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Speculative bubbles in asset prices are viewed by many economists and policymakers as an im-

portant source of macroeconomic instability, with the bursting of some large bubble often pointed

to as a key factor behind many �nancial crises. A monetary policy that focuses narrowly on in-

�ation and output stability but which neglects the emergence and rapid growth of asset bubbles

is often perceived as a potential risk to medium-term macroeconomic and �nancial stability.1

Interestingly, the recurrent reference to bubbles in the policy debate contrasts with their con-

spicuous absence in modern monetary models. A likely explanation for this seeming anomaly lies

in the fact that standard versions of the New Keynesian model, the workhorse framework used in

monetary policy analysis, leave no room for the existence of bubbles in equilibrium, and hence for

any meaningful model-based discussion of their possible interaction with monetary policy.2

In the present paper I develop a modi�ed version of the New Keynesian model featuring over-

lapping generations of �nite-lived consumers with retirement.3 The assumption of an in�nite

sequence of generations makes it possible for the transversality condition of any individual con-

sumer to be satis�ed in equilibrium, even in the presence of a bubble that grows at the rate of

interest.4 On the other hand, the assumption of retirement (or, more generally, of an eventual

transition to inactivity) can generate an equilibrium rate of interest below the economy�s trend

growth rate, which is a condition necessary for the size of the bubble to remain bounded relative

to the size of the economy. Finally, and in contrast with most models with bubbles found in the

literature, the assumption of sticky prices �a key feature of the New Keynesian model�makes

monetary policy non-neutral, allowing it to in�uence the size of the bubble; on the other hand,

price stickiness makes it possible for aggregate bubble �uctuations to in�uence aggregate demand

and, hence, output and employment. An appealing feature of the framework developed here is

1See, e.g., Borio and Low (2002) for an early statement of that view. Taylor (2014) points to excessively low
interest rates in the 2000s as a factor behind the housing boom that preceded the �nancial crisis of 2007-2008.

2The reason is well known: the equilibrium requirement that the bubble grows at the rate of interest violates
the transversality condition of the in�nite-lived representative consumer assumed in the New Keynesian model (as
well as most macro models). See, e.g., Santos and Woodford (1997).

3Other authors have extended the New Keynesian model to incorporate overlapping generations of �nite-lived
agents into the New Keynesian framework, though none of them has allowed for the existence of bubbles. Piergallini
(2006) develops a related model with money in the utility function to analyze the implications of the real balance
e¤ect on the stability properties of interest rate rules. Nisticò (2012) discusses the desirability of a systematic
monetary policy reponse to stock price developments in a similar model, but in the absence of bubbles. Del Negro,
Giannoni and Patterson (2015) propose a related framework as a possible solution to the "forward guidance puzzle."
None of the previous authors allow for retirement in their frameworks. That feature plays a central role in the
emergence of asset price bubbles in the model proposed here.

4And even though that transversality condition does not hold for the economy as a whole.
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that it nests the standard New Keynesian model as a limiting case, when the probability of death

and that of retirement approach zero.

After deriving the equations describing the model�s equilibrium, I characterize the balanced

growth paths consistent with that equilibrium and discuss the conditions under which a non-

vanishing bubble may exist along those paths. If the probability of retirement is su¢ ciently low

(relative to the consumer�s discount rate), there exists a unique balanced growth path, and it is

a bubbleless one (as in the standard model). On the other hand, if the probability of retirement

is su¢ ciently high (but plausibly so), a multiplicity of bubbly balanced growth paths is shown to

exist, in addition to a bubbleless one (which always exists).

Once I characterize the existence and potential multiplicity of balanced growth paths �bubbly

and bubbleless�I turn to the analysis of the stability properties of those paths and the role of

monetary policy in determining those properties.

Several �ndings of interest emerge from that analysis. First, even in the absence of bubbles,

the possibility of an interest rate below the growth rate, when combined with a su¢ ciently low

responsiveness of in�ation to the output gap, implies that a kind of "reinforced Taylor principle"

is needed in order to guarantee a locally unique equilibrium.

A second �nding of interest relates to the possibility of expectations-driven �uctuations in a

neighborhood of a balanced growth path. I show that, in contrast with the standard New Keyne-

sian model, the Taylor principle generally fails to guarantee the local uniqueness of the equilibrium.

As a result, �uctuations in economic activity and in�ation may often arise in association with �uc-

tuations in the size of the bubble, even in the absence of any shocks to fundamentals. An interest

rate rule that responds directly to the bubble, if precisely calibrated, may succeed in insulating

output and in�ation from aggregate bubble �uctuations, without necessarily bursting the bubble

or dampening its �uctuations (and possibly amplifying the latter). However, mismeasurement of

the bubble or an inaccurate "calibration" of the policy response to its �uctuations may end up

destabilizing output and in�ation. By way of contrast, I show that a policy that targets in�a-

tion directly may attain the same stabilization objectives without the risks associated with direct

responses to the bubble.

The paper concludes with some re�ections on some of the caveats and limitations of the New

Keynesian model developed here as a framework to capture the role played by bubbles as a source
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of economic �uctuations.

The rest of the paper is organized as follows. The next section summarizes the related literature.

Section 2 describes the basic framework underlying the analysis in the rest of the paper. Section

3 characterizes the economy�s balanced growth paths, bubbleless and bubbly. Section 4 analyzes

the equilibrium dynamics in a neighborhood of a balanced growth path, and the role of monetary

policy in preventing indeterminacy of equilibria. Section 5 provides an example of aggregate

�uctuations driven by a (stochastic) bubble, and of the possible consequences of "leaning against

the bubble" policies. Section 6 summarizes and concludes.

1 Related Literature

Much of the analysis of rational bubbles in general equilibrium found in the literature has been

based on real models. An early reference in that category is Tirole (1985), using a conventional

overlapping generations (OLG) framework with capital accumulation. A more recent one is Martín

and Ventura (2012), who modify the Tirole model by introducing �nancial frictions that are

alleviated by the existence of a bubble.

There is also an extensive literature on bubbles using monetary models with fully �exible

prices. In most of those models, including the seminal paper by Samuelson (1958), money itself is

the bubbly asset. Asriyan et al. (2016) provide a more recent example, introducing the notion of

a nominal bubble. While monetary policy is not always neutral in those models, the mechanism

through which its e¤ects are transmitted is very di¤erent from that emphasized in standard models

with nominal rigidities.

A number of papers have modi�ed the standard New Keynesian model by introducing overlap-

ping generations à la Blanchard-Yaari, though none of them has considered the possible existence

of bubbles. Piergallini (2006) develops a related model with money in the utility function to an-

alyze the implications of the real balance e¤ect on the stability properties of interest rate rules.

Nisticò (2012) discusses the desirability of a systematic monetary policy response to stock price

developments in a similar model, but in the absence of bubbles. Del Negro, Giannoni and Patter-

son (2015) propose a related framework as a possible solution to the "forward guidance puzzle."

None of the previous authors allow for retirement in their frameworks. That feature plays a central
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role in the emergence of asset price bubbles in the model proposed here.

Bernanke and Gertler (1999, 2001) analyze the possible gains from "leaning against the wind"

monetary policies in a NewKeynesian model in which stock prices contain an ad-hoc deviation from

their fundamental value. The properties of that deviation di¤er from those of a rational bubble,

which cannot exist in their model, which assumes an in�nite-lived representative consumer.

In Galí (2014) I carried out a similar analysis of monetary policy rules in a sticky price model

in which rational bubbles may exist in equilibrium due to the assumption of an in�nite sequence

of overlapping generations. While closest in spirit to the present paper, the framework used in

that paper di¤ered signi�cantly from the New Keynesian framework in many dimensions. In

particular, employment and output were constant in equilibrium, independently of �uctuations in

the aggregate bubble, which had only a redistributive e¤ect. On the other hand, the assumption

of two-period lived individuals, while convenient, cannot be easily reconciled with the frequency

of observed asset boom-bust episodes (not to say with the observed duration of individual prices).

By way of contrast, the model developed here displays endogenous �uctuations in output and

employment in response to �uctuations in asset price bubbles, and it is consistent with a calibration

of the model to a quarterly frequency (as is convention in the business cycle literature). Finally,

an additional advantage of the framework developed below is that it nests the standard New

Keynesian model as a limiting case.

2 A New Keynesian Model with Overlapping Generations

Next I describe the basic framework underlying the analysis in the rest of the paper.

2.1 Consumers

I assume an economy with overlapping generations of the "perpetual youth" type, as in Yaari

(1965) and Blanchard (1984). The size of the population is constant and normalized to one. Each

individual has a constant probability  of surviving into the following period, independently of his

age and economic status ("active" or "retired"). A cohort of size 1 �  is born (in an economic

sense) and becomes active each period. Thus, the size in period t � s of a cohort born in period

s is given by (1� )t�s.

At any point in time, active and retired individuals coexist in the economy. Active individuals
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supply labor and manage their own �rms, which they set up when they join the economy. I assume

that each active individual faces a constant probability 1 � � of permanently losing his job and

quitting his entrepreneurial activities. That probability is independent of his age. For convenience,

below I refer to that transition as "retirement," though it should be clear that it can be given a

broader interpretation.5

The previous assumptions imply that the size of the active population (and, hence, the measure

of �rms) at any point in time is constant and given by � � (1� )=(1� �) 2 (0; 1].

A representative consumer from cohort s, standing in period 0, chooses a consumption plan to

maximize expected lifetime utility

E0

1X
t=0

(�)t logCtjs

subject to the sequence of period budget constraints

1

Pt

Z �

0

Pt(i)Ctjs(i)di+ Etf�t;t+1Zt+1jsg = Atjs +WtNtjs (1)

for t = 0; 1; 2; ::. � � 1=(1+ �) 2 (0; 1) is the discount factor. Ctjs �
�
��

1
�

R �
0
Ctjs(i)

1� 1
� di
� �
��1
is a

consumption index, with Ctjs(i) being the quantity purchased of good i 2 [0; �], at a price Pt(i).

