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Abstract

We argue theoretically and document empirically that aging leads to greater adoption of

robotics technology. We first document using US data that robots are most highly substitutable

for middle-aged workers, in particular those between the ages of 36 and 55. We then show

that demographic change—corresponding to an increasing ratio of older workers to those that

are middle-aged—is associated with pronounced increases in the adoption of robots both across

countries and US commuting zones. Our directed technological change model explains not only

these main effects of aging, but also predicts that these responses should be more pronounced in

industries that rely more on middle-aged workers and those that present greater opportunities

for automation; these predictions receive support from cross-country, cross-industry variation in

the adoption of robots. Our model also implies that the productivity implications of aging are

ambiguous when technology responds to demographic change, but we should expect productivity

to increase relatively in industries that are most amenable to automation, and this is indeed the

pattern we find in the data.
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1 Introduction

Advances in automation and robotics technology are poised to transform many aspects of the

production process (e.g., Brynjolfsson and McAfee, 2012, Akst, 2014, Autor, 2015, Ford, 2016),

and have already made important inroads in modern manufacturing (e.g., Graetz and Michaels,

2015, Acemoglu and Restrepo, 2017a). But there are major differences in how rapidly these

technologies are spreading across countries. The number of (industrial) robots per thousand

workers in US manufacturing stands at 9.14 in 2014, while the same number is considerably

higher in Japan (14.20), Germany (16.95) and South Korea (20.14). Similarly, the United

States lags behind Germany and Japan, as well as several other countries, in the production

of robots—a single major producer of industrial robots is headquartered in the United States,

compared to six in Germany and six in Japan (Leigh and Kraft, 2017).

In this paper, we advance the hypothesis that much of the cross-country difference in invest-

ment in robots is explained by differential demographic trends. Put simply, the United States,

and to some degree the United Kingdom, are lagging behind in robotics because they are not

aging as rapidly as Germany, Japan and South Korea. This is not because of differential demand

for robots and automation in the service sector in countries undergoing rapid aging—our focus

is on the manufacturing sector. Rather, we document that this pattern reflects the response of

firms to the relative scarcity of middle-aged workers, who appear to be most substitutable for

robots.

We start with a simple model of directed technology adoption. Two types of workers,

“middle-aged” and “senior,” are allocated across different tasks and industries. Middle-aged

workers have a comparative advantage in production tasks, while senior workers specialize in

nonproduction services. The importance of production tasks relative to nonproduction services

varies across industries. Firms can also use robots or other automation technologies to substitute

for labor in production tasks.

Crucially, in our model technology is endogenous: firms can invest to automate additional

tasks in their industry or to increase the productivity of middle-aged workers. Using this frame-

work, we show that demographic change that reduces the ratio of middle-aged to senior workers

induces the adoption of additional automation technologies. This effect is particularly pro-

nounced in industries that rely more on middle-aged workers and those that have greater op-

portunities for automation. The productivity implications of demographic change, on the other

hand, are ambiguous: first, demographic change affects output per worker given technology—

and this effect tends to be negative when the wage of middle-aged workers is greater than that

of older workers. Second, the induced adoption of robotics technology enables the substitution

of cheaper machines for labor, increasing productivity. Third and counteracting this, greater

investment in robotics may come at the cost of other technological investments, thus creating

another drag on overall productivity.
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The bulk of the paper investigates these issues empirically, documenting a strong correlation

between aging and the adoption of robotics technology. We start with suggestive evidence on

the substitutability between robots and workers of different ages.1 First, we look at the age

composition of employment in highly-robotized industries, which shows that workers between

the ages of 31 and 55 are more likely to be employed in highly-robotized industries than in other

industries. Second, we use the same strategy as in Acemoglu and Restrepo (2017a), exploiting

differences in the exposure to robots across US commuting zones, but focusing on the effects of

this exposure on workers of different age groups (rather than on overall employment and wages).

We find that the negative effects of exposure to robots fall on the employment and earnings of

workers (and men) between the ages of 36 and 55. These two pieces of evidence support our

working hypothesis for the rest of the paper—that robots are more substitutable for middle-aged

workers than older workers.

We then use country-level data on the stock of robots per thousand worker between 1993

and 2015 from that International Federation of Robotics (IFR) to investigate the effects of

changing age composition of the workforce. Our main specifications focus on long-differences,

where our left-hand side variable is the change in the number of robots per thousand workers

between 1993 and 2014. Our results indicate that countries undergoing more rapid aging—

measured as an increase in the ratio of workers above 56 to those between 26 and 55—are

investing significantly more in robotics. The effects we estimate are quantitatively large. Aging

alone explains close to 40% of the cross-country variation in the adoption of industrial robots.

Moreover, a 10 percentage points increase in our aging variable is associated with 0.9 more

robots per thousand manufacturing workers—compared to the average increase of 3 robots

per thousand manufacturing workers observed during this period. This estimated magnitude

suggests, for instance, that if the United States had the same demographic trends as Germany,

the gap in robotics between the two countries would be 25 percent smaller.

These results are robust to a range of controls allowing for differential trends across countries

in investment in robotics. For example, they are virtually unchanged when we control for

differential trends by initial GDP per capita, population level, robot density, capital output ratio,

various human capital variables, wage levels, and unionization rates. Because age composition

is potentially endogenous due to in- and out-migration from a country, which are likely to be

correlated with economic trends, we verify our baseline results using an instrumental-variables

(IV) strategy exploiting sizes of past birth cohorts. These estimates are very similar to the

ordinary least squares (OLS) estimates. We also confirm these results using an alternative

estimate of investment in robotics: imports of industrial robots computed from bilateral trade

1Though our focus is on automation more broadly, in most of our empirical work we use information on robots

both because robotics is a particularly important type of automation technology, and also because the adoption

of robots can be measured in a more consistent manner across countries and industries than other automation

technologies.
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data. Though imports of robots are not a reliable measure of investments in robotics technology

for countries that house major robots producers (in particular, Germany, Japan and Korea),

this measure is highly correlated with our IFR measure, and confirms our results on the effects

of demographics on the adoption of robotics technology. We further verify that our results are

not driven by the exact age cutoffs used for measuring the overall aging of the population.

We also estimate the effects of aging on the adoption of robots at the commuting zone level

in the United States. Though we do not have measures of investments in robots for commuting

zones, we use Leigh and Kraft’s (2016) measure of the number of integrators in an area as a

proxy for robots-related activity (as we also did in Acemoglu and Restrepo, 2017a). Since these

integrators are tasked with installation, reprogramming and maintenance of industrial robots,

their presence is highly indicative of significant installation of robots in the area. Using this

measure, we confirm the relationship between demographic change and the adoption of robots.2

As noted above, a sharper prediction of the directed technological change approach to adop-

tion of robots is that the effects of demographic change should be particularly pronounced in

industries that rely more on middle-aged workers (and also in industries that present greater

opportunities for automation or robotics). Using the industry-level breakdown of investment

in robots and robot per thousand workers in the IFR, we investigate these predictions as well,

and find fairly robust support for them. Aging has little impact on robot adoption in industries

that rely least in middle-aged workers, and a much stronger impact on industries that are most

reliant on middle-aged workers.

Robots are, arguably, the tip of the iceberg of a larger set of automation technologies. We

provide some suggestive evidence that our demographics variables are also associated with the

adoption of other automation technologies, such as numerically controlled machines, weaving

and knitting machines, vending machines and ATMs (all measured from the bilateral trade

flows data), but not with technologies that appear more labor-augmenting.

Finally, we investigate the implications of demographic change on labor productivity. Even

though the theoretical predictions for productivity are ambiguous in view of the induced tech-

nology responses, this is an empirically important question that has not received much attention

so far. Our results here show no robust country-level effects, but there is a positive impact of de-

mographic change on labor productivity in industries that are most amenable to automation—a

result consistent with our theoretical predictions.

Overall, though the estimates presented in this paper do not necessarily correspond to causal

effects—since demographic change could have other impacts on technology adoption, or despite

our focus on changes coming from the relative sizes of past birth cohorts, it might be correlated

with other trends—the correlations we document are very robust and highly suggestive. We find

2Probably reflecting the endogeneity of the demographic structure of a commuting zone within the United

States, these results are significant only with our IV estimates, which focus on demographic differences across

commuting zones due to sizes of past birth cohorts.
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it reassuring too that the differences in investments in robots are not explained by any of the

secular trends we are controlling for, and as already noted above, they are unlikely to reflect

changing demand for the types of products or services in an aging society (such as increased

demand for health care), because we are focusing on the manufacturing sector. They also match

the predictions of our directed technological change framework quite closely.

Our paper is related to a few recent literatures. The first is a small literature estimating the

implications of automation technologies on labor market outcomes. Early work in this literature

(e.g., Autor, Levy and Murnane, 2003; Goos and Manning, 2007; Michaels, Natraj and Van

Reenen, 2014; Autor and Dorn, 2013; Gregory, Salomons and Zierahn, 2016) provides evidence

suggesting that automation of routine jobs has been associated with greater wage inequality and

decline of middle-skill occupations. More recently, Graetz and Michaels (2015) and Acemoglu

and Restrepo (2017a) estimate the effects of the adoption of robotics technology on employment

and wages (and in the former case, also on productivity). Our work is complementary to but

quite different from these papers since we focus not on the implications of these technologies,

but on the determinants of their adoption.

Second, a growing literature focuses on the potential costs of demographic change, in some

cases seeing this as a major disruptive factor that will bring slow economic growth (e.g., Hansen,

1938; Gordon, 2016) and potentially other macroeconomic problems such as an aggregate

demand-induced secular stagnation (see, e.g., Summers, 2013, and the essays in Baldwin and

Teulings, 2014).3 We differ from this literature by focusing on the effects of demographic changes

on robots, and more broadly on technology adoption decisions—an issue that does not seem to

have received much attention in this literature.4 A few works focusing on the effects of demo-

graphic change on factor prices (e.g., Poterba, 2001; Krueger, 2004; Krueger and Ludwig, 2007)

and human capital (e.g., Ludwig, Schelkle and Vogel, 2012; Geppert, Ludwig and Abiry, 2016)

are more related, but we are not aware of any papers studying the impact of aging on technology,

except the independent and simultaneous work by Abelianisky and Prettner (2017). There are

several important differences between our work and this paper. These authors focus on the effect

of the slowdown of population growth—rather than age composition—on different types of cap-

ital, one of which corresponds to automation (without any directed technological change). They

also do not consider the industry-level variation (nor do they control for the various competing

economic trends we include in our analysis). We show further that the effects we estimate are

not driven by the level of population or its slower growth, thus distinguishing our results from

theirs. Hence, overall, the two papers are not just independent but also complementary.

3A related literature explores the fiscal costs of demographic change for pensions and Social Security (see De

Nardi et al., 1999; Storesletten 2000; Kotlikoff et al., 2002; Attanasio et al., 2007).
4Our short paper, Acemoglu and Restrepo (2017b), pointed out that despite these concerns, there is no negative

relationship between aging and GDP growth, and suggested that this might be because of the effects of aging

on technology adoption, but did not present any evidence on this linkage, nor did we develop the theoretical

implications of demographic change on technology adoption and productivity.
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Third, our work is related to the literature on technology adoption. Within this literature,

most closely related to our model and conceptual approach is Zeira’s (1998) paper which develops

a model of economic growth based on the substitution of capital for labor, but does not investi-

gate the implications of demographic change on technology adoption. A few recent papers that

study the implications of factor prices on technology adoption are more closely related to our

work. In particular, Manuelli and Seshadri (2010) use a calibrated model to show that stagnant

wages mitigated the adoption of tractors before 1940, while the rapid increase in wages after

1940 accounts for close to 30% of the increase in the adoption of tractors. Clemens et al. (2017)

find that the exclusion of Mexican Braceros—temporary agricultural workers—induced farms

to adopt mechanic harvesters and switch to crops with greater potential for mechanization,

while Lewis (2011) shows that in US metropolitan areas receiving fewer low-skill immigrants

between 1980 and 1990, metal plants adopted more automation technologies. Although the

findings in these papers are consistent with the predictions of our model and our evidence, they

do not investigate the implications of demographic change on technology adoption or robotics

technologies.

Finally, our theoretical and conceptual approach builds on directed technological change

literature (e.g., Acemoglu, 1998, 2002). Our model can be best viewed as a mixture of the

setup in Acemoglu (2007, 2010), which develops a general framework for the study of directed

innovation and technology adoption, with the task-based framework of Acemoglu and Restrepo

(2016), Acemoglu and Autor (2011) and Zeira (1998). One contribution of the theory part of

our paper is to analyze the effects of demographic changes on technology without the specific

functional form restrictions (such as constant elasticity of substitution and factor-augmenting

technologies) as in the early literature or the supermodularity assumptions as in Acemoglu

(2007, 2010). Existing empirical works on directed technological change (e.g., Finkelstein, 2004,

Acemoglu and Linn, 2005, Hanlon, 2016) do not focus on the demographic change. Acemoglu

and Linn (2005) and Costinot, Donaldson and Williams (2017) exploit demographic changes as a

source of variation, but this is in the context of the demand for different types of pharmaceuticals

rather than for technology adoption.

The rest of the paper is organized as follows. We introduce our model of directed technology

adoption in the next section. Section 3 presents our data sources and some descriptive statis-

tics. Section 4 provides evidence bolstering the case that robotics technology is more highly

substitutable to middle-aged workers than older workers. Section 5 presents our cross-country

evidence on the effect of demographic change on the adoption of robots. Much of our analysis

in this section exploits the IFR data, but we also bring other data sources to confirm the effect

of the changing age composition of the workforce on robotics technology. Section 6 investigates

the same relationship across US commuting zones. Section 7 presents evidence that the effects

of demographic change on the adoption of robotics technology is most pronounced in industries

that rely more on middle-aged workers and those with greater opportunities for robotization.
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Section 8 considers the relationship between demographic change and the capital-output ratio

and productivity at the industry level. Section 9 concludes, while the Appendix contains proofs

omitted from the text and additional empirical results.

2 Directed Technology Adoption

In this section, we introduce a simple model of directed technology adoption in which different

sectors of the economy combine middle-aged (prime-aged) workers, senior workers and machines

to perform the tasks necessary for production. In addition, technology firms (monopolists)

invest in the development of new technologies that automate tasks or increase the productivity

of middle-aged workers. Following Acemoglu (2007, 2010), we consider a static model, which

enables us to derive the main implications of demographic change on the adoption of different

types of technologies and productivity in the most transparent manner.5

2.1 The Environment

A unique final good Y is produced competitively by combining the output of a continuum of

industries using the following Cobb-Douglas aggregate:

lnY =

∫

i∈I
lnY (i)di,

where Y (i) is the net output of industry i and I denotes the set of industries. Throughout, we

choose the final good as the numeraire.

In each industry, output is produced by combining production tasks, service (nonproduction)

tasks and intermediates embedding different types of technologies. Namely,

Ỹ (i) =
η−η

1− η
[X(i)α(i)S(i)1−α(i)]η[q(θ(i), A(i))]1−η , (1)

where X(i) denotes the aggregate of production tasks used by industry i, S(i) denotes service

tasks (and with a slight abuse of notation, also the employment of “senior” workers supplying

the service tasks), q(θ(i), A(i)) is the quantity of intermediate goods used by this industry (with

θ(i) and A(i) corresponding to the technologies embedded in these intermediates as we describe

below), 1 − η ∈ (0, 1) is the share of intermediates, and finally, α(i) ∈ (0, 1) designates the

importance of production tasks relative to service tasks in the production function of industry

i.

The aggregate of production tasks, X(i), is produced from a unit of measure of tasks,

X(i) =

(∫ 1

0
X(i, s)

ζ−1
ζ

) ζ

ζ−1

,

5In our model, there is directed technological change (investment by technology monopolists in developing

different types of technologies) and endogenous adoption of these technologies. We emphasize “directed technology

adoption” since our focus is on the adoption of the robotics technologies.
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where ζ the elasticity of substitution across tasks. Each task X(i, s) is produced either by labor

or machines (“robots”). Specifically, we have

X(i, s) =

{
A(i)γ(i)l(i, s) +m(i, s) if s ∈ [0, θ(i)]

A(i)γ(i)l(i, s) if s ∈ (θ(i), 1],

where l(i, s) denotes employment in the production of task s in industry i, and m(i, s) denotes

machines used in industry i to produce task s. Labor and machines are perfect substitutes

in automated tasks (those with s ≤ θ(i) in industry i). In addition, γ(i) is the exogenous

component of the productivity of labor relative to machine in industry i, while A(i) is the

endogenous component of this (labor-augmenting) productivity.6 Finally, θ(i) designates the

automation threshold in industry i such that tasks below this threshold are automated, and

can be produced with machines as well as labor. The technological know-how that enables

the automation of additional tasks (as captured by θ(i)) and increases in labor-augmenting

productivity (as captured by A(i)) is embedded in the intermediate goods, which explains the

term q(θ(i), A(i)) in the industry production function (1).

Firms in industry i purchase the intermediates q(θ(i), A(i)) from a technology monopolist

that owns the intellectual property rights over the technology in this industry.7 We assume that

the technology monopolist supplying industry i can produce its intermediate good by using 1−η

units of the same industry’s output.8 Thus, the net output in industry i is given by subtracting

the total cost of intermediates, (1− η)q(θ(i), A(i)), from the gross output of the industry, Ỹ (i),

i.e.,

Y (i) = Ỹ (i) − (1− η)q(θ(i), A(i)). (2)

Finally, we assume that there are two types of workers: middle-aged, with inelastic supply

L, and “senior,” with inelastic supply S, and we assume that middle-aged workers specialize in

production tasks, while senior workers will be employed in service tasks.9 We denote the wage

of middle-aged workers by W , the wage of senior workers by V , and the total supply of machines

by M . Market clearing requires the demand for each factor to be equal to its supply, or more

6A more general version of this production technology, similar to that in Acemoglu and Restrepo (2016),

allows for γ(i, s), so that the productivity of labor relative to the productivity of machines varies across tasks and

industries. This more general setup leads to very similar results, and we simplify the technology for expositional

reasons.
7Since there is a continuum of industries, these technology monopolists will be “monopolistically competitive”.
8This formulation, linking the cost of intermediates to industry i only to that industry’s output, is convenient,

because it avoids any relative price effects that would have been present if other inputs had been used for producing

intermediates.
9Allowing both types of workers to work in all tasks with different productivities leads to similar results as

long as middle-aged workers have a comparative advantage in production tasks. Our formulation, which can be

viewed as an extreme form of comparative advantage, simplifies the analysis and the exposition.
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explicitly

L = Ld =

∫

i∈I

∫ 1

0
l(i, s)dsdi,

M =Md =

∫

i∈I

∫ 1

0
m(i, s)dsdi,

S =Sd =

∫

i∈I
s(i)di,

where the last equality on each line defines the demand for that factor.

We assume that machines are supplied at a fixed rental price P , which we will normalize to

1 below (without any loss of generality given our focus).

2.2 Equilibrium with exogenous technology

Let us denote the set of technologies by Θ = {A(i), θ(i)}i∈I . We first characterize equilibria

with exogenous technology, where the set of technologies, Θ, is taken as given. An equilib-

rium with exogenous technology is defined as an allocation in which all industries choose the

profit-maximizing levels of employment of middle-aged workers, employment of senior workers,

machines and intermediates, all technology monopolists set profit-maximizing prices for their

intermediates, and the markets for middle-aged workers, senior workers and machines clear.

In what follows, we impose the following assumption which ensures that machines and

middle-aged workers are “gross substitutes”—while machines and senior workers will be com-

plements.

Assumption 1 ζ > 1.

Let PY (i) denote the price of output in industry i, and χ(θ(i), A(i)) be the price of the

intermediate for industry i when this embodies the automation and labor-augmenting technology

pair (θ(i), A(i)). The demand for intermediate goods from industry i is given by the following

iso-elastic schedule

q(θ(i), A(i)) =
1

η
X(i)α(i)S(i)1−α(i)

(
χ(θ(i), A(i))

PY (i)

)− 1
η

. (3)

Facing this demand curve with elasticity 1/η and marginal cost of producing intermediates equal

to (1 − η)PY (i) as specified above, the technology monopolist for industry i will set the profit-

maximizing price of PY (i). Substituting this price into (3) and then using (1) and (2), we derive

the net output of industry i as

Y (i) =
2− η

1− η
X(i)α(i)S(i)1−α(i).

