) is continuous w.r.t θ, since {∆0,r,M,x (θ)}r≥0 is a uniform

Cauchy sequence Pθ∗-a.s. which is uniformly bounded in L1
(
Pθ∗
)
.

The following additional assumptions are needed to establish continuity

(A4) For all x, x′ ∈ X and all y′ ∈ Y, θ 7→ qθ (x, x′) and θ 7→ gθ (y′ |x) are continuous.

(B4) For all M ∈ Z+, x ∈ XM , and A ∈ B (XM ), θ 7→ Pθ,M (x,A) is continuous.

Lemma 5. Assume (A1)-(A4), (B1)-(B4), and (BT), then

lim
δ→0

Eθ∗
[

sup
M∈Z+

sup
|θ′−θ|≤δ

∣∣∆t,∞,M
(
θ′
)
−∆t,∞,M (θ)

∣∣] = 0.

A direct consequence of Lemma 5 is that the convergence established in Corollary 3 can

be strengthened to uniform convergence in θ ∈ Θ.

Proposition 2. Assume (A1)-(A4), (B1)-(B4), and (BT). Then

lim
M,T→∞

sup
θ∈Θ

sup
x0,M∈XM

∣∣T−1`T,M (θ, x0,M )− ` (θ)
∣∣ = 0, Pθ∗-a.s.

The last assumption needed to establish consistency is an identification assumption

guaranteeing that θ∗ is a unique maximizer of the likelihood function

17



(A5) θ = θ∗ if and only if

Eθ∗
[

log
pθ∗
(
Y t

1

)
pθ (Y t

1 )

]
= 0 for all t ≥ 1. (18)

This is a high level assumption about the identification of the model. In general this is a

difficult condition to verify because it relies on the ergodic distribution of the joint Markov

chain {Zt}. For a more thorough discussion on when this assumption is satisfied in the

context of HMM, see Douc et al. (2011). Under the additional assumption (A5), I am ready

to state my first main result, strong consistency of the maximum likelihood estimator

Theorem 1. Assume (A1)-(A5), (B1)-(B4), and (BT). Then, for any sequence of initial

points x0,M ∈ XM , θ̂T,M,x0,M → θ∗, Pθ∗-a.s. as T →∞ and M →∞.

This is a powerful result. It states that the maximum likelihood estimator is not only

consistent but strongly consistent. In addition, the estimator is strongly consistent inde-

pendently of the rate at which the number of points M grows.

4.3 Asymptotic Normality

Next I turn to the asymptotic distribution of the maximum likelihood estimator. In order to

establish asymptotic normality I will need additional assumptions regarding the smoothness

and boundedness of first and second derivatives of the likelihood function.

Let ∇θ and ∇2
θ be the gradient and the Hessian operator with respect to the parameter θ

respectively. Assume there exists a positive real δ such that on G ≡ {θ ∈ Θ : |θ − θ∗| < δ},
the following assumptions hold

(A6) For all x, x′ ∈ X and y ∈ Y, the functions θ 7→ qθ (x, x′) and θ 7→ gθ (y′ |x′ ) are twice

continuously differentiable on G.

(A7) (a) supθ∈G supx,x′ ‖∇θ log qθ (x, x′)‖ <∞ and supθ∈G supx,x′
∥∥∇2

θ log qθ (x, x′)
∥∥ <∞

(b) Eθ∗
[
supθ∈G supx ‖∇θ log gθ (Y1 |x)‖2

]
<∞ and Eθ∗

[
supθ∈G supx

∥∥∇2
θ log gθ (Y1 |x)

∥∥] <
∞

(A8) (a) For ν-almost all y′ ∈ Y there exists a function fy′ : X → R+ ∈ L1 (µ) such that

supθ∈G gθ (y′ |x) ≤ fy′ (x).

(b) For µ-almost all X ∈ X , there exist functions f1
x : Y → R+ and f2

x : Y → R+

in L1 (ν) such that ‖∇θgθ (y′ |x)‖ ≤ f1
x (y′) and

∥∥∇2
θgθ (y′ |x)

∥∥ ≤ f2
x (y′) for all

θ ∈ G.
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Instead of re-establishing asymptotic normality of my proposed estimator using the

techniques in Douc et al. (2004), I use Theorem 7 from their paper. I reproduce the theorem

here for completeness.

Theorem 2 (Theorem 7 from Douc et al. (2004)). Assume that θ̃T,x0 is an estimator

satisfying `T

(
θ̃T,x0 , x0

)
≥ supθ∈Θ `T (θ, x0) − RT and assumptions (A1)-(A8) hold. Then

the following are true:

(i) If RT = op (T ) (with P = Pθ∗), then θ̃T,x0 is consistent.

(ii) If RT = Op (1), then T 1/2
(
θ̃T,x0 − θ∗

)
= Op (1), that is the sequence

{
θ̃T,x0

}
is

T 1/2−consistent under Pθ∗.

(iii) If RT = op (1), then T 1/2
(
θ̃T,x0 − θ∗

)
→ N

(
0, I (θ∗)−1

)
, Pθ∗−weakly as T →∞.

I derive an explicit expression for RT as a function of M and T and provide conditions

under which my proposed estimator satisfies condition (iii) of Theorem 2, which corresponds

to asymptotic normality. Note that the bounds I have derived to establish consistency

are not sufficient to establish asymptotic normality of my proposed estimator. I can only

establish that condition (ii) of Theorem 3 is satisfied using the deterministic bounds applied

thus far. To establish conditions under which (iii) is also satisfied, I use an Azuma-Hoeffding

inequality derived in Douc et al. (2011). Using this new bound, I am able to state my second

main result, asymptotic normality.

Theorem 3. Assume (A1)-(A8), (B1)-(B4), (BT), and that I (θ∗) is positive definite.

Then for any sequence of initial points x0,M ∈ XM ,

√
T
(
θ̂T,M,x0,M − θ

∗
)
→ N

(
0, I (θ∗)−1

)
Pθ∗-weakly as T →∞, M →∞, and T × h∗ (M)→ 0.

Note that this result is actually stronger than just asymptotic normality. Theorem 3

establishes that my proposed estimator and the infeasible maximum likelihood estimator are

asymptotically equivalent. That is, my estimator asymptotically achieves the Cramér-Rao

lower bound.

5 Recommendations for Applied Researchers

In this section I provide recommendations for how to select the grid points of the approxi-

mate finite-state Markov chain and to construct the transition matrix for the discretization

filter.
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5.1 Choosing the Number of Grid Points

The asymptotic theory I developed in section 4 shows that if the Farmer and Toda (2016)

method with a trapezoidal quadrature rule is used to construct the transition matrix, the

discretization error of the likelihood function is of the order TM−2/d. While this is only a

rate condition, I use it to recommend a rule of thumb choice for the number of points M

used to construct the discretization. Setting this ratio equal to a constant and solving for

M , one gets the rule of thumb

M = cT d/2 (19)

where the constant c is a nuisance parameter. For example, if the dimension d of the state

space is 1, the rule says to choose a number of points proportional to the cube root of the

sample size. If d = 2, then the rule recommends choosing the number of points equal to the

sample size. I investigate the effect of choosing different values of c on the accuracy of the

approximation in section 6.

Figure 1 plots the rule-of-thumb choice for M for state spaces of dimensions 1-4, for

sample sizes up to T = 100 and c = 1.

The asymptotic analysis implies that M should be chosen to be as large as possible.

However, for sufficiently large computational problems, it may not be possible to choose a

large number for M . An applied researcher faces a tradeoff between computation time and

the accuracy of the approximation, which I will elaborate on in section 6. This rule of thumb

can be thought of as a lower bound on the number of points to choose in order to retain

validity of confidence intervals constructed for parameters using a normal approximation.

5.2 Selecting the Grid Points

When establishing my theoretical results, I assumed that the state space is compact. This

is a convenient theoretical device that makes the proofs cleaner and more intuitive; but I

conjecture that it is not necessary for my main results.9 In general, practitioners specify

state space models that take values in unbounded spaces. In this section, I address how to

choose the support of the discretized probability measure when the state space is unbounded.

Consider the case where the number of discretization points, M , has been fixed and the

goal is to choose the support of the discrete approximation, XM . In order for the discretized

system to be a good approximation to the original model, the boundary points should be

chosen to bracket the underlying state vector with high probability. This is analogous to

picking boundary points from the tails of the ergodic distribution.

9The assumption of uniform ergodicity can be relaxed to geometric ergodicity, where the mixing rate of
the Markov chain depends on the initial distribution. Under suitable restrictions on the initial distribution,
consistency can still be established using the techniques in Douc et al. (2011). Asymptotic normality of the
maximum likelihood estimator under geometric ergodicity appears to still be an open problem.
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Figure 1: Rule of Thumb Choice for M

When the state follows a Gaussian VAR(1), a closed form expression for the ergodic

distribution is available. Gospodinov and Lkhagvasuren (2014) provide a method to dis-

cretize Gaussian VAR(1)s that is robust to high levels of persistence. They use mixtures of

Rouwenhorst (1995) approximations to match conditional moments as closely as possible.

I rely on this method in section 8 for my empirical application. However, for more general

time series models, no such expression exists.

Even when no expression for the unconditional distribution exists, it is often possible

to compute the unconditional mean and standard deviation of the process. In this case, I

recommend choosing a grid centered at the unconditional mean µx covering
√
M − 1 uncon-

ditional standard deviations σx of the process on either side. That is, choose {xm,M}Mm=1

to be M evenly spaced points over the interval
[
µx −

√
M − 1σx, µx +

√
M − 1σx

]
. 10

If the computation of unconditional moments is infeasible, I propose simulating a path

of the state and discarding a fixed fraction from the beginning as burn in. If the simulated

sample and burn in periods are sufficiently large, the remaining points can be treated as

representative draws from the ergodic distribution. One can then estimate unconditional

moments of the simulated process and use the method outlined above by replacing the

population parameters µx and σx with their estimated counterparts. Alternatively, one can

10This is the way of constructing the grid employed in the Rouwenhorst (1995) approximation and sug-
gested in Farmer and Toda (2016).
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use empirical quantiles as the discretization points.

Consider the case when r = 1, that is, the state vector is one-dimensional. Suppose one

simulates S points from the state equation with Sbi used as burn in. Denote this simulated

path as {xs}Ss=1. Then, to construct a grid that covers the state with approximately 1− α
probability, select:

xm,M = Q̂S
(
α
2 + m−1

M (1− α)
)

for m = 1, . . . ,M

where Q̂S : (0, 1)→ R is the empirical quantile function of the sample {xs}Ss=Sbi , defined as

Q̂S(p) =

inf x ∈ R : p ≤ 1

S − Sbi

S∑
s=Sbi

1 {xs ≤ x}


Selecting the points in this way has the desirable property that roughly the same number

of realizations of the state will fall between each pair of points.11 By choosing α arbitrarily

close to 1, it is possible to ensure that one has covered the ergodic set with any desired

degree of confidence.12 This method is also robust to skewness and fat tails in the stationary

distribution.

While the simulation procedure outlined above is capable of handling very general mod-

els, it will introduce simulation error and increase the computational burden of the estima-

tion. It is desirable to use prior knowledge of the particular model to help inform the choice

of discretization whenever possible.13

5.3 Constructing the Transition Matrix

I recommend two ways of constructing the transition matrix for the discretization filter that

are applicable to the widest range of economic models. However, there is no unique way to

construct the transition matrix. 14

First, I outline a way to extend the original method proposed by Tauchen (1986) to the

nonlinear, non-Gaussian case. Create a partition of the state space {Am}Mm=1, where each

11There is no unique way to define quantile functions in the multivariate case. However, one simple way
to achieve the same goal is to take the univariate empirical quantiles covering 1 − α

d
probability for each

dimension.
12Of course a smaller α will require a larger number of data points for the same level of confidence in the

approximation.
13Another possibility is to construct an ε-distinguishable set as proposed by Maliar and Maliar (2015),

although this is subject to the same criticisms about introducing simulation.
14In addition to these two approaches, several others have been proposed in the literature: Tauchen

and Hussey (1991), Rouwenhorst (1995), Adda and Cooper (2003), Flodén (2008), and Gospodinov and
Lkhagvasuren (2014). However, all of these with the exception of Tauchen and Hussey (1991) only apply to
linear autoregressive processes.
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Am is associated with discretization point xm,M for all m = 1, . . . ,M (this is equivalent to

intervals in the one-dimensional case). Then define:

Pθ,M
(
m,m′

)
=

∫
Am′

qθ (x |Xt−1 = xm,M )µ (dx) (20)

Intuitively, there are two layers of approximation in this expression. First, I am assuming

that if Xt−1 is in region Am it is close to the point xm,M in the sense that the conditional

distribution qθ (Xt |Xt−1 ) can be well approximated by qθ (Xt |Xt−1 = xm,M ). Second, I am

assuming that the probability of transitioning to region Am′ from point xm,M is similar to

the conditional density qθ
(
Xt = xm′,M |Xt−1 = xm,M

)
over the set Am′ .

A limitation of this approach is the ability to evaluate the integrals needed to construct

the transition matrix. In general, this method will only work well in practice when the

Am are hyperrectangles, and the transition density is easy to evaluate. Furthermore, there

are no known results on the rate of weak convergence of the ergodic distribution of the

approximate Markov chain to the that of the underlying continuous process. Since this rate

is critical to obtaining asymptotic normality, researchers should be cautious about standard

errors when using this approach with a small number of points.