Pt �
�
��1

R �
0
Pt(i)

1��di
� 1
1�� is the price index.

Complete markets for state-contingent securities are assumed, with Zt+1js denoting the sto-

chastic payo¤ (expressed in units of the consumption index) generated by a portfolio of securities

purchased in period t, with value given by Etf�t;t+1Zt+1jsg, where �t;t+1 is the stochastic discount

factor for one-period-ahead (real) payo¤s. Only individuals who are alive can trade in securities

markets.

Variable Atjs denotes �nancial wealth at the start of period t, for a member of cohort s � t.

For individuals other than those joining the economy in the current period, Atjs = Ztjs=, where

the term 1= captures the additional return on wealth resulting from an annuity contract. As in

Blanchard (1984), that contract has the holder receive each period from a (perfectly competitive)

insurance �rm an annuity payment proportional to his �nancial wealth, in exchange for transferring

5Gertler (1999) introduces retirement in a similar fashion in a model of social security. More recently, Carvalho
et al (2016) have used a version of the Gertler model to analyze the sources of low frequency changes in the
equilibrium real rate. Both papers develop real models, in contrast to the present one, and do not consider the
possibility of bubbles.
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the latter to the insurance �rm upon death.6

VariableWt denotes the (real) wage per hour, and Ntjs is the number of individual work hours.

Both the wage and work hours are taken as given by each worker and assumed to be common to

all active individuals, i.e. Ntjs = Nt=�, where Nt is aggregate employment.7 Note that Ntjs = 0

for retired individuals.

Finally, I assume a solvency constraint of the form limT!1 
TEtf�t;t+TAt+T jsg � 0 for all t,

where �t;t+T is determined recursively by �t;t+T = �t;t+T�1�t+T�1;t+T .8

The problem above yields a set of optimal demand functions

Ctjs(i) =
1

�

�
Pt(i)

Pt

���
Ctjs (2)

for all i 2 [0; �], which in turn imply
R �
0
Ptjs(i)Ctjs(i)di = PtCtjs. Thus we can rewrite the period

budget constraint as:

Ctjs + Etf�t;t+1At+1jsg = Atjs +WtNtjs (3)

The consumer�s optimal plan must satisfy the optimality condition9

�t;t+1 = �
Ctjs
Ct+1js

(4)

and the transversality condition

lim
T!1

TEt
�
�t;t+TAt+T js

	
= 0 (5)

with (4) holding for all possible states of nature (conditional on the individual remaining alive in

t+ 1).

6Thus, individuals who hold negative assets will pay an annuity fee to the insurance company. The latter absorbs
the debt in case of death. The insurance arrangement can also be replicated through securities markets. In that
case the individual will purchase a portfolio that generates a random payo¤At+1js if he remains alive, 0 otherwise.
The value of that payo¤will be given by Etf�t;t+1At+1jsg which is equivalent to the formulation in the main text,
given that Atjs = Ztjs=.

7By not including hours of work in the utility function I e¤ectively eliminate any wealth e¤ects that would
generate systematic counterfactual di¤erences in the quantity of labor supplied by active individuals across age
groups. Alternatively one may assume preferences that rule out those wealth e¤ects, but at the cost of rendering
the analysis below less tractable.

8Note that (�)�1 is the "e¤ective" interest rate paid by a borrower in the steady state. The solvency constraint
thus has the usual interpretation of a no-Ponzi game condition.

9Note that in the optimality condition the probability of remaining alive  and the extra return 1= resulting
from the annuity contract cancel each other. Complete markets guarantee the same consumption growth rate
between two di¤erent periods for all consumers alive in the two periods.
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The details of wage setting are not central to the main point of the paper. For convenience,

I assume an ad-hoc wage schedule linking the productivity-adjusted real wage to average work

hours:

Wt =

�
Nt
�

�'
(6)

where Nt �
R �
0
Nt(i)di denotes aggregate work hours.

2.2 Firms

Each individual is endowed with the know-how to produce a di¤erentiated good, and sets up a

�rm with that purpose when he joins the economy. That �rm remains operative until its founder

retires or dies, whatever comes �rst.10 All �rms have an identical technology, represented by the

linear production function

Yt(i) = �
tNt(i) (7)

where Yt(i) and Nt(i) denote output and employment for �rm i 2 [0; �], respectively, and � �

1 + g � 1 denotes the (gross) rate of productivity growth. Individuals cannot work at their own

�rms, and must hire instead labor services provided by others.11

Aggregation of (2) across consumers yields the demand schedule facing each �rm

Ct(i) =
1

�

�
Pt(i)

Pt

���
Ct

where Ct � (1 � )
Pt

s=�1 
t�sCtjs is aggregate consumption. Each �rm takes as given the

aggregate price level Pt and aggregate consumption Ct.

As in Calvo (1983), each incumbent �rm resets the price of its good with probability 1� �I in

any given period, and keeps its unchanged with probability �I . Those probabilities are independent

of the time elapsed since the last price adjustment. On the other hand, I assume that a fraction

1��N of newly created �rms sets its price optimally at birth, while the remaining fraction �N set a

price equal to the economy�s average price in the previous period.12 Letting � � ��I+(1��)�N
10The assumption of �nite-lived �rms (or more generally, for �rms whose dividends shrink relative to the size of

the economy) is needed in order for bubbles to exist in equilibrium. By equating the probability of a �rm�s survival
to that of its owner remaining alive and active I e¤ectively equate the rate at which dividends and labor income
are discounted, which simpli�es considerably the analysis below.
11I assume that each �rm newly set up in any given period inherits (through random assignment) the index of

an exiting �rm.
12Alternatively, a fraction �N "inherit" the price in the previous period for the good they replace. In either case

I implicitly assume a transfer system which equalizes the wealth across members of the new cohort.
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the aggregate price dynamics are described by the equation

P 1��t = �P 1��t�1 + (1� �)(P �t )
1��

where P �t is the price set in period t by �rms reoptimizing their price.
13 A log-linear approximation

of the previous di¤erence equation around the zero in�ation equilibrium yields (letting lower case

letters denote the logs of the original variables):

pt = �pt�1 + (1� �)p�t (8)

i.e. the current price level is a weighted average of last period�s price level and the newly set

price, all in logs, with the weights given by the fraction of �rms that do not and do adjust prices,

respectively.

In both environments, a �rm adjusting its price in period t will choose the price P �t that

maximizes

max
P �t

1X
k=0

(��I)
kEt

�
�t;t+kYt+kjt

�
P �t
Pt+k

�Wt+k

��
subject to the sequence of demand constraints

Yt+kjt =
1

�

�
P �t
Pt+k

���
Ct+k (9)

for k = 0; 1; 2; :::where Yt+kjt denotes output in period t + k for a �rm that last reset its price in

period t and Wt � Wt=�
t is the productivity-adjusted real wage (i.e. the real marginal cost).14

The optimality condition associated with the problem above takes the form

1X
k=0

(��I)
kEt

�
�t;t+kYt+kjt

�
P �t
Pt+k

�MW t+k

��
= 0 (10)

whereM� �
��1 is the optimal markup under �exible prices.

A �rst-order Taylor expansion of (10) around the zero in�ation steady state yields, after some

manipulation:

p�t = �+ (1� ����I)
1X
k=0

(����I)
kEtf t+kg (11)

where  t � logPtWt is the (log) marginal cost, � � logM and � � 1=(1 + r) is the steady state

stochastic discount factor. Note that along a zero in�ation balanced growth path, wt = w = ��.
13Note that the price is common to all those �rms, since they face an identical problem.
14The �rm�s demand schedule can be derived by aggregating (2) across cohorts.
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Throughout I maintain the assumption that ��� 2 [0; 1), which guarantees that the in�nite sum

in (10) converges in a neighborhood of the zero in�ation balanced growth path.

Letting �t � pt �  t denote the average (log) price markup, and combining (8) (or (??)) and

(11) yields the in�ation equation:

�t = �Etf�t+1g � �(�t � �) (12)

where �t � pt � pt�1 denotes in�ation, � � ����I=� and � � (1� �)(1� ����I)=� > 0.15

Wage schedule (6), together with the assumption of a constant gross markupM under �exible

prices, implies a natural level of output given by Y n
t = �

tY, where Y � �M� 1
' . Log-linearizing

(6), and combining the resulting expressions with (12) we obtain a version of the New Keynesian

Phillips curve

�t = �Etf�t+1g+ �byt (13)

where � � �', and byt � log(Yt=Y n
t ) is the output gap. Note that, in contrast with the standard

New Keynesian model, the coe¢ cient on expected in�ation is not pinned down by the consumer�s

discount factor. Instead it depends on demographic parameters (� and ), the relative degree

of price stickiness of incumbent �rms (�I=�) and the gap between the real interest rate and the

growth rate along a balanced growth path (as captured by ��), all of which determine the e¤ective

"forward-lookingness" of in�ation.

2.3 Asset Markets

In addition to a complete set of state-contingent securities, I assume the existence of markets for

a number of speci�c assets, whose prices and returns must satisfy some equilibrium conditions. In

particular, the yield it on a one-period nominally riskless bond purchased in period t must satisfy16

1 = (1 + it)Et

�
�t;t+1

Pt
Pt+1

�
(14)

thus implying that the relation � � 1=(1 + r) between the discount factor and the real return on

the riskless nominal bond (r) will hold along a perfect foresight balanced growth path.

