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Abstract

Incomplete markets models with heterogeneous agents are increasingly used for policy

analysis. We propose a novel methodology for solving fully dynamic optimal policy problems

in models of this kind, both under discretion and commitment, that employs optimization

techniques in function spaces. We illustrate our methodology by studying optimal mone-

tary policy in an incomplete-markets model with non-contingent nominal assets and costly

inflation. Under discretion, an inflationary bias arises from the central bank’s attempt to

redistribute wealth towards debtor households, which have a higher marginal utility of net

wealth. Under commitment, this inflationary force is counteracted over time by the incentive

to prevent expectations of future inflation from being priced into new bond issuances; under

certain conditions, long run inflation is zero as both effects cancel out asymptotically. We

find numerically that the optimal commitment features first-order initial inflation followed

by a gradual decline towards its (near zero) long-run value. Welfare losses from discretionary

policy are first-order in magnitude, affecting both debtors and creditors.
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1 Introduction

Ever since the seminal work of Bewley (1983), Hugget (1993) and Aiyagari (1994), incomplete

markets models with uninsurable idiosyncratic risk have become a workhorse for policy analysis in

macro models with heterogeneous agents.1 Among the different areas spawned by this literature,

the analysis of the dynamic aggregate effects of fiscal and monetary policy has begun to receive

considerable attention in recent years.2

As is well known, one diffi culty when working with incomplete markets models is that the state

of the economy at each point in time includes the cross-household wealth distribution, which is an

infinite-dimensional, endogenously-evolving object.3 The development of numerical methods for

computing equilibrium in these models has made it possible to study the effects of aggregate shocks

and of particular policy rules. However, the infinite-dimensional nature of the wealth distribution

has made it diffi cult to make progress in the analysis of optimal policy problems in this class of

models.

In this paper, we propose a novel methodology for solving fully dynamic optimal policy prob-

lems in incomplete-markets models with uninsurable idiosyncratic risk, both under discretion and

commitment. The methodology relies on the use of calculus techniques in infinite-dimensional

Hilbert spaces to compute the first order conditions. In particular, we employ a generalized ver-

sion of the classical derivative known as Gateaux derivative.

We illustrate our methodology by analyzing optimal monetary policy in an incomplete-markets

economy. Our framework is close to Huggett’s (1993) standard formulation. As in the latter,

households trade non-contingent claims, subject to an exogenous borrowing limit, in order to

smooth consumption in the face of idiosyncratic income shocks. We depart from Huggett’s real

framework by considering nominal non-contingent bonds with an arbitrarily long maturity, which

allows monetary policy to have an effect on equilibrium allocations. In particular, our model

features a classic Fisherian channel (Fisher, 1933), by which unanticipated inflation redistributes

wealth from lending to borrowing households.4 In order to have a meaningful trade-off in the choice

of the inflation path, we also assume that inflation is costly, which can be rationalized on the basis

of price adjustment costs; in addition, expected future inflation raises the nominal cost of new

debt issuances through inflation premia. We also depart from the standard closed-economy setup

by considering a small open economy, with the aforementioned (domestic currency-denominated)

1For a survey of this literature, see e.g. Heathcote, Storesletten & Violante (2009).
2See our discussion of the related literature below.
3See e.g. Ríos-Rull (1995).
4See Doepke and Schneider (2006a) for an influential study documenting net nominal asset positions across

US household groups and estimating the potential for inflation-led redistribution. See Auclert (2016) for a recent
analysis of the Fisherian redistributive channel in a more general incomplete-markets model that allows for additional
redistributive mechanisms.
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bonds being also held by risk-neutral foreign investors. This, aside from making the framework

somewhat more tractable,5 also makes the policy analysis richer, by making the redistributive

Fisherian channel operate not only between domestic lenders and borrowers, but also between

the latter and foreign bond holders.6 Finally, we cast the model in continuous time, which as

explained below offers important computational advantages relative to the (standard) discrete-

time specification.

On the analytical front, we show that discretionary optimal policy features an ’inflationary

bias’, whereby the central bank tries to use inflation so as to redistribute wealth and hence con-

sumption. In particular, we show that at each point in time optimal discretionary inflation increases

with the average cross-household net liability position weighted by each household’s marginal util-

ity of net wealth. This reflects the two redistributive motives mentioned before. On the one hand,

inflation redistributes from foreign investors to domestic borrowers (cross-border redistribution).

On the other hand, and somewhat more subtly, under market incompleteness and standard concave

preferences for consumption, borrowing households have a higher marginal utility of net wealth

than lending ones. As a result, they receive a higher effective weight in the optimal inflation deci-

sion, giving the central bank an incentive to redistribute wealth from creditor to debtor households

(domestic redistribution).

Under commitment, the same redistributive motives to inflate exist, but they are counteracted

by an opposing force: the central bank internalizes how investors’expectations of future inflation

affect their pricing of the long-term nominal bonds from the time the optimal commitment plan

is formulated (’time zero’) onwards. At time zero, inflation is close to that under discretion,

as no prior commitments about inflation exist. But from then on, the fact that bond prices

incorporate promises about the future inflation path gives the central bank an incentive to commit

to reducing inflation over time. Importantly, we show that under certain conditions on preferences

and parameter values, the steady state inflation rate under the optimal commitment is zero;7 that

is, in the long run the redistributive motive to inflate exactly cancels out with the incentive to

reduce inflation expectations and nominal yields for an economy that is a net debtor.

We then solve numerically for the full transition path under commitment and discretion. We

5We restrict our attention to equilibria in which the domestic economy remains a net debtor vis-à-vis the rest of
the World, such that domestic bonds are always in positive net supply. As a result, the usual bond market clearing
condition in closed-economy models is replaced by a no-arbitrage condition for foreign investors that effectively prices
the nominal bond. This allows us to reduce the number of constraints in the policy-maker’s problem featuring the
infinite-dimensional wealth distribution.

6As explained by Doepke and Schneider (2006a), large net holdings of nominal (domestic currency-denominated)
assets by foreign investors increase the potential for a large inflation-induced wealth transfer from foreigners to
domestic borrowers.

7In particular, assuming separable preferences, then in the limiting case in which the central bank’s discount
rate is arbitrarily close to that of foreign investors, optimal steady-state inflation under commitment is arbitrarily
close to zero.
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calibrate our model to match a number of features of a prototypical European small open economy,

such as the size of gross household debt or their net international position.8 We find that optimal

time-zero inflation, which as mentioned before is very similar under commitment and discretion, is

first-order in magnitude. We also show that both the cross-border and the domestic redistributive

motives are quantitatively relevant for initial inflation. Under discretion, inflation remains high due

to the inflationary bias discussed before. Under commitment, by contrast, inflation falls gradually

towards its long-run level (essentially zero, under our calibration), reflecting the central bank’s

efforts to prevent expectations of future inflation from being priced into new bond issuances. In

summary, under commitment the central bank front-loads inflation so as to transitorily redistribute

existing wealth from lenders to borrowing households, but commits to gradually undo such initial

inflation.

In welfare terms, the discretionary policy implies sizable (first-order) losses relative to the

optimal commitment. Such losses are suffered by creditor households, but also by debtor ones.

The reason is that, under discretion, expectations of permanent future positive inflation are fully

priced into current nominal yields. This impairs the very redistributive effects of inflation that

the central bank is trying to bring about, and leaves only the direct welfare costs of permanent

inflation, which are born by creditor and debtor households alike.

Finally, we compute the optimal monetary policy response to an aggregate shock to the World

interest rate. In particular, we compare impulse responses under a policy of zero inflation with

those under the optimal commitment plan ‘from a timeless perspective.’ In both cases, the rise in

interest rates reduces aggregate consumption. In the case of commitment, inflation rises slightly

on impact, as the central bank tries to partially counteract the negative effect of the shock on

household consumption. However, the inflation reaction is an order of magnitude smaller than

that of the shock itself. Intuitively, the value of sticking to past commitments to keep inflation

near zero weighs more in the central bank’s decision than the value of using inflation transitorily

so as to stabilize consumption in response to an unforeseen event.

Overall, our findings shed some light on current policy and academic debates regarding the

appropriate conduct of monetary policy once household heterogeneity is taken into account. In

particular, our results suggest that an optimal plan that includes a commitment to price stability

in the medium/long-run may also justify a relatively large (first-order) positive initial inflation

rate, with a view to shifting resources to households that have a relatively high marginal utility of

net wealth.

Related literature. Our main contribution is methodological. To the best of our knowledge,
ours is the first paper to solve for a fully dynamic optimal policy problem, both under commitment

8These targets are used to inform the calibration of the gap between the central bank’s and foreign investors’
discount rates, which as explained before is a key determinant of long-run inflation under commitment.
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and discretion, in a general equilibrium model with uninsurable idiosyncratic risk in which the

cross-sectional net wealth distribution (an infinite-dimensional, endogenously evolving object) is

a state in the planner’s optimization problem. Different papers have analyzed Ramsey problems

in similar setups. Dyrda and Pedroni (2014) study the optimal dynamic Ramsey taxation in an

Aiyagari economy. They assume that the paths for the optimal taxes follow splines with nodes set

at a few exogenously selected periods, and perform a numerical search of the optimal node values.

Acikgoz (2014), instead, follows the work of Davila et al. (2012) in employing calculus of variations

to characterize the optimal Ramsey taxation in a similar setting. However, after having shown that

the optimal long-run solution is independent of the initial conditions, he analyzes quantitatively

the steady state but does not solve the full dynamic optimal path.9 Other papers, such as Gottardi,

Kajii, and Nakajima (2011), Itskhoki and Moll (2015), Bilbiie and Ragot (2017), Le Grand and

Ragot (2017) or Challe (2017), analyze optimal Ramsey policies in incomplete-market models in

which the policy-maker does not need to keep track of the wealth distribution.10 In contrast to

these papers, we introduce a methodology for computing the full dynamics under commitment in a

general incomplete-markets setting. Regarding discretion, we are not aware of any previous paper

that has quantitatively analyzed it in models with uninsurable idiosyncratic risk.

A recent contribution by Bhandari et al. (2017), released after the first draft of this paper

was circulated, analyze optimal monetary and fiscal policy with commitment in a heterogeneous-

agents New Keynesian environment with aggregate uncertainty using an alternative methodology.

They employ standard calculus techniques to obtain the first-order conditions of the Ramsey

problem for each individual agent. They then apply a numerical methodology based on (second-

order) perturbation techniques to approximate the equilibrium policy functions and Monte Carlo

simulation of a large number of agents. Our paper, by constrast, employs infinite-dimensional

calculus to obtain the first order conditions of the policy-maker’s problem. This allows us to solve

for the fully nonlinear mapping between the economy’s state —the joint distribution of income and

net wealth—and the optimal policy choices, without relying on Monte Carlo simulation of a large

number of agents.

The use of infinite-dimensional calculus in problems with non-degenerate distributions is em-

ployed in Lucas andMoll (2014) and Nuño andMoll (2017) to find the first-best and the constrained-

effi cient allocation in heterogeneous-agents models. In these papers a social planner directly decides

9Werning (2007) studies optimal fiscal policy in a heterogeneous-agents economy in which agent types are
permanently fixed. Park (2014) extends this approach to a setting of complete markets with limited commitment
in which agent types are stochastically evolving. Both papers provide a theoretical characterization of the optimal
policies based on the primal approach introduced by Lucas and Stokey (1983). Aditionally, Park (2014) analyzes
numerically the steady state but not the transitional dynamics, due to the complexity of solving the latter problem
with that methodology.
10This is due either to particular assumptions that facilitate aggregation or to the fact that the equilibrium net

wealth distribution is degenerate at zero.
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on individual policies in order to control a distribution of agents subject to idiosyncratic shocks.

Here, by contrast, we show how these techniques may be extended to game-theoretical settings

involving several agents who are moreover forward-looking. Under commitment, as is well known,

this requires the policy-maker to internalize how her promised future decisions affect private agents’

expectations; the problem is then augmented by introducing costates that reflect the value of de-

viating from the promises made at time zero.11 If commitment is not possible, the value of these

costates is zero at all times.12

Our baseline analysis assumes continuous time because it helps to improve the effi ciency of the

numerical solution, as discussed in Achdou, Lasry, Lions and Moll (2015) or Nuño and Thomas

(2015). This is due to two properties of continuous-time models. First, the HJB equation is

a deterministic partial differential equation which can be solved using effi cient finite-difference

methods. Second, the dynamics of the distribution can be computed relatively quickly as they

amount to calculating a matrix adjoint. This is due to the fact that the operator describing the law

of motion of the distribution is the adjoint of the operator employed in the dynamic programming

equation and hence the solution of the latter makes straightforward the computation of the former.

This computational speed is essential as the computation of the optimal policies requires several

iterations along the complete time-path of the distribution.13 However, our techniques can also be

applied in discrete-time settings, as we describe in the online appendix.

Aside from the methodological contribution, our paper relates to several strands of the lit-

erature. As explained before, our analysis assigns an important role to the Fisherian redistrib-

utive channel of monetary policy, a long-standing topic that has experienced a revival in recent

years. Doepke and Schneider (2006a) document net nominal asset positions across US sectors and

household groups and estimate empirically the redistributive effects of different inflation scenarios.

Adam and Zhu (2014) perform a similar analysis for Euro Area countries, adding the cross-country

redistributive dimension to the picture.

A recent literature addresses the Fisherian and other channels of monetary policy transmission

in the context of general equilibrium models with incomplete markets and household heterogeneity.

In terms of modelling, our paper is closest to Auclert (2016), Kaplan, Moll and Violante (2016),

Gornemann, Kuester and Nakajima (2012), McKay, Nakamura and Steinsson (2015) or Luetticke

(2015), who also employ different versions of the incomplete-markets, uninsurable idiosyncratic

11In the commitment case, we construct a Lagrangian in a suitable function space and obtain the corresponding
first-order conditions. The resulting optimal policy is time inconsistent (reflecting the effect of investors’inflation
expectations on bond pricing), depending only on time and the initial wealth distribution.
12Under discretion, we work with a generalization of the Bellman principle of optimality and the Riesz repre-

sentation theorem to obtain the time-consistent optimal policies depending on the distribution at any moment in
time.
13In a home PC, the Ramsey problem presented here can be solved in less than five minutes.
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risk framework.14 Other contributions, such as Doepke and Schneider (2006b), Meh, Ríos-Rull

and Terajima (2010), Sheedy (2014), Challe et al. (2015) or Sterk and Tenreyro (2015), analyze

the redistributive effects of monetary policy in environments where heterogeneity is kept finite-

dimensional. We contribute to this literature by analyzing fully dynamic optimal monetary policy,

both under commitment and discretion, in a standard incomplete markets model with uninsurable

idiosyncratic risk.

Although this paper focuses on monetary policy, the techniques developed here lend themselves

naturally to the analysis of other policy problems, e.g. optimal fiscal policy, in this class of

models. Recent work analyzing fiscal policy issues in incomplete-markets, heterogeneous-agent

models includes Heathcote (2005), Oh and Reis (2012), Kaplan and Violante (2014) and McKay

and Reis (2016).

Finally, our paper is related to the literature on mean-field games in Mathematics. The name,

introduced by Lasry and Lions (2006a,b), is borrowed from the mean-field approximation in statis-

tical physics, in which the effect on any given individual of all the other individuals is approximated

by a single averaged effect. In particular, our paper is related to Bensoussan, Chau and Yam (2015),

who analyze a model of a major player and a distribution of atomistic agents that shares some

similarities with the Ramsey problem discussed here.15

2 Model

We extend the basic Huggett framework to an open-economy setting with nominal, non-contingent,

long-term debt contracts and disutility costs of inflation. Let (Ω,F , {Ft} ,P) be a filtered proba-

bility space. Time is continuous: t ∈ [0,∞). The domestic economy is composed of a measure-one

continuum of households that are heterogeneous in their net financial wealth. There is a single,

freely traded consumption good, the World price of which is normalized to 1. The domestic price

(equivalently, the nominal exchange rate) at time t is denoted by Pt and evolves according to

dPt = πtPtdt, (1)

where πt is the domestic inflation rate (equivalently, the rate of nominal exchange rate deprecia-

tion).