Let L(i) =
∫ 1
0 l(i, s)dsdi and M(i) =

∫ 1
0 m(i, s)dsdi denote the amount of middle-aged labor

and machines employed in industry i, respectively. Then following the same steps as in Acemoglu
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and Restrepo (2016), we obtain the total supply of production tasks in industry i as

X(i) =

(
θ̃(i)

1
ζM(i)

ζ−1
ζ + (1− θ̃(i))

1
ζ (A(i)γ(i)L(i))

ζ−1
ζ

) ζ
ζ−1

, (4)

where θ̃(i) denotes the profit-maximizing threshold below which tasks in industry i are produced

by machines. Naturally, this threshold cannot exceed the technological constraints imposed by

θ(i), but firms may prefer not to use machines in all technologically automated tasks (see also

Acemoglu and Restrepo, 2016). Whether they do so or not depends on relative factor prices, and

in particular, on the cost of performing production tasks in industry i with labor, W , relative

to the cost of automation, which is A(i)γ(i)P . Thus

θ̃(i) =

{
θ(i) if W ≥ A(i)γ(i)P

0 if W < A(i)γ(i)P.
(5)

The demands for factors can then be derived as functions of this equilibrium threshold and

factor prices as

Ld =Y

∫

i∈I
(A(i)γ(i))ζ−1α(i)(1 − θ̃(i))P ζ−1

X(i)W
−ζdi,

Md =Y

∫

i∈I
α(i)θ̃(i)P ζ−1

X(i)P
−ζdi,

Sd =Y

∫

i∈I
(1− α(i))V −1di,

where PX(i) is the price index for the production tasks in industry i given by

PX(i) =

(
θ̃(i)P 1−ζ + (1− θ̃(i))

(
W

A(i)γ(i)

)1−ζ
)1−ζ

. (6)

The next lemma provides a tractable characterization of aggregate output as a function of

the supplies of middle-aged workers, senior workers and machines as well as the set of available

technologies in the economy, Θ.

Lemma 1 Given a set of technologies Θ and factor supplies L,S, and M , aggregate output is

given by a constant returns to scale function Y (L,S,M ; Θ), where

lnY (L,S,M ; Θ) = max
{L(i),M(i),S(i),θ̃(i)}i∈I

∫

i∈I
lnY (i)di,

s.t: Y (i) ≤
2− η

1− η

(
θ̃(i)

1
ζM(i)

ζ−1
ζ + (1− θ̃(i))

1
ζ (A(i)γ(i)L(i))

ζ−1
ζ

) (ζ−1)α(i)
ζ

S(i)1−α(i),

θ̃(i) ∈ [0, θ(i)],

∫

i∈I
L(i)di ≤ L

∫

i∈I
M(i)di ≤ M

∫

i∈I
S(i)di ≤ S.

The function Y (L,S,M ; Θ) is uniquely defined, and its partial derivatives are equal to factor

prices, i.e., YL(L,S,M ; Θ) = W , YS(L,S,M ; Θ) = V and YM (L,S,M ; Θ) = P .
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Proof. See the Appendix.

In this lemma, we took the supply of machines M as given, letting the price of machines, P ,

adjust. In what follows, this price will be determined competitively given the cost of supplying

machines, and in equilibrium, the quantity of machines will adjust. To further simplify the

analysis, we assume that machines are produced from the final good subject to constant returns

to scale, and without loss of any generality, we normalize their price to P = 1. Thus given

supplies of middle-aged and senior workers, L and S and a set of technologies Θ, we can represent

an equilibrium with exogenous technology a supply of machines M(L,S; Θ) such that the market

for machines clears at a rental price of P = 1. Then Lemma 1 implies that in an equilibrium

with exogenous technology the production of the final good must be given by

Y (L,S,M(L,S; Θ);Θ).

The following proposition shows that an equilibrium with exogenous technology always exists and

is unique, and provides a characterization of this equilibrium in terms of the intersection between

the market-clearing condition for middle-aged workers and the ideal price index condition (which

sets the price of the final good, the numeraire, equal to 1).

Proposition 1 1. Given supplies of middle-aged and senior workers, L and S, and a set of

technologies Θ, an equilibrium with exogenous technology always exists and is unique. The

demand for machines is a solution to

YM(L,S,M(L,S; Θ);Θ) ≤ 1,

with complementary slackness (i.e., holding as equality if M(L,S; Θ) > 0.

2. Let φ = S
L+S

denote the share of senior workers in the population and y = Y/(L+S) denote

aggregate output per worker. Then the equilibrium levels of aggregate output per worker, y,

and middle-aged wages, W , are the unique solutions {yE(φ; Θ),WE(φ,Θ)} to the system

of equations given by: (a) the market-clearing condition for middle-aged workers,

W (1− φ) = y

∫

i∈I
α(i)

(1− θ(i))
(

W
A(i)γ(i)

)1−ζ

(1 − θ(i))
(

W
A(i)γ(i)

)1−ζ

+ θ(i)min
{
1, W

A(i)γ(i)

}1−ζ
di; (7)

and (b) the ideal price index condition,

∫

i∈I
α(i)

1

1 − ζ
ln

(
(1− θ(i))

(
W

A(i)γ(i)

)1−ζ

+ θ(i)min

{
1,

W

A(i)γ(i)

}1−ζ
)
di (8)

+ (ln y − lnφ)

∫

i∈I
(1− α(i))di = µ,

where µ is a constant. The equilibrium wage of senior workers, V , and the demand for

machines, M(L,S; Θ), can then be derived from {yE(φ; Θ),WE(φ,Θ)}.
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Proof. See the Appendix, where we also provide the exact expression for µ.

Figure 1 depicts the characterization of the equilibrium with exogenous technology. The

market-clearing condition for middle-aged workers is upward sloping in the (y,W ) space because

a higher aggregate output per worker will lead to the same demand for middle-aged workers only

if the wage is higher. The ideal price index condition is downward sloping because a higher wage

for middle-aged workers will necessitate a lower wage for senior workers and thus a lower output

per worker given technology. These two curves can thus intersect only once, which corresponds

to the unique equilibrium.

Figure 1: Determination of aggregate output per worker and the wage of middle-aged workers.

The upward-sloping curve is for the market-clearing condition for middle-aged workers, (7),

while the downward sloping curve is the ideal price index condition, ( 8).

The comparative statics of the equilibrium with exogenous technology can be illustrated in

Figure 1. The most important comparative statics concern the effects of aging and different types

of technologies on equilibria factor prices. The next proposition focuses on the implications of

aging (and in this proposition and in what follows, we use subscripts to denote partial derivatives

when this will cause no confusion).

Proposition 2 Aging—an increase in φ—increases the wage of middle-aged workers, reduces

the wage of senior workers and has an ambiguous effect on aggregate output per worker. That

is,

WE
φ (φ; Θ) > 0 V E

φ (φ; Θ) <0,

and

yEφ (φ; Θ) =
[
V E(φ; Θ)−WE(φ; Θ)

]
+mE

φ (φ; Θ) ≶ 0,

where mE(φ; Θ) denotes the equilibrium demand of machines per worker.

11



Proof. See the Appendix.

Figure 2: Impact of aging on aggregate output per worker and the wage of middle-aged workers.

Aging shifts both curves up, and thus increases the wage of middle-aged workers but has an

ambiguous effect on aggregate output per capita.

Figure 2 shows how aging increases the middle-aged wage, W , but has an ambiguous effect

on aggregate output per worker. The last expression in Proposition 2 clarifies that this latter

effect depends on the wage of middle-aged workers relative to the wage of senior workers. In

particular, if V < W , there will be a negative effect on productivity (though mE
φ can be positive,

offsetting this effect). Existing evidence (e.g., Murphy and Welch, 1990) suggests that earnings

peak when workers are in their 40s, declining thereafter, which in our model implies V < W , and

thus creates a tendency for aging to reduce productivity. This potential negative effect echoes

the concerns raised by Gordon (2016) on the potential for slower growth in the next several

decades because of demographic change.site

In the next proposition, we turn to the implications of automation and labor-augmenting

technologies on factor prices.

Proposition 3 1. Consider an increase in automation from θ(i) to θ(i)′ > θ(i) for a set

of industries with positive measure in which W > A(i)γ(i) (so that new automation tech-

nologies will be used in these industries). Then, the senior wage, V , increases, and there

exists a threshold ζ̄ such that if ζ > ζ, the middle-aged wage, W , decreases, and if ζ < ζ,

W increases. Moreover, ζ̄ is decreasing in
∫
i∈I α(i)di.

2. Consider an increase in labor-augmenting productivity A(i) to A(i)′ > A(i) for a set of

industries with positive measure. Then W and V increase.

Proof. See the Appendix.
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Figure 3 illustrates the comparative statics with respect to the automation technologies in

Proposition 3. The forces operating here are the same ones that are emphasized in Acemoglu

and Restrepo (2016). Automation creates a negative effect on middle-aged workers because it

displaces them from the production tasks they were previously performing. There is, however, a

countervailing positive productivity effect as well, because automation, by substituting cheaper

machines for middle-aged workers, reduces the costs of production or increases productivity;

this greater productivity partly accrues to middle-aged workers. The condition highlighted in

Proposition 3 regulates the magnitude of the negative displacement effect relative to the positive

productivity effect. In particular, when ζ is high, tasks are highly substitutable, and this reduces

the extent of the productivity effect and the upward shift of the ideal price index condition in

the figure, thus ensuring a negative effect of automation on the wages of middle-aged workers.

Figure 3: Impact of automation on aggregate output per worker and the wage of middle-aged

workers. Further automation shifts the market-clearing condition for middle-aged workers up

and the ideal price index condition down. Thus it increases aggregate output per capita, but

has an ambiguous effect on the middle-aged wage.

2.3 Equilibrium with endogenous technology

Our analysis so far took the set of technologies, Θ = {A(i), θ(i)}i∈I , as given. We now endogenize

these technologies using an approach similar to that in Acemoglu (2007, 2010). We assume

that technology monopolists can develop new technologies and sell the intermediates embodying

these technologies, the q(A(i), θ(i))’s, to firms producing in different industries. More specifically,

recall that for each industry i, there is a single technology monopolist selling these intermediates

to firms in that industry. We first assume that the cost of developing a new technology for
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industry i with automation θ(i) and labor-augmenting productivity A(i) is

1− η

2− η
Y [G(θ(i) +H(A(i)) −G(θ(i))H(A(i)))]

in terms of the final good of the economy. We assume thatH is an increasing and convex function

that satisfies H ′(0) = 0, limA(i)→∞ H(A(i)) = 1 and limA(i)→∞H ′(A(i)) = ∞, and likewise G is

increasing and convex, and satisfies G′(0) = 0, limθ(i)→1 G(θ(i)) = 1 and limθ(i)→1 G
′(θ(i)) = ∞.

This functional form is chosen because it greatly simplifies our analysis of endogenous technology

choices, as the next expression will clarify.

Substituting from (3) and using the fact that P = 1, the (log) profit-maximizing problem of

the technology monopolist for industry i can be obtained as

max
{θ(i),A(i)}

lnY (L,S,M ; Θ) + ln [1−G(θ(i))] + ln [1−H(A(i))] . (9)

Intuitively, because each technology monopolist receives a constant share of the output of the

industry it serves, it will receive a constant share of the increase in aggregate output resulting

from its technology choices. Moreover, because there is a continuum of industries and each

technology monopolist controls the technology for a single industry, in this maximization problem

factor prices and machine demands are taken as given.

We can now define an equilibrium with endogenous technology as an equilibrium with exoge-

nous technology (as described in the previous subsection) plus technology choices that maximize

(9) or equivalently, that are a fixed point Θ∗ = {θ(i)∗, A(i)∗}i∈I such that

{θ(i)∗, A(i)∗} ∈ arg max
{θ(i),A(i)}

lnY (L,S,ME(L,S; Θ∗);Θ) + ln [1−G(θ(i))] + ln [1−H(A(i))] ,

(10)

for i ∈ I.

In preparation for the characterization of the equilibrium with endogenous technology, we

first study the impact of changes in technologies on aggregate output, which determines the

benefit from improving technology in (10).

Proposition 4

d lnY (L,S,M ; Θ)

dA(i)
=

1

A(i)
α(i)siL(φ; Θ) =

1

A(i)
α(i)

(1− θ(i))WE(φ; Θ)1−ζ

(1 − θ(i))WE(φ; Θ)1−ζ + θ(i)(A(i)γ(i))1−ζ
> 0,

where siL(φ; Θ) is the share of middle-aged labor in the production of X(i); and

d ln Y (L,S,M ; Θ)

dθ(i)
= α(i)

1

1 − ζ

WE(φ; Θ)1−ζ − (A(i)γ(i))1−ζ

(1− θ(i))WE(φ; Θ)1−ζ + θ(i)(A(i)γ(i))1−ζ
> 0,

if WE(φ,Θ) > A(i)γ(i), and d lnY (L,S,M ;Θ)
dθ(i) = 0 otherwise (where we have already substituted for

θ̃(i) = θ(i) when WE(φ; Θ) ≥ Aγ(i)).
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Proof. The results follow by differentiating Y (L,S,M ; Θ) and then applying the envelope

theorem. The details are provided in the Appendix.

To make further progress, let us also define h(x) = H′(x)
1−H(x) and g(x) = G′(x)

1−G(x) . Because of

the assumptions on H and G introduced above, these functions are increasing and have vertical

asymptotes at x = 1. Then, given the ratio of senior to middle-aged workers φ, an equilibrium

with endogenous technology, Θ∗, can be more simply defined by the following set of conditions

h(A(i)∗) ≥
d lnY (L,S,M ; Θ∗)

dA(i)
g(θ(i)∗) ≥

d lnY (L,S,M ; Θ∗)

dθ(i)
, (11)

with complementary slackness (i.e., with equality for the first equation if A(i)∗ > 0, and equality

for the second equation if θ(i)∗ > 0).

The solution to (11) embeds quite rich interactions between the technology choices of dif-

ferent industries. For example, when the productivity effect dominates the displacement effect

and automation increases the middle-aged wage (under conditions specified in Proposition 2),

automation in one industry, by pushing up wages, encourages further automation in other in-

dustries. On the other hand, when the displacement effect is more powerful, automation reduces

wages and discourages further automation, though it may in this case encourage improvements in

labor-augmenting technologies. These equilibrium technology interactions make the characteri-

zation of the fixed points to (10) potentially challenging. However, the problem of characterizing

equilibria with endogenous technology can be simplified by noting that all of the equilibrium

interactions work through the wage of middle-aged workers, W .

Formally, let ΘR(W ) = {AR(i,W ), θR(i,W )}i∈I denote equilibrium technology choices given

the middle-aged wage, W . These technology choices satisfy

h(AR(i,W )) ≥
1

AR(i,W )
α(i)

(1− θR(i,W ))W 1−ζ

(1 − θR(i,W ))W 1−ζ + θR(i,W )(AR(i,W )γ(i))1−ζ
. (12)

g(θR(i,W )) ≥α(i)
1

1 − ζ

W 1−ζ − (AR(i,W )(i)γ(i)P )1−ζ

(1− θR(i,W ))W 1−ζ + θR(i,W )(AR(i,W )γ(i))1−ζ

again with complementary slackness. The next lemma shows that they are also uniquely deter-

mined given W , and establishes a useful supermodularity property for (10).

Lemma 2 1. The set of technology choices given W , ΘR(W ) = {AR(i,W ), θR(i,W )}i∈I , is

uniquely defined by the global maximum of (10).

2. The profit-maximization problem of technology monopolists in (10) is supermodular in W ,

θ(i) and −A(i), and thus the technology choices of the monopolist for industry i, θR(i,W )

and AR(i,W ), are, respectively, increasing and decreasing in W .

3. Moreover, limW→0 θ
R(i,W ) = 0 and limW→0A

R(i,W ) = A(i), where h(A(i))A(i) = α(i);

and limW→∞AR(i,W ) = 0.
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Now, given the definition of ΘR(W ), the middle-aged wage W is consistent with equilibrium

if and only if W = WE(φ,ΘR(W )), where WE maps the ratio of senior to middle-aged workers

and the set of technologies to the equilibrium wage. This formulation enables us to characterize

the equilibrium in terms of a fixed point of the wage for middle-aged workers rather than a fixed

point in the space of all technologies as in (10). The next proposition establishes the existence of

an equilibrium with endogenous technology (when formulated in this manner), and also provides

conditions for its uniqueness.

Proposition 5 1. For any φ > 0 there exists an equilibrium with endogenous technology. In

any such equilibrium the wage, W ∗, satisfies

W ∗ = WE(φ,ΘR(W ∗)) (13)

Moreover, for each fixed point W ∗ there is a uniquely defined set of technology choices

given by Θ∗ = ΘR(W ∗).

2. Let ζ̄ be as defined in Proposition 3. Then there exists ζ̃ < ζ, such that when ζ > ζ̃, there

is a unique fixed point W ∗ in equation (13) and thus a unique equilibrium with endogenous

technology. Moreover, in this equilibrium we have dWE(φ,ΘR(W ∗))
dW

< 1. In contrast, when

ζ < ζ̃, there are multiple fixed points in equation (13) and thus multiple equilibria.

Proof. See the Appendix.

Figures 4 and 5 illustrate the cases with multiple and unique equilibria. The force leading

to multiplicity is the one already mentioned above—automation in one industry may encourage

further automation in others. Our discussion above clarifies that this will be the case when

there is a powerful productivity effect. The condition ζ > ζ̃ ensures that different industries

are highly substitutable, which in turn limits the extent of this productivity effect. Figure 4

also underscores that, since every equilibrium corresponds to a unique value of the middle-aged

wage, W , and technology choices are monotone in W (in view of the supermodularity in Lemma

2), there always exists a least and a greatest equilibrium.

The next proposition studies the implications of aging—an increase in φ—on technology

choices, which follows from the supermodularity property established in Lemma 2.

Proposition 6 1. Suppose ζ > ζ̃. Then an increase in φ—aging—increases the equilibrium

wage W ∗, reduces labor-augmenting technologies, {A(i)∗}i∈I+ , and increases automation

technologies {θ(i)∗}i∈I+ where I+ is the set of industries with θ(i)∗ > 0.

2. Suppose ζ < ζ̃. Then in the least or the greatest equilibrium, an increase in φ—aging—

increases the equilibrium wage W ∗, reduces labor-augmenting technologies, {A(i)∗}i∈I+ ,

and increases automation technologies {θ(i)∗}i∈I+ where I+ is the set of industries with

θ(i)∗ > 0.
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Figure 4: Determination of the wage of middle-aged workers in the equilibrium with endogenous

technology. Aging shifts the mapping WE up, and this increases the equilibrium wage in the

least and the greatest equilibrium.

This proposition thus provides one of our most important results—aging always encourages

automation, and this is regardless of whether there are multiple equilibria (if there are multiple

equilibria, it applies for the relevant equilibria, which are those with the least and greatest

values of the middle-aged wage) and also regardless of whether automation has a positive or

negative effect on the wage of middle-aged workers. Intuitively, machines compete against

middle-aged workers, and a greater scarcity of these workers (relative to senior workers that

are complementary to machines) always increases the relative profitability of using and thus

developing automation technologies.

Finally, in the next proposition, we derive how the responsiveness of technologies to aging

depends on the importance of middle-aged workers relative to senior workers and the baseline

productivity of middle-aged workers when θ(i)∗ ≈ 0 (where this case is useful for shutting off

second-order effects which complicate these comparative statics).

Proposition 7 For θ(i)∗ > 0, we have

dθ(i)∗

dφ
=

α(i)γ(i)1−ζW ∗ζ−1

g′(0)

d lnW ∗

dφ
+O(θ(i)∗).

Thus when θ(i)∗ ≈ 0, an increase in φ—aging—has a more pronounced impact on automation

in industries that rely more heavily on middle-aged workers (i.e., those with high α(i)) and that

present greater potential for automation (i.e., those with low γ(i)).

Both of the implications in this proposition will be investigated in our empirical work.

Though the latter—that investments in robotics technology will be more pronounced in in-
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Figure 5: Impact of aging on the wage of middle-aged workers when the equilibrium with

endogenous technology is unique.

dustries that present greater opportunities for automation—is not surprising, the former im-

plication, which links the responsiveness of technology to the baseline age composition of an

industry, is novel and potentially interesting to study empirically.

2.4 Implications for productivity

As already noted in the context of Proposition 2, the implications of aging for productivity are

ambiguous. Nevertheless, when technology is endogenous, the relative changes in productivity

across industries can be linked to industry characteristics, providing us with additional empirical

predictions. In particular, with endogenous technology, the effect of aging on the output of

industry i (with θ(i)∗ > 0) can be obtained as

d lnY (i)

dφ
=
d ln yE(φ; Θ)

dφ
−

d lnV E(φ; Θ)

dφ
+ α(i)

(
d lnV E(φ; Θ)

dφ
− sLi

d lnWE(φ; Θ)

dφ

)

+ α(i)
1

1 − ζ

W 1−ζ − γ(i)1−ζ

(1− θ(i))W 1−ζ + θ(i)γ(i)1−ζ

dθ(i)∗

dφ
,

where the second line is the endogenous technology effect. The most important observation here

is that because of this endogenous technology effect we expect the impact of aging on the change

in productivity to be greater in industries that present greater opportunities for automation. To

see this, let us compare two industries with different values of γ(i)—and with the same values for

all aggregate variables. The last term on the first line and the term on the second line are greater

for the industry with lower γ(i) (because aging increases the wage of middle-aged workers and

the share of middle-aged labor in production tasks, sLi, is increasing in γ(i); and because the

numerator of the second line is decreasing and the denominator is increasing in γ(i). This implies
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that, though the aggregate effects of aging are ambiguous, aging should increase productivity in

industries with greater opportunities for automation— i.e., those with low γ(i)—relative to the

rest.

