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1 Introduction

The procurement of complex projects is often plagued by large cost overruns. One impor-

tant reason for unexpected additional costs are flaws in the initial design of the project.

When these flaws are revealed after production has started, the design of the project

needs to be changed and contracts have to be renegotiated. This process involves physi-

cal and psychological adjustment costs that can be substantial. To minimize design flaws

the early collaboration with potential contractors is of crucial importance. However, if

the project is procured by a standard price-only auction, potential contractors have little

incentive to contribute their expertise. For each contractor who spotted a design flaw it is

a dominant strategy to conceal this information, bid more aggressively in the auction in

order to get the contract, and then renegotiate with the buyer in order to fix the design

flaw later.

In this paper we propose two informationally robust mechanisms that allocate the

contract to the seller with the lowest cost and that induce all potential sellers to reveal

any information that they may have about possible design flaws early, i.e. before the

contract is assigned. First, we look for a direct mechanism that implements the efficient

allocation. We derive a direct mechanism that is informationally robust in the sense that

it does not depend on the priors (and higher order beliefs) of the involved parties about

the likelihood of possible flaws and of the probabilities that these flaws have been spotted

by each of the potential sellers. In fact, the mechanism is ex post incentive compatible,

i.e. for any realization of the state of the world it is optimal for the involved sellers

to announce their information truthfully. The proposed mechanism is optimal in the

sense that there does not exist any other informationally robust direct mechanism that

implement the efficient allocation at a cost to the buyer that is less than the cost of our

proposed mechanism for any possible distribution of design flaws.

A crucial drawback of our proposed direct mechanism is that it requires the buyer to

know the set of potential design flaws and their payoff consequences. In the procurement

context this is a very strong assumption. Buyers are often aware that the initial design

may be flawed, but they have no idea how possible flaws may look like and what their

payoff implications are. After all, if they had this information, it would be easy for them
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to look for and detect the design flaws themselves. To deal with this problem we propose

a second, indirect mechanism that implements the efficient allocation at the same cost

to the buyer as the direct mechanism, but that does not require any knowledge about

the set of possible flaws ex ante. This indirect mechanism is based on the assumption

that pointing out a design flaw is an “eye-opener”. Once the flaw has been pointed out,

every industry expert understands the flaw and knows how to fix it. He also knows the

payoff consequences if the flaw is fixed early rather than late. This assumption is strong

but seems reasonable in the procurement context. Given this assumption our indirect

mechanism can make use of an independent arbitrator. Sellers are asked to reveal all

design flaws that they spotted to the arbitrator who rewards them according to the payoff

consequences these flaws would have had if they had not been disclosed early. Thereafter

the contract is allocated by a standard second price auction to the seller with the lowest

cost.

An important feature of both proposed mechanisms is that they separate the assig-

nment of the contract and the elicitation of the sellers’ information about design flaws.

Efficiency requires that the contract is assigned to the seller with the lowest cost who

need not be the seller who spotted most design flaws. If the buyer is a welfare maximizing

government with the objective to achieve an efficient allocation subject to the constraint

that the informational rent to sellers is kept to a minimum, then this separation is optimal.

However, if the buyer is a private party that is not interested in efficiency but in private

profits, then the buyer can increase her profits by tying the assignment of the contract

to the revelation of flaws, e.g. by offering “bonus points” in the auction in exchange for

design improvements. In fact, this is what is sometimes observed in private procurement

contexts.

After discussing the relation of our paper to the literature in the next section, we set up

a model in Section 3 in which a buyer who wants to procure a project that may be plagued

by one or several design flaws. There are two potential sellers with private information

about their production costs. Each seller privately observes with some positive probability

some subset of the actual design flaws. He may reveal this information to the buyer or

keep it to himself. The buyer wants to set up a procurement mechanism that implements
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the efficient allocation subject to the constraint that the information rents to the sellers

are minimized. Note that this is a multi-dimensional mechanism design problem.

In Section 4 we show that a standard price-only auction offers no incentives to sellers

to reveal private information about possible design flaws early. The reason is simple: If a

seller reveals the information before the auction takes place he gains nothing because once

the flaw has been pointed out every seller can fix it. If he waits until he has been assigned

the contract, he is in a bilateral monopoly situation with the buyer. Thus, if he now

reveals the flaw, the contract has to be renegotiated and the seller can grasp some of the

surplus from renegotiation. However, this gives rise to three inefficiencies. First, fixing

the flaw via renegotiation is more costly than fixing it early (Inefficient Renegotiation).

Second, it may happen that the flaw is spotted only by the seller with higher production

cost. This seller will bid more aggressively in the auction (anticipating the renegotiation

profit). Thus, if he wins the auction, production is carried out inefficiently by the more

costly seller (Inefficient Production). Third, if the inferior seller is the only one who

detected the flaw and if this seller does not win the auction, the flaw will not be pointed

out and the buyer suffers from the flawed design (Inefficient Design).

In Section 5 we focus on the first inefficiency (Inefficient Renegotiation) by assuming

that there are no cost differences between sellers and that costs are common knowledge.

We also restrict attention to the case of only one possible flaw. We derive the optimal

direct mechanism and show that this mechanism is informationally robust. In order to

minimize the information rent that has to be paid to sellers this mechanism assigns the

contract randomly if both sellers revealed the same information. Then we show that there

exists an equivalent indirect mechanism that implements the same allocation and does not

require any prior knowledge about the set of possible flaws and their payoff consequences.

In Section 6 we generalize this result to the case where sellers have different costs

(which is their private information) and in which there may be multiple flaws. This

problem is more intricate because efficiency requires that the seller with the lowest cost

gets the contract. Thus, the contract cannot be assigned randomly. This implies that

a higher information rent has to be paid to the sellers. We derive the informationally

robust mechanism that implements the efficient allocation at the lowest possible cost to
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the buyer. Then we show that there exists an indirect, extended arbitration mechanism

that implements the same allocation at the same cost and does not require prior knowledge

about the underlying parameters. An important characteristic of this mechanism is that

it separates the two problems of eliciting information about design flaws and assigning

the contract to the seller with the lowest cost. This is necessary to achieve efficiency.

So far we assumed that each seller observes some subset of the actual flaws with some

exogenously given probability. In Section 7 we generalize this model and allow for search

costs. Each seller has to actively search for possible design flaws which is costly. The

optimal mechanisms of Section 6 do not offer efficient incentives to search for design flaws.

We derive the optimal mechanism that induces sellers not just to reveal their information

about costs and flaws truthfully, but also to search efficiently for possible flaws. This

mechanism has to pay a higher information rent to the seller, but it is also somewhat

easier to specify because it does not depend on the bargaining power of the parties in the

renegotiation game. Section 8 concludes and discusses some possible directions of future

research.

2 Relation to the Literature

Our paper contributes to three strands of the literature. First, there is a large literature on

optimal procurement auctions (McAfee and McMillan (1986), Laffont and Tirole (1993)).

The novel feature in our set-up is that sellers may have superior information about possible

design flaws that the buyer would like to elicit. This is closely related to the literature on

scoring auctions (Asker and Cantillon (2010), Che (1993), Che, Iossa, and Rey (2016))

that also try to induce sellers to make design proposals. A scoring auction assigns the

contract to the seller who comes up with the best proposal (the highest total score). In

contrast, our mechanism combines the suggestions of several sellers to improve the design

and assigns the contract for the improved design to the seller with lowest cost.

Second, our paper is related to the literature on robust mechanism design. Bayesian

mechanism design theory has often been criticized because the optimal mechanism cruci-

ally depends on the precise information that the agents and the mechanism designer have

(including their prior beliefs and higher order believes that are not observable). Wilson
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(1987) has pointed out that if the agents or the designer are mistaken in their beliefs,

then the outcome of the supposedly optimal mechanism may be very different from the

intended outcome. Bergemann and Morris (2005) require that “robust” implementation is

independent of beliefs and higher order beliefs and depends only on payoff relevant types.

They have shown that implementation is robust if and only if the mechanism satisfies ex

post incentive compatibility, i.e. if the strategy of each agent is optimal against the stra-

tegies of all other agents for every possible realization of types.1 Our optimal mechanism

satisfies ex post incentive compatibility and is therefore informationally robust.

