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Abstract

It is well known that the interest rate differential (the forward premium) predicts

currency returns. However, we find that the real exchange rate, not the interest rate

differential, is the main predictor of currency returns at longer horizons. We relate this

finding to other puzzling features of currency markets, namely that the real exchange

rate contemporaneously appreciates with the interest rate differential and that the

positive relationship between currency risk premia and the interest rate differential

reverses over longer horizons. Models in which the currency risk premium depends on

the interest rate differential and a missing risk premium, capturing deviations from

the purchasing power parity, can rationalize these observations.
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We ask whether two assumptions about exchange rates are sufficient to quantify move-

ments in exchange rates. The first assumption is that currency risk premia depend on the

difference between foreign and domestic interest rates. The second assumption is that real

exchange rates are stationary, so that the prices of foreign goods and services cannot forever

deviate from the prices of domestic goods and services. We find that a present-value model

with these two assumptions cannot quantify how much real exchange rates move over time.

We argue that to quantitatively match the movements of real exchange rates in the data,

currency risk premia must be more volatile and depend on an additional component, which

is related to the real exchange rate.

It has been widely documented that a currency tends to appreciate in the short run

when its nominal interest rates exceed foreign interest rates. This is in sharp contrast

to uncovered interest rate parity (UIP), which states that the exchange rate should instead

depreciate to compensate for any difference in interest rates. A common interpretation of the

deviations from UIP is that currency risk premia are positively correlated with the interest

rate differential, so that currencies with higher interest rates appear riskier to investors

(Fama, 1984). In the past, economic models have had difficulties generating such currency

risk premia and the literature refers to this as the UIP (or forward premium) puzzle. However,

evidence suggests that deviations from UIP are less severe at longer horizons (see, e.g., Chinn

and Meredith, 2004; Bacchetta and Van Wincoop, 2010; Boudoukh et al., 2016). Engel

(2016) documents that the relationship between currency risk premia and the interest rate

differential actually reverses over longer horizons, so that currencies with higher interest

rates appear safer in the long run.

It seems natural to assume that foreign and domestic prices cannot deviate in the long

run, i.e., that purchasing power parity (PPP) holds. This assumption allows us, within a

present-value model, to decompose the current real exchange rate in terms of future cash

flows and returns. More precisely, the real exchange rate equals the sum of all future interest

rate differentials minus the sum of all future returns. In asset pricing terms, the real exchange

rate is the relative price of two currencies and PPP excludes bubble-type fluctuations in this
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price. Therefore, if the foreign currency is relatively weak today (i.e., the price is low), it

must be that future interest rate differentials will be low (i.e., expected future cash flows are

low), that future returns will be high, or both.

While deviations from UIP relate interest rate differentials to short-term returns, PPP ties

the real exchange rate to the infinite sum of future short-term returns. Taken together, these

two assumptions describe the formation of expectations about future changes in exchange

rates and interest rates. An increase in the real exchange rate today should predict an

equal increase in future interest rate differentials. As future interest rate differentials are

highly predictable from the current interest rate differential, we should observe a near-

perfect correlation between real exchange rates and interest rate differentials. However,

this correlation is weak in the data. Often, it is even of the wrong sign: an increase in the

interest rate differential today predicts a higher return tomorrow, but tends to come with a

higher exchange rate today, which points toward a lower return tomorrow.

This suggests that although interest rate differentials covary with currency risk premia,

they alone cannot pin down the time variation in currency risk premia. We use long-term

PPP to extract the component of currency risk premia that is necessary to explain real

exchange rate movements. We label this missing component “PPP,” and without loss of

generality, we describe it as a risk premium. We assume that the interest rate differential

and the PPP risk premium follow autoregressive processes. This allows us to identify the

missing risk premium component using standard regression methods.

We find that accounting for this missing risk premium raises the R-squared in predictive

regressions for monthly returns by about 30% on a portfolio of currencies. The PPP risk

premium is highly persistent, more persistent than the risk premium related to the interest

rate differential, and negatively correlated with the real exchange rate. The R-squared

increases with the forecasting horizon, from 3% at the one-month horizon to about 60% at

the ten-year horizon. Accounting for the PPP risk premium improves return predictability

in an out-of-sample evaluation. Finally, we find that it accounts for most of the real exchange

rate movements. For the currency portfolio, PPP shocks account for 132.4% of the exchange
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rate innovations, the remainder being attributed to shocks in interest rate differentials (9.5%

is due to pure cash flow shocks and 49.8% is due to risk premia), inflation rates (9.5%), and

covariance terms (−93.2%).

Our findings help us understand Engel’s (2016) evidence that the positive relationship

between currency risk premia and the interest rate differential reverses over the horizon. The

interest rate differential and the real exchange rate have opposite effects. A positive interest

rate differential shock raises future returns but also comes with an immediate appreciation

of the real exchange rate. The net effect is an increase in expected return in the short run.

However, because the real exchange rate is more persistent than the interest rate differential,

this leads to a decrease in expected return in the long run. Hence, the currency appears

riskier in the short run and safer in the long run.

Our empirical results shed light on the desirable properties of currency risk premia that

asset pricing models must accommodate: (i) currency risk premia must depend on at least

two sources of risk; (ii) these two risk sources must be negatively correlated; and (iii) one

risk source must be much more persistent than the other. Interestingly, Engel (2016) reaches

similar conclusions in a model based on liquidity risk. His model can accommodate the

reversal in the relationship between currency risk premia and the interest rate differential.

However, he argues that leading representative–agent models are unable to generate a similar

relationship. Guided by our empirical results, we show that such a model can yield the above

properties, and also generate a positive contemporaneous relationship between real exchange

rates and interest rate differentials. We conclude that leading currency models should not

only aim to explain deviations from UIP but also reproduce various moments of the real

exchange rate.

The insight that return predictability and cash-flow predictability are best studied jointly

originates from the literature on the behavior of the aggregate stock market (Campbell

and Shiller, 1988; Fama and French, 1988; Cochrane, 2008). Just as the real exchange

rate reflects future interest rate differentials and future currency returns, the dividend–price

ratio reflects future dividend growth rates and future stock returns. van Binsbergen and
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Koijen (2010) and Rytchkov (2012) use this to filter out expected dividend growth rates and

expected stock returns in a present-value system. They find that the expected stock return

and the expected dividend growth rate are both persistent, but that the expected stock

return is much more persistent than the expected dividend growth rate. Unlike dividend

growth rates, interest rate differentials are quite persistent and well approximated by a simple

autoregressive process. The interest rate differential also tends to predict future currency

returns. We nevertheless find that the component of expected returns that relates to PPP

movements is more persistent than the one that relates to the interest rate differential. In

this dimension, the similarity between the persistence of the real exchange rate (for studying

currency returns) and of the dividend yield (for studying stock returns) is striking. Put

differently, highly persistent risk premia can explain long-term deviations from PPP and

long-term movements in the dividend yield.

Several applications of the present-value model have been used to understand exchange

rates (Froot and Ramadorai, 2005; Engel and West, 2005, 2010). Recently, Filipe and Maio

(2016) and Balduzzi and Chiang (2017) have used long-term PPP and vector autoregres-

sive (VAR) models to derive variance decompositions of the real exchange rate. Balduzzi

and Chiang (2017), in particular, use such a model to construct tests of whether the real

exchange rate predicts returns. Our focus is different, in that we set the conditions that a

model must meet to obtain currency return predictability, rather than strictly testing pre-

dictability. Asness et al. (2013) and Menkhoff et al. (2017) have built trading strategies

based on currency value. However, these strategies invest according to relative currency

values, i.e., they consider cross-sectional predictability rather than time-series predictability

as we do.1

Our work relates to several other literatures. First, there is a vast literature on tests of

real exchange rate stationarity and PPP (Rogoff, 1996; Burstein and Gopinath, 2014). It is

notoriously difficult to test for stationarity and the evidence is mixed for real exchange rates.

We do not formally test for real exchange rate stationarity, but assume it throughout the

1Relatedly, Jordà and Taylor (2012) and Barroso and Santa-Clara (2015) consider the diversification
benefits of incorporating currency value into other currency trading strategies.
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analysis. Eichenbaum et al. (2017) also maintain the assumption that the real exchange rate

is stationary. They show that mean reversion in the real exchange rate arises overwhelmingly

through changes in nominal exchange rates, rather than through differences in inflation rates.

This is consistent with our interpretation that changes in the real exchange rate reflect return

shocks. Interestingly, Lustig et al. (2016) argue that no-arbitrage conditions and the similar

returns on domestic and foreign long-term bonds expressed in the same currency suggest

that even the nominal exchange rate is stationary.

Second, a large literature documents predictors of currency returns beyond the interest

rate differential (see Rossi, 2013, for a survey). As we do, Jordà and Taylor (2012), Boudoukh

et al. (2016), Filipe and Maio (2016), and Balduzzi and Chiang (2017) use the real exchange

rate to forecast exchange rates. Recent examples of other predictors include implied volatility

(Chernov et al., 2016), volatility and variance risk premia (Della Corte et al., 2016; Londono

and Zhou, 2017), quanto forward prices (Kremens and Martin, 2017), and net foreign assets

(Gourinchas and Rey, 2007; Della Corte et al., 2012). There is also evidence of time-series

momentum in currency returns (Burnside et al., 2011; Menkhoff et al., 2012; Moskowitz et al.,

2012). Common to these additional predictors and to the time-series momentum evidence is

that the persistence of the component complementing the interest rate differential is lower

than that of the PPP risk premium or the real exchange rate. While being interesting

predictors in themselves, with their lower persistence it would be challenging to generate the

observed reverse relationship between the interest rate differential and future currency risk

premia over longer horizons.

Third, our paper relates to the literature on representative–agent rational expectations

models in open economies, such as the habit models (Verdelhan, 2010; Heyerdahl-Larsen,

2014; Stathopoulos, 2017), the long-run risk models (Colacito and Croce, 2011, 2013; Bansal

and Shaliastovich, 2013; Colacito et al., 2017), and the rare disaster model (Farhi and Gabaix,

2016). Most of these models explain deviations from UIP using a single risk source. Engel

(2016) presents a long-run risk model with two risk sources, but argues that this model is

unable to reproduce the changing sign between interest rates and future returns. We show
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that our assumptions regarding risk premia can be rationalized as a long-run risk model. We

discuss the necessary conditions that leading asset pricing models must meet to solve Engel

(2016)’s puzzle, and argue that researchers should target additional moments related to the

behavior of the real exchange rate.

The remainder of this paper proceeds as follow. The next section discusses a simple

model in which currency risk premia depend only on interest rate differentials. Section II

extends this model by allowing for an additional risk source. In Section III we introduce our

data and provide preliminary evidence on the behavior of currency risk premia and exchange

rates. Section IV estimates our main model and comments on its ability to reproduce key

observations. Section V discusses how our findings matter for the building of asset pricing

models and presents a representative–agent model that corresponds to the dynamics of our

empirical reduced-form model. Section VI offers conclusions. An Online Appendix provides

supporting details.

I. Currency returns and the real exchange rate

Consider a zero-cost strategy that borrows in dollars and invests in a foreign currency. By

definition, the log excess return on this strategy is the log exchange rate appreciation plus

the interest rate differential:

rt+1 = st+1 − st + i∗t − it, (1)

where st is the nominal exchange rate in dollars per unit of foreign currency at date t, and

it and i∗t are the US and foreign interest rates between t and t + 1, respectively. We refer

to rt+1 as a currency return and the conditional expectation of it, Et(rt+1), as the expected

currency return or the currency risk premium.