15Note that in the standard model with a representative consumer, � � � and � � (1��)(1���)
� which correspond

to the limit of the expressions for those coe¢ cients as � ! 1 under the two environments, and given that �� = �
along a balanced growth path of the representative consumer economy.
16Note also that in the asset pricing equations the probability of remaining alive  and the extra return 1=

resulting from the annuity contract cancel each other.
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Stocks in individual �rms trade at a price QFt (i), for i 2 [0; �], which must satisfy the asset

pricing equation:

QFt (i) = Dt(i) + �Et
�
�t;t+1Q

F
t+1(i)

	
(15)

where Dt(i) � Yt(i)
�
Pt(i)
Pt
�Wt

�
denotes �rm i�s dividends, and � is the probability that �rm i

survives into next period. Solving (15) forward under the assumption that limk!1(�)
kEt

�
�t;t+kQ

F
t+k(i)

	
=

0, and aggregating across �rms:

QFt �
Z �

0

QFt (i)di

=

1X
k=0

(�)kEtf�t;t+kDt+kg (16)

where Dt �
R �
0
Dt(i)di denotes aggregate dividends. Note that �rms�death makes it possible for

the aggregate value of �rms to be �nite even if the interest rate is below the economy�s growth

rate, as long as ��� < 1.

Much of the analysis below focuses on intrinsically worthless assets i.e. assets generating no

dividend, pecuniary or not.17 Let QBt (j) denote the price of one such asset. In equilibrium that

price must satisfy the condition

QBt (j) = Etf�t;t+1QBt+1(j)g (17)

as well as the non-negativity constraint QBt (j) � 0 (given free disposal), for all t.

Let QBt denote the aggregate value of bubbly assets in period t. In equilibrium, that variable

evolves over time according to the following two equations:

QBt = Ut +Bt (18)

QBt = Etf�t;t+1Bt+1g (19)

where Ut � QBtjt � 0 is the value of a new bubble introduced by cohort t at birth,18 and Bt �Pt�1
s=�1Q

B
tjs � 0 is the aggregate value in period t of bubbly assets available for trade in period

t � 1, with QBtjs denoting the period t value of bubbly assets introduced in period s � t. Note

that the introduction of new bubbly assets by incoming cohorts makes it possible for an aggregate

17In Jean Tirole�s words, pure bubbly assets are "best thought of as pieces of paper."
18Think of pieces of paper of a cohort-speci�c color or stamped with the birth year of their creators.
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bubble to re-emerge after a hypothetical collapse, thus overcoming a common criticism of early

rational bubble models. A similar environment with bubble creation was �rst introduced and

analyzed in Martín and Ventura (2012) in the context of an overlapping generations model with

�nancial frictions.19

Note that in the previous environment, the initial �nancial wealth of a member of a cohort

born in period t is given by:

Atjt = QFtjt + Ut=(1� )

where QFtjt is the value in period t of a newly created �rm.

2.4 Monetary Policy

Unless otherwise noted, the central bank is assumed to follow a simple interest rate rule of the

form bit = ���t + �qbqBt (20)

where bit � log[(1+ it)=(1+ r)] and qBt � QBt =(�
tY) is the size of the aggregate bubble normalized

by trend output, with bqBt � qBt �qB denoting the deviation from its value along a balanced growth

path. Note that the previous rule is consistent with a zero in�ation target. In what follows, I

assume the central bank takes r and qB as given, as determined by the analysis below.

2.5 Market Clearing

Goods market clearing requires Yt(i) = (1 � )
Pt

s=�1 
t�sCtjs(i) for all i 2 [0; �]. Letting

Yt �
�
��

1
�

R �
0
Yt(i)

1� 1
� di
� �
��1

denote aggregate output, we have:

Yt = (1� )

tX
s=�1

t�sCtjs

= Ct

Note also that in equilibrium

Nt =

Z �

0

Nt(i)di

= �p
tYt

' Yt
19The bubble introduced by each individual can be interpreted as being attached to the stock of his �rm and

hence to burst whenever the �rm stops operating (i.e. with probability 1� �).
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where Yt � Yt=�
t is aggregate output normalized by productivity and�p

t � 1
�

R �
0
(Pt(i)=Pt)

��di ' 1

is an index of relative price distortions, which equals one up to a �rst-order approximation.

Assuming that all securities other than stocks and bubbly assets are in zero net supply, asset

market clearing requires

(1� )

tX
s=�1

t�sAtjs = QFt +QBt

Next I characterize the economy�s perfect foresight, zero in�ation balanced growth paths.

3 Bubbles and Balanced Growth Paths

In a perfect foresight balanced growth (henceforth, BGP) the discount factor is constant and

satis�es � = 1=(1+ r), as implied by (14), and where r is the real interest rate along a BGP. Note

also thatW = 1=M in the zero in�ation BGP. Combined with (6) the previous condition implies:

1

M =

�
Yt
�

�'
Accordingly, output along the BGP, is given by Y BGP

t = �tY, which coincides with the natural

level of output, as derived above.

Next I describe how aggregate consumption is determined. Details of the derivation can be

found in the Appendix.

Let Cj and Aij denote, respectively, consumption and �nancial wealth along a BGP for an

individual aged j, normalized by productivity, i.e. superindex i 2 fa; rg denotes his status as

active or retired. The intertemporal budget constraint for a consumer born in period s and who

remains active at time t, derived by solving (1) forward, can be evaluated at a BGP as:

1X
k=0

(��)k Ct+k�s = Aat�s +
1

1� ���

�
WN

�

�
where N and W denote aggregate hours and the wage (the latter normalized by productivity)

along the BGP.

Using the fact that Ct+k�s = [�(1 + r)=�]kCt�s �as implied by (4) evaluated at the BGP �the

following consumption function can be obtained for an active individual aged j:

Cj = (1� �)

�
Aaj +

1

1� ���

�
WN

�

��
(21)
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Thus, consumption for an active individual is proportional to the sum of his �nancial wealth,

Aaj , and his current and future labor income (properly discounted), WN=[�(1� ���)].

The corresponding consumption function for a retired individual is given by:

Cj = (1� �)Arj (22)

Aggregating over all individuals, imposing the asset market clearing condition A = QF +

QB (with these three variables now normalized by productivity) and using the fact that QF =

D=(1����) and Y =WN +D along a BGP (with D � (1� 1=M)Y denoting aggregate pro�ts

normalized by productivity), we obtain:

C = (1� �)

�
QB +

1

1� ���Y
�

(23)

which can be interpreted as an aggregate consumption function along the BGP. Finally, goods

market clearing requires that C = Y thus implying the following equation relating the bubble-

output ratio qB � QB=Y and the discount factor �

1 = (1� �)

�
qB +

1

1� ���

�
(24)

Next I turn to the analysis of "bubbleless" and "bubbly" BGPs.

3.1 Bubbleless Balanced Growth Paths

Consider �rst a "bubbleless" BGP, with qB = 0. Imposing that condition in (24) implies

��� = �

or, equivalently,

r = (1 + �)(1 + g)� � 1

Note that the real interest rate along a BGP is increasing in both � and g The reason is that an

increase in either of those variables raises desired consumption by increasing the expected present

discounted value of future income for currently active individuals. In order for the goods market

to clear, an increase in the interest rate is called for.

When � = 1, the real interest rate is given (approximately) by the discount rate plus the

growth rate, i.e. r ' �+ g, as in the standard model (with log utility, as assumed here).

13



Note also that an increase in the expected lifetime, as indexed by , does not have an in-

dependent e¤ect on the real interest rate along the bubbleless BGP. The reason is that, when

��� = �, such a change increases in the same proportion the present value of consumption and

that of income for any given real rate, making an adjustment in the latter unnecessary.20

Finally, note for future reference that in the bubbleless BGP considered here the real interest

rate r is lower than the growth rate g (i.e. �� > 1) if and only if � < �.

3.2 Bubbly Balanced Growth Paths

Next I consider the possibility of a BGP with an aggregate bubble growing at the same rate as

output, thus implying a constant bubble-output ratio qB > 0.

Letting qBt � QBt =(�
tY), bt � Bt=(�

tY) and ut � Ut=(�
tY), note �rst that (19) can be rewritten

as:

qBt = Etf�t;t+1�bt+1g

= Etf�t;t+1�(qBt+1 � ut+1)g (25)

Along a bubbly BGP we must have qBt = qB > 0, and ut = u � 0 for all t. It follows from (24)

and (25) that:

qB =
(� � ���)

(1� �)(1� ���) (26)

u =

�
1� 1

��

�
qB

Thus, the existence of a BGP with a positive bubble, qB > 0, requires that

��� < �

On the other hand the non-negativity constraint on newly created bubbles u � 0 requires:

�� � 1

Accordingly, a necessary and su¢ cient condition for the existence of a bubbly BGP is given by

� < � (27)

20The independence of the steady state real interest rate from  is a consequence of the log utility speci�cation
assumed here. That property is not critical from the viewpoint of the present paper, since there are other factors
(the probability of retirement, in particular), that can drive real interest rate to values consistent with the presence
of bubbles.
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If the previous condition is satis�ed, there exists continuum of bubbly BGPs fqB; ug indexed

by r 2 (��=� � 1;�� 1]. Note that the condition for the existence of bubbly BGPs is equivalent

to the real interest rate being less than the growth rate in the bubbleless BGP.

It can be easily checked that qB is increasing in r, with limr!g q
B = (���)

(1��)(1��) � qBmax. Note

also that @qBmax=@� < 0, i.e. the upper bound on the size of the bubble is decreasing in � over the

range � 2 [0; �], and converges to zero as � ! �.

One particular such bubbly BGP has a constant supply of bubbly assets, i.e. u = 0. Note that

in that case

�� = 1

or, equivalently,

r = g

with the implied bubble size given by qB = qBmax. Along that BGP any existing bubble will be

growing at the same rate as the economy. By contrast, along a bubbly BGP with bubble creation,

r < g implies that the size of the aggregate pre-existing bubble will be shrinking over time relative

to the size of the economy, with newly created bubbles �lling up the gap so that the size of the

aggregate bubble relative to the size of the economy remains unchanged.

Summing up, one can distinguish two regions of the parameter space relevant for the possible

existence of bubbly BGPs:

(i) � � � � 1. In this case, the BGP is unique and bubbleless and associated with a real

interest rate given by r = ��=� � 1 > g.