Ex post implementation is weaker than dominant-strategy implementation because

it assumes that other agents follow their equilibrium strategy. In our set-up we assume

that the outcome of the renegotiation game is given by the Generalized Nash Bargaining

Solution. Thus, our results hinge on the assumption that all parties choose their optimal

strategies that gives rise to the outcome of the GNBS. However, given this assumption it

is a weakly dominant strategy for each seller to announce his cost type and the flaws that

he observed truthfully. The mechanism we propose differs from the celebrated Vickrey-

Clarke-Groves mechanism in that each seller is not paid his marginal contribution to the

social surplus, but rather the increase of his outside option. However, the mechanism

derived in Section 7, that induces all sellers to search efficiently for possible design flaws,

is essentially a Groves mechanism.

The indirect arbitration mechanism that we propose is even more robust than dominant-

strategy implementation because it does not require any knowledge about the possible

type spaces of the sellers. We are not aware of any other papers on robust mechanism

design with this feature. This result is based on the assumption that an arbitrator can

evaluate the payoff consequences of detected flaws and that he can complete the me-

chanism ex post. This is a novel assumption in the mechanism design literature that is

plausible in the procurement context and deserves further attention.

Finally, there is a small but growing literature on the inefficiencies of renegotiating.

Several empirical studies emphasize that renegotiation is often costly and inefficient, in-

cluding Crocker and Reynolds (1993), Chakravarty and MacLeod (2009), and Bajari,

Houghton, and Tadelis (2014). Bajari et al. (2014, p. 1317) consider highway procure-

1See Bergemann and Morris (2012) for a survey of the literature on robust implementation.
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ment contracts in California. They report that renegotiation costs are substantial and

estimate that they “range from 55 cents to araound two dollars for every dollar in change”.

Herweg and Schmidt (2015) develop a behavioral model of inefficient renegotiation that

is based on loss aversion. Bajari and Tadelis (2001) assume that renegotiation is costly

and compare fixed price and cost plus contracts. They show that standardized goods

should be procured by fixed-price contracts that give strong cost-saving incentives to sel-

lers, while complex goods should be procured by cost-plus contracts in order to avoid

costly renegotiation. Herweg and Schmidt (2016) compare price-only auctions to bilateral

negotiations. They show that negotiation with one selected seller may outperform an

auction because the auction induces sellers to conceal private information about design

improvements which gives rise to inefficient renegotiation. While these papers compare

standard contracts and procurement procedures, the current paper solves for the optimal

procurement mechanism and proposes a new procedure.

3 The Model

A buyer (B), female, wants to procure a complex good from one of two sellers (male),

denoted by i ∈ {1, 2}.2 At date 0 the buyer has a design proposal D0 for the good.

Each seller i can produce design D0 at cost ci ∈ [
¯
c, c̄], 0 <

¯
c ≤ c̄. These costs c1 and c2

are private information and drawn independently from some cdf H(ci). If design D0 is

optimal it generates utility v for the buyer. However, with some probability the design is

plagued by one or multiple flaws which reduce the buyer’s utility if he gets design D0. In

order to restore the buyer’s utility to v, the flaws have to be fixed by changing the design.

We model the possibility of design flaws as follows. Let F̂ = {f1, . . . , fn} denote the

set of possible design flaws and let P(F̂ ) denote the power set of F̂ , i.e. the set of all

possible subsets of F̂ including ∅.3 A typical element of P(F̂ ) is denoted by F . If F = ∅,

there is no design flaw. If ∅ 6= F ⊆ F̂ , a subset of the set of possible flaws has materialized.

Thus, F ∈ P(F̂ ) is the realization of the state of the world which is drawn from P(F̂ )

according to some probability distribution G(F ).

2We restrict attention to the case of two sellers for notational simplicity only. It is straightforward to
extend the analysis to the case of N sellers.

3If | F̂ | is the cardinality of F̂ , then | P(F̂ ) |= 2|F̂ |.
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Design flaw fk ∈ F can be fixed at cost ∆ck ≥ 0 if the design is adjusted early, i.e.

before the contract is assigned to one seller and production starts. If fk is not fixed, the

buyer’s utility is reduced to v −∆vk. We assume that ∆vk > ∆ck for all k ∈ {1, . . . , n},

so fixing a flaw is always efficient.

Sellers are better able to detect design flaws than the buyer. Each seller may privately

observe a subset of the realized flaws with some probability. Let P(F ) denote the power

set of F . Each seller observes a private signal F i ∈ P(F ). If F i = ∅, seller i observes

nothing. If ∅ 6= F i ⊆ F , seller i observes some subset of the set of realized flaws. The

joint probability distribution over (F 1, F 2) given the set of flaws F is denoted by QF .

At date 1 each seller can report some or all of the flaws that he observed. P(F i)

denotes the power set of F i with typical element F̃ i. If F̃ i = ∅, seller i reports nothing.

If ∅ 6= F̃ i ⊆ F i, seller i reports some (or all) of the flaws that he observed. Note that a

seller can report only flaws that he observed.

Pointing out the flaw is an “eye-opener”. A flaw may be very difficult to find, in

particular if it is not even clear what possible flaws may exist. But once a flaw has been

pointed out it becomes obvious to any industry expert what the flaw is and how to fix

it. Thus, we assume that if flaw fk is known, all sellers face the same additional cost ∆ck

to fix it. Let D(F̃ ) denote the optimal design that fixes all flaws fk ∈ F̃ (but not flaws

fk ∈ F̃ \ F ).

Only flaws that are reported at date 1 can be fixed at date 1. If the set of actual flaws

is F and the sellers reported flaws F̃ 1 and F̃ 2, then the buyer can adjust the design in

order to fix all flaws fk ∈ F̃ = F̃ 1 ∪ F 2. If she does so, her utility derived from the good

is given by4

V (D(F̃ ) | F ) = v −
∑

{k|fk∈F\F̃}

∆vk

while the cost of seller i to produce D(F̃ ) is

Ci(D(F̃ ) | F )) = ci +
∑

{k|fk∈F̃}

∆ck .

The fact that a flaw is obvious once it has been pointed out makes it difficult for a

4Note that this formulation implicitly assumes that costs and benefits of fixing flaws are additive, i.e.
flaws are independent of each other.
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seller who observed it to “sell” this information to the buyer at date 1. Anybody can

claim that there is a flaw. To prove this claim a seller has to point out what the flaw is,

but once he does so, he gives his information away and the buyer no longer needs to pay

for it (see Arrow (1962) for the seminal discussion of this problem). The situation changes

radically at date 2; i.e., after seller i has been assigned the contract to the good.5 If he

reveals a flaw to the buyer now, the buyer cannot simply switch to the new design that

fixes this flaw but has to renegotiate the initial contract with seller i. Now the parties are

in a bilateral monopoly position.

The problem with renegotiation is that it is often costly and inefficient. At date 2

the buyer has made several other commitments already (contracts with other suppliers,

customers, etc.) that are based on the design of the initial contract. Furthermore, the

parties may disagree on who is responsible for the design flaw and should bear the cost

of fixing it which may lead to haggling, aggrievement, and further delays. We model

this by assuming that the parties have to incur additional physical and/or psychological

adjustment costs ∆xk > 0 to adjust design flaw fk at date 2. We assume that ∆xk <

∆vk − ∆ck for all k ∈ {1, . . . , n}, so it is still optimal to fix a flaw at date 2. However,

the surplus from fixing it shrinks from Sk = ∆vk − ∆ck if fk is fixed at date 1 to SR
k =

∆vk −∆ck −∆xk if fk is fixed after renegotiation at date 2. The renegotiation game is

modeled in reduced form by applying the Generalized Nash Bargaining Solution (GNBS).

The threatpoint of the renegotiation game is that renegotiation fails and that the inital

contract is carried out. Let α ∈ (0, 1) denote the bargaining power of the buyer. Then

the seller’s payoff from renegotiating flaw fk at date 2 is given by (1− α)SR
k .

If a flaw fk, k ∈ {1, . . . , n} exists but is not reported (either because no seller observed

it or because a seller who observed it did not report it), then the flaw becomes apparent

at date 3 when the project is (to a large degree) completed. If the buyer wants to change

the design now, she has to write a new contract with a (potentially) new seller. At this

stage all sellers are equally good at fixing the problem and the initial contract no longer

binds the buyer to seller i. We do not model this stage explicitly but assume that if this

stage is reached, flaw fk reduces net utility of the buyer by ∆vk.