On the other hand, the effect of greater reliance on middle-aged workers (α(i)) is ambiguous:

industries with larger α(i) suffer a greater direct effect, but they may benefit from their greater

incentives to adopt robots in response to demographic change.

3 Data

In this section, we present our various data sources. We also illustrate the differential trends

across countries with different demographic changes and provide descriptive statistics that will

be useful to assess the quantitative magnitudes of the results we present later.

3.1 Cross-country and commuting-zone data

Our main data source on robots is the International Federation of Robotics (IFR), which provides

information on the stock of robots and new robot installations by industry, country and year.

These data are compiled by surveying global robot suppliers. The data cover 52 countries from

1993 to 2014. Appendix Table A1 provides the list of countries in our sample.10

Table 1 summarizes our cross-country data on industrial robots. The denominator of the

number of robots per thousand workers is constructed using employment data for 1990 from the

International Labour Organization (ILO). We report summary statistics separately for the full

IFR sample, for 30 OECD countries and also for countries that are above and below median in

terms of demographic change (the measure of demographic change is explained below). In our

full sample, the number of robots per thousand workers increased from 0.72 in 1993 to 3.79 in

2014. We can further see that the increase in the stock of robots is more rapid for the OECD,

and more importantly for our focus, it is also more rapid for countries that are undergoing

more major demographic changes. The increase in the stock of robots per thousand workers for

all countries and the OECD sample are also visible in Figure 6, which in addition shows the

trends for the United States, Germany and Korea, underscoring the pattern we noted in the

Introduction—that Germany and South Korea are considerably ahead of the United States in

terms of the adoption of robotics technology.

Table 1 presents information on our demographic variables as well. Our main measure is the

change in the ratio of senior (55 and older) workers to middle-aged workers (between 20 and

54). This measure is motivated by the patterns of substitution between robots and workers we

10Although the IFR also reports data for Japan and Russia, these data underwent major reclassifications. For

instance, the IFR used to count dedicated machinery as part of the stock of industrial robots in Japan. Starting

in 2000, the IFR stopped counting dedicated machinery, making the numbers reported for Japan not comparable

over time. We thus exclude both countries from our analysis.
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document in the next section. We show in our empirical work that the exact age thresholds are

not important for our results. Our main data source for demographic variables is the United

Nations, which provides population by age and also population forecasts. Our baseline measure

is for the change between 1990 and 2025, motivated by the fact that investments in robotics

will have to take into account expected population trends. The table shows that our group of

rapidly-aging countries has already undergone and are expected to further undergo significant

demographic change (relative to the slowly-aging group). Figure 7 depicts these trends, and also

shows that aging is much faster in Germany and South Korea and is slower in the United States

than the OECD average.

Though not reported in the table, in our econometric models we also utilize country data on

GDP per capita, population, average years of schooling, and the capital to output ratio obtained

from version 9.0 of the Penn World Tables (Feenstra, Inklaar and Timmer, 2015).

We complement the IFR data with estimates of robots imports from the bilateral trade

statistics in the Comtrade dataset, which covers 145 countries. We exclude from the sample the

major robot producers (Germany, Japan and South Korea) for whom robot imports is not a

reliable measure of investments in robotics technology, and countries that engage in significant

entrepôt trade (Belgium, Hong Kong, Luxembourg and Singapore). The bottom rows of Table

1 provide summary statistics from this data set. We see a significant increase in the dollar

value of robot imports between 1996 and 2015 for our full sample and a much larger increase

for rapidly-aging countries.

For US labor markets, we use data compiled by Leigh and Kraft (2016) on the location of

robot integrators in the United States to compute the number of integrators in each commuting

zone.11 As mentioned in the Introduction, integrators install, program and maintain robots, and

given the nature of the services they provide, they tend to locate close to their customers. Thus,

the location of these companies is proxy for the geographic distribution of robots-related activity

in the United States. We finally use data on “exposure to robots” and various economic outcomes

across commuting zones. These data are constructed exactly as in Acemoglu and Restrepo

(2017a), and to economize on space, we refer the reader to the descriptions in that paper. We

only note here that data on demographic change across commuting zones are computed from

the 1990 US Census and the American Community Survey (see Ruggles et al., 2010).

3.2 Industry-level data

In addition to the country-level data, the IFR reports data on robot installations by year sep-

arately for 19 industries in 50 of the countries in our sample, including 13 industries at the

three-digit level within manufacturing and six non-manufacturing industries at the two-digit

level. As Table A1 in the Appendix shows, these data are not available in every year for every

11Commuting zones, defined in Tolbert and Sizer (1996), are groupings of counties approximating local labor

markets. We use 722 commuting zones covering the entire US continental territory except for Alaska and Hawaii.
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country-industry pair, so in our analysis, we will focus on annual data rather than long differ-

ences. Table 2 summarizes the industry-level data. For each industry, we report the average

number of robot installations per thousand workers, using two possible denominators, one from

the UNIDO data set for employment at the three-digit manufacturing industries in 1995 (which

covers 46 of the countries in our IFR data, but has no information on employment outside man-

ufacturing), and another from the EUKLEMS dataset, which provides employment for all 19 of

our industries, but only covers 22 of the countries in our sample (Jägger, 2016). We also use the

EUKLEMS data to obtain information on the growth in value added per worker in real dollars

from 1995 to 2007 for all the 19 industries included in the IFR data, and these data are reported

in the third column of Table 2.12 Finally, the last column of the table provides information on

the age composition of workers in that industry in the United States in 1990 (computed from

the 1990 Census).

In addition to the age composition of employment in an industry, our theoretical framework

emphasizes the importance of the opportunities for automation. To proxy for this, we rely on

two measures. The first is the “replaceability” index constructed by Graetz and Michaels (2015),

which is derived from data on the share of hours spent by workers in the United States on tasks

that can be performed by industrial robots. For this measure we only report the summary

statistics at the bottom of the table; the full data by industry can be obtained from Graetz

and Michaels (2015).13 The second measure is a dummy variable for automobiles, electronics,

metal products, metal machinery, and chemicals, plastics and pharmaceuticals, which are singled

out by a recent report by the Boston Consulting Group (BCG, 2015) as industries with the

greatest technological opportunities for automation (and this is also the group of highly-robotized

industry used in Acemoglu and Restrepo, 2017a). Table 1 confirms that these are the industries

experiencing the most rapid growth in the adoption of robots in the IFR data.

4 The Substitution between Robots and Workers

In this section, we document the age pattern of substitution between robots and workers. Our

main finding, which forms the basis of the analysis in the rest of the paper, is that robots are

most highly substitutable for middle-aged workers (those between the ages of 35 and 54), and

least substitutable with senior workers (those above 55).

We start by presenting the distribution of employment in highly-robotized industries (listed

in the previous section). Table 2 shows that these industries correspond to the ones with the

12We use employment levels in 1995 to normalize the number of robot installations because the data are missing

for many countries before then. We also focus on the growth in value added per worker from 1995 to 2007 because

post-2007 data are unavailable for many countries in our sample.
13A bivariate regression for the 19 industries in our sample shows that a 10 percentage point increase in

the replaceability index is associated with 0.35 additional robot installations per thousand workers (standard

error=0.16). Replaceability alone explains 22% of the total variation in the installation of robots across industries.
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largest increase in the number of robots per thousand workers.

Figure 8 plots the age distribution of workers employed in highly-robotized industries as well

as all employed workers and the overall population (above 20) in the United States. Since it is

blue-collar workers that are at the greatest risk of displacement by industrial robots, we also show

the age distribution of blue-color workers in highly-robotized industries. The three panels of the

figure are for 1990, 2000 and 2007. All three panels show that all workers and blue-color workers

in highly-robotized industries are more likely to be younger than 55 relative to both all employed

workers and the full population. We interpret this evidence as supporting our presumption that

industrial robots are more substitutable for the tasks performed by middle-aged workers than

for the tasks performed by older (or younger) workers.14

Acemoglu and Restrepo (2017a) exploited differences in the historical industrial composition

of US commuting zones to construct a measure of exposure to robots. Using this measure of

exposure, we estimated the local employment and wage effects of robots. Here we use the same

strategy to estimate the impact of robots on workers in different age groups located in highly

exposed labor markets. To conserve space, we will not provide the full details of the approach in

Acemoglu and Restrepo (2017a), instead, summarizing its main tenets. Acemoglu and Restrepo

(2017a) focus for the most part on reduced-form models exploiting the potentially exogenous

component of exposure to robots (coming from variation in industry-level adoption in other

advanced economies).15 We follow the same strategy here and construct the exposure to robots

measure as

Exposure to robots

from 1993 to 2007z
=
∑

i∈I

ℓ1970zi

(
p30

(
Ri,2007

Li,1990

)
− p30

(
Ri,1993

Li,1990

))
, (14)

where Ri,t/Li,t is the number of robots per thousand workers in industry i at time t, the sum

runs over all the industries in the IFR data, ℓ1970zi stands for the 1970 share of commuting zone

z employment in industry i, which we compute from the 1970 Census, and p30

(
Ri,t

Li,1990

)
denotes

the 30th percentile of robot usage among European countries in industry i and year t.16

Figure 9 reports estimates of the effects of robots on the employment rate and wages of

workers in different 10-year age bins. More specifically, we estimate the following models for

14An alternative interpretation of this pattern is that robots are being introduced in industries where middle-

aged workers are overrepresented because they are complementary to these workers. Though we do not find this a

plausible hypothesis (since robots typically displace workers in certain tasks rather than directly complementing

them), we provide an additional piece of evidence against it by showing that the introduction of industrial robots

in a US local labor market has a strong negative impact on middle-aged workers.
15In that paper, we also report two-stage least squares estimates combining this measure of exposure to robots

with changes in robots in US industries. IV estimates are very similar to the reduced-form results both in that

paper and in the present context, and are omitted to save space.
16Using baseline shares from 1970, 1980 or 1990 or using other moments of the distribution of robots across

European nations leads to very similar results.
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employment and wages by age group across commuting zones:

∆Lz,a =βL
a

Exposure to robots

from 1993 to 2007z
+ ǫLz,a and ∆ lnWz,a =βW

z,a

Exposure to robots

from 1993 to 2007z
+ ǫWz,a,

where ∆Lz,a is the (annualized) change in the employment rate of age group a in commuting zone

z between 1990 and 2007, and ∆ lnWz,a is the (annualized) change in the average wage of workers

in age group a in commuting zone z between 1990 and 2007. We then plot the estimates of the

coefficients βL
a and βW

a (together with 95% confidence intervals based on heteroscedasticity-

robust standard errors). We focus on three specifications similar to those in Acemoglu and

Restrepo (2017a), except that in line with the focus here all regressions are unweighted (while

given the focus there on aggregate changes, the main specifications in Acemoglu and Restrepo,

2017a, were weighted by population). The first one we report is the baseline specification

in Acemoglu and Restrepo (2017a) and controls for Census region fixed effects, demographic

differences across commuting zones, broad industry shares, and the impact of trade with China

and Mexico, routinization, and offshoring.17 The second specification, in addition, removes the

seven commuting zones with the highest exposure to robots, to ensure that the results are not

being driven by the most exposed commuting zones. The last specification pools the data for

all age groups and forces our covariates, except the impact of exposure to robots, to have the

same impact on all workers. The top panel is for employment, while the bottom panel is for

wages. In both cases, we see negative effects for workers between the ages of 35 and 54, and no

negative effects on those younger than 35 and older than 55.18 In Figure A1 in the Appendix,

we report similar results by five-year age bins, confirming these age thresholds.

Overall, the results in this section provide direct evidence that there is a high degree of

substitution between robots and middle-aged workers (relative to older and in fact younger

workers), and motivate the rest of our analysis.

5 Demographic Change and The Adoption of Robots

In this section, we present our main cross-country results, which show a robust negative associ-

ation between the ratio of middle-aged to older workers and the adoption of robots.

17Specifically, we control for log population, the share of working-age population (between 16 and 65 years); the

shares of population with college degree and with high school, the share of Blacks, Hispanics and Asians, and the

baseline shares of employment in manufacturing, durable manufacturing and construction, as well as the share of

female employment in manufacturing. The variables for exposure to China trade, Mexico trade, routine jobs and

offshoring are described in detail in Acemoglu and Restrepo (2017a).
18In weighted regressions, the estimates for employment are very similar, but we do see some significant negative

wage effects for older groups as well. This might reflect the downward wage pressure exerted by displaced middle-

aged workers in some large commuting zones.
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5.1 Main Results

Table 3 starts with a flexible specification for the relationship between demographics and the

adoption of robots. Since we have no strong priors on the time horizon at which firms should

respond to demographic change, our focus throughout will be on long-differences specifications,

where we look at the relationship between various demographic change variables and the change

in robots-related activity between 1993 and 2014. More specifically, our regression equation is

∆
Rc

Lc
= βy∆ lnYoungc + βm∆ lnMiddle-agedc + βo∆ lnOldc + ΓXc,1990 + εc, (15)

where ∆Rc

Lc
is the (annualized) change in the stock of robots per thousand workers between

1993 and 2014 in country c (where we keep the denominator fixed as employment in 1990 from

the ILO, which avoids potentially endogenous changes in employment impacting our left-hand

side variable). The right-hand side variables are the changes between 1990 and 2025 in the log

population of three age groups—those younger than 35, those between the ages of 36-55 and

those above the age of 56 (where the change between 2017 and 2025 is based on the population

forecasts of the United Nations described in Section 3). Our use of demographic change extending

to 2025 is motivated by the fact that robot adoption decisions are typically forward-looking and

what is relevant is not just the current population, but its composition in the near future. The

IFR estimates that robots depreciate after 12 years, which implies that decisions to adopt robots

in 2014 should take into account population trends at least until 2025. Indeed, we show below

that demographic change in this extended time window has slightly greater explanatory power

than just focusing on contemporaneous changes, though the qualitative results are similar either

way (as we show in the Appendix). The vector Xc,1990 includes additional baseline covariates,

and εc is the error term. Unless otherwise indicated, all of our regressions are unweighted and

all standard errors are robust against heteroskedasticity.

Panel A of Table 3 presents our estimates of equation (15). Columns 1-3 are for the full

sample. Column 1 is our most parsimonious specification, and regresses the change in robots per

thousand workers on the population variables and regional dummies to account for differential

cross-region trends.19 Column 2 adds the 1990 values of log GDP per capita, log population,

average schooling and the ratio of the population above 56 to those between 21 and 55 (a baseline

control in our other tables) as covariates, thus allowing for differential trends in the adoption of

robots by initial values of these variables. Column 3 also includes the stock of industrial robots

per thousand workers in 1993, thus allowing countries with more robots at the beginning of the

sample to diverge from those that were already behind in 1993.20 Columns 4-6 parallel the first

19These regions are East Asia and the Pacific, South Asia, Middle East and North Africa, Africa, Eastern

Europe and Central Asia, Latin America and the Caribbean, and OECD countries.
20This is particularly important, since there might be “mean reversion” patterns. Controlling for the initial

stock of robots also enables us to be more flexible on the implied functional form (in particular, on the issue of

logs vs. levels). In any case, as we show in Table A4 in the Appendix, the results are similar if we use ln(1 +Rc)
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three columns, but present estimates for the OECD sample.

In all six columns of Panel A, a decline in the population of those between 36 and 55

(relative to the population of those above the age of 56) is associated with faster robot adoption.

Though not always precise, these estimates confirm the expectations formed on the basis of the

substitution patterns in the previous section, and indicate that the relative scarcity of workers

most substitutable to robots—those in the middle-age category—do indeed increase the adoption

of robots. The quantitative magnitudes are large but plausible. For example, in column 1, the

coefficient estimate on population of the middle-aged group is -0.64 (standard error = 0.20).

This estimate implies that a 10 percent decline in the population of the middle-aged group

(which is roughly the decline expected for Germany) is associated with 0.064 additional robots

per thousand workers per year, or 1.28 additional robots per thousand workers over the whole

sample period (which is about a third of the average number of robots per thousand workers in

2014).

Panel B shows very similar patterns when we instead look at three age groups constructed

as those between the ages of 21 and 35, between the ages of 36 and 55, and between the ages of

56 and 65, while at the same time controlling for change in total population. We again find a

negative estimate for the change in the population of those between 36 and 55, and a positive

estimate for the change in the population of those between the ages of 56 and 65. Interestingly,

holding the age composition constant, changes in the overall population do not seem to correlate

with the adoption of robots.21

Finally, Panel C shows that we obtain very similar results when we aggregate the workforce

into two age groups: those between the ages of 26 and 55 and those above 56. The change in

the population of the first group has a negative coefficient on the adoption of robots, while the

change in the population of the second group has a positive coefficient.

Overall, the results in Table 3 suggest that the adoption of robotics technologies is signif-

icantly correlated with changes in the age composition of the population—in particular, with

demographic changes that increase the share of older workers and reduce the share of middle-

aged workers. This motivates a more parsimonious specification, linking the adoption of robots

to the ratio of older to middle-aged workers, which we explore in Table 4 and focus on in the

rest of the paper. Namely, our main specification in the rest of the paper will be

∆
Rc

Lc
= βAgingc + ΓXc,1990 + εc, (16)

where the key difference from specification (15) is that we use the variable Agingc, defined as

the change between 1990 and 2025 in the ratio of “senior” workers (above 56 years of age) to

or lnRc as the dependent variable (where the latter specification leads to a smaller sample because the initial

stock of robots is zero for several countries).
21This is the basis of our claim in the Introduction while discussing the work by Abelianisky and Prettner

(2017) that we do not find evidence of direct effects from population to automation.
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middle-aged workers (those between 21 and 55). Table A3 in the Appendix shows that different

choices for age cutoffs lead to similar results.

Table 4 reports estimates of equation (16) for the same specifications as in Table 3. Panel

A focuses on OLS models, while Panel B estimates instrumental-variables (IV) models. Our IV

models are motivated by the concern that changes in labor markets that influence the adoption

of robots may also affect migration patterns and longevity, which would bias our OLS estimates.

To address this concern, we instrument the (expected) aging from 1990 to 2025 using the average

birth rates over five-year intervals from 1950-1954 to 1980-1984. These birth rates satisfy the

requisite exogeneity assumption since past changes in birth rates are unlikely to be driven by

contemporaneous wages or technologies, and explain a large portion of the variation in our

demographic change variable (in column 3, the first stage F -statistic is 13.67).

The estimates in Panel A confirm the positive effect of an aging population on the adoption

of robots. The results are now more precisely estimated and are significant at 5% or less in

all specifications (partly because we have a single demographic change variable on the right-

hand side rather than three or four correlated variables as in Table 3, where the qualitative

patterns were similar but some estimates were less precise). The quantitative effects are again

substantial. For example, our most parsimonious specification in column 1 has a R2 of 0.43

(and the partial R2 of the aging variable alone is close to 0.40 as noted in the Introduction).

In our preferred specification in column 3, the coefficient estimate on the aging variable is 0.45

(standard error = 0.19). This implies that a 20 percentage point increase in our aging variable,

which is approximately the difference between Germany and the United States (0.5 vs. 0.28,

respectively), leads to an increase of 0.09 robots per thousand workers per year or 1.8 additional

robots per thousand workers over our entire period of analysis and would account for 25 percent

of the difference in the adoption of robots between Germany and the United States. Panel B

shows that the IV estimates of the effect of demographic change on the adoption are similar,

but slightly larger.

Figure 10 depicts the relationship between our measure of demographic change and the

number of robots per thousand workers in the full sample of countries and in the OECD (from

the models estimated in columns 3 and 6 in Table 4). The relationship between demographic

change and the adoption of robots is clearly visible in both panels, and we can also see that this

relationship is not driven by any outliers.

5.2 Placebo Exercises, Robustness and Additional Results

In this subsection we first show that past demographic changes have no predictive power for

the adoption of robotics technology, then document the robustness of the results in Table 4 to

a range of variations, and then finally present some additional results.

In Panel A of Table 5, we include the same aging variable on the right-hand side, but now

it is measured between 1950 and 1990. Past demographic changes should have no impact on
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the adoption of robotics technology after 1990—unless countries that have adopted more robots

since 1993 were on different demographic trends for other reasons even before the 1990s. The

results in Table 5 are reassuring in this respect and show no correlation between our aging

variable between 1950 and 1990 and the change in the number of robots per thousand workers

since 1990. Figure 11 shows the partial regression relationship between the placebo demographic

change measure (between 1950 and 1990) and the change in the number of robots per thousand

workers between 1993 and 2014, both for all countries in our sample and for the OECD countries.

Panel B of Table 5 presents a complementary exercise where we simultaneously include past aging

and expected aging (from 1990 to 2025)as explanatory variables. The results show that only

expected aging is an important determinant of the adoption of robots.

Panel C of Table 5 further investigates the question of whether it is contemporaneous de-

mographic change or the expectation of future aging that is more strongly associated with the

adoption of robots. We simultaneously include aging from 1990 to 2015—the contemporaneous

demographic change—and expected aging from 2015 to 2025. The results are not as precise as

before, because contemporaneous and expected aging are highly correlated. Nevertheless, our

estimates show that both contemporaneous aging and expected aging are correlated with the

adoption of robots. Indeed, in no specification can we reject the null hypothesis that contem-

poraneous and expected aging have the same impact on robot adoption. Expected aging plays

a particularly important role in the OECD sample, where it is significant at the 10% level in

all models. These results support our choice of focusing on (expected) aging between 1990 and

2025 in our baseline models. In any case, Table A2 in the Appendix shows that our main results

are very similar if we use the contemporaneous variable in our main specifications.