Second, I construct the transition matrix as in Farmer and Toda (2016). They pro-

vide a general way of constructing finite-state Markov chain approximations to stochastic

processes. Their method finds the discrete distribution which is “closest” to the original dis-

tribution from some prior distribution in terms of Kullback-Leibler distance, while matching

a set of conditional moments of the underlying continuous distribution.

If the prior distribution is a valid quadrature formula for evaluating integrals with resp-

sect to the original conditional density, the discrete approximation is guaranteed to converge

weakly to the continuous distribution. Moreover, the rate of convergence is given by the

rate of convergence of the selected quadrature formula.15

My Monte Carlo results in section 6 demonstrate that when the primary aim is estima-

tion of the parameters, very coarse discretizations are adequate. This is in line with my

theoretical results which show that the estimates are consistent independently of the rate

at which M grows. The discretization filter has the potential to scale to higher dimensional

problems by exploiting sparse grid quadrature methods (e.g. Smolyak grids), quasi-Monte

Carlo methods, or the more recently proposed ε-distinguishable set method in Maliar and

15A special case of the discretization filter, known as the point mass filter, has been discussed at length
in the computer science literature. The elements of the transition matrix are chosen to be proportional
to the one-step-ahead density evaluated at the discretization points, i.e. Pθ,M (m,m′) ∼ p (xm′,M |xm,M ).
However, since the primary aim in the computer science literature is to filter the states, the grid is chosen
to be very fine. Tensor grid product approximations quickly become intractable in higher dimensions, and
for this reason the point-mass filter is infrequently used. A comprehensive survey article on the properties
and applications of filtering techniques is Chen (2003).
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Maliar (2015). I leave the investigation of this extension for future research.

6 Monte Carlo Evidence

In this section, I consider two simulation exercises, a linear measurement error model and

a stochastic volatility model, to compare the performance of the discretization filter with

exisiting alternatives.

6.1 Measuring GDP: A Linear State Space Example

I first consider a simple linear Gaussian state space model to illustrate the performance of

the discretization filter in a case where the exact evaluation of the likelihood is possible

using the Kalman Filter.

Aruoba et al. (2016) propose extracting a common component of the two widely available

measures of GDP using a simple measurement error model in order to provide a more

accurate estimate of “true” GDP. Let ∆GDPE,t and ∆GDPI,t denote the expenditure and

income-side estimates of GDP growth respectively, and let ∆GDPt denote true GDP growth,

which is assumed to be unobserved. Consider the following state space model[
∆GDPE,t

∆GDPI,t

]
=

[
1

1

]
∆GDPt +

[
εE,t

εI,t

]
∆GDPt = µ (1− ρ) + ρ∆GDPt−1 + εG,t

where (εG,t, εE,t, εI,t)
′ ∼ i.i.d.N (0,Σ), with

Σ =

 σ2
G,G 0 0

0 σ2
E,E σE,I

0 σE,I σ2
I,I


In their paper, Aruoba et al. (2016) also consider a more sophisticated specification of

the model which allows for correlation between the measurement and state equation errors.

The discretization filter can allow for this at the cost of introducing time-varying transition

matrices but I omit the details for expositional simplicity. I focus on the restricted model

outlined above.

I take the parameters estimated in the paper and simulate 500 samples of length T = 204,

which is the amount of data used for estimation. For each sample, I evaluate the likelihood

of the data using the Kalman filter (KF), the discretization filter (DF), and the bootstrap

particle filter (PF). I examine the following two statistics for assessing the quality of the
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likelihood approximation discussed in Herbst and Schorfheide (2015)

∆̂1 = ln p̂θ
(
Y T

1

)
− ln pθ

(
Y T

1

)
(21)

∆̂2 = exp
[
ln p̂θ

(
Y T

1

)
− ln pθ

(
Y T

1

)]
− 1 (22)

where p̂θ
(
Y T

1

)
denotes the approximate likelihood computed with either the DF or the PF,

and pθ
(
Y T

1

)
denotes the true likelihood evaluated with the KF. Since the approximation

to the likelihood provided by the PF is random, I use a 100 draws of the PF for every

realization of the data. I consider several choices for the number of particles N used in the

PF and for the proportionality constant used in the rule-of-thumb choice for the number of

grid points M in the DF proposed in (19).

Table 1 presents the results of the simulation exercise for the accuracy of the likelihood

approximations as measured by ∆̂1 and ∆̂2. An important distinction between the PF

and the DF is that the PF approximation to the likelihood is random. It depends on the

particular path that is simulated for the particles. However, the DF approximation to the

likelihood is deterministic and thus has no associated sampling uncertainty for a given draw

of the data.

For the PF, the bias and standard deviation of the approximations for a particular

realization of the data are computed as the average value and standard deviation of the

likelihood discrepancies across the 100 draws of the particles respectively. Since the DF is

deterministic, there is only one value of the bias per sample realization and the standard

deviation is zero. The RMSE is given by the familiar Bias2 + Var formula. The means of

these statistics are then computed as the means across randomly generated samples.

To be more precise, index a draw of the data by s and a draw of the particles by g.

Define ∆̂PF
i,s,g as the value of discrepancy measure ∆̂i computed by the PF for sample s and

particle draw g. Similarly, define ∆̂DF
i,s as the value of discrepancy measure ∆̂i computed

by the DF for sample s. Then the PF statistics are computed as

Mean Bias
(

∆̂PF
i

)
=

1

S

S∑
s=1

 1

G

G∑
g=1

∆̂PF
i,s,g

 (23)

Mean Var
(

∆̂PF
i

)
=

1

S

S∑
s=1

∆̂PF
i,s,g −

1

G

G∑
g=1

∆̂PF
i,s,g

2

(24)

Mean RMSE
(

∆̂PF
i

)
=

1

S

S∑
s=1

 1

G

G∑
g=1

(
∆̂PF
i,s,g

)2

1/2

(25)
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Bootstrap Particle Filter

Number of particles N 100 500 1,000 5,000 10,000 50,000

Mean Bias ∆̂1 -2.484 -0.505 -0.257 -0.054 -0.029 -0.006

Mean StdD ∆̂1 2.292 0.991 0.698 0.310 0.221 0.100

Mean RMSE ∆̂1 3.394 1.121 0.750 0.318 0.224 0.101

Mean Bias ∆̂2 -0.014 -0.003 -0.001 -0.001 -0.002 0.000

Mean StdD ∆̂2 3.889 1.164 0.771 0.318 0.225 0.100

Mean RMSE ∆̂2 3.933 1.171 0.775 0.320 0.226 0.101

Discretization Filter

Rule of thumb constant c 1/2 1 3 5 7 10

Mean Bias ∆̂1 -0.405 -0.040 0.001 0.002 0.001 0.001

Mean StdD ∆̂1 - - - - - -

Mean RMSE ∆̂1 1.287 0.383 0.114 0.070 0.053 0.042

Mean Bias ∆̂2 0.085 0.029 0.007 0.004 0.003 0.002

Mean StdD ∆̂2 - - - - - -

Mean RMSE ∆̂2 1.119 0.391 0.113 0.069 0.051 0.039

Table 1: Likelihood Discrepancies

For the DF, the mean bias and RMSE are given by

Mean Bias
(

∆̂DF
i

)
=

1

S

S∑
s=1

∆̂DF
i,s (26)

Mean RMSE
(

∆̂DF
i

)
=

1

S

S∑
s=1

[(
∆̂DF
i,s

)2
]1/2

(27)

and Mean Var
(

∆̂DF
i

)
= 0 for the reason explained above.

Table 2 reports the average absolute and relative evaluation times of the likelihood

function across all specifications. The absolute times are reported in seconds. For the PF,

these are computed as the average across samples and particle draws. For the DF and

the KF, these are simply reported as averages across the samples. The relative times are

computed as the time of one evaluation of the likelihood function relative to the time it

takes for the KF.

Considered together, tables 1 and 2 provide a better understanding of the tradeoff

between accuracy and computational complexity that both the DF and PF exhibit. As

an example, note that the evaluation of the likelihood using 100 particles for the PF and

a rule of thumb constant of 7 for the DF take roughly the same amount of time, about
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Kalman Filter

Mean Time 0.007

Bootstrap Particle Filter

Number of particles N 100 500 1,000 5,000 10,000 50,000

Mean Time 0.020 0.039 0.055 0.194 0.351 1.845

Mean Relative Time 3.13 6.13 8.66 30.30 54.84 288.63

Discretization Filter

Rule of thumb constant c 1/2 1 3 5 7 10

Mean Time 0.009 0.009 0.011 0.014 0.020 0.032

Mean Relative Time 1.38 1.37 1.69 2.16 3.10 4.99

Table 2: Computation Time of 1 Likelihood Evaluation (in seconds)

0.02 seconds. However, the DF is 2 orders of magnitude more accurate in terms of RMSE.

Similarly, consider the PF with 50,000 particles and the DF with a rule of thumb constant

of 3. These are roughly the same in terms of RMSE, but the DF evaluation of the likelihood

is about 170 times faster. Examining the other elements of the tables leads to a similar

conclusion: the DF offers a much better tradeoff between accuracy and computation time

than the PF.

6.2 Stochastic Volatility

Next, I compare the performance of different estimation procedures on a stochastic volatility

model. The standard discrete time stochastic volatility model, as formulated in Taylor

(1982), is given by

Xt = µ (1− ρ) + ρXt−1 + vt vt ∼ i.i.d. N
(
0, σ2

)
(28)

Yt = eXt/2wt wt ∼ i.i.d. N (0, 1) (29)

Note that the measurement equation can be equivalently rewritten as:

log
(
Y 2
t

)
= Xt + log

(
w2
t

)
(30)

which leads to an additively separable state equation.16 However, this simplification only

applies to the most basic versions of the stochastic volatility model. I focus on results

from the parameterization µ = −8.940, ρ = 0.9890, and σ = 0.1150, which are empirical

16This is the specification of the observation equation I use in the EKF estimation. This can also be thought
of as a misspecified Kalman filter where the measurement error is incorrectly assumed to be Gaussian.
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estimates of the parameters of the stochastic volatility model on daily returns data from

the DAX in Hautsch and Ou (2008). The results are not sensitive to this parameterization.

I simulate data for T = 100, 500, and 1,000 periods, and compute the likelihood of

the model eight different ways: the DF using six different choices of the rule of thumb

constant c, the boostrap PF with adaptive resampling using 1,000 particles, and the ex-

tended Kalman filter (EKF). Each specification is simulated 1,000 times and estimation is

performed via maximum likelihood where optimization is done using MATLAB’s genetic

algorithm in the global optimization toolbox. The random seed used to construct the parti-

cle filter approximation is fixed for a given sample in order to make the optimization better

behaved.17

Figures 2, 3, and 4 display the sampling distributions of the maximum likelihood es-

timators. The rows of each figure correspond to a particular model parameter and the

columns correspond to a particular method of approximating the likelihood. A vertical line

is displayed at the point of the true parameter value. All estimation using the discretization

filter uses the Rouwenhorst (1995) discretization scheme.18

Note that for small sample sizes, T = 100, there is a considerable downward bias in

the estimation of ρ and σ. That is, the optimization algorithm is picking values of ρ and

σ extremely close to 0. This bias is most severe in the EKF estimates, especially for σ.

However, this is not particularly surprising because the EKF is estimating a misspecified

model, where it is treating the residual in the observation equation as a normal random

variable, even though it has a log
(
χ2

1

)
distribution.

This bias vanishes for both the DF and the PF in the larger sample simulations and the

DF appears to produce tighter estimates of all 3 parameters, especially ρ. This is due, at

least in part, to the fact that the accuracy of the Rouwenhorst approximation is independent

of the persistence of the AR(1) process.

I also compute the root mean squared error (RMSE) and the bias of the parameter

estimates, approximating the population expectation with an average across simulations.

In particular, for the i-th component of the parameter vector, I compute:

RMSE
(
θ̂i

)
=

√
E
[(
θ̂i − θi

)2
]

(31)

Bias
(
θ̂i

)
= E [θi]− θi (32)

17Note that traditional gradient based optimization methods are inapplicable to the PF because the
likelihood function is simulated, which makes it non-differentiable. See Flury and Shephard (2011) for a
more detailed discussion.

18Estimation was also performed using the Farmer and Toda (2016) method, the Tauchen (1986) method,
and the point-mass filter. The Rouwenhorst method performs the best although the relative gains of the
discretization filter are similar across all discretization methods.
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Figure 2: MLE sampling distributions for sample size T = 100
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Figure 3: MLE sampling distributions for sample size T = 500
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Figure 4: MLE sampling distributions for sample size T = 1, 000

and report the results in table 3.

First consider the DF with c = 5 and its performance relative to the PF and the EKF.

The DF and the PF are similar in terms of RMSE and bias for T = 100, however the DF

generally outperforms the PF for the larger sample sizes. The EKF is unambiguously the

worst except for estimation of the mean parameter µ. It is also interesting to note that the

performance of the PF for estimating µ actually deteriorates for larger sample sizes, which

seems to be evidence of sample thinning, a well known problem with importance sampling

methods.