Finally, we posit that sellers are protected by limited liability, i.e. they can always

5This is what Williamson (1985, p. 61-63), has termed the “fundamental transformation”.
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declare bankruptcy to avoid making negative profits.

The time structure of the model can be summarized as follows.

Date 0: Nature determines the state of the world, i.e., the set of actual flaws F drawn from

P(F̂ ) according to cdf G(F ) and each seller’s cost type drawn from [
¯
c, c̄] according

to cdf H(ci).

Date 1: Procurement mechanism:

(a) The buyer announces that she wants to procure the good with design D0.

(b) Seller i ∈ {1, 2} privately observes his cost type and a set of flaws F i ∈ P(F )

according to cdf QF .

(c) A procurement mechanism is executed. This mechanism may induce the sellers to

reveal (some of) their private information ci and F̃ i ⊆ F i. This determines the

design D(F̃ 1 ∪ F̃ 2) of the good, it determines which seller is assigned the contract,

and which payments are made.

Date 2: The buyer and the contractor may engage in contract renegotiation if the con-

tractor observed a flaw that has not been revealed at stage 1(c).

Date 3: The state of the world becomes publicly observable and payoffs are realized.

4 Three Inefficiencies

In this section we discuss a simple example to point out the inefficiencies that arise if the

buyer näıvely uses a standard price-only auction to allocate the procurement contract.

In this example we assume that there is only one possible flaw denoted by f that exists

with probability p. If the flaw exists, each seller observes it with probability q in which

case F i = {f}, with probability 1 − q he observes nothing, so F i = ∅. We also assume

that ∆c = 0. Thus, if there is a design flaw and if the flaw is reported at date 1, then the

problem can be solved at no additional cost. However, if the flaw is reported only at date

2 and the parties have to renegotiate, then there is an inefficiency ∆x, with ∆v > ∆x > 0.
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Suppose that the buyer uses a sealed-bid second-price auction. This auction imple-

ments the efficient allocation if the probability of a design flaw is 0. It is also revenue

maximizing for the buyer if her valuation for the good is sufficiently high so that she

wants to procure it with probability one.

Before the auction is conducted, the buyer asks the sellers whether they have detected

a flaw in design D0. If none of the suppliers reports a flaw, the buyer auctions off the

procurement order for design D0. If at least one of the suppliers reports the flaw f , the

buyer understands the flaw, knows how to fix it, and puts the improved design D(f) up

for auction.

Observation 1. Suppose the buyer uses a sealed-bid, second-price auction to allocate

the procurement contract. Then, any seller who detected flaw f has a strict incentive to

conceal this information. There is a unique symmetric Nash equilibrium in which each

seller bids

b(ci, F i) =


ci − (1− α)SR if D = D0 and F i = {f}

ci otherwise

.

Proof. The proof focuses on the incentives of a seller to reveal the flaw. The bidding

strategies in the second-price auction can be shown to be optimal by applying standard

arguments.

Consider the case where there is a design flaw and seller 1 observed it. If the flaw was

reported at date 1, there is no scope for renegotiation at date 2. In this case it is a weakly

dominant strategy for each seller i to bid b(ci, {f}) = ci. Thus, seller 1’s expected profit

if he reveals the flaw (REV) is given by

Π1(REV ) = Prob[c1 ≤ c2] · E[c2 − c1 | c1 ≤ c2]. (1)

Alternatively, seller 1 could conceal the information, hope that he wins the auction, then

report the flaw at date 2 and renegotiate. If he manages to get the contract and to

renegotiate it, his payoff from renegotiation is given by (1 − α)[∆v − ∆x] = (1 − α)SR.

Thus, if he conceals the flaw, it is a weakly dominant strategy for seller 1 to bid b(c1, f1) =
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c1 − (1− α)SR in the auction at date 1.6 Let q′ denote the probability that seller 2 also

observed the flaw given that seller 2 did not inform the buyer about it. Clearly, q′ ≤ q.

With probability q′ seller 2 bids b(c2, {f}) = c2 − (1 − α)SR, with probability 1 − q′ he

bids b(c2, ∅) = c2.7 Thus, the expected payoff of seller 1 if he conceals the flaw (CON) is

given by

Π1(CON) = q′Prob
[
c1 − (1− α)SR ≤ c2 − (1− α)SR

]
× E

[
c2 − (1− α)SR − c1 + (1− α)SR | c1 − (1− α)SR ≤ c2 − (1− α)SR

]
+ (1− q′)Prob

[
c1 − (1− α)SR ≤ c2

]
× E

[
c2 − c1 + (1− α)SR | c1 − (1− α)SR ≤ c2

]
= q′Prob

[
c1 ≤ c2

]
× E

[
c2 − c1 | c1 ≤ c2

]
+ (1− q′)Prob

[
c1 − (1− α)SR ≤ c2

]
× E

[
c2 − c1 + (1− α)SR | c1 − (1− α)SR ≤ c2

]
> Π1(REV ) (2)

The strict inequality follows from q′ ≤ q < 1, Prob[c1 − (1 − α)SR ≤ c2] > Prob[c1 ≤

c2] and E
[
c2 − c1 + (1− α)SR | c1 − (1− α)SR ≤ c2

]
> E[c2 − c1 | c1 ≤ c2]. This is

very intuitive. With probability q′ seller 2 also observed the design flaw. In this case

competition in the auction induces both sellers to reduce their bids by exactly (1− α)SR

– the amount each of them would gain if he wins the contract. Thus, in this case payoffs

are the same as in the case with no renegotiation. With probability (1 − q′), however,

seller 1 is the only one who observed the flaw. In this case he gets an additional rent

of (1 − α)SR if he manages to win the contract which happens with strictly positive

probability.

It is strictly optimal for a seller not to report the flaw at date 1, but to keep this

information to himself, bid more aggressively in the auction, and if he wins the auction

to benefit from renegotiating the contract. The finding that a seller has an incentive to

conceal his information because it gives him an advantage in the auction may trigger three

inefficiencies if a price-only auction is used. First, because the flaw is only revealed at date

6Note that this strategy is weakly dominant given the reduced form outcome of the renegotiation
game.

7If seller 2 did not observe any flaw, he may still expect that there is a flaw with positive probability.
However, as long as he does not know the flaw, this is of no relevance to him. The flaw will become
apparent at date 3 only, when the initial contract expires and the contractor has no advantage over other
sellers anymore.
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1 the parties have to renegotiate with positive probability and incur the renegotiation cost

∆x > 0. Second, if ci > cj and i observes the flaw while j does not, it may happen that

ci − (1 − α)SR < cj. In this case the seller with the higher cost gets the contract which

is inefficient – i.e., the auction does not achieve efficient production. Finally, if ci > cj

and i observes the flaw while j does not, it may happen that ci− (1− α)SR > cj. In this

case the lower cost seller gets the contract, but the flaw is not fixed and SR = ∆v −∆x

cannot be realized.

Proposition 1 (Three Inefficiencies). Suppose the buyer uses a sealed-bid, second-price

auction to allocate the procurement contract. Then, three inefficiencies arise.

1. Inefficient Renegotiation:

With probability pq
[
q + 2(1− q)× Prob(ci − (1− α)SR < cj)

]
there is a design flaw

that is detected by at least one seller who wins the auction. In this case the design

flaw is fixed via renegotiation which is inefficient because the parties have to incur

∆x > 0.

2. Inefficient Production:

With probability 2pq(1 − q) × Prob(cj < ci < cj + (1 − α)SR) there is a design

flaw that is detected by one seller, this seller has higher production costs but wins

the auction because of his expected profit in the renegotiation game. In this case

production is carried out inefficiently by the seller with the higher cost.

3. Inefficient Design:

With probability 2pq(1− q)× Prob(cj < ci − (1− α)SR) there is a design flaw that

is detected by one seller, but this seller does not win the auction. In this case the

design flaw is not reported to the buyer and it cannot be fixed, so the buyer has to

incur the loss of ∆v which is inefficient.