We have so far focused on long-difference specifications, focusing on the change in the stock

of robots between 1993 and 2014. This is the most transparent specification, especially in

view of the evidence that it is not just contemporaneous but future demographic changes that

are impacting the adoption of robots. Nevertheless, such long-difference specifications fail to

exploit the potential covariation between demographic change and the adoption of robots in

subperiods. To exploit this additional source of variation, Table 6 turns to stacked-differences

models, where for each country we include two observations on the left-hand side—the change

in the stock of robots from 1993 to 2005 and from 2005 to 2015. We then regress these changes

on the aging variable from 1990 to 2005 and 2005 to 2015, respectively. Panel A presents our

OLS estimates. Columns 1 and 4 give our most parsimonious model where we only control

for region and period dummies. Columns 2 and 5 include all the country level covariates as

controls (1990 values of log GDP per capita, local population, average schooling and ratio of

older to middle-aged workers). Panel B presents the corresponding IV estimates. The estimates

confirm our main results in Table 4. In columns 3 and 6, we go one step further relative to our

earlier specifications and also include linear country trends (or country dummies in the change

specification). These specifications only exploit the differential rate at which demographic change
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proceeds and additional robots are adopted in the two subperiods for each country. Remarkably,

the estimates in these demanding specifications are not just highly significant, but they are

also very similar to our baseline estimates, bolstering our confidence in the interpretation and

robustness of our results.

Besides aging, our model suggests that other factors affecting wages, such as unionization,

and potentially the wage level itself are important determinants of the adoption of robots. We

explore these issues in Table 7, where in addition to estimating the impact of aging on robot

adoption, we control for the baseline union membership and the log of average hourly wage in

1993.22 Panel A presents OLS estimates and Panel B presents IV estimates, again instrumenting

for aging with past birth rates. Because the data on union membership are only available for

a subset of countries, our sample now consists of 38 countries, 30 of which are in the OECD.

The results provide some support for the idea that countries with greater unionization rates

adopted more robots, though this result is not as robust as the effects of demographic change

documented so far. The positive effect of unionization on the adoption of robots is consistent

with the view that unions raise labor costs and create additional incentives for firms to automate

production. Quantitatively, our estimates in column 3 of Panel B imply that a 10 percentage

point increase in union membership—roughly the difference between Germany and the United

States—is associated with 0.021 additional robots per thousand workers per year (standard

error=0.01), which amount to 0.42 robots over the whole 1993-2014 period. Though non-trivial,

this quantitative effect is about a quarter of the impact of aging (when similarly scaled). The

wage level, on the other hand, does not seem to have a robust impact on the adoption of

robots. This might be because high wages reflect not just greater “wage push,” but also higher

productivity of workers, which is likely to discourage automation.

In preparation for our industry-level estimates, we next explore the annual data on robot

installations. Table 8 presents estimates of the model

IRc,t

Lc,1990
= βAgingc,2025−1990 + ΓtXc,1990 + δt + εc,t, (17)

where the left-hand side variable, in contrast to equation (16), denotes the (annual) installation

of new robots per thousand workers (with the denominator still corresponding to employment in

1990). Correspondingly, we also allow the covariates in Xc,1990 to have time-varying coefficients

and include year effects δt. The sample covers every year between 1993 and 2014, our regressions

are again unweighted, and the standard errors are now robust against heteroscedasticity and

correlation (clustering) at the country level. Panel A presents OLS estimates and Panel B

presents IV estimates. Overall, the estimates are very similar to those of Table 4, with the minor

22We use the average share of workers belonging to a union between 1990 and 1995 as our measure of unionization

(from the ILO and Visser, 2016). We obtained similar results using an alternative unionization series from the

Labor Market Data Base (Rama, 1996). The data on wages are from the Penn World Tables, version 9.0 (see

Feenstra, Inklaar and Timmer, 2015).
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differences explained by the depreciation of the stock of robots (if robots did not depreciate,

the two models would yield the exact same results since total installations would add up to the

change in the stock of robots).

Finally, we also explored models in logs rather than in the number of robots per thousand

workers as in our baseline specification. In Appendix Table A4, we present estimates using

either ∆ ln(1+Rc) or ∆ lnRc as the dependent variable (in both cases, these are long differences

from 1993 to 2014, and we again control for initial stock of robots on the right-hand side). The

former specification is motivated by the fact that the initial stock of robots is equal to zero for

several countries. We also estimate Poisson regressions for a variant of the model in equation

(17) using the number of robot installations per year in each country as the dependent variable.

In all cases, the results are very similar to our baseline estimates.

5.3 Alternative Measures of Investment in Robots and Automation

We have so far focused on robots because of the available data, though we believe that similar

forces are at work for other automation technologies. In Table 9 we use Comtrade data on the

imports of various intermediate goods (embodying different types of technologies) to explore the

implications of demographic changes for a different measure of investment in robots and other

automation technologies. As noted in Section 3, in these data we can only measure imports of

these technologies—not their usage, which varies in countries that produce robots. Despite this

shortcoming, we believe it is useful to study this alternative measure of investment in robots as

well as the complementary measures of automation technologies.

For different types of imports, we estimate a variant of equation (16) but using log of imports

in that category normalized by total intermediate imports as the dependent variable.23 For each

of the import categories indicated in the top row, Panel A presents OLS estimates, while Panel

B reports corresponding IV estimates.

In in the first column, as discussed in the Introduction, we look at the imports of indus-

trial robots. The Comtrade data report the total dollar value of imports of industrial robots,

which enables us to compute the log of the total value of imports relative to total imports of

intermediates between 1990 and 2016. As also noted in Section 3, in this case we exclude the

major robots producers in our dataset (Germany and South Korea), and countries engaging in

significant entrepôt trade (Belgium, Hong Kong, Luxembourg and Singapore). This measure of

the change in the value of imports of industrial robots is highly correlated with our IFR measure

of the change in the stock of robots per thousand workers, both in levels and in logs, as shown in

Figure 12.24 The estimates in column 1 of Table 9 confirm the patterns we have documented so

23This normalization is important, since total intermediate inputs are correlated with aging.
24In the level specification, the bivariate regression coefficient is of 73,243 (standard error=7,958). This coeffi-

cient is reasonable in view of the fact that the cost of a typical robot ranges between $50,000 and $100,000 (This

excludes the costs of installation and programming, which often add about $300,000 to the cost of a robot, but
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far—both in the OLS and IV, there is a strong association between aging (measured in exactly

the same way as in our main specification) and the change in the imports of robots (relative to

total intermediate imports). The IV coefficient estimate is 4.66 (standard error = 2.14) in Panel

B, and implies that a 20 percentage point increase in aging, once again corresponding to the

difference in expected aging between Germany and the US, leads to a 92 log points increase in

the imports of industrial robots relative to total intermediate imports. Figure 13 presents the

relationship between imports of industrial robots (relative to total intermediate imports) and

aging visually, and confirms that this relationship is not driven by outliers.

The rest of the table looks at the imports of a number of other technologies (or more appro-

priately, imports of intermediates embodying these technologies). Columns 2-4 consider three

other automation technologies, numerically controlled machines, weaving and knitting machines,

and vending machines and ATMs. In each case, we see a positive correlation between our aging

measure and the imports of these machines relative to total intermediate imports. This evidence

supports the presumption that the effect of aging on the adoption of robots is indicative of a

broader relationship between demographic change and automation.

Columns 5 and 6 turn to two other classes of technologies, computers and agricultural ma-

chinery (including tractors, harvesters and plows), which are interesting in their own right, but a

priori may or may not be examples of automation technologies.25 In both OLS and IV, we see a

positive association between aging and computers, and a negative and insignificant relationship

between aging and agricultural machinery.

Columns 7 and 8 report results with two technologies that can be considered as broadly labor-

augmenting—miscellaneous tools (which includes a wide range of metal hand tools) and general

equipment (which includes machinery used in industrial applications that is not autonomous nor

numerically controlled). In both cases, our IV estimates show small and non-significant effects

of aging on the imports of these technologies relative to total intermediate imports. This pattern

is consistent with the presumption that these technologies are closer to our labor-augmenting

category than the automation category (though we also do not see a negative impact).

Finally, column 9 estimates the relationship between aging and the capital-output ratio from

the Penn World Tables, and shows a positive relationship, which we interpret as partly reflect-

ing the effect on the capital stock of additional investments in robotics and other automation

technologies induced by aging.

Overall, the results from the bilateral import data confirm the relationship between demo-

graphic change and investment in robotics we have documented so far using a very different

since these services are typically provided by local integrators, they do not show up in import statistics).
25Computers are used in a wide range of tasks, and with workers of all ages, so their substitution patterns

and effects on the labor market are likely to be broader than those of industrial robots, which we have argued to

be more strongly substitutable for middle-aged workers. Indeed, the results in Acemoglu and Restrepo (2017a)

suggest that the effects of computer technology on local employment and wages may be quite different than the

effects of robots.
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data source, and also provide suggestive evidence that a similar relationship may hold for other

automation technologies.

6 Demographics and Robots across US Commuting Zones

In this section, we estimate the relationship between aging and the adoption of robots across US

commuting zones. Though we do not have direct measures of installations or stocks of robots

across US local labor markets, as explained above we proxy for robots-related activity relying

on Leigh and Kraft’s (2016) measure of the number of integrators (which specialize in installing,

programming and maintaining robots). The number of integrators was shown to be related to

other measures of exposure to robots in Acemoglu and Restrepo (2017a).

Panel A of Table 10 reports estimates of the model

ln(1 + Integratorsz) = βAgingz + ΓXz,1990 + υz

across 722 US commuting zones. Here z indexes a commuting zone, Integratorsz is the number of

integrators in commuting zone z, and because it is equal to zero in several commuting zones, we

formulate the dependent variable as ln(1+ Integratorsz). Agingz now designates the change in

the ratio of workers above 56 to those between 21 and 55 between 1990 and 2015 in commuting

zone z, constructed from the Census and the American Community Survey, and Xz,1990 is a

vector of additional commuting-zone characteristics measured in 1990, which always includes the

exposure to robots measure from Acemoglu and Restrepo (2017a). Panels B and C of the table

report estimates from alternative specifications with the number of integrators, Integratorsz,

and a dummy variable for the presence of any integrators in the commuting zone as

dependent variables. As in our other models, we focus on unweighted regressions and the

standard errors are robust against heteroskedasticity and correlation at the state level. In

all panels, odd-numbered columns only include census region dummies, while even-numbered

columns control for the same set of covariates we included in our analysis of the effects of

exposure to robots on workers of different ages reported in Figure 9 (see footnote 17).

In columns 1 and 2, we see in a negative relationship between our demographic change

variable and the location of integrators. This is, however, largely because the age composition

of the population in a commuting zone is highly endogenous to the economic changes in the

area. In the remaining columns of the table, we focus on the source of variation coming from

past cohort sizes as in our cross-country IV specifications. More specifically, in columns 3 and 4

we use the size of cohorts in each commuting zone in 1990 to predict the change in aging until

2015. In columns 5 and 6, we use the sizes of cohorts aged 0-5 and 6-10 in 1950, 1960, 1970,

1980 and 1990 to instrument for our aging variable. In contrast to our OLS estimates, the IV

estimates in all panels show a positive impact of aging on the location of integrators, which

is statistically significant in all cases except in columns 5 and 6 in Panel B, when we look at
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the number of integrators. Figure 14 depicts the IV relationship between demographic change

and robots across commuting zones from the specification in column 4 of Panel A. The positive

relationship is clearly visible. Quantitatively, the effects are again sizable. A 10 percentage point

increase in our aging variable—which is approximately the average in our sample—is associated

with 1.7 additional integrators and a 20 percentage point increase in the probability of having

at least one robot integrator.

Overall, even though our proxy for robots-related activity in this section, the number of

integrators in the area, is far from perfect, the evidence is broadly supportive of the positive

impact of aging on the adoption of robots when we focus on cross-commuting zone variation as

well.

7 Demographics and Robots: Industry-Level Results

Our theoretical analysis in Section 2 highlighted that the response of robotics technology to

demographic change—an increase in the ratio of older to middle-aged workers—should be more

pronounced in industries that rely more on middle-aged workers and also in industries in which

these middle-aged workers engage in tasks that can be more productively automated. We now

investigate these predictions using the industry-level data from IFR summarized in Table 2.

Table 11 estimates regression models similar to those reported in Table 8, except that our

data now vary by country and industry. In particular, our main specification augments equation

(17) by including interaction effects:

IRi,c,t

Li,c,1990
=βAgingc + βRAgingc ×Reliance on Middle-Aged Workersi (18)

+ βPAgingc ×Opportunities for Automationi + Γi,tXc,1990 + αi + δt + εi,c,t,

where the left-hand side variable denotes the (annual) installation of new robots per thousand

workers in industry i, country c and year t, Agingc is once again defined as the change in the

ratio of the population above 56 to those between 21 and 55 from 1990 to 2025, αi denotes

industry effects, δt designates time effects, and we also allow the coefficients on the country-level

covariates in Xc,1990 to vary over time. The new variables, Reliance on Middle-Aged Workersi

and Opportunities for Automationi, capture industry-characteristics which our theory predicts

should impact the response of the adoption of robots to aging. Our sample for this regression

covers 50 countries and runs from 1993 to 2014, but is unbalanced since, as indicated in Table A1.,

data are missing for several country×industry×year combinations.26 Finally, we report standard

26In this and subsequent industry-level regressions, we weight country-industry pairs using the baseline share of

employment in each industry in that country. This weighting scheme ensures that all countries receive the same

weight—as in our unweighted country specifications—while industry weights reflect their relative importance in

each country (this is the same weighting scheme used by Graetz and Michaels, 2015 and Michaels, Natraj, and

Van Reenen, 2014).
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errors that are robust against heteroscedasticity and cross-industry and temporal correlation at

the country level.

To construct the denominator of our left-hand side variable, we use three approaches. First,

in Panel A we use the ILO country data to normalize robot installations by Li,c,1990 = Lc,1990/19

(recall that the IFR reports data for 19 industries). This normalization allows us to use all

50 countries for which there are industry-level robots data. Second, in Panel B we use the

UNIDO data on employment by country-industry pair described in Section 3. These data cover

12 manufacturing industries for 46 countries in our sample. Finally, in Panel C we use the

EUKLEMS data, also described in Section 3, which cover all the industries in our sample, but

only for 22 countries.

Column 1 in all panels presents estimates of equation (18) without any of the interaction

terms. Though not reported, our country covariates, Xc,1990, include region dummies, the log of

GDP per capita, log population, average years of schooling and the ratio of older to middle-aged

workers in 1990. Except for Panel B, which includes only manufacturing and produces larger

estimates, the average effect of aging is comparable to our cross-country estimates.

The remaining columns include the interaction of aging with reliance on middle-aged workers

and opportunities for automation. As described in Section 3, the former variable is constructed

from the 1990 census as the ratio of middle-aged to senior workers in that industry in the United

States. In columns 2-4, the Opportunity for automationi variable is proxied using Graetz and

Michaels’s replaceability index, which was also described in Section 3. In columns 5-7, we

instead use a dummy variable for the industries identified by BCG (2015). The estimates in

columns 2 and 5 show positive and statistically significant interactions with both variables in

all panels. The estimates in column 2 of Panel A indicate that a 10 percentage point increase

in aging leads to an increase of 0.15 (= 1.66× 0.9× 0.1) annual robot installations per thousand

workers in an industry at the 75th percentile of reliance on middle-aged workers compared to an

industry at the 25th percentile. More specifically, in electronics, which is at the 75th percentile of

reliance on middle-aged workers, a 10 percentage point increase in aging is predicted to increase

installations of robots by 0.25 per thousand workers per year, while in basic metals, which is at

the 25th percentile, the same change is predicted to lead to only 0.1 more robots per thousand

workers. Similarly, a 10 percentage point increase in aging is associated with an increase of 0.155

(= 0.27×5.738×0.1) annual robot installations per thousand workers in an industry at the 75th

percentile of the replaceability index compared to an industry in the 25th percentile. In this

instance, automobile manufacturing is approximately at the 75th percentile of the replaceability

index, and a 10 percentage point increase in aging is predicted to increase installation of robots

by 0.21 per thousand workers per year in this industry, while the same change is predicted

to increase installation of robots only by about 0.05 per thousand workers in construction or

utilities, which are at the 25th percentile. In summary, aging increases robot installations 3 to 5

times more in the industries with the greatest reliance on middle-age workers and the greatest
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opportunities for automation than in the average industry in column 1.

In columns 3 and 6, we control for a measure of the baseline extent of robot use in each

country-industry pair, which accounts for any unobserved industry characteristics that may be

correlated with initial investments and subsequent trends in robotics and/or for mean-reversion

(or other) dynamics.27

Finally, in columns 4 and 7 we control for a full set of country fixed effects (and we no

longer estimate the main effect of aging). In these models the interaction between aging and

industry characteristics is identified solely from within country variation. Reassuringly, the size

of the interaction coefficients does not change much, and we still find positive and statistically

significant interactions in all panels.

Table 12 reports IV estimates for the same specifications as in Table 11. As in our cross-

country analysis, we instrument demographic change using past birth rates, and we also include

interactions of these birth rates with our measures of reliance on middle-aged workers and

opportunities for automation to generate corresponding first-stages for the interaction terms. As

before, the first-stages are reasonably strong (the first-stage F -statistic for excluded instruments

ranges from 7.33 to 15.35 in the most demanding specifications; and moreover, our estimates

always comfortably pass Hansen’s overidentification test). The IV estimates confirm the patterns

reported in Table 11, and most importantly, show more pronounced responses to aging from

industries that rely more on middle-aged workers and have greater opportunities for automation.

In fact, these estimates are quantitatively quite similar to the OLS ones.

Table 13 reports placebo exercises for our industry-level results similar to those in Table 5.

To save space we focus on estimates that use the country employment from ILO to normalize

the installation of robots, which yields the largest sample. Reassuringly, neither the main

effects nor the interaction terms involving past demographic changes are significant in this case;

although some of the interaction terms have positive coefficients in Panel A, they are statistically

insignificant and about half the size of their counterparts in Table 11. These coefficients become

even smaller, and continue to be insignificant, when we add expected aging in Panel B.

Overall, the cross-industry patterns provide support for the theoretical predictions of our

framework, and indicate that the response of investment in robots to demographic change is

considerably stronger in industries that rely more on middle-aged workers and that have greater

opportunities for automation.

27Because we do not observe the stock of robots for all country-industry pairs in 1993, we follow Graetz and

Michales (2015) and impute these stocks when they are missing in 1993. To do so, we deflate the first observation

of the stock of robots in a country-industry pair back in time using the growth rate of the stock of total robots

in the country during the same period. Including this control reduces the heterogeneous impact of aging slightly,

but does not alter our qualitative conclusions.
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8 Productivity

In this section, we turn to the relationship between demographic change and change in labor

productivity (real value-added per worker). As highlighted in our theoretical analysis in Section

2, this relationship is on in general ambiguous. On the one hand, demographic change might

reduce the number of high-productivity middle-aged workers relative to lower-productivity older

workers. On the other hand, demographic change might increase productivity because of the

technology adoption it induces. Nevertheless, our model also makes some unambiguous predic-

tions: because of the induced increase in automation, industries with the greatest potential for

automation should increase their value added per worker relative to other industries that cannot

rely on automation to substitute for middle-aged workers.

This issue is investigated in Table 14, where we present estimates of the following equation:

∆ lnV Ai,c =βAgingc + βRAgingc × Reliance on middle-aged workersi (19)

+ βPAgingc × Potential for the use of robotsi + ΓiXc,1995 + αi + εi,c,

where the left-hand side variable denotes the change in log value added per worker in industry

i in country c between 1995 and 2007. In Panels A and B, we measure this variable from the

EUKLEMS data, which cover the same 19 industries we have used throughout, but only for 22

countries. Because the productivity measure is only available from 1995 onwards, we adjust our

aging variable to be between 1995 and 2015 (rather than starting in 1990 as we had before). In

addition, we allow the baseline covariates in Xc,1995 to affect industries differently and include

industry effects, αi. In Panel C, we instead use the OECD STAN database, which includes

27 countries, but with patchier coverage of industries. In all cases, we use the same weighting

scheme as in our industry-level analysis of installation of robots, corresponding to unweighted

regressions across countries, and the standard errors are again robust against heteroscedasticity

and correlation at the country level.