14For work studying the effects of different aggregate shocks in related environments, see e.g. Guerrieri and
Lorenzoni (2016), Ravn and Sterk (2013), and Bayer et al. (2015).
15Other papers analyzing mean-field games with a large non-atomistic player are Huang (2010), Nguyen and

Huang (2012a,b) and Nourian and Caines (2013). A survey of mean-field games can be found in Bensoussan, Frehse
and Yam (2013).
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2.1 Households

2.1.1 Output and net assets

Household k ∈ [0, 1] is endowed with an income ykt units of the good at time t, where ykt follows

a two-state Poisson process: ykt ∈ {y1, y2} , with y1 < y2. The process jumps from state 1 to state

2 with intensity λ1 and vice versa with intensity λ2.

Households trade a nominal, non-contingent, long-term, domestic-currency-denominated bond

with one another and with foreign investors. Let Akt denote the net holdings of such bond by

household k at time t; assuming that each bond has a nominal value of one unit of domestic

currency, Akt also represents the total nominal (face) value of net assets. For households with a

negative net position, (−)Akt represents the total nominal (face) value of outstanding net liabilities

(‘debt’for short). We assume that outstanding bonds are amortized at rate δ > 0 per unit of time.16

The nominal value of the household’s net asset position thus evolves as follows,

dAkt = (Anewkt − δAkt) dt,

where Anewkt is the flow of new assets purchased at time t. The nominal market price of bonds at

time t is Qt. Let ckt denote the household’s consumption. The budget constraint of household k

is then

QtA
new
kt = Pt (ykt − ckt) + δAkt.

Combining the last two equations, we obtain the following dynamics for net nominal wealth,

dAkt =

(
δ

Qt

− δ
)
Aktdt+

Pt (ykt − ckt)
Qt

dt. (2)

We define real net wealth as akt ≡ Akt/Pt. Its dynamics are obtained by applying Itô’s lemma to

equations (1) and (2),

dakt =

[(
δ

Qt

− δ − πt
)
akt +

ykt − ckt
Qt

]
dt. (3)

We assume that each household faces the following exogenous borrowing limit,

akt ≥ φ. (4)

where φ ≤ 0.

For future reference, we define the nominal bond yield rt implicit in a nominal bond price Qt as

the discount rate for which the discounted future promised cash flows equal the bond price. The

discounted future promised payments are
∫∞

0
e−(rt+δ)sδds = δ/ (rt + δ). Therefore, the nominal

16This tractable form of long-term bonds was first introduced by Leland and Toft (1986).

8



bond yield is

rt =
δ

Qt

− δ. (5)

2.1.2 Preferences

Household have preferences over paths for consumption ckt and domestic inflation πt discounted

at rate ρ > 0,

Uk0 ≡ E0

[∫ ∞
0

e−ρtu(ckt, πt)dt

]
, (6)

with uc > 0, uπ > 0, ucc < 0 and uππ < 0.17 From now onwards we drop subscripts k for ease

of exposition. The household chooses consumption at each point in time in order to maximize its

welfare. The value function of the household at time t can be expressed as

v(t, a, y) = max
{cs}s∈[t,∞)

Et
[∫ ∞

t

e−ρ(s−t)u(cs, πs)ds

]
, (7)

subject to the law of motion of net wealth (3) and the borrowing limit (4). We use the short-hand

notation vi(t, a) ≡ v(t, a, yi) for the value function when household income is low (i = 1) and high

(i = 2). The Hamilton-Jacobi-Bellman (HJB) equation corresponding to the problem above is

ρvi(t, a) =
∂vi
∂t

+ max
c

{
u(c, π (t)) + si (t, a, c)

∂vi
∂a

}
+ λi [vj(t, a)− vi(t, a)] , (8)

for i, j = 1, 2, and j 6= i, where si (t, a, c) is the drift function, given by

si (t, a, c) =

(
δ

Q (t)
− δ − π (t)

)
a+

yi − c
Q (t)

, i = 1, 2. (9)

The first order condition for consumption is

uc(ci (t, a) , π (t)) =
1

Q (t)

∂vi(t, a)

∂a
. (10)

Therefore, household consumption increases with nominal bond prices and falls with the slope of

the value function. Intuitively, a higher bond price (equivalently, a lower yield) gives the household

an incentive to save less and consume more. A steeper value function, on the contrary, makes it

more attractive to save so as to increase net asset holdings.

17The general specification of disutility costs of inflation nests the case of costly price adjustments à la Rotemberg.
See Section 4.1 for further discussion.
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2.2 Foreign investors

Households trade bonds with competitive risk-neutral foreign investors that can invest elsewhere

at the risk-free real rate r̄. As explained before, domestic bonds are amortized at rate δ. Foreign

investors also discount future future nominal payoffs with the accumulated domestic inflation (i.e.

exchange rate depreciation) between the time of the bond purchase and the time such payoffs

accrue. Therefore, the nominal price of the bond at time t is given by

Q(t) =

∫ ∞
t

δe−(r̄+δ)(s−t)−
∫ s
t
πududs. (11)

Taking the derivative with respect to time, we obtain

Q(t) (r̄ + δ + π(t)) = δ + Q̇(t), (12)

where Q̇(t) ≡ dQ/dt. The partial differential equation (12) provides the risk-neutral pricing of the

nominal bond. The boundary condition is

lim
t→∞

Q(t) =
δ

r̄ + δ + π (∞)
, (13)

where π (∞) is the inflation level in the steady state, which we assume exits.

2.3 Central Bank

There is a central bank that chooses monetary policy. We assume that there are no monetary

frictions so that the only role of money is that of a unit of account. The monetary authority

chooses the inflation rate πt.18 In Section 3, we will study in detail the optimal inflationary policy

of the central bank.

2.4 Competitive equilibrium

The state of the economy at time t is the joint density of net wealth and output, f(t, a, yi) ≡ fi(t, a),

i = 1, 2. The dynamics of this density are given by the Kolmogorov Forward (KF) equation,

∂fi(t, a)

∂t
= − ∂

∂a
[si (t, a) fi(t, a)]− λifi(t, a) + λjfj(t, a), (14)

18This could be done, for example, by setting the nominal interest rate on a lending (or deposit) short-term
nominal facility with foreign investors.
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a ∈ [φ,∞), i, j = 1, 2, j 6= i. The density satisfies the normalization

2∑
i=1

∫ ∞
φ

fi (t, a) da = 1. (15)

We define a competitive equilibrium in this economy.

Definition 1 (Competitive equilibrium) Given a sequence of inflation rates π (t) and an ini-

tial wealth-output density f(0, a, y), a competitive equilibrium is composed of a household value

function v(t, a, y), a consumption policy c(t, a, y), a bond price function Q (t) and a density f(t, a, y)

such that:

1. Given π, the price of bonds in (12) is Q.

2. Given Q and π, v is the solution of the households’problem (8) and c is the optimal con-

sumption policy.

3. Given Q, π, and c, f is the solution of the KF equation (14).

Notice that, given π, the problem of foreign investors can be solved independently of that of

the household, which in turn only depends on π and Q but not on the aggregate distribution.

We can compute some aggregate variables of interest. The aggregate real net financial wealth

in the economy is

āt ≡
2∑
i=1

∫ ∞
φ

afi (t, a) da. (16)

We may similarly define gross real household debt as b̄t ≡
∑2

i=1

∫ 0

φ
(−a) fi (t, a) da. Aggregate

consumption is

c̄t ≡
2∑
i=1

∫ ∞
φ

ci (a, t) fi (t, a) da,

where ci (a, t) ≡ c(t, a, yi), i = 1, 2, and aggregate output is

ȳt ≡
2∑
i=1

∫ ∞
φ

yifi (t, a) da.
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These quantities are linked by the current account identity,

dāt
dt

=
2∑
i=1

∫ ∞
φ

a
∂fi(t, a)

∂t
da =

2∑
i=1

∫ ∞
φ

a

[
− ∂

∂a
(sifi) da− λifi(t, a) + λjfj(t, a)

]
da

=
2∑
i=1

∫ ∞
φ

−a ∂
∂a

(sifi) da = −
2∑
i=1

asifi|∞φ +

2∑
i=1

∫ ∞
φ

sifida

=

(
δ

Qt

− δ − πt
)
āt +

ȳt − c̄t
Qt

, (17)

where we have used (14) in the second equality, and we have applied the boundary conditions

s1 (t, φ) f1 (t, φ) + s2 (t, φ) f2 (t, φ) = 0 in the last equality.19

Finally, we make the following assumption.

Assumption 1 The value of parameters is such that in equilibrium the economy is always a net

debtor against the rest of the World: āt ≤ 0 for all t.

This condition is imposed for tractability. We have restricted households to save only in bonds

issued by other households, and this would not be possible if the country was a net creditor vis-

à-vis the rest of the World. In addition to this, we have assumed that the bonds issued by the

households are priced by foreign investors, which requires that there should be a positive net supply

of bonds to the rest of the World to be priced. In any case, this assumption is consistent with the

experience of the small open economies that we target for calibration purposes, as we explain in

Section 4.

3 Optimal monetary policy

We now turn to the design of the optimal monetary policy. Following standard practice, we assume

that the central bank is utilitarian, i.e. it gives the same Pareto weight to each household. In order

to illustrate the role of commitment vs. discretion in our framework, we will consider both the case

in which the central bank can credibly commit to a future inflation path (the Ramsey problem),

and the time-consistent case in which the central bank decides optimal current inflation given the

current state of the economy (the Markov Perfect equilibrium).

19This condition is related to the fact that the KF operator is the adjoint of the infinitesimal generator of the
stochastic process (3). See Appendix A for more information. See also Appendix B.6 in Achdou et al. (2015).
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3.1 Central bank preferences

The central bank is assumed to be benevolent and hence maximizes economy-wide aggregate

welfare,

UCB
0 ≡

∫ ∞
φ

∑2

i=1
vi (0, a) fi(0, a)da. (18)

It will turn out to be useful to express the above welfare criterion as follows.

Lemma 1 The welfare criterion (18) can alternatively be expressed as

UCB
0 =

∫ ∞
0

e−ρs
[∫ ∞

φ

∑2

i=1
u (ci (s, a) , π (s)) fi(s, a)da

]
ds. (19)

3.2 Commitment

Consider first the case in which the central bank credibly commit at time zero to an infla-

tion path {π (t)}t∈[0,∞). The optimal inflation path is then a function of the initial distribution

{fi (0, a)}i=1,2 ≡ f0 (a) and of time: π (t) ≡ πR [t, f0 (a)] . The value functional of the central bank

is given by

WR [f0 (·)] = max
{πs,Qs,v(s,·),c(s,·),f(s,·)}s∈[0,∞)

∫ ∞
0

e−ρs
[∫ ∞

φ

∑2

i=1
u (ci (s, a) , πs) fi(s, a)da

]
ds, (20)

subject to the law of motion of the distribution (14), the bond pricing equation (12), and house-

hold’s HJB equation (8) and optimal consumption choice (10). Notice that the optimal value WR

and the optimal policy πR are not ordinary functions, but functionals, as they map the infinite-

dimensional initial distribution f0 (·) into R. The central bank maximizes welfare taking into
account not only the state dynamics (14), but also the households’HJB equation (8) and the

investors’bond pricing condition (12), both of which are forward-looking. That is, the central

bank understands how it can steer households’and foreign investors’expectations by committing

to an inflation path.

Definition 2 (Ramsey problem) Given an initial distribution f0, a Ramsey problem is com-

posed of a sequence of inflation rates π (t) , a household value function v(t, a, y), a consumption

policy c(t, a, y), a bond price function Q (t) and a distribution f(t, a, y) such that they solve the

central bank problem (20).

If v, f, c and Q are a solution to the problem (20), given π, they constitute a competitive

equilibrium, as they satisfy equations (14), (12), (8) and (10). Therefore the Ramsey problem

could be redefined as that of finding the π such that v, f, c and Q are a competitive equilibrium

and the central bank’s welfare criterion is maximized.
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The Ramsey problem is an optimal control problem in a suitable function space. The following

proposition characterizes the solution to the central bank’s problem under commitment.

Proposition 1 (Optimal inflation - Ramsey) In addition to equations (14), (12), (8) and
(10), if a solution to the Ramsey problem (20) exists, the inflation path π (t) must satisfy

2∑
i=1

∫ ∞
φ

[
a
∂vit (a)

∂a
− uπ (ci (t, a) , π (t))

]
fi (t, a) da− µ (t)Q (t) = 0, (21)

where µ (t) is a costate with law of motion

dµ (t)

dt
= (ρ− r̄ − π(t)− δ)µ (t) +

2∑
i=1

∫ ∞
φ

∂vit (a)

∂a

δa+ yi − ci (t, a)

Q (t)2 fi (t, a) da (22)

and initial condition µ (0) = 0.

The proof can be found in the Appendix. Our approach is to construct a Lagragian in a

suitable function space and to obtain the first-order conditions by taking Gateaux derivatives,

which extend the concept of derivative from Rn to infinite-dimensional spaces. In the appendix
we show that the Lagrange multiplier associated with the KF equation (14), which represents the

social value of an individual household, coincides with the private value vit (a).20 In addition, the

Lagrange multipliers associated with the households’HJB equation (8) and first-order conditions

(10) are zero. That is, households’forward-looking optimizing behavior does not represent a source

of time-inconsistency, as the monetary authority would choose at all times the same individual

consumption and saving policies as the households themselves. Therefore, the only nontrivial

Lagrange multiplier is the one associated with the bond pricing equation (12), denoted by µ (t) in

Proposition 1.

Equation (21) determines optimal inflation under commitment. The first term in the equation

captures the basic static trade-off that the central bank faces when choosing inflation. The central

bank balances the marginal utility cost of higher inflation across the economy (uπ) against the

marginal welfare effects due to the impact of inflation on the real value of households’nominal

net positions (a∂vi
∂a
). For borrowing households (a < 0), the latter effect is positive as inflation

erodes the real value of their debt burden, whereas the opposite is true for creditor ones (a > 0).

Moreover, provided that the value function is concave in net wealth
(
∂2vi
∂a2 < 0, i = 1, 2,

)
, and

given Assumption 1 (the country as a whole is a net debtor), the central bank has a double motive

20One of the advantages in the case of a small open economy is that the social value of an agent coincides with
its private value. In the case of a closed-economy version of the model this would not be the case, making the
computations more complex, but still tractable.
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to use inflation for redistributive purposes.21 On the one hand, it will try to redistribute wealth

from foreign investors to domestic borrowers (cross-border redistribution). On the other hand, and

somewhat more subtly, since borrowing households have a higher marginal utility of net wealth

than creditor ones, the central bank will be led to redistribute from the latter to the former, as

such course of action is understood to raise welfare in the domestic economy as a whole (domestic

redistribution).

The second term, which includes the costate µ (t), captures the value to the central bank of

promises about time-t inflation made to foreign investors at time 0. Such value is zero only at the

time of announcing the Ramsey plan (t = 0), because the central bank is not bound by previous

commitments, but it will generally be different from zero at any time t > 0. If µ (t) < 0, then

the central bank’s incentive to create inflation at time t > 0 so as to redistribute wealth will be

tempered by the fact that it internalizes how expectations of higher inflation affect investors’bond

pricing prior to time t.

Notice that the Ramsey problem is not time-consistent, due precisely to the presence of the

(forward-looking) bond pricing condition in that problem. If at some future time t̃ > 0 the central

bank decided to re-optimize given the current state f
(
t̃, a, y

)
, the new path for optimal inflation

π̃ (t) ≡ πR
[
t, f
(
t̃, ·
)]
would not need to coincide with the original path π (t) ≡ πR [t, f (0, ·)], as

the value of the costate at that point would be µ̃
(
t̃
)

= 0 (corresponding to a new commitment

formulated at time t), whereas under the original commitment it is µ
(
t̃
)
6= 0.

Importantly, these techniques are not restricted to continuous-time problems. In fact, the

equivalent discrete-time model can also be solved using the same techniques at the cost of more

complicated results. Appendix E illustrates as an example how our methodology can be used to

solve for the optimal policy under commitment in the discrete-time version of our model.