The question arises whether there is a mechanism that induces sellers to report a de-

sign flaw at date 1 and that allocates the contract to the seller with the lowest cost. In the

next section we focus on the first problem assuming that there are no cost differences be-

tween sellers, so that Inefficient Renegotiation is the only issue. Furthermore, we restrict

attention to the case of just one possible design flaw for notational simplicity. In Section 5
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we allow for cost differences between sellers in order to address the problems of Inefficient

Production and Inefficient Design, and we allow for multiple design flaws. We discuss

how these problems interact and show that there exists an efficient and informationally

robust mechanism that solves all three problems.

5 Inducing Sellers to Report a Design Flaw Early

In this section we focus on how to optimally induce sellers to report a design flaw early.

We abstract from cost differences between firms and assume that c1 = c2 = c is commom

knowledge. Furthermore, we restrict attention to only one design flaw. We proceed in

two steps. First, we assume that the mechanism designer knows all the parameters of

the model. We derive a direct mechanism that induces both sellers to reveal their private

information at date 1 and that implements the efficient allocation at the lowest cost for

the buyer. In the second step we show that there exists an indirect mechanism that

implements the same allocation but that is informationally robust. It does not require

the mechanism designer to know any of the parameters of the model when she sets up

the mechanism.

5.1 The Optimal Mechanism Design Problem

Consider the problem of a mechanism designer who knows that there is one potential flaw

f and who knows the values of v, c, ∆v, ∆c, and ∆x, and the probabilities p and q. Each

seller i, i ∈ {1, 2}, is one of two possible types. If he did not observe a design flaw, he

is (with a slight abuse of notion) of type ∅. This is the case if either there is no flaw (in

state F = ∅) or if there is a flaw (in state F = {f}) but the seller did not observe it. If

the seller observed the flaw, he is of type f which happens with probability pq.

A direct mechanism asks each seller i to send a message F̃ i ∈ {∅, f}. In words, a seller

either claims that he did not observe anything, F̃ i = ∅, or he reports that he observed

the flaw, F̃ i = f . While message F̃ i = ∅ can always be sent, message F̃ i = f is feasible

only if supplier i indeed observed the flaw f (is of type f). The mechanism specifies a

transfer ti, paid by the buyer and received by seller i, a design D ∈ {D0, Df} that has to

be delivered, and a probability ωi with which seller i has to deliver the good that depend
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on both messages. Because the problem is symmetric we restrict attention to symmetric

mechanisms, i.e.

ωi = ω(F̃ i, F̃ j) ∈ [0, 1], and ti = t(F̃ i, F̃ j) ∈ R

with j 6= i. The design is the same for both sellers, so D = D(F̃ 1, F̃ 2).

The mechanism designer wants to implement an efficient outcome. This requires:

(i) The specified design is optimal given the available information (efficient design, ED)

D(F̃ 1, F̃ 2) =


D0 if F̃ 1 = F̃ 2 = ∅

Df otherwise

(ED)

(ii) Production always takes place (efficient production, EP, because the good is suffi-

ciently valuable to the buyer)

ω(F̃ 1, F̃ 2) + ω(F̃ 2, F̃ 1) = 1 ∀ F̃ 1, F̃ 2 ∈ F (EP)

(iii) It is optimal for an informed seller to reveal the state truthfully (incentive compa-

tibility, IC)

q[t(f, f)− ω(f, f)(c+ ∆c)] + (1− q)[t(f, ∅)− ω(f, ∅)(c+ ∆c)]

≥ q[t(∅, f)− ω(∅, f)(c+ ∆c)] + (1− q)[t(∅, ∅)− ω(∅, ∅)(c− (1− α)SR)] (IC)

(iv) Sellers make non-negative profits because they are protected by limited liability,

i.e. they can walk away (declare bankruptcy) if the mechanism imposes a negative

payoff

t(F̃ i, F̃ j)− ω(F̃ i, F̃ j) Ci(D(F̃ 1, F̃ 2)) ≥ 0 ∀ F̃ i, F̃ j ∈ F (LL)

Note that (LL) implies that all sellers voluntarily participate in the mechanism (individual

rationality).

We want to find a mechanism that implements the efficient allocation at the lowest
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possible cost to the buyer.8 Thus, the mechanism design problem can be stated as follows:

min
t(·,·)

2t(∅, ∅)[p+ (1− p)(1− q)2]

+ 2t(f, f)(1− p)q2 + 2[t(f, ∅) + t(∅, f)](1− p)(1− q)q

subject to (ED), (EP), (IC) and (LL).

Let u(F̃ i, F̃ j) denote the expected payoff that supplier i obtains from participating in

the mechanism at date 1 (not including any additional payoffs from renegotiation at date

2), i.e.

u(F̃ i, F̃ j) ≡ t(F̃ i, F̃ j)− ω(F̃ i, F̃ j)Ci(D(F̃ i, F̃ j)). (3)

Limited liability is satisfied if and only if for all F̃ i, F̃ j ∈ {∅, f} it holds that u(F̃ i, F̃ j) ≥ 0.

With this notation the incentive constraint can be written as

qu(f, f) + (1 − q)u(f, ∅) ≥ qu(∅, f) + (1 − q)u(∅, ∅) + (1 − q)ω(∅, ∅)(1 − α)SR (IC)

Notice that symmetry together with (EP) implies that ω(∅, ∅) = 1/2. Obviously the

buyer has an incentive to choose u(∅, F̃ j) = 0 for all F̃ j ∈ {∅, f}: Doing so relaxes the

(IC) constraint and reduces the expected transfer. Hence, the mechanism design problem

simplifies to

min
u(f,f), u(f,∅)

2qu(f, f) + 2(1− q)u(f, ∅)

subject to:

u(f, f) ≥ 0, u(f, ∅) ≥ 0 (LL)

qu(f, f) + (1− q)u(f, ∅) ≥ (1− q)(1− α)SR/2 (IC)

Note that (IC) must hold with equality in the optimal solution and that the buyer is

indifferent between all utility vectors that achieve this. Thus, the following pair of payoffs

is a solution to the problem:

u∗(f, f) = 0, u∗(f, ∅) = (1− α)SR/2.

8Note that this allocation is efficient but not necessarily profit maximizing. The buyer may achieve
higher expected profits if she is willing to accept that design flaws are not always reported at date 1.
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Proposition 2 (Optimal Direct Mechanism). The following efficient direct mechanism

induces each seller of type f to report his type truthfully at the lowest possible cost to the

buyer:

D∗(∅, ∅) = D0, ω∗(∅, ∅) =
1

2
, t∗(∅, ∅) =

c

2

D∗(∅, f) = Df , ω∗(∅, f) = 0, t∗(∅, f) = 0

D∗(f, ∅) = Df , ω∗(f, ∅) = 1, t∗(f, ∅) = c+ ∆c+
(1− α)SR

2

D∗(f, f) = Df , ω∗(f, f) =
1

2
, t∗(f, f) =

c+ ∆c

2

Proof. The result is proven in the text above.

Note that t∗(∅, ∅) and t∗(f, f) are the expected transfers. If both sellers make the

same announcement, each seller gets the contract with probability 0.5. In order to satisfy

ex post limited liability, the seller who produces the good is reimbursed his cost, while

the other seller receives nothing.

The mechanism of Proposition 2 is very intuitive. If one seller reports the flaw while

the other one does not, then the former produces the good with the adjusted design

Df and gets a strictly positive rent, while the latter gets a utility of zero. This rent is

necessary to induce the seller to reveal his information ex ante rather than to wait and

renegotiate after having received the contract. Note that if the seller claims ∅, then –

given that the other seller also claims ∅ – he gets the contract only with probability 1/2.

Thus, the rent that has to be paid is only 1
2
(1 − α)SR. With N sellers this rent can be

reduced to 1
N

(1−α)SR because the probability of getting the contract if all sellers report

∅ is only 1/N . If two sellers (or more) report f , there is no need to pay a rent to these

sellers because each of them would receive the contract with probability zero if he claimed

to be of type ∅.

5.2 The Arbitration Mechanism

So far we assumed that the mechanism designer knows all the parameters of the problem

when he sets up the mechanism. However, a typical buyer does not have this information.

She is not aware of the design flaw, she does not know the probability that there is a flaw

16



nor the likelihood that any of the sellers is going to find it, and she does not know how

the flaw looks like and how costly it is to fix it. However, the buyer is aware that she is

unaware. She knows that mistakes happen and that they can be very costly if they are

not fixed early. Thus, she would like to prepare for this possibility and to give incentives

to the sellers to reveal their information at date 1 already.