The structure of Table 14 is similar to that of Table 11. Panel A presents OLS estimates and

Panel B reports IV estimates of equation (19) with the EUKLEMS data, while Panel C shows

IV results using the OECD STAN data. Column 1 in Panel A shows that aging reduces the

average growth of value added per worker. A 10 percentage point increase in aging is associated

with a 14.5% decline in value-added per worker (standard error=5.6%) in the top panel and a

17.3% decline in value-added per worker (standard error=6.2%). These results differ from the

findings in Acemoglu and Restrepo (2017b), where we showed that there was no negative effect

of aging on growth in GDP per capita. The negative estimates in column 1 here are driven by

the smaller samples in the EUKLEMS and OECD datasets, and are not robust to using other

measures of economic activity. For instance, as reported in Table A5 in the Appendix, if we

estimate the analogue of equation (19) at the country level for the larger sample, there is no

significant negative relationship.
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Of greater interest given the theoretical predictions highlighted in Section 2 are the interac-

tion effects, especially the interaction between aging and opportunities for automation. Here,

we find a robust and sizable positive interaction, indicating that in the presence of aging, in-

dustries with greater opportunities for automation are experiencing relative productivity gains.

The magnitudes are sizable. For example, the IV estimate in column 2 of Panel B shows that

a 10 percentage points increase in aging causes an increase of 12% (= 0.27 × 4.498 × 0.1) in

the growth of value added per worker in an industry at the 75th percentile of the replaceability

index compared to an industry at the 25th percentile. This implies that in industries at the

25th percentile of the replaceability index, such as construction of utilities, a 10 percentage point

increase in aging Is predicted to reduce the growth of value added by 19.5% between 1995 and

2007, while the same change reduces the growth of value added only by 7.5% in industries at the

75th percentile, such as automobiles. This result confirms the basic premise from our theoreti-

cal analysis of productivity effects—that the endogenous automation response tends to increase

productivity in industries with greater opportunities for automation relative to industries with

lesser opportunities for automation or robotics.

We also find some negative estimates of the interaction between aging and reliance on middle-

aged workers, but as emphasized in Section 2, there are no tight predictions in this case, because

both the direct effect (which is negative) and the technology response effect (which can be

positive) tend to be greater for industries that rely more heavily on middle-aged workers.

Overall, consistent with our theoretical predictions, the evidence suggests that aging increases

relative productivity in industries that have the greatest opportunities for automation—and has

ambiguous effects on aggregate (or average) productivity.

9 Conclusion

The populations of most developed and many developing countries are aging rapidly. Many

economists see these demographic changes as major “headwinds” potentially slowing down or

even depressing economic growth in the decades to come (e.g., Gordon, 2016, Summers, 2013).

However, a reasoning based on directed technological change models—which highlight the effects

of changing scarcity of different types of labor on the adoption and development of technologies

substituting for these factors—suggests that these demographic changes should be associated

with major technological responses.

We have documented in this paper that this is indeed the case; countries and US labor

markets undergoing more major demographic change have invested significantly more in new

robotic technologies (and more broadly in a variety of automation technologies). We have argued

that this is because ongoing demographic changes are increasing the scarcity of middle-aged

workers and robots are most substitutable with middle-aged workers (which can be seen both

in the age composition of employment across industries with different investments in robotics,
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and the causal effects of the exposure to robots on the employment and wages of workers of

different ages). The effects of demographic change on investment in robots are highly robust

and quantitatively sizable. For example, differential aging alone accounts for about 40% of the

cross-country variation in investment in robotics.

Our directed technological change model also predicts that the effects of demographic change

should be more pronounced in industries that rely more on middle-aged workers (because the

scarcity of middle-aged workers will be felt more acutely in these industries) and in those that

present greater technological opportunities for automation. Using the industry dimension of our

data, we provide extensive support for these predictions as well.

The technology responses to aging mean that the productivity implications of demographic

changes are more complex than previously recognized. Especially in industries most amenable

to automation, aging can trigger significantly more adoption of new robots and as a result, lead

to greater productivity—even if the direct effect of aging might be negative. Using industry-

level productivity data, we find that the main effect of aging on productivity is ambiguous, but

consistent with our theoretical predictions, in the face of demographic change industries with

the greatest opportunities for automation are experiencing more rapid growth of productivity

relative to other industries.

Several questions raised in this paper call for greater research. First, it is important to

investigate the effects of aging on technology adoption and productivity using more disaggre-

gated industry data and even more preferably firm-level data, to which we do not have access in

this paper. Second, it would be interesting to study whether the effects of demographic change

on technology adoption are being mediated through wages and whether other factors affecting

wages, such as differences in labor market institutions, also have similar effects on technology.

Third, our theoretical framework makes specific predictions about how aging may reduce invest-

ments in labor-augmenting technologies even as it is encouraging further automation. This is

another theoretical implication that we investigated with the data available to us, but can better

be studied using more disaggregated data on industries and technologies. Finally, motivated by

industrial robots, our focus has been on the substitution of machines for middle-aged workers in

production tasks (and mostly in manufacturing). Though it is well-known that with the advent

of artificial intelligence, a broader set of tasks can be automated, there is currently little research

on incentives for the automation of nonproduction tasks and their productivity implications.
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Jägger, Kirsten (2016) “EU KLEMS Growth and Productivity Accounts 2016 release -

Description of Methodology and General Notes.”

Kotlikoff, Larry J., Kent A. Smetters, and Jan Walliser (2002) “Finding a Way out

of America?s Demographic Dilemma,” NBER Working Paper No. 8258.

Krueger, Dirk (2004) “The Effects of Demographic Change on Aggregate Savings: Some

Implications from the Life Cycle Model,” Mimeo Johann Wolfgang Goethe-University Frankfurt.

Krueger, Dirk, and Alexander Ludwig (2007) “On the Consequences of Demographic

Change for Rates of Returns to Capital, and the Distribution of Wealth and Welfare,” Journal

of Monetary Economics 54(1): 49–87.

Leigh, Nancey Green and Benjamin Kraft (2016) “Local Economic Development and

the Geography of the Robotics Industry,” Mimeo, Georgia Tech.

Lewis, Ethan (2011) “Immigration, Skill Mix, and Capital Skill Complementarity,” The

Quarterly Journal of Economics 126(2): 1029–1069.

39



Ludwig, Alexander, Thomas Schelkle, and Edgar Vogel (2012) “Demographic

Change, Human Capital and Welfare,” Review of Economic Dynamics 15(1): 94–107.

Manuelli, Rodolfo E., and Ananth Seshadri (2014) “Frictionless Technology Diffusion:

The Case of Tractors,” American Economic Review 104(4): 1368–91.

Michaels, Guy, Ashwini Natraj and John Van Reenen (2014) “Has ICT Polarized

Skill Demand? Evidence from Eleven Countries over Twenty-Five Years,”Review of Economics

and Statistics, 96(1): 60–77.

Murphy, Kevin M. and Finis Welch (1990) “Empirical Age-Earnings Profiles” Journal

of Labor Economics, H(2), 202-229.

Poterba, James M (2001) “Demographic Structure and Asset Returns,” The Review of

Economics and Statistics 83(4): 565–584.

Ruggles, Steven, Matthew Sobek, Trent Alexander, Catherine A. Fitch, Ronald

Goeken, Patricia Kelly Hall, Miriam King, and Chad Ronnander (2010) “Integrated

Public Use Microdata Series: Version 3.0 [Machine-readable database].” Minneapolis, Minnesota

Population Center.

Storesletten, Kjetil (2000) “Sustaining Fiscal Policy through Immigration,” Journal of

Political Economy 108(2): 300–323.

Summers, Lawrence (2013) “Why Stagnation Might Prove to Be the New Normal” The

Financial Times.

Tolbert, Charles M., and Molly Sizer (1996) “US Commuting Zones and Labor Market

Areas: A 1990 Update.” Economic Research Service Staff Paper 9614.

Zeira, Joseph (1998) “Workers, Machines, and Economic Growth,” Quarterly Journal of

Economics, 113(4): 1091–1117.

40



Appendix: Omitted Proofs

Equilibrium characterization

We start by providing more details on the characterization of the equilibrium with exogenous

technology, which was outlined in the text.

The first-order condition for the final good producer yields

Y = PY (i)Y (i),

while the first-order conditions for producers in industry i imply

α(i)PY (i)Y (i) =PX(i)X(i) (1− α(i))PY (i)Y (i) =V S(i).

Using these equations, demand for middle-aged workers, for senior workers and for machines

in industry i can be derived as follows

L(i) =

∫ 1

θ̃(i)
l(i, s)ds

=

∫ 1

θ̃(i)

X(i, s)

A(i)γ(i)
ds

=

∫ 1

θ̃(i)
X(i)P ζ

X(i)W
−ζ(A(i)γ(i))ζ−1ds

=(1− θ̃(i))X(i)P ζ
X(i)W

−ζ(A(i)γ(i))ζ−1

=(1− θ̃(i))Y P ζ−1
X(i)W

−ζ(A(i)γ(i))ζ−1,

and

S(i) = (1− α(i))V −1,

and

M(i) =

∫ θ̃(i)

0
m(i, s)ds

=θ̃(i)X(i)P ζ
X(i)P

−ζ

=θ̃(i)Y P ζ−1
X(i)P

−ζ .

The expressions for Ld,Md and Sd in the main text follow by integrating these demands

across all industries.

In addition, the wage for middle-aged workers and the price of machines satisfy the following

first-order conditions:

W =

[
(1− θ̃(i))

X(i)

L(i)

] 1
ζ

(A(i)γ(i))
ζ−1
ζ PX(i) P =

[
θ̃(i)

X(i)

M(i)

] 1
ζ

PX(i) (A1)

Because X(i) is priced at the marginal cost of production, PX(i) satisfies equation (6). To

derive equation (4) in the main text, we replace the expressions for W and P given in equation

(A1) into equation (6) and solve for X(i).
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Proof of Lemma 1

We first show that any equilibrium allocations satisfies the first-order conditions to the max-

imization problem in Lemma 1 with the Lagrange multipliers as usual reflecting equilibrium

prices. In particular, since the maximization problem in the lemma involves the log of aggregate

output, the Lagrange multipliers will correspond to the relevant prices divided by aggregate

output— i.e., for the constraint on Y (i),
PY (i)

Y
; for the constraint on L, W

Y
; for the constraint on

M ,P
Y
; and for the constraint on S, V

Y
.

Now evaluating the first-order conditions with respect to Y (i) and S(i), and using the values

of the Lagrange multipliers given in the previous paragraph, we have that for all i ∈ I,

1

Y (i)
=

PY (i)

Y
,

and
PY (i)

Y
(1− α(i))

Y (i)

S(i)
=

V

Y
,

which coincide with the optimality conditions for final good producers and the demand for senior

workers from industry i

Similarly, using equation (4), the first-order condition with respect to L(i) (again evaluated

at the same values of the Lagrange multipliers given above) is

W

Y
=
PY (i)

Y

∂Y (i)

∂L(i)

=
PY (i)

Y
α(i)

Y (i)

X(i)

[
(1− θ̃(i))

X(i)

L(i)

] 1
ζ

(A(i)γ(i))
ζ−1
ζ

=
1

Y

α(i)PY (i)Y (i)

PX(i)X(i)

[
(1− θ̃(i))

X(i)

L(i)

] 1
ζ

(A(i)γ(i))
ζ−1
ζ PX(i)

=
1

Y

[
(1− θ̃(i))

X(i)

L(i)

] 1
ζ

(A(i)γ(i))
ζ−1
ζ PX(i),

which is equivalent to the formula for W derived in equation (A1), thus again matching equilib-

rium conditions.

Next turning the first-order condition with respect to M(i), we have

P

Y
=
PY (i)

Y

∂Y (i)

∂M(i)

=
PY (i)

Y
α(i)

Y (i)

X(i)

[
θ̃(i)

X(i)

M(i)

] 1
ζ

=
1

Y

α(i)PY (i)Y (i)

PX(i)X(i)

[
θ̃(i)

X(i)

M(i)

] 1
ζ

PX(i)

=
1

Y

[
θ̃(i)

X(i)

M(i)

] 1
ζ

PX(i),
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which is equivalent to the formula for P derived in equation (A1), once again verifying the

relevant equilibrium conditions.

Finally, the optimality condition for θ(i) in the maximization problem is θ̃(i) = 0 if W <

A(i)γ(i)P and θ̃(i) = θ(i) if W > A(i)γ(i)P , which coincides with the equilibrium allocation of

tasks to factors in equation (5).

Because the objective function in Lemma 1 is strictly concave and the set of constraints is

convex, the first-order conditions uniquely define the maximum, which thus coincides with the

unique solution to the set of equilibrium conditions provided in the text. �

Proof of Proposition 1

Part 1: The function Y (L,S,M ; Θ) maximizes a strictly concave function of M subject to

a constraint that is linear in M , and thus this function is strictly concave in M . Therefore,

YM (L,S,M ; Θ) is decreasing in M , and thus there is at most a unique M(L,S; Θ) such that

YM (L,S,M(L,S; Θ));Θ) = 1 (or M(L,S; Θ) = 0 if YM(L,S,M);Θ) < 1 for all M). This

establishes the existence and uniqueness of the equilibrium demand for machines, M(L,S; Θ).

Given M(L,S; Θ), the equilibrium allocation is unique and also given by the unique global

maximum of the maximization problem in Lemma 1.

Part 2: Let us rewrite the market-clearing condition for middle-aged workers as

L =Y

∫

i∈I
(A(i)γ(i))ζ−1α(i)(1 − θ̃(i))P ζ−1

X(i)W
−ζdi

(1− φ) =y

∫

i∈I
(A(i)γ(i))ζ−1α(i)(1 − θ̃(i))P ζ−1

X(i)W
−ζdi

W (1− φ) =y

∫

i∈I
α(i)(1 − θ̃(i))

W

A(i)γ(i)

1−ζ

P ζ−1
X(i)di

W (1− φ) =y

∫

i∈I
α(i)

(1− θ̃(i)) W
A(i)γ(i)

1−ζ

(1 − θ̃(i)) W
A(i)γ(i)

1−ζ
+ θ̃(i)

di

W (1− φ) =y

∫

i∈I
α(i)

(1− θ(i))W 1−ζ

(1 − θ(i))W 1−ζ + θ(i)min{A(i)γ(i),W}1−ζ
di.

This establishes equation (7). We can verify easily that this is an upward-sloping curve in the

(y,W ) space.

To derive the ideal price index condition in equation (8), recall that the final good is the

numeraire, and thus ∫

i∈I
lnPY (i)di = 0.

Moreover, we have

lnPY (i) = ln
1− η

2− η
+ α(i) lnPX(i) + (1− α(i)) ln V.
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Now, the market-clearing condition for senior workers implies

lnV = ln y − lnφ+ ln

(∫

i∈I
(1− α(i))di

)
. (A2)

Combining the last three equations we obtain

0 =

∫

i∈I
lnPY (i)di

= ln
1− η

2− η
+

∫

i∈I
α(i)

1

1 − ζ
ln

(
(1− θ(i))

(
W

A(i)γ(i)

)1−ζ

+ θ(i)min

{
1,

W

A(i)γ(i)

}1−ζ
)
di

+

(
ln y − lnφ+ ln

(∫

i∈I
(1− α(i))di

))∫

i∈I
(1− α(i))di.

This establishes (8) and also shows that

µ = ln
2− η

1− η
− ln

(∫

i∈I
(1− α(i))di

) ∫

i∈I
(1− α(i))di.

Moreover, clearly, (8) is a downward-sloping curve in the (y,W ) space. Therefore, the two

curves (7) and (8) can intersect at most once.

That an intersection must exist follows by noting that equation (7) passes through the point

(0,0), and as y → ∞, we have W → ∞ (this follows because otherwise as y → ∞, W would

converge to a finite value, but then the right-hand side of equation (7) would diverge, yielding

a contradiction) move left. In addition, in (8), as y → 0, we have W > 0; and as y → ∞,

we have W → 0. Thus, in the (y,W ) space, the market-clearing curve for middle-aged workers

starts below the ideal price index condition and ends above it, guaranteeing that the two curves

intersect.

Finally, for the unique (yE ,WE) that satisfy (7) and (8), the equilibrium values of the other

variables can be computed recursively as follows. Senior wages are given by V = y
φ

∫
i∈I(1 −

α(i))di. The threshold tasks θ̃(i) can be computed from equation (5). Prices PX(i) can be com-

puted from equation (6). And finally, the allocation of factors to sectors can be computed using

the demand for factors by industry derived above; namely, L(i) = (1−θ̃(i))Y P ζ−1
X(i)W

−ζ(A(i)γ(i))ζ−1,

M(i) = θ̃(i)Y P ζ−1
X(i)P

−ζ , and S(i) = (1− α(i))V −1. �

Proof of Proposition 2

As shown in Figure 2, an increase in φ shifts both the market-clearing condition for middle-aged

workers in equation (7) and the ideal price index condition in equation (8) upwards. Thus, φ

raises the equilibrium wage of middle-aged workers, W .

To derive the impact on V , let us rewrite equation (7) as

W
1− φ

φ
=

V∫
i∈I(1− α(i))di

∫

i∈I
α(i)

(1− θ(i))
(

W
A(i)γ(i)

)1−ζ

(1 − θ(i))
(

W
A(i)γ(i)

)1−ζ

+ θ(i)min
{
P, W

A(i)γ(i)

}1−ζ
di;

(A3)
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and also rewrite (8) as

∫

i∈I
α(i)

1

1 − ζ
ln

(
(1− θ(i))

(
W

A(i)γ(i)

)1−ζ

+ θ(i)min

{
P,

W

A(i)γ(i)

}1−ζ
)
di (A4)

+ lnV

∫

i∈I
(1− α(i))di = ln

2− η

1− η

In the (V,W ) space, an increase in φ shifts the market-clearing condition for middle-aged

workers in equation (A3) upwards, but does not affect (A4). Thus, φ raises the equilibrium wage

for middle-aged workers, W , but lowers the wage of senior workers, V .

Finally, because Y (L,S,M ; Θ) exhibits constant returns to scale, we can write

yE(φ; Θ) =Y (1− φ, φ,mE(φ; Θ);Θ), and mE(φ; Θ) =M(1− φ, φ; Θ).

Thus,

yEφ (φ,Θ) =YS(1− φ, φ,mE(φ; Θ);Θ) − YL(1− φ, φ,mE(φ; Θ);Θ) + YMmE
φ (φ; Θ)

=V E(φ; Θ)−WE(φ; Θ) + PmE
φ (φ; Θ).

�

Proof of Proposition 3

Part 1: Let I++ denote the set of industries that increase automation. In Figure 3, the increase

in automation shifts both the market-clearing condition for middle-aged workers, equation (7),

and the ideal price index condition, equation (8), to the right. Therefore, automation always

increases aggregate output per worker, yE, and from equation (A2), it also increases V E . The

characterize the effect on WE, note that the shift in (8) can be expressed as

d ln y |W =
1∫

i∈I(1− α(i))di

∫

i∈I++

α(i)
1

ζ − 1

P ζ−1 −
(

W
A(i)γ(i)

)ζ−1

(1− θ(i))P ζ−1 + θ(i)
(

W
A(i)γ(i)

)ζ−1
di (A5)

<

∫
i∈i∈I α(i)di∫

i∈I(1− α(i))di
max
i∈I++





1

ζ − 1

P ζ−1 −
(

W
A(i)γ(i)

)ζ−1

(1− θ(i))P ζ−1 + θ(i)
(

W
A(i)γ(i)

)ζ−1





.

As ζ → ∞, d ln y |W in (A5) converges to zero. By continuing key, this implies that there

exists ζ̄, such that the above this threshold is dominated by the shift of the market-clearing

condition for middle-aged workers, (7), and thus W decreases. Moreover, (A5) is increasing in
∫
i∈I++ α(i)di, ζ is decreasing in

∫
i∈I++ α(i)di.

Part 2: Increases in A(i) for a set of positive measure industries shift the market-clearing

condition for middle-aged workers, equation (7), and the ideal price index condition, (8), up-

wards. This leads to an increase in the middle-age wage, WE. We will show in the proof of

Proposition 4 that aggregate output per worker, yE, will also increase, and again from (A2), the

wage of senior workers, V E , also increases. �
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Proof of Proposition 4

Using the envelope theorem, we have

d ln Y (L,S,M ; Θ)

dA(i)
=

PY (i)

Y

∂Y (i)

∂A(i)

∣∣∣∣
S(i),L(i),M(i)

=
1

A(i)

∂ lnY (i)

∂ lnA(i)

∣∣∣∣
S(i),L(i),M(i)

=
1

A(i)
α(i)siL(φ; Θ)

=
1

A(i)
α(i)

(1− θ(i))WE(φ; Θ)1−ζ

(1 − θ(i))WE(φ; Θ)1−ζ + θ(i)(A(i)γ(i))1−ζ
> 0.

Moreover, for industries W > A(i)γ(i), another application of the envelope theorem yields

d lnY (L,S,M ; Θ)

dθ(i)
=

PY (i)

Y

∂Y (i)

∂θ(i)

∣∣∣∣
S(i),L(i),M(i)

=
∂ lnY (i)

∂θ(i)

∣∣∣∣
S(i),L(i),M(i)

=α(i)
1

1 − ζ

WE(φ; Θ)1−ζ − (A(i)γ(i)P )1−ζ

(1− θ(i))WE(φ; Θ)1−ζ + θ(i)(A(i)γ(i)P )1−ζ
> 0.

�

Proof of Lemma 2

Part 1: θR(i,W ) and AR(i,W ) are maximizers of (10), which is strictly concave, and thus are

uniquely defined, and also satisfy the necessary and sufficient conditions given in the first-order

conditions, equation (12).