3.3 Discretion

Assume now that the central bank cannot commit to any future policy. The inflation rate π at

each point in time then depends only on the value at that point in time of the aggregate state

variable, the net wealth distribution {fi (t, a)}i=1,2 ≡ ft (a); that is, π (t) ≡ πM [ft (·)] . This is a
Markov (or feedback) Stackelberg equilibrium in a space of distributions.22 As explained by Basar

and Olsder (1999, pp. 413-417), a continuous-time feedback Stackelberg solution can be defined

as the limit as ∆t→ 0 of a sequence of problems in which the central bank chooses policy in each

21The concavity of the value function is guaranteed for the separable utility function presented in Assumption 2
below.
22Finite-dimensional Markov Stackelberg equilibria have been analyzed in the dynamic game theory literature,

both in continuous and discrete time. See e.g. Basar and Olsder (1999) and references therein. In macroeconomics,
an example of Markov Stackelberg is Klein, Krusell, and Rios-Rull (2008)
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interval (t, t+ ∆t] but not across intervals.23 Formally, the value functional of the central bank at

time t is given by

WM [ft (·)] = lim
∆t→0

WM
∆t [ft (·)] ,

where

WM
∆t [ft (·)] = max

{πs,Qs,v(s,·),c(s,·),f(s,·)}s∈(t,t+∆t]

∫ t+∆t

t

e−ρ(s−t)

[∫ ∞
φ

2∑
i=1

u (cis (a) , πs) fi(s, a)da

]
ds(23)

+e−ρ∆tWM
∆t [ft+∆t (·)] ,

subject to the law of motion of the distribution (14), the bond pricing equation (12), and house-

hold’s HJB equation (8) and optimal consumption choice (10). Notice, as in the case with com-

mitment, that the optimal value WM and the optimal policy πM are not ordinary functions, but

functionals, as they map the infinite-dimensional state variable f (t, a) into R.
We can define the equilibrium in this case.

Definition 3 (Markov Stackelberg) Given an initial distribution f0, a Markov Stackelberg

equilibrium is composed of a sequence of inflation rates π (t) , a household value function v(t, a, y),

a consumption policy c(t, a, y), a bond price function Q (t) and a distribution f(t, a, y) such that

they solve the central bank problem (23).

The following proposition characterizes the solution to the central bank’s problem under dis-

cretion.

Proposition 2 (Optimal inflation - Markov) In addition to equations (14), (12), (8) and
(10), if a solution to the Markov Stackelberg problem problem (23) exists, the inflation rate function

π (t) must satisfy

2∑
i=1

∫ ∞
φ

[
a
∂vit (a)

∂a
− uπ (ci (t, a) , π (t))

]
fi (t, a) da = 0. (24)

The proof is in the Appendix. Our approach is to solve the problem in (23) following a similar

approach as in the Ramsey problem above but taking into account how the policies in the current

time interval affect the continuation value in the next time interval, as represented by the value

functional WM
∆t [ft+∆t (·)] at time t+ ∆t. Then we take the limit as ∆t→ 0.

In contrast to the case with commitment, in the Markov Stackelberg equilibrium no promises

can be made at any point in time, hence the value of the costate (the term µ (t) in equation 21)

23In particular, for any arbitrary T > 0, we divide the interval [0, T ] in subintervals of the form [0,∆t]∪(∆t, 2∆t]∪
...((N − 1) ∆t,N∆t], where N ≡ T/∆t.
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is zero. Therefore, in equation (24) there is only a static trade-off between the welfare cost of

inflation and the welfare gain from inflating away net liabilities. As is well known, the Markov

Stackelberg solution is time consistent, as it only depends on the current state.

3.4 Some analytical results

In order to provide some additional analytical insights on optimal policy, we make the following

assumption on preferences.

Assumption 2 Consider the class of separable utility functions

u (c, π) = uc (c)− uπ (π) .

The consumption utility function uc is bounded, concave and continuous with ucc > 0, uccc < 0 for

c > 0. The inflation disutility function uπ satisfies uππ > 0 for π > 0, uππ < 0 for π < 0, uπππ > 0

for all π, and uπ (0) = uππ (0) = 0.

We first obtain the following result.

Lemma 2 Let preferences satisfy Assumption 2. The optimal value function is concave.

The following result establishes the existence of a positive inflationary bias under discretionary

optimal monetary policy.

Proposition 3 (Inflation bias under discretion) Let preferences satisfy Assumption 2. Opti-
mal inflation under discretion is then positive at all times: π(t) > 0 for all t ≥ 0.

The proof can be found in Appendix A. To gain intuition, we can use the above separable

preferences in order to express the optimal inflation decision under discretion (equation 24) as

uππ (π (t)) =

2∑
i=1

∫ ∞
φ

(−a)
∂vi
∂a

fi (t, a) da. (25)

That is, under discretion inflation increases with the average net liabilities weighted by each house-

hold’s marginal utility of wealth, ∂vi/∂a. Notice first that, from Assumption 1, the country as

a whole is a net debtor:
∑2

i=1

∫∞
φ

(−a) fi (t, a) da = (−) āt ≥ 0. This, combined with the strict

concavity of the value function (such that debtors effectively receive more weight than creditors),

makes the right-hand side of (25) strictly positive. Since uππ (π) > 0 only for π > 0, it follows

that inflation must be positive. Notice that, even if the economy as a whole is neither a creditor
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or a debtor (āt = 0), the concavity of the value function implies that, as long as there is wealth

dispersion, the central bank will have a reason to inflate.

The result in Proposition 3 is reminiscent of the classical inflationary bias of discretionary

monetary policy originally emphasized by Kydland and Prescott (1977) and Barro and Gordon

(1983). In those papers, the source of the inflation bias is a persistent attempt by the monetary

authority to raise output above its natural level. Here, by contrast, it arises from the welfare gains

that can be achieved for the country as a whole by redistributing wealth towards debtors.

We now turn to the commitment case. Under the above separable preferences, from equation

(21) optimal inflation under commitment satisfies

uππ (π (t)) =
2∑
i=1

∫ ∞
φ

(−a)
∂vi
∂a

fi (t, a) da+ µ (t)Q (t) . (26)

In this case, the inflationary pressure coming from the redistributive incentives is counterbalanced

by the value of time-0 promises about time-t inflation, as captured by the costate µ (t). Thus, a

negative value of such costate leads the central bank to choose a lower inflation rate than the one

it would set ceteris paribus under discretion.

Unfortunately, we cannot solve analytically for the optimal path of inflation. However, we

are able to establish the following important result regarding the long-run level of inflation under

commitment.

Proposition 4 (Optimal long-run inflation under commitment) Let preferences satisfy As-
sumption 2. In the limit as ρ→ r̄, the optimal steady-state inflation rate under commitment tends

to zero: lim
ρ→r̄

π (∞) = 0.

Provided households’(and the benevolent central bank’s) discount factor is arbitrarily close

to that of foreign investors, then optimal long-run inflation under commitment will be arbitrarily

close to zero. The intuition is the following. The inflation path under commitment converges over

time to a level that optimally balances the marginal welfare costs and benefits of trend inflation.

On the one hand, the welfare costs include the direct utility costs, but also the increase in nominal

bond yields that comes about with higher expected inflation; indeed, from the definition of the

yield (5) and the expression for the long-run nominal bond price (13), the long-run nominal bond

yield is given by the following long-run Fisher equation,

r (∞) =
δ

Q (∞)
− δ = r̄ + π (∞) , (27)

such that nominal yields increase one-for-one with (expected) inflation in the long run. On the

other hand, the welfare benefits of inflation are given by its redistributive effect (for given nominal
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yields). As ρ→ r̄, these effects tend to exactly cancel out precisely at zero inflation.

Proposition 4 is reminiscent of a well-known result from the New Keynesian literature, namely

that optimal long-run inflation in the standard New Keynesian framework is exactly zero (see e.g.

Benigno and Woodford, 2005). In that framework, the optimality of zero long-run inflation arises

from the fact that, at that level, the welfare gains from trying to exploit the short-run output-

inflation trade-off (i.e. raising output towards its socially effi cient level) exactly cancel out with the

welfare losses from permanently worsening that trade-off (through higher inflation expectations).

Key to that result is the fact that, in that model, price-setters and the (benevolent) central bank

have the same (steady-state) discount factor. Here, the optimality of zero long-run inflation reflects

instead the fact that, at zero trend inflation, the welfare gains from trying to redistribute wealth

from creditors to debtors becomes arbitrarily close to the welfare losses from lower nominal bond

prices when the discount rate of the investors pricing such bonds is arbitrarily close to that of the

central bank.

Assumption 1 restricts us to have ρ > r̄, as otherwise households would we able to accumulate

enough wealth so that the country would stop being a net debtor to the rest of the World. However,

Proposition 4 provides a useful benchmark to understand the long-run properties of optimal policy

in our model when ρ is very close to r̄. This will indeed be the case in our subsequent numerical

analysis.

4 Numerical analysis

In the previous section we have characterized the optimal monetary policy in our model. In this

section we solve numerically for the dynamic equilibrium under optimal policy, using numerical

methods to solve continuous-time models with heterogeneous agents, as in Achdou et al. (2015)

or Nuño and Moll (2017). Before analyzing the dynamic path of this economy under the optimal

policy, we first analyze the steady state towards which such path converges asymptotically. The

numerical algorithms that we use are described in Appendices B (steady-state) and C (transitional

dynamics).

4.1 Calibration

The calibration is intended to be mainly illustrative, given the model’s simplicity and parsimo-

niousness. We calibrate the model to replicate some relevant features of a prototypical European

small open economy.24 Let the time unit be one year. For the calibration, we consider that the

24We will focus for illustration on the UK, Sweden, and the Baltic countries (Estonia, Latvia, Lithuania). We
choose these countries because they (separately) feature desirable properties for the purpose at hand. On the one
hand, UK and Sweden are two prominent examples of relatively small open economies that retain an independent
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economy rests at the steady state implied by a zero inflation policy.25 When integrating across

households, we therefore use the stationary wealth distribution associated to such steady state.26

We assume the following specification for preferences,

u (c, π) = log (c)− ψ

2
π2. (28)

As discussed in Appendix D, our quadratic specification for the inflation utility cost, ψ
2
π2, can be

micro-founded by modelling firms explicitly and allowing them to set prices subject to standard

quadratic price adjustment costs à la Rotemberg (1982). We set the scale parameter ψ such that

the slope of the inflation equation in a Rotemberg pricing setup replicates that in a Calvo pricing

setup for reasonable calibrations of price adjustment frequencies and demand curve elasticities.27

We jointly set households’discount rate ρ and borrowing limit φ such that the steady-state net

international investment position (NIIP) over GDP (ā/ȳ) and gross household debt to GDP (b̄/ȳ)

replicate those in our target economies.28

We target an average bond duration of 4.5 years, as in Auclert (2016). In our model, the

Macaulay bond duration equals 1/ (δ + r̄). We set the world real interest rate r̄ to 3 percent. Our

duration target then implies an amortization rate of δ = 0.19.

The idiosyncratic income process parameters are calibrated as follows. We follow Huggett

(1993) in interpreting states 1 and 2 as ’unemployment’ and ’employment’, respectively. The

transition rates between unemployment and employment (λ1, λ2) are chosen such that (i) the

monetary policy, like the economy in our framework. This is unlike the Baltic states, who recently joined the euro.
However, historically the latter states have been relatively large debtors against the rest of the World, which make
them square better with our theoretical restriction that the economy remains a net debtor at all times (UK and
Sweden have also remained net debtors in basically each quarter for the last 20 years, but on average their net
balance has been much closer to zero).
25This squares reasonably well with the experience of our target economies, which have displayed low and stable

inflation for most of the recent past.
26The wealth dimension is discretized by using 1000 equally-spaced grid points from a = φ to a = 10. The upper

bound is needed only for operational purposes but is fully innocuous, because the stationary distribution places
essentially zero mass for wealth levels above a = 8.
27The slope of the continuous-time New Keynesian Phillips curve in the Calvo model can be shown to be given

by χ (χ+ ρ), where χ is the price adjustment rate (the proof is available upon request). As shown in Appendix D,
in the Rotemberg model the slope is given by ε−1

ψ , where ε is the elasticity of firms’demand curves and ψ is the
scale parameter in the quadratic price adjustment cost function in that model. It follows that, for the slope to be
the same in both models, we need

ψ =
ε− 1

χ (χ+ ρ)
.

Setting ε to 11 (such that the gross markup ε/ (ε− 1) equals 1.10) and χ to 4/3 (such that price last on average
for 3 quarters), and given our calibration for ρ, we obtain ψ = 5.5.
28According to Eurostat, the NIIP/GDP ratio averaged minus 48.6% across the Baltic states in 2016:Q1, and

only minus 3.8% across UK-Sweden. We thus target a NIIP/GDP ratio of minus 25%, which is about the midpoint
of both values. Regarding gross household debt, we use BIS data on ’total credit to households’, which averaged
85.9% of GDP across Sweden-UK in 2015:Q4 (data for the Baltic countries are not available). We thus target a
90% household debt to GDP ratio.
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unemployment rate λ2/ (λ1 + λ2) is 10 percent and (ii) the job finding rate is 0.1 at monthly

frequency or λ1 = 0.72 at annual frequency.29 These numbers describe the ‘European’labor market

calibration in Blanchard and Galí (2010). We normalize average income ȳ = λ2

λ1+λ2
y1 + λ1

λ1+λ2
y2 to

1. We also set y1 equal to 71 percent of y2, as in Hall and Milgrom (2008). Both targets allow us

to solve for y1 and y2. Table 1 summarizes our baseline calibration. Figure 1 displays the value

functions vi (a,∞) ≡ vi (a) and the consumption policies ci (a), for i = 1, 2 in the zero-inflation

steady state.30

Table 1. Baseline calibration

Parameter Value Description Source/Target

r̄ 0.03 world real interest rate standard

ψ 5.5 scale inflation disutility slope NKPC in Calvo model

δ 0.19 bond amortization rate Macaulay duration = 4.5 years

λ1 0.72 transition rate unemployment-to-employment monthly job finding rate of 0.1

λ2 0.08 transition rate employment-to-unemployment unemployment rate 10 percent

y1 0.73 income in unemployment state Hall & Milgrom (2008)

y2 1.03 income in employment state E (y) = 1

ρ

φ

0.0302

-3.6

subjective discount rate

borrowing limit

{
NIIP -25% of GDP

HH debt/GDP ratio 90%

4.2 Steady state under optimal policy

We start our numerical analysis of optimal policy by computing the steady state equilibrium to

which each monetary regime (commitment and discretion) converges. Table 2 displays a number

of steady-state objects. Under commitment, the optimal long-run inflation is close to zero (-0.05

percent), consistently with Proposition 4 and the fact ρ and r̄ are very closed to each other in our

calibration.31 As a result, long-run gross household debt and net total assets (as % of GDP) are

very similar to those under zero inflation. From now on, we use x ≡ x (∞) to denote the steady

29Analogously to Blanchard and Galí (2010; see their footnote 20), we compute the equivalent annual rate λ1 as

λ1 =

12∑
i=1

(1− λm1 )
i−1

λm1 ,

where λm1 is the monthly job finding rate.
30Importantly, while the figure displays the steady-state value functions, it should be noted that their concavity

is preserved in the time-varying value functions implied by the optimal policy paths.
31As explained in section 3, in our baseline calibration we have r̄ = 0.03 and ρ = 0.0302.
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Figure 1: Steady state with zero inflation.

state value of any variable x. As shown in the previous section, the long-run nominal yield is

r = r̄ + π, where the World real interest rate r̄ equals 3 percent in our calibration.

Table 2. Steady-state values under optimal policy

units Ramsey MPE

Inflation, π % −0.05 1.68

Nominal yield, r % 2.95 4.68

Net assets, ā % GDP −24.1 −0.6

Gross assets (creditors) % GDP 65.6 80.0

Gross debt (debtors), b̄ % GDP 89.8 80.6

Current acc. deficit, c̄− ȳ % GDP −0.63 −0.01

Under discretion, by contrast, long run inflation is 1.68 percent, which reflects the inflationary

bias discussed in the previous section. The presence of an inflationary bias makes nominal interest

rates higher through the Fisher equation (27). The economy’s aggregate net liabilities fall substan-

tially relative to the commitment case (0.6% vs 24.1%), mostly reflecting larger asset accumulation

by creditor households.