Uncovered interest rate parity (UIP) states that the nominal exchange rate should, in

expectation, move to compensate exactly for any difference in interest rates and that the

currency risk premium should be zero, i.e., Et(st+1−st) = −(i∗t − it) and Et(rt+1) = 0.2 This

2UIP is actually a statement of the expected level (not log) of excess return, which means that we abstract
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is typically evaluated by regressing the change in the exchange rate on the lagged interest

rate differential (Fama, 1984):

st+1 − st = α− β(i∗t − it) + εt+1, (2)

where εt+1 is an error term that is assumed to be uncorrelated with all available information

at date t (in particular, uncorrelated with the interest rate differential). UIP implies that

β = 1, which is routinely rejected in the data. Estimates of the β coefficient are less than one

and often negative. A negative β means that a currency with a relatively high interest rate

tends to appreciate against the dollar, while UIP implies that it should instead depreciate

against the dollar. This is often referred to as the UIP (or forward premium) puzzle, as it

was challenging for earlier models to qualitatively and quantitatively match the estimated β

coefficient.

Add the interest rate differential, i∗t − it, to both sides of (2) and recall the return

definition, (1), to obtain:

rt+1 = α + (1− β)(i∗t − it) + εt+1. (3)

The general interpretation of β < 1 in the literature is that currency risk premia are time

varying and positively correlated with interest rate differentials. A number of papers study

the properties of asset pricing models that can generate a time-varying currency risk pre-

mium. It is common to choose model parameters so that the currency risk premium is

perfectly correlated with the interest rate differential (see, e.g., Backus et al., 2001; Verdel-

han, 2010; Farhi and Gabaix, 2016). We relax that assumption in Section II.

Express (1) in terms of real variables:

rt+1 = qt+1 − qt + (i∗t − π∗t+1)− (it − πt+1), (4)

from a Jensen’s inequality term. Here, the important deviation from UIP is a time-varying currency risk
premium, not a non-zero but a constant currency risk premium.
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where qt = st+p∗t −pt is the real exchange rate, and πt+1 = pt+1−pt and π∗t+1 = p∗t+1−p∗t are

the US and foreign inflation rates between t and t+ 1, respectively. Rewrite (4) in terms of

the real exchange rate, iterate forward, and take conditional expectations (Engel and West,

2005):

qt − µq =
∞∑
j=1

Et(i
∗
t+j−1 − it+j−1)−

∞∑
j=1

Et(π
∗
t+j − πt+j)−

∞∑
j=1

Et(rt+j). (5)

To derive (5), we assume that PPP holds in the long run. The PPP restriction plays a

similar role as do no-bubble conditions in present-value models of stock returns (see, e.g.,

Campbell and Shiller, 1988; van Binsbergen and Koijen, 2010). This amounts to assuming

that limj→∞ Et(qt+j) = E(qt) = µq.

For simplicity, assume that the interest rate differential follows an AR(1) process and

that the inflation differential is unpredictable:

i∗t+1 − it+1 = (1− ρi)µi + ρi(i
∗
t − it) + εit+1, (6)

π∗t+1 − πt+1 = µπ + επt+1, (7)

where the shocks εit+1 and επt+1 are independently and identically distributed (IID) over time.

Together with (3), these assumptions lead to the following expression for the real exchange

rate (see Appendix A):

qt − µq = β
i∗t − it − µi

1− ρi
. (8)

Comparing (5) and (8), we see that rather than being correlated with future interest rate

differentials minus future returns, the real exchange rate is simply correlated with the current

interest rate differential. This is in contrast with the literature on equity return predictability

(e.g., van Binsbergen and Koijen, 2010), where valuation ratios depend on future returns and

cash flows. In this simple model, both future returns and future cash flows are proportional

to the current interest rate differential. The proportional relationship between future returns

and the interest rate differential is given by (3). The proportional relationship between future

interest rate differentials and the current interest rate differential follows from our AR(1)

8



assumption for the interest rate differential in (6). This assumption implies that future

interest rate differentials are perfectly correlated with the current interest rate differential.

Also note that expectations of inflation differentials are constant in (7) and therefore do not

affect the real exchange rate in (8).3

Unless β = 0, these assumptions imply that the real exchange rate is perfectly correlated

with the interest rate differential. This perfect correlation does not depend on whether or

not UIP holds. If UIP holds, then β = 1 and the real exchange rate equals the present

value of expected future interest rate differentials. Hence, the real exchange rate moves only

because of “fundamentals” (or cash flows). The foreign currency is expensive (qt > 0) when

the interest rate in the foreign country is higher than in the domestic country (i∗t − it > 0).

When β 6= 1, the interest rate differential predicts future returns. This means that the

real exchange rate also moves because of expected future returns (or discount rates). When

β < 0, the discount rate effect dominates so that the foreign currency appears weak when

its relative interest rate is high. That is, β captures the sensitivity of the real exchange rate

with respect to both cash flows and discount rate shocks.

We make different assumptions regarding cash flow expectations than in the stock market

literature because cash flows are far more predictable in a currency investment than in a stock

investment. Table I indicates that nominal interest rate differentials are highly persistent.

In contrast, the dividend growth rate is notoriously difficult to predict (e.g., Cochrane,

2008). This motivates the filtering approach of van Binsbergen and Koijen (2010) to extract

dividend expectations from the dividend-price ratio. The model we present in Section II

does not require this complication as expectations of the interest rate differential are easier

to pin down than expectations of the dividend growth rate. We prefer to model interest rate

differentials in nominal terms, as nominal interest rate differentials are far more persistent

than real interest rate differentials. Inflation differentials exhibit low persistence (see Table

I), which motivates our assumption (7). Irrespectively, as is apparent in (8), only highly

3From (8), the real exchange rate follows a stationary AR(1) process. Our assumption (7) regarding the
inflation differential implies that the price differential, pt − p∗t , follows a random walk, which in turn implies
that the nominal exchange rate, st = qt + pt − p∗t , is non-stationary.
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persistent variables can realistically exhibit strong correlations with the real exchange rate.

We later demonstrate that the correlation between the real exchange rate and the interest

rate differential is fairly weak; in addition, this correlation is often of the wrong sign. As

noted earlier, interest rate differentials tend to predict future currency returns and exchange

rate changes positively, suggesting a β < 0. However, regressions of the real exchange

rate on the interest rate differential tend to yield positive coefficients, suggesting a β > 0.

This empirical tension between current exchange rates, interest rate differentials, and future

returns requires that the expected currency return depends on an additional risk premium,

as we discuss next.

II. The missing risk premium

We hypothesize a two-factor structure for expected currency returns. The first factor cor-

relates with the interest rate differential. The second factor is determined by the long-term

PPP restriction (5). As this second factor will capture the mean reversion of the real ex-

change rate, we label it PPP. Section V presents a long-run risk model that corresponds to

the reduced-form dynamics that we assume here. We alter (3) so that the error term consists

of a mean-zero term, ηt, and a pure return shock, εrt+1:

rt+1 = α + (1− β)(i∗t − it) + ηt + εrt+1. (9)

We maintain assumptions (7) and (6), and further assume that ηt follows an AR(1)

process:

ηt+1 = ρηηt + εηt+1, (10)

where the shock εηt+1 is assumed to be IID over time. That ηt has a zero mean ensures

identifiability. As ηt predicts currency returns, we interpret this variable as a risk premium,

although other forces such as (rational) inattention or liquidity premia could justify the
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predictability. In practice many variables have been shown to predict exchange rates (Rossi,

2013). However, to keep it simple, we assume that two factors are sufficient to characterize

currency risk premia. The interest rate differential will be especially important in the short

term and ηt will be especially important in the long term. To make another analogy with the

stock market, a large number of variables can predict returns beyond valuation ratios, but

the dividend-price ratio is the natural variable to look at to understand returns and asset

prices. The other variables are typically less persistent that valuation ratios, and therefore

predict returns over shorter horizons (Cochrane, 2011).

The model features three shocks, namely, the interest rate differential shock, εit, the

inflation differential shock, επt , and the PPP shock, εηt . We have assumed that these shocks

are IID over time with zero means but allow them to be correlated with the following

covariance matrix:

Var



εit

επt

εηt


 =


σ2
i σiπ σηi

σiπ σ2
π σηπ

σηi σηπ σ2
η

 . (11)

The corresponding correlations between the shocks are denoted ρiπ, ρηi, and ρηπ.

We further assume that α = βµi − µπ. We show in Appendix A that this assumption is

necessary for the real exchange rate to be stationary.

To obtain a new expression for the real exchange rate (see Appendix A), use assumptions

(6), (7), and (10) together with the return (9) to obtain:

qt − µq = β
i∗t − it − µi

1− ρi
− ηt

1− ρη
. (12)

Hence, our two-factor structure for expected returns implies that the same two factors drive

the level of the real exchange rate. We emphasize that there is no error term in (12). For

the purpose of estimation, this relationship effectively binds the predictions of future returns

and the interest rate differential so that long-term PPP holds.

This relationship also implies that one of the shocks is redundant. We choose to express

return shocks in terms of the three primitive shocks: the interest rate differential shock, εit+1,
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the inflation differential shock, επt+1, and the PPP shock, εηt+1. Using (12), the change in the

real exchange rate is:

qt+1 − qt = βµi − β(i∗t − it) + ηt + β
εit+1

1− ρi
−

εηt+1

1− ρη
. (13)

Likewise, using (4) and (7), the return is:

rt+1 = βµi − µπ + (1− β)(i∗t − it) + ηt + β
εit+1

1− ρi
− επt+1 −

εηt+1

1− ρη
. (14)

It follows that the return shock can be expressed as:

εrt+1 = rt+1 − Et(rt+1) = β
εit+1

1− ρi
− επt+1 −

εηt+1

1− ρη
. (15)

The unexpected currency return is thus a weighted sum of the three primitive shocks. Note

that as the inflation differential is unpredictable (it has no persistence), it does not appear in

the long-run expression for the real exchange rate in (12). However, inflation shocks matter

in the short run and affect currency returns in (15).

Similarly, (12) suggests that the missing risk premium, ηt, is a function of the interest

rate differential and the real exchange rate:

ηt = (1− ρη)
[
β
i∗t − it − µi

1− ρi
− (qt − µq)

]
. (16)

Inserting (16) into (9), we find that:

rt+1 = βµi

(
ρη − ρi
1− ρi

)
− µπ +

(
1− βρη − ρi

1− ρi

)
(i∗t − it)− (1− ρη)(qt − µq) + εrt+1. (17)

This suggests that currency return predictions should include not only the interest rate differ-

ential but also the real exchange rate. Univariate regressions ignore the long-run restriction

implied by PPP and may therefore yield potentially biased estimates of β.

Our assumptions regarding the dynamics of the interest rate differential, inflation dif-
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ferential, and PPP risk premium are rather simplistic. They correspond to a sparse VAR

with off-diagonal coefficients in the autocorrelation matrix set to zero, and with the inflation

differential autocorrelation coefficient set to zero. In the Online Appendix, we repeat our

analysis in the context of a full VAR model. We show that this implies that, as long as it

is persistent, the inflation differential should predict currency returns. In the data, we find

some evidence that the inflation differential is persistent, although it is much less so than the

interest rate differential or the PPP risk premium. Consequently, an increase in the inflation

differential lowers future returns at a monthly horizon, but vanishes at an annual horizon.

Hence, the inflation differential matters little for long-horizon returns, implying that esti-

mates of the PPP risk premium do not strongly depend on inflation differential dynamics.