Part 2: Supermodularity of profits in (10) in W , θ(i) and −A(i) can be verified directly

from the first-order conditions in equation (12). Supermodularity thus ensures that θR(i,W ) is

nondecreasing in W , while AR(i,W ) is non-increasing in W .

Part 3: From part 1, θR(i,W ) and AR(i,W ) are solutions to the set of first-order conditions

in equation (12).

Let us define A(i) as the unique solution to h(A(i))A(i) = α(i), which sets the last term in

the relevant first-order condition in (12), which is equal to the share of labor and industry i,

to 1 Clearly, therefore, AR(i,W ) ≤ A(i). Suppose that W
γ(i)P < A. Because AR(i,W ) < A, we

have W < AR(i,W )γ(i)P , and thus when W < Aγ(i)P , we also have θR(i,W ) = 0.

Finally, suppose that W → ∞. For any θR(i,W ) > 0 the right-hand side of the first-order

condition for AR(i,W ) in equation (12) converges to zero. Thus, we have two possibilities: first,

limW→∞ θR(i,W ) = 0; or second, limW→∞AR(i,W ) = 0. To rule out the first possibility, note

that the first-order condition for AR(i,W ) in equation (12) shows that in this case we must have

AR(i,W ) = A. But this implies that eventually W > Aγ(i)P and the first-order condition for
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θR(i,W ) in equation (12) is violated at θR(i,W ) = 0, yielding a contradiction and establishing

that we must be in the second case and thus limW→∞AR(i,W ) = 0. �

Proof of Proposition 5

Part 1: To prove the existence of an equilibrium we analyze the properties of the function

WE(φ,ΘR(W )) when W = 0 and W → ∞.

Lemma 2 shows that for W < mini∈I A(i)γ(i)P we have that θR(i,W ) = 0 and AR(i,W ) =

A. Thus,WE(φ,ΘR(0)) > 0. It also established that limW→∞AR(i,W ) = 0 and limW→∞ θR(i,W ) >

0. The market-clearing condition for middle-aged workers, (7), then implies that if A(i) = 0 for

all i ∈ I, we must have W = 0. Thus, limW→∞WE(φ,ΘR(W )) = 0

The above observations show that the curve WE(φ,ΘR(W )) starts above the 45 degree line

and ends below it. Thus, there exists a solution to W = WE(φ,ΘR(W )).

Part 2: We show that if the wage decreases with automation, the mapping WE(φ,ΘR(W ))

is nonincreasing. Suppose that automation reduces W . Lemma 2 also shows that AR(i,W )

is nonincreasing and θR(i,W ) is nondecreaing in W (for all i). This implies that the map

WE(φ,ΘR(W )) is nonincreasing.

Now recall that Proposition 3 implies that for ζ > ζ, WE(φ,ΘR(W )) is nonincreasing, and

must have a unique intersection with the 45 degree line, establishing uniqueness in this case. By

continuity, this also implies that there exists another threshold ζ̃ < ζ̄ such that, for ζ > ζ̃, the

map WE is no longer nonincreasing, but still intersects the 45 degree line only from above, and

thus uniqueness still applies. Conversely, below this threshold, there are multiple intersections

and equilibria. In the case of multiple equilibria, the existence of at least and greatest equilibrium

follows from the fact that AR(i,W ) is nonincreasing and θR(i,W ) is nondecreaing in W (for all

i). (Note that we could have ζ̃ = 1, in which case the equilibrium is unique whenever Assumption

1 holds). �

Proof of Proposition 6

Both parts of this proposition follow directly from Topkis’s Monotonicity theorem (Topkis, 1998)

given that, from Proposition 2, an increase in φ shifts the map WE(φ,ΘR(W )) up (as shown in

Figures 5 and 4). �

Additional References:

Donald M. Topkis (1998) Supermodularity and Complementarity, Princeton University Press.
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Figure 6: Worldwide trends in robot adoption from the IFR.
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Figure 7: Worldwide aging trends using UN data on population by age groups and forecasts

of demographic change.
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Figure 8: U.S. age distribution among the population, employees, and employees in highly

robotized industries. The top panel presents the age distributions for 1990. The middle panel

presents the age distributions for 2000. The bottom panel presents the age distributions for

2007.
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Figure 9: Estimated impact of one additional robot per thousand workers on employment. The

figure plots the estimates for different age groups and for men separately.
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Figure 10: Residual plots of the relationship between aging (change in the ratio of workers

above 56 to workers between 21 and 55 between 1990 and 2025) and the increase in the number

of industrial robots per thousand workers from 1993 to 2014. The plots partial out the covariates

included in the regression models in Columns 3 and 6 of Table 4.
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Figure 11: Residual plots of the relationship between past aging (change in the ratio of workers

above 56 to workers between 21 and 55 between 1950 and 1990) and the increase in the number

of industrial robots per thousand workers from 1993 to 2014. The plots partial out the covariates

included in the regression models in Columns 4 (top panel) and 9 (bottom panel) of Panel A in

Table 5.
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Figure 12: Plots of the relationship between the change in the stock of robots provided by the

IFR (horizontal axis) and the total dollar value of imports of industrial robots from Comtrade

(vertical axis).
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Figure 13: Residual plot of the relationship between aging (change in the ratio of workers above

56 to workers between 21 and 55 between 1990 and 2025) and the log of imports of industrial

robots from 1990 to 2016 (relative to total imports of intermediates). The plot partials out the

covariates included in the regression models in Column 1 of Table 9.
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Figure 14: Visual IV plot of the relationship between predicted aging (change in the ratio of

workers above 56 to workers between 21 and 55 between 1990 and 2015, instrumented using the

age composition of a commuting zone in 1990) and the location of robot integrators in the US

(from Leigh and Kraft, 2016). The plots partial out the covariates included in the regression

models in Column 4 in Table 10.

55



Table 1: Summary statistics for countries

All

countries
OECD

Rapidly-

aging

countries

Slowly-

aging

countries

IFR sample:

Robots per thousand workers in 2014 3.79 5.71 5.76 1.81

(4.60) (4.83) (5.29) (2.64)

Robots per thousand workers in 1993 0.72 1.14 1.09 0.34

(1.13) (1.22) (1.24) (0.87)

Annualized increase from 1993 to 2014 0.15 0.22 0.22 0.07

(0.18) (0.19) (0.21) (0.09)

Robot installations per year (1993-2014) 0.24 0.36 0.37 0.10

(0.31) (0.32) (0.36) (0.18)

Ratio of old to middle-aged workers 0.38 0.45 0.41 0.34

in 1990 (0.13) (0.09) (0.12) (0.14)

Change in old to middle-aged workers 0.26 0.31 0.37 0.16

from 1990 to 2025 (0.13) (0.11) (0.09) (0.07)

Change in old to middle-aged workers 0.13 0.16 0.19 0.08

from 1990 to 2015 (0.08) (0.06) (0.05) (0.08)

N = 52 N = 30 N = 26 N = 26

Comtrade sample:

Dollar value of robot imports from 1996 24.6K 93.7K 44.6K 4.4K

to 2015 per thousand workers (45.9K) (56.0K) (56.8K) (13.7K)

Change in old to middle-aged workers 0.15 0.29 0.27 0.03

from 1990 to 2025 (0.15) (0.09) (0.10) (0.06)

N = 145 N = 30 N = 73 N = 72

Notes: The table presents summary statistics for the main variables used in our cross country analysis. The data

are presented separately for all countries, OECD countries, and countries above and below the median aging

from 1990 to 2025. Section 3 in the main text describes the sources and data in detail.
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Table 2: Summary statistics for industries

Robot installations per

thousand workers

Percent

increase

US ratio

middle-aged

Replacea-

bility index

Employment

Klems

Employment

Unido

in value

added

to old

workers

Graetz and

Michaels

Prone to the use of robots:

Automotive 7.62 5.01 54.6% 7.78 .

Electronics 0.75 0.67 54.2% 8.10 .

Metal machinery 0.45 0.41 49.7% 6.79 .

Metal products 1.14 0.84 43.4% 6.44 .

Plastic, Chemicals, and Pharmaceuticals 1.30 1.15 39.8% 8.15 .

Other manufacturing:

Food and Beverages 0.46 0.30 30.7% 7.80 .

Furniture 0.38 0.09 38.5% 7.78 .

Glass and Ceramics 0.26 0.13 52.4% 6.94 .

Basic metals 0.49 0.29 56.3% 6.13 .

Paper and printing 0.05 0.03 33.8% 7.10 .

Textiles and leather 0.07 0.03 34.1% 5.88 .

Other vehicles 0.30 0.15 61.8% 6.48 .

Other manufacturing industries 0.37 . 37.2% 6.34 .

Nonmanufacturing:

Agriculture 0.02 . 21.6% 3.85 .

Construction 0.01 . 41.6% 8.08 .

Education 0.04 . 34.4% 5.94 .

Mining 0.09 . 61.0% 8.52 .

Other nonmanufacturing industries 0.00 . 38.3% 6.91 .

Utilities 0.01 . 52.3% 8.04 .

Average 0.22 0.59 38.5% 6.92 0.24

Interquantile range 0.45 0.65 19.8% 1.66 0.27

Standard deviation (0.95) (1.03) (11.2%) (1.13) (0.14)

Countries 22 50 22 US US

Country*years 312 542 . . .

Notes: The table presents summary statistics for each of the 19 industries covered in the IFR data. The bottom

rows present summary statistics for each variable over all these industries. The replaceability index is not

reported by industry, but can be obtained directly from Graetz and Michaels (2015). Section 3 in the main text

describes the sources and data in detail.
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Table 3: OLS estimates of the impact of population change on the adoption of industrial robots.

Dependent variable:

Change in the stock of industrial robots per thousand workers (annualized)

Full sample OECD sample

(1) (2) (3) (4) (5) (6)

Panel A. Population in three age brackets

Change in the log of population ≤ 35 years 0.075 -0.048 -0.190 -0.054 -0.310 -0.315

from 1990 to 2025 (0.137) (0.208) (0.183) (0.158) (0.249) (0.217)

Change in the log of population between 36-55 years -0.640∗∗∗ -0.514∗ -0.369 -0.798∗∗∗ -0.428 -0.422

from 1990 to 2025 (0.197) (0.282) (0.242) (0.222) (0.307) (0.363)

Change in the log of population ≥ 56 years 0.461∗∗∗ 0.476∗∗ 0.184 0.746∗∗ 0.553∗ 0.434

from 1990 to 2025 (0.151) (0.177) (0.151) (0.271) (0.311) (0.279)

Baseline number of robots per thousand workers 0.061∗∗∗ 0.074∗∗

(0.020) (0.027)

Observations 52 52 52 30 30 30

R-squared 0.49 0.59 0.76 0.44 0.61 0.74

Panel B. Population in three age brackets

Change in the log of population 0.200 -0.246 -0.314 -0.011 0.376 0.124

from 1990 to 2025 (0.327) (0.619) (0.636) (0.657) (0.843) (0.877)

Change in the log of population between 21-35 years -0.021 0.072 -0.007 -0.372 -0.855 -0.684

from 1990 to 2025 (0.204) (0.332) (0.366) (0.301) (0.669) (0.640)

Change in the log of population between 36-55 years -0.737∗∗∗ -0.712∗∗ -0.442 -0.536∗∗∗ -0.691∗ -0.689∗

from 1990 to 2025 (0.243) (0.308) (0.285) (0.176) (0.331) (0.393)

Change in the log of population between 56-65 years 0.428∗∗ 0.824∗∗ 0.552∗ 0.701∗∗ 0.535 0.577

from 1990 to 2025 (0.212) (0.342) (0.316) (0.322) (0.555) (0.550)

Baseline number of robots per thousand workers 0.040∗ 0.048∗

(0.021) (0.027)

Observations 52 52 52 30 30 30

R-squared 0.48 0.57 0.71 0.50 0.64 0.75

Panel C. Population in two age brackets

Change in the log of population between 21-55 years -0.473∗∗∗ -0.641∗ -0.668∗∗ -0.756∗∗∗ -1.202∗∗ -1.170∗∗∗

from 1990 to 2025 (0.175) (0.366) (0.306) (0.213) (0.447) (0.399)

Change in the log of population > 55 years 0.339∗∗ 0.440∗∗ 0.343∗ 0.605∗∗ 0.478 0.473

from 1990 to 2025 (0.142) (0.217) (0.175) (0.237) (0.328) (0.306)

Baseline number of robots per thousand workers 0.049∗∗ 0.057∗∗

(0.020) (0.024)

Observations 52 52 52 30 30 30

R-squared 0.42 0.58 0.74 0.42 0.63 0.76

Covariates included:

Country covariates in 1990 X X X X

Initial robot density in 1993 X X

Notes: The dependent variable is change in the stock of industrial robots per thousand workers from 1993 to

2014 (from IFR). The explanatory variables include the (projected) change in the log of population in different

age groups between 1990 and 2025 (from the UN population statistics). Columns 1-3 use the full sample, while

columns 4-6 are for the OECD sample. Columns 1 and 4 include region dummies. Columns 2 and 5, in addition,

include the 1990 values of log GDP per capita, log of population, average years of schooling and the ratio of

workers above 56 to workers between 21 and 55. Columns 3 and 6 add the baseline (1993) value of robots per

thousand workers. All regressions are unweighted and the standard errors are robust against heteroscedasticity.

The coefficients with ∗∗∗ are significant at the 1% level, with ∗∗ are significant at the 5% level, and with ∗ are

significant at the 10% level.
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Table 4: Estimates of the impact of aging on the adoption of industrial robots.

Dependent variable:

Change in the stock of industrial robots per thousand workers (annualized)

Full sample OECD sample

(1) (2) (3) (4) (5) (6)

Panel A. OLS estimates

Aging from 1990 to 2025 0.762∗∗∗ 0.651∗∗∗ 0.453∗∗ 1.117∗∗∗ 0.983∗∗∗ 0.667∗∗

(0.252) (0.221) (0.194) (0.366) (0.298) (0.240)

Ratio of old to young workers in 1990 -0.177 -0.403 -0.339 -0.835∗

(0.295) (0.253) (0.471) (0.471)

Log of the GDP per capita in 1990 0.047 -0.011 0.037 -0.018

(0.035) (0.030) (0.052) (0.054)

Robots per thousand workers in 1993 0.047∗∗ 0.062∗∗

(0.023) (0.024)

Observations 52 52 52 30 30 30

R-squared 0.43 0.57 0.71 0.38 0.54 0.67

Panel B. IV estimates

Aging from 1990 to 2025 0.803∗∗∗ 0.672∗∗∗ 0.516∗∗∗ 1.576∗∗∗ 1.018∗∗∗ 0.807∗∗∗

(0.264) (0.203) (0.171) (0.473) (0.316) (0.271)

Ratio of old to young workers in 1990 -0.180 -0.406∗ -0.337 -0.785∗∗

(0.264) (0.225) (0.413) (0.369)

Log of the GDP per capita in 1990 0.046 -0.015 0.036 -0.016

(0.033) (0.027) (0.047) (0.048)

Robots per thousand workers in 1993 0.046∗∗ 0.058∗∗

(0.020) (0.023)

Observations 52 52 52 30 30 30

Instruments F-stat 23.13 15.70 13.67 7.66 7.12 8.12

Overid p-value 0.79 0.49 0.10 0.75 0.34 0.04

Covariates included:

Country covariates in 1990 X X X X

Initial robot density in 1993 X X

Notes: The dependent variable is change in the stock of industrial robots per thousand workers from 1993 to 2014

(from IFR). The aging variable is the (projected) change in the ratio of workers above 56 to workers between 21

and 55 between 1990 and 2025 (from the UN Population Statistics). Panel A presents OLS estimates. Panel B

presents IV estimates where the aging variable is instrumented using the size of five-year birth cohorts between

1950 and 1985. Columns 1-3 use the full sample, while columns 4-6 are for the OECD sample. Columns 1 and

4 include region dummies. Columns 2 and 5, in addition, include the 1990 values of log GDP per capita, log of

population, average years of schooling and the ratio of workers above 56 to workers between 21 and 55. Columns

3 and 6 add the baseline (1993) value of robots per thousand workers. All regressions are unweighted and the

standard errors are robust against heteroscedasticity. The coefficients with ∗∗∗ are significant at the 1% level,

with ∗∗ are significant at the 5% level, and with ∗ are significant at the 10% level.
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Table 5: OLS estimates of the impact of past and expected aging on the adoption of industrial

robots.

Dependent variable:

Change in the stock of industrial robots per thousand workers (annualized)

Full sample OECD sample

(1) (2) (3) (4) (5) (6)

Panel A. Placebo test

Aging from 1950 to 1990 -0.004 -0.097 0.187 -0.357 0.095 0.097

(0.265) (0.318) (0.224) (0.587) (0.456) (0.344)

Observations 52 52 52 30 30 30

R-squared 0.21 0.44 0.65 0.02 0.26 0.56

Panel B. Past vs. expected aging

Aging from 1950 to 1990 -0.261 -0.243 0.040 -0.243 0.192 0.176

(0.329) (0.324) (0.255) (0.436) (0.315) (0.331)

Aging from 1990 to 2025 0.795∗∗∗ 0.664∗∗∗ 0.450∗∗ 1.105∗∗∗ 0.988∗∗∗ 0.673∗∗

(0.263) (0.221) (0.198) (0.348) (0.306) (0.246)

Observations 52 52 52 30 30 30

R-squared 0.44 0.58 0.71 0.38 0.54 0.67

Panel C. Current vs. expected aging

Aging from 1990 to 2015 0.949∗∗∗ 0.636∗∗ 0.407 0.861∗∗ 0.688∗ 0.366

(0.350) (0.303) (0.304) (0.366) (0.347) (0.328)

Aging from 2015 to 2025 0.530 0.671 0.510 1.398∗∗ 1.320∗∗ 1.007∗

(0.385) (0.439) (0.423) (0.527) (0.564) (0.543)

Test for equality of coefficients 0.43 0.95 0.87 0.31 0.38 0.40

Observations 52 52 52 30 30 30

R-squared 0.43 0.57 0.71 0.38 0.55 0.68

Covariates included:

Country covariates in 1990 X X X X

Initial robot density in 1993 X X

Notes: The dependent variable is change in the stock of industrial robots per thousand workers from 1993 to

2014 (from IFR). In panel A, the aging variable is the past change in the ratio of workers above 56 to workers

between 21 and 55 between 1950 and 1990 (from the UN Population Statistics). In panel B we also include the

(projected) aging variable between 1990 and 2025 (from the UN Population Statistics). In panel C, we estimate

the impact of the aging variable between 1990 and 2015 and the projected aging between 2015 and 2025. Columns

1-3 use the full sample, while columns 4-6 are for the OECD sample. Columns 1 and 4 include region dummies.

Columns 2 and 5, in addition, include the 1990 values of log GDP per capita, log of population, average years

of schooling and the ratio of workers above 56 to workers between 21 and 55. Columns 3 and 6 add the baseline

(1993) value of robots per thousand workers. All regressions are unweighted and the standard errors are robust

against heteroscedasticity. The coefficients with ∗∗∗ are significant at the 1% level, with ∗∗ are significant at the

5% level, and with ∗ are significant at the 10% level.
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Table 6: Stacked-differences estimates of the impact of aging on the adoption of industrial

robots.

Dependent variable:

Change in the stock of industrial robots per thousand workers (annualized)

Full sample OECD sample

(1) (2) (3) (4) (5) (6)

Panel A. OLS estimates

Aging during period 2.494∗∗∗ 1.583∗∗∗ 1.509∗∗ 2.907∗∗∗ 1.923∗∗∗ 1.905∗

(0.704) (0.483) (0.703) (1.020) (0.636) (1.019)

Observations 104 104 104 60 60 60

R-squared 0.32 0.55 0.08 0.18 0.46 0.10

Panel B. IV estimates

Aging during period 3.182∗∗∗ 2.116∗∗∗ 2.385∗ 4.486∗∗∗ 2.279∗∗∗ 2.827∗∗

(0.904) (0.649) (1.243) (1.547) (0.810) (1.402)

Observations 104 104 104 60 60 60

Countries in sample 52 52 52 30 30 30

Instruments F-stat 10.57 6.12 2.49 6.59 8.49 4.46

Overid p-value 0.41 0.15 0.22 0.64 0.26 0.37

Covariates included:

Country covariates in 1990 X X X X

Initial robot density in 1993 X X X X

Country trends X X

Notes: The dependent variable is the change in the stock of industrial robots per thousand workers for two

periods: from 1993 to 2005 and from 2005 to 2014 (from IFR). The aging variable is the contemporary change

in the ratio of workers above 56 to workers between 21 and 55 for each of these periods: between 1990 and 2005

and between 2005 and 2015 (from the UN Population Statistics). Panel A presents OLS estimates. Panel B

presents IV estimates where the aging variable is instrumented using the size of five-year birth cohorts between

1950 and 1985. Columns 1-3 use the full sample, while columns 4-6 are for the OECD sample. Columns 1 and

4 include region dummies. Columns 2 and 5, in addition, include the 1990 values of log GDP per capita, log

of population, average years of schooling, the ratio of workers above 56 to workers between 21 and 55, and the

baseline (1993) value of robots per thousand workers. Columns 3 and 6 include a full set of country fixed effects.