One possibility to achieve this is the use of a knowledgeable independent arbitrator.

If a seller reveals a design flaw, the flaw becomes obvious to any expert in the industry.

Thus, a knowledgeable arbitrator understands the flaw, she knows how it can be fixed and

she knows the payoff consequences if the flaw is fixed early rather than late. The buyer

can commit ex ante to using such an independent arbitrator and to follow her verdict.

In particular, she can set up the following indirect mechanism that will be called the

Arbitration Mechanism in the following:

1) The buyer publicizes her design proposal D0 and invites all potential sellers to

evaluate the proposal and to report possible design flaws in sealed envelopes to an

independent arbitrator.

2) If there is a design flaw that is reported by at least one seller, the arbitrator evaluates

the flaw and its consequences, i.e. she estimates ∆v, ∆c and ∆x.

3) The contract is allocated as follows:

– If none of the sellers reports a design flaw, one of them is selected randomly

and gets the contract to produce D0 and receives payment c.

– If only one seller reports the design flaw he gets the contract to produce Df

and the payment c+ ∆c+ (1− α)SR/2.

– If both sellers report the design flaw, each of them gets the contract to produce

Df and the payment c + ∆c with probability 1/2 while the other one gets

nothing.

4) If no flaw was reported but the seller who got the contract observed a flaw, he may

renegotiate the contract with the buyer.

Proposition 3 (Arbitration Mechanism). The Arbitration Mechanism is an efficient me-

chanism that is cost minimizing for the buyer. It implements the same allocation as the
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optimal direct mechanism of Proposition 2. Furthermore, the arbitration mechanism is

informationally robust, i.e. it does not require the ex ante knowledge of p, q, v, ∆v, ∆c

and ∆x.

Proof. The Arbitration Mechanism gives rise to the same monetary outcomes and the

same incentives for each seller as the mechanism of Proposition 2. Thus, given that it is

an equilibrium in the direct mechanism for each seller to reveal the design flaw early, it

is also an equilibrium in the Arbitration Mechanism. The mechanism is informationally

robust because it is independent of the probabilities p and q and because the reward for

reporting a design flaw is determined ex post by the independent arbitrator.

Informational robustness is a highly desirable property of the Arbitration Mechanism.

The buyer must be aware that there could be a design flaw, but she does not have to know

how this flaw looks like, what payoff consequences it implies, and what the probabilities p

and q are. However, the buyer has to be able to assess her bargaining power α if the initial

contract has to be renegotiated. Furthermore, the independent arbitrator must be able to

assess ∆v, ∆c and ∆x after the flaw has been pointed out to her. The existence of such

an independent industry expert seems plausible when a design flaw has to be evaluated.

It may be less plausible if the seller comes up with ideas for new features of the product

that may be valuable for the buyer. In this case it is more difficult for an outsider to

assess exactly how valuable the idea of the seller is for the buyer. [Discuss this in more

detail, preferably in the introduction.]

6 Multiple Design Flaws and Seller Heterogeneity

In this section we generalize the optimal mechanism derived in Section 5 in two directions.

First, sellers may have different costs which are private information. Second, we allow for

multiple design flaws. With some probability each seller observes some subset F i of the

set of actual flaws F . Efficiency requires that the seller with the lowest cost produces the

good and that both sellers are induced to reveal all flaws that they observed at date 1.

The mechanism design problem is now more intricate. The optimal mechanism in Section

5 allocates the contract by a coin flip if both producers claim not to have observed any
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flaw. This minimizes the information rent that has to be paid to a seller. If both sellers

have the same cost, a random allocation is efficient, but if sellers have different costs,

efficiency requires that the seller with the lower cost gets the contract with probability 1.

We show in this section that this increases the information rent that has to be paid to

the seller.

Note that we are now dealing with a multi-dimensional mechanism design problem.

Sellers have to be induced to report both the observed design flaws and their cost para-

meter truthfully. In subsection 6.1 we derive a mechanism that implements the efficient

allocation. In subsection 6.2 we show that this mechanism is informationally robust and

that it implements the efficient allocation at the lowest possible cost to the buyer in the

sense that there does not exist any other informationally robust mechanism that imple-

ments the efficient outcome at a lower cost for all possible parameter distributions. In

subsection 6.3 we derive an informationally robust indirect mechanism that replicates

the optimal direct mechanism without requiring any ex ante knowledge of the underlying

parameters and probability distributions.

6.1 The Mechanism Design Problem

We return to the general model described in Section 3. As in Section 5 we start out

assuming that the mechanism designer knows all parameters of the model, i.e. the set of

possible cost types [
¯
c, c̄], the set of possible flaws F̂ = {f1, . . . , fn}, the costs ∆vk, ∆ck and

∆xk associated with each potential flaw k ∈ {1, . . . , n}, and the (conditional) probability

distributions G(F ), H(c), and QF . In the next subsection we will relax this assumption.

Note that the type of seller i is now multi-dimensional: it consists of a cost type ci and

an information type F i (the set of flaws that seller i observed). Thus, the type of seller i

is (ci, F i) ∈ [
¯
c, c̄]× P(F ).

We focus on direct mechanisms that ask each seller i to send a message (c̃i, F̃ i) ∈

[
¯
c, c̄]× P(F ). Put verbally, each seller i reports a cost c̃i and a set of observed flaws F̃ i.

Supplier i is free to report any cost c̃i ∈ [
¯
c, c̄] but is restricted to report only flaws that

he observed. Of course, he can always decide to conceal some or all of the detected flaws,

i.e. F̃ i ⊆ F i or F̃ i = ∅.
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The (symmetric) direct mechanism specifies for any announced types ((c̃1, F̃ 1), (c̃2, F̃ 2))

a design D = D((c̃1, F̃ 1), (c̃2, F̃ 2)), a transfer ti = t((c̃i, F̃ i), (c̃j, F̃ j)) paid by the buyer

and received by seller i, and a probability ωi = ω((c̃i, F̃ i), (c̃j, F̃ j)) with which seller i gets

the contract – i.e., with probability ωi seller i has to produce the good, for i, j ∈ {1, 2}

and i 6= j.

The mechanism designer seeks to induce an efficient outcome. Therefore, the mecha-

nism has to satisfy four constraints. Efficient design (ED); (ii) efficient production (EP);

(iii) incentive compatibility (IC); and (iv) limited liability (LL).

(i) The specified design is optimal given the available information (efficient design, ED)

D((c1, F 1), (c2, F 2)) = D(F 1 ∪ F 2) (ED)

(ii) The good is produced by the seller with the lowest cost (efficient production, EP)

ω((ci, F i), (cj, F j)) =


1 if ci < cj

1/2 if ci = cj

0 if ci > cj

(EP)

(iii) It is optimal for each seller to reveal his type truthfully (incentive compatibility, IC)

∀ i ∈ {1, 2}, F i, F j ⊆ F, ci, cj ∈ [
¯
c, c̄] :

E(cj ,F j)

{
t((ci, F i), (cj, F j))− ω((ci, F i), (cj, F j))

[
ci +

∑
{k|fk∈F i∪F j}

∆ck

]}
≥

max
F̃ i⊆F i,c̃i∈[

¯
c,c̄]

E(cj ,F j)

{
t((c̃i, F̃ i), (cj, F j))− ω((c̃i, F̃ i), (cj, F j))

[
ci +

∑
{k|fk∈F̃ i∪F j}

∆ck

]

+ ω((c̃i, F̃ i), (cj, F j))(1− α)SR(F i, D(F̃ i ∪ F j))

}
. (IC)
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(iv) Sellers make non-negative profits (limited liability, LL)

∀ i ∈ {1, 2}, F i, F j ⊆ F, ci, cj ∈ [
¯
c, c̄] :

t((ci, F i), (cj, F j))− ω((ci, F i), (cj, F j))

[
ci +

∑
{k|fk∈F i∪F j}

∆ck

]
≥ 0. (LL)

Note that (LL) implies that all sellers voluntarily participate in the mechanism (individual

rationality).