Next I examine the performance of the DF for different values of the rule of thumb

constant c. For T = 100 and to a lesser extent for T = 500, the RMSE and bias actually

seem to increase for larger values of c. There are a couple of possible explanations for this

phenomenon. The first is that the asymptotic analysis in section 4 considers the case of

a compact state space, whereas in this example as in most examples of economic interest,

the state variable resides in an unbounded space. Thus, as the discretization is being

constructed for larger values of c, the number of points is increasing, but so is the domain

over which the approximation is constructed. This could potentially cause numerical issues

for smaller sample sizes, because the discretization points cover large areas of the state

space which are never visited in the sample.

A second possibility is that these larger numbers are actually more consistent with
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the RMSE and bias of the infeasible maximum likelihood estimator. In other words, the

misspecification caused by small values of M is actually acting as a type of regularization

which is outperforming the maximum likelihood estimator for small sample sizes. Note that

this phenomenon is absent for larger sample sizes, and the estimates of the RMSE and bias

appear stable across all values of c.

Table 4 displays the average simulation times for all eight specifications. The differences

in computational time are stark. With c = 1, the EKF is 32 times faster than the DF for

small sample sizes and 78 times faster for large ones. However, this is at the cost of param-

eter estimates which are significantly less accurate for larger sample sizes. Furthermore,

the EKF estimate of σ appears to be significantly biased, even asymptotically, due to the

misspecification of the observation equation.

For estimates which are roughly the same accuracy for T = 100, the DF is an order of

magnitude faster than the PF. For T = 1, 000, the DF is between twice and three times

as accurate as the particle filter while being 2 orders of magnitude faster. These results

suggest that the DF is somewhere in between the EKF and the PF in terms of computational

burden, while delivering accurate parameter estimates. To give the reader a rough idea, all

of the simulations for the DF and the EKF ran in a matter of minutes to hours whereas

the most computationally burdensome PF specification (T = 1, 000) took almost five days

to run operating in parallel on four cores. These reductions in computation time make the

estimation of many dynamic macroeconomic and financial models feasible. In the case of the

Gabaix (2012) rare disasters model, the estimation takes several hours running MATLAB

on a standard desktop computer, whereas estimation using a PF would likely take several

weeks.

Another important dimension for comparison is the accuracy of the filtered states,{
x̂t|t
}T
t=1

. I provide results on the root mean square error (RMSE) and the mean abso-

lute error (MAE) of all the methods. For a given model specification and method, these

are defined as:

RMSE =

(
1

T

T∑
t=1

(
x̂t|t − xt

)2)1/2

(33)

MAE =
1

T

T∑
t=1

∣∣x̂t|t − xt∣∣ (34)

I define the average RMSE (ARMSE) and average MAE (AMAE) to be the average

of the RMSE and the MAE across simulations for a given method. Table 5 displays the

ARMSE and AMAE of each method, where the filtering is done using the corresponding

maximum likelihood estimates of the parameters for a given sample.
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Root Mean Squared Error

Discretization Filter PF EKF

ROT constant c 1/2 1 3 5 7 10 - -

µ

T = 100 0.511 0.538 0.611 0.618 0.623 0.669 0.488 0.521

T = 500 0.450 0.475 0.511 0.516 0.486 0.508 0.574 0.445

T = 1,000 0.343 0.364 0.370 0.381 0.339 0.391 0.614 0.336

ρ

T = 100 0.598 0.584 0.603 0.617 0.630 0.637 0.572 0.727

T = 500 0.108 0.080 0.101 0.103 0.121 0.134 0.108 0.304

T = 1,000 0.014 0.014 0.015 0.015 0.014 0.015 0.042 0.126

σ

T = 100 0.228 0.225 0.236 0.238 0.246 0.251 0.244 0.621

T = 500 0.061 0.057 0.061 0.064 0.072 0.072 0.111 0.293

T = 1,000 0.027 0.027 0.027 0.027 0.027 0.027 0.076 0.163

Bias

Discretization Filter PF EKF

ROT constant c 1/2 1 3 5 7 10 - -

µ

T = 100 -0.036 -0.039 -0.035 -0.029 -0.027 -0.031 -0.028 0.005

T = 500 -0.031 -0.027 -0.017 -0.015 -0.012 -0.018 0.003 -0.001

T = 1,000 -0.008 0.015 0.007 0.015 0.015 0.026 0.016 0.020

ρ

T = 100 -0.441 -0.427 -0.455 -0.475 -0.493 -0.504 -0.442 -0.617

T = 500 -0.030 -0.030 -0.036 -0.035 -0.038 -0.041 -0.048 -0.136

T = 1,000 -0.008 -0.009 -0.009 -0.009 -0.009 -0.009 -0.017 -0.034

σ

T = 100 0.111 0.105 0.108 0.106 0.111 0.113 0.134 0.340

T = 500 0.020 0.019 0.022 0.021 0.022 0.023 0.062 0.186

T = 1,000 0.006 0.006 0.006 0.006 0.006 0.006 0.035 0.125

Table 3: Accuracy of Parameter Estimates

Discretization Filter PF EKF

ROT constant c 1/2 1 3 5 7 10 - -

T = 100 0.001 0.001 0.002 0.003 0.005 0.009 0.010 0.000

T = 500 0.002 0.003 0.008 0.017 0.034 0.083 0.120 0.000

T = 1,000 0.005 0.006 0.018 0.046 0.101 0.273 0.401 0.000

Table 4: Computation Time of 1 Likelihood Evaluation, in seconds



Average Root Mean Squared Error

Discretization Filter BPF EKF

ROT constant c 1/2 1 3 5 7 10 - -

T = 100 0.362 0.360 0.362 0.365 0.368 0.370 0.374 0.498

T = 500 0.378 0.379 0.385 0.388 0.390 0.391 0.383 0.465

T = 1,000 0.379 0.381 0.385 0.386 0.386 0.387 0.383 0.452

Average Absolute Mean Error

Discretization Filter BPF EKF

ROT constant c 1/2 1 3 5 7 10 - -

T = 100 0.297 0.294 0.295 0.297 0.299 0.300 0.307 0.390

T = 500 0.302 0.302 0.304 0.305 0.306 0.306 0.306 0.372

T = 1,000 0.302 0.303 0.304 0.304 0.304 0.304 0.305 0.361

Table 5: Accuracy of Filtered State Estimates

The DF and PF perform roughly the same for all sample sizes. However, keep in mind

that this is for dramatically different estimation times for the parameters as discussed above.

The misspecification of the measurement error distribution using the EKF translates into

poor estimates of the unobserved state.

7 Variable Rare Disasters

In this section, I provide the first estimates of the Gabaix (2012) model of variable rare

disasters. I show how likelihood-based estimation can be used as a model diagnosis tool.

In particular, I find that (i) the estimated model fails to identify the Great Recession as a

disaster episode, and (ii) the model cannot capture the change in the dynamics of the price-

dividend ratio starting in the 1990s. To explain (i), the model requires a positive expected

jump in inflation in the event of a disaster in order to generate an upward sloping nominal

yield curve. However, during the Great Recssion, we observed a strongly upward sloping

nominal yield curve in conjunction with close to zero inflation and even deflation. For (ii),

the model specifies a process which is close to an AR(1) which governs the dynamics of the

price-dividend ratio, while the price-dividend ratio starting the 1990s appears to exhibit a

structural break both in its mean and its dynamics.
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7.1 Model Setup

The model is an endowment economy where a representative agent has lifetime expected

utility over consumption given by:

E0

[ ∞∑
t=0

e−ρt
C1−γ
t

1− γ

]

γ > 0 is the coefficient of relative risk aversion, and ρ > 0 is rate of time preference.

Each period she receives consumption endowment Ct. For expositional purposes, I only

present the version of the model with CRRA utility here, however for estimation purposes

I consider the full Epstein-Zin version of the model which allows risk aversion and the IES

to be independently estimated.

The endowment stream is hit by large but infrequent disasters. The dynamics of con-

sumption are given by:

∆ct+1 = gC + wt+1bt+1 (35)

where gC is the normal-time growth rate of the economy, Bt+1e
gC is the growth rate if a

disaster occurs (bt+1 := logBt+1), and wt+1 is an indicator for whether a disaster occurs at

time t+ 1, which happens with probability pt.

Consider a stock i which is a claim to a stream of dividend payments (Dt)t≥0. The

growth rate of its dividends is assumed to follow

∆dt+1 = gD + εDt+1 + wt+1ft+1 (36)

where gD is the growth rate of dividends in normal times, εDt+1 is a mean zero shock that

is independent of the disaster event, and Ft+1 (ft+1 := logFt+1) is the recovery rate of the

dividend. That is, in the event of a disaster, there can be “partial default.” If Ft+1 = 0, the

asset is completely destroyed, and if Ft+1 = 1 there is no loss relative to normal times.

In contrast with some of the other more recent papers on variable rare disasters such

as Wachter (2013) and Gourio (2012), the probability of a disaster is fixed in the baseline

model. It is the severity of a disaster which is time-varying. The combination of variations

in the disaster probability and the severity are captured by a variable called “resilience.”

Define resilience Ht of the asset as

Ht ≡ ptEDt
[
B−γt+1Ft+1 − 1

]
(37)

Assets with high resilience are safer than assets with low resilience because they pay out

more in disaster states, and thus will command lower risk premia.

As in Gabaix (2012), I split resilience into a constant part H∗ and a variable part Ĥt
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with mean zero. The dynamics of Ĥt are assumed to follow a linearity-generating process

(Gabaix 2009)

Ĥt+1 =
1 +H∗
1 +Ht

e−φH Ĥt + εHt+1 (38)

Linearity generating processes behave like first-order autoregressive processes close to their

steady state but display nonlinear dynamics as they reach more extreme values.

Define δ ≡ ρ+ γgC , h∗ ≡ log (1 +H∗), and δi ≡ δ − gD − h∗. It can be shown that the

price-dividend ratio of the asset is given by

Pt
Dt

=
1

1− e−δi

(
1 +

e−δi−h∗Ĥt

1− e−δi−φH

)
(39)

The unconditional equity premium for the asset is given by

ret = δ −Ht − ptEt [1− Ft+1]− rf (40)

where rf , the risk-free rate, is given by

rf = δ − ptEt
[
B−γt+1 − 1

]
(41)

Turning to the nominal side of the economy, inflation It = I∗ + Ît is assumed to vary

exogenously and its non-constant component Ît also follows a linearity-generating process.

In addition, inflation jumps by an amount Jt = J∗ + Ĵt in the event of a disaster. J∗ is the

baseline jump in inflation in the event of a disaster, and Ĵt is a mean-reverting deviation in

this jump size from its baseline. Their dynamics are jointly given by

Ît+1 =
1− I∗
1− It

(
e−φI Ît + wt+1Jt

)
+ εIt+1 (42)

Ĵt+1 =
1− I∗
1− It

e−φJ Ĵt + εJt+1 (43)

where εIt+1 and εJt+1 are mean zero shocks which are uncorrelated with disasters, but may

be correlated with each other. This allows me to define the variable πt, the variable part of

the bond premium, as

πt ≡
ptEt

[
B−γt+1F$,t+1

]
1 +H$

Ĵt

πt is what controls deviations of the slope of the nominal yield curve from its typical value,

while inflation controls the level relative to the real yield.

Define Ψ ≡ e−δ (1 +H$) (1− I∗), ρ̃I ≡ e−φI+κ
1−κ , and ρ̃J ≡ e−φJ

1−κ . The price of a nominal
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zero-coupon bond of maturity T at time t is given by

Z$t (T ) = (Ψ (1− κ))T ×

{
1− 1

1− κ
1− ρ̃TI
1− ρ̃I

(
Ît

1− I∗
− κ

)

− 1

(1− κ)2

1−ρ̃TI
1−ρ̃I −

1−ρ̃TJ
1−ρ̃J

ρ̃I − ρ̃J
πt

1− I∗


The corresponding yield is

yt (T ) = − lnZ$t (T )

T
. (44)

I now turn to the details of the estimation.

7.2 Estimation

I fix a subset of parameters related to the cash flow dynamics, the severity of disasters, and

inflation in Table 6.

Parameters Values

Growth rate of consumption

and dividends
g = gC = gD = 2.5%

Volatility of dividend growth σD = 11%

Recovery rate of C after a

disaster
B = 0.66

Stock’s recovery rate: typical

value
Fi∗ = B = 0.66

Inflation: typical value I∗ = 3.8%

Table 6: Calibrated Parameters

The means of consumption and dividend growth, the volatility of dividend growth, the

recovery rate of consumption after a disaster, and the typical value of the stock’s recovery

rate are fixed to the values used in Gabaix (2012). I set the typical value of inflation to be

3.8%, which is the sample average of CPI inflation in my sample.

For my baseline estimation results, I use monthly data on the price-dividend ratio of

the CRSP value-weighted portfolio, nominal yields on U.S. Treasury securities, and CPI

inflation from June 1961 to December 2015. This is the longest sample for which all variables

are available. The data on nominal yields are constructed as in Gürkaynak et al. (2007)

and I use maturities of 3 and 6 months, 1, 2, 5, 7, and 10 years. Inflation is constructed as

the 12-month change in log CPI.
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The model has three state variables: resilience Ĥt, inflation Ît, and jumps in inflation Ĵt.

The mapping from resilience to the price-dividend ratio is given by (39) and the mapping

from inflation and jumps in inflation to nominal yields is given by (44). I assume that the

price-dividend ratio, nominal yields of all maturities, and inflation itself are observed with

error with measurement errors given by εPDobs ∼ N (0, σPDobs), εyobs ∼ N (0, σyobs), and

εIobs ∼ N (0, σIobs) respectively. The measurement errors are assumed to be independent of

each other and all other quantities in the model.