All regressions are unweighted and the standard errors are robust against heteroscedasticity. The coefficients with
∗∗∗ are significant at the 1% level, with ∗∗ are significant at the 5% level, and with ∗ are significant at the 10%

level.
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Table 7: Estimates of the impact of aging, unions, and the wage level on the adoption of

industrial robots.

Dependent variable:

Change in the stock of industrial robots per thousand workers (annualized)

Full sample OECD sample

(1) (2) (3) (4) (5) (6)

Panel A. OLS estimates

Aging from 1990 to 2025 0.800∗∗∗ 0.782∗∗∗ 0.698∗∗ 1.240∗∗∗ 1.142∗∗∗ 0.860∗∗

(0.200) (0.204) (0.270) (0.343) (0.390) (0.356)

Baseline unionization rate 0.198 0.224∗ 0.203 0.416∗∗ 0.398∗∗ 0.263

(0.125) (0.118) (0.132) (0.177) (0.175) (0.193)

log of the hourly wage in 1993 0.178 0.145 0.144 0.036

(0.107) (0.127) (0.199) (0.206)

Robots per thousand workers in 1993 0.013 0.048∗

(0.038) (0.026)

Observations 38 38 38 30 30 30

R-squared 0.71 0.73 0.74 0.62 0.63 0.70

Panel B. IV estimates

Aging from 1990 to 2025 0.732∗∗∗ 0.706∗∗∗ 0.725∗∗∗ 1.389∗∗∗ 1.404∗∗∗ 1.261∗∗∗

(0.167) (0.162) (0.209) (0.333) (0.394) (0.365)

Baseline unionization rate 0.189∗ 0.215∗∗ 0.208∗∗ 0.459∗∗∗ 0.467∗∗∗ 0.386∗∗

(0.105) (0.097) (0.103) (0.165) (0.172) (0.172)

log of the hourly wage in 1993 0.181∗∗ 0.146 0.057 -0.051

(0.091) (0.102) (0.195) (0.198)

Robots per thousand workers in 1993 0.011 0.032

(0.029) (0.025)

Observations 38 38 38 30 30 30

Instruments F-stat 12.64 14.14 14.73 5.29 4.86 5.74

Overid p-value 0.10 0.15 0.06 0.47 0.42 0.18

Covariates included:

Country covariates in 1990 X X X X X X

Initial robot density in 1993 X X

Notes: The dependent variable is change in the stock of industrial robots per thousand workers from 1993 to 2014

(from IFR). The aging variable is the (projected) change in the ratio of workers above 56 to workers between 21

and 55 between 1990 and 2025 (from the UN Population Statistics). In addition, we also estimate the impact of

the baseline unionization rate (from the ILO) and wage level (from the Penn World Tables) in a country. Panel

A presents OLS estimates. Panel B presents IV estimates where the aging variable is instrumented using the

size of five-year birth cohorts between 1950 and 1985. Columns 1-3 use the full sample, while columns 4-6 are

for the OECD sample. All columns include region dummies, and the 1990 values of log GDP per capita, log of

population, average years of schooling and the ratio of workers above 56 to workers between 21 and 55. Columns

3 and 6 add the baseline (1993) value of robots per thousand workers. All regressions are unweighted and the

standard errors are robust against heteroscedasticity. The coefficients with ∗∗∗ are significant at the 1% level,

with ∗∗ are significant at the 5% level, and with ∗ are significant at the 10% level.
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Table 8: Estimates of the impact of aging on robot installations per year.

Dependent variable:

Installations of industrial robots per thousand workers per year

Full sample OECD sample

(1) (2) (3) (4) (5) (6)

Panel A. OLS estimates

Aging from 1990 to 2025 1.228∗∗∗ 0.999∗∗∗ 0.538∗∗ 1.785∗∗∗ 1.519∗∗∗ 0.845∗∗∗

(0.395) (0.347) (0.231) (0.489) (0.427) (0.276)

Observations 1144 1144 1144 660 660 660

Countries in sample 52 52 52 30 30 30

R-squared 0.42 0.54 0.76 0.34 0.55 0.74

Panel B. IV estimates

Aging from 1990 to 2025 1.336∗∗∗ 0.931∗∗∗ 0.612∗∗∗ 2.619∗∗∗ 1.472∗∗∗ 1.042∗∗∗

(0.426) (0.332) (0.202) (0.533) (0.459) (0.314)

Observations 1144 1144 1144 660 660 660

Countries in sample 52 52 52 30 30 30

Instruments F-stat 26.59 18.36 16.14 9.67 9.45 11.14

Overid p-value 0.79 0.93 0.13 0.89 0.75 0.04

Covariates included:

Country covariates in 1990 X X X X

Initial robot density in 1993 X X

Notes: The dependent variable is installations of industrial robots per thousand workers for each country-year

pair between 1993 and 2014 (from IFR). The aging variable is the (projected) change in the ratio of workers

above 56 to workers between 21 and 55 between 1990 and 2025 (from the UN Population Statistics). Panel A

presents OLS estimates. Panel B presents IV estimates where the aging variable is instrumented using the size

of five-year birth cohorts between 1950 and 1985. Columns 1-3 use the full sample, while columns 4-6 are for

the OECD sample. Columns 1 and 4 include region dummies. Columns 2 and 5, in addition, include the 1990

values of log GDP per capita, log of population, average years of schooling and the ratio of workers above 56 to

workers between 21 and 55. Columns 3 and 6 add the baseline (1993) value of robots per thousand workers. All

regressions are unweighted and the standard errors are robust against heteroscedasticity and serial correlation

within countries. The coefficients with ∗∗∗ are significant at the 1% level, with ∗∗ are significant at the 5% level,

and with ∗ are significant at the 10% level.
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Table 9: Estimates of the impact of aging on imports of intermediate goods.

Dependent variable: log of value of imports from 1990 to 2016 (normalized by intermediate imports)

Intermediate goods: Industrial robots

Numerically

controlled

machines

Weaving and

Knitting

machines

Vending

machines and

ATMS

Computers
Agricultural

machinery

Miscellaneous

tools

General

equipment

Increase in

Capital from

PWT

(1) (2) (3) (4) (5) (6) (7) (8) (9)

Panel A. OLS estimates

Aging from 1990 to 2025 3.492∗∗ 2.296∗∗∗ 3.042∗ 2.442∗∗∗ 1.724∗∗∗ -0.939 0.500 0.835∗ 0.559∗∗∗

(1.342) (0.756) (1.668) (0.716) (0.527) (0.724) (0.512) (0.447) (0.148)

Ratio of old to young workers in

1990
2.019 0.383 0.928 0.317 -0.587 2.131∗∗ 1.072 0.826 0.793∗∗∗

(1.542) (0.957) (1.568) (0.867) (0.606) (1.047) (0.653) (0.502) (0.226)

Log of the GDP per capita in

1990
0.633∗∗∗ 0.146 -0.425∗∗ 0.119 0.106 -0.474∗∗∗ 0.020 -0.049 0.049

(0.196) (0.113) (0.201) (0.116) (0.071) (0.125) (0.069) (0.061) (0.041)

Observations 125 130 131 129 131 131 131 130 143

R-squared 0.55 0.64 0.36 0.50 0.42 0.41 0.38 0.25 0.54

Panel B. IV estimates

Aging from 1990 to 2025 4.656∗∗ 1.726∗ 5.087∗ 1.870 1.940∗∗∗ -1.504 0.151 0.457 0.581∗∗∗

(2.139) (0.968) (2.942) (1.393) (0.621) (1.214) (0.749) (0.493) (0.223)

Ratio of old to young workers in

1990
1.920 0.421 0.657 0.359 -0.615 2.206∗∗ 1.119∗ 0.851∗ 0.790∗∗∗

(1.506) (0.910) (1.595) (0.842) (0.548) (0.990) (0.616) (0.469) (0.210)

Log of the GDP per capita in

1990
0.602∗∗∗ 0.162 -0.491∗∗ 0.134 0.099 -0.456∗∗∗ 0.031 -0.039 0.048

(0.200) (0.112) (0.208) (0.114) (0.075) (0.122) (0.071) (0.058) (0.040)

Observations 125 130 131 129 131 131 131 130 143

Instruments F-stat 16.70 15.79 16.49 16.32 16.49 16.49 16.49 15.79 15.21

Overid p-value 0.76 0.25 0.74 0.47 0.60 0.45 0.86 0.72 0.31

Other covariates included:

Country covariates in 1990 X X X X X X X X X

Notes: The dependent variable is the log of total imports from 1990 to 2016 of the intermediate indicated in each column header, normalized by total imports of

intermediate goods. The aging variable is the (projected) change in the ratio of workers above 56 to workers between 21 and 55 between 1990 and 2025 (from the

UN Population Statistics). Panel A presents OLS estimates. Panel B presents IV estimates where the aging variable is instrumented using the size of five-year

birth cohorts between 1950 and 1985. All columns include region dummies and the 1990 values of log GDP per capita, log of population, average years of schooling

and the ratio of workers above 56 to workers between 21 and 55. All regressions are unweighted and the standard errors are robust against heteroscedasticity.

The coefficients with ∗∗∗ are significant at the 1% level, with ∗∗ are significant at the 5% level, and with ∗ are significant at the 10% level.
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Table 10: Estimates of the impact of aging on the location of robot integrators in the US.

OLS estimates
IV using predicted aging from

1990 demographics

IV using predicted aging

based on past cohort sizes

(1) (2) (3) (4) (5) (6)

Panel A. log of 1+the number of integrators

Aging from 1990 to 2015 -0.745∗∗ -0.453 4.281∗∗∗ 4.017∗∗ 2.213∗ 1.946∗

(0.324) (0.310) (1.039) (1.645) (1.148) (1.062)

Exposure to robots measure 0.186∗∗∗ 0.112∗∗∗ 0.105∗∗∗ 0.067∗∗ 0.138∗∗∗ 0.088∗∗∗

(0.025) (0.030) (0.036) (0.031) (0.030) (0.028)

Observations 722 722 722 722 722 722

R-squared 0.10 0.61 -0.28 0.43 -0.03 0.56

Instruments F-stat 70.40 17.83 4.57 5.35

Overid p-value 0.00 0.60

Panel B. Number of integrators

Aging from 1990 to 2015 -5.364∗∗ -3.327 16.221∗∗∗ 16.990∗ 4.842 8.949

(2.436) (2.393) (4.371) (10.104) (8.034) (6.248)

Exposure to robots measure 1.170∗∗∗ 1.427∗∗ 0.822∗∗ 1.226∗∗ 1.005∗∗ 1.306∗∗

(0.395) (0.692) (0.340) (0.559) (0.446) (0.655)

Observations 722 722 722 722 722 722

R-squared 0.09 0.42 -0.07 0.34 0.05 0.39

Instruments F-stat 70.40 17.83 4.57 5.35

Overid p-value 0.00 0.75

Panel C. Dummy for the presence of integrators

Aging from 1990 to 2015 -0.140 0.043 2.406∗∗∗ 2.501∗∗∗ 1.845∗∗ 1.661∗∗

(0.180) (0.201) (0.711) (0.944) (0.721) (0.704)

Exposure to robots measure 0.107∗∗∗ 0.029 0.066∗∗ 0.005 0.075∗∗∗ 0.013

(0.017) (0.019) (0.028) (0.026) (0.022) (0.021)

Observations 722 722 722 722 722 722

R-squared 0.09 0.47 -0.18 0.32 -0.07 0.40

Instruments F-stat 70.40 17.83 4.57 5.35

Overid p-value 0.00 0.60

Other covariates included:

Regional dummies X X X X X X

Commuting zone covariates X X X

Notes: The dependent variable is the number of robot integrators in each US commuting zone (from Leigh and

Kraft, 2016). The aging variable is the change in the ratio of workers above 56 to workers between 21 and 55

between 1990 and 2015 (from the US CEnsus and American Community Survey). Panel A presents estimates using

the log of 1+the number of integrators as the dependent variable. Panel B presents estimates using the number

of integrators as the dependent variable. Panel C presents estimates using a dummy for whether a commuting

zone has an integrator as the dependent variable. Columns 1-2 present OLS estimates. Columns 3-4 present IV

estimates where the aging variable is instrumented using the projected aging based on the age distribution of a

commuting zone in 1990. Columns 5-6 present IV estimates where the aging variable is instrumented using the

size of five-year birth cohorts in past Censuses. Even columns include census region dummies and the mesure

of exposure to robots from Acemoglu and Restrepo (2017a). Odd columns, in addition, control for commuting-

zone covariates, including log population, share of working-age population, share of population by race, share of

population with highschool and college, and the share of employment in broad industry categories in 1990. All

estimates are unweighted, and in parenthesis we report standard errors that are robust against heteroscedasticity

and correlation in the error terms within states. The coefficients with ∗∗∗ are significant at the 1% level, with ∗∗

are significant at the 5% level, and with ∗ are significant at the 10% level.
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Table 11: OLS estimates of the impact of aging on robot installations by country-industry

pairs per year.

Dependent variable:

Installation of robots in country-industry pairs per year

Potential for the use of robots

Replaceability index BCG measure

(1) (2) (3) (4) (5) (6) (7)

Panel A. Normalizing by average employment in an industry.

Aging from 1990 to 2025 1.558∗∗∗ 3.740∗∗∗ 2.535∗∗∗ 6.731∗∗∗ 4.686∗∗∗

(0.438) (1.032) (0.650) (1.849) (1.231)

Aging × Reliance on Middle-Aged Workers 0.900∗∗∗ 0.601∗∗∗ 0.598∗∗∗ 0.264∗∗∗ 0.177∗∗ 0.174∗∗

(0.252) (0.171) (0.167) (0.090) (0.077) (0.074)

Aging × Opportunities for Automation 5.738∗∗∗ 4.150∗∗∗ 4.211∗∗∗ 6.045∗∗∗ 4.256∗∗∗ 4.281∗∗∗

(1.751) (1.083) (1.079) (1.680) (1.090) (1.094)

Observations 10602 10602 10602 10602 10602 10602 10602

Countries in sample 50 50 50 50 50 50 50

R-squared 0.36 0.37 0.46 0.47 0.39 0.47 0.49

Panel B. Normalizing by employment from UNIDO.

Aging from 1990 to 2025 3.934∗∗∗ 11.807∗∗∗ 7.436∗∗∗ 10.426∗∗∗ 6.195∗∗∗

(1.396) (4.321) (2.352) (3.501) (2.012)

Aging × Reliance on Middle-Aged Workers 3.979∗∗∗ 2.392∗∗∗ 2.584∗∗∗ 1.043∗∗∗ 0.646 0.849∗∗

(1.377) (0.818) (0.831) (0.360) (0.390) (0.413)

Aging × Opportunities for Automation 36.725∗∗ 29.320∗∗∗ 27.123∗∗∗ 7.970∗∗∗ 4.771∗∗∗ 4.768∗∗∗

(17.072) (10.329) (9.573) (2.827) (1.415) (1.444)

Observations 5974 5974 5974 5974 5974 5974 5974

Countries in sample 46 46 46 46 46 46 46

R-squared 0.33 0.35 0.44 0.47 0.37 0.44 0.47

Panel C. Normalizing by employment from KLEMS.

Aging from 1990 to 2025 0.783∗∗∗ 3.667∗∗∗ 3.148∗∗∗ 5.014∗∗∗ 4.641∗∗∗

(0.183) (1.004) (0.932) (1.282) (1.164)

Aging × Reliance on Middle-Aged Workers 0.365∗∗ 0.419∗∗∗ 0.378∗∗∗ 0.108∗ 0.136∗ 0.106

(0.130) (0.124) (0.125) (0.062) (0.067) (0.070)

Aging × Opportunities for Automation 8.094∗∗∗ 6.375∗∗∗ 6.780∗∗∗ 4.502∗∗∗ 4.180∗∗∗ 4.223∗∗∗

(2.427) (2.164) (2.164) (1.187) (1.053) (1.041)

Observations 5928 5928 5928 5928 5928 5928 5928

Countries in sample 22 22 22 22 22 22 22

R-squared 0.56 0.56 0.57 0.57 0.56 0.57 0.58

Covariates included:

Country covariates in 1990 X X X X X X X

Initial robot density in 1993 X X X X

Country fixed effects X X

Notes: The dependent variable is installations of industrial robots in each country-industry-year cell with available data between 1993 and

2014 (from IFR). The aging variable is the (projected) change in the ratio of workers above 56 to workers between 21 and 55 between 1990

and 2025 (from the UN Population Statistics). We also estimate the interaction of aging with an industry reliance on young workers (proxied

using 1990 US Census data on the age distribution of workers in each industry), and the two measures for opportunities for automation:

the replaceability index from Graetz and Michaels (2015) in columns 2-4; and a measure of potential for the use of robots from the BCG in

columns 5-7. Panel A presents estimates where we normalize robot installations by the average employment in an industry from the ILO.

Panel B presents estimates where we normalize robot installations by employment in an industry from UNIDO. Panel C presents estimates

where we normalize robot installations by employment in an industry from EUKLEMS. All columns include region dummies, and the 1990

values of log GDP per capita, log of population, average years of schooling and the ratio of workers above 56 to workers between 21 and 55.

Columns 3 and 6 add the baseline (1993) value of robots per thousand workers. Columns 4 and 7 include a full set of country fixed effects.

All regressions weigh industries by their share of employment in a country, and the standard errors are robust against heteroscedasticity and

correlation within countries. The coefficients with ∗∗∗ are significant at the 1% level, with ∗∗ are significant at the 5% level, and with ∗ are

significant at the 10% level.
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Table 12: IV estimates of the impact of aging on robot installations by country-industry pairs

per year.

Dependent variable:

Installation of robots in country-industry pairs per year

Potential for the use of robots

Replaceability index BCG measure

(1) (2) (3) (4) (5) (6) (7)

Panel A. Normalizing by average employment in an industry.

Aging from 1990 to 2025 1.424∗∗∗ 3.623∗∗∗ 2.299∗∗∗ 6.564∗∗∗ 4.155∗∗∗

(0.476) (1.189) (0.707) (2.169) (1.351)

Aging × Reliance on Middle-Aged Workers 0.950∗∗∗ 0.548∗∗∗ 0.546∗∗∗ 0.327∗∗∗ 0.186∗∗ 0.181∗∗

(0.311) (0.189) (0.185) (0.112) (0.086) (0.083)

Aging × Opportunities for Automation 5.325∗∗∗ 4.058∗∗∗ 4.037∗∗∗ 5.883∗∗∗ 3.750∗∗∗ 3.785∗∗∗

(1.932) (1.190) (1.188) (1.981) (1.212) (1.221)

Observations 10602 10602 10602 10602 10602 10602 10602

Countries in sample 50 50 50 50 50 50 50

Instruments F-stat 19.01 . 6.01 7.82 . 6.37 7.99

Overid p-value 0.86 0.21 0.39 0.72 0.17 0.60 0.47

Panel B. Normalizing by employment from UNIDO.

Aging from 1990 to 2025 4.476∗∗∗ 13.881∗∗∗ 7.801∗∗∗ 12.349∗∗∗ 6.438∗∗∗

(1.439) (4.484) (2.307) (3.627) (2.063)

Aging × Reliance on Middle-Aged Workers 4.875∗∗∗ 2.461∗∗∗ 2.776∗∗∗ 1.243∗∗∗ 0.530 0.847∗∗

(1.427) (0.780) (0.848) (0.384) (0.348) (0.409)

Aging × Opportunities for Automation 41.672∗∗ 33.939∗∗∗ 30.569∗∗∗ 9.751∗∗∗ 5.380∗∗∗ 5.402∗∗∗

(18.597) (11.523) (10.885) (3.126) (1.591) (1.618)

Observations 5974 5974 5974 5974 5974 5974 5974

Countries in sample 46 46 46 46 46 46 46

Instruments F-stat 15.04 9.58 10.06 7.62 9.50 9.46 7.33

Overid p-value 0.67 0.25 0.34 0.47 0.26 0.40 0.27

Panel C. Normalizing by employment from KLEMS.

Aging from 1990 to 2025 0.837∗∗∗ 3.814∗∗∗ 3.348∗∗∗ 5.462∗∗∗ 5.084∗∗∗

(0.196) (1.092) (0.989) (1.462) (1.300)

Aging × Reliance on Middle-Aged Workers 0.424∗∗∗ 0.404∗∗∗ 0.367∗∗∗ 0.167∗∗ 0.122 0.096

(0.136) (0.143) (0.139) (0.068) (0.078) (0.079)

Aging × Opportunities for Automation 8.139∗∗∗ 6.910∗∗∗ 7.283∗∗∗ 4.832∗∗∗ 4.595∗∗∗ 4.646∗∗∗

(2.762) (2.224) (2.232) (1.398) (1.168) (1.155)

Observations 5928 5928 5928 5928 5928 5928 5928

Countries in sample 22 22 22 22 22 22 22

Instruments F-stat 21.33 28.15 96.13 15.35 31.36 32.88 9.07

Overid p-value 0.06 0.26 0.35 0.16 0.32 0.40 0.16

Covariates included:

Country covariates in 1990 X X X X X X X

Initial robot density in 1993 X X X X

Country fixed effects X X

Notes: The dependent variable is installations of industrial robots in each country-industry-year cell with available data between 1993 and

2014 (from IFR). The aging variable is the (projected) change in the ratio of workers above 56 to workers between 21 and 55 between 1990

and 2025 (from the UN Population Statistics). We also estimate the interaction of aging with an industry reliance on young workers (proxied

using 1990 US Census data on the age distribution of workers in each industry), and the two measures for opportunities for automation:

the replaceability index from Graetz and Michaels (2015) in columns 2-4; and a measure of potential for the use of robots from the BCG in

columns 5-7. Panel A presents estimates where we normalize robot installations by the average employment in an industry from the ILO.