(ii) 0 < � < �. In this case multiple BGPs coexist. One of them is bubbleless, with r =

��=�� 1 < g. In addition, there exists a continuum of bubbly BGPs, indexed by the real interest

rate r 2 (��=� � 1;� � 1], and associated with a bubble size (relative to output) qB 2 (0; qBmax],

given by (26).

Figure 1 summarizes graphically the two regions with their associated BGPs.
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3.3 A Brief Detour: Bubbly Equilibria and Transversality Conditions

Equilibria with bubbles on assets in positive net supply can be ruled out in an economy with

an in�nite lived representative consumer.21 In that economy, any positive net supply of that as-

set must be necessarily held by the representative consumer, implying limT!1Et f�t;t+TAt+Tg �

limT!1Et
�
�t;t+TQ

B
t+T (j)

	
. Given that the bubble component of any asset must satisfy limT!1Et

�
�t;t+TQ

B
t+T (j)

	
=

QBt (j), it follows that limT!1Et f�t;t+TAt+Tg � QBt (j). But the consumer�s transversality condi-

tion requires that limT!1Et f�t;t+TAt+Tg = 0. Given that free disposal requires that QBt (j) � 0,

it follows that QBt (j) = 0 for all t.

Note that the previous reasoning cannot be applied to an overlapping generations economy

like the one developed above. The reason is that in that case it is no longer true that the positive

net supply of any bubbly asset must be held (asymptotically) by any individual agent, since it can

always be passed on to future cohorts (and it will in equilibrium).

In fact, it is easy to check that in the overlapping generations model above the individual

transversality condition is satis�ed along any BGP, bubbly or bubbleless. As shown in the appen-

dix, for an individual born in period s � t it must be the case that along any BGP

lim
T!1

TEt
�
�t;t+TAt+T js

	
= lim

T!1
T [�TEt

�
�t;t+TA

a
t+T js

	
+ (1� �T )Et

�
�t;t+TA

r
t+T js

	
]

= lim
T!1

(�)T

"
Aasjs +

WsN

1� ���

 
1�

�
���

�

�T!#
= 0

implying that the transversality condition is satis�ed along any admissible BGP. It is straightfor-

ward to show that this will be the case along any equilibrium that remains in a neighborhood of

a BGP, of the kind analyzed below.

3.4 Plausibility of Bubbly BGPs: Some Rough Numbers

Next I discuss plausible settings for the parameters of the model involved in the above characteri-

zation of the BGPs. To calibrate  I use the expected lifetime at age 16, which is 63:2 years in the

21See, e.g. Santos and Woodford (1997) for a discussion of the conditions under which rational bubbles can be
ruled out in equilibrium.
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U.S., and set  = 1� 1
4�(62:3) ' 0:996. I use the average employment ratio (relative to population

aged 16 and over), which is (roughly) 0:6 on average over the period 1960-2016 as a proxy for �.

Conditional on the previous settings for � and  one can derive � ' 0:9973. Thus, the analysis

above implies that the existence of bubbly balanced growth paths requires that � > 0:9973.

Unfortunately, the latter condition cannot be veri�ed easily since that parameter is not iden-

ti�ed by the above model once the existence of bubbles is allowed for. This is in contrast with the

standard representative agent model, for which there is a tight connection between the discount

rate and the real interest rate along a BGP.22 On the other hand, casual introspection suggests

that a discount factor of about 0:9 applied to utility 10 years from today (as implied by the lower

bound � = 0:9973) falls within the range of plausibility.

Alternatively, one may examine directly the relation between the average real interest rate,

r, and the average growth rate of output, g, two observable variables. As discussed above, the

existence of bubbly BGPs requires that r � g. Using data on 3-month Treasury bills, GDP de�ator

and (per capita) GDP, the average values for those variables in the U.S. over the period 1960Q1-

2015Q4 are r = 1:4% � 4 = 0:35% and g = 1:6% � 4 = 0:4% (or, equivalently, � = 0:9965 and

� = 1:004), values which satisfy the inequality condition necessary for the existence of bubbles.

Note also that the above calibration implies ��� ' 0:9939, thus satisfying the condition for a

well de�ned intertemporal budget constraint.

For some of the quantitative analyses below I set the discount factor to be � = 0:998. This

is admittedly, an arbitrary choice, but it consistent with the existence of bubbly BGPs, with

associated real interest rates given by the interval [0:003348; 0:004].

4 Bubbles, Monetary Policy and Equilibrium Fluctuations

Having characterized the BGPs of the model economy, in the present section I shift the focus

to the analysis of the equilibrium dynamics in a neighborhood of a given BGP. In particular, I

am interested in determining the conditions under which equilibrium �uctuations unrelated to

fundamental shocks may emerge, as well as the role that variations in the size of the aggregate

bubble and the nature of monetary policy may play in such �uctuations.

22Note that � = 0:9983 implies a discount factor
of 0:9342 applied to utility 10 years from today, which seems entirely plausible.
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As in the standard analysis of the New Keynesian model with a representative agent, I restrict

myself to equilibria that remain in a neighborhood of a BGP, with the local equilibrium dynamics

being approximated using the log-linearized equilibrium conditions.23 I leave the analysis of the

global equilibrium dynamics �including the possibility of switches between BGPs, the existence

of a zero lower bound on interest rates, and other nonlinearities�to future research. Secondly, in

analyzing the model�s equilibrium I ignore the existence of fundamental shocks, and focus instead

on the possibility of �uctuations driven by self-ful�lling expectations and on the role of bubbles

as a source of those �uctuations.24

I start by deriving the log-linearized equilibrium conditions around a BGP. In contrast with

the New Keynesian model with a representative agent, the individual consumer�s Euler equation

and the goods market clearing condition are no longer su¢ cient to derive an equilibrium relation

determining aggregate output as a function of interest rates (i.e. the so-called dynamic IS equa-

tion).25 Instead, the derivation of such a relation requires solving for an aggregate consumption

function, by aggregating the individual consumption functions obtained by combining the con-

sumer�s Euler equation and intertemporal budget constraint. Since no exact representation exists

for the individual consumption function, I proceed by deriving a log-linearized approximation of

that function around a perfect foresight balanced growth path. Then I aggregate the individ-

ual consumption functions to obtain an (approximate) aggregate consumption function. See the

Appendix for detailed derivations.

The resulting representation of the equilibrium dynamics takes a very simple form, involving

only a few easily interpretable equations, as shown next.

Letting bct � log(Ct=�tC) denote log deviation of aggregate consumption from its value along

a BGP, the goods market clearing condition can be written as:

byt = bct (28)

23See, e.g., Woodford (2003) or Galí (2015).
24As the analysis of the equilibrium dynamics below will make clear, in the absence of bubbles and/or multiplicity

of equilibria the economy�s behavior in response to fundamental shocks should involve no signi�cant di¤erences
relative to to that of the standard New Keynesian model with a representative agent.
25Formally, one can use the de�nition of aggregate consumption and the individual Euler equations to derive the

aggregate relation:

Etfbct+1g =  �bct +bit � Etf�t+1g�+ (1� )Etfbct+1jt+1g
where Etfbct+1jt+1g cannot be immediately as a function of bct:
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As shown in the appendix, the aggregate consumption function can be written, up to a �rst

order approximation, as follows: bct = (1� �)(bqBt + bxt) (29)

where bqBt � qBt � qB and

bxt � 1X
k=0

(���)kEtfbyt+kg � ���

1� ���

1X
k=0

(���)kEtfbrt+kg (30)

is the non-bubbly (or fundamental) component of aggregate wealth (i.e. current and future dis-

counted income), with byt � log(Yt=�tY) denoting the output gap and brt = bit � Etf�t+1g the real

interest rate, all expressed in log deviations from their values along a BGP. Note that bxt can also
be rewritten in recursive form as:

bxt = ���Etfbxt+1g+ byt � ���

1� ��� (
bit � Etf�t+1g) (31)

Log-linearization of (25) around a BGP yields the equations describing �uctuations in the

aggregate bubble. bqBt = ��Etfbbt+1g � qB(bit � Etf�t+1g) (32)

bqBt = bbt + but (33)

where qB = (�����)
(1��)(1����) � 0 (as derived above) and but � ut � u.

The New Keynesian Phillips curve derived above and given by

�t = �Etf�t+1g+ �byt (34)

completes the description of the non-policy block of the system of di¤erence equations describing

the model�s equilibrium in a neighborhood of a BGP, where the latter is de�ned by a pair (qB;�)

satisfying the BGP conditions derived in the previous section. The model is then closed by a

description of monetary policy, as given by (20).

Before I analyze the solutions to the above system of di¤erence equations, I make a brief

digression regarding the size of the bubble e¤ects on output implied by the model. As made clear

by (29), consumption moves in proportion to �uctuations in total wealth, bubbly and non-bubbly.

Through this channel, a rise in the size of the bubble leads, ceteris paribus, to an increase in

aggregate demand and output. Note, however, that the marginal propensity to consume out of
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wealth, 1 � �, is likely to be very small for any plausible values of the discount factor and the

survival rate consistent with the existence of bubbles. Given the requirement that � < �, an

upper bound to that marginal propensity is given by 1 � �, which equals 0:0065. Thus, the

direct e¤ect on aggregate demand of a 10 percent temporary (one-quarter) blip in the bubble

would be an increase of 0:065 percent, a small �gure. Adding the indirect e¤ect resulting from

the induced increase in current output, the total e¤ect is given by (1� �)=� = 0:00663, a value

only marginally larger. On the other hand, starting from the bubbleless BGP (��� = �), the

implied total e¤ect of a hypothetical aggregate bubble that survives into the following period with

probability � is given by the multiplier (1��)(1���)=�(1� �) which can be made arbitrarily

large as � ! 1. Thus, it is clear that the size of the e¤ects of a change in the aggregate bubble on

current aggregate demand and output hinge critically on its perceived persistence and, thus, on

its impact on future income and, as a result, on current fundamental wealth.

Next I analyze the model�s equilibrium under the assumption of fully �exible prices, before

turning to the (more interesting) case of sticky price equilibria.