We verify this empirically and present the results in the Online Appendix.

III. Data and preliminaries

A. Data

We retrieve daily data on spot and one-month forward exchange rates from Barclays Bank

International and Reuters (via Datastream). Our sample covers nine countries (currencies):

Australia (AUD), Canada (CAD), Germany (EUR), Japan (JPY), New Zealand (NZD),

Norway (NOK), Sweden (SEK), Switzerland (CHF), and the UK (GBP). Our sample covers

the period from January 1976 to December 2015 for seven currencies (all except AUD and

NZD), and starts in January 1985 for AUD and NZD.4 We also construct an equally weighted

portfolio of the seven countries, referred to simply as “Portfolio,” which covers the full sample

period.5 We assume the US dollar (USD) to be the domestic currency and express all seven

currencies in USD per unit of the foreign currency. Hence, an increase in the exchange rate of

a given currency implies the appreciation of the foreign currency and the depreciation of the

4For the Japanese yen up to 1978 we use data obtained from the Financial Times as in Hsieh (1984).
5We choose not to include AUD and NZD in this portfolio to avoid complications related to the inclusion

of these currencies in 1985 (i.e., introducing currencies within the sample requires demeaning of series and
complicates the interpretation of out-of-sample exercises).
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USD. As one-month interbank rates are not available for all countries during this period, we

compute implied one-month interest rate differentials assuming covered interest-rate parity:

i∗t − it = st−ft, where st and ft denote the log spot and forward exchange rates, respectively.

Log excess returns for a US investor going long in a foreign currency are computed as

rt+1 = st+1− st + i∗t − it. Log real exchange rates are computed as qt = st + p∗t − pt, where p∗t

and pt are consumer price indices obtained from the OECD. Log inflation differentials are

computed as π∗t −πt = (p∗t −p∗t−1)−(pt−pt−1). The statistical agencies in Australia and New

Zealand release price indices on a quarterly basis, while our dataset is sampled monthly. To

avoid introducing future information into the econometrician’s information set, we choose

not to interpolate inflation rates for these two currencies, and instead update price indices

at the end of each quarter.

Table I reports means, standard deviations, and first-order autocorrelations for monthly

returns, real exchange rates, interest rate differentials, and inflation differentials for the

nine currencies individually as well as the portfolio of all seven currencies. Returns are on

average low but quite volatile, with the monthly standard deviation ranging from 2% to

3.5% (corresponding to an annual volatility of 7% to 12%). Unsurprisingly, returns exhibit

little autocorrelation. Both the real exchange rates and the interest rate differentials are

persistent, although first-order autocorrelations are much higher for the real exchange rates

than for the interest rate differentials.

B. Fama regressions

The first panel of Table II reports regressions of the future currency return on the current

interest rate differential as in (3). This type of regression is referred to as a Fama regression

(Fama, 1984). As usually found in the literature, the estimated slope coefficients are, except

for Sweden, negative, indicating that a currency with a higher interest rate than the US

interest rate tends to appreciate in value. (Recall that UIP predicts a slope coefficient of

one, so that the interest rate differential is equaled by the currency depreciation.)

We argue that regressions of this kind may suffer from an omitted variable bias once one
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recognizes that the real exchange rate must be stationary. The second panel of Table II

therefore reports regressions in which we control for the lagged real exchange rate. Formally,

we run the following regression:

rt+1 = a+ (1− b)(i∗t − it) + cqt + ut+1. (18)

We now find stronger evidence that interest rate differentials negatively predict future ex-

change rates (i.e., the b coefficients become more negative). Importantly, the coefficients

associated with the real exchange rate are negative for all countries. When the real exchange

rate is high (i.e., the foreign currency is expensive with respect to the dollar), currency re-

turns tend to be lower. A one-standard-deviation increase in the real exchange rate lowers the

next-month return by 0.26%. This effect is about the same as for a one-standard-deviation

change in the interest rate differential.

What does this tell us about risk premia? The R-squared from the Fama regression of

the currency portfolio is only 2.2%, as reported in the last column of Table II. However, this

seemingly low R-squared implies that the risk premium for holding a foreign deposit is quite

volatile. The R-squared tells us what fraction of currency return variance is predictable. The

ratio of expected return standard deviation to return standard deviation is
√

2.2% ≈ 14.8%,

which suggests a volatile risk premium, as originally argued in Fama (1984). Adding the

real exchange rate to the right-hand side raises the R-squared to 2.9%, a 32% increase. This

suggests an even more volatile risk premium, with the predictable variation accounting for

17.0% of the currency return standard deviation.

While the volatility of the risk premium is large, the estimates are imprecise and one

may worry about statistical significance. In addition, both predictors are highly persistent.

Predictive regressions inherit the near-unit-root properties of the right-hand-side variable

(Stambaugh, 1999). Innovations for both right-hand-side variables are positively correlated

with return innovations, leading to biases. In the currency portfolio, the correlation between

the residuals in (18) and the interest rate differential innovations is 12.7%. Table II indi-

cates that the b estimate is typically negative. The Stambaugh (1999) bias implies that we
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underestimate predictability from interest rate differentials (i.e., b should be more negative).

The correlation between the residuals in (18) and real exchange rate innovations is 98.6%.

Hence, c is also biased downward, but in that case we may overestimate the predictability

from the real exchange rate.

Should we accept the null hypothesis that c = 0 and reject that the real exchange rate

predicts currency returns? Equation (17) suggests that ρη = c + 1. All point estimates of

c coefficients are negative but close to zero, suggesting that ρη is slightly lower than one.

Under the null hypothesis that c = 0, ρη = 1, so that both ηt and the real exchange rate

have unit roots. A more powerful null hypothesis would be conditioned on long-term PPP

being true (i.e., conditioned on ρη < 1). Cochrane (2008) makes this point in the context of

predicting stock market returns by the dividend yield. If the dividend yield is stationary, it

must predict future dividend growth, future returns, or both. Likewise, if the real exchange

rate is stationary, it must predict future interest rate differentials, future returns, or both.

Balduzzi and Chiang (2017) apply this idea to exchange rates and reject the null hypothesis

that the real exchange rate does not predict currency returns.

Perhaps the best way to gauge the importance of the real exchange rate is to consider

long-horizon predictions. The third and fourth panels of Table II report results of the predic-

tive regression of one-year returns. The R-squared values are now 13.4% and 25.4% for the

currency portfolio. The results indicate that the persistence of the interest rate differential

and the real exchange rate strengthens the predictability over the investment horizon. We

further illustrate this point in Figure 1, which plots the negative of the real exchange rate

against subsequent five-year currency returns. The correlation is high between the two vari-

ables. The real exchange rate could fluctuate over time to reflect changing expectations of

the long-term differences in interest rates across currencies. However, Figure 1 suggests that

future currency returns offset changes in the real exchange rate. This pattern is common

in predictive regressions of stock returns on various valuation ratios, where valuation ratios

predict future returns rather than future cash flows. For example, Cochrane (2011) presents

a similar figure, relating the dividend-price ratio and subsequent stock returns. Interest-
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ingly, in his presidential address, Cochrane (2011) mentions exchange rate predictability,

but only by interest rate differentials, while interest rate differentials mostly capture infor-

mation regarding short-term currency returns. Figure 1 does not account for the information

contained in current interest rate differentials. Long-term PPP tells us that the real exchange

rate, once purged from expectations from future interest rate differentials, should capture

long-term currency returns, not the interest rate differential. We return to this point in the

context of our present-value model in Section IV.D.

C. Real exchange rates and interest rate differentials

If currency risk premia are well described by the Fama regression and if real exchange rates

are stationary, then real exchange rates must be perfectly correlated with the expected

future interest rate differentials. We assume that interest rate differentials follow an AR(1)

process, which in turn implies that expectations regarding future interest rate differentials

are perfectly correlated with the current interest rate differential; see (8). In addition, this

correlation must have the same sign as the β coefficient.

Table III runs contemporaneous regressions of the real exchange rates on interest rate

differentials. The error term in this regression is perfectly correlated with ηt, and is likely

serially correlated. We therefore use a Cochrane-Orcutt estimation method, specifying an

AR(1) process for the error term. If the simple present-value model of Section I is true,

the R-squared values should be high and the slope coefficients should be negative. Table

III shows that the estimated slope coefficients are positive in all countries except Canada.

Although the slope coefficients are statistically significant in some cases, the R-squared values

are unambiguously small.
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IV. Empirical results

A. Estimation

Our present-value model features twelve parameters: µq, µi, µπ, ρi, σi, σπ, β, ρη, ση, ρiπ,

ρηi, and ρηπ. Parameters for the dynamics of interest rate and inflation differentials in

(6) and (7) relate only to observed variables and are therefore straightforward to estimate.

Five parameters depend on the unobserved risk premium, ηt: β, ρη, ση, ρηi, and ρηπ. As our

model features only one latent variable, we can estimate these parameters using the following

predictive regression:

rt+1 = a+ (1− b)(i∗t − it) + cqt + ut+1. (19)

Matching coefficients with (17) gives:

β̂ = b̂
1− ρ̂i
ρ̂η − ρ̂i

, (20)

ρ̂η = ĉ+ 1, (21)

where a “hat” denotes an estimated parameter. Equation (16) then gives estimates of ηt.

Finally, (10) gives Var(ηt) = σ2
η/(1 − ρ2

η), which we use to obtain an estimate of ση. We

estimate the correlations ρηi and ρηπ from the residuals.

B. Estimation results

Table IV presents the estimated model parameters for the seven currencies in the sample

and for the currency portfolio. Bootstrapped standard errors are reported in parentheses.

We documented in Section III.B, in line with the literature, that the β coefficients in the

Fama regressions are mostly negative, indicating that high-interest currencies tend to have

higher future returns. This is the UIP (or forward premium) puzzle discussed earlier. Table

IV reports β coefficients that are even more negative than the slope coefficients in Table II.

Hence, controlling for PPP deviations intensifies the puzzle.
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Table IV also highlights the volatility and persistence of the two risk premia. Interest rate

differential shocks tend to be more volatile than PPP shocks (i.e., σi > ση). However, the

PPP risk premium is always more persistent than the interest rate differential (i.e., ρη > ρi).

This difference is economically large and significant. For example, Table IV reports that the

estimate of ρi for the currency portfolio is 0.878, corresponding to a half-life of about 5.3

months for the average interest rate differential. The estimate of ρη is 0.982, corresponding

to a half-life of 38.6 months for the PPP risk premium. This is broadly consistent with

previous estimates of deviations from PPP (see, e.g., Rogoff, 1996; Burstein and Gopinath,

2014).

Finally, the last row in Table IV reports R-squared values for predictive regressions of

future currency returns on interest rate differentials and PPP deviations, η̂t, obtained from

our model. The R-squared values in Table IV are only slightly lower than those reported in

Table II. This is because the model identifies PPP deviations from the predictive regression,

while imposing that the constant term in this regression equals βµi − µπ (unreported F -

tests indicate that this restriction is never rejected at usual significance levels). It is again

noteworthy that our model has greater explanatory power than do the unconstrained Fama

regressions. Hence, the information contained in PPP deviations is meaningful for predicting

currency returns.

C. Why does the real exchange rate appreciate with the interest rate differ-

ential?