I estimate the vector of 13 parameters (10 structural and 3 measurement error variances)

θ ≡ (ρ, γ, ψ, p, φH , σI , φI , J∗, σJ , φJ , σPDobs , σyobs , σIobs)
′

by maximum likelihood using the Farmer and Toda (2016) method with an 11 point grid

for each state variable. This results in a total of 113 = 1, 331 discrete points. Table 7

shows the estimated parameters, with quasi maximum likelihood robust standard errors in

parentheses, along with the calibrated values used in Gabaix (2012).

First, consider the values of the preference parameters ρ, γ, ψ. The estimated value of

the rate of time preference ρ, 3.07%, is significantly lower than its calibrated value of 6.57%.

In terms of annual discount factors, this translates into the difference between 0.970 and

0.936. Next, the estimated coefficient of relative risk aversion γ, 2.8, is significantly lower

than its calibrated value of 4. This is heartening because traditionally asset pricing models

require what are often considered unreasonably high values of risk aversion in order to

match financial data. This number is more in line with typical macroeconomic calibrations

of DSGE models. Lastly, the IES ψ is estimated to be 0.26, and importantly, is significantly

less than 1. This is consistent with the empirical micro evidence, but at odds with values

that are typically chosen in asset pricing models.

Second, the probability of a disaster is estimated to be 4.81% annually, compared to the

calibrated value of 3.63% which comes from Barro and Ursúa (2008). Given that there are

a very few observations of consumption disasters in the data, it seems reasonable to think

that this probability may be higher than existing empirical estimates that rely on macro

data.

Lastly, the estimates of the parameters governing the dynamics of inflation and jumps

in inflation differ between the estimated and calibrated models. The estimated model favors

more peristent and less volatile processes for both of these quantities.

I next consider some additional quantities implied by the model evaluated using both the

estimated parameter values and the calibrated ones. The results are presented in table 8.

A key quantity of interest is the risk-adjusted probability of a disaster, given by pE
[
B−γt+1

]
.

This is the quantity that allows the model to match high average risk premia. The estimated
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Parameters Estimated Values Gabaix Calibration

Time preference, ρ 3.07% (1.59%) 6.57%

Risk aversion, γ 2.812 (0.487) 4

Intertemporal elasticity of

substitution, ψ
0.257 (0.101) 0.25

Probability of a disaster, p 4.81% (0.72%) 3.63%

Resilience:

volatility, σF 7.0% 10%

speed of mean reversion, φH 12.48% (14.41%) 13%

Inflation:

conditional volatility, σI 0.61% (3.08%) 1.5%

speed of mean reversion, φI 15.21% (5.14%) 18%

Jump in inflation:

typical value, J∗ 2.56% (0.53%) 2.1%

conditional volatility, σJ 6.83% (6.71%) 15%

speed of mean reversion, φJ 82.13% (95.33%) 92%

Volatility of measurement errors:

price-dividend ratio, σPDobs 2.62 (5.76) -

nominal yields, σyobs 0.43% (0.54%) -

inflation, σIobs 2.66% (7.14%) -

Table 7: Model Parameters

model implies a value of 15.5%, less than 4 percentage points lower than the calibrated value

of 19.2%. Given that Bt+1 = B is fixed across both specifications, the differences in this

quantity are coming from differences in the probability of a disaster and the coefficient of

relative risk aversion. The higher probability of a disaster and lower value of risk aversion

estimated by maximum likelihood allow the model to remain broadly consistent with a wide

variety of asset pricing facts.

In particular, the model still achieves an unconditional equity premium of 3.6%, roughly

half of what it is in the data, while the calibration produces 5.3%. The estimated real short-

term rate is a bit high at 2.1% relative to the calibration which targets 1%, although this

is consistent with the historical average of data back to 1891 is considered. The estimated

model matchces the average level and volatility of the 5-year slope of the nominal yield

curve produced by the calibration.
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Parameters Estimated Values Gabaix Calibration

Ramsey discount rate, δ 12.8% 16.6%

Risk-adjusted probability of

disaster, pE
[
B−γt+1

] 15.5% 19.2%

Stocks:

effective discount rate, δi 1.7% 5%

Stock resilience:

typical value, H∗ 8.6% 9.0%

volatility, σH 1.1% 1.9%

Stocks, equity premium:

conditional on no disasters 5.3% 6.5%

unconditional 3.6% 5.3%

Real short-term rate 2.1% 1.0%

Resilience of one nominal dollar,

H$

10.7% 16.0%

5-year nominal slope yt (5)− yt (1):

mean 0.55% 0.57%

volatility 0.81% 0.92%

Long-run − short-run yield:

typical value, κ 3.5% 2.6%

Inflation:

I∗∗ 7.3% 6.3%

ψI 8.2% 13%

ψJ 78.6% 90%

Bond risk premium:

volatility, σπ 0.95% 2.9%

Table 8: Implied Parameters

7.3 Implications of the Filtered State Estimates

I now focus on two implications of the model which come from the ability to examine

the filtered and smoothed states implied by the estimated parameters. First, from the

processes for inflation and jumps in inflation, I can back out the implied probability of

a disaster having occured in any given period. Note that in the event of a disaster, the
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conditional mean of inflation at time t+ 1 given information up to time t is

1− I∗
1− It

(
e−φI Ît + Jt

)
whereas in the event of no disaster, this conditional mean is

1− I∗
1− It

e−φI Ît

By running the discretization filter at the estimated parameter vector, I can obtain filtered

and smoothed estimates of the time series
{
Ît

}T
t=1

and {Jt}Tt=1. Since the innovation to

inflation each period, εIt+1, has a normal distribution with standard deviation σI , I can

compute the likelihood of having observed the value of Ît+1 implied by these estimates in

the event of a disaster and in the event of no disaster. Figure 5 plots the probability of

a disaster having occurred in each period of the sample by applying this procedure using

both the filtered and smoothed estimates of the states. The results using the filtered states

are in blue and the results using the smoothed states are in red.

Figure 5: Disaster Probability

First, note that the filtered and smoothed estimates together identify three potential

disaster episodes over the sample. I will refer to a “potential disaster episode” as a period

where the estimated model assigns more than a 20% chance to a disaster having occured.
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The filtered estimates identify the early 1970s and the late 1970s as potential disaster

episodes. The smoothed estimates identify the same period in the late 1970s and a then a

period in the early 2000s coinciding with the dot com bubble as potential disaster episodes.

While the two series do not fully agree on which periods are potential disaster episodes,

they both come to the same conclusion regarding the Great Recession. At no point during

the Great Recession does either series assign more than a 5% chance of a disaster having

occurred. While this may seem surprising at first, upon further investigation it makes a lot

of sense.

During the Great Recession, the U.S. experienced low inflation relative to the rest of

the sample, and even a period of deflation. However, at the same time, the nominal yield

curve was upward sloping. The Gabaix model achieves an upward sloping nominal yield

curve through an expected positive jump in inflation. Since the model is being fit to both

inflation data and data on nominal yields, it is trying to reconcile a period of expected

low inflation / deflation with a period of upward sloping nominal yield curves but ends up

splitting the difference. This suggests a shortcoming of the Gabaix framework, which is

that rare disasters are typically coupled with expected increases in inflation. However, in

the U.S. and many other developed countries, financial crises are typically coupled with

deflation and upward sloping nominal yield curves.

Next, I examine the model’s implications for the recovery rate of stocks, Ft. Recall that

Ft is the fraction of its value that a stock retains in the event of a disaster. The recovery

rate is an affine function of the state variable resilience Ĥt, for which I construct filtered

and smoothed estimates and plot in figure 6. As above, the results using the filtered states

are in blue and the results using the smoothed states are in red. The black line is the long

run average of the recovery rate, which is calibrated to be 66% as in Gabaix (2012).

What immediately jumps out is that before the late 1990s, the recovery rate is estimated

to be about 20% on average, persistently low relative to its long run average of 66%.

This shoots up to almost 100% during the dot com bubble and crashes back down to its

long run average in the mid 2000s. It again experiences a sharp decline during the Great

Recession and bounces back close to its long run average at the end of the sample. This is

counterintuitive because it suggests that the model considers the Great Moderation to be

particularly risky relative to the rest of the sample. On average, investors were expecting

to lose about 80% of the value of their assets in the event of a disaster whereas the model

implies that they should typically expect to lose 34%.

This result begins to make a lot more sense when one examines the connection between

the recovery rate and the price-dividend ratio. In the Gabaix model, the price-dividend

ratio of a stock is an affine function of its recovery rate. Unsurprisingly, movements in

the recovery rate are closely linked to movements in the price-divdend ratio, with the only
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Figure 6: Recovery Rate

differences being attributed to measurement error.

The differences in the implied moments of the price-dividend ratio and stock returns are

presented in table 9. The first thing that stands out from looking at this table is that the

level of the price-dividend ratio implied by the estimated model parameters is about three

times larger than the value implied by the calibrated model. This has a lot to do with the

sample used in the estimation. The historical average of the price-dividend ratio targeted

by Gabaix, 23, is computed using data that ends in 1997. However, the data I use for

estimation goes all the way up to 2015, which includes the dot-com bubble and subsequent

Great Recession.

Data

(Campbell

Sample

1891-1997)

Data

(Estimation

Sample

1961-2015)

Estimated

Model

Calibrated

Model

Mean P/D 23 39.2 57.6 18.2

Std. dev. lnP/D 0.33 0.40 0.21 0.30

Std. dev. of stock returns 0.18 0.15 0.11 0.15

Table 9: Stock Market Moments
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The price-dividend ratio reaches a maximum value of 92 in the early 2000s and has

an average value of 39 over my sample, almost twice the value targeted by Gabaix. The

estimation chooses values of the structural parameters that allow the model to achieve these

high values of the price-dividend ratio. The estimated model also understates the volatility

of the price-dividend ratio. Unsurprisingly, given the lower volatility and higher mean of

the price-dividend ratio, this results in a lower volatility of stock returns than the calibrated

model, 11% vs. 15%, for the same values of the cash flow parameters.

Given the pronounced change in the both the level of the price-dividend ratio and its

dynamics (sharper decreases and increases) after 1997, the fit of the Gabaix model may

be greatly improved by allowing for switches in the parameters governing the long-run

average, persistence, and volatility of the recovery rate. This would help produce more

sensible economic estimates of the recovery rate.

The estimation of both the probability of a disaster having occurred and the recovery

rate is an exercise which can only be conducted using likelihood-based estimation proce-

dures. This highlights an advantage of likelihood-based methods over calibration and other

moment-matching based methods: the ability to construct estimates of the hidden state

variables. By constructing estimates of the hidden state variables, one is able to consider

the model’s implications for dynamics in addition to moments. The calibrated version of

the Gabaix model does an excellent job of matching several moments of asset pricing data

related to equities, bonds, and options. However, the estimation shows that the model also

exhibits a couple of important shortcomings regarding the coupling of rare disasters with

positive expected inflation and economically counterintuitive implications for the recovery

rate of equity.

7.4 Model Comparison

Finally, I formally test the null hypothesis that the estimated model provides a better fit to

the data than the calibrated model. To do this, I fix the parameters as calibrated in Gabaix

(2012) and estimate the measurement errors using the same data as the full estimation

outlined previously. Denote the resulting parameter vector as θ0. I test the null hypothesis

that H0 : θ = θ0 against the alternative hypothesis H1 : θ = θ̂ using a likelihood ratio test.

The likelihood ratio statistic is given by

LR = 2
[
`T,M

(
θ̂
)
− `T,M (θ0)

]
= 7, 471

This is compared to a χ2 (10) because the unrestricted model has 10 extra parameters that

are freely estimated. The 99% critical value for the test is 23.21 and thus the null hypothesis

is overwhelmingly rejected in favor of the alternative. Again, this is unsurprising given the
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calibrated model’s inability to match the extreme values of the price-dividend ratio observed

in the 2000s. The only way the calibrated model can rationalize these observations is by

choosing unreasonably large values of the measurement error variance for the price-dividend

ratio.

8 A Term Structure Model with a Zero Lower Bound

In this section, I re-estimate the term structure model proposed in Wu and Xia (2016), and

provide an updated estimate of their shadow rate series with data through January 2014.

Using the discretization filter I am able to replicate most of their parameter estimates.

While my filtered series and the Wu and Xia estimates match closely over most of the

sample, they diverge after the onset of the zero lower bound in January 2009. My estimates

indicate that the shadow rate was roughly 2.2 percentage points lower in July 2012 than

the Wu and Xia estimates would indicate. I conjecture that the estimates differ because

the DF provides a more accurate approximation than the EKF to nonlinearities in the state

space when the zero lower bound is in effect. Furthermore, the EKF estimator is in general

not consistent, while the DF estimator is.

I omit details of the derivation of their shadow rate model. What is key for my purposes

is that under the presence of a zero lower bound on short term interest rates, they are able

to derive an approximate nonlinear state space model characterizing movements of the yield

curve:

Xt = µ+ ρXt−1 + Σvt vt ∼ i.i.d. N (0, I3) (45)

Yn,n+1,t = r + σQn g

(
an + b′nXt − r

σQn

)
+ wt wt ∼ i.i.d. N (0, ω) (46)

where Yn,n+1,t corresponds to the one-period forward rate at time t for a loan starting at

t+ n and maturing at t+ n+ 1, and Xt is a (3× 1) vector of latent factors which explain

movements in the yield curve. For a derivation of the expressions for an, bn, and σQn , I refer

the reader to Wu and Xia (2016).