4.1 Equilibrium under Flexible Prices

Note that under �exible prices byt = 0 for all t, i.e. the output gap is zero at all times. Given (29),
that outcome requires that any changes in the aggregate bubble are exactly o¤set by changes in

fundamental wealth of the opposite sign, i.e. bxt = �bqBt for all t, in order to stabilize aggregate
demand. This is achieved through an appropriate adjustment of the real interest rate.

Under what conditions can (non-explosive) aggregate bubble �uctuations arise in a neighbor-

hood of a given BGP? Assuming Etfbut+1g = 0 for all t, equilibrium conditions (31) and (32) can

be combined to derive the equilibrium process for the aggregate bubble:

bqBt = �EtfbqBt+1g
where � �

�
���
�

�
��(1��)+(�����)

1���� > 0 is a function of the steady state real interest rate. If � < 1

the only non-explosive solution to the previous di¤erence equation is given by bqBt = 0 for all t,

which implies the absence of bubble �uctuations. On the other hand, if � > 1 there exist equilibria

characterized by stationary bubble �uctuations in a neighborhood of a bubbly BGP. It can be easily

checked that � is decreasing in r over the range of that variable consistent with the existence of a
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bubbly BGP. In addition, limr!��=��1 � = �=� > 1 and limr!g � = (�=�)(1��)=(1��) 2 (0; 1).

By continuity, there exists a threshold interest rate r 2 (��=� � 1; g) with associated bubble size

qB such that � > 1 for any r 2 (��=��1; r) (with corresponding qB 2 (0; qB)). This determines a

continuum of bubbly BGPs in a neighborhood of which stationary bubble-driven equilibria exist,

with bubble �uctuations described by the di¤erence equation:

bqBt = (1=�)bqBt�1 + �t

where � > 1 and �t � but + bt � Et�1fbtg is the innovation in the aggregate bubble, unrelated to

fundamentals. Along that equilibrium the real interest rate is given by:

brt = �bqBt (35)

where � � (1����)(1����
� )

���
> 0, i.e. the real rate comoves positively with the bubble, as required

in order to fully stabilize aggregate demand and output.

Note that both the bubble and the real interest rate are independent of monetary policy, since

the latter is neutral under �exible prices. The implied equilibrium path of the real interest rate,

combined with the assumed interest rate rule, can be used to determine equilibrium in�ation,

which must solve the di¤erence equation:

���t = Etf�t+1g+ (�� �q)bqBt
Assuming �� > 1, the previous equation has a unique non-explosive solution, given by:

�t =
�(�� �q)

��� � 1
bqBt

Thus, an rise in the aggregate bubble may increase or decrease in�ation depending on the size

of �q relative to �. In particular, if the central bank does not respond to the bubble (�q = 0)

in�ation will comove positively with the bubble.

The fact that, under �exible prices, aggregate bubble �uctuations (i) have no e¤ect on output

and (ii) are independent of monetary policy, limits the interest of that environment. By contrast,

and as discussed below, bubble �uctuations, when interacting with nominal rigidities, generate

�uctuations in aggregate demand and output, transmitted through the implied wealth e¤ects on

consumption. Furthermore, the presence of sticky prices makes room for monetary policy to play

a role in the stabilization of such bubble-driven output �uctuations. Next I turn to the analysis

and characterization of equilibria under sticky prices.
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4.2 Equilibrium under Sticky Prices

Next I turn to the analysis of the properties of equilibria in a neighborhood of a BGP in the

presence of sticky prices. The latter make it possible for aggregate demand changes resulting from

bubble �uctuations to have e¤ects on output. I analyze separately the case of �uctuations around

bubbleless and bubbly BGPs.

4.3 Equilibrium Dynamics around a Bubbleless BGP

As shown above, ��� = � along a bubbleless BGP (i.e. qB = 0). Imposing those conditions on

the system of di¤erence equations describing the non-policy block of the economy yields:

byt = (1� �)(qBt + bxt) (36)

bxt = �Etfbxt+1g+ byt � �

1� �
(bit � Etf�t+1g) (37)

�t = (��I=�)Etf�t+1g+ �byt (38)

qBt = (�=�)Etfbt+1g (39)

qBt = bt + ut (40)

where (qBt ; ut) � 0 for all t.

Next I analyze separately bubbly and bubbleless equilibria, both in a neighborhood of the

bubbleless BGP, and discuss the role of monetary policy.

4.3.1 Bubbleless Equilibria

I start by analyzing the case of bubbleless equilibria, i.e. qBt = 0 for all t. The non-policy block of

the model now simpli�es to: byt = Etfbyt+1g � (bit � Etf�t+1g) (41)

�t = �Etf�t+1g+ �byt (42)

where � � ��I=�. Note that the previous system has a structure "similar" to that describing the

non-policy block of the standard New Keynesian model. As an aside, note the that dynamic IS

equation (41) is identical to the one in the model with an in�nitely-lived representative consumer
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and, accordingly, gives rise to the same "forward guidance puzzle" that emerges in that model:26

the "extra discounting" resulting from agents�shorter horizons in the present model and which is

captured in a partial equilibrium condition like (30) vanishes once general equilibrium condition

is imposed (byt = bct).27
In order to close the model I assume a simple interest rate rule of the form:

bit = ���t (43)

where �� � 0. Using (43) to eliminate the interest rate in (41) one can write the resulting system

(after some manipulation) as:

� byt
�t

�
= A

�
Etfbyt+1g
Etf�t+1g

�
(44)

where

A � 

�
1 1� ����I=�
� �+ ��I=�

�
with 
 � 1=(1 + ���).

The solution to (44) is (locally) unique (and equal to byt = �t = 0 for all t) if and only if the

two eigenvalues of matrix A are inside the unit circle. As shown in the appendix, this will be the

case if the following condition is satis�ed:

�� > max

�
1;
��I=� � 1

�

�
(45)

If the previous condition is satis�ed, and in the absence of exogenous shocks, the only (bub-

bleless) equilibrium that remains in a neighborhood of the steady state is given by byt = �t = 0 for

all t.

If � > ��I
1+�

, i.e. if average price stickiness (relative to that of incumbent �rms) is above the

threshold value �=(1 + �) 2 (0; 1), uniqueness condition (45) simpli�es to:

�� > 1

26See, e.g. McKay et al. (2016).
27This �nding calls into question the solution of the "forward guidance puzzle" proposed by Del Negro et al

(2015) based on the assumption of �nitely-lived agents.
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which corresponds to the usual "Taylor principle": the central bank should adjust the nominal

rate "more than one-for-one" in response to changes in in�ation in order to guarantee a (locally)

unique equilibrium.

On the other hand if � < ��I
1+�

then the threshold value for coe¢ cient �� is above one, and the

resulting uniqueness condition �� > (��I=�� 1)=� > 1 can be thought of as a "reinforced Taylor

principle," requiring that the central bank adjust the policy rate more aggressively than implied

by the usual "more than one-for-one" condition in order to guarantee a unique equilibrium. Note

that a low value for average price stickiness �, combined with large values for �,  and �I makes

current in�ation more sensitive to expectations (i.e. "more forward-looking"), and hence a stable

backward solution to (44) becomes more likely, especially when � is small, unless the central bank

responds more aggressively to in�ation thus inducing a su¢ ciently large decrease in the output

gap.28

If condition (45) is not satis�ed, there exist equilibria involving stationary sunspot �uctuations

around the bubbleless BGP, driven by self-ful�lling revisions of expectations. If �� < 1 then only

one eigenvalue of A is larger than one, implying indeterminacy of dimension one.29 On the other

hand, if 1 � �� < (��I=� � 1)=� both eigenvalues of A have moduli larger than one, with the

resulting indeterminacy being two-dimensional, a case that can be ruled out in the New Keynesian

model with a representative agent. See the appendix for a discussion of the representation of such

equilibria.

The previous results point to a �rst dimension in which the introduction of �nite lives and an

OLG structure in an otherwise standard New Keynesian model can potentially a¤ect the properties

of its associated equilibrium dynamics and their connection to monetary policy, even in the absence

of bubbles.

28Note, in particular, that in the limiting case of full price �exibilility for newly created �rms (�N = 0), the
uniqueness condition can be written as

�� > max

�
1;
�=� � 1
�

�
implying a "reinforced Taylor principle" if � > �=(1 + �).
29Such sunspot equilibria are similar in nature to those analyzed in, e.g. Clarida, Galí and Gertler (2000).
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4.3.2 Bubbly Equilibria

Next I consider the possibility of bubbly equilibria in a neighborhood of the bubbleless BGP. To

illustrate the possibility of bubble-driven �uctuations and the potential role of monetary policy in

shaping those �uctuations, I specify a process for the bubble which satis�es the conditions above

while displaying a boom-bust pattern characteristic of conventional accounts of historical bubble

episodes. Consider a bubbly asset with positive value that is introduced in a fully unanticipated

way by a newly born cohort (say, in period 0). Conditional on not bursting the bubble evolves

over time according to the equation

qBt =
�

��
qBt�1 (46)

for t = 1; 2; 3; :::where � < �=� < 1 is the bubble�s survival probability, assumed to be constant.

Thus, with probability � the bubble grows at a gross rate �=�� > 1. With probability 1 � � the

bubble bursts, and does not re-emerge again. Note that the previous speci�cation satis�es (39)

and (40) as well as the non-negativity condition. Furthermore, the assumption �=� < 1 guarantees

that limT!1EtfqBt+Tg = 0.

Combining (36), (41) and the process for the bubble assumed above, one can derive the dynamic

IS equation: byt = Etfbyt+1g � (bit � Etf�t+1g) + �qBt (47)

where now � � (1� �)(1� �)=� > 0. Note that one can rewrite (47) as follows:

byt = Etfbyt+1g � (bit � Etf�t+1g � brnt )
where brnt = �qBt has the interpretation of a natural rate of interest, i.e. the equilibrium real

interest rate that would prevail under �exible prices.30

The previous equation, together with (13) and a process for the bubble satisfying (39) and

(40) describe the non-policy block of the economy. In addition, I assume an interest rate rule of

the form

bit = ���t + �qq
B
t (48)

30Note that the previous relationship corresponds to that swown in (35) when � in the latter is evaluated at the
bubbleless BGP.
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where �� > 1, which guarantees the (local) uniqueness of the equilibrium in the absence of a

bubble.