4.3 Optimal transitional dynamics

As explained in Section 3, the optimal policy paths depend on the initial (time-0) net wealth

distribution across households, {fi (0, a)}i=1,2, which is an (infinite-dimensional) primitive in our
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model.32 In the interest of isolating the effect of the policy regime (commitment vs discretion) on

the equilibrium allocations, we choose a common initial distribution in both cases. For the purpose

of illustration, we consider the stationary distribution under zero inflation as the initial distribution.

In section 4.5 we will analyze the robustness of our results to a wide range of alternative initial

distributions.

Consider first the case under commitment (Ramsey policy). The optimal paths are shown by

the green solid lines in Figure 2.33 Under our assumed functional form for preferences in (28), we

have from equation (26) that initial optimal inflation is given by

π (0) =
1

ψ

2∑
i=1

∫ ∞
φ

(−a)
∂vi (0, a)

∂a
fi (0, a) da,

where we have used the fact that µ (0) = 0, as there are no pre-commitments at time zero.

Therefore, the time-0 inflation rate, of about 4.6 percent, reflects exclusively the redistributive

motive (both cross-border and domestic) discussed in Section 3. This domestic redistribution can

be clearly seen in panels (h) and (i) of Figure 2: the transitory inflation created under commitment

gradually reduces both the assets of creditor households and the liabilities of debtor ones. The

cross-border redistribution is apparent from panel (g): the country as a whole temporarily reduces

its net liabilities vis-à-vis the rest of the World.

As time goes by, optimal inflation under commitment gradually declines towards its (near) zero

long-run level. The intuition is straightforward. At the time of formulating its commitment, the

central bank exploits the existence of a stock of nominal bonds issued in the past. This means

that the inflation created by the central bank has no effect on the prices at which those bonds

were issued. However, the price of nominal bonds issued from time 0 onwards does incorporate

the expected future inflation path. Under commitment, the central bank internalizes the fact that

higher future inflation reduces nominal bond prices, i.e. it raises nominal bond yields, which hurts

net bond issuers. This effect becomes stronger and stronger over time, as the fraction of total

nominal bonds that were issued before the time-0 commitment becomes smaller and smaller. This

gives the central bank the right incentive to gradually reduce inflation over time. Formally, in the

32As explained in section 3.1, in our numerical exercises we assume that the income distribution starts at its
ergodic limit: fy (yi) = λj 6=i/ (λ1 + λ2) , i = 1, 2. Also, in all our subsequent exercises we assume that the time-0
net wealth distribution conditional on being in state 1 (unemployment) is identical to that conditional on state 2
(employment): fa|y (0, a | y2) = fa|y (0, a | y1) ≡ f0 (a). Therefore, the initial joint density is simply f (0, a, yi) =
f0 (a)λj 6=i/ (λ1 + λ2), i = 1, 2.
33We have simulated 800 years of data at monthly frequency.
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equation that determines optimal inflation at t ≥ 0,

π (t) =
1

ψ

2∑
i=1

∫ ∞
φ

(−a)
∂vi
∂a

fi (t, a) da+
1

ψ
µ (t)Q (t) , (29)

the (absolute) value of the costate µ (t), which captures the effect of time-t inflation on the price

of bonds issued during the period [0, t), becomes larger and larger over time. As shown in panels

(c) and (b) of Figure 2, the increase in |µ (t)Q (t)| dominates that of the marginal-value-weighted
average net liabilities,

∑
i

∫∞
φ

(−a) ∂vi
∂a
fi (t, a) da, which from equation (29) produces the gradual

fall in inflation.34 Importantly, the fact that investors anticipate the relatively short-lived nature

of the initial inflation explains why nominal yields (panel e) increase much less than instantaneous

inflation itself. This allows the ex-post real yield rt−πt (panel f) to fall sharply at time zero, thus
giving rise to the aforementioned redistribution.

In summary, under the optimal commitment the central bank front-loads inflation in order

to redistribute net wealth towards domestic borrowers but also commits to gradually reducing

inflation in order to prevent inflation expectations from permanently raising nominal yields.

Under discretion (dashed blue lines in Figure 2), time-zero inflation is 4.3 percent, close to the

value under commitment.35 In contrast to the commitment case, however, from time zero onwards

optimal discretionary inflation remains relatively high, declining very slowly to its asymptotic value

of 1.68 percent. The reason is the inflationary bias that stems from the central bank’s attempt

to redistribute wealth to borrowing households. This inflationary bias is not counteracted by any

concern about the effect of inflation expectations on nominal bond yields; that is, the costate µ (t)

in equation (29) is zero at all times under discretion. This inflationary bias produces permanently

lower nominal bond prices (higher nominal yields) than under commitment. Contrary also to the

Ramsey equilibrium, the discretionary policy largely fails to deliver the very redistribution it tries

to achieve. The reason is that investors anticipate high future inflation and price the new bonds

accordingly. The resulting jump in nominal yields (panel e) undoes most of the instantaneous

inflation, such that the ex-post real yield (panel f) barely falls.

34Panels (b) and (c) in Figure 2 display the two terms on the right-hand side of (29), i.e. the marginal-value-
weighted average net liabilities and µ (t)Q (t) both rescaled by the inflation disutility parameter ψ. Therefore, the
sum of both terms equals optimal inflation under commitment.
35Since µ (0) = 0, and given a common initial wealth distribution, time-0 inflation under commitment and

discretion differ only insofar as time-0 value functions in both regimes do. Numerically, the latter functions are
similar enough that π (0) is very similar in both regimes.
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4.4 Welfare analysis

We now turn to the welfare analysis of alternative policy regimes. Aggregate welfare is defined as

∫ ∞
φ

2∑
i=1

vi (0, a) fi(t, a)da =

∫ ∞
0

e−ρt
∫ ∞
φ

2∑
i=1

u (ci (t, a) , π (t)) fi(t, a)dadt ≡ W [c] ,

Table 3 displays the welfare losses of suboptimal policies vis-à-vis the Ramsey optimal equilibrium.

We express welfare losses as a permanent consumption equivalent, i.e. the number Θ (in %)

that satisfies in each case WR
[
cR
]

= W [(1 + Θ) c], where R denotes the Ramsey equilibrium.36

The table also displays the welfare losses incurred respectively by creditors and debtors.37 The

welfare losses from discretionary policy versus commitment are of first order: 0.31% of permanent

consumption. This welfare loss is suffered not only by creditors (0.23%), but also by debtors

(0.08%), despite the fact that the discretionary policy is aimed precisely at redistributing wealth

towards debtors. As explained in the previous subsection, under the discretionary policy the

increase in nominal yields undoes most of the impact of inflation on ex post real yields and hence

on net asset accumulation. As a result, discretionary policy largely fails at producing the very

redistribution towards debtor households that it intends to achieve in the first place, while leaving

both creditor and debtor households to bear the direct welfare costs of permanent positive inflation.

Table 3. Welfare losses relative to the optimal commitment

Economy-wide Creditors Debtors

Discretion 0.31 0.23 0.08

Zero inflation 0.05 -0.17 0.22

Note: welfare losses are expressed as a % of permanent consumption

We also compute the welfare losses from a policy of zero inflation, π (t) = 0 for all t ≥ 0.

As the table shows, the latter policy approximates the welfare outcome under commitment very

closely, for two reasons. First, the welfare gains losses suffered by debtor households due to

the absence of initial transitory inflation are largely compensated by the corresponding gains for

creditor households. Second, zero inflation avoids too the welfare costs from the inflationary bias.
36Under our assumed separable preferences with log consumption utility, it is possible to show that Θ =

exp
{
ρ
(
WR

[
cR
]
−W [c]

)}
− 1.

37That is, we report Θa>0 and Θa<0, where

Θa>0 = exp
[
ρ
(
WR,a>0 −WMPE,a>0

)]
− 1,

with Θa<0 defined analogously, and where for each policy regime we have defined W a>0 ≡∫∞
0

∑2
i=1 vi (0, a) fi(t, a)da, W a<0 ≡

∫ 0

φ

∑2
i=1 vi (0, a) fi(t, a)da. Notice that Θa>0 and Θa>0 do not exactly add up

to Θ, as the expontential function is not a linear operator. However, Θ is suffi ciently small that Θ ≈ Θa>0 + Θa>0.
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4.5 Robustness

Steady state inflation. In Proposition 4, we established that the Ramsey optimal long-run inflation

rate converges to zero as the central bank’s discount rate ρ converges to that of foreign investors, r̄.

In our baseline calibration, both discount rates are indeed very close to each other, implying that

Ramsey optimal long-run inflation is essentially zero. We now evaluate the sensitivity of Ramsey

optimal steady state inflation to the difference between both discount rates. From equation (29),

Ramsey optimal steady state inflation is

π =
1

ψ

2∑
i=1

∫ ∞
φ

(−a)
∂vi
∂a

fi (a) da+
1

ψ
µQ, (30)

where the first term on the right hand side captures the redistributive motive to inflate in the

long run, and the second one reflects the effect of central bank’s commitments about long-run

inflation. Figure 3 displays π (left axis), as well as its two determinants (right axis) on the

right-hand side of equation (30). Optimal inflation decreases approximately linearly with the gap

ρ − r̄. As the latter increases, two counteracting effects take place. On the one hand, it can be
shown that as the households become more impatient relative to foreign investors, the net asset

distribution shifts towards the left, i.e. more and more households become net borrowers and come

close to the borrowing limit, where the marginal utility of wealth is highest.38 As shown in the

figure, this increases the central bank’s incentive to inflate for the purpose of redistributing wealth

towards debtors. On the other hand, the more impatient households become relative to foreign

investors, the more the central bank internalizes in present-discounted value terms the welfare

consequences of creating expectations of higher inflation in the long run. This provides the central

bank an incentive to committing to lower long run inflation. As shown by Figure 3, this second

’commitment’effect dominates the ’redistributive’effect, such that in net terms optimal long-run

inflation becomes more negative as the discount rate gap widens.

Initial inflation. As explained before, time-0 optimal inflation and its subsequent path depend

on the initial net wealth distribution across households, which is an infinite-dimensional object.

In our baseline numerical analysis, we set it equal to the stationary distribution in the case of zero

inflation. We now investigate how initial inflation depends on such initial distribution. To make

the analysis operational, we restrict our attention to the class of Normal distributions truncated

at the borrowing limit φ. That is,

f (0, a) =

{
φ (a;µ, σ) / [1− Φ (φ;µ, σ)] , a ≥ φ

0, a < φ
, (31)

38The evolution of the long-run wealth distribution as ρ− r̄ increases is available upon request.
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Figure 3: Sensitivity analysis to changes in ρ− r̄.

where φ (·;µ, σ) and Φ (·;µ, σ) are the Normal pdf and cdf, respectively.39 The parameters µ and

σ allow us to control both (i) the initial net foreign asset position and (ii) the domestic dispersion

in household wealth, and hence to isolate the effect of each factor on the optimal inflation path.

Notice also that optimal long-run inflation rates do not depend on f (0, a) and are therefore exactly

the same as in our baseline numerical analysis regardless of µ and σ.40 This allows us to focus here

on inflation at time 0, while noting that the transition paths towards the respective long-run levels

are isomorphic to those displayed in Figure 2.41 Moreover, we report results for the commitment

case, both for brevity and because results for discretion are very similar.42

Figure 4 displays optimal initial inflation rates for alternative initial net wealth distributions.

In the first row of panels, we show the effect of increasing wealth dispersion while restricting

the country to have a zero net position vis-à-vis the rest of the World, i.e. we increase σ and

simultaneously adjust µ to ensure that ā (0) = 0.43 In the extreme case of a (quasi) degenerate

39As explained in Section 5.2, in all our simulations we assume that the initial net asset distribution conditional
on being in a boom or in a recession is the same: fa|y (0, a | y2) = fa|y (0, a | y1) ≡ f0 (a). This implies that the
marginal asset density coincides with its conditional density: f (0, a) =

∑
i=1,2 fa|y (0, a | yi) fy (yi) = f0 (a).

40As shown in Table 2, long-run inflation is −0.05% under commitment, and 1.68% under discretion.
41The full dynamic optimal paths under any of the alternative calibrations considered in this section are available

upon request.
42As explained before, time-0 inflation in both policy regimes differ only insofar as the respective time-0 value

functions do, but numerically we found the latter to be always very similar to each other. Results for the discretion
case are available upon request.
43We verify that for all the calibrations considered here, the path of āt after time 0 satisfies Assumption 1. In

particular, the redistributive effect from foreign lenders to the domestic economy due to the initial positive increase
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initial distribution at zero net assets (solid blue line in the upper left panel), the central bank has

no incentive to create inflation, and thus optimal initial inflation is zero. As the degree of initial

wealth dispersion increases, so does optimal initial inflation.

The bottom row of panels in Figure 4 isolates instead the effect of increasing the liabilities

with the rest of the World, while assuming at the same time σ ' 0, i.e. eliminating any wealth

dispersion.44 As shown by the lower right panel, optimal inflation increases fairly quickly with the

external indebtedness; for instance, an external debt-to-GDP ratio of 50 percent justifies an initial

inflation of over 6 percent.

We can finally use Figure 4 to shed some light on the contribution of each redistributive motive

(cross-border and domestic) to the initial optimal inflation rate, π (0) = 4.6%, found in our baseline

analysis. We may do so in two different ways. First, we note that the initial wealth distribution

used in our baseline analysis implies a consolidated net foreign asset position of ā (0) = −25%

of GDP (ȳ = 1). Using as initial condition a degenerate distribution at exactly that level (i.e.

µ = −0.205 and σ ' 0) delivers π (0) = 3.1% (see panel d). Therefore, the pure cross-border

redistributive motive explains a significant part (about two thirds) but not all of the optimal time-0

inflation under the Ramsey policy. Alternatively, we may note that our baseline initial distribution

has a standard deviation of 1.95. We then find the (σ, µ) pair such that the (truncated) normal

distribution has the same standard deviation and is centered at ā (0) = 0 (thus switching off

the cross-border redistributive motive); this requires σ = 2.1, which delivers π (0) = 1.5% (panel

b). We thus find again that the pure domestic redistributive motive explains about a third of

the baseline optimal initial inflation. We conclude that both the cross-border and the domestic

redistributive motives are quantitatively important for explaining the optimal inflation chosen by

the monetary authority.

4.6 Aggregate shocks

So far we have restricted our analysis to the transitional dynamics, given the economy’s initial

state, while abstracting from aggregate shocks. We now extend our analysis to allow for aggregate

disturbances. For the purpose of illustration, we consider a one-time, unanticipated, temporary

change in the World real interest rate. In particular, we allow the World real interest rate r̄ to vary

over time and simulate a one-off, unanticipated increase at time 0 followed by a gradual return to

its baseline value of 3%. The dynamics of r̄t following the shock are given by

dr̄t = ηr (r̄ − r̄t) dt,

in inflation is more than compensated by the increase in debtors’consumption.
44That is, we approximate ’Dirac delta’distributions centered at different values of µ. Since such distributions

are not affected by the truncation at a = φ, we have ā (0) = µ, i.e. the net foreign asset position coincides with µ.
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Figure 4: Ramsey optimal initial inflation for different initial net asset distributions.

with r̄ = 0.03 as in Table 1 and ηr = 0.5. We consider a 1 percent increase in r̄t. Notice that,

up to a first order approximation, this is equivalent to solving the model considering an aggregate

stochastic process dr̄t = ηr (r̄ − r̄t) dt + σdZt with σ = 0.01 and Zt being a Brownian motion. In

fact the impulse responses reported in Figure 5 coincide with the ones obtained by considering

aggregate fluctuations and solving the model by first-order perturbation around the deterministic

steady state, as in the method of Ahn et al. (2017).

The dashed red lines in Figure 5 display the responses to the shock under a strict zero inflation

policy, πt = 0 for all t. The shock raises nominal (and real) bond yields, which leads households

to reduce their consumption on impact. The reduction in consumption induces an increase in the

amount of gross assets in the case of creditors and a reduction in gross debts in the case of debtors.