Another salient result of Table IV is that the PPP risk premium and the interest rate

differential shock are negatively correlated, the correlation being −0.53 for the currency

portfolio. An increase in the domestic interest rate (or a decrease in the foreign interest

rate) corresponds to a decrease in the PPP risk premium. This is useful to understand why

the real exchange rate appreciates contemporaneously with the interest rate differential, as

noted in Table III. When inflation differentials are unpredictable, the covariance between
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the real exchange rate and the interest rate differential, Cov(qt, i
∗
t − it), is given by:

Cov(Et

∞∑
j=1

(i∗t+j−1 − it+j−1)− Et

∞∑
j=1

rt+j, i
∗
t − it). (22)

From (12), this can be simplified to:

β Var(i∗t − it)
1− ρi

− Cov(ηt, i
∗
t − it)

1− ρη
, (23)

and its sign depends on the coefficient β and the covariance between the PPP premium

ηt and the interest rate differential. Estimates of β are often negative, which calls for a

compensating force to obtain a positive covariance between the real exchange rate and the

interest rate differential. This compensating force manifests itself in the negative correlation

between the PPP premium and the interest rate differential (ρηi < 0). Economically, the

short-run effect of a increase in the domestic interest rate is an increase in future expected

return (i.e., β < 0), but less than if the PPP risk premium is left constant. As interest

rate differentials revert to their means faster than do PPP deviations (i.e., ρi < ρη), the

long-term effect is a decrease in future expected currency returns as increases in interest rate

differentials are associated with real exchange rate appreciations. Hence, PPP deviations

can rationalize Engel’s (2016) finding that deviations from UIP change direction at long

horizons. We return to this point in Section IV.E.

D. The PPP risk premium predicts currency returns

We now further assess the ability of our present-value model to predict currency returns.

Out-of-sample predictions Table V shows that the increased ability of predictability re-

gressions including the real exchange rate holds out of sample. We report the Campbell and

Thompson (2008) out-of-sample R2
OS for Fama regressions, unconstrained bivariate regres-

sions that expand the Fama regression with the lagged real exchange rate, and predictions

based on our present-value model. We also report Sharpe ratios for a simple mean-variance
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strategy exploiting return predictability. For each currency, we divide the data into two

roughly equal sample periods. We use the first half of the sample (i.e., observations up to

and including 1995) as a training period, and predict returns recursively over an expanding

window from 1996 onwards. We compare the predictions obtained from the three models

with predictions based on the average of past returns. All predictions are formed to capture

the situation of a forecaster in real time.

Campbell and Thompson’s (2008) R2
OS measures the proportional reduction in mean

squared prediction error (MSPE) for a given model relative to a benchmark of no predictabil-

ity in which predictions are based on the sample average of past returns. The statistic is

computed over the out-of-sample period t, . . . , T as:

R2
OS = 1−

∑T
t=t (rt − r̂t)2∑T
t=t (rt − r̄t)2

, (24)

where r̂t and r̄t are predictions obtained by the model and predictions based on the historical

average, respectively. A positive R2
OS implies that the MSPE of the predictive regression is

lower than the MSPE of the historical average return. We assess statistical significance using

the Clark and West (2007) adjusted statistic to test the null hypothesis that the MSPE of

the historical average is less than or equal to that of the predictive regression, against the

alternative hypothesis that the MSPE of the historical average is greater than that of the

predictive regression.

The top panel of Table V reports out-of-sample R-squared values for the seven curren-

cies of our sample and for the portfolio, using Fama regressions, bivariate regressions, and

our present-value model. Overall, the R-squared values are positive for most countries, Aus-

tralia, Japan, and New Zealand being the exceptions.6 Predictions that use only information

from lagged interest rate differentials produce relatively low R-squared values for individual

currencies. However, we find a significant improvement in the currency portfolio. For the

portfolio, the prediction is based on the average interest rate differential. These predictions

6Recall that consumer price indices are not available at the monthly frequency for AUD and NZD, which
introduces noise into the measurement of the real exchange rate for these currencies.
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beat the historical average benchmark, with an R-squared of 1.4%. This in line with evidence

presented by Lustig et al. (2014), who document that a strategy that goes long in all foreign

currencies when the average foreign interest rate is above the US interest rate and otherwise

short in all foreign currencies, exhibits high risk-adjusted returns.

Conditioning on the real exchange rate improves predictions. The R-squared is now 2.1%

for the currency portfolio, both in the bivariate specification and in the present-value model.

The predictions are significantly better than the historical average for most currencies.

How large is an R-squared of 2.1% for the monthly frequency? Campbell and Thompson

(2008) show that R-squared values of this magnitude can translate into high Sharpe ratios

through market timing. With this idea in mind, we construct a simple strategy based on an

investor with mean-variance preferences and a one-month investment horizon. The investor

allocates a fraction, ωt, of his or her wealth each month, so as to maximize expected portfolio

excess return minus γ/2 times the portfolio variance, where γ is the coefficient of relative

risk aversion. The investor therefore chooses to invest ωt = Etrt+1

γV art(rt+1)
. Figure 2 depicts

the cumulative excess return on an initial one dollar invested in three strategies, assuming

γ = 3. The solid line shows the return of the present-value market-timing strategy, which

is compared with the return of a strategy that invests in the equally weighted currency

portfolio (dotted line) or of a mean-variance strategy conditioned only on the interest rate

differential (dashed line). We report annualized Sharpe ratios in Table V, together with

p-values for the null of zero Sharpe ratio. Note that ex post Sharpe ratios depend on the

correlation between the portfolio weights, ωt, and realized returns, rt+1, but are unaffected

by leverage and therefore do not depend on the level of risk aversion. In our sample period,

the Sharpe ratio of an investment in the currency portfolio is close to zero. In comparison,

the annualized Sharpe ratio of the strategy when conditioned on the interest rate differential

is 0.35, while the annualized Sharpe ratio of the strategy based on the present-value model

is 0.46. This seems large, considering that the strategy uses only time-series information.
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Long-horizon predictability As interest rate differentials and PPP deviations are highly

persistent variables, it is natural to ask whether predictability increases with the forecasting

horizon. To determine whether this is so, we predict cumulative currency returns with our

model. Importantly, we predict long-horizon returns using one-month parameter estimates.

We compare these predictions with those of Fama regressions, letting the coefficients change

with the horizon. We do so to account for the potential change in sign of the predictive

slope coefficient over long horizons. Our approach is conservative, as outperformance of the

present-value model cannot come from the misspecification of Fama regressions over longer

horizons.

The top panel of Figure 3 depicts R-squared values for horizons of one month to ten

years (120 months) for the currency portfolio. R-squared values for the present-value model

increase monotonically with the horizon. The predictive power over long horizons is impres-

sive: the R-squared rises above 60% at the ten-year horizon. In contrast, R-squared values

for the Fama regressions increase to about 20% for horizons of 31 months, and then decline

steadily for longer horizons.

We gauge statistical significance by regressing realized returns on the predictions (without

a constant). The bottom panel of Figure 3 shows t-statistics based on the Hansen and

Hodrick (1980) correction for overlapping observations. For the present-value model, t-

statistics are above three for all horizons. In contrast, the predictability of the interest rate

differentials decays slowly and becomes insignificant at traditional levels for horizons greater

than 40 months.

E. Why does the relationship between currency risk premia and the interest

rate differential reverse over longer horizons?

Engel (2016) documents that the positive relationship between currency risk premia and the

interest rate differential reverses over longer horizons. For short horizons, a relatively high

foreign interest rate is associated with a relatively large currency premium (i.e., the usual

UIP deviations that we reproduced in Section III.B). This implies that currencies with high
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interest rates appear riskier to investors. This relationship reverses for longer horizons and

currency risk premia becomes negatively correlated with the interest rate differential. Hence,

currencies with high interest rates appear relatively safer. Does our present-value model in

Section II generate such a reversal? The model’s implied expected return is given by:

Êt(rt+1+j) = (1− β̂)ρ̂ji (i
∗
t − it) + ρ̂j η̂t, (25)

where we use a “hat” on the expectation to emphasize that it is based on estimates from

our model, rather than based on directly observable variables. Panel (a) in Figure 4 shows,

for the currency portfolio, the slope coefficients and 90% confidence interval of the following

regression:

Êt(rt+1+j) = a+ b(i∗t − it) + ut+1+j. (26)

The figure depicts a positive slope coefficient of about two for monthly horizons. In line with

our previous results, this indicates that currency risk premia are positively correlated with the

interest rate differential (corresponding to the negative β in the Fama regressions). However,

the slope coefficient weakens with the horizon and becomes negative after 18 months. This

result is strikingly similar to Figure 2 in Engel (2016), although the model we use to generate

expected returns differs from the one he considers.

Panel (b) of Figure 4 sheds light on why our model can replicate the changing relationship

between currency risk premia and the interest rate differential. We plot the covariance

between currency risk premia and the interest rate differential, which mirrors the slope

coefficient in Panel (a). We also plot two components of this covariance. The first component

equals (1 − β̂)ρ̂jiVar(i∗t − it) and captures the covariance attributable to the interest rate

differential. This component is always positive as ρ̂i > 0 and decays towards zero as the

horizon increases. The second component equals ρ̂jηCov(i∗t−it, η̂t) and captures the covariance

between the interest rate differential and the PPP risk premium. This component is negative

and it also decays towards zero as the horizon increases. (Recall that Table IV reported an

estimated correlation between interest rate differential shocks and PPP shocks of −0.53.)
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As the PPP component of expected returns is much more persistent than the interest rate

component (i.e., ρ̂η > ρ̂i), the negative PPP effect eventually dominates the positive interest

rate effect on currency risk premia.

Our empirical results therefore suggest that not only should asset pricing models feature

two risk premia, but also that these two risk premia should be negatively correlated, and that

the PPP risk premium should be more persistent than the interest rate differential. These

conditions are necessary to reproduce Engel’s (2016) finding in our present-value model.

Interestingly, these conditions are related, but quantitatively distinct, from the required

conditions to obtain a positive covariance between the real exchange rate and interest rate

differentials. For t→∞, Engel’s finding can be expressed as:

Cov(Et

∞∑
j=1

rt+j, i
∗
t − it) < 0. (27)

From (22), we have that:

Cov(qt, i
∗
t − it) = Cov(Et

∞∑
j=1

(i∗t+j−1 − it+j−1), i∗t − it)− Cov(Et

∞∑
j=1

rt+j, i
∗
t − it), (28)

which is positive if

Cov(Et

∞∑
j=1

rt+j, i
∗
t − it) < Cov(Et

∞∑
j=1

(i∗t+j−1 − it+j−1), i∗t − it). (29)

We recognize Engel’s result (27) on the left-hand side of (29). As this term is negative, a

sufficient condition for (29) to hold is that its right-hand side is non-negative. This term

depends on the long-term autocorrelations of interest rate differentials. It is positive when

interest rate differentials follow an AR(1) process, as our present-value model assumes, but

note that this needs not be the case in the data. In general, both condition (27) and

our finding of a positive covariance between the real exchange rate and the interest rate

differential may imply or be implied by the other. Empirical researchers may find the latter
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more appealing as real exchange rates and interest rate differentials are observable, while

currency risk premia need to be constructed by the researcher. In any case, we recommend

that calibrated exchange rate models match both moments, in additions to other moments

of the real exchange rate.