Proposition 4 (Efficient Direct Mechanism). The following direct mechanism implements

the efficient allocation; i.e., it satisfies (ED), (EP), (IC), and (LL):

D∗((c1, F 1), (c2, F 2)) = D∗(F 1, F 2) = D(F 1 ∪ F 2)

ω∗((ci, F i), (cj, F j)) = ω∗(ci, cj) =


1 if ci < cj

1/2 if ci = cj

0 if ci > cj

t∗((ci, F i), (cj, F j)) = ω∗(ci, cj)

[
cj +

∑
{k|fk∈F 1∪F 2}

∆ck

]
+ (1− α)SR(F i, D(F j))

With this mechanism no seller has an incentive to revise his announcement after learning

the announcement of the other seller, i.e., the mechanism is ex post incentive compatible.9

Proof. The above mechanism obviously satisfies (ED), (EP), and (LL). It remains to

be shown that the (IC)-constraint is also satisfied. A sufficient condition for (IC) to

hold is ex post incentive compatibility – i.e., in any possible state no seller can gain by

misreporting his type no matter what type was revealed by the other seller (no regret).

Ex post incentive compatibility is satisfied if and only if for all i ∈ {1, 2}, ci, cj, c̃i ∈ [
¯
c, c̄],

9Note again that t∗ is the expected transfer payment. If ci = cj each seller gets the contract with
probability one half. To make sure that (LL) is always satisfied the actual transfer payment is given by
[ci +

∑
{k|fk∈F 1∪F 2}∆ck] + (1− α)SR(F i, D(F j)) if seller i gets the contract and (1− α)SR(F i, D(F j))

otherwise.
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F i, F j ⊆ F and F̃ i ⊆ F i the following inequality holds:

t((ci, F i), (cj, F j))− ω((ci, F i), (cj, F j))

[
ci +

∑
{k|fk∈F i∪F j}

∆ck

]
≥

t((c̃i, F̃ i), (cj, F j))− ω((c̃i, F̃ i), (cj, F j))

[
ci +

∑
{k|fk∈F̃ i∪F j}

∆ck

]

+ ω((c̃i, F̃ i), (cj, F j))(1− α)SR(F i, D(F̃ i ∪ F j)). (EPIC)

Using the expression for the transfer payments, the (EPIC) constraint can be written as

ω∗(ci, cj)[cj − ci] + (1− α)SR(F i, D(F j)) ≥

ω∗(c̃i, cj)[cj − ci + (1− α)SR(F i, D(F̃ i ∪ F j))] + (1− α)SR(F̃ i, D(F j)). (4)

First, note that

SR(F̃ i, D(F j)) + SR(F i, D(F̃ i ∪ F j))

=
∑

{k|fk∈F̃ i\F j}

∆vk −∆ck −∆xk +
∑

{k|fk∈F i\F j∪F̃ i}

∆vk −∆ck −∆xk

=
∑

{k|fk∈F i\F j}

∆vk −∆ck −∆xk = SR(F i, D(F j)). (5)

Using (5), (4) reduces to

ω∗(ci, cj)[cj − ci] ≥ ω∗(c̃i, cj)[cj − ci] − [1 − ω∗(c̃i, cj)](1 − α)SR(F i, D(F̃ i ∪ F j)). (6)

Thus, given that ω∗ ≤ 1 it never pays off for a seller to misreport the observed flaws.

The remaining question is whether a seller can benefit from misreporting his cost. Given

that the set of observed flaws is revealed truthfully, inequality (6) simplifies to

ω∗(ci, cj)[cj − ci] ≥ ω∗(c̃i, cj)[cj − ci]. (7)

If ci < cj, we have ω∗(ci, cj) = 1, so misreporting cannot be beneficial. If ci > cj, we have

ω∗(ci, cj) = 0, so misreporting can lead to seller i getting the contract but this is not in
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seller i’s interest because [cj−ci] < 0. For the knife-edge case cj = ci, seller i is indifferent

between all potential cost reports – i.e., reporting truthfully is a best response.

Each seller i has to be induced to report his information F i and his cost ci truthfully.

The direct mechanism of Proposition 4 separates these two problems. It induces the seller

to report his information F i by paying him (1− α)SR(F̃ i, D(F j)) if he reports F̃ i. This

is exactly the rent that seller i can obtain by revealing F̃ i ex post – at the renegotiation

stage – rather than ex ante. Thus, the mechanism is ex post incentive compatible, i.e. no

seller has an incentive to revise his decision after learning the announcement c̃j, F̃ j of the

other seller.

It is useful to compare this mechanism to the mechanism of Proposition 2. Suppose

that there is at most one flaw and this flaw is reported by seller i but not by seller j.

Then, according to the mechanism of Proposition 4, seller i obtains a rent of (1−α)SR.10

This rent is larger than the rent 1
2
(1− α)SR, which was paid by the direct mechanism of

Proposition 2. The reason is that in Proposition 2 the contract was allocated randomly

if both sellers claim to be of type ∅, while the mechanism of Proposition 4 allocates the

contract to the seller with the lowest cost.

An important question is whether the buyer can reduce the information rent of a seller

who observed one or more flaws? If the mechanism designer knows all the probability

distributions, in particular the distribution of cost types H, then the answer is yes. For

the sake of the argument, consider the scenario with at most one flaw. Suppose seller

i observed the flaw and has relatively high cost. In order to obtain the contract with

a high probability – and then being able to profit from renegotiation – seller i has to

under-report his cost significantly. This, however, is costly to seller i. Suppose seller j

reports his cost cj < ci truthfully. Thus, the ex post utility of seller i from obtaining the

contract and concealing the flaw is (1− α)SR − (ci − cj). In other words, the higher the

cost type, the lower the incentive of a seller to conceal the flaw. This suggests that the

transfer a seller obtains for revealing the flaw could be reduced by making it contingent

on the announced costs (ci, cj). However, in order to make such a mechanism incentive

compatible, the buyer has to know the distribution of cost types.

10In this case we have F = {∅, {f}} and (with slight abuse of notation) can define SR := SR(f,D0).
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6.2 Informational Robust Implementation

The buyer does not know the probability distributions G, QF , and H. The next proposi-

tion shows that the direct mechanism of Proposition 4 is an informationally robust efficient

mechanism; i.e., it implements the efficient allocation no matter what these probability

distributions are (even the support can be unknown). Furthermore, the mechanism is the

informationally robust mechanism that implements the efficient allocation at the lowest

possible cost to the buyer.

Proposition 5 (Informational Robustness and Optimality).

(a) The mechanism of Proposition 4 is informationally robust, i.e. it implements the

efficient allocation for any probability distributions G, QF , and H and for any higher

order beliefs that the sellers may have.

(b) There does not exist any other informationally robust direct mechanism that imple-

ments the efficient outcome at a lower cost for the buyer for all possible parameter

distributions.

Proof. See Appendix.

6.3 The Extended Arbitration Mechanism

The mechanism of Proposition 4 assumes that the buyer knows all the parameters of the

problem when she designs the optimal revelation mechanism. However, this assumption

is not necessary. An extended version of the Arbitration Mechanism introduced in Section

4.2 implements the same allocation as the optimal mechanism of Proposition 4 and does

not require that the buyer knows anything about the nature or the payoff consequences of

possible flaws, nor does she have to know the probability distributions over the realization

of these flaws and over the costs of the seller. However, the buyer has to be aware that

flaws are possible and she has to be able to commit to using an independent arbitrator

who understands the flaws once they have been pointed out to her and who determines

payoffs ex post after flaws have been revealed. The Extended Arbitration Mechanism is

defined as follows:

1) The buyer publicizes her initial design proposal D0 and invites all potential sellers
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to evaluate the proposal and to report possible design flaws in sealed envelopes to

an independent arbitrator.

2) Let F̃ i denote the set of flaws reported by seller i ∈ {1, 2}. The arbitrator evaluates

all flaws fk ∈ F̃ ≡ F̃ 1 ∪ F̃ 2 and their potential consequences, i.e., for any reported

flaw fk she estimates ∆vk, ∆ck and xk. She awards the following reward to each

seller i:

T i
1(F̃ i, F̃ j) = (1− α)SR(F̃ i, D(F̃ j)) (8)

3) The buyer uses the information on the reported design flaws F̃ to redesign the good

to D(F̃ ) and runs a sealed-bid, second-price auction. Each seller i ∈ {1, 2} submits

a bid bi, the contract is allocated to the lowest bidder, and seller i receives

T i
2 =


bj if bi < bj

bj/2 if bi = bj

0 if bi > bj

. (9)

If both sellers place the same bid b1 = b2 = b, one seller is selected at random and

obtains the contract at price b.