Using their data on the 3 and 6 month, 1, 2, 5, 7, and 10 year forward rates, one has

7 observation equations, one for each observed yield maturity. They further assume that

each forward rate is observed with normally distributed measurement error with the same

variance ω. θ is a (22× 1) vector of structural parameters.19

Table 10 reports maximum likelhood estimates of the parameters from the model with

19It has been pointed out that the results may be sensitive to the arbitrary choice of r = 0.25, see Bauer
and Rudebusch (2016). As a robustness check I also estimate r as a free parameter and find that it has little
effect on subsequent analysis.
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QMLE robust standard errors20, using the DF with 9 discretization points along each di-

mension (i.e. 93 = 729 total discretization points). I use the Gospodinov and Lkhagvasuren

(2014) method to discretize the VAR state dynamics, which generalizes the method of

Rouwenhorst (1995) to VAR(1) systems. I also include the estimates from Wu and Xia

(2016) for comparison.
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Figure 7: Shadow Rates

Though the parameter estimates obtained using the DF are similar, they produce a

drastically different shadow rate series in the zero lower bound period (from about January

2009 onward).21 These differences are illustrated in figure 7. I include 95% standard error

bands for the shadow rate series estimated with the DF (where the randomness is coming

from uncertainty about the state, not the parameters). This emphasizes the fact that

the method used to estimate a nonlinear dynamic model can have important economic

implications.

20See Hamilton (1994) for details.
21Note that once the parameter vector is estimated, I use the DF with 33 discretization points along each

dimension to produce more smoothly varying filtered series. However, the qualitative difference remains
even for coarser discretizations.
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Discretization Filter Extended Kalman Filter

1200µ -0.2251 -0.2061 0.0256 -0.3035 -0.2381 0.0253

(0.0767) (1.3693) (0.0318) (0.1885) (0.1815) (0.0160)

ρ 0.9648 0.0056 0.4541 0.9638 -0.0026 0.3445

(0.0100) (0.0212) (1.5863) (0.0199) (0.0183) (0.4821)

-0.0234 0.9626 0.8170 -0.0226 0.9420 1.0152

(0.1809) (0.0762) (5.2167) (0.0202) (0.0212) (0.5111)

0.0046 0.0035 0.7750 0.0033 0.0028 0.8869

(0.0023) (0.0067) (0.1050) (0.0018) (0.0019) (0.0385)

eig (ρ) 0.9765+0.006i 0.9765-0.006i 0.7513 0.9832 0.9642 0.8452

ρQ 0.9983 0 0 0.9978 0 0

(0.0026) (0.0003)

0 0.9608 1 0 0.9502 1

(0.0121) (0.0012)

0 0 0.9608 0 0 0.9502

(0.0121) (0.0012)

1200δ0 13.2418 13.3750

(2.3324) (1.0551)

1200Σ 0.2511 0.4160

(0.3467) (0.0390)

-0.0535 0.2541 -0.3999 0.2445

(0.3483) (0.1978) (0.0369) (0.0233)

-0.0002 0.0026 0.0338 -0.0110 0.0033 0.0390

(0.0026) (0.0058) (0.0095) (0.0069) (0.0034) (0.0030)

1200
√
ω 0.1638 0.0893

(0.0403) (0.0027)

Table 10: Maximum likelihood parameter estimates (QMLE standard errors in paranthe-
ses)

9 Conclusion

Existing methods for estimating nonlinear dynamic models are either too computationally

complex to be of practical use, or rely on local approximations which fail adequately to

capture the nonlinear features of interest. In this paper, I develop a new method, the

discretization filter, for approximating the likelihood of nonlinear, non-Gaussian state space

models. This approximation is simple to compute and can be used to accurately estimate
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a model’s parameters using classical or Bayesian methods.

I apply results from the statistics literature on uniformly ergodic Markov chains to es-

tablish that the maximum likelihood estimator implied by the discretization filter is strongly

consistent, asymptotically normal, and asymptotically efficient. I demonstrate through sim-

ulations that the discretization filter is orders of magnitude faster than alternative nonlinear

techniques for the same level of approximation error and I provide practical guidelines for

applied researchers.

I demonstrate that the filtering method used to estimate nonlinear models has sizeable

effects on the accuracy of the estimated parameters and the accuracy of the filtered states.

I show that these estimation differences translate into quantitatively significant economic

differences using the Wu and Xia (2016) shadow rate model as an example. My findings

have important implications for policy makers who use the Wu and Xia shadow rate as an

input to determining the effectiveness of unconventional monetary policy. My estimation

procedure leads one to conclude that the shadow rate was 2.2 percentage points lower in

July 2012 than the estimates from their paper would indicate.

Additionally, I provide the first estimates of structural parameters in the Gabaix (2012)

model of variable rare disasters. I show that the estimated model fails to identify the Great

Recession as a disaster episode. This is due to the model’s need to have a positive expected

jump in inflation in the event of a disaster in order to capture an upward sloping nominal

yield curve. Furthermore, I show that model fails to capture the sharp change in dynamics

exhibited by the price-dividend ratio starting in the 1990s.

Going forward, I hope that economists working with nonlinear dynamic models will

consider the discretization filter a valuable addition to their toolkit.
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A Proofs

Proof of Lemma 1. Note that by the Markov property, for r < t ≤ s,

Pθ
(
Xt,M ∈ A

∣∣∣Xt−1
r,M ,Y

s
r

)
= Pθ

(
Xt,M ∈ A

∣∣Xt−1,M ,Y
s
t−1

)
Let IA ≡ {m |xm,M ∈ A} be the set of indices of the points in XM contained in A. First

consider the case where t > s.

Pθ
(
Xt,M ∈ A

∣∣∣Xt−1
r,M ,Y

s
r

)
= Pθ (Xt,M ∈ A |Xt−1,M = x) =

∑
m′∈IA

Pθ,M
(
m,m′

)
Next consider the case where t ≤ s,

Pθ (Xt,M ∈ A |Xt−1,M = x,Y s
r )

=
∑
m′∈IA

Pθ,M
(
m,m′

)
pθ,M

(
Y s
t

∣∣Xt,M = xm′,M
)
×

(
M∑

m′=1

Pθ,M
(
m,m′

)
pθ,M

(
Y s
t

∣∣Xt,M = xm′,M
))−1

By assumption (B1),

Pθ
(
Xt,M ∈ A

∣∣Xt−1,M = x,Y s
t−1

)
≥

∑
m′∈IA

Q−Mpθ,M
(
Y s
t

∣∣Xt,M = xm′,M
)
×

(
M∑

m′=1

Q+
Mpθ,M

(
Y s
t

∣∣Xt,M = xm′,M
))−1

=
Q−M
Q+
M

∑
m′∈IA

pθ,M
(
Y s
t

∣∣Xt,M = xm′,M
)
×

(
M∑

m′=1

pθ,M
(
Y s
t

∣∣Xt,M = xm′,M
))−1

≥ Q−+µt,M (Y s
t , A)

where

µt,M (Y s
t , A) ≡

∑
m′∈IA

pθ,M
(
Y s
t

∣∣Xt,M = xm′,M
)
×

(
M∑

m′=1

pθ,M
(
Y s
t

∣∣Xt,M = xm′,M
))−1

In the case t > s, it suffices to set µt,M (Y s
t , A) =

µc,M (A)
µc,M (XM ) , where µc,M is counting measure

on XM . �

Proof of Lemma 2. . Conditioning on a particular starting value x0,M ∈ XM is just a

particular starting probability measure where probability 1 is assigned to that value. By
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Corollary 1, it follows that

∥∥Pθ (Xt−1,M ∈ ·
∣∣Y t−1

0 , x0,M = x0

)
− Pθ

(
Xt−1,M ∈ ·

∣∣Y t−1
0

)∥∥
TV
≤ ρt−1

Thus, for t ≥ 1, by Corollary 1 and assumption (A3),

∣∣pθ,M (Yt ∣∣Y t−1
0 , X0 = x0

)
− pθ,M

(
Yt
∣∣Y t−1

0

)∣∣
=

∣∣∣∣∣
M∑
m=1

M∑
m′=1

Pθ,M
(
m,m′

)
gθ
(
Yt
∣∣xm′,M )

×
(
Pθ
(
Xt−1,M = xm,M

∣∣Y t−1
0 , x0,M = x0

)
− Pθ

(
Xt−1,M = xm,M

∣∣Y t−1
0

))∣∣
≤ ρt−1 sup

1≤m≤M

M∑
m′=1

Pθ,M
(
m,m′

)
gθ
(
Yt
∣∣xm′,M )

In addition, by assumption (B3),

pθ,M
(
Yt
∣∣Y t−1

0 , X0 = x0

)
=

M∑
m=1

M∑
m′=1

gθ
(
Yt
∣∣xm′,M )Pθ,M (m,m′)Pθ (Xt−1,M = xm,M

∣∣Y t−1
0 , x0,M = x0

)
≥

M∑
m=1

(
inf

1≤m≤M

M∑
m′=1

Pθ,M
(
m,m′

)
gθ
(
Yt
∣∣xm′,M )

)
× Pθ

(
Xt−1,M = xm,M

∣∣Y t−1
0 , x0,M = x0

)
= inf

1≤m≤M

M∑
m′=1

Pθ,M
(
m,m′

)
gθ
(
Yt
∣∣xm′,M )

The same inequality also holds for pθ,M
(
Yt
∣∣Y t−1

0

)
. It follows from the identity |log x− log y| ≤

|x− y| /min (x, y) that

|log pθ,M (Yt |Y s
t , x0,M = x0 )− log pθ,M (Yt |Y s

t )|

≤ ρt−1 sup1≤m≤M
∑M

m′=1 Pθ,M (m,m′) gθ
(
Yt
∣∣xm′,M )

inf1≤m≤M
∑M

m′=1 Pθ,M (m,m′) gθ
(
Yt
∣∣xm′,M )

≤ ρt−1 1

Q−+

≤ ρt−1

1− ρ
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By summing up the expression from t = 1, . . . , T , we get

|`T,M (θ, x0)− `T,M (θ)| ≤
T∑
t=1

ρt−1

1− ρ
=

1− ρT+1

(1− ρ)2 ≤
1

(1− ρ)2

Since this bound holds independently of θ and M , this concludes the proof. �

Proof of Lemma 3. Consider the first expression and let r′ ≥ r.

pθ,M
(
Yt
∣∣Y t−1
−r , X−r,M = x

)
− pθ,M

(
Yt
∣∣Y t−1
−r′ , X−r′,M = x′

)
=

M∑
m=1

M∑
m′=1

M∑
m′′=1

gθ
(
Yt
∣∣xm′′,M )Pθ,M (m′,m′′)Pθ (Xt−1,M = xm′,M

∣∣Y t−1
−r , X−r,M = xm,M

)
1 {x = xm,M}

−
M∑
m=1

M∑
m′=1

M∑
m′′=1

gθ
(
Yt
∣∣xm′′,M )Pθ,M (m′,m′′)Pθ (Xt−1,M = xm′,M

∣∣Y t−1
−r , X−r,M = xm,M

)
Pθ
(
X−r,M = xm,M

∣∣Y t−1
−r′ , X−r′,M = x′

)
Thus, by Corollary 1

∣∣pθ,M (Yt ∣∣Y t−1
−r , X−r,M = x

)
− pθ,M

(
Yt
∣∣Y t−1
−r′ , X−r′,M = x′

)∣∣
=

∣∣∣∣∣
M∑
m=1

(
M∑

m′=1

M∑
m′′=1

gθ
(
Yt
∣∣xm′′,M )Pθ,M (m′,m′′)Pθ (Xt−1,M = xm′,M

∣∣Y t−1
−r , X−r,M = xm,M

))
(
1 {x = xm,M} − Pθ

(
X−r,M = xm,M

∣∣Y t−1
−r′ , X−r′,M = x′

))∣∣
≤ ρt+r−1 sup

1≤m′≤M

M∑
m′′=1

Pθ,M
(
m′,m′′

)
gθ
(
Yt
∣∣xm′′,M )

Similary, I can obtain a lower bound on each term in the difference above as in the proof

of Lemma 2,

pθ,M
(
Yt
∣∣Y t−1
−r , X−r,M = x

)
=

M∑
m=1

M∑
m′=1

gθ
(
Yt
∣∣xm′,M )Pθ,M (m,m′)Pθ (Xt−1,M = xm,M

∣∣Y t−1
−r , X−r,M = x

)
≥ inf

1≤m≤M

M∑
m′=1

Pθ,M
(
m,m′

)
gθ
(
Yt
∣∣xm′,M )

Using the same inequality for logs applied in the proof of Lemma 2 we obtain the desired

result. An analogous expression is obtained if r′ ≤ r. The second expression of the theorem

follows from setting r = r′ and integrating with respect to Pθ
(
dx−r,M

∣∣Y t−1
−r

)
.
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Note that by Assumption (A3),

c− (Yt) ≤ pθ,M
(
Yt
∣∣Y t−1
−r , X−r,M = x

)
≤ b+

Taking logs leads to the third inequality and concludes the proof.

�

Proof of Proposition 1. I wish to show that for any A ∈ A, where A is the collection of

continuity sets of Xt, that

sup
θ∈Θ

∣∣πXθ,M (A)− πXθ (A)
∣∣ = o (h∗ (M))

By the Portmenteau Lemma, this is equivalent to showing that Xt,M
d−→ Xt as M → ∞.