Panel B presents estimates where we normalize robot installations by employment in an industry from UNIDO. Panel C presents estimates

where we normalize robot installations by employment in an industry from EUKLEMS. We instrument aging and its interactions using the

size of five-year birth cohorts between 1950 and 1985. All columns include region dummies, and the 1990 values of log GDP per capita, log

of population, average years of schooling and the ratio of workers above 56 to workers between 21 and 55. Columns 3 and 6 add the baseline

(1993) value of robots per thousand workers. Columns 4 and 7 include a full set of country fixed effects. All regressions weigh industries by

their share of employment in a country, and the standard errors are robust against heteroscedasticity and correlation within countries. The

coefficients with ∗∗∗ are significant at the 1% level, with ∗∗ are significant at the 5% level, and with ∗ are significant at the 10% level.
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Table 13: OLS estimates of the impact of aging and past aging on robot installations by

country-industry pairs per year.

Dependent variable:

Installation of robots in country-industry pairs per year

Potential for the use of robots

Replaceability index BCG measure

(1) (2) (3) (4) (5) (6) (7)

Panel A. Placebo test

Aging from 1950 to 1990 -0.038 0.407 1.326 0.894 2.402

(0.746) (1.797) (1.121) (2.958) (1.958)

Past Aging × Reliance on Middle-Aged Workers 0.325 0.255 0.265 0.125 0.022 0.028

(0.448) (0.268) (0.268) (0.172) (0.117) (0.111)

Past Aging × Opportunities for Automation -0.334 2.740 2.398 1.604 2.307 2.291

(3.220) (2.040) (2.056) (2.828) (1.787) (1.818)

Observations 10602 10602 10602 10602 10602 10602 10602

Countries in sample 50 50 50 50 50 50 50

R-squared 0.35 0.35 0.45 0.47 0.36 0.46 0.47

Panel B. Past vs. expected aging

Aging from 1950 to 1990 -0.562 -0.862 0.435 -0.866 0.753

(0.739) (1.713) (1.106) (2.917) (1.955)

Past Aging × Reliance on Middle-Aged Workers 0.021 0.056 0.064 0.036 -0.029 -0.024

(0.400) (0.256) (0.255) (0.155) (0.113) (0.108)

Past Aging × Opportunities for Automation -2.329 1.190 0.939 -0.455 0.812 0.796

(3.105) (1.998) (2.054) (2.576) (1.781) (1.808)

Aging from 1990 to 2025 1.595∗∗∗ 3.796∗∗∗ 2.504∗∗∗ 6.787∗∗∗ 4.633∗∗∗

(0.420) (0.988) (0.631) (1.774) (1.202)

Aging × Reliance on Middle-Aged Workers 0.899∗∗∗ 0.597∗∗∗ 0.594∗∗∗ 0.262∗∗∗ 0.179∗∗ 0.175∗∗

(0.240) (0.167) (0.163) (0.085) (0.076) (0.073)

Aging × Opportunities for Automation 5.884∗∗∗ 4.071∗∗∗ 4.150∗∗∗ 6.074∗∗∗ 4.200∗∗∗ 4.228∗∗∗

(1.682) (1.053) (1.048) (1.616) (1.066) (1.071)

Observations 10602 10602 10602 10602 10602 10602 10602

Countries in sample 50 50 50 50 50 50 50

R-squared 0.36 0.37 0.46 0.47 0.39 0.47 0.49

Covariates included:

Country covariates in 1990 X X X X X X X

Initial robot density in 1993 X X X X

Country fixed effects X X

Notes: The dependent variable is installations of industrial robots in each country-industry-year cell with available data between 1993 and 2014

(from IFR). We normalize installations using the average employment by industry from the ILO. In Panel A, the aging variable is the past

change in the ratio of workers above 56 to workers between 21 and 55 between 1950 and 1990 (from the UN Population Statistics). In Panel

B, we also include (projected) aging between 1990 and 2025 (from the UN Population Statistics). We also estimate the interaction of past and

(projected) aging with an industry reliance on young workers (proxied using 1990 US Census data on the age distribution of workers in each

industry), and the two measures for opportunities for automation: the replaceability index from Graetz and Michaels (2015) in columns 2-4;

and a measure of potential for the use of robots from the BCG in columns 5-7. All columns include region dummies, and the 1990 values of

log GDP per capita, log of population, average years of schooling and the ratio of workers above 56 to workers between 21 and 55. Columns 3

and 6 add the baseline (1993) value of robots per thousand workers. Columns 4 and 7 include a full set of country fixed effects. All regressions

weigh industries by their share of employment in a country, and the standard errors are robust against heteroscedasticity and correlation

within countries. The coefficients with ∗∗∗ are significant at the 1% level, with ∗∗ are significant at the 5% level, and with ∗ are significant

at the 10% level.
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Table 14: Estimates of the impact of aging on the value added of country-industry pairs per

year.

Dependent variable:

Change in value-added per worker from 1995 to 2007

Potential for the use of robots

Replaceability index BCG measure

(1) (2) (3) (4) (5) (6) (7)

Panel A. OLS estimates

Aging from 1995 to 2025 -1.455∗∗ 0.124 0.317 0.306 0.523

(0.559) (1.259) (1.159) (1.216) (1.138)

Aging × Reliance on Middle-Aged Workers -0.253 -0.296 -0.253 -0.248 -0.291 -0.255

(0.256) (0.242) (0.238) (0.251) (0.239) (0.244)

Aging × Opportunities for Automation 2.900∗∗ 3.069∗∗ 3.019∗∗∗ 1.141∗∗ 1.220∗∗ 1.219∗∗

(1.238) (1.192) (0.936) (0.501) (0.483) (0.469)

Observations 418 418 418 418 418 418 418

Countries in sample 22 22 22 22 22 22 22

R-squared 0.77 0.77 0.78 0.91 0.77 0.78 0.91

Panel B. IV estimates

Aging from 1995 to 2025 -1.728∗∗∗ 1.290 1.334 1.232 1.348

(0.622) (1.270) (1.162) (1.422) (1.319)

Aging × Reliance on Middle-Aged Workers -0.597∗∗ -0.624∗∗ -0.597∗ -0.558∗ -0.592∗∗ -0.593∗

(0.295) (0.279) (0.326) (0.305) (0.290) (0.354)

Aging × Opportunities for Automation 4.498∗∗∗ 4.510∗∗∗ 4.149∗∗∗ 1.512∗∗∗ 1.570∗∗∗ 1.559∗∗∗

(1.313) (1.476) (1.007) (0.427) (0.442) (0.398)

Observations 418 418 418 418 418 418 418

Countries in sample 22 22 22 22 22 22 22

Instruments F-stat 8.20 27.62 16.20 6.16 51.22 12.66 5.38

Overid p-value 0.18 0.58 0.71 0.55 0.41 0.45 0.35

Panel C. IV estimates (STAN data)

Aging from 1995 to 2025 -2.030∗∗∗ 0.530 0.878 0.528 0.732

(0.471) (0.999) (0.838) (1.059) (0.920)

Aging × Reliance on Middle-Aged Workers -0.477∗∗ -0.424∗ -0.373∗ -0.434∗ -0.379 -0.336

(0.231) (0.233) (0.224) (0.231) (0.238) (0.232)

Aging × Opportunities for Automation 3.894∗∗∗ 3.861∗∗∗ 3.080∗∗∗ 1.407∗∗∗ 1.255∗∗∗ 1.049∗∗∗

(1.425) (1.180) (0.766) (0.509) (0.423) (0.407)

Observations 462 462 462 462 462 462 462

Countries in sample 27 27 27 27 27 27 27

Instruments F-stat 18.97 23.42 11.29 10.69 14.72 10.06 12.64

Overid p-value 0.98 0.55 0.47 0.33 0.45 0.32 0.28

Covariates included:

Country covariates in 1990 X X X X X X X

Initial value added in 1995 X X X X

Country fixed effects X X

Notes: The dependent variable is the change in value-added per worker from in each country-industry pair between 1995 and 2007 (from

EUKLEMS in Panels A and B, and STAN in Panel C). The aging variable is the (projected) change in the ratio of workers above 56 to workers

between 21 and 55 between 1990 and 2025 (from the UN Population Statistics). We also estimate the interaction of aging with an industry

reliance on young workers (proxied using 1990 US Census data on the age distribution of workers in each industry), and the two measures for

opportunities for automation: the replaceability index from Graetz and Michaels (2015) in columns 2-4; and a measure of potential for the

use of robots from the BCG in columns 5-7. Panel A presents OLS, and Panel B presents IV estimates where we instrument aging and its

interactions using the size of five-year birth cohorts between 1950 and 1985. Panel C presents additional estimates using data from STAN. All

columns include region dummies, and the 1990 values of log GDP per capita, log of population, average years of schooling and the ratio of

workers above 56 to workers between 21 and 55. Columns 3 and 6 add the baseline (1993) value of robots per thousand workers. Columns 4

and 7 include a full set of country fixed effects. All regressions weigh industries by their share of employment in a country, and the standard

errors are robust against heteroscedasticity and correlation within countries. The coefficients with ∗∗∗ are significant at the 1% level, with ∗∗

are significant at the 5% level, and with ∗ are significant at the 10% level.
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Appendix Figures and Tables
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Figure A1: Estimated impact of one additional robot per thousand workers on employment

and wages. The figure plots the estimates for different age groups and for men separately.
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Table A1: Set of countries in our sample and availability of industry data.

OECD sample Other countries

Country name Industry data since Country name Industry data since

Australia 2006 Argentina 2004

Austria 2003 Brazil 2004

Belgium 2004 Bulgaria 2006

Chile 2006 China 2006

Czech Republic 2004 Colombia 2007

Denmark 1996 Egypt 2005

Estonia 2004 Hong Kong 2006

Finland 1993 India 2006

France 1993 Indonesia 2006

Germany 1993 Malaysia 2006

Greece 2006 Moldova 2010

Hungary 2004 Morocco 2005

Iceland 2006 Peru 2006

Ireland 2006 Philippines 2006

Israel 2005 Romania 2004

Italy 1993 Singapore 2005

Netherlands 2004 Thailand 2005

New Zealand 2006 Ukraine 2004

Norway 1993 Venezuela 2007

Poland 2004 Vietnam 2005

Portugal 2004

Rep. of Korea 2001 Countries with no industry data

Slovakia 2004 Pakistan .

Slovenia 2005 Macau .

Spain 1993

Sweden 1993

Switzerland 2004

Turkey 2005

United Kingdom 1993

United States 2004

Notes: The table presents a list of the countries in our sample as well as the years for which industry-level data

are available from the IFR.

A-2



Table A2: Estimates of the impact of aging from 1990 to 2015 on the adoption of industrial

robots.

Dependent variable:

Change in the stock of industrial robots per thousand workers (annualized)

Full sample OECD sample

(1) (2) (3) (4) (5) (6)

Panel A. OLS estimates

Aging from 1990 to 2015 1.229∗∗∗ 0.975∗∗∗ 0.657∗∗ 1.463∗∗ 1.295∗∗ 0.763∗

(0.408) (0.338) (0.300) (0.616) (0.478) (0.368)

Ratio of old to young workers in 1990 -0.074 -0.341 -0.342 -0.913

(0.285) (0.238) (0.546) (0.582)

Log of the GDP per capita in 1990 0.059 -0.004 0.076 -0.004

(0.035) (0.030) (0.057) (0.053)

Robots per thousand workers in 1993 0.050∗∗ 0.073∗∗∗

(0.023) (0.023)

Observations 52 52 52 30 30 30

R-squared 0.42 0.55 0.70 0.24 0.44 0.61

Panel B. IV estimates

Aging from 1990 to 2015 1.381∗∗∗ 1.110∗∗∗ 0.814∗∗∗ 2.574∗∗∗ 1.305∗∗∗ 0.708∗∗

(0.390) (0.317) (0.263) (0.941) (0.450) (0.350)

Ratio of old to young workers in 1990 -0.073 -0.330 -0.342 -0.924∗

(0.262) (0.222) (0.487) (0.519)

Log of the GDP per capita in 1990 0.053 -0.008 0.076 -0.005

(0.034) (0.027) (0.050) (0.045)

Robots per thousand workers in 1993 0.048∗∗ 0.074∗∗∗

(0.020) (0.020)

Observations 52 52 52 30 30 30

Instruments F-stat 14.98 11.59 10.15 3.20 3.90 6.77

Overid p-value 0.77 0.47 0.10 0.68 0.45 0.08

Covariates included:

Country covariates in 1990 X X X X

Initial robot density in 1993 X X

Notes: The dependent variable is change in the stock of industrial robots per thousand workers from 1993 to 2014

(from IFR). The aging variable is the observed change in the ratio of workers above 56 to workers between 21

and 55 between 1990 and 2015 (from the UN Population Statistics). Panel A presents OLS estimates. Panel B

presents IV estimates where the aging variable is instrumented using the size of five-year birth cohorts between

1950 and 1985. Columns 1-3 use the full sample, while columns 4-6 are for the OECD sample. Columns 1 and

4 include region dummies. Columns 2 and 5, in addition, include the 1990 values of log GDP per capita, log of

population, average years of schooling and the ratio of workers above 56 to workers between 21 and 55. Columns

3 and 6 add the baseline (1993) value of robots per thousand workers. All regressions are unweighted and the

standard errors are robust against heteroscedasticity. The coefficients with ∗∗∗ are significant at the 1% level,

with ∗∗ are significant at the 5% level, and with ∗ are significant at the 10% level.
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Table A3: Estimates of the impact of aging on the adoption of industrial robots using different

definitions of middle-aged and senior workers.

Dependent variable:

Change in the stock of industrial robots

per thousand workers (annualized)

OLS estimates IV estimates

All countries OECD All countries OECD

(1) (2) (3) (4)

Panel A. Middle-aged from 21-60; Senior from 61 onwards

Aging from 1990 to 2025 0.594∗∗ 0.731∗∗ 0.738∗∗∗ 0.827∗∗∗

(0.268) (0.302) (0.236) (0.286)

Observations 52 30 52 30

Instruments F-stat 16.03 13.29

Overid p-value 0.14 0.05

Panel B. Middle-aged from 21-50; Senior from 51 onwards

Aging from 1990 to 2025 0.326∗∗ 0.614∗∗ 0.376∗∗∗ 0.834∗∗∗

(0.144) (0.223) (0.132) (0.248)

Observations 52 30 52 30

Instruments F-stat 12.29 9.92

Overid p-value 0.13 0.03

Panel C. Middle-aged from 21-55; Senior from 56-70

Aging from 1990 to 2025 0.828∗∗ 1.429∗∗∗ 0.815∗∗ 1.674∗∗∗

(0.367) (0.488) (0.347) (0.610)

Observations 52 30 52 30

Instruments F-stat 18.55 19.12

Overid p-value 0.06 0.03

Panel D. Middle-aged from 36-55; Senior from 56 onwards

Aging from 1990 to 2025 0.313∗∗ 0.391∗∗ 0.319∗∗∗ 0.347∗∗

(0.130) (0.155) (0.121) (0.162)

Observations 52 30 52 30

Instruments F-stat 13.47 5.69

Overid p-value 0.15 0.08

Covariates included:

Country covariates in 1990 X X X X

Initial robot density in 1993 X X X X

Notes: The dependent variable is change in the stock of industrial robots per thousand workers from 1993 to 2014 (from

IFR). The aging variable is the (projected) change in the ratio of senior to middle-aged workers between 1990 and 2025

(from the UN Population Statistics). In panel A we define middle-aged workers as those between 21 and 60, and senior

workers as those above 61. In panel A we define middle-aged workers as those between 21 and 50, and senior workers as

those above 51. In panel C we define middle-aged workers as those between 21 and 55, and senior workers as those between

56 and 70. In panel D we define middle-aged workers as those between 36 and 55, and senior workers as those above 56.

Columns 1-2 present OLS estimates, while columns 3-4 present IV estimates where the aging variable is instrumented using

the size of five-year birth cohorts between 1950 and 1985. Columns 1 and 3 use the full sample, while columns 2 and 4

are for the OECD sample. All columns include region dummies, the 1990 values of log GDP per capita, log of population,

average years of schooling and the ratio of workers above 56 to workers between 21 and 55, and the baseline (1993) value of

robots per thousand workers. All regressions are unweighted and the standard errors are robust against heteroscedasticity.

The coefficients with ∗∗∗ are significant at the 1% level, with ∗∗ are significant at the 5% level, and with ∗ are significant

at the 10% level.
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Table A4: Estimates of the impact of aging on robot installations per year and additional

specifications.

Full sample OECD sample

Dependent variable:

∆ ln(1 +R) ∆ lnR Poisson ∆ ln(1 +R) ∆ lnR Poisson

(1) (2) (3) (4) (5) (6)

Panel A. OLS estimates

main

Aging from 1990 to 2025 4.609∗∗ 2.830∗∗∗ 1.364∗∗∗ 1.140 2.099∗ 0.821∗∗

(1.843) (0.860) (0.481) (1.396) (1.058) (0.396)

Observations 52 23 1144 30 22 660

Countries in sample 52 30

R-squared 0.85 0.79 0.89 0.71

Panel B. IV estimates

main

Aging from 1990 to 2025 5.570∗∗ 3.493∗∗∗ 1.364∗∗∗ -1.211 2.527∗∗ 0.821∗∗

(2.172) (1.032) (0.481) (2.730) (1.172) (0.396)

Observations 52 23 1144 30 22 660

Countries in sample 52 30

R-squared 0.85 0.79 0.88 0.71

Instruments F-stat 16.80 3.28 6.19 5.36

Overid p-value 0.02 0.26 0.11 0.08

Country covariates in 1990 X X X X X X

Initial robot density in 1993 X X X X X X

Notes: The dependent variable is: in Panel A, the change in log of 1+ the number of robots in a country from

1993 to 2014 (from IFR); in Panel B, the change in the log of the number of robots in a country from 1993 to 2014

(from IFR); and in Panel C, the the number of robot installations in each country-year pair from 1993 to 2014

(from IFR)—and in this case we estimate a Poisson model. The aging variable is the observed change in the ratio

of workers above 56 to workers between 21 and 55 between 1990 and 2015 (from the UN Population Statistics).

Panel A presents OLS estimates. Panel B presents IV estimates where the aging variable is instrumented using

the size of five-year birth cohorts between 1950 and 1985. Columns 1-3 use the full sample, while columns 4-6

are for the OECD sample. All columns include region dummies, the 1990 values of log GDP per capita, log of

population, average years of schooling and the ratio of workers above 56 to workers between 21 and 55, and the

baseline (1993) value of robots per thousand workers. All regressions are unweighted and the standard errors are

robust against heteroscedasticity. The coefficients with ∗∗∗ are significant at the 1% level, with ∗∗ are significant

at the 5% level, and with ∗ are significant at the 10% level.
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Table A5: Estimates of the impact of aging on economic activity at the country level.

OLS estimates IV estimates

EUKLEMS sample OECD EUKLEMS sample OECD

Value

added
GDP GDP

Value

added
GDP GDP

(1) (2) (3) (4) (5) (6)

Aging from 1995 to 2025 -1.307∗∗ -0.306 -0.083 -1.694∗∗∗ -0.705 -0.259

(0.529) (0.353) (0.237) (0.615) (0.442) (0.396)

Observations 22 22 34 22 22 34

R-squared 0.86 0.78 0.69 0.86 0.76 0.68

Instruments F-stat 4.89 3.69 10.21

Overid p-value 0.22 0.38 0.11

Country covariates in 1990 X X X X X X

Notes: The dependent variable is: in columns 1 and 4, the change in value added per worker from 1995 to 2007

(from EUKLEMS); in columns 2-3 and 5-6, the change in the log of GDP per capita from 1995 to 2007 (from the

Penn World Tables). The aging variable is the observed change in the ratio of workers above 56 to workers between

21 and 55 between 1990 and 2015 (from the UN Population Statistics). Columns 1-3 presents OLS estimates.

Columns 4-6 present IV estimates where the aging variable is instrumented using the size of five-year birth cohorts

between 1950 and 1985. All columns include the 1990 values of log GDP per capita, log of population, average

years of schooling and the ratio of workers above 56 to workers between 21 and 55. All regressions are unweighted

and the standard errors are robust against heteroscedasticity. The coefficients with ∗∗∗ are significant at the 1%

level, with ∗∗ are significant at the 5% level, and with ∗ are significant at the 10% level.
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