F. Why does the real exchange rate move over time?

Our analysis so far shows that a PPP risk premium is required to understand fluctuations

in the real exchange rate and shows that the premium indeed contains useful information

regarding future currency returns. We next gauge the relative importance of PPP versus

interest rate differentials to understand fluctuations in real exchange rates and returns. Re-

call that the real exchange rate can be expressed as an infinite sum of future interest rate

differentials minus an infinite sum of future PPP deviations; see (12). We derive variance de-

compositions of both the real exchange rate and unexpected currency returns. As is common

in the asset pricing literature, we decompose a price—the real exchange rate—in terms of

cash flow shocks and discount rate shocks. The objective is to understand the magnitude of

each component. To make an analogy with the stock market literature, if the real exchange

rate behaves like a scaled price ratio such as the dividend yield, we expect discount rate

shocks to explain most of its variation. We can rewrite (12) as

qt =
i∗t − it
1− ρi

− (1− β)
i∗t − it
1− ρi

− ηt
1− ρη

+ µq. (30)

The first term on the right-hand side of (30) gives the present value of future interest rate

differentials. This corresponds to the cash flow component of the real exchange rate. As

shown in Section I, if UIP holds, the real exchange moves only to correct future interest rate

differentials. The second and third terms correspond to the discount rate components stem-

ming from interest rate differentials and PPP deviations, respectively. Taking the variance
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of (30) gives:

Var(qt) = A2 Var(i∗t − it) +B2 Var(i∗t − it) + C2 Var(ηt)

− 2ABVar(i∗t − it)− 2AC Cov(i∗t − it, ηt)

+ 2B C Cov(i∗t − it, ηt), (31)

where A = 1
1−ρi , B = 1−β

1−ρi , and C = 1
1−ρη . The first term measures the variation in the real

exchange rate due to cash flow shocks. The second and third terms represent the variation in

the real exchange rate due to the two discount rate shocks. The remaining terms correspond

to the covariation between these three components. On the second line, we collect the terms

reflecting the covariance between expected future cash flows and the risk premium. The

third line corresponds to the covariance between the two risk premium components (i.e., the

interest rate differential and PPP). It is also interesting to decompose unexpected returns.

The variance of (15) is:

Var(εrt ) = A2 Var(εit) + Var(επt ) +B2 Var(εit) + C2 Var(εηt )

− 2ABVar(εit)− 2AC Cov(εit, ε
η
t ) + 2B Cov(εit, ε

π
t ) + 2C Cov(εηt , ε

π
t )

+ 2B C Cov(εit, ε
η
t )

− 2ACov(εit, ε
π
t ). (32)

The first two terms capture the shocks of interest rate and inflation differentials (i.e., cash

flow shocks). The next two terms capture interest rate differential and PPP shocks (i.e.,

discount rate shocks). The remaining terms capture covariances. The second line collects

the covariances between cash flow (i.e., interest rate and inflation differentials) and discount

rate (i.e., interest rate differential and PPP) shocks. The third and fourth lines capture the

covariances between pure discount rate shocks and pure cash flow shocks, respectively.

Table VI presents the resulting decompositions. Panel A presents the results for the real

exchange rate and Panel B presents the results for unexpected returns. In both cases, we
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standardize each component by the variance of the real exchange rate or the variance of

unexpected returns so that the decompositions sum to 100%.

The results reported in Panel A suggest that, in all countries, cash flow shocks never

account for more than 5% of real exchange rate movements. Discount rates account for

more than 100% of the real exchange rate variation. The bulk of this variation stems from

PPP, while the share attributable to interest rate differential variation is never above 25%.

Covariance terms are relatively small and generally negative. These results do not come

as a surprise: there is mounting evidence that discount rate shocks dominate asset price

fluctuations (Cochrane, 2011); Filipe and Maio (2016) and Balduzzi and Chiang (2017)

document similar reduced-form evidence for the real exchange rate.

Panel B reports similar results for the decomposition of unexpected returns. Cash flow

shocks are again small. Unexpected inflation shocks never represent more than 5% of un-

expected currency returns. The share of discount rate shocks is often well above 100%,

which is compensated for by relatively larger negative covariance terms. PPP shocks again

account for most of the unexpected returns, although the share attributable to interest rate

differential shocks is now higher.

V. Implications for asset pricing models

We have highlighted three key observations that have been considered separately in the

literature, namely that the real exchange rate appreciates with the interest rate differential,

that the real exchange rate predicts currency returns, and that the positive relationship

between currency risk premia and the interest rate differential reverses over longer horizons.

We next discuss the implications of our empirical findings in the context of complete market

asset pricing models.

We first outline the implications under no-arbitrage conditions. We then link our reduced-

form, present-value approach to the long-run risk model of Bansal and Yaron (2004), and in

particular its application to foreign exchange markets (e.g., Bansal and Shaliastovich, 2013;
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Backus et al., 2013). We choose this class of models to illustrate our findings because of

its popularity and because Engel (2016) shows that extent versions of the model struggle

to reconcile the empirical reversal above. Our empirical findings suggest a slightly different

dynamics for consumption, which we discuss below.7

Under no-arbitrage conditions, there exists a stochastic discount factor (SDF) that prices

any payoff. Let mt and m∗t denote the log SDFs in the domestic and foreign countries,

respectively. We assume that markets are complete so the SDFs are unique; we further

assume that the log SDFs are normally distributed. As discussed in Backus et al. (2001), a

change in the exchange rate can then be written as the difference between the two SDFs:

st+1 − st = m∗t+1 −mt+1, (33)

Moreover, the domestic and foreign interest rates are given by:

it = −Et(mt+1)− 1

2
Vart(mt+1), (34)

i∗t = −Et(m
∗
t+1)− 1

2
Vart(m

∗
t+1), (35)

so the interest rate differential can be written:

i∗t − it = Et(mt+1)− Et(m
∗
t+1) +

1

2

[
Vart(mt+1)− Vart(m

∗
t+1)
]
. (36)

From (33), the expected change in the exchange rate is:

Et(st+1 − st) = Et(m
∗
t+1)− Et(mt+1). (37)

7Bacchetta and Van Wincoop (2010) propose a model with infrequent portfolio rebalancing that accounts
for the reversal of the relationship between currency risk premia and the interest rate differential; Engel
(2016) and Valchev (2016) propose models with a liquidity premium and convenience yields, respectively,
to explain the reversal; Itskhoki and Mukhin (2017) propose a dynamic general equilibrium model with a
financial sector and UIP shocks to produce the reversal.
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Substituting the expressions for the interest rate differential gives:

Et(st+1 − st) = it − i∗t +
1

2

[
Vart(mt+1)− Vart(m

∗
t+1)
]
, (38)

or, equivalently,

Et(rt+1) =
1

2

[
Vart(mt+1)− Vart(m

∗
t+1)
]
. (39)

The expected log excess return on a currency thus equals half the difference in the variances

of the SDFs. UIP implies that this term equals zero. We next link these no-arbitrage

implications to specific models of the SDFs. For simplicity, we abstract from inflation, so

there is no difference between real and nominal SDFs.

A common assumption in the literature is that the two components Et(m
∗
t+1)−Et(mt+1)

and Vart(mt+1)−Vart(m
∗
t+1) are driven by the same shocks. For example, Verdelhan (2010)

considers the habit formation model of Campbell and Cochrane (1999) in an international

setting, and provides an argument for UIP deviations. In his model, both components are

driven by the difference in the log surplus consumption ratio, which generates a perfect

correlation between currency risk premia and interest rate differentials.

We argue that multiple sources of risk premia are necessary to generate a disconnect

between currency risk premia and interest rate differentials. In addition, these sources must

be negatively correlated and have with different persistence. We illustrate our point in

an international version of the long-run risk model. As is common in this model class, we

consider a two-country economy in which consumption growth contains a small and persistent

component (its “long-run risk”), and in which both consumption growth ∆ct = ln(Ct/Ct−1)

and the long-run risk component xt exhibit stochastic volatility:

∆ct+1 = µc + xt + σtε
c
t+1, (40)

xt+1 = ρxxt + ςtε
x
t+1, (41)

σ2
t+1 = (1− ρσ)σ2 + ρσσ

2
t + σσε

σ
t+1 + φσε

ς
t+1, (42)

ς2
t+1 = (1− ρς)ς2 + ρςς

2
t + σςε

ς
t+1 + φςε

σ
t+1. (43)
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We assume that all shocks are IID standard normal and that all ρ coefficients are between 0

and 1. We assume that all parameters are identical in the domestic and foreign countries, and

that countries only differ in their volatility processes (indicated by ∗ in the foreign country).

These dynamics are very similar to the models described in Backus et al. (2013) and Engel

(2016). Our only departure is that we allow the volatilities to be cross-correlated. This

assumption is sufficient to reproduce the observations that we document.

We assume that both countries are populated by representative agents with recursive

preferences as in Epstein and Zin (1989):

Vt =
[
(1− δ)C1−1/ψ

t + δEt(V
1−γ
t+1 )

1−1/ψ
1−γ

] 1
1−1/ψ

, (44)

where δ is the time discount factor, γ 6= 1 is the relative risk aversion, and ψ is the elasticity

of intertemporal substitution. We consider a special case where ψ = 1, which generates

similar dynamics for currency risk premia and interest rate differentials as our present-value

model.8

We show in Appendix B that the domestic SDF is given by:

mt+1 = −(1− γ)2

2
σ2
t −

(1− γ)2

2
ω2
xς

2
t − γσtεct+1 + (1− γ)ωxςtε

ς
t+1 + Ξt+1, (45)

where ωx = δ/(1 − δρx) and Ξt+1 groups terms that are not time-varying or that do not

affect both the conditional means and variances of the SDF. The discount factor that price

assets in the foreign currency is analogous, but depends on the foreign realizations of the

consumption volatilities.

Using (36) and (39), the currency risk premium and the interest rate differential are given

8Engel (2016) shows that a similar model obtains with common dynamics but where the representative
agent in the foreign country has a different risk aversion than the domestic agent.
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by:

Et(rt+1) = Arσ(σ2
t − σ∗t

2) + Arς(ς
2
t − ς∗t

2), (46)

i∗t+1 − it+1 = Aiσ(σ2
t − σ∗t

2), (47)

where Arσ = γ2/2, Arς = (γ − 1)2ω2
x/2, and Aiσ = (2γ − 1)/2. Note that all A coefficient

are positive provided that the risk aversion is large enough (γ > 1/2). Also note that the

currency risk premium can be expressed as:

Et(rt+1) =
Arσ
Aiσ

(i∗t+1 − it+1) + Arς(ς
2
t − ς∗t

2). (48)

For γ > 1/2, the model delivers a positive partial correlation between the currency risk

premium and the interest rate differential. Hence, it qualitatively provides a solution to

the UIP deviations, as previously noted in the literature.9 The currency risk premium also

depends on a second term, a “missing risk premium.” The model therefore corresponds to

the dynamics of our present-value model.

We next show that this model can yield a positive covariance between the real exchange

rate and the interest rate differential, as well as Engel’s (2016) findings. The deviation of

the real exchange rate from its long-run mean is given by:

qt − µq =
∞∑
j=1

Et(i
∗
t+j−1 − it+j−1)−

∞∑
j=1

Et(rt+j)

= (Aiσ − Arσ)
σ2
t − σ∗t 2

1− ρσ
− Arς

(ς2
t − ς∗t 2)

1− ρς
. (49)

It is straightforward to see that Aiσ − Arσ < 0. That is, the real exchange rate depreciates

when domestic consumption volatility increases more than foreign consumption volatility.