By eliminating the interest rate, we can rewrite the corresponding system of di¤erence equations

more compactly as � byt
�t

�
= A

�
Etfbyt+1g
Etf�t+1g

�
+BqBt

where fqBt g evolves according to (46), A and 
 are de�ned as above, and B � 
(���q)[ 1 � ]0.

Based on the analysis above, the condition for (local) uniqueness of the equilibrium, conditional

on a given bubble process, is given by (45) and is thus independent of the presence of the bubble or

the policy response to it, as measured by �q. The latter parameter, however, is key in determining

the e¤ects of the bubble on the real economy.

Note that in the case considered here, and up to a �rst order approximation, there is no

feedback from monetary policy to the bubble (since qB = 0). Hence, �uctuations in the bubble

can be viewed as playing a role similar to an exogenous demand shock, albeit one that must satisfy

conditions (39) and (40), as well as the non-negativity condition.

Assuming that the condition for a unique equilibrium (45) is satis�ed, one can use the method

of undetermined coe¢ cients to derive closed-form expressions for in�ation and the output gap as

a function of the bubble: byt = (1� ��I=�)	(�� �q)q
B
t

�t = �	(�� �q)q
B
t

where 	 � 1=[(1 � ��I=�)(1 � �=�) + �(�� � �=�)] > 0. Thus, the emergence of a bubble

will trigger movements in in�ation and the output, as long as �q 6= �. Furthermore, note that

��I=� � 1, implying that comovement between output and in�ation is always positive. On the

other hand the sign of the response of both output and in�ation to �uctuations in the bubble is

given by the sign of �� �q. Thus, if �q < �, both variables will increase with the bubble.
31 On

the other hand, if the central bank "overreacts" to the bubble (�q > �), both in�ation and the

output gap will decline as the bubble grows. By setting �q = � the central bank will succeed in

insulating the output gap and in�ation from �uctuations in the bubble. Note that such a policy

31Strictly speaking this is true as long as �N > 0. If �N = 0 (i.e. if there is no backwardlooking behavior on the
part of new �rms) then � = ��I and output will be invariant to �uctuations in the bubble.
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is equivalent to following the rule bit = brnt + ���t

where brnt = �qBt .
Such a policy can be thought of as a "leaning against the bubble" rule, since it requires raising

interest rates when the bubble is growing, and lowering them when it bursts. That policy, however,

does not have any e¤ect on the bubble itself, it just o¤sets the e¤ects of the bubble on aggregate

demand. In fact, it should be clear that the same outcome can be achieved by any other policy

rule that succeeds in stabilizing in�ation, for in that case, and independently of how the policy is

implemented, bit = �qBt will have to hold in equilibrium. An example of such a policy is given by
the limit of the simple rule bit = ���t as �� ! +1. It follows that observability of the bubble and

a systematic response to the latter is not a requirement for insulating the economy from bubble

�uctuations, at least in the environment analyzed here. That result is reminiscent of the main

�ndings in Bernanke and Gertler (1999, 2001). On the other hand, an inappropriate choice of

coe¢ cient �q and/or a "more �exible" form of in�ation targeting will fail to insulate the "real

economy" from the booms and busts experienced by the bubble.

In the previous example, a single boom and bust episode is triggered by a one-o¤ bubble.

For an example with recurrent bubble-driven booms and eventual collapses consider an economy

where the bubble evolves exogenously according to the following process.

qBt =

�
�
��
qBt�1 + ut with probability �

ut with probability 1� �
(49)

where futg follows a white noise process with positive support and constant mean u & 0. Again,
the previous process satis�es (39) and (40), as well as the non-negativity condition. Furthermore,

EtfqBt+1g = (�=�)qBt + u, and hence limT!1EtfqBt+Tg = u=(1 � �=�); the size of the bubble

converges in expectation to a value arbitrarily close to zero. Equilibrium output gap and in�ation

can be shown to be given by

byt =  y + (1� ��I=�)	(�� �q)q
B
t

�t =  � + �	(�� �q)q
B
t

where limu!0  y = limu!0  � = 0. Note that all the qualitative �ndings regarding the role of
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monetary policy in shaping the e¤ects of bubble �uctuations found in the discussion above apply

also to the present case.

Figure 2 displays a simulated equilibrium path generated by the previous model. In addition

to the baseline parameter settings introduced above, I set � = 0:95 as values describing the process

for the bubble and draw futg from an exponential distribution with mean 0:001. Furthermore, I

set � = 0:0424 as a baseline value for the slope of the New Keynesian Phillips curve. That value

is consistent with �I = � = 0:75 and ' = 0:5. The former setting is consistent with an average

duration of individual prices of 4 quarters, in accordance with much of the micro evidence. Note

that, lacking evidence on the extent of "backward-looking behavior" among new �rms, I assume

�N = �I = �. The setting for ' is consistent with (6) and the observation that the standard

deviation of the (log) real wage is roughly half the size that of (log) hours worked (both HP-

detrended), based on postwar U.S. data. Finally, I assume a "�exible in�ation targeting" policy,

with �� = 1:5 and �q = 0. The simulated �uctuations display a characteristic "boom-bust"

pattern for the three variables. An noted above, though, the size of the �uctuations in output and

in�ation is negligible, despite the substantial size of the bubble �uctuations.

Figure 3 shows the standard deviation of output as a function of �� and �q, given a standard

deviation of the bubble normalized to one percent. The �gure illustrates graphically the dangers of

"leaning against the bubble" monetary policies discussed above: the "wrong" choice of coe¢ cient

�q will easily lead to an increase in output volatility, which contrasts with the unambiguous

stability gains from a stronger anti-in�ationary stance.

4.4 Equilibrium Dynamics around a Bubbly BGP

Next I analyze the properties of the model�s equilibrium dynamics in a neighborhood of a bubbly

BGP (qB > 0 ). For simplicity I assume that the newly created bubbles follow a martingale

di¤erence process about a constant mean u, so that Etfbut+1g = 0 for all t. By combining (29),
(31), (32), (33) and (28) the following version of the dynamic IS equation can be derived:

byt = ���

�
Etfbyt+1g � ��

�
(bit � Etf�t+1g) + �bqBt (50)

where � � (1��)(1��)
�

> 0 and � � 1+ (1��)(���1)
1���� � 1. The previous equation has a form similar

to the dynamic IS equation in the standard New Keynesian model with preference shocks, with
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�uctuations in the bubble playing the role of the latter. In contrast with the "standard" model

though, note that the coe¢ cients on expected in�ation and interest rate will be di¤erent from

unity. In particular, the fact that ���=� < 1 in a bubbly BGP makes the in�uence of an expected

change in the interest rate on current output decline with the horizon of the policy intervention,

thus overcoming the extreme version of the so-called "forward guidance puzzle."32 Note also that

the largest possible theoretical value for coe¢ cient ���=� determining the rate of decline is �.33

Under the baseline calibration for that parameter that implies a discount factor of 0:9 applied to

the interest rate changes anticipated to take place in 10 years time, thus pointing a substantial

e¤ectiveness of forward guidance policies, despite the discounting.

In addition to (50) the non-policy block of the system describing the equilibrium dynamics

around a bubbly BGP is given by the bubble equation (32) and the New Keynesian Phillips curve

(13), which are reproduced here for convenience:

bqBt = ��EtfbqBt+1g � qB(bit � Etf�t+1g)

�t = �Etf�t+1g+ �byt
where � � ����I=� and � � '(1� �)(1� ����I)=�:

Note that, in contrast with the system describing the equilibrium around the bubbleless steady

state, the size of the bubble has now an endogenous component, which depends on the real interest

rate.

Again, I assume the central bank follows the interest rate rule (48), repeated here for conve-

nience: bit = ���t + �qq
B
t

Note that by setting �q =
��
��
the central bank can fully o¤set the e¤ects of the bubble on

aggregate demand, output and in�ation. In that case, the equilibrium dynamics are described by

32The previous result can be shown to be linked to the fact that the factor ��� at which future income is
discounted when determining fundamental wealth (see (31)) di¤ers from the term � in the marginal propensity
to consume in the presence of the bubble in the BGP, as implied by (24). This will also be the case in the presence
of an asset other than the bubble which is in (i) positive net supply, (ii) it is not a claim to future output, and (iii)
which has a positive value for current consumers (net of liabilities associated with it, e.g. taxes). An example of
such an asset is government debt in the presence of �nite horizons, i.e. when Ricardian equivalence does not hold.
The presence of such debt is key in accounting for the muting of the "forward guidance puzzle" in Del Negro et al.
(2015).
33This would correspond to the BGP with the highest admissible interest rate (�� = 1) and � = 1.
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the system � byt
�t

�
= A�

�
Etfbyt+1g
Etf�t+1g

�
where

A� � 
�
� ���

�
��
�
(1� ���)

���
�
� ��

�
�+ �

�
with 
� � 1

1+(��=�)���
. The necessary and su¢ cient condition for (local) uniqueness can be shown

to be given by:

�� > 1�
(1� �)(� � ���)

���
(51)

The threshold value for �� de�ning the determinacy region, given by the right hand side of

the previous expression is exactly equal to unity at the bubbleless BGP (where ���=� = 1), in

a way consistent with the �ndings above. At the other extreme, corresponding to a BGP with

the largest possible bubble and interest rate (implying �� = 1) that lower bound is given by

1� (1���I=�)(���)
��

which is likely to be very close to one under any reasonable calibration (under

the baseline calibration is approximately equal to 0:999).