From assumption (BT), I know that for any A ∈ A,

sup
θ∈Θ

sup
x∈X
|Pθ,M (x,A)− Pθ (x,A)| = O (h (M))

I will use this assumption and the fact that Xt and Xt,M are uniformly ergodic to establish

a bound on the difference in probability assigned to the set A by the approximate and true

ergodic distributions.

By applying the triangle inequality twice, I can bound the expression of interest by the

difference between the ergodic distribution of Xt and its T -step ahead transition kernel, the

difference between Xt,M and its T -step ahead transition kernel, and the difference between

the two T -step ahead transition kernels

sup
θ∈Θ

∣∣πXθ,M (A)− πXθ (A)
∣∣

= sup
θ∈Θ

sup
x∈X

∣∣πXθ,M (A)− πXθ (A)
∣∣

= sup
θ∈Θ

sup
x∈X

∣∣∣πXθ,M (A)− P (T )
θ,M (x,A) + P

(T )
θ,M (x,A)− P (T )

θ (x,A) + P
(T )
θ (x,A)− πXθ (A)

∣∣∣
≤ sup

θ∈Θ
sup
x∈X

∣∣∣πXθ,M (A)− P (T )
θ,M (x,A)

∣∣∣+ sup
θ∈Θ

sup
x∈X

∣∣∣P (T )
θ,M (x,A)− P (T )

θ (x,A)
∣∣∣

+ sup
θ∈Θ

sup
x∈X

∣∣∣πXθ (A)− P (T )
θ (x,A)

∣∣∣
Let ρ1 and ρ2 denote the uniform minorizing constants of the Markov chains Xt and Xt,M

respectively, and define ρ+ ≡ max (ρ1, ρ2). By the definition of uniform ergodicity, the

first and third terms in the above expression can be bounded by their uniform minorizing
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constants to the power T

sup
θ∈Θ

∣∣πXθ,M (A)− πXθ (A)
∣∣

≤ ρT1 + sup
θ∈Θ

sup
x∈X

∣∣∣P (T )
θ,M (x,A)− P (T )

θ (x,A)
∣∣∣+ ρT2

≤ 2ρT+ + sup
θ∈Θ

sup
x∈X

∣∣∣P (T )
θ,M (x,A)− P (T )

θ (x,A)
∣∣∣

It remains to bound the second term. Through applications of the triangle inequality and

the Cauchy-Schwarz inequality, it follows that

sup
θ∈Θ

sup
x∈X

∣∣∣P (T )
θ,M (x,A)− P (T )

θ (x,A)
∣∣∣

= sup
θ∈Θ

sup
x∈X

∣∣∣Pθ,MP (T−1)
θ,M (x,A)− Pθ,MP

(T−1)
θ (x,A) + Pθ,MP

(T−1)
θ (x,A)− PθP

(T−1)
θ (x,A)

∣∣∣
= sup

θ∈Θ
sup
x∈X

∣∣∣Pθ,M (P (T−1)
θ,M (x,A)− P (T−1)

θ (x,A)
)
− (Pθ,M − Pθ)P

(T−1)
θ (x,A)

∣∣∣
≤ sup

θ∈Θ
sup
x∈X

∣∣∣Pθ,M (P (T−1)
θ,M (x,A)− P (T−1)

θ (x,A)
)∣∣∣+ sup

θ∈Θ
sup
x∈X

∣∣∣(Pθ,M − Pθ)P (T−1)
θ (x,A)

∣∣∣
≤ sup

θ∈Θ
sup
x∈X
|Pθ,M (x,A)| sup

θ∈Θ
sup
x∈X

∣∣∣P (T−1)
θ,M (x,A)− P (T−1)

θ (x,A)
∣∣∣

+ sup
θ∈Θ

sup
x∈X
|Pθ,M (x,A)− Pθ (x,A)| sup

θ∈Θ
sup
x∈X

∣∣∣P (T−1)
θ (x,A)

∣∣∣
≤ sup

θ∈Θ
sup
x∈X

∣∣∣P (T−1)
θ,M (x,A)− P (T−1)

θ (x,A)
∣∣∣+ sup

θ∈Θ
sup
x∈X
|Pθ,M (x,A)− Pθ (x,A)|

Applying this inequality recursively one can show that

sup
θ∈Θ

sup
x∈X

∣∣∣P (T )
θ,M (x,A)− P (T )

θ (x,A)
∣∣∣ ≤ T sup

θ∈Θ
sup
x∈X
|Pθ,M (x,A)− Pθ (x,A)|

As long as the Lebesgue measure of the discrete sets supm λ (Am,M ) → 0 as M → ∞,

the set of discrete points {xm,M} will become dense in X . That is, for any x ∈ X and ε > 0,

∃M > 0 and 1 ≤ m ≤ M s.t. ‖x− xm,M‖ < ε. Thus the error in the expression above is

bounded by the quality of approximation of the marginal distributions Pθ (x, ·).
Combining this last inequality with the bounds derived above, the original expression

of interest can be bounded by

sup
θ∈Θ

∣∣πXθ,M (A)− πXθ (A)
∣∣

≤ 2ρT+ + T ×O (h (M))

Letting T be a function of M , TM , this means that ∃ 0 < c < ∞ and ∃ N < ∞ such
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that for all M ≥ N ,

sup
θ∈Θ

∣∣πXθ,M (A)− πXθ (A)
∣∣ ≤ 2ρTM+ + cTMh (M)

Thus in order to control the above expression, it must be the case that TM is chosen such

that

2ρTM+ + cTMh (M)→ 0

as M → ∞. Note that since 0 < ρ+ < 1, the term 2ρTM+ decays exponentially fast as a

function of TM . Thus TM can be chosen to be any function of M such that 2ρTM+ → 0 and

TM × h (M)→ 0 as N →∞. This will determine h∗ (M).

I now focus on the specific case of using the Farmer and Toda (2016) method with

a trapezoidal rule quadrature rule. The trapezoidal rule has integration error which is

O
(
M−2/d

)
. Thus

sup
θ∈Θ

∣∣πXθ,M (A)− πXθ (A)
∣∣ ≤ 2ρTM+ + TM ×O

(
M−2/d

)
This is equivalent to saying that ∃ 0 < c <∞ and ∃ N <∞ such that for all M ≥ N ,

sup
θ∈Θ

∣∣πXθ,M (A)− πXθ (A)
∣∣ ≤ 2ρTM+ + cTMM

−2/d

Let ε > 0 and consider the sequence TM = M ε/d. Then

2ρTM+ + cTMM
−2/d

=2ρM
ε/d

+ + cM ε/dM−2/d

=2ρM
ε/d

+ + cM (ε−2)/d

It is clear that the second term dominates asymptotically because it declines polynomially

in M whereas the first term declines exponentially in M . This shows that

sup
θ∈Θ

∣∣πXθ,M (A)− πXθ (A)
∣∣ = O

(
M (ε−2)/d

)
This implies that for any δ > ε

sup
θ∈Θ

∣∣πXθ,M (A)− πXθ (A)
∣∣ = o

(
M (δ−2)/d

)
However since the choice of ε was arbitrary, we have that the above holds for any δ > 0. This

shows that for the case of the Farmer and Toda (2016) method with trapezoidal quadrature
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rule, h∗ (M) = M (δ−2)/d for any δ > 0.

�

Proof of Lemma 4. My goal is to show that the discrete approximation to the filter-

ing distribution converges in distribution to the true filtering distribution as M → ∞.

Define X0
−r,M ≡ (X0,M , . . . , X−r,M ) and X0

−r ≡ (X0, . . . , X−r). I will first show that

X0
−r,M

d−→ X0
−r for r ≥ 0 as M → ∞. I will then show this implies that the joint distri-

bution
(
X0
−r,M ,Y

0
−r

)
d−→
(
X0
−r,Y

0
−r
)

as M → ∞. This will imply my desired result, that

X0,M

∣∣Y 0
−r

d−→ X0

∣∣Y 0
−r as M →∞.

Let fr : X r+1 → R be a bounded, continuous function. I will establish convergence in

distribution by showing that the expectation of fr

(
X0
−r,M

)
converges to the expectation

of fr
(
X0
−r
)

as M →∞ for any bounded, continuous fr. Define the difference of these two

expectations as

∆E ≡
∣∣Eθ [fr (X0

−r,M
)]
− Eθ

[
fr
(
X0
−r
)]∣∣ (47)

Recall the definitions of the transition kernel and ergodic distribution of the discrete

approximation extended to X

Pθ,M (x,A) ≡
M∑
m=1

M∑
m′=1

Pθ,M
(
m,m′

)
1 {x ∈ Am,M}1

{
xm′,M ∈ A

}
(48)

πXθ,M (A) ≡
M∑
m=1

πXθ,M (m)1 {xm,M ∈ A} (49)

This extended transition kernel Pθ,M and probability measure πXθ,M admit densities with

respect to the measure µ on X which I will label as qθ,M (· |x) : X → R for x ∈ X , and

pθ,M : X → R. This allows me to replace summation by integration and keep the notation

consistent across the discrete and continuous random variables.

I next factor the joint distribution of the sequence of r + 1 X’s into the product of the

marginal distribution of the initial X and the distribution of the remaining X’s conditional

on the initial one. This is a straightforward application of Bayes’ Rule.
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∆E =

∣∣∣∣∫
X r+1

fr (x0, . . . , x−r) pθ,M (x0, . . . , x−r) dx0 · · · dx−r

−
∫
X r+1

fr (x0, . . . , x−r) pθ (x0, . . . , x−r.) dx0 · · · dx−r
∣∣∣∣

=

∣∣∣∣∫
X r+1

fr (x0, . . . , x−r) pθ,M (x0, . . . , x−r+1 |x−r ) pθ,M (x−r) dx0 · · · dx−r

−
∫
X r+1

fr (x0, . . . , x−r) pθ (x0, . . . , x−r+1 |x−r ) pθ (x−r) dx0 · · · dx−r
∣∣∣∣

Since both X0,M and X0 are first order Markov processes, these distributions can be further

factored into the product of the initial distribution with the sequence of r one-step-ahead

conditional distributions.

∆E =

∣∣∣∣∫
X r+1

fr (x0, . . . , x−r) qθ,M (x0 |x−1 ) · · · qθ,M (x−r+1 |x−r ) pθ,M (x−r) dx0 · · · dx−r

−
∫
X r+1

fr (x0, . . . , x−r) qθ (x0 |x−1 ) · · · qθ (x−r+1 |x−r ) pθ (x−r) dx0 · · · dx−r

Before proceeding, it will be useful to define the operators associated with the transition

kernels Pθ and Pθ,M and their r-step counterparts P
(r)
θ and P

(r)
θ,M . For a function f : X 2 → R,

define

(Pθf) (x) ≡
∫
X
f
(
x′, x

)
qθ
(
x′ |x

)
dx′ (50)

(Pθ,Mf) (x) ≡
∫
X
f
(
x′, x

)
qθ,M

(
x′ |x

)
dx′ (51)

For r > 1, 0 ≤ n < r and fr : X r+1 → R, define fr−n : X r−n+1 → R as

fr−n (x0, . . . , x−r+n) ≡ fr (x0, . . . , x−r+n;x−r+n−1, . . . , x−r) (52)

where arguments after the semi-colon are held fixed. In other words, fr−n can be thought

of as the function fr where the last n arguments are held fixed. This then allows me to

define the i-step versions of Pθ and Pθ,M . Define the 1-step versions as(
P

(1)
θ f1

)
(x) ≡ (Pθf1) (x) =

∫
X
fr (x0, x;x−2, . . . , x−r) qθ (x0 |x) dx0(

P
(1)
θ,Mf1

)
(x) ≡ (Pθ,Mf1) (x) =

∫
X
fr (x0, x;x−2, . . . , x−r) qθ,M (x0 |x) dx0
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For i = 2, . . . , r, define(
P

(i)
θ fi

)
(x) ≡

(
Pθ

(
P

(i−1)
θ fi−1

))
(x) =

∫
X

(
P

(i−1)
θ fi−1

)
(x−i+1)qθ (x−i+1 |x) dx−i+1

(53)(
P

(i)
θ,Mfi

)
(x) ≡

(
Pθ,M

(
P

(i−1)
θ,M fi−1

))
(x) =

∫
X

(
P

(i−1)
θ,M fi−1

)
(x−i+1)qθ,M (x−i+1 |x) dx−i+1

(54)

These are distinct are from what is referred to as the i-step ahead transition kernel and

its associated operator. An i-step ahead transition kernel characterizes the probability of

transitioning from a point in the space to any measurable set in that space i periods ahead.