4) If seller i got the contract and if he observed design flaws fk that have not been

revealed to the buyer at stage 1, he may renegotiate the contract with the buyer.

Proposition 6 (Extended Arbitration Mechanism). The Extended Arbitration Mecha-

nism is an efficient and informationally robust mechanism. It implements the same allo-

cation as the direct mechanism of Proposition 4 at the same cost, but it does not require

the ex ante knowledge of F , ∆vk, ∆ck and xk for all k ∈ {1, . . . , n}.

Proof. The Extended Arbitration Mechanism gives rise to the same monetary outcomes

and the same incentives for each seller as the mechanism of Proposition 4. Thus, given

that it is an equilibrium in the direct mechanism for each seller to reveal all observed

design flaws early, it is also an equilibrium in the Extended Arbitration Mechanism.

Furthermore, given that all observed flaws have been revealed it is optimal for each seller

to bid his true cost in the sealed-bid, second-price auction. Hence, with the Extended
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Arbitration Mechanism the total payment that seller i receives is given by

T i
1 + T i

2 = (1− α)SR(F̃ i, D(F̃ j)) +


cj +

∑
{k|fk∈F 1∪F 2}∆ck if ci < cj

(1/2)
(
cj +

∑
{k|fk∈F 1∪F 2}∆ck

)
if ci = cj

0 if ci > cj

, (10)

where T i
1 + T i

2 denotes the expected total payment. The mechanism is informationally

robust because it is independent of the probability distributions G, QF , and H, and

because the reward for reporting design flaws is determined ex post by the independent

arbitrator. By Proposition 5 it is ε-optimal.

The Extended Arbitration Mechanism is a two-stage mechanism that separates the

problems of (i) inducing sellers to reveal observed design flaws early, and (ii) allocating

the contract to the seller with the lowest cost. This separation is necessary if the buyer

wants to implement an efficient allocation. If the buyer ties the allocation of the contract

to the revelation of design flaws (e.g. by offering bonus points that create an advantage

in the auction for sellers who reveal flaws early), then the buyer may be able to reduce

the rent that has to be paid to sellers, but this comes at the price that the allocation is

inefficient with positive probability.

The Extended Arbitration Mechanism requires the commitment of the buyer to pay

sellers for the information on design flaws that they provide. The simplest and most

transparent way to do this is the use of an independent third party. However, there are

also other ways how to achieve this commitment. For example, if the buyer frequently

procures similar projects, i.e., if she is in a repeated relationship with the sellers, and if

the allocation procedure is fully transparent, then she may be able to credibly commit to

paying out T i
1(F̃i, F̃j) = (1 − α)SR(F̃i, D(F̃j)) herself. If parties are sufficiently patient,

this commitment is sustained by the threat of the sellers not to reveal any design flaws in

the future if the buyer ever reneges on her promise.
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7 Incentives to Invest in Finding Design Flaws

So far, we assumed that sellers receive the signal about design flaws for free. In reality

finding flaws requires effort and other costly resources. Thus, the question arises whether

the Extended Arbitration Mechanism provides optimal incentives to invest into finding

flaws.

We analyze the investment incentives of the two sellers for the baseline model with at

most one flaw; i.e., F̂ = {∅, {f}}. The flaw exists with probability p ∈ (0, 1). If the flaw

exists and is detected and revealed ex ante, this creates a social surplus of S = ∆v −∆c.

If the flaw is revealed only at the renegotiation stage, the social surplus is reduced to

SR = ∆v −∆c− x > 0.

Each seller i can invest resources in order to increase the probability of detecting the

flaw if it exists. The probability of detecting the flaw if it exists is q when seller i invests

the amount φi(q). Recall that the mechanism separates the problem of flaw revelation and

production. Thus, we can focus on the profits a seller obtains from detecting and revealing

the flaw. The expected profit of seller i under the Extended Arbitration Mechanism

(ignoring potential profits from production) is

πi(qi) = pqi(1− q̂j)(1− α)SR − φi(qi), (11)

where q̂j with j 6= i is the investment made by the competitor.

A social planner, who can choose q1 and q2, maximizes

W (q1, q2) = p(q1 + q2 − q1q2)S − φ1(q1)− φ2(q2). (12)

The welfare optimal investments are

(q1∗, q2∗) ∈ argmax
q1,q2

W (q1, q2). (13)

We assume that there exists a unique welfare maximizing tuple of investment levels

(q1∗, q2∗).

With the Extended Arbitration Mechanism seller i receives less than the social value
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generated by his efforts. He receives only share (1− α) < 1 of the renegotiation surplus,

which is the social surplus reduced by the cost of renegotiation. Thus, the Extended

Arbitration Mechanism induces sellers to underinvest into finding design flaws. This

problem can easily be fixed by replacing T i
1 in the Extended Arbitration Mechanism by

the full social surplus S; i.e., if seller i reports the flaw and seller j reports nothing, seller

i obtains a payment of S and nothing otherwise. Now, the expected profit of seller i

amounts to

πi(qi) = pqi(1− q̂j)S − φi(qi) (14)

Proposition 7 (Investment Incentives). Suppose the Arbitration Mechanism specifies

T̂ i
1(f, ∅) = S and T̂ i

1(f, f) = T̂ i
1(∅, f) = T̂ i

1(∅, ∅) = 0. This mechanism induces both sellers

to reveal their information truthfully, it allocates the contract to the seller with the lowest

cost, and it induces both sellers invests efficiently; i.e., (q1, q2) = (q1∗, q2∗).

Proof. By the definition and the uniqueness of the welfare optimal investment levels, we

can write

qi∗ = argmax
qi

W (qi, qj∗) = argmax
qi

{
p(qi + qj∗ − qiqj∗)S − φi(qi)− φj(qj∗)

}
, (15)

for i, j ∈ {1, 2} and i 6= j.

If seller i expects that seller j invests efficiently – i.e., qj = qj∗, then the expected

profit of i is

πi(qi) = pqi(1− q̂j∗)S − φi(qi). (16)

The above expression is maximized at the investment level given in equation (15). Hence,

investing efficiently is a mutually best response, which completes the proof.

The mechanism implements the efficient investment levels but does not require that

the buyer knows the investment cost functions. Each seller, however, has to be able to

anticipate the behavior of the other seller correctly, which requires knowledge of the rival’s

investment costs.
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8 Conclusions

Procurement managers are well aware of the problems described in this paper. In private

industry they often offer preferential treatment to sellers who reveal design flaws early

and come up with proposals for design improvements. Sometimes this is done explicitly

by offering bonus points for design improvements. These bonus points can be used in the

auction to get the contract with a higher probability and at a higher price. Consider, for

example, a second-price, sealed-bid auction in which seller 1 has B1 bonus points. Then,

seller 1 wins the auction if b1 ≤ b2 + B1 and gets the contract at price b2 + B1. Thus,

seller 1 will bid b1 = c1−B1 and his expected profit is Prob(c1−B1 ≤ c2)E(c2− c1 +B1 |

c1−B1 ≤ c2). If B1 is chosen appropriately, such a mechanism can be used to induce sellers

to reveal observed design flaws early. However, by linking the allocation of the contract

to the revelation of design flaws this mechanism necessarily involves an inefficiency. The

seller who observed most design flaws is not necessarily the one with the lowest cost to

produce the good, but he will be chosen with positive probability nevertheless. On the

other hand, linking the allocation of the contract to the revelation of design flaws reduces

the rent that has to be paid to sellers. The buyer effectively uses some of the rent that a

seller receives if he gets the contract to induce him to reveal his information early.
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Appendix

Proof of Proposition 5: Efficiency requires that the buyer procures the best design from

the seller with the lowest cost. Thus, the mechanism has to satisfy the efficient design

(ED) and efficient production (EP) constraints. Constraint (ED) determines the design

and constraint (EP) determines the contractor. Sellers do not have own financial resour-

ces and thus the mechanism has to ensure that each seller’s ex post profit is non-negative,

constraint (LL). Finally, the buyer does not know the distribution of sellers’ types nor

a seller’s belief about the other seller’s type distribution. Therefore, in order to ens-

ure truthful revelation, the mechanism has to satisfy the ex post incentive compatibility

constraint. Formally, the buyer’s problem is:

min
t(·,·)