9See, e.g., Bansal and Shaliastovich (2013), Colacito and Croce (2013), and Backus et al. (2013). Addi-
tional explanations for deviations from UIP include expectation errors (Froot and Frankel, 1989), partially
segmented financial markets (Maggiori and Gabaix, 2015), and infrequent portfolio decisions (Bacchetta and
Van Wincoop, 2010). Engel (2014) provides an extensive review of foreign exchange rate determination and
deviations from UIP.
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Equivalently, as the consumption volatility differential is perfectly correlated with the interest

rate differential, the partial correlation between the real exchange rate and the interest rate

differential is negative. This happens in our present-value model when the β coefficient is

sufficiently negative. The covariance between the real exchange rate and the interest rate

differential in (22) is given by:

Aiσ(Aiσ − Arσ)
Var(σ2

t − σ∗t 2)

1− ρσ
− ArςAiσ

Cov(σ2
t − σ∗t 2, ς2

t − ς∗t 2)

1− ρς
. (50)

When the risk aversion is large enough, the first term is negative, while the sign of the

second term depends on the covariance between the volatilities. A necessary condition to

obtain a positive covariance between the real exchange rate and the interest rate differential

is therefore a negative covariance between the underlying volatility shocks that affect the

economies. We also see that the relative magnitude of the two terms depends on the relative

persistence of the volatility shocks. When ρς > ρσ, the covariance term will be proportionally

larger, all else equal, which helps obtaining a positive covariance, as we find in the data.

As we discuss in Section IV.E, Engel (2016) shows that the covariance between currency

risk premia and the interest rate differential reverses over the horizon. One way to express

this is to consider the following covariances:

Cov(Etrt+1, i
∗
t − it) = ArσAiσVar(σ2

t − σ∗t
2) + ArςAiσCov(σ2

t − σ∗t
2, ς2

t − ς∗t
2), (51)

Cov(Et

∞∑
j=1

rt+j, i
∗
t − it) = ArσAiσ

Var(σ2
t − σ∗t 2)

1− ρσ
+ ArςAiσ

Cov(σ2
t − σ∗t 2, ς2

t − ς∗t 2)

1− ρς
.(52)

Engel (2016) finds empirically that the first covariance is positive and the second covariance

is negative, and notes that a baseline long-run risk model cannot accommodate the second

covariance. This is because he follows the extant literature and assumes that volatility shocks

are uncorrelated, so that Cov(σ2
t −σ∗t 2, ς2

t − ς∗t 2) = 0. When this covariance is negative, both

(51) and (52) may be positive or negative. In the context of our present-value model,

we have shown that the two risk premium components must be negatively correlated, and
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that the PPP risk premium must be more persistent than the interest rate differential to

accommodate the reversal in the covariance. In the context of the long-run risk model here,

we need Cov(σ2
t −σ∗t 2, ς2

t − ς∗t 2) to be negative, but small enough to accommodate a positive

(51). For (52) to be negative, we need the variance term to be multiplied by a smaller

amount than the covariance term. This requires ρς > ρσ. Remarkably, as previously noted

in Section IV.E, these two conditions resemble the conditions needed to obtain a positive

covariance between the real exchange rate and the interest rate differential.

VI. Conclusion

We ask whether two maintained assumptions about exchange rates are sufficient to quantify

movements in exchange rates. The first assumption is that expected currency returns depend

on the difference between foreign and domestic interest rates. The second assumption is that

the real exchange rate is stationary, so that the prices of foreign goods and services cannot

forever deviate from the prices of domestic goods and services. We find that a present-

value model with these two assumptions cannot quantify how much the real exchange rate

moves over time. We extract the component of the real exchange rate that complements the

interest rate differential. This component captures deviations from purchasing power parity

and increases the R-squared in predictive regressions of currency returns by more than 30%.

The predictability holds in an out-of-sample evaluation and increases substantially with

the investment horizon. Our empirical results shed light on the desirable properties of

currency risk premia that asset pricing models must accommodate and, moreover, help us

pose challenges for standard asset pricing models.
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Appendix A. The real exchange rate

This appendix provides a derivation of (8) and (12). Start with the return definition:

rt+1 = qt+1 − qt − (π∗t+1 − πt+1) + (i∗t − it). (A1)

Rewrite it in terms of the real exchange rate:

qt = (i∗t − it)− (π∗t+1 − πt+1)− rt+1 + qt+1. (A2)

Iterate forward and take conditional expectations:

qt =
T∑
j=1

Et[(i
∗
t+j−1 − it+j−1)− (π∗t+j − πt+j)− rt+j] + qt+T . (A3)

Let T →∞ and assume that long-run PPP holds, limj→∞ Et(qt+j) = µq, giving:

qt − µq =
∞∑
j=1

Et[(i
∗
t+j−1 − it+j−1)− (π∗t+j − πt+j)− rt+j]. (A4)

This corresponds to (5); then insert (7), (6), (9), and (10) to obtain:

qt − µq =
∞∑
j=1

Et[(i
∗
t+j−1 − it+j−1)− (π∗t+j − πt+j)− α− (1− β)(i∗t+j−1 − it+j−1)− ηt+j−1 − εrt+j]

=
∞∑
j=1

Et[β(i∗t+j−1 − it+j−1)− µπ − επt+j − α− ηt+j−1 − εrt+j]

=
∞∑
j=1

Et[β(i∗t+j−1 − it+j−1 − µi) + βµi − µπ − α− ηt+j−1]. (A5)
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Note that E(qt) = µq requires that α = βµi − µπ, which is a condition considered in this

paper. Finally, use that for a given process yt+1−a = b(yt−a)+et+1, Et(yt+j) = a+bi(yt−a) :

qt − µq =
∞∑
j=1

[βρj−1
i (i∗t − it − µi)− ρj−1

η ηt]

= β
i∗t − it − µi

1− ρi
− ηt

1− ρη
, (A6)

which corresponds to (12) in the main text. A special case is when there is no complementing

risk premium ηt, which corresponds to (8) in the main text.

Appendix B. A long-run risk model

This appendix discusses the long-run risk model that produces (45). We consider a two-

country exchange economy. Both countries are populated by representative agents with

recursive preferences given by (44). To focus on growth dynamics, we normalize the value

function (44) by the consumption level; let vct = ln(Vt/Ct). When ψ → 1, the log of the

normalized value function equals (Hansen et al., 2008):

vct =
δ

1− γ
ln
{

Et

[
e(1−γ)(vct+1+∆ct+1)

]}
. (B1)

Assuming log-normality, we can simplify this to:

vct = δ

[
Et (vct+1 + ∆ct+1) +

(1− γ)

2
Vart (vct+1 + ∆ct+1)

]
. (B2)

The log stochastic discount factor (SDF), using our log-normality assumption, is

mt+1 = log δ −∆ct+1 + (1− γ) [vct+1 + ∆ct+1 − Et(vct+1 + ∆ct+1)]

−(1− γ)2

2
Vart(vct+1 + ∆ct+1). (B3)

Recall that we assume the dynamics for consumption in (40)–(43).
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Conjecture the value function:

vct = ωxxt + ωσσ
2
t + ωςς

2
t + constant terms, (B4)

where we ignore constant terms from now on. Write:

vct+1 + ∆ct+1 = ωx(ρxxt + ςtε
x
t+1) + ωσ(ρσσ

2
t + σσε

σ
t+1 + φσε

ς
t+1)

+ως(ρςς
2
t + σςε

ς
t+1 + φςε

σ
t+1) + xt + σtε

c
t+1, (B5)

and compute:

Et(vct+1 + ∆ct+1) = (1 + ωxρx)xt + ωσρσσ
2
t + ωςρςς

2
t (B6)

Vart(vct+1 + ∆ct+1) = σ2
t + ω2

xς
2
t . (B7)

Substituting back into (B2) gives:

vct = δ

[
(1 + ωxρx)xt + ωσρσσ

2
t + ωςρςς

2
t +

(1− γ)

2

(
σ2
t + ω2

xς
2
t

)]
. (B8)

We then solve for the value-function parameters by matching coefficients:

ωx =
δ

1− δρx
, ωσ =

(1− γ)

2

δ

1− δρσ
, ως =

(1− γ)

2

ω2
xδ

1− δρς
.

We then obtain an operational expression for the log SDF:

mt+1 = −(1− γ)2

2
σ2
t −

(1− γ)2

2
ω2
xς

2
t − γσtεct+1 + (1− γ)ωxςtε

ς
t+1

−xt + (1− γ)
(
ωσσσε

σ
t+1 + ωσφσε

ς
t+1 + ωςσςε

ς
t+1 + ωςφςεt+1

)
, (B9)

which corresponds to (45) in the main text.
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Table I: Summary statistics

AUD CAD EUR JPY NZD NOK SEK CHF GBP Portfolio

Sample begins: 85.01 76.02 76.02 76.02 85.01 76.02 76.02 76.02 76.02 76.02

Sample ends: 15.12 15.12 15.12 15.12 15.12 15.12 15.12 15.12 15.12 15.12

rt Mean (%) 0.23 −0.00 −0.03 −0.05 0.45 0.09 0.01 −0.03 0.08 0.01

S.D. (%) 3.48 2.01 3.20 3.32 3.64 3.09 3.19 3.51 3.00 2.40

AC(1) 0.07 −0.05 0.02 0.07 0.00 0.03 0.08 0.01 0.09 0.05

qt − µq Mean (%) 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

S.D. (%) 19.23 11.97 15.63 18.71 19.61 13.30 18.85 16.49 11.35 11.68

AC(1) 0.98 0.98 0.98 0.98 0.97 0.97 0.98 0.98 0.96 0.98

i∗t − it Mean (%) 0.26 0.07 −0.11 −0.24 0.35 0.19 0.15 −0.23 0.15 −0.00

S.D. (%) 0.23 0.14 0.24 0.24 0.37 0.29 0.31 0.28 0.22 0.19

AC(1) 0.89 0.80 0.88 0.88 0.87 0.81 0.76 0.87 0.89 0.88

π∗
t − πt Mean (%) 0.07 −0.00 −0.12 −0.18 0.07 0.03 0.03 −0.16 0.06 −0.05

S.D. (%) 0.63 0.34 0.40 0.50 0.81 0.52 0.53 0.40 0.53 0.29

AC(1) −0.17 0.02 0.16 0.11 −0.11 0.17 0.18 0.25 0.09 0.25

The table presents means, standard deviations, and first-order autocorrelations for key variables: rt is the log excess
return for a US investor going long in a foreign currency; qt is the log real exchange rate in US dollars per unit of foreign
currency; i∗t − it is the difference between foreign and US interest rates; and π∗

t − πt is the difference between foreign
and US inflation rates. Results are reported for Australia (AUD), Canada (CAD), Germany (EUR), Japan (JPY), New
Zealand (NZD), Norway (NOK), Sweden (SEK), Switzerland (CHF), the UK (GBP), and an equally weighted average
of the seven currencies with full coverage (“Portfolio”). The sample period is February 1976 to December 2015, except
for AUD and NZD, which begin in January 1985.
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Table II: Predicting currency returns

AUD CAD EUR JPY NZD NOK SEK CHF GBP Portfolio

One-month horizon

rt+1 = a+ (1− b)(i∗t − it) + ut+1

b −0.913 −0.918 −0.514 −1.516 −0.965 −0.081 0.526 −0.790 −1.380 −0.921

(s.e.) (0.650) (0.561) (0.777) (0.596) (0.471) (0.695) (0.750) (0.713) (0.790) (0.779)

R2 0.016 0.019 0.013 0.033 0.039 0.011 0.002 0.020 0.032 0.022

rt+1 = a+ (1− b)(i∗t − it) + cqt + ut+1

b −1.104 −1.477 −0.693 −1.524 −0.782 −0.098 0.228 −1.296 −1.362 −1.103

(s.e.) (0.677) (0.660) (0.770) (0.599) (0.468) (0.680) (0.785) (0.744) (0.794) (0.750)

c −0.016 −0.020 −0.018 −0.014 −0.017 −0.017 −0.013 −0.027 −0.030 −0.018

(s.e.) (0.009) (0.008) (0.010) (0.009) (0.010) (0.012) (0.009) (0.012) (0.016) (0.011)