However, this operator implicitly characterizes the probability of moving from any point in

the space to any sequence of i measurable sets. In other words, it computes probabilities

over paths of the Markov chain. Note that these i-step ahead operators can be equivalently

written in terms of one-step-ahead conditional densities as(
P

(i)
θ fi

)
(x) =

∫
X i
fr (x0, . . . , x−i+1, x;x−i−1, . . . , x−r) qθ (x0 |x−1 ) · · · qθ (x−i+1 |x) dx0 · · · dx−i+1(

P
(i)
θ,Mfi

)
(x) =

∫
X i
fr (x0, . . . , x−i+1, x;x−i−1, . . . , x−r) qθ,M (x0 |x−1 ) · · · qθ,M (x−i+1 |x) dx0 · · · dx−i+1

With this new notation in hand, ∆E can equivalenthly be rewritten in terms of the

r-step operators as

∆E =

∣∣∣∣∫
X

(
P

(r)
θ,Mfr

)
(x)pθ,M (x) dx−

∫
X

(
P

(r)
θ fr

)
(x)pθ (x) dx

∣∣∣∣ (55)

Next, I seek to establish that ∆E can be bounded by the sum of two terms, one involving

the difference in one step ahead transition kernels, the second involving the difference in

r − 1-step operators. By assumption a bound is known for the difference in integrals with

respect to the one-step-ahead conditional distributions. Thus I can iteratively apply this

logic to obtain a bound for ∆E in terms of only the one-step-ahead approximation error.

Replace integration with respect to pθ,M by integration with respect to pθ in the first

term of (55), and add and subtract the result from equation (55). Then apply the triangle
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inequality to bound ∆E by the sum of two new terms.

∆E =

∣∣∣∣∫
X

(
P

(r)
θ,Mfr

)
(x)pθ,M (x) dx−

∫
X

(
P

(r)
θ,Mfr

)
(x)pθ (x) dx

+

∫
X

(
P

(r)
θ,Mfr

)
(x)pθ (x) dx−

∫
X

(
P

(r)
θ fr

)
(x)pθ (x) dx

∣∣∣∣ (56)

≤
∣∣∣∣∫
X

(
P

(r)
θ,Mfr

)
(x)pθ,M (x) dx−

∫
X

(
P

(r)
θ,Mfr

)
(x)pθ (x) dx

∣∣∣∣
+

∣∣∣∣∫
X

(
P

(r)
θ,Mfr

)
(x)pθ (x) dx−

∫
X

(
P

(r)
θ fr

)
(x)pθ (x) dx

∣∣∣∣ (57)

Consider the first term on the right hand side of inequality (57). It is simply the difference

of integrals of
(
P

(r)
θ,Mfr

)
(x) with respect to pθ,M and pθ respectively. By Proposition 1, this

difference is o (h∗ (M)).∣∣∣∣∫
X

(
P

(r)
θ,Mfr

)
(x)pθ,M (x) dx−

∫
X

(
P

(r)
θ,Mfr

)
(x)pθ (x) dx

∣∣∣∣
≤ sup
|f |≤1

∣∣∣∣∫
X
f (x) pθ,M (x) dx−

∫
X
f(x)pθ (x) dx

∣∣∣∣
= 2

∥∥πXθ,M − πXθ ∥∥TV
= o (h∗ (M))

Next consider the second term on the right hand side of inequality (57). By definition,

the r-step operator can be written as the composition of the one-step-ahead operator with

the r − 1-step ahead operator.∣∣∣∣∫
X

(
P

(r)
θ,Mfr

)
(x)pθ (x) dx−

∫
X

(
P

(r)
θ fr

)
(x)pθ (x) dx

∣∣∣∣
=

∣∣∣∣∫
X

(
Pθ,M

(
P

(r−1)
θ,M fr−1

))
(x)pθ (x) dx−

∫
X

(
Pθ

(
P

(r−1)
θ fr−1

))
(x)pθ (x) dx

∣∣∣∣ (58)

Take the first term of equation (58), replace the first Pθ,M by Pθ, and add and subtract it
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to equation (58). Then apply the triangle inequality again.∣∣∣∣∫
X

(
Pθ,M

(
P

(r−1)
θ,M fr−1

))
(x)pθ (x) dx−

∫
X

(
Pθ

(
P

(r−1)
θ fr−1

))
(x)pθ (x) dx

∣∣∣∣
=

∣∣∣∣∫
X

(
Pθ,M

(
P

(r−1)
θ,M fr−1

))
(x)pθ (x) dx−

∫
X

(
Pθ

(
P

(r−1)
θ,M fr−1

))
(x)pθ (x) dx

+

∫
X

(
Pθ

(
P

(r−1)
θ,M fr−1

))
(x)pθ (x) dx−

∫
X

(
Pθ

(
P

(r−1)
θ fr−1

))
(x)pθ (x) dx

∣∣∣∣ (59)

≤
∣∣∣∣∫
X

(
Pθ,M

(
P

(r−1)
θ,M fr−1

))
(x)pθ (x) dx−

∫
X

(
Pθ

(
P

(r−1)
θ,M fr−1

))
(x)pθ (x) dx

∣∣∣∣
+

∣∣∣∣∫
X

(
Pθ

(
P

(r−1)
θ,M fr−1

))
(x)pθ (x) dx−

∫
X

(
Pθ

(
P

(r−1)
θ fr−1

))
(x)pθ (x) dx

∣∣∣∣ (60)

The first term of inequality (60) depends only on the approximation error of the one-step-

ahead distribution, and the second term depends on the approximation error of the r−1-step

ahead distribution. Define the function φ : X 2 → R

φ (x−r+1, x−r) ≡
∫
X r−1

fr (x0, . . . , x−r) qθ,M (x0 |x−1 ) · · · qθ,M (x−r+2 |x−r+1 ) dx0 · · · dx−r+2

(61)

Consider the first term on the right hand side of inequality (60) and substitute in the

definitions of the r-step operators in terms of one-step-ahead conditional distributions. I

will show that this term can be thought of as the difference in integrals of the function φ

with respect to the one-step-ahead conditional distribution and its discrete approximation.∣∣∣∣∫
X

(
Pθ,M

(
P

(r−1)
θ,M fr−1

))
(x)pθ (x) dx−

∫
X

(
Pθ

(
P

(r−1)
θ,M fr−1

))
(x)pθ (x) dx

∣∣∣∣
=

∣∣∣∣∫
X r+1

fr (x0, . . . , x−r) qθ,M (x0 |x−1 ) · · · qθ,M (x−r+1 |x−r ) pθ (x−r) dx0 · · · dx−r

−
∫
X r+1

fr (x0, . . . , x−r) qθ,M (x0 |x−1 ) · · · qθ,M (x−r+2 |x−r+1 ) qθ (x−r+1 |x−r ) pθ (x−r) dx0 · · · dx−r
∣∣∣∣

=

∣∣∣∣∫
X 2

φ (x−r+1, x−r) qθ,M (x−r+1 |x−r ) pθ (x−r) dx−r+1dx−r

−
∫
X 2

φ (x−r+1, x−r) qθ (x−r+1 |x−r ) pθ (x−r) dx−r+1dx−r

∣∣∣∣
The term on the right hand side of this last equality can be rewritten in terms of the
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one-step-ahead operators Pθ and Pθ,M∣∣∣∣∫
X 2

φ (x−r+1, x−r) qθ,M (x−r+1 |x−r ) pθ (x−r) dx−r+1dx−r

−
∫
X 2

φ (x−r+1, x−r) qθ (x−r+1 |x−r ) pθ (x−r) dx−r+1dx−r

∣∣∣∣
=

∣∣∣∣∫
X

(Pθ,Mφ) (x)pθ(x)dx−
∫
X

(Pθφ) (x)pθ(x)dx

∣∣∣∣
By proposition 1 the error between integrals with respect to qθ,M and qθ is o (h∗ (M)).∣∣∣∣∫

X
(Pθ,Mφ) (x)pθ(x)dx−

∫
X

(Pθφ) (x)pθ(x)dx

∣∣∣∣
≤ sup
|f |≤1

∣∣∣∣∫
X

(Pθ,Mf) (x)pθ(x)dx−
∫
X

(Pθf) (x)pθ(x)dx

∣∣∣∣
= 2 ‖πθPθ,M − πθPθ‖TV
= o (h∗ (M))

This leaves one term to bound to establish convergence in distribution of X0
−r,M to X0

−r

as M →∞. Consider the second term on the right hand side of inequality (60). Similar to

the above argument, it will be useful to define a new function ϕ : X r−1 → R

ϕ (x0, . . . , x−r+2) =

∫
X 2

fr (x0, . . . , x−r) qθ (x−r+1 |x−r ) pθ (x−r) dx−r+1dx−r

By using Fubini’s theorem, I will show that by switching the order of integration in the

second term on the right hand side of inequality (60), this term can be expressed as the

(r−1)-step operators P
(r−1)
θ and P

(r−1)
θ,M applied to the same function ϕ. I take the supremum

over the conditioning value for x−r+2 in order to break the dependence of the terms not
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captured by ϕ on x−r+1.∣∣∣∣∫
X

(
Pθ

(
P

(r−1)
θ,M fr−1

))
(x)pθ (x) dx−

∫
X

(
Pθ

(
P

(r−1)
θ fr−1

))
(x)pθ (x) dx

∣∣∣∣
=

∣∣∣∣∫
X r+1

fr (x0, . . . , x−r) qθ,M (x0 |x−1 ) · · · qθ,M (x−r+2 |x−r+1 ) qθ (x−r+1 |x−r ) pθ (x−r) dx0 · · · dx−r

−
∫
X r+1

fr (x0, . . . , x−r) qθ (x0 |x−1 ) · · · qθ (x−r+2 |x−r+1 ) qθ (x−r+1 |x−r ) pθ (x−r) dx0 · · · dx−r
∣∣∣∣

≤ sup
x∈X

∣∣∣∣∫
X r+1

fr (x0, . . . , x−r) qθ,M (x0 |x−1 ) · · · qθ,M (x−r+2 |x) qθ (x−r+1 |x−r ) pθ (x−r) dx0 · · · dx−r

−
∫
X r+1

fr (x0, . . . , x−r) qθ (x0 |x−1 ) · · · qθ (x−r+2 |x) qθ (x−r+1 |x−r ) pθ (x−r) dx0 · · · dx−r
∣∣∣∣

= sup
x∈X

∣∣∣∣∫
X r−1

ϕ (x0, . . . , x−r+2) qθ,M (x0 |x−1 ) · · · qθ,M (x−r+2 |x) dx0 · · · dx−r+2

−
∫
X r−1

ϕ (x0, . . . , x−r+2) qθ,M (x0 |x−1 ) · · · qθ (x−r+2 |x) dx0 · · · dx−r+2

∣∣∣∣

Note that the last term in the right hand side of the above equality can be thought of as

the (r − 2)-step operator applied to the function ϕ

sup
x∈X

∣∣∣∣∫
X r−1

ϕ (x0, . . . , x−r+2) qθ,M (x0 |x−1 ) · · · qθ,M (x−r+2 |x) dx0 · · · dx−r+2

−
∫
X r−1

ϕ (x0, . . . , x−r+2) qθ,M (x0 |x−1 ) · · · qθ (x−r+2 |x) dx0 · · · dx−r+2

∣∣∣∣
= sup

x∈X

∣∣∣(P (r−2)
θ,M ϕ

)
(x)−

(
P

(r−2)
θ ϕ

)
(x)
∣∣∣

By appyling the same logic to this component as the (r−1)-step ahead component, it can be

shown that the second term on the right hand side of inequality (57) will be o (r × h∗ (M)).

Combining that result with the bound on the first term on the right hand side of inequality

(57) and returning to the original expression of interest, it can be seen that

∆E ≤ o (h∗ (M)) + o (r × h∗ (M)) = o (r × h∗ (M))

For any fixed r, this difference converges to 0 because by assumption h∗ (M)→ 0 asM →∞.

Next I seek to show that
(
X0
−r,M ,Y

0
−r

)
d−→
(
X0
−r,Y

0
−r
)

as M → ∞. The joint density
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can be written and then factored as:

pθ (X0, . . . , X−r, Y0, . . . , Y−r)

= pθ (Y0, . . . , Y−r |X0, . . . , X−r ) pθ (X0, . . . , X−r)

= gθ (Y0 |X0 ) · · · gθ (Y−r |X−r ) pθ (X0, . . . , X−r)

The same factorization can be done for the discrete approximations. Consider the ex-

pectation of an arbitrary bounded, continuous function f : X r+1 × Yr+1 → R. In order

to establish convergence in distribution it is sufficient to establish the expectation of any

bounded, continuous function of the sequence of approximations converges to the expec-

tation of the function of the limit. The difference in the expectations of the function f is

given by ∣∣Eθ [f (X0
−r,M ,Y

0
−r
)]
− Eθ

[
f
(
X0
−r,Y

0
−r
)]∣∣

Define the new function f∗ : X r+1 → R as:

f∗
(
x0
−r
)
≡
∫
Yr+1

f
(
x0
−r,y

0
−r
)
gθ (y0 |x0 ) · · · gθ (y−r |x−r ) dy0 · · · dy−r

Since gθ (· |x) is a continuous and bounded function, so is their (r + 1)-fold product and

thus their product with f . Furthermore, since integration is a continuous operator over the

space Yr+1, it follows from X0
−r,M

d−→ X0
−r that

(
X0
−r,M ,Y

0
−r

)
d−→
(
X0
−r,Y

0
−r
)

as M →∞.

This implies that the filtering distribution X0,M

∣∣Y 0
−r

d−→ X0

∣∣Y 0
−r as M → ∞. Making an

analogous argument to that in Proposition 1, r can be chosen as a function of M , rM , so as

to maintain the convergence in distribution as both r and M go to infinity. The sufficient

condition is that rM × h∗ (M)→ 0 as M →∞.