This allows consumption to slowly recover and to reach levels slightly above the steady state after

roughly 5 years from the arrival of the shock.

The solid lines in Figure 5 display the economy’s response under the optimal commitment

policy. An issue that arises here is how long after ‘time zero’(the implementation date of the

Ramsey optimal commitment) the aggregate shock is assumed to take place. Since we do not want

to take a stand on this dimension, we consider the limiting case in which the Ramsey optimal

commitment has been going on for a suffi ciently long time that the economy rests at its stationary
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Figure 5: Impact of an international interest rate shock under commitment (from a timeless
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equilibrium by the time the shock arrives. This can be viewed as an example of optimal policy ’from

a timeless perspective’, in the sense of Woodford (2003). In practical terms, it requires solving the

optimal commitment problem analyzed in Section 3.3 with two modifications: (i) the initial wealth

distribution is the stationary distribution implied by the optimal commitment itself, and (ii) the

initial condition µ (0) = 0 (absence of precommitments) is replaced by µ (0) = µ (∞), where the

latter object is the stationary value of the costate in the commitment case. Both modifications

guarantee that the central bank behaves as if it had been following the time-0 optimal commitment

for an arbitrarily long time.

In the case of commitment inflation rises slightly on impact, as the central bank tries to partially

counteract the negative effect of the shock on household consumption. However, the inflation

reaction is an order of magnitude smaller than that of the shock itself. Intuitively, the value

of sticking to past commitments to keep inflation near zero weighs more in the central bank’s

decision than the value of using inflation transitorily so as to stabilize consumption in response to

an unforeseen event. Therefore, we conclude that sticking to a zero inflation policy would produce

outcomes rather similar to pursuing the Ramsey optimal inflation path.

5 Conclusion

We have analyzed optimal monetary policy, under commitment and discretion, in a continuous-

time, small-open-economy version of the standard incomplete-markets model extended to allow

for nominal noncontingent claims and costly inflation. Our analysis sheds light on a recent policy

and academic debate on the consequences that wealth heterogeneity across households should have

for the appropriate conduct of monetary policy. Our main contribution is methodological: to the

best of our knowledge, our paper is the first to solve for a fully dynamic optimal policy problem,

both under commitment and discretion, in a standard incomplete-markets model with uninsurable

idiosyncratic risk. While models of this kind have been established as a workhorse for policy

analysis in macro models with heterogeneous agents, the fact that in such models the infinite-

dimensional, endogenously-evolving wealth distribution is a state in the policy-maker’s problem

has made it diffi cult to make progress in the analysis of fully optimal policy problems. Our

analysis proposes a novel methodology for dealing with this kind of problems in a continuous-time

environment.

We show analytically that, whether under discretion or commitment, the central bank has an

incentive to create inflation in order to redistribute wealth from lending to borrowing households,

because the latter have a higher marginal utility of net wealth under incomplete markets. It also

aims at redistributing wealth away from foreign investors, to the extent that these are net creditors

vis-à-vis the domestic economy as a whole. Under commitment, however, these redistributive
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motives to inflate are counteracted by the central bank’s understanding of how expectations of

future inflation affect current nominal bond prices. We show moreover that, in the limiting case

in which the central bank’s discount factor is arbitrarily close to that of foreign investors, the

long-run inflation rate under commitment is also arbitrarily close to zero.

We calibrate the model to replicate relevant features of a subset of prominent European small

open economies, including their net foreign asset positions and gross household debt ratios. We

show that the optimal policy under commitment features first-order positive initial inflation, fol-

lowed by a gradual decline towards its (near zero) long-run level. That is, the central bank front-

loads inflation so as to transitorily redistribute existing wealth both within the country and away

from international investors, while committing to gradually abandon such redistributive stance. By

contrast, discretionary monetary policy keeps inflation permanently high; such a policy is shown

to reduce welfare substantially, both for creditor and for debtor households, as both groups suffer

the consequences of the redistribution-led inflationary bias.

Our analysis thus suggest that, in an economy with heterogenous net nominal positions across

households, inflationary redistribution should only be used temporarily, avoiding any temptation

to prolong positive inflation rates over time.
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Appendix

Mathematical preliminaries

First we need to introduce some mathematical concepts. An operator T is a mapping from one

vector space to another. Given the stochastic process at in (3), define an operator A

Av ≡
(
s1(t, a)∂v1(t,a)

∂a
+ λ1 [v2(t, a)− v1(t, a)]

s2(t, a)∂v2(t,a)
∂a

+ λ2 [v1(t, a)− v2(t, a)]

)
, (32)

so that the HJB equation (8) can be expressed as

ρv =
∂v

∂t
+ max

c
{u (c, π) +Av} ,

where v ≡
(
v1(t,a)
v2(t,a)

)
and u (c, π) ≡

(
u(c1,π)
u(c2,π)

)
.45

Let Φ ≡ [φ,∞) be the valid domain. The space of Lebesgue-integrable functions L2 (Φ) with

the inner product

〈v, f〉Φ =
2∑
i=1

∫
Φ

vifida =

∫
Φ

vTfda, ∀v, f ∈ L2 (Φ) ,

is a Hilbert space.46 Notice that we could have alternatively worked in Φ = R as the density

f(t, a, y) = 0 for a < φ.

Given an operator A, its adjoint is an operator A∗ such that 〈f,Av〉Φ = 〈A∗f, v〉Φ . In the case
of the operator defined by (32) its adjoint is the operator

A∗f ≡
(−∂(s1f1)

∂a
− λ1f1 + λ2f2

−∂(s2f2)
∂a
− λ2f2 + λ1f1

)
,

45The infinitesimal generator of the process is thus ∂v∂t +Av.
46See Luenberger (1969) or Brezis (2011) for references.
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with boundary conditions

si (t, φ) fi (t, φ) = lim
a→∞

si (t, a) fi (t, a) = 0, i = 1, 2, (33)

such that the KF equation (14) results in

∂f

∂t
= A∗f, (34)

for f ≡
(
f1(t,a)
f2(t,a)

)
. We can see that A and A∗ are adjoints as

〈Av, f〉Φ =

∫
Φ

(Av)T fda =
2∑
i=1

∫
Φ

[
si
∂vi
∂a

+ λi [vj − vi]
]
fida

=
2∑
i=1

visifi|∞φ +
2∑
i=1

∫
Φ

vi

[
− ∂

∂a
(sifi)− λifi + λjjj

]
da

=

∫
Φ

vTA∗fda = 〈v,A∗f〉Φ .

We introduce the concept of Gateaux and Frechet derivatives in L2 (Φ) , where Φ ⊂ Rn as
generalizations of the standard concept of derivative to infinite-dimensional spaces.47

Definition 4 (Gateaux derivative) Let W [f ] be a functional and let h be arbitrary in L2 (Φ) .

If the limit

δW [f ;h] = lim
α→0

W [f + αh]−W [f ]

α
(35)

exists, it is called the Gateaux derivative of W at f with increment h. If the limit (35) exists for

each h ∈ L2 (Φ) , the functional W is said to be Gateaux differentiable at f.

If the limit exists, it can be expressed as δW [f ;h] = d
dα
W [f + αh] |α=0. A more restricted

concept is that of the Fréchet derivative.

Definition 5 (Fréchet derivative) Let h be arbitrary in L2 (Φ) . If for fixed f ∈ L2 (Φ) there

exists δW [f ;h] which is linear and continuous with respect to h such that

lim
‖h‖L2(Φ)→0

|W [f + h]−W [f ]− δW [f ;h]|
‖h‖L2(Φ)

= 0,

then W is said to be Fréchet differentiable at f and δW [f ;h] is the Fréchet derivative of W at f

with increment h.
47See Luenberger (1969), Gelfand and Fomin (1991) or Sagan (1992).
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The following proposition links both concepts.

Theorem 1 If the Fréchet derivative of W exists at f , then the Gateaux derivative exists at f and

they are equal.

Proof. See Luenberger (1969, p. 173).
The familiar technique of maximizing a function of a single variable by ordinary calculus can be

extended in infinite dimensional spaces to a similar technique based on more general derivatives.

We use the term extremum to refer to a maximum or a minimum over any set. A a function

f ∈ L2 (Φ) is a maximum of W [f ]if for all functions h, ‖h− f‖L2(Φ) < ε then W [f ] ≥ W [h]. The

following theorem generalizes the Fundamental Theorem of Calculus.

Theorem 2 Let W have a Gateaux derivative, a necessary condition for W to have an extremum

at f is that δW [f ;h] = 0 for all h ∈ L2 (Φ) .

Proof. Luenberger (1969, p. 173), Gelfand and Fomin (1991, pp. 13-14) or Sagan (1992, p. 34).

In the case of constrained optimization in an infinite-dimensional Hilbert space, we have the

following Theorem.

Theorem 3 (Lagrange multipliers) Let H be a mapping from L2 (Φ) into Rp. If W has a

continuous Fréchet derivative, a necessary condition for W to have an extremum at f under the

constraint H [f ] = 0 at the function f is that there exists a function η ∈ L2 (Φ) such that the

Lagrangian functional

L [f ] = W [f ] + 〈η,H [f ]〉Φ (36)

is stationary in f, that is., δL [f ;h] = 0.

Proof. Luenberger (1969, p. 243).
Finally, according to Definition 5 above, if the Fréchet derivative δW [f ] of W [f ] exists then it

is linear and continuous. We may apply the Riesz representation theorem to express it as an inner

product

Theorem 4 (Riesz representation theorem) Let δW [f ;h] : L2 (Φ) → R be a linear continu-
ous functional. Then there exists a unique function w [f ] = δW

δf
[f ] ∈ L2 (Φ) such that

δW [f ;h] =

〈
δW

δf
, h

〉
Φ

=
2∑
i=1

∫
Φ

wi [f ] (a)hi (a) da.

Proof. See Brezis (2011, pp. 97-98).
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Proof of Proposition 1. Solution to the Ramsey problem

The idea of the proof is to construct a Lagragian in a Hilbert function space and to obtain the

first-order conditions by taking the Gateaux derivatives.

Step 1: Statement of the problem. The problem of the central bank is given by

W [f0 (·)] = max
{πs,Qs,v(s,·),c(s,·),f(s,·)}∞s=0

2∑
i=1

∫ ∞
0

e−ρs
[∫

Φ

u (cs, πs) fi(s, a)da

]
ds,

subject to the law of motion of the distribution (14), the bond pricing equation (12) and the indi-

vidual HJB equation (8). This is a problem of constrained optimization in an infinite-dimensional

Hilbert space that includes also time, which we denote as Φ̂ = [0,∞)× Φ. We define L2
(

Φ̂
)

(·,·)Φ

as the space of functions f that verify∫
Φ̂

e−ρt |f |2 =

∫ ∞
0

∫
Φ

e−ρt |f |2 dtda =

∫ ∞
0

e−ρt ‖f‖2
Φ dt <∞.

We need first to prove that this space, which differs from L2
(

Φ̂
)
is also a Hilbert space. This is

done in the following lemma, the proof is in the Online Appendix.

Lemma 3 The space L2
(

Φ̂
)

(·,·)Φ

with the inner product

(f, g)Φ =

∫
Φ̂

e−ρtfg =

∫ ∞
0

e−ρt 〈f, g〉Φ dt =
〈
e−ρtf, g

〉
Φ̂

is a Hilbert space.

Step 2: The Lagragian. The Lagrangian is defined in L2
(

Φ̂
)

(·,·)Φ

as

L [π,Q, f, v, c] ≡
∫ ∞

0

e−ρt 〈u, f〉Φ dt+

∫ ∞
0

〈
e−ρtζ (t, a) ,A∗f − ∂f

∂t

〉
Φ

dt

+

∫ ∞
0

e−ρtµ (t)
(
Q (r̄ + π + δ)− δ − Q̇

)
dt

+

∫ ∞
0

〈
e−ρtθ (t, a) , u+Av +

∂v

∂t
− ρv

〉
Φ

dt

+

∫ ∞
0

〈
e−ρtη (t, a) , uc −

1

Q

∂v

∂a

〉
Φ

dt
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where e−ρtζ (t, a), e−ρtη (t, a), e−ρtθ (t, a) ∈ L2
(

Φ̂
)
and e−ρtµ (t) ∈ L2[0,∞) are the Lagrange

multipliers associated to equations (14), (10), (8) and (12), respectively. The Lagragian can be

expressed as

L =

∫ ∞
0

e−ρt
〈
u+

∂ζ

∂t
+Aζ − ρζ + µ

(
Q (r̄ + π + δ)− δ − Q̇

)
, f

〉
Φ

dt

+

∫ ∞
0

e−ρt
(
〈θ, u〉Φ +

〈
A∗θ − ∂θ

∂t
, v

〉
Φ

+

〈
η, uc −

1

Q

∂v

∂a

〉
Φ

)
dt

+ 〈ζ (0, ·) , f (0, ·)〉Φ − lim
T→∞

〈
e−ρT ζ (T, ·) , f (T, ·)

〉
Φ

+ lim
T→∞

〈
e−ρT θ (T, ·) , v (T, ·)

〉
Φ
− 〈θ (0, ·) , v (0, ·)〉+

∫ ∞
0

e−ρt
2∑
i=1

visiθi|∞φ dt,

where we have applied

〈ζ,A∗f〉 = 〈Aζ, f〉 , 〈θ,Av〉 = 〈A∗θ, v〉Φ +
2∑
i=1

visiθi|∞φ

and integrated by parts

∫ ∞
0

〈
e−ρtζ,−∂f

∂t

〉
Φ

dt = −
2∑
i=1

∫ ∞
0

∫
Φ

e−ρtζ i
∂fi
∂t
dadt

= −
2∑
i=1

∫
Φ

fie
−ρtζ i

∣∣∞
0
da+

2∑
i=1

∫ ∞
0

∫
Φ

fi
∂

∂t

(
e−ρtζ i

)
dadt

=
2∑
i=1

∫
Φ

fi (0, a) ζ i (0, a) da− lim
T→∞

2∑
i=1

∫
Φ

e−ρTfi (T, a) ζ i (T, a) da

+
2∑
i=1

∫ ∞
0

∫
Φ

e−ρtfi

(
∂ζ i
∂t
− ρζ i

)
dadt

= 〈ζ (0, ·) , f (0, ·)〉Φ − lim
T→∞

〈
e−ρT ζ (T, ·) , f (T, ·)

〉
Φ

+

∫ ∞
0

e−ρt
〈
∂ζ

∂t
− ρζ, f

〉
Φ

dt,
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and∫ ∞
0

〈
e−ρtθ,

∂v

∂t
− ρv

〉
dt =

2∑
i=1

∫ ∞
0

∫
Φ

e−ρtθi

(
∂vi
∂t
− ρvi

)
dadt

=
2∑
i=1

∫
Φ

θie
−ρt
i v

∣∣∞
0
da−

2∑
i=1

∫ ∞
0

∫
Φ

vi

[
∂

∂t

(
e−ρtθi

)
+ ρθi

]
dadt

= lim
T→∞

2∑
i=1

∫
Φ

e−ρTvi (T, a) θi (T, a) da−
2∑
i=1

∫
Φ

vi (0, a) θi (0, a) da

−
2∑
i=1

∫ ∞
0

∫
Φ

e−ρtvi

(
∂θi
∂t

)
dadt

= lim
T→∞

〈
e−ρT θ (T, ·) , v (T, ·)

〉
Φ
− 〈θ (0, ·) , v (0, ·)〉Φ +

∫ ∞
0

e−ρt
〈
−∂θ
∂t
, v

〉
Φ

dt,

Step 3: Necessary conditions. In order to find the maximum, we need to take the Gateaux

derivatives with respect to the controls f , π, Q, v and c.