Thus, an interest rate rulebit = ���t+
��
��
qBt with �� satisfying (51) guarantees full stabilization

of the output gap and in�ation in the face of �uctuations in the aggregate bubble. Under that

rule, the aggregate bubble will evolve according to the di¤erence equation:

bqBt = (1=�)bqBt�1 + �t (52)

where � �
�
���
�

�
��(1��)+(�����)

1���� > 0 and �t � bbt � Et�1fbbtg + but is the aggregate bubble
innovation. Note that the previous process for the bubble corresponds to that obtained above for

the �exible price equilibrium. As in that case, � > 1 must be assumed in order to guarantee that

the bubble doesn�t drift away permanently from its value along the BGP, which in turn requires

that the latter is associated with not too high a real interest rate and bubble size (formally, r < r

and qB < qB; see discussion of �exible price equilibrium above). As long as that condition is

satis�ed, the aggregate bubble may display non-explosive �uctuations around its BGP value as

described by (52).

Note however that, as in the case of �uctuations around the bubbleless BGP analyzed above,

an identical outcome will obtain if the central bank follows any other rule that succeeds in sta-

bilizing in�ation (and hence the output gap), for in that case (50) requires that in equilibrium
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bit � Etf�t+1g = bit = ��
��
qBt . Thus, as in the bubbleless BGP case, we see that in the face of

bubble �uctuations a "leaning against the bubble" policy is not required to insulate output and

in�ation from those �uctuations and, in any case, that policy doesn�t work through by dampening

�uctuations in the bubble.

What are the implications of more general calibrations of the interest rate rule (48)? Using

(??) to eliminate the interest rate in (50) and (32), we can rewrite the system as follows:

A0xt = A1Etfxt+1g

where xt � [byt; �t; bqBt ]0 and
A0 �

24 1 ��
�
�� ��+ ��

�
�q

�� 1 0
0 qB�� 1 + qB�q

35 ; A1 =

24 ���
�

��
�

0

0 � 0
0 qB ��

35
The solution to the previous dynamical system is (locally) unique if and only if the three

eigenvalues of the companion matrix A � A�1
0 A1 lie inside the unit circle. If that condition is

satis�ed, the equilibrium is given by byt = 0, �t = 0 and bqBt = 0 for all t. That uniqueness condition,
however, is far from being guaranteed in all cases even for empirically plausible values of the rule

coe¢ cients. This is illustrated in Figure 4, which displays the uniqueness and indeterminacy

regions on the (��; �q) plane, under alternative assumptions regarding the real interest rate (and,

hence, the bubble size) in the underlying BGP, given the baseline calibration introduced above.

Note that when the BGP is close to the bubbleless one (with r = 0:00335, a value near its lower

bound consistent with a BGP), indeterminacy is pervasive, independently of the value of the rule

coe¢ cients. Furthermore, if �� < 1, that indeterminacy is two dimensional, a property not found

in the standard model under the present rule. As we consider BGPs with larger bubble-output

ratios and higher real interest rates, we see that a region with a unique equilibrium emerges,

and grows larger as r increases. Under the largest interest rate consistent with a bubbly BGP

(r = g = 0:004), the equilibrium is seen to be determinate even for values of �� less than one, as

long as �q is positive.

As an illustration, Figure 5 displays simulated stationary �uctuations corresponding to a model

calibration consistent with one-dimensional indeterminacy. In particular I assume r = 0:0035 (the

estimated average interest rate in postwar U.S.), �� = 1:5 (the value proposed in Taylor (1993)

and often used in related exercises) and �q = 0 (a likely relevant value for the Fed and other central
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banks, at least before the �nancial crisis). Note that in the standard New Keynesian model, the

Taylor principle condition �� > 1 would guarantee a unique equilibrium. By contrast, in the

present model such a rule is seen to be consistent with �uctuations that are highly persistent and

involve "proportional" variations in output, in�ation and the bubble.

Figure 6a displays the standard deviation of the output gap as a function of �� and �q, given

r = 0:0035, and keeping the remaining parameter settings unchanged. The qualitative picture

is similar to that obtained for the case of �uctuations around the bubbleless BGP, pointing to

the potential destabilizing e¤ects of "leaning against the bubble" policies that are not surgically

calibrated, and which stand in contrast to the more robust gains of in�ation targeting policies.

Figure 6b displays the standard deviation of the bubble, as a function of �� and �q, and under an

identical calibration of the remaining parameters. The �gure illustrates a hidden peril of "leaning

against the bubble" policies: contrary to conventional wisdom, such policies may end up increasing

the size of bubble �uctuations. That outcome, already uncovered in Galí (2014) in the context of

a two-period monetary OLG model, follows from the requirement that any existing bubble grows

(in expectation) at the rate of interest. Thus, if the latter increases with the bubble, the size of

bubble �uctuations may be ampli�ed.

5 Concluding Comments

The New Keynesian model remains the workhorse framework for monetary policy analysis, even

though it is unsuitable �in its standard formulation�to accommodate the existence of asset price

bubbles and hence to address one of the key questions facing policy makers, namely, how monetary

policy should respond to those bubbles. That shortcoming, however, is not tied to any key

ingredient of the model (e.g. staggered price setting), but to the convenient (albeit unrealistic)

assumption of an in�nite-lived representative consumer. In the present paper I have developed

an extension of the basic New Keynesian model featuring overlapping generations, �nite lives and

(stochastic) transitions to inactivity. In contrast with the standard model, the proposed framework

allows for the existence of rational expectations equilibria with asset price bubbles. In particular,

plausible calibrations of the model�s parameters are consistent with the existence of a continuum of

bubbly balanced growth paths, as well as a bubbleless one (which always exists). When combined

with sticky prices, �uctuations in the size of the aggregate bubble, possibly unrelated to changes
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in fundamentals, are a potential source of �uctuations in output and in�ation.

The analysis of the properties of the model has yielded several insights regarding the implica-

tions for monetary policy, which I brie�y summarize next.

Firstly, the introduction of an overlapping generations structure, even when one abstracts from

the possibility of bubbly equilibria, may change the conditions under which simple interest rate

rules will guarantee equilibrium uniqueness. In particular, under some parameter con�gurations,

the so-called Taylor principle has to be "reinforced," calling for a stronger anti-in�ationary stance

in order to avoid equilibrium indeterminacy.

Secondly, a "leaning against the bubble" interest rate policy, if precisely calibrated, may succeed

in insulating output and in�ation from aggregate bubble �uctuations. However, mismeasurement

of the bubble or an inaccurate "calibration" of the policy response to its �uctuations may end

up destabilizing output and in�ation. On the other hand, and contrary to conventional wisdom,

a "leaning against the bubble" policy, even when precisely implemented, does not guarantee the

elimination of the bubble or the dampening of its �uctuations. In fact, under some conditions

such a policy may end up increasing the volatility and persistence of bubble �uctuations. By way

of contrast, a policy that targets in�ation directly may attain the same stabilization objectives

without the risks associated with a "direct" response to the bubble.

Four additional remarks, pointing to possible future research avenues are in order. Firstly,

the analysis of the equilibrium dynamics above has assumed "rationality" of asset price bubbles.

That assumption underlies the equilibrium conditions that individual and aggregate bubbles must

satisfy, i.e. (17) and (19), respectively, and the implied log-linear approximation (32). However,

the remaining equilibrium conditions, including the modi�ed dynamic IS equations, are still valid

even if the process followed by the aggregate bubble is inconsistent with a rational bubble. That

observation opens the door to analyses of the macroeconomic e¤ects and policy implications of

alternative speci�cations of the aggregate bubble�s behavior.

Secondly, the analysis above suggests that, in the absence of other frictions, the rise and fall of

an aggregate bubble is likely to have small quantitative e¤ects on aggregate demand and, hence,

on output and in�ation. To the extent that the historical evidence points to a larger macro impact

of bubbles, there may be additional channels through which that impact operates. The work of

Farhi and Tirole (2011), Martin and Ventura (2012), and Asriyan et al. (2016), emphasizing the
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interaction of the bubble with �nancial frictions, points to a possible source of larger quantitative

e¤ects that one might be able to incorporate in the above framework.

Thirdly, balanced growth paths characterized by a larger bubble size are associated with a

higher real interest rate. Thus, the presence of a bubble along a BGP should make it less likely

for the zero lower bound on the nominal interest rate to become binding, ceteris paribus and

conditional on the bubble not bursting. Similarly, the bursting of the bubble would bring along

a reduction in the natural rate of interest that could pull the interest rate toward the zero lower

bound. The analysis of the interaction of bubble dynamics with the zero lower bound seems an

avenue worth exploring in future research.

Finally, the analyses of the equilibrium dynamics above has assumed that the central bank

takes as given the BGP on which the economy settles and, hence, its associated real interest rate.

That assumption is re�ected in the implicit exogeneity of the real interest rate term embedded

in the policy rule through the term bit ' it � r. But while that assumption is a natural one in

the context of economies whose real interest rate along a BGP is uniquely pinned down (as it is

the case in the standard New Keynesian model with a representative consumer), it is no longer

so in an economy like the one analyzed above, in which a multiplicity of real interest rates may

be consistent with a perfect foresight BGP. Future research should explore the implications of

relaxing the assumption of a policy invariant steady state real interest rate.
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TECHNICAL APPENDIX

1. Transversality condition in a Bubbly BGP

The consumption function for an active individual born in period s is:

Cat+T js = (1� �)

�
Aat+T js +

Wt+TN=�

1� ���

�
In particular:

Catjs = (1� �)

�
Aatjs +

WtN=�

1� ���

�
In addition, Ct+T js = (�=�)TCtjs thus implying

Aat+T js = (�=�)
T

�
Aatjs + (1� (��=�)T )

WtN=�

1� ���

�
On the other hand, for a retired individual

Crtjs = (1� �)Artjs

Using the fact that Crtjs = Catjs we have:

Artjs = Aatjs +
WtN=�

1� ���

The transversality condition for an active individual takes the form:

lim
T!1

(�)TEtfAt+T jsg = lim
T!1

(�)T [�TAat+T js + (1� �T )Art+T js]

= lim
T!1

(�)T [Aat+T js + (1� �T )�T
WtN=�

1� ��� ]

= lim
T!1

(�)T
�
Aatjs +

WtN=�

1� ��� (1� (��=�)
T )

�
+ lim
T!1

(��)T (1� �T )
WtN=�

1� ���

=
WtN=�

1� ��� lim
T!1

[(�)T � (��)T + (��)T � (���)T ]

= 0

where the maintained assumption ��� < 1 has been used.