R2 0.023 0.031 0.021 0.040 0.047 0.016 0.007 0.035 0.045 0.029

One-year horizon

rt,t+12 = a+ (1− b)(i∗t − it) + ut,t+12

b −14.961 −4.523 −13.125 −22.948 −12.923 −9.738 −6.421 −16.547 −14.549 −18.344

(s.e.) (8.794) (6.422) (7.425) (7.165) (5.724) (5.314) (5.610) (6.431) (6.507) (6.918)

R2 0.085 0.012 0.071 0.175 0.131 0.069 0.029 0.134 0.092 0.134

rt,t+12 = a+ (1− b)(i∗t − it) + cqt + ut,t+12

b −17.684 −9.945 −16.086 −23.659 −10.189 −9.853 −12.261 −22.801 −14.096 −21.366

(s.e.) (8.338) (6.255) (6.984) (6.677) (5.427) (5.018) (5.461) (5.996) (5.686) (6.485)

c −0.217 −0.197 −0.292 −0.247 −0.256 −0.299 −0.268 −0.345 −0.471 −0.301

(s.e.) (0.105) (0.091) (0.114) (0.097) (0.110) (0.129) (0.110) (0.108) (0.124) (0.114)

R2 0.191 0.110 0.194 0.282 0.252 0.170 0.144 0.295 0.307 0.254

This table presents the results of predictive regressions of the log excess currency return, rt+1, on the lagged interest
rate differential, i∗t − it, and the lagged real exchange rate, qt. The top panel presents results of predictions at the
one-month horizon. The bottom panel presents results of predictions of one-year cumulative returns, rt,t+12 =∑12

k=1 rt+k. One-month horizon regressions are reported with Newey and West (1987) standard errors, accounting
for conditional heteroscedasticity and serial correlation up to three lags, in parentheses. One-year regressions are
reported with Hansen and Hodrick (1980) corrected standard errors with twelve lags. The regressions include
constant terms, though they are not reported.
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Table III: Real exchange rates and interest rate differentials

AUD CAD EUR JPY NZD NOK SEK CHF GBP Portfolio

qt = a+ b(i∗t − it) + ut

b 1.49 −1.37 3.27 1.83 −0.79 2.68 2.71 2.67 1.07 4.68

(s.e.) (3.82) (1.03) (1.64) (1.50) (1.12) (0.99) (0.71) (1.49) (2.06) (1.48)

R2 0.002 0.004 0.014 0.004 0.002 0.025 0.032 0.011 0.001 0.032

This table presents slope coefficients in regressions of the real exchange rates, qt, on the interest
rate differentials, i∗t − it. We use a Cochrane–Orcutt procedure to account for autocorrelation of
the error term. White (1980) standard errors, accounting for conditional heteroscedasticity, are
reported in parentheses. The regressions include constant terms, though they are not reported.
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Table IV: Model estimation

AUD CAD EUR JPY NZD NOK SEK CHF GBP Portfolio

ρi 0.893 0.804 0.881 0.883 0.866 0.806 0.757 0.874 0.886 0.878

(s.e.) (0.02) (0.03) (0.02) (0.02) (0.03) (0.03) (0.03) (0.02) (0.02) (0.02)

σi 0.104 0.084 0.113 0.113 0.181 0.174 0.201 0.136 0.104 0.089

(s.e.) (0.03) (0.01) (0.02) (0.01) (0.05) (0.03) (0.04) (0.02) (0.01) (0.01)

σπ 0.626 0.338 0.403 0.501 0.781 0.520 0.531 0.401 0.530 0.291

(s.e.) (0.06) (0.03) (0.03) (0.04) (0.16) (0.04) (0.04) (0.03) (0.05) (0.02)

β −1.295 −1.646 −0.820 −1.731 −0.894 −0.107 0.241 −1.658 −1.847 −1.292

(s.e.) (3.53) (0.94) (1.10) (1.51) (3.44) (0.63) (0.59) (2.99) (2.45) (1.08)

ρη 0.984 0.980 0.982 0.986 0.983 0.983 0.987 0.973 0.970 0.982

(s.e.) (0.02) (0.01) (0.01) (0.01) (0.02) (0.01) (0.01) (0.02) (0.02) (0.01)

ση 0.055 0.050 0.056 0.045 0.060 0.040 0.038 0.115 0.086 0.041

(s.e.) (0.29) (0.03) (0.06) (0.11) (0.59) (0.04) (0.04) (0.55) (0.21) (0.05)

ρiπ 0.042 0.011 0.100 0.096 0.056 0.079 0.092 0.080 0.050 0.083

(s.e.) (0.06) (0.06) (0.04) (0.05) (0.06) (0.05) (0.05) (0.05) (0.07) (0.05)

ρηi −0.394 −0.314 −0.362 −0.517 −0.303 −0.203 −0.135 −0.551 −0.537 −0.526

(s.e.) (0.35) (0.19) (0.26) (0.26) (0.28) (0.17) (0.15) (0.29) (0.31) (0.26)

ρηπ −0.139 −0.147 −0.109 −0.194 −0.250 −0.101 −0.144 −0.099 −0.147 −0.086

(s.e.) (0.06) (0.05) (0.05) (0.05) (0.10) (0.05) (0.05) (0.05) (0.06) (0.04)

R2 0.023 0.030 0.020 0.040 0.045 0.015 0.006 0.035 0.045 0.029

This table presents estimates of the present-value model given by (6), (7), (9), (10), and (12). The
parameters ρi, σi, and σπ relate to the dynamics of interest rate and inflation differentials and are
estimated by OLS. The elasticity of the expected return with respect to the interest rate differential, β,
and the persistence of the PPP risk premium, ρη, is estimated by regressing the currency return on the
past interest rate differential and the past real exchange rate, and then by matching the coefficient to
the restricted counterpart in (17). The remaining parameters are estimated by filtering out estimates of
the latent ηt based on (10) and by computing the covariance matrix of the estimated residuals. Standard
errors, obtained in a wild bootstrap, are reported in parentheses. The last row presents R-squared values
for a predictive regression of currency returns on interest rate differentials and the extracted PPP risk
premium, η̂t.
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Table V: Out-of-sample predictability

AUD CAD EUR JPY NZD NOK SEK CHF GBP Portfolio

Out-of-sample predictive R2

Fama −0.002 0.000 0.008 −0.036 −0.023 0.008 0.003 0.007 0.005 0.014

[0.46] [0.21] [0.11] [0.44] [0.94] [0.06] [0.19] [0.11] [0.15] [0.03]

Bivariate 0.001 0.001 0.015 −0.036 −0.014 0.011 0.006 0.022 0.021 0.021

[0.21] [0.17] [0.04] [0.34] [0.40] [0.04] [0.06] [0.01] [0.03] [0.01]

Present value −0.005 0.001 0.014 −0.030 −0.020 0.011 0.006 0.023 0.021 0.021

[0.25] [0.14] [0.04] [0.28] [0.34] [0.04] [0.14] [0.01] [0.02] [0.01]

Sharpe ratio

Fama 0.165 0.239 0.222 −0.026 −0.021 0.211 0.014 0.207 0.147 0.352

[0.54] [0.29] [0.31] [0.91] [0.95] [0.44] [0.95] [0.37] [0.44] [0.09]

Bivariate 0.262 0.215 0.352 0.023 0.129 0.316 0.197 0.534 0.377 0.455

[0.29] [0.33] [0.11] [0.92] [0.67] [0.21] [0.38] [0.02] [0.01] [0.04]

Present value 0.139 0.228 0.353 0.062 0.051 0.331 0.156 0.512 0.385 0.463

[0.55] [0.31] [0.12] [0.79] [0.85] [0.18] [0.51] [0.02] [0.01] [0.04]

The top panel presents Campbell and Thompson (2008) out-of-sample R2
OS for Fama regressions, uncon-

strained bivariate regressions that expand the Fama regression with the lagged real exchange rate, and
predictions based on the present-value model. The out-of-sample exercise is performed for the 1996–2015
period. In brackets we report the p-values for a Clark and West (2007) test of the null hypothesis of equal
predictive accuracy as a benchmark based on the historical average. The bottom panel reports annualized
Sharpe ratios for a market-timing strategy based on an investor with mean-variance preferences and a one-
month investment horizon. We report in brackets p-values for the null of a zero Sharpe ratio. Estimates
of the mean returns and variances are computed using the method of moments. The standard errors for
the Sharpe ratios are computed using the delta method with a Newey and West (1987) covariance matrix,
accounting for conditional heteroscedasticity and serial correlation up to three lags.

46



Table VI: Variance decompositions

AUD CAD EUR JPY NZD NOK SEK CHF GBP Portfolio

Panel A: Real exchange rates

Cash flows: interest rates 1.3 0.4 1.7 1.2 1.9 1.3 0.4 1.8 3.0 1.7

Risk premium: interest rates 6.6 2.6 5.5 9.0 6.9 1.6 0.3 12.9 24.6 8.9

Risk premium: PPP 106.3 107.7 104.2 103.8 96.5 100.1 98.8 119.0 109.7 108.3

Covariance: CF and RP 0.8 3.3 0.5 −2.3 −9.5 −2.0 4.2 4.8 −6.4 0.9

Covariance: RP −14.9 −13.9 −11.9 −11.8 4.1 −0.9 −3.7 −38.5 −30.8 −19.8

Panel B: Unexpected returns

Cash flows: interest rates 7.9 4.7 9.0 8.8 14.4 8.6 6.7 9.8 9.8 9.5

Cash flows: inflation 3.3 2.9 1.6 2.4 4.8 2.9 2.8 1.3 3.3 1.5

Risk premium: interest rates 41.8 33.0 29.8 65.5 51.9 10.5 3.9 69.5 79.2 49.8

Risk premium: PPP 119.9 113.4 113.6 139.4 116.9 101.7 100.1 141.6 142.8 132.4

Covariance: CF and RP −16.6 −15.6 −11.2 −16.5 −39.9 −9.6 −7.4 −12.3 −20.3 −7.2

Covariance: RP −55.8 −38.4 −42.1 −98.8 −47.2 −13.3 −5.3 −109.4 −114.2 −85.4

Covariance: CF −0.4 −0.1 −0.8 −0.9 −0.9 −0.8 −0.8 −0.6 −0.6 −0.6

This table presents variance decompositions of the real exchange rates and the unexpected returns in terms of cash flow
components (i.e., interest rate differentials and, for unexpected returns, inflation differentials as well) and risk premium
components (i.e., interest rate differentials and PPP deviations). CF and RP refer to cash flows and risk premium,
respectively.
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Figure 1: Real exchange rates and subsequent five-year currency returns
The figure shows the negative of the log real exchange rate (expressed in dollars per unit of
foreign currency) and subsequent five-year returns for the currency portfolio.
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Figure 2: Out-of-sample cumulative returns
The figure shows cumulative returns of an initial one dollar invested in an equally weighted
currency portfolio (EW) and in the market-timing strategies of a mean-variance investor who
predicts based on the interest rate differential (Fama) and using the present-value model
(Present value).