Consider the initial object of interest

sup
θ∈Θ
|`M (θ)− ` (θ)|

= sup
θ∈Θ

∣∣Eθ∗ [log pθ,M
(
Y0

∣∣Y 0
−∞
)
− log pθ

(
Y0

∣∣Y 0
−∞
)]∣∣

≤ sup
θ∈Θ

Eθ∗
[∣∣log pθ,M

(
Y0

∣∣Y 0
−∞
)
− log pθ

(
Y0

∣∣Y 0
−∞
)∣∣]

≤ sup
θ∈Θ

Eθ∗
[ ∣∣pθ,M (Y0

∣∣Y 0
−∞
)
− pθ

(
Y0

∣∣Y 0
−∞
)∣∣

min
(
pθ,M

(
Y0

∣∣Y 0
−∞
)
, pθ
(
Y0

∣∣Y 0
−∞
))]

This quantity converges to 0 as M → ∞ due to the convergence in distribution of the

filtering distributions for infinite histories. When the Farmer and Toda (2016) method with
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a trapezoidal quadrature rule is used,

sup
θ∈Θ
|`M (θ)− ` (θ)| = o (h∗ (M)) = o

(
M−(2−δ)/d

)
for δ > 0, by arguments analogous to those made in proposition 1.

�

Proof of Lemma 5. I first establish that for any fixed x ∈ XM , r, and M , ∆0,r,M,x (θ) is

continuous w.r.t. θ. By definition

pθ,M
(
Y0

∣∣Y −1
−r , X−r,M = x

)
=
pθ,M

(
Y 0
−r+1 |Y−r, X−r,M = x

)
pθ,M

(
Y −1
−r+1 |Y−r, X−r,M = x

)
Note that for s ∈ {−1, 0}, and assuming x = xm−r,M without loss of generality,

pθ,M
(
Y s
−r+1 |Y−r, X−r,M = x

)
=

∑
m−r,...,ms

[
Pθ,M (m−r,m−r+1)1

{
xm−r = x

} s∏
i=−r+2

Pθ,M (mi−1,mi)
s∏

i=−r+1

gθ (Yi |Xi = xmi,M )

]

Thus pθ,M
(
Y s
−r+1 |Y−r, X−r,M = x

)
is continuous w.r.t. θ by continuity of Pθ,M and gθ.

Therefore the sequence {∆0,r,M,x} is also continuous w.r.t. θ because it is the composition

of continuous functions. Since {∆0,r,M,x (θ)} converges uniformly w.r.t. θ ∈ Θ, Pθ∗-a.s.,

∆0,∞,M (θ) is also continuous w.r.t. θ ∈ Θ, Pθ∗-a.s. The proof follows by using Lemma 3

and the dominated convergence theorem. �

Proof of Proposition 2. Using the triangle inequality,

sup
θ∈Θ

sup
x0∈X

∣∣T−1`T,M (θ, x0)− ` (θ)
∣∣ = sup

θ∈Θ
sup
x0∈X

∣∣T−1`T,M (θ, x0)− `M (θ) + `M (θ)− ` (θ)
∣∣

≤ sup
θ∈Θ

sup
x0∈X

∣∣T−1`T,M (θ, x0)− `M (θ)
∣∣+ sup

θ∈Θ
|`M (θ)− ` (θ)|

The second term limits to 0 by Lemma 4. For the second term, note that by Lemma 2

it is sufficient to prove that

lim sup
T→∞

sup
θ∈Θ

sup
M∈Z+

∣∣T−1`T,M (θ)− `M (θ)
∣∣ = 0, Pθ∗-a.s.

Furthermore, since Θ is compact, this further reduces to proving that for all θ ∈ Θ,

lim
δ→0

lim sup
T→∞

sup
|θ′−θ|≤δ

sup
M∈Z+

∣∣T−1`T,M
(
θ′
)
− `M (θ)

∣∣ = 0, Pθ∗-a.s.
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This term can be further decomposed as

lim sup
δ→0

lim sup
T→∞

sup
|θ′−θ|≤δ

sup
M∈Z+

∣∣T−1`T,M
(
θ′
)
− `M (θ)

∣∣
= lim sup

δ→0
lim sup
T→∞

sup
|θ′−θ|≤δ

sup
M∈Z+

∣∣T−1`T,M
(
θ′
)
− T−1`T,M (θ)

∣∣
≤ A+B + C

where

A = lim sup
δ→0

lim sup
T→∞

sup
|θ′−θ|≤δ

sup
M∈Z+

T−1
T∑
t=1

∣∣∆t,0,M

(
θ′
)
−∆t,∞,M

(
θ′
)∣∣ ,

B = lim sup
δ→0

lim sup
T→∞

sup
|θ′−θ|≤δ

sup
M∈Z+

T−1
T∑
t=1

∣∣∆t,∞,M
(
θ′
)
−∆t,∞,M (θ)

∣∣ ,
C = lim sup

T→∞
sup
M∈Z+

T−1
T∑
t=1

|∆t,∞,M (θ)−∆t,0,M (θ)|

Terms A and C are zero by Corollary 2, and by Lemma 5 and the ergodic theorem,

B ≤ lim sup
δ→0

lim sup
T→∞

T−1
T∑
t=1

sup
|θ′−θ|≤δ

sup
M∈Z+

∣∣∆t,∞,M
(
θ′
)
−∆t,∞,M (θ)

∣∣
= lim sup

δ→0
Eθ∗

[
sup
|θ′−θ|≤δ

sup
M∈Z+

∣∣∆t,∞,M
(
θ′
)
−∆t,∞,M (θ)

∣∣]
= 0, Pθ∗-a.s.

�

Proof of Theorem 3. . In order to establish asymptotic normality of my proposed esti-

mator, it is sufficient to show that `T

(
θ̂T,x0 , x0

)
− `T

(
θ̂T,M,x0 , x0

)
= oP (1) by Theorem 7

of Douc et al. (2004). Rewriting this term

`T

(
θ̂T,x0 , x0

)
− `T

(
θ̂T,M,x0,M , x0

)
= `T

(
θ̂T,x0 , x0

)
− `T

(
θ̂T,M,x0,M , x0

)
+ `T,M

(
θ̂T,x0 , x0,M

)
− `T,M

(
θ̂T,x0 , x0,M

)
≤ `T

(
θ̂T,x0 , x0

)
− `T,M

(
θ̂T,x0 , x0,M

)
+ `T,M

(
θ̂T,M,x0,M , x0,M

)
− `T

(
θ̂T,M,x0,M , x0

)
Note that it is thus sufficient to show that for any θ ∈ Θ, Pθ (|`T,M (θ, x0,M )− `T (θ, x0)| ≥ ε)→

0 as T →∞ and M →∞ at appropriate rates. It is possible to decompose this probability
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as follows:

Pθ (|`T,M (θ, x0,M )− `T (θ, x0)| ≥ ε)

=Pθ (|`T,M (θ, x0,M )− `T (θ, x0) + T` (θ)− T` (θ) + T`M (θ)− T`M (θ)| ≥ ε)

≤ Pθ
(
|`T (θ, x0)− T` (θ)| ≥ ε

3

)
+ Pθ

(
|`T,M (θ, x0,M )− T`M (θ)| ≥ ε

3

)
+ Pθ

(
T |`M (θ)− ` (θ)| ≥ ε

3

)
Theorem 14 from Douc et al. (2011) states that for any Vθ-uniformly ergodic state

process with transition kernel Pθ, f : Ys+1 with ‖f‖∞ <∞, there exists a constant K <∞
such that

Pνθ

(∣∣∣∣∣
T∑
t=1

{
f
(
Y t+s
t

)
− Eθ∗ [f (Y s

0 )]
}∣∣∣∣∣ ≥ ε

)
≤ Kν (V ) exp

[
− 1

K

(
min

(
ε2

T
, ε

))]

for any initial probability measure ν and ε > 0. Both the original chain Pθ and each discrete

chain Pθ,M are uniformly ergodic and thus Vθ-uniformly ergodic for Vθ = 1.

Note that the first two terms are of the form considered in Theorem 14 from Douc et al.

(2011). I explicity show the bound for the first term and the second term is analogous due

to the uniform minorization of the sequence of discrete Markov chains for all M ∈ Z+ with

the same minorizing constant

Pθ
(
|`T (θ, x0)− T` (θ)| ≥ ε

3

)
=Pθ

(∣∣∣∣∣
T∑
t=1

{
log pθ

(
Yt
∣∣Y t−1

0 , X0 = x0

)
− ` (θ)

}∣∣∣∣∣ ≥ ε

3

)

≤ K exp

[
− 1

K

(
min

(
ε2

9T
,
ε

3

))]
= oP (1) with P = Pθ∗

For the third term, it follows from Lemma 4 that

|`M (θ)− ` (θ)| = o (h∗ (M))

and thus

T |`M (θ)− ` (θ)| = o (T × h∗ (M))

Returning to the original expression of interest

Pθ∗
(∣∣∣`T (θ̂T,x0 , x0

)
− `T

(
θ̂T,M,x0 , x0

)∣∣∣ ≥ ε)
≤ Pθ∗

(∣∣∣`T (θ̂T,x0 , x0

)
− `T,M

(
θ̂T,x0 , x0

)
+ `T,M

(
θ̂T,M,x0 , x0

)
− `T

(
θ̂T,M,x0 , x0

)∣∣∣ ≥ ε)
≤ Pθ∗

(∣∣∣`T,M (θ̂T,x0 , x0

)
− `T

(
θ̂T,x0 , x0

)∣∣∣ ≥ ε

2

)
+ Pθ∗

(∣∣∣`T,M (θ̂T,M,x0 , x0

)
− `T

(
θ̂T,M,x0 , x0

)∣∣∣ ≥ ε

2

)
→ 0
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for T → ∞, M → ∞, and T × h∗ (M) → 0. This ensures that my proposed estimator

satisfies condition (iii) of Theorem 7 from Douc et al. (2004). �

B Discretizing Nonlinear, Non-Gaussian Markov Processes

with Exact Conditional Moments

This appendix briefly summarizes the method for discretizting stochastic processes proposed

in Farmer and Toda (2016).

Consider the time-homogeneous first-order Markov process

P(Xt ≤ x′|Xt−1 = x) = F (x′ |x),

where Xt is the random vector of state variables and F (· |x) is a cumulative distribution

function (CDF) that determines the distribution of Xt = x′ given Xt−1 = x. The dynamics

of any Markov process are completely characterized by its Markov transition kernel. In the

case of a discrete state space, this transition kernel is simply a matrix of transition prob-

abilities, where each row corresponds to a conditional distribution. One can discretize the

continuous process Xt by applying the Tanaka and Toda (2013) method to each conditional

distribution separately.

More concretely, suppose that one has a set of grid points DM = {xm}Mm=1 and an

initial coarse approximation Q = (qmm′), which is an M ×M probability transition matrix.

Additionally, suppose one wants to match some conditional moments of Xt, represented by

the moment defining function T (x). The exact conditional moments when the current state

is Xt−1 = xm are

Tm = E [T (Xt) |Xt−1 = xm ] =

∫
T (x)dF (x |xm ),

where the integral is over x, fixing Xt−1 = xm. (If these moments do not have explicit

expressions, highly accurate quadrature formulas can be used to compute them.) By Theo-

rem 2.1 in Farmer and Toda (2016), these moments can be matched exactly by solving the

optimization problem

min
{pmm′}

M
m′=1

M∑
m′=1

pmm′ log
pmm′

qmm′

subject to

M∑
m′=1

pmm′T (xm′) = Tm,

M∑
m′=1

pmm′ = 1, pmm′ ≥ 0 (62)
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for each m = 1, 2, . . . ,M , or equivalently the dual problem

min
λ∈RL

M∑
m′=1

qmm′e
λ′(T (xm′ )−Tm). (63)

(63) has a unique solution if and only if the regularity condition

T̄m ∈ int co T (DM ) (64)

holds. Furthermore, if the dual problem has a unique solution λm, then the solution to the

primal problem (62) is given by

pmm′ =
qmm′e

λ′m(T (xm′ )−Tm)∑M
m′=1 qmm′e

λ′m(T (xm′ )−Tm)
(65)

Lastly, define the errors associated with the moment matching as:

εm ≡
M∑

m′=1

pmm′T (xm′)− Tm (66)

The procedure for constructing the finite-state Markov chain approximation to Xt is sum-

marized in Algorithm 2 below.

Algorithm 2: Discretization of Markov processes

1 Select a discrete set of points DM = {xm}Mm=1 and an initial approximation

Q = (qmm′).

2 Select a moment defining function T (x) and corresponding exact conditional

moments
{
Tm
}M
m=1

. If necessary, approximate the exact conditional moments with

highly accurate numerical integrals. Set m 1 and define an error tolerance κ > 0.

3 Solve minimization problem (63) and store the resulting solution λm.

4 Compute εm using (66). If ‖εm‖∞ < κ, move to step 5. If not, select a smaller set of

moments to match and return to step 3.

5 Compute the conditional probabilities corresponding to row m of P = (pmm′) using

(65). Set m m+ 1. If m ≤M , move to step 3, otherwise move to step 6.

6 Collect the computed conditional probability measures in the matrix P = (pmm′).

The resulting finite-state Markov chain approximation to Xt takes values in the set DM

and has associated transition matrix P . Since the dual problem (63) is an unconstrained

convex minimization problem with a typically small number of variables, standard New-
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ton type algorithms can be applied. Furthermore, since the probabilities (65) are strictly

positive by construction, the transition probability matrix P = (pmm′) is a strictly positive

matrix, so the resulting Markov chain is stationary and uniformly ergodic by construction.
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