• The Gateaux derivative with respect to f is

d

dα
L [π,Q, f + αh, v, c] |α=0 = 〈ζ (0, ·) , h (0, ·)〉Φ − lim

T→∞

〈
e−ρT ζ (T, ·) , h (T, ·)

〉
Φ

−
∫ ∞

0

e−ρt
〈
u+

∂ζ

∂t
+Aζ − ρζ, h

〉
Φ

dt,

which should equal zero for any function e−ρth ∈ L2
(

Φ̂
)
such that h (0, ·) = 0, as the initial

value of f (0, ·) . We obtain

ρζ = u+
∂ζ

∂t
+Aζ, for a > φ, t > 0 (37)

Given that e−ρtζ (t, a) ∈ L2
(

Φ̂
)
, we obtain the transversality condition limT→∞ e

−ρT ζ (T, a) =

0. Equation (37) is the same as the individual HJB equation (8). The boundary conditions

are also the same (state constraints on the domain Φ) and therefore their solutions should

coincide: ζ(t, a, y) = v(t, a, y), that is, the Lagrange multiplier ζ(t, a, y) equals the private

value v (·).
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• In the case of c (t, a) , the Gateaux derivative is

d

dα
L [π,Q, f, v, c+ αh] |α=0 =

∫ ∞
0

e−ρt
〈(

uc −
1

Q

∂ζ

∂a

)
h, f

〉
Φ

dt

+

∫ ∞
0

e−ρt
(〈

θ,

(
uc −

1

Q

∂v

∂a

)
h

〉
Φ

+ 〈η, ucch〉Φ
)
dt,

where ∂
∂a

(Aζ) = − 1
Q
∂ζ
∂a
. The Gateaux derivative should be zero for any function e−ρth ∈

L2
(

Φ̂
)
. Due to the first order conditions (10) and to the fact that ζ (·) = v (·) this expression

reduces to ∫ ∞
0

e−ρt 〈η (t, a) , ucc (t, a)h (t, a)〉Φ dt = 0.

As u is strictly concave, ucc < 0 and hence η (t, a) = 0 for all (t, a) ∈ Φ̂, that is, the first

order condition (10) is not binding as its associated Lagrange multiplier is zero.

• In the case of v (t, a) , the Gateaux derivative is

d

dα
L [π,Q, f, v + αh, c] |α=0 =

∫ ∞
0

e−ρt
(〈
A∗θ − ∂θ

∂t
, h

〉
Φ

)
dt

+ lim
T→∞

〈
e−ρT θ (T, ·) , h (T, ·)

〉
Φ
− 〈θ (0, ·) , h (0, ·)〉Φ

+
2∑
i=1

hisiθi|∞φ ,

where we have already taken into account the fact that η (·) = 0. Given that e−ρtθ (t, a) ∈
L2
(

Φ̂
)
, we obtain the transversality condition limT→∞ e

−ρT θ (T, ·) = 0. As the Gateaux

derivative should be zero at the maximum for any suitable h, we obtain a Kolmogorov

forward equation in θ
∂θ

∂t
= A∗θ, for a > φ, t > 0, (38)

with boundary conditions

si (t, φ) θi (t, φ) = lim
a→∞

si (t, a) θi (t, a) = 0, i = 1, 2,

θ (0, ·) = 0.

This is a KF equation with an initial density of θ (0, ·) = 0.48 Therefore, the distribution at

any point in time should be zero θ (·) = 0.Both the Lagrange multiplier of the households’

48Notice that if we denote g (t) ≡
〈
A∗θ − ∂θ

∂t , 1
〉

Φ
and G (t) ≡

∫∞
t
e−ρsg(s)ds then the fact that A∗θ− ∂θ

∂t = 0, for
a > φ, t > 0, implies that G(t) = 0, for t > 0. As G (t) is differentiable, then it is continuous and hence G (0) = 0
so that the condition G(0) + 〈θ (0, ·) , h (0, ·)〉Φ = 0 for any h (0, ·) ∈ L2 (Φ) requires θ (0, ·) = 0. A similar argument
can be employed to analyzed the boundary conditions in Φ.
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HJB equation θ and that of the first-order condition η are zero, reflecting the fact that

the HJB equation is slack, that is, that the monetary authority would choose the same

consumption as the households. This would not be the case in a closed economy, in which

some externalities may arise, as discussed, for instance, in Nuño and Moll (2017).

• The Gateaux derivative in the case of π (t) :

d

dα
L [π + αh,Q, f, v, c] |α=0 =

∫ ∞
0

e−ρt
〈
uπ − a

(
∂v

∂a

)
+ µQ, f

〉
Φ

hdt,

where we have already taken into account the fact that θ (·) = η (·) = 0. and ζ (·) = v (·) .
As the Gateaux derivative should be zero for any h(t) ∈ L2[0,∞), the optimality condition

then results in

µ (t)Q (t) =
2∑
i=1

∫
Φ

(
a
∂vi
∂a
− uπ

)
fi (t, a) da,

where we have applied the normalization condition (equation 15): 〈1, f〉Φ = 1.

• Finally, in the case of Q (t) the Gateaux derivative is

d

dα
L [π,Q+ αh, f, v, c] |α=0 =

∫ ∞
0

e−ρt
〈
− δh
Q2
a
∂v

∂a
− (y − c)h

Q2

∂v

∂a
+ µ

[
h (r̄ + π + δ)− ḣ

]
, f

〉
Φ

dt,

where we have already taken into account the fact that ζ (·) = v (·) and θ (·) = η (·) = 0.

Integrating by parts∫ ∞
0

e−ρt
〈
−µḣ, f

〉
Φ
dt = −

∫ ∞
0

e−ρtµḣ 〈1, f〉Φ dt = −
∫ ∞

0

e−ρtµḣdt

= − e−ρtµh
∣∣∞
0

+

∫ ∞
0

e−ρt (µ̇− ρµ)hdt

= µ (0)h (0) +

∫ ∞
0

e−ρt 〈(µ̇− ρµ)h, f〉Φ dt.

Therefore, the optimality condition in this case is∫ ∞
0

e−ρt
〈
− δ

Q2
a
∂v

∂a
− (y − c)

Q2

∂v

∂a
+ µ (r̄ + π + δ − ρ) + µ̇, f

〉
Φ

hdt+ µ (0)h (0) = 0.

The Gateaux derivative should be zero for any h(t) ∈ L2[0,∞). Thus we obtain〈
− δ

Q2
a
∂v

∂a
− (y − c)

Q2

∂v

∂a
, f

〉
Φ

+ µ (r̄ + π + δ − ρ) + µ̇ = 0, t > 0,

µ (0) = 0.
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or equivalently,

dµ

dt
= (ρ− r̄ − π − δ)µ+

1

Q2 (t)

2∑
i=1

∫
Φ

∂vit
∂a

[δa+ (y − c)] fi (t, a) da, t > 0,

µ (0) = 0.

46



Online appendix (not for publication)

A. Additional proofs

Proof of Proposition 2. Solution to the Markov Stackelberg equilibrium

The approach is to consider that, given any arbitrary horizon T > 0, the interval [0, T ] is divided

in N subintervals of length ∆t := T/N. In each subinterval (t, t + ∆t] the central bank solves a

Ramsey problem with terminal valueWM
∆t [f (t+ ∆t, ·)] , taken as given the initial density ft (·) and

the terminal value WM
∆t [ft+∆t (·)]. Notice that the initial density ft (·) of a subinterval subinterval

(t, t+ ∆t] is the final density of the previous subinterval whereas the terminal value WM
∆t [ft+∆t (·)]

is the initial value of the next subinterval. A Markov Stackelberg equilibrium is the limit when

N →∞, or equivalently, ∆t→ 0.

Step 1: The discrete-step problem. First we solve the dynamic programming problem in

a subinterval (t, t + ∆t]. This is now a Ramsey problem in the Hilbert space L2
(

Φ̂t

)
(·,·)Φ

with

Φ̂t = (t, t+ ∆t]× Φ. We define

WM
∆t [f (t, ·)] = max

{πs,Qs,v(s,·),c(s,·),f(s,·)}s∈(t,t+∆t]

∫ t+∆t

t

e−ρ(s−t)

[
2∑
i=1

∫ ∞
φ

u (cis (a) , πs) fi(s, a)da

]
ds

+e−ρ∆tWM
∆t [f (t+ ∆t, ·)] ,

subject to the law of motion of the distribution (14), the bond pricing equation (12), and house-

hold’s HJB equation (8) and optimal consumption choice (10). This can be seen as a finite-horizon

commitment problem with terminal valueWM
∆t [f (t+ ∆t, ·)] .We proceed as in the proof of Propo-

sition 1 and construct a Lagragian

L [π,Q, f, v, c] ≡
∫ t+∆t

t

e−ρ(s−t) 〈u, f〉Φ ds+ e−ρ∆tWM
∆t [f (t+ ∆t, ·)]

+

∫ t+∆t

t

〈
e−ρ(s−t)ζ (t, a) ,A∗f − ∂f

∂t

〉
Φ

ds

+

∫ t+∆t

t

e−ρ(s−t)µ (s)
(
Q (r̄ + π + δ)− δ − Q̇

)
ds

+

∫ t+∆t

t

〈
e−ρ(s−t)θ (s, a) , u+Av +

∂v

∂t
− ρv

〉
Φ

ds

+

∫ t+∆t

t

〈
e−ρ(s−t)η (s, a) , uc −

1

Q

∂v

∂a

〉
Φ

ds,
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with WM
∆t [·] defined in (23). Proceeding as in the proof of Proposition 1, we can express the

Lagragian as

L =

∫ t+∆t

t

e−ρ(s−t)
〈
u+

∂ζ

∂t
+Aζ − ρζ + µ

(
Q (r̄ + π + δ)− δ − Q̇

)
, f

〉
Φ

ds

+

∫ t+∆t

t

e−ρ(s−t)
(
〈θ, u〉Φ +

〈
A∗θ − ∂θ

∂t
, v

〉
Φ

+ 〈η, uc〉Φ +

〈
1

Q

∂η

∂a
, v

〉
Φ

)
ds

+ 〈ζ (0, ·) , f (0, ·)〉Φ −
〈
e−ρ∆tζ (t+ ∆t, ·) , f (t+ ∆t, ·)

〉
Φ

+
〈
e−ρ∆tθ (t+ ∆t, ·) , v (t+ ∆t, ·)

〉
Φ
− 〈θ (0, ·) , v (0, ·)〉

+

∫ t+∆t

t

e−ρ(s′−t)

[
2∑
i=1

visiθi|∞φ −
1

Q

2∑
i=1

viηi|
∞
φ

]
ds′

• The first order condition with respect to f in this case is

0 = 〈ζ (t, ·) , h (t, ·)〉Φ −
〈
e−ρ∆tζ (t+ ∆t, ·) , h (t+ ∆t, ·)

〉
Φ

−
∫ t+∆t

t

e−ρt
〈
u+

∂ζ

∂t
+Aζ − ρζ, h

〉
Φ

dt+ e−ρ∆t d

dα
WM

∆t [f (t+ ∆t, ·) + αh (t+ ∆t, ·)]
∣∣
α=0

.

Given the Riesz representation theorem (Theorem 4), the Fréchet derivative can be expressed

as
d

dα
WM

∆t [f (t+ ∆t, ·) + αh (t+ ∆t, ·)]
∣∣
α=0

= 〈w (t+ ∆t, ·) , h (t+ ∆t, ·)〉Φ

where

w (t, ·) =
δWM

∆t

δf
[f (t, ·)] : [0,∞)× Φ→ R2.

Notice that, as there is no aggregate uncertainty, the dynamics of the distribution only depend

on time. As it will be clear below w(t, a) is the central bank’s value at time t of a household

with net wealth a. As the Gateaux derivative should be zero for any h ∈ L2 ((t, t+ ∆t]× Φ)

we obtain

ρζ = u+
∂ζ

∂t
+Aζ, for a > φ, s ∈ (t, t+ ∆t), (39)

ζ (t+ ∆t, ·) = w (t+ ∆t, ·) .

The boundary conditions are state constraints on the domain Φ. Notice that we have em-

ployed the fact that h (t, ·) = 0 as f(t, ·) is given. The rest of Gateaux derivatives are obtain
by following exatly the same steps as in the proof of Proposition 1 above, but restricted to

the interval (t, t+ ∆t] and without simplifying terms.
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• In the case of c (t, a) , this yields(
uc −

1

Q

∂ζ

∂a

)
f + ηucc = 0, for a ≥ φ, s ∈ (t, t+ ∆t], (40)

• In the case of v (t, a) :

A∗θ − ∂θ

∂t
+

1

Q

∂η

∂a
= 0, for a > φ, s ∈ (t, t+ ∆t),

θ (t+ ∆t, ·) = θ (t, ·) = 0 (41)

si (s, φ) θi (s, φ)− 1

Q (s)
ηi (s, φ) = lim

a→∞

[
si (s, a) θi (s, a)− 1

Q (s)
ηi (s, a)

]
= 0, i = 1, 2.

• In the case of π (t) :〈
uπ − a

∂ζ

∂a
+ µQ, f

〉
Φ

+

〈
uπ − a

∂v

∂a
, θ

〉
Φ

+ 〈ucπ, η〉Φ = 0, (42)

for s ∈ (t, t+ ∆t].

• Finally, in the case of Q (t) :

0 =

〈
− δ

Q2
a
∂ζ

∂a
− (y − c)

Q2

∂ζ

∂a
, f

〉
Φ

+

〈(
− δ

Q2
a− (y − c)

Q2

)
∂v

∂a
, θ

〉
Φ

+µ (r̄ + π + δ − ρ) + µ̇+

〈
η,

1

Q2

∂v

∂a

〉
Φ

, for s ∈ (t, t+ ∆t),

lim
s→t

µ (s) = µ (t+ ∆t) = 0. (43)

Step 2: Taking the limit. If we take the limit as N →∞, or equivalently, ∆t→ 0, we obtain

that ζ (t, ·) = w (t, ·) for all t ≥ 0 and hence equation (39) results in

ρw = u+
∂w

∂t
+Aw, for t ≥ 0, (44)

with state constraints on the domain Φ. The transversality condition limT→∞ e
−ρTw (T, ·) = 0 as

limT→∞ e
−ρTW [f (T, ·)] = 0. Equation (44) coincides with the individual HJB equation (8) and

hence, as in the case with commitment, we obtain that w (t, ·) = v (t, ·) , that is, the social value
is the same as the private value.

Proceeding as in the case with commitment, the fact that ζ (t, ·) = v (t, ·) and that the utility
function is strictly concave in equation (40) yields η (t, ·) = 0. In the limit∆t→ 0 the transversality

conditions (41) and (43) result in µ (t) = 0 and θ (t, ·) = 0, for all t ≥ 0.
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Finally, the optimality condition with respect to π (t) (42) simplifies to〈
uπ − a

(
∂v

∂a

)
, f

〉
Φ

= 0,

or equivalently

0 =

2∑
i=1

∫
Φ

(
a
∂vi
∂a
− uπ

)
fi (t, a) da.

Proof of Lemma 1

Given the welfare criterion defined as in (18), we have

UCB
0 =

∫ ∞
φ

2∑
i=1

vi(0, a)fi(0, a)da =

∫ ∞
φ

2∑
i=1

E0

[∫ ∞
0

e−ρtu(ct, πt)dt|a (0) = a, y (0) = yi

]
fi(0, a)da

=

∫ ∞
φ

2∑
i=1

[
2∑
j=1

∫ ∞
φ

∫ ∞
0

e−ρtu(c, π)f(t, ã, ỹj; a, yi)dtdã

]
fi(0, a)da

=

∫ ∞
0

2∑
j=1

e−ρt
∫ ∞
φ

u(c, π)

[
2∑
i=1

∫ ∞
φ

f(t, ã, ỹj; a, yi)fi(0, a)da

]
dãdt

=

∫ ∞
0

2∑
i=1

e−ρt
∫ ∞
φ

u(c, π)fj(t, ã)dãdt,

where f(t, ã, ỹj; a, y) is the transition probability from a (0) = a, y (0) = yi to a (t) = ã, y (t) = ỹj

and

fj(t, ã) =
2∑
j=1

∫ ∞
φ

f(t, ã, ỹj; a, yi)fi(0, a)da,

is the Chapman—Kolmogorov equation.