49



0 20 40 60 80 100 120
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7
Present value
Fama

(a) R2 values

0 20 40 60 80 100 120
0

1

2

3

4

5

6

7

Present value
Fama

(b) t-statistics

Figure 3: Long-horizon predictability (portfolio)
Panel (a) shows R-squared values for predictions of overlapping cumulative currency excess
returns based on the present-value model and on Fama regressions, for horizons of one to
120 months using the currency portfolio. Present-value predictions exploit information from
both the real exchange rate and interest rate differentials, while Fama regressions use only
information from interest rate differentials. The Fama coefficients are allowed to change with
the horizon. Panel (b) shows t-statistics for regressions of realized returns on the predictions
(without a constant), based on the Hansen and Hodrick (1980) correction for overlapping
observations (the number of lags equals the horizon).
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Figure 4: Long-horizon predictability and interest rate differentials (portfolio)
Panel (a) shows the slope coefficients and 90% confidence interval of the regression
Êt(rt+1+j) = a + b(i∗t − it) + ut+1+j. Panel (b) decomposes the covariance into the inter-
est rate differential and PPP components.
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A vector autoregressive model

In this online appendix we consider more general dynamics of the interest rate differential,

inflation differential, and PPP risk premium. Let zt = [i∗t − it, π∗t − πt, ηt]′. We now assume

a vector autoregressive (VAR) model for zt:

zt+1 − A0 = A1(zt − A0) + εt+1, (OA.1)

where A0 = [µi, µπ, 0]′, A1 is a 3×3 matrix of parameters, and εt+1 is the vector of mean-zero

shocks to the three variables. We also assume that all the roots of the A1 matrix are outside

the unit circle. The VAR model (OA.1) effectively replaces (7), (6), and (10) in the main

text.

Recall the currency return expressed in real terms (4), the real exchange rate (5), and

the augmented regression (9) in the main text, all reproduced below:

rt+1 = qt+1 − qt + (i∗t − π∗t+1)− (it − πt+1), (OA.2)

qt − µq =
∞∑
j=1

Et(i
∗
t+j−1 − it+j−1)−

∞∑
j=1

Et(π
∗
t+j − πt+j)−

∞∑
j=1

Et(rt+j), (OA.3)

rt+1 = α + (1− β)(i∗t − it) + ηt + εrt+1. (OA.4)

Let ιi, ιπ, and ιη be 1× 3 vectors that select the first, second, and third rows in a given

vector/matrix, respectively (e.g., ιizt = i∗t − it). Substitute (OA.4) into (OA.3) and rewrite

the real exchange rate in terms of zt using (OA.1):

qt − µq =
∞∑
j=1

Et(βιizt+j−1 − ιπA1zt+j−1 − ιηzt+j−1 − α). (OA.5)

The VAR model (OA.1) implies zt-predictions given by Et(zt+j − A0) = Aj1(zt − A0). This

means that:
∞∑
j=1

Et(zt+j − A0) = (I − A1)
−1(zt − A0), (OA.6)

1



where I is the 3× 3 identity matrix. Substituting these into (OA.5) gives:

qt − µq = (βιi − ιπA1 − ιη)(I − A1)
−1(zt − A0), (OA.7)

which generalizes (12) in the main text under the condition that (βιi− ιπ)A0 = α. It follows

that the change in the real exchange rate is:

qt+1 − qt = βµi − β(i∗t − it) + ιπA1(zt −A0) + ηt + (βιi − ιπA1 − ιη)(I −A1)
−1εt+1. (OA.8)

It also follows that the currency return is:

rt+1 = βµi − µπ + (1− β)(i∗t − it) + ηt + εrt+1, (OA.9)

where:

εrt+1 =
[
(βιi − ιπA1 − ιη)(I − A1)

−1 − ιπ
]
εt+1. (OA.10)

Equations (OA.8), (OA.9), and (OA.10) generalize (13), (14), and (15) in the main text.

The PPP risk premium in zt is not observed. To estimate the model, we convert zt into

observable variables. Define:


i∗t − it
π∗t − πt
qt

−

µi

µπ

µq


 =


1 0 0

0 1 0

(βιi − ιπA1 − ιη)(I − A1)
−1





i∗t − it
π∗t − πt
ηt

−

µi

µπ

0


 ,

or more compactly:

yt − P0 = P1(zt − A0). (OA.11)

With P1 invertible, we can express zt in terms of the observable yt: zt −A0 = P−11 (yt − P0),

and then rewrite (OA.1) as:

yt+1 − P0 = P1A1P
−1
1 (yt − P0) + P1εt+1. (OA.12)
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We can therefore estimate the model from the reduced-form parameters of the following VAR

model:

yt+1 − Φ0 = Φ1(yt − Φ0) + ut+1, (OA.13)

and solve Φ̂1 = P1A1P
−1
1 to find the parameters in A1. We can finally recover the PPP risk

premium as:

ηt = ιηP
−1
1 (yt − P0). (OA.14)

A special case arises when A1 is diagonal:

(I − A1)
−1 =


1

1−ρi 0 0

0 1
1−ρπ 0

0 0 1
1−ρη

 ,

so that (OA.7) equals:

qt − µq = β
i∗t − it − µi

1− ρi
− ρπ

1− ρπ
(π∗t − πt − µπ)− ηt

1− ρη
. (OA.15)

This, in turn, implies that the currency return is given by:

rt+1 = βµi

(
ρη − ρi
1− ρi

)
− µπ

[
1− ρπ

1− ρπ
(1− ρη)

]
+

(
1− βρη − ρi

1− ρi

)
(i∗t − it)

− ρπ
1− ρπ

(1− ρη)(π∗t − πt) + (1− ρη)(qt − µq) + εrt+1. (OA.16)

This equation resembles (17) in the main text, but now includes terms related to the inflation

differential. It suggests that the currency return should be predictable, not only from the

interest rate differential and the real exchange rate, but also from the inflation differential.

Given a positive first-order autocorrelation coefficient for the inflation differential, we expect

the predictability to have a negative sign and to be proportional to the persistence of the

inflation differential. Note that when ρπ = 0, (OA.16) equals (17) and the expected return

does not depend on the inflation differential.
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Table OA.I presents the results of regressing currency returns on interest rate differentials,

inflation differentials, and real exchange rates for horizons of one and twelve months. Recall

that consumer price indices are only available on a quarterly basis for AUD and NZD, likely

leading to spurious negative persistence in interest rate differentials. As the persistence in

the inflation differential now is key for predicting the currency return, we do not present

estimates for AUD and NZD. Table I in the main text presents first-order autocorrelations

between 0.02 and 0.25 for the other currencies.

At the monthly horizon, the coefficient of the inflation differential has, as expected, a

negative sign for all currencies except JPY, but the coefficients are not precisely estimated

and are significant only for EUR and the portfolio of currencies. For these two cases, the

coefficients seem too negative. For example, Table OA.I reports ĉ ≈ −0.78 for the portfolio of

currencies, which suggests an implausible persistence for the inflation differential. Matching

the coefficients in (OA.16) gives ρ̂π = −ĉ/(1 − ρ̂η − ĉ) ≈ 0.97, where ρ̂η is obtained as

described in the main text. This corresponds to extremely persistent inflation differential

dynamics and points towards model misspecification and/or statistical noise. At the annual

horizon, the coefficients are never significant, which indicates that the effect of the inflation

differential on the currency return is short-lived. This is consistent with the low persistence

in the inflation differential.

As the diagonal VAR is inconclusive, we present estimates of a full VAR model for

the portfolio of currencies in Table OA.II. Consistently with the baseline specification in

the main text, the interest rate differential is well approximated by an AR(1) process and

the real exchange rate is strongly autocorrelated and positively correlated with the lagged

interest rate differential. The inflation differential is not only positively autocorrelated,

but also significantly predicted by the lagged interest rate differential (positively) and by

the lagged real exchange rate (negatively). The degree of persistence is small, with an R-

squared less than 10%. We nevertheless explore how our assumption of a nonpersistent

inflation differential affects estimates of ηt. Figure OA.I plots estimates from the baseline

model and the full VAR model for the portfolio of currencies. The estimates track each
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other with only minor differences. This confirms our conjecture that the inflation differential

does not materially matter for currency risk premia. In untabulated results, we find similar

results for individual currencies.
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Table OA.I: Predicting currency returns

CAD EUR JPY NOK SEK CHF GBP Portfolio

One-month horizon

rt+1 = a+ (1− b)(i∗t − it) + c(π∗t − πt) + dqt + ut+1

b −1.555 −1.099 −1.434 −0.213 0.019 −1.316 −1.454 −1.360

(s.e.) (0.683) (0.773) (0.633) (0.692) (0.823) (0.730) (0.807) (0.764)

c −0.226 −0.844 0.221 −0.527 −0.503 −0.055 −0.219 −0.775

(s.e.) (0.263) (0.376) (0.356) (0.322) (0.310) (0.462) (0.261) (0.407)

d −0.020 −0.021 −0.014 −0.019 −0.013 −0.028 −0.030 −0.021

(s.e.) (0.008) (0.010) (0.009) (0.012) (0.008) (0.011) (0.016) (0.011)

R2 0.033 0.031 0.041 0.023 0.014 0.035 0.046 0.038

One-year horizon

rt,t+12 = a+ (1− b)(i∗t − it) + c(π∗t − πt) + dqt + ut,t+12

b −9.534 −16.026 −23.781 −10.113 −12.009 −23.039 −14.010 −21.534

(s.e.) (6.240) (6.923) (6.675) (4.995) (5.394) (5.900) (5.694) (6.496)

c 1.198 0.123 −0.294 −1.177 0.605 −0.639 0.205 −0.503

(s.e.) (1.126) (1.313) (0.941) (1.209) (1.234) (1.574) (0.875) (1.555)

d −0.196 −0.292 −0.247 −0.304 −0.267 −0.347 −0.471 −0.303

(s.e.) (0.090) (0.114) (0.097) (0.129) (0.110) (0.108) (0.124) (0.114)

R2 0.113 0.194 0.282 0.172 0.144 0.295 0.308 0.255

This table presents the results of predictive regressions of the log excess currency return,
rt+1, on the lagged interest rate differential, i∗t − it, the lagged inflation differential, π∗t − πt,
and the lagged real exchange rate, qt. The top panel presents the results of predictions at
the one-month horizon. The bottom panel presents the results of predictions of one-year
cumulative returns, rt,t+12 =

∑12
k=1 rt+k. One-month horizon regressions are reported with

Newey and West (1987) standard errors, accounting for conditional heteroscedasticity and
serial correlation up to three lags, in parentheses. One-year regressions are reported with
Hansen and Hodrick (1980) corrected standard errors with twelve lags. The regressions
include constant terms, though they are not reported.
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Table OA.II: VAR estimation results

Dep. variable −→ i∗t+1 − it+1 π∗t+1 − πt+1 qt+1

VAR estimation

i∗t − it 0.882 0.234 1.594

(s.e.) (0.035) (0.080) (0.710)

π∗t − πt −0.003 0.209 −0.566

(s.e.) (0.014) (0.063) (0.441)

qt −0.000 −0.004 0.975

(s.e.) (0.000) (0.001) (0.011)

R2 0.770 0.094 0.959

Standard deviations and correlations of residuals

i∗ − i π∗ − π q

i∗ − i 0.089 0.083 0.206

π∗ − π − 0.276 0.076

q − − 2.360

This table presents estimation results of the VAR model for the portfolio of currencies:

yt+1 − Φ0 = Φ1(yt − Φ0) + ut+1.

The top panel presents estimates of parameters in Φ1 with White (1980) standard errors,
accounting for conditional heteroscedasticity, in parentheses. The bottom panel presents
estimates of the standard deviations of the residuals (in percentage terms) on the diagonal
and the correlations of the residuals off the diagonal.
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Figure OA.I: PPP risk premium in the baseline and VAR models
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