E[t((c1, F 1), (c2, F 2)) + t((c2, F 2), (c1, F 1))] (17)

subject to:

D((c1, F 1), (c2, F 2)) = D(F 1, F 2) = D(F 1 ∪ F 2) (ED)

ω((c1, F 1), (c2, F 2)) = ω(c1, c2) =


1 if c1 < c2

1/2 if c1 = c2

0 if c1 > c2

(EP)

t((c1, F 1), (c2, F 2))− ω(c1, c2)

[
c1 +

∑
{k|fk∈F 1∪F 2}

∆ck

]
≥ 0 (LL)

t((c1, F 1), (c2, F 2))− ω(c1, c2)

[
c1 +

∑
{k|fk∈F 1∪F 2}

∆ck

]
≥ (EPIC)

t((c̃1, F̃ 1), (c2, F 2))− ω(c̃1, c2)

[
c1 +

∑
{k|fk∈F̃ 1∪F 2}

∆ck

]
+ ω(c̃1, c2)

∑
{k|fk∈F 1\(F̃ 1∪F 2)}

(1− α)SR
k

The constraints have to hold for both sellers and for all seller types.
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Solving the Buyer’s Problem

First, we will analyze the implications of constraint (EPIC). We consider the incentives of

seller 1 to misreport his type (the incentives of seller 2 are symmetric). Ex post incentive

compatibility requires that for all (c1, F 1) ∈ C × P(F̂ ) and for all (c2, F 2) ∈ C × P(F̂ ) it

must hold that:

t((c1, F 1), (c2, F 2))− ω(c1, c2)

[
c1 +

∑
{k|fk∈F 1∪F 2}

∆ck

]
≥

t((c̃1, F̃ 1), (c2, F 2))−ω(c̃1, c2)

[
c1 +

∑
{k|fk∈F̃ 1∪F 2}

∆ck

]
+ω(c̃1, c2)

∑
{k|fk∈F 1\(F̃ 1∪F 2)}

(1−α)SR
k

(EPIC)

In the following, we derive conditions on transfers that need to be satisfied, so that seller

1 has no incentive to misreport his type. We have to distinguish four cases.

Case (i) c1 < c2 and c̃1 < c2: Seller 1 is more efficient than seller 2. He must have

no incentive to misreport his type by claiming to have cost c̃1 6= c1 such that he is still

selected as the contractor. This is the case iff

t(c1, F 1, ·)− [c1 +
∑

{k|fk∈F 1∪F 2}

∆ck]

≥ t(c̃1, F̃ 1, ·)− [c1 +
∑

{k|fk∈F̃ 1∪F 2}

∆ck] +
∑

{k|ff∈F 1\(F̃ 1∪F 2)}

(1− α)SR
k .

Rearranging yields

t(c1, F 1, ·)− t(c̃1, F̃ 1, ·) ≥
∑

{k|fk∈F 1\(F̃ 1∪F 2)}

[
∆ck + (1− α)SR

k

]
∀c1, c̃1 < c2. (18)

Case (ii) c1 < c2 and c̃1 > c2: If Seller 1 is more efficient than seller 2 he must also

have no incentive to report to be less efficient than seller 2, which is the case iff

t(c1, F 1, ·)− t(c̃1, F̃ 1, ·) ≥ c1 +
∑

{k|fk∈F 1∪F 2}

∆ck ∀c1 < c2, c̃1 > c2. (19)

Case (iii) c1 > c2 and c̃1 > c2: Seller 1 is less efficient than seller 2. He must have no
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incentive to report c̃1 6= c1 such that he is still less efficient. In this case (EPIC) reduces

to

t(c1, F 1, ·)− t(c̃1, F̃ 1, ·) ≥ 0 (20)

The reverse condition has to hold to deter type c̃1 from reporting to be type c1. Further-

more these conditions have to hold for all F 1 and F̃ 1 ⊆ F 1, so in particular for F̃ 1 = F 1.

Thus, different types of seller 1 that report the same set of flaws and different costs so

that production is executed by seller 2 must receive the same transfer: For all c1, c̃1 so

that ω(c1, ·) = ω(c̃1, ·) = 0 we must have

t(c1, F 1, ·) = t(c̃1, F 1, ·) ∀F 1,∀c1, c̃1 > c2. (21)

Case (iv) c1 > c2 and c̃1 < c2: If seller 1 is less efficient than seller 2 he must not

have an incentive to report to be more efficient. The (EPIC) constraint in this case is

equivalent to

t(c1, F 1, ·)− t(c̃1, F̃ 1, ·) ≥

−
[
c1 +

∑
{k|fk∈F̃ 1∪F 2}

∆ck

]
+

∑
{k|fk∈F 1\(F̃ 1∪F 2)}

(1− α)SR
k ∀c1 > c2, c̃1 < c2. (22)

We now turn to the limited liability constraint (LL). Clearly, the buyer would like the

(LL) constraint to hold with equality. If c̃1 < c2 this is the case iff

t(c̃1, F̃ 1, ·) = c̃1 +
∑

{k|fk∈F̃ 1∪F 2}

∆ck.

Using this in inequality (18) yields

t(c1, F 1, ·) ≥ c̃1 +
∑

{k|fk∈F̃ 1∪F 2}

∆ck +
∑

{k|fk∈F 1\(F̃ 1∪F 2)}

(1− α)SR
k , (23)

which must hold for all c1, c̃1 < c2 and F̃ 1 ⊆ F 1. In particular, it has to hold for all c̃1

arbitrarily close to c2 and for F̃ 1 = F 1. Thus, a necessary condition for ex post incentive
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compatibility to hold for a type (c1, F 1) with c1 < c2 is:

t(c1, F 1, ·) ≥ c2 − ε+
∑

{k|fk∈F 1∪F 2}

∆ck +
∑

{k|fk∈F 1\F 2}

(1− α)SR
k ∀c1 < c2. (24)

Now, consider case (iv). If c̃1 < c2 and t(c̃1, F̃ 1, ·) satisfies (LL) with equality, then

t(c̃1, F̃ 1, ·) = c̃1 +
∑

{k|fk∈F̃ 1∪F 2}

∆ck

as before. Using this in inequality (22) yields

t(c1, F 1, ·) ≥ c̃1 − c1 +
∑

{k|fk∈F 1\(F̃ 1∪F 2)}

(1− α)SR
k , (25)

which has to be satisfied for all c̃1 < c2 and F̃ 1 ⊆ F 1. In particular, it must hold for

F̃ 1 = F 1 and any c̃1 arbitrarily close to c2 which implies

t(c1, F 1, ·) ≥ c2 − c1 +
∑

{k|fk∈F 1\F 2}

(1− α)SR
k ∀c1 > c2. (26)

By (21) it has to hold that t(c1, F 1, ·) = t(ĉ1, F 1, ·) for all c1, ĉ1 > c2; i.e., if the seller does

not execute production, his transfer is independent of the reported cost type. Hence, a

necessary condition for ex post incentive compatibility is

t(c1, F 1, ·) ≥
∑

{k|fk∈F 1\F 2}

(1− α)SR
k ∀c1 > c2. (27)

The following Lemma follows immediately from equations (24) and and (27)

Lemma 1. Consider an ex post incentive compatible mechanism that also satisfies the

constraints (EP), (ED), and (LL). Then, the transfer schedule satisfies

t(c1, F 1, ·) ≥


∑
{k|fk∈F 1\F 2}(1− α)SR

k if c1 > c2,

c2 +
∑
{k|fk∈F 1∪F 2}∆ck +

∑
{k|fk∈F 1\F 2}(1− α)SR

k if c1 < c2.

(28)

Note that the ex post utility of seller 1 with cost type c1 = c2 is the same, irrespective
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of whether he has to produce the good and the transfer is given by the lower bound of

the term for c1 < c2 or he does not obtain the contract and the transfer is given by the

lower bound of the term for c1 > c2.

The proposed mechanism satisfies the conditions provided in Lemma 1 with equality.

In other words, the proposed mechanism satisfies the four constraints (EPIC), (EP), (ED),

and (LL) at the lowest feasible cost to the buyer.
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