2. Log-linearized individual intertemporal budget constraint
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The intertemporal budget constraint for an individual born in period s and still active in period

t � s can be derived by iterating (3) forward to yield:

1X
k=0

kEtf�t;t+kCt+kjsg = Aatjs +
1

�

1X
k=0

(�)kEtf�t;t+kWt+kNt+kg (53)

For retired individuals, the corresponding constraint is:
1X
k=0

kEtf�t;t+kCt+kjsg = Artjs (54)

Letting lowercase letters with a "^" symbol denote the log deviation of a variable from its value

along a perfect foresight balanced growth path (BGP), the left hand side term of (53) and (54)

can be approximated in a neighborhood of the BGP as:
1X
k=0

kEtf�t;t+kCt+kjsg ' �tCt�s
1� �

+ �t
1X
k=0

(��)kCt+k�sEtfbct+kjs + b�t;t+kg
=

�tCt�s
1� �

+
�tCt�s
1� �

bctjs
where Cj denotes consumption of an individual aged j (normalized by current productivity) along a

BGP, b�t;t+k = log(�t;t+k=�k), and where I have made use of the fact that Ct+k�s = [�(1+r)=�]kCt�s
and Etfb�t;t+k + bct+kjsg = bctjs (resulting from (4)).

The second term on the right hand side of (53), which is relevant only for active individuals,

can be approximated around the BGP as:

1

�

1X
k=0

(�)kEtf�t;t+kWt+kNt+kg '
�tWN

�(1� ���) +
�
�tWN

�

� 1X
k=0

(���)kEtf bwt+k + bnt+k + b�t;t+kg
where W is the wage along the BGP, normalized by productivity.

3. Aggregation and derivation of log-linearized aggregate consumption Euler equa-

tion

Let C denote aggregate consumption (normalized by current productivity), along the BGP.

One can derive the approximate relations Cbct = (1� )
Pt

s=�1 
t�sCt�sbctjs and the BGP relation

C = (1�)
Pt

s=�1 
t�sCt�s. Those relations can be used to aggregate the log-linearized individual

consumption functions across all individuals to yield:

�tC
1� �

+
�tC
1� �

bct = (QFt +QBt ) +
�tWN

1� ��� + �
tWN

1X
k=0

(���)kEtf bwt+k + bnt+k + b�t;t+kg
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Note also that in a neighborhood of the BGP,

QFt =
1X
k=0

(�)kEtf�t;t+kDt+kg

' �tD
1� ��� + �

tD
1X
k=0

(���)kEtfbdt+k + b�t;t+kg
where D denotes aggregate dividends (normalized by productivity), along a BGP.

Thus, using the approximation byt = (WN=Y)( bwt + bnt) + (D=Y)bdt, the BGP relation �tC
1�� =

QB + �t(WN+D)
1���� , and the goods market clearing condition Y = C, we obtain the log-linearized

aggregate consumption function

bct = (1� �)

"bqBt + 1X
k=0

(���)kEtfbyt+k + b�t;t+kg#

= (1� �)

"bqBt + 1X
k=0

(���)kEtfbyt+kg � 1X
k=1

(���)k
k�1X
j=0

Etfbrt+jg#

= (1� �)

"bqBt + 1X
k=0

(���)kEtfbyt+kg � ���

1� ���

1X
k=0

(���)kEtfbrt+kg#

where bqBt � qBt � qB, with qBt � QBt =(�
tY) and qB its corresponding value along a BGP, andbrt �bit � Etf�t+1g.

Note that we can write the consumption function more compactly as:

bct = (1� �)(bqBt + bxt) (55)

where bxt �P1
k=0(���)

kEtfbyt+kg � ���
1����

P1
k=0(���)

kEtfbrt+kg the non-bubbly component of
wealth, expressed in log deviations from its value along a BGP. It satis�es the recursive equation:

bxt = ���Etfbxt+1g+ byt � ���

1� ���brt
Furthermore, log-linearization of (25) about a BGP yields:

bqBt = ��EtfbqBt+1g � qBbrt (56)
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In a neighborhood of the bubbleless BGP qB = 0 and ��� = �, thus implying the approximate

aggregate Euler equation:

bct = �Etfbct+1g+ (1� �)(1� �)qBt + (1� �)byt � �brt
Imposing goods market clearing (bct = byt) and rearranging terms, we obtain a dynamic IS

equation: byt = Etfbyt+1g+ �qBt � brt
where � � (1 � �)(1 � �)=� > 0 and fqBt g must satisfy qBt = (�=�)EtfqBt+1g and qBt � 0 for

all t.

Note that in a bubbleless equilibrium around the bubbleless BGP:

byt = Etfbyt+1g � brt
which is identical to the standard dynamic IS equation of the representative consumer model.

In any bubbly steady state, qB = 1
1�� �

1
1���� . Combining (55) and (56) yields the Euler

equation: bct = ���Etfbct+1g+ (1� �)(1� �)bqBt + (1� �)byt ���brt
where � �

�
1 + (1��)(���1)

1����

�
> 1 and � 2

�
1; �

��

�
. Imposing goods market clearing:

byt = ���

�
Etfbyt+1g+ �bqBt � ��� brt (57)

In the particular case of � = 0, we have �� = � = 1 thus implying a dynamic IS equation of

the form: byt = �

�
Etfbyt+1g+ �bqBt � �

�
brt

4. Conditions for equilibrium uniqueness around the bubbleless BGP.

The necessary and su¢ cient conditions for AT to have two eigenvalues within the unit circle

are: (i) j det(AT )j < 1 and (ii) jtr(AT )j < 1 + det(AT ) (LaSalle (1986)). Note that in the case

of a bubbleless BGP, det(AT ) =
�

1+���
> 0 while tr(A0) =

1+�+�
1+���

> 0. Condition (i) requires

�� > (�� 1)=�. Condition (ii) corresponds to �� > 1.
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5. Sunspot Fluctuations

Let the equilibrium be described by the system of di¤erence equations

xt = AEtfxt+1g

where xt � [byt; �t; bqBt ]0 are all non-predetermined variables. Let A have q � 3 eigenvalues with

modulus less than one.

Consider the transformation xt = Qvt where QJQ
�1 = A where J is the canonical Jordan

matrix and Q � [q(1);q(2);q(3)] is the matrix of generalized eigenvectors, corresponding to the

three eigenvalues. Thus,

vt = JEtfvt+1g

where J =
�
Ju 0
0 Js

�
and vt = [vut , v

s
t ]
0.

Consider the case where A has two eigenvalues with modulus less than one and one with

modulus greater than one. For concreteness, assume j�1j < 1; j�2j < 1; and j�3j > 1. If all

eigenvalues are real Ju =
�
�1 0
0 �2

�
, Js = �3, and q(k) corresponds to the eigenvector associated

with eigenvalue k; for k = 1; 2; 3. Otherwise, if �1 = a+bi and �2 = a�bi are complex conjugates,

Ju =

�
a �b
b a

�
; Js = �3 and q(1) and q(2) are, respectively, the imaginary and real components

of the eigenvector associated with the complex eigenvalues.

Thus, vut = 0 all t: In addition v
s
t = �3Etfvst+1g; which has a stable solution:

vst = ��13 v
s
t�1 + �t

where �t is a martingale-di¤erence (univariate) process.

Thus, we have xt = q(3)vst is the sunspot solution. The three variables in xt will be perfectly

correlated (positively or negatively), and will display a �rst-order autocorrelation ��13 . In the

simulations reported normalize the the third element of q(3) to unity, in which case the innovation

in vst (denoted by �t) corresonds to the innovatin in the bubble.

Consider next the case where A has one eigenvalue with modulus less than one and two with

modulus greater than one. For concreteness, assume j�1j < 1; j�2j > 1; and j�3j > 1. If all

eigenvalues are real Ju = �1, Js =
�
�2 0
0 �3

�
and q(k) corresponds to the eigenvector associated

with eigenvalue k; for k = 1; 2; 3. Otherwise, if �2 = a+bi and �3 = a�bi are complex conjugates,

Ju = �1, Js =
�
a �b
b a

�
and q(2) and q(3) are, respectively, the imaginary and real components
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of the eigenvector associated with the complex eigenvalues, while q(1) is the eigenvector associated

with �1.

Thus, vut = 0 all t: In addition v
s
t = JsEtfvst+1g; which has a stable solution:

vst = J
�1
s v

s
t�1 + �t

where �t is a (bivariate) martingale-di¤erence process.

Thus, we have xt = [q(2);q(3)]vst is the sunspot solution. We can normalize the third element

of q(2) and q(3) to unity.
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Figure 1. Balanced Growth Paths 

  



 

 

 

Figure 2.  Simulated Bubble-Driven Fluctuations 

around the Bubbleless BGP 
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Figure 3.  Bubble-driven Fluctuations:  Monetary Policy and Macro 
Volatility in a Neighborhood of the Bubbleless BGP  
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Figure 4.  Determinacy and Indeterminacy Regions around Bubbly BGPs 

  

 

 

  



 

 

 

Figure 5.  Simulated Bubble-driven Fluctuations around a Bubbly BGP 
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Figure 6.a  Bubble-driven Fluctuations:  Monetary Policy and Output 
Volatility in a Neighborhood of a Bubbly BGP  
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Figure 6.b  Bubble-driven Fluctuations:  Monetary Policy and Bubble 
Volatility in a Neighborhood of a Bubbly BGP  
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