Proof of Lemma 2

In order to prove the concavity of the value function we express the model in discrete time for an

arbitrarily small ∆t. The Bellman equation of a household is

v∆t
t (a, y) = max

a′∈Γ(a,y)

[
uc
(
Q (t)

∆t

[(
1 +

(
δ

Q (t)
− δ − π (t)

)
∆t

)
a+

y∆t

Q (t)
− a′

])
− uπ (π (t))

]
∆t

+e−ρ∆t

2∑
i=1

v∆t
t+∆t (a′, yi)P (y′ = yi|y) ,
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where Γ (a, y) =
[
0,
(

1 +
(

δ
Q(t)
− δ − π (t)

)
∆t
)
a+ y∆t

Q(t)

]
, and P (y′ = yi|y) are the transition prob-

abilities of a two-state Markov chain. The Markov transition probabilities are given by λ1∆t and

λ2∆t.

We verify that this problem satisfies the conditions of Theorem 9.8 of Stokey, Lucas and

Prescott (1989): (i) Φ is a convex subset of R; (ii) the Markov chain has a finite number
of values; (iii) the correspondence Γ (a, y) is nonempty, compact-valued and continuous; (iv)

the function uc is bounded, concave and continuous and e−ρ∆t ∈ (0, 1); and (v) the set Ay =

{(a, a′) such that a′ ∈ Γ (a, y)} is convex. We may conclude that v∆t
t (a, y) is concave for any

∆t > 0. Finally, for any a1, a2 ∈ Φ

v∆t
t (ωa1 + (1− ω) a2, y) ≥ ωv∆t

t (a1, y) + (1− ω) v∆t
t (a2, y) ,

lim
∆t→0

v∆t
t (ωa1 + (1− ω) a2, y) ≥ lim

∆t→0

[
ωv∆t

t (a1, y) + (1− ω) v∆t
t (a2, y)

]
,

v (t, ωa1 + (1− ω) a2, y) ≥ ωv (t, a1, y) + (1− ω) vt (t, a2, y) ,

so that v (t, a, y) is concave.

Proof of Lemma 3

We need to show that L2
(

Φ̂
)

(·,·)Φ

is complete, that is, that given a Cauchy sequence {fn} with

limit f : limn→∞ fn = f then f ∈ L2
(

Φ̂
)

(·,·)Φ

. If {fn} is a Cauchy sequence then

‖fn − fm‖(·,·)Φ
→ 0, as n,m→∞,

or

‖fn − fm‖2
(·,·)Φ

=

∫
Φ̂

e−ρt |fn − fm|2 =
〈
e−

ρ
2
t (fn − fm) , e−

ρ
2
t (fn − fm)

〉
Φ̂

=
∥∥∥e− ρ2 t (fn − fm)

∥∥∥2

Φ̂
→ 0,

as n,m→∞. This implies that
{
e−

ρ
2
tfn
}
is a Cauchy sequence in L2

(
Φ̂
)
. As L2

(
Φ̂
)
is a complete

space, then there is a function f̂ ∈ L2
(

Φ̂
)
such that

lim
n→∞

e−
ρ
2
tfn = f̂ (45)

under the norm ‖·‖2
Φ̂ . If we define f = e

ρ
2
tf̂ then

lim
n→∞

fn = f
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under the norm ‖·‖(·,·)Φ
, that is, for any ε > 0 there is an integer N such that

‖fn − f‖2
(·,·)Φ

=
∥∥∥e− ρ2 t (fn − f)

∥∥∥2

Φ̂
=
∥∥∥e− ρ2 tfn − f̂∥∥∥2

Φ̂
< ε,

where the last inequality is due to (45). It only remains to prove that f ∈ L2
(

Φ̂
)

(·,·)Φ

:

‖f‖2
(·,·)Φ

=

∫
Φ̂

e−ρt |f |2 =

∫
Φ̂

∣∣∣f̂ ∣∣∣2 <∞,
as f̂ ∈ L2

(
Φ̂
)
.

Proof of Proposition 3: Inflation bias in the ME

As the value function is concave in a by Lemma 2 above, then it satisfies that

∂vi (t, ã)

∂a
≤ ∂vi (t, 0)

∂a
≤ ∂vi (t, â)

∂a
, for all ã ∈ (0,∞), â ∈ (φ, 0), t ≥ 0, i = 1, 2. (46)

In addition, the condition that the country is a net debtor (āt < 0) implies

2∑
i=1

∫ 0

φ

(−a) fi(t, a)da >
2∑
i=1

∫ ∞
0

(a) fi(t, a)da, ∀t ≥ 0. (47)

Therefore

2∑
i=1

∫ ∞
0

afi
∂vi(t, a)

∂a
da ≤ ∂vi (t, 0)

∂a

2∑
i=1

∫ ∞
0

afida >
∂vi (t, 0)

∂a

2∑
i=1

∫ 0

φ

(−a) fi(t, a)da (48)

≤
2∑
i=1

∫ 0

φ

(−a) fi(t, a)
∂vi(t, a)

∂a
da, (49)

where we have applied (46) in the first and last steps and (47) in the intermediate one. The optimal

inflation in the MPE case (24) with separable utility u = uc − uπ is

2∑
i=1

∫ ∞
φ

(
afi

∂vi
∂a
− uπfi

)
da =

2∑
i=1

∫ ∞
φ

afi
∂vi
∂a

da+ uππ = 0.

Combining this expression with (48) we obtain

uππ =

2∑
i=1

∫ ∞
φ

(−a) fi
∂vi
∂a

da > 0.
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Finally, taking into account the fact that uππ > 0 only for π > 0 we have that π (t) > 0.

Proposition 4: optimal long-run inflation under commitment in the limit as r̄ → ρ

In the steady state, equations (22) and (26) in the main text become

(ρ− r̄ − π − δ)µ+
1

Q2

2∑
i=1

∫ ∞
φ

∂vi
∂a

[δa+ (yi − ci)] fi (a) da = 0,

µQ = uππ (π) +

2∑
i=1

∫ ∞
φ

a
∂vi
∂a

fi (a) da,

respectively. Consider now the limiting case ρ → r̄ , and guess that π → 0. The above two

equations then become

µQ =
1

δQ

2∑
i=1

∫ ∞
φ

∂vi
∂a

[δa+ (yi − ci)] fi (a) da,

µQ =
2∑
i=1

∫ ∞
φ

a
∂vi
∂a

fi (a) da,

as uππ (0) = 0 under our assumed preferences in Section 3.4. Combining both equations, and using

the fact that in the zero-inflation steady state the bond price equals Q = δ
δ+r̄

, we obtain

2∑
i=1

∫ ∞
φ

∂vi
∂a

(
r̄a+

yi − ci
Q

)
fi (a) da = 0. (50)

In the zero inflation steady state, the value function v satisfies the HJB equation

ρvi(a) = uc(ci (a)) +

(
r̄a+

yi − ci (a)

Q

)
∂vi
∂a

+ λi [vj(a)− vi(a)] , i = 1, 2, j 6= i, (51)

where we have used uπ (0) = 0 under our assumed preferences. We also have the first-order

condition

ucc (ci (a)) = Q
∂vi
∂a
⇒ ci (a) = uc,−1

c

(
Q
∂vi
∂a

)
.

We guess and verify a solution of the form vi(a) = κia+ ϑi, so that ucc (ci) = Qκi. Using our guess

in (51), and grouping terms that depend on and those that do not, we have that

ρκi = r̄κi + λi (κj − κi) , (52)

ρϑi = uc
(
uc,−1
c (Qκi)

)
+
yi − uc,−1

c (Qκi)

Q
κi + λi (ϑj − ϑi) , (53)
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for i, j = 1, 2 and j 6= i. In the limit as r̄ → ρ, equation (52) results in κj = κi ≡ κ, so that

consumption is the same in both states. The value of the slope κ can be computed from the

boundary conditions.49 We can solve for {ϑi}i=1,2 from equations (53),

ϑi =
1

ρ
uc
(
uc,−1
c (Qκ)

)
+
yi − uc,−1

c (Qκ)

ρQ
κ+

λi (yj − yi)
ρ (λi + λj + ρ)Q

κ,

for i, j = 1, 2 and j 6= i. Substituting ∂vi
∂a

= κ in (50), we obtain

2∑
i=1

∫ ∞
φ

(
r̄a+

yi − ci
Q

)
fi (a) da = 0. (54)

Equation (54) is exactly the zero-inflation steady-state limit of equation (17) in the main text

(once we use the definitions of ā, ȳ and c̄), and is therefore satisfied in equilibrium. We have thus

verified our guess that π → 0.

B. Computational method: the stationary case

B.1 Exogenous monetary policy

We describe the numerical algorithm used to jointly solve for the equilibrium value function,

v (a, y), and bond price, Q, given an exogenous inflation rate π. The algorithm proceeds in 3 steps.

We describe each step in turn. We assume that there is an upper bound arbitrarily large κ such
that f(t, a, y) = 0 for all a > κ. In steady state this can be proved in general following the same
reasoning as in Proposition 2 of Achdou et al. (2015). Alternatively, we may assume that there is

a maximum constraint in asset holding such that a ≤ κ, and that this constraint is so large that
it does not affect to the results. In any case, let [φ,κ] be the valid domain.

Step 1: Solution to the Hamilton-Jacobi-Bellman equation Given π, the bond pricing

equation (12) is trivially solved in this case:

Q =
δ

r̄ + π + δ
. (55)

49The condition that the drift should be positive at the borrowing constraint, si (φ) ≥ 0, i = 1, 2, implies that

s1 (φ) = r̄φ+
y1 − uc,−1

c (Qκ)

Q
= 0,

and

κ =
ucc (r̄φQ+ y1)

Q
.

In the case of state i = 2, this guarantees s2 (φ) > 0.
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The HJB equation is solved using an upwind finite difference scheme similar to Achdou et al.

(2015). It approximates the value function v(a) on a finite grid with step ∆a : a ∈ {a1, ..., aW},
where aj = aj−1 + ∆a = a1 + (j − 1) ∆a for 2 ≤ j ≤ J . The bounds are a1 = φ and aI = κ,
such that ∆a = (κ − φ) / (J − 1). We use the notation vi,j ≡ vi(aj), i = 1, 2, and similarly for the

policy function ci,j.

Notice first that the HJB equation involves first derivatives of the value function, v′i(a) and

v′′i (a). At each point of the grid, the first derivative can be approximated with a forward (F ) or a

backward (B) approximation,

v′i(aj) ≈ ∂Fvi,j ≡
vi,j+1 − vi,j

∆a
, (56)

v′i(aj) ≈ ∂Bvi,j ≡
vi,j − vi,j−1

∆a
. (57)

In an upwind scheme, the choice of forward or backward derivative depends on the sign of the drift

function for the state variable, given by

si (a) ≡
(
δ

Q
− δ − π

)
a+

(yi − ci (a))

Q
, (58)

for φ ≤ a ≤ 0, where

ci (a) =

[
v′i(a)

Q

]−1/γ

. (59)

Let superscript n denote the iteration counter. The HJB equation is approximated by the following

upwind scheme,

vn+1
i,j − vni,j

∆
+ρvn+1

i,j =
(cni,j)

1−γ

1− γ −
ψ

2
π2+∂Fv

n+1
i,j sni,j,F1sni,j,F>0+∂Bv

n+1
i,j sni,j,B1sni,j,B<0+λi

(
vn+1
−i,j − vn+1

i,j

)
,

for i = 1, 2, j = 1, ..., J , where 1 (·) is the indicator function and

sni,,jF =

(
δ

Q
− δ − π

)
a+

yi −
[

Q
∂F v

n
i,j

]1/γ

Q
, (60)

sni,j,B =

(
δ

Q
− δ − π

)
a+

yi −
[

Q
∂Bv

n
i,j

]1/γ

Q
. (61)

Therefore, when the drift is positive (sni,,jF > 0) we employ a forward approximation of the deriv-

ative, ∂Fvn+1
i,j ; when it is negative (s

n
i,j,B < 0) we employ a backward approximation, ∂Bvn+1

i,j . The

term
vn+1
i,j −vni,j

∆
→ 0 as vn+1

i,j → vni,j. Moving all terms involving v
n+1 to the left hand side and the
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rest to the right hand side, we obtain

vn+1
i,j − vni,j

∆
+ ρvn+1

i,j =
(cni,j)

1−γ

1− γ − ψ

2
π2 + vn+1

i,j−1α
n
i,j + vn+1

i,j βni,j + vn+1
i,j+1ξ

n
i,j + λiv

n+1
−i,j , (62)

where

αni,j ≡ −
sni,j,B1sni,j,B<0

∆a
,

βni,j ≡ −
sni,j,F1sni,j,F>0

∆a
+
sni,j,B1sni,j,B<0

∆a
− λi,

ξni,j ≡
sni,j,F1sni,j,F>0

∆a
,

for i = 1, 2, j = 1, ..., J . Notice that the state constraints φ ≤ a ≤ 0 mean that sni,1,B = sni,J,F = 0.

In equation (62), the optimal consumption is set to

cni,j =

(
∂vni,j
Q

)−1/γ

. (63)

where

∂vni,j = ∂Fv
n
i,j1sni,j,F>0 + ∂Bv

n
i,j1sni,j,B<0 + ∂v̄ni,j1sni,F≤01sni,B≥0.

In the above expression, ∂v̄ni,j = Q(c̄ni,j)
−γ where c̄ni,j is the consumption level such that s (ai) ≡

sni = 0 :

c̄ni,j =

(
δ

Q
− δ − π

)
ajQ+ yi.

Equation (62) is a system of 2×J linear equations which can be written in matrix notation as:

1

∆

(
vn+1 − vn

)
+ ρvn+1 = un +Anvn+1
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where the matrix An and the vectors vn+1 and un are defined by

An = −



βn1,1 ξn1,1 0 0 · · · 0 λ1 0 · · · 0

αn1,2 βn1,2 ξn1,2 0 · · · 0 0 λ1
. . . 0

0 αn1,3 βn1,3 ξn1,3 · · · 0 0 0
. . .

...
...

. . . . . . . . . . . . . . . . . . . . . . . .
...

0 0 · · · αn1,J−1 βn1,J−1 ξn1,J−1 0 · · · λ1 0

0 0 · · · 0 αn1,J βn1,J 0 0 · · · λ1

λ2 0 · · · 0 0 0 βn2,1 ξn2,1 · · · 0
...

. . . . . . . . . . . . . . .
...

. . . . . .
...

0 0 · · · 0 0 λ2 0 · · · αn2,J βn2,J



, vn+1 =



vn+1
1,1

vn+1
1,2

vn+1
1,3
...

vn+1
1,J−1

vn+1
1,J

vn+1
2,1
...

vn+1
2,J


(64)

un =



(cn1,1)1−γ

1−γ − ψ
2
π2

(cn1,2)1−γ

1−γ − ψ
2
π2

...
(cn1,J )1−γ

1−γ − ψ
2
π2

(cn2,1)1−γ

1−γ − ψ
2
π2

...
(cn2,J )1−γ

1−γ − ψ
2
π2


.

The system in turn can be written as

Bnvn+1 = dn (65)

where ,Bn =
(

1
∆

+ ρ
)
I−An and dn = un + 1

∆
vn.

The algorithm to solve the HJB equation runs as follows. Begin with an initial guess {v0
i,j}Jj=1,

i = 1, 2. Set n = 0. Then:

1. Compute {∂Fvni,j, ∂Bvni,j}Jj=1, i = 1, 2 using (56)-(57).

2. Compute {cni,j}Jj=1, i = 1, 2 using (59) as well as {sni,j,F , sni,j,B}Jj=1, i = 1, 2 using (60) and (61).

3. Find {vn+1
i,j }Jj=1, i = 1, 2 solving the linear system of equations (65).

4. If {vn+1
i,j } is close enough to {vn+1

i,j }, stop. If not set n := n+ 1 and proceed to 1.

Most computer software packages, such as Matlab, include effi cient routines to handle sparse

matrices such as An.
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Step 2: Solution to the Kolmogorov Forward equation The stationary distribution of

debt-to-GDP ratio, f(a), satisfies the Kolmogorov Forward equation:

0 = − d

da
[si (a) fi(a)]− λifi(a) + λ−if−i(a), i = 1, 2. (66)

1 =

∫ ∞
φ

f(a)da. (67)

We also solve this equation using an finite difference scheme. We use the notation fi,j ≡ fi(aj).

The system can be now expressed as

0 = −
fi,jsi,j,F1sni,j,F>0 − fi,j−1si,j−1,F1sni,j−1,F>0

∆a
−
fi,j+1si,j+1,B1sni,j+1,B<0 − fi,jsi,,jB1sni,,jB<0

∆a
−λifi,j+λ−if−i,j,

or equivalently

fi,j−1ξi,j−1 + fi,j+1αi,j+1 + fi,jβi,j + λ−if−i,j = 0, (68)

then (68) is also a system of 2× J linear equations which can be written in matrix notation as:

ATf = 0, (69)

whereAT is the transpose ofA = limn→∞A
n. Notice thatAn is the approximation to the operator

A and AT is the approximation of the adjoint operator A∗. In order to impose the normalization
constraint (67) we replace one of the entries of the zero vector in equation (69) by a positive

constant.50 We solve the system (69) and obtain a solution f̂ . Then we renormalize as

fi,j =
f̂i,j∑J

j=1

(
f̂1,j + f̂2,j

)
∆a

.

Complete algorithm The algorithm proceeds as follows.

Step 1: Individual economy problem. Given π, compute the bond price Q using (55) and

solve the HJB equation to obtain an estimate of the value function v and of the matrix A.

Step 2: Aggregate distribution. Given A find the aggregate distribution f .

B.2 Optimal monetary policy - ME

In this case we need to find the value of inflation that satisfies condition (24). The algorith proceeds

as follows. We consider an initial guess of inflation, π(1) = 0. Set m := 1. Then:

50In particular, we have replaced the entry 2 of the zero vector in (69) by 0.1.
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Step 1: Individual economy problem problem. Given π(m), compute the bond price Q(m)

using (55) and solve the HJB equation to obtain an estimate of the value function v(m) and

of the matrix A(m).

Step 2: Aggregate distribution. Given A(m) find the aggregate distribution f (m).

Step 3: Optimal inflation. Given f (m) and v(m), iterate steps 1-2 until π(m) satisfies51

2∑
i=1

J−1∑
j=2

ajf
(m)
i,j

(
v

(m)
i,j+1 − v

(m)
i,j−1

)
2

+ ψπ(m) = 0.

B.3 Optimal monetary policy - Ramsey

Here we need to find the value of the inflation and of the costate that satisfy conditions (22) and

(21) in steady-state. The algorith proceeds as follows. We consider an initial guess of inflation,

π(1) = 0. Set m := 1. Then:

Step 1: Individual economy problem problem. Given π(m), compute the bond price Q(m)

using (55) and solve the HJB equation to obtain an estimate of the value function v(m) and

of the matrix A(m).

Step 2: Aggregate distribution. Given A(m) find the aggregate distribution f (m).

Step 3: Costate. Given f (m), v(m),compute the costate µ(m) using condition (21) as

µ(m) =
1

Q(m)

 2∑
i=1

J−1∑
j=2

ajf
(m)
i,j

(
v

(m)
i,j+1 − v

(m)
i,j−1

)
2

+ ψπ(m)

 .
Step 4: Optimal inflation. Given f (m), v(m) and µ(m), iterate steps 1-3 until π(m) satisfies

(
ρ− r̄ − π(m) − δ

)
µ(m) +

1

(Q(m))
2

 2∑
i=1

J−1∑
j=2

(
δaj + yi − c(m)

i,j

)
f

(m)
i,j

(
v

(m)
i,j+1 − v

(m)
i,j−1

)
2

 .
C. Computational method: the dynamic case

C.1 Exogenous monetary policy

We describe now the numerical algorithm to analyze the transitional dynamics, similar to the one

described in Achdou et al. (2015). With an exogenous monetary policy it just amounts to solve the

51This can be done using Matlab’s fzero function.
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dynamic HJB equation (8) and then the dynamic KFE equation (14). Define T as the time interval

considered, which should be large enough to ensure a converge to the stationary distribution and

discretize it in N intervals of lenght

∆t =
T

N
.

The initial distribution f(0, a, y) = f0(a, y) and the path of inflation {πn}Nn=0 are given. We

proceed in three steps.

Step 0: The asymptotic steady-state The asymptotic steady-state distribution of the model

can be computed following the steps described in Section A. Given πN , the result is a stationary

destribution fN , a matrix AN and a bond price QN defined at the asymptotic time T = N∆t.

Step 1: Solution to the Bond Pricing Equation The dynamic bond princing equation (12)

can be approximated backwards as

(r̄ + πn + δ)Qn = δ +
Qn+1 −Qn

∆t
,⇐⇒ Qn =

Qn+1 + δ∆t

1 + ∆t (r̄ + πn + δ)
, n = N − 1, .., 0, (70)

where QN is the asymptotic bond price from Step 0.

Step 2: Solution to the Hamilton-Jacobi-Bellman equation The dynamic HJB equation

(8) can approximated using an upwind approximation as

ρvn = un +Anv
n +

(vn+1 − vn)

∆t
,

where An is constructing backwards in time using a procedure similar to the one described in Step

1 of Section B. By defining Bn =
(

1
∆t

+ ρ
)
I−An and dn = un + Vn+1

∆t
, we have

vn = (Bn)−1 dn. (71)

Step 3: Solution to the Kolmogorov Forward equation Let An defined in (64) be the

approximation to the operator A. Using a finite difference scheme similar to the one employed in
the Step 2 of Section A, we obtain:

fn+1 − fn
∆t

= AT
n fn+1,⇐⇒ fn+1 =

(
I−∆tAT

n

)−1
fn, n = 1, .., N (72)

where f0 is the discretized approximation to the initial distribution f0(b).
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Complete algorithm The algorithm proceeds as follows:

Step 0: Asymptotic steady-state. Given πN , compute the stationary destribution fN , matrix
AN , bond price QN .

Step 1: Bond pricing. Given {πn}N−1
n=0 , compute the bond price path {Qn}N−1

n=0 using (70).

Step 2: Individual economy problem. Given {πn}N−1
n=0 and {Qn}N−1

n=0 solve the HJB equation

(71) backwards to obtain an estimate of the value function {vn}N−1
n=0 , and of the matrix

{An}N−1
n=0 .

Step 3: Aggregate distribution. Given {An}N−1
n=0 find the aggregate distribution forward f

(k)

using (72).

C.2 Optimal monetary policy - ME

In this case we need to find the value of inflation that satisfies condition (24)

Step 0: Asymptotic steady-state. Compute the stationary destribution fN , matrix AN , bond

price QN and inflation rate πN . Set π(0) ≡ {π(0)
n }N−1

n=0 = πN and k := 1.

Step 1: Bond pricing. Given π(k−1), compute the bond price path Q(k) ≡ {Q(k)
n }N−1

n=0 using (70).

Step 2: Individual economy problem. Given π(k−1) and Q(k) solve the HJB equation (71)

backwards to obtain an estimate of the value function v(k) ≡ {v(k)
n }N−1

n=0 and of the matrix

A(k) ≡ {A(k)
n }N−1

n=0 .

Step 3: Aggregate distribution. Given A(k) find the aggregate distribution forward f (k) using

(72).

Step 4: Optimal inflation. Given f (k) and v(k), iterate steps 1-3 until π(k) satisfies

Θ(k)
n ≡

2∑
i=1

J−1∑
j=2

ajf
(k)
n,i,j

(
v

(k)
n,i,j+1 − v

(k)
n,i,j−1

)
2

+ ψπ(k)
n = 0.

This is done by iterating

π(k)
n = π(k−1)

n − ξΘ(k)
n ,

with constant ξ = 0.05.
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C.3 Optimal monetary policy - Ramsey

In this case we need to find the value of the inflation and of the costate that satisfy conditions

(22) and (21)

Step 0: Asymptotic steady-state. Compute the stationary destribution fN , matrix AN , bond

price QN and inflation rate πN . Set π(0) ≡ {π(0)
n }N−1

n=0 = πN and k := 1.

Step 1: Bond pricing. Given π(k−1), compute the bond price path Q(k) ≡ {Q(k)
n }N−1

n=0 using (70).

Step 2: Individual economy problem. Given π(k−1) and Q(k) solve the HJB equation (71)

backwards to obtain an estimate of the value function v(k) ≡ {v(k)
n }N−1

n=0 and of the matrix

A(k) ≡ {A(k)
n }N−1

n=0 .

Step 3: Aggregate distribution. Given A(k) find the aggregate distribution forward f (k) using

(72).

Step 4: Costate. Given f (k) and v(k), compute the costate µ(k) ≡ {µ(k)
n }N−1

n=0 using (22):

µ
(k)
n+1 = µ(k)

n

[
1 + ∆t

(
ρ− r̄ − π(k) − δ

)]
+

∆t(
Q

(k)
n

)2

 2∑
i=1

J−1∑
j=2

(
δaj + yi − c(k)

n,i,j

)
f

(k+1)
n,i,j

(
v

(k)
n,i,j+1 − v

(k)
n,i,j−1

)
2

 ,
with µ(k)

0 = 0.

Step 5: Optimal inflation. Given f (k), v(k) and µ(k) iterate steps 1-4 until π(k) satisfies

Θ(k)
n ≡

2∑
i=1

J−1∑
j=2

ajf
(k)
n,i,j

(
v

(k)
n,i,j+1 − v

(k)
n,i,j−1

)
2

+ ψπ(k)
n −Q(k)

n µ(k)
n = 0.

This is done by iterating

π(k)
n = π(k−1)

n − ξΘ(k)
n .

D. An economy with costly price adjustment

In this appendix, we lay out a model economy with the following characteristics: (i) firms are

explicitly modelled, (ii) a subset of them are price-setters but incur a convex cost for changing

their nominal price, and (iii) the social welfare function and the equilibrium conditions constraining

the central bank’s problem are the same as in the model economy in the main text.
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Final good producer

In the model laid out in the main text, we assumed that output of the consumption good was

exogenous. Consider now an alternative setup in which the consumption good is produced by a

representative, perfectly competitive final good producer with the following Dixit-Stiglitz technol-

ogy,

yt =

(∫ 1

0

y
(ε−1)/ε
jt dj

)ε/(ε−1)

, (73)

where {yjt} is a continuum of intermediate goods and ε > 1. Let Pjt denote the nominal price of

intermediate good j ∈ [0, 1]. The firm chooses {yjt} to maximize profits, Ptyt−
∫ 1

0
Pjtyjtdj, subject

to (73). The first order conditions are

yjt =

(
Pjt
Pt

)−ε
yt, (74)

for each j ∈ [0, 1]. Assuming free entry, the zero profit condition and equations (74) imply

Pt = (
∫ 1

0
P 1−ε
jt dj)1/(1−ε).

Intermediate goods producers

Each intermediate good j is produced by a monopolistically competitive intermediate-good pro-

ducer, which we will refer to as ’firm j’henceforth for brevity. Firm j operates a linear production

technology,

yjt = njt, (75)

where njt is labor input. At each point in time, firms can change the price of their product but

face quadratic price adjustment cost as in Rotemberg (1982). Letting Ṗjt ≡ dPjt/dt denote the

change in the firm’s price, price adjustment costs in units of the final good are given by

Ψt

(
Ṗjt
Pjt

)
≡ ψ

2

(
Ṗjt
Pjt

)2

C̃t, (76)

where C̃t is aggregate consumption. Let πjt ≡ Ṗjt/Pjt denote the rate of increase in the firm’s

price. The instantaneous profit function in units of the final good is given by

Πjt =
Pjt
Pt
yjt − wtnjt −Ψt (πjt)

=

(
Pjt
Pt
− wt

)(
Pjt
Pt

)−ε
yt −Ψt (πjt) , (77)
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where wt is the perfectly competitive real wage and in the second equality we have used (74) and

(75).52 Without loss of generality, firms are assumed to be risk neutral and have the same discount

factor as households, ρ. Then firm j’s objective function is

E0

∫ ∞
0

e−ρtΠjtdt,

with Πjt given by (77). The state variable specific to firm j, Pjt, evolves according to dPjt =

πjtPjtdt. The aggregate state relevant to the firm’s decisions is simply time: t. Then firm j’s value

function V (Pjt, t) must satisfy the following Hamilton-Jacobi-Bellman (HJB) equation,

ρV (Pj, t) = max
πj

{(
Pj
Pt
− wt

)(
Pj
Pt

)−ε
yt −Ψt (πj) + πjPj

∂V

∂Pj
(Pj, t)

}
+
∂V

∂t
(Pj, t) .

The first order and envelope conditions of this problem are (we omit the arguments of V to ease

the notation),

ψπjtC̃t = Pj
∂V

∂Pj
, (78)

ρ
∂V

∂Pj
=

[
εwt − (ε− 1)

Pj
Pt

](
Pj
Pt

)−ε
yt
Pj

+ πj

(
∂V

∂Pj
+ Pj

∂2V

∂P 2
j

)
.

In what follows, we will consider a symmetric equilibrium in which all firms choose the same price:

Pj = P, πj = π for all j. After some algebra, it can be shown that the above conditions imply the

following pricing Euler equation,53[
ρ− dC̃ (t)

dt

1

C̃ (t)

]
π (t) =

ε− 1

ψ

(
ε

ε− 1
w (t)− 1

)
1

C̃t
+
dπ (t)

dt
. (79)

Equation (79) determines the market clearing wage w (t).

Households

The preferences of household k ∈ [0, 1] are given by

E0

∫ ∞
0

e−ρt log (c̃kt) dt,

52In the proofs of Propositions 1 and 2 w have been used to denote the social value function. There is no possibility
of confusion.
53The proof is available upon request.
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where c̃kt is household consumption of the final good. We now define the following object,

ckt ≡ c̃kt +
c̃kt

C̃t

∫ 1

0

Ψt (πjt) dj,

i.e. household k′s consumption plus a fraction of total price adjustment costs (
∫

Ψt (·) dj) equal to
that household’s share of total consumption (c̃kt/C̃t). Using the definition of Ψt (eq. 76) and the

symmetry across firms in equilibrium (Ṗjt/Pjt = πt, ∀j), we can write

ckt = c̃kt + c̃kt
ψ

2
π2
t = c̃kt

(
1 +

ψ

2
π2
t

)
. (80)

Therefore, household k’s instantaneous utility can be expressed as

log(c̃kt) = log (ckt)− log

(
1 +

ψ

2
π2
t

)
= log (ckt)−

ψ

2
π2
t + o

(∥∥∥∥ψ2 π2
t

∥∥∥∥2
)
, (81)

where o(‖x‖2) denotes terms of order second and higher in x. Expression (81) is the same as

the utility function in the main text (eq. 28), up to a first order approximation of log(1 + x)

around x = 0, where x ≡ ψ
2
π2 represents the percentage of aggregate spending that is lost to price

adjustment. For our baseline calibration (ψ = 5.5), the latter object is relatively small even for

relatively high inflation rates, and therefore so is the approximation error in computing the utility

losses from price adjustment. Therefore, the utility function used in the main text provides a fairly

accurate approximation of the welfare losses caused by inflation in the economy with costly price

adjustment described here.

Households can be in one of two idiosyncratic states. Those in state i = 1 do not work. Those

in state i = 2 work and provide z units of labor inelastically. As in the main text, the instantaneous

transition rates between both states are given by λ1 and λ2, and the share of households in each

state is assumed to have reached its ergodic distribution; therefore, the fraction of working and

non-working households is λ1/ (λ1 + λ2) and λ2/ (λ1 + λ2), respectively. Hours per worker z are

such that total labor supply λ1

λ1+λ2
z is normalized to 1.

An exogenous government insurance scheme imposes a (total) lump-sum transfer τ t from work-

ing to non-working households. All households receive, in a lump-sum manner, an equal share of

aggregate firm profits gross of price adjustment costs, which we denote by Π̂t ≡ P−1
t

∫ 1

0
Pjtyjtdj −

wt
∫ 1

0
njtdj. Therefore, disposable income (gross of price adjustment costs) for non-working and
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working households are given respectively by

I1t ≡
τ t

λ2/ (λ1 + λ2)
+ Π̂t,

I2t ≡ wtz −
τ t

λ1/ (λ1 + λ2)
+ Π̂t.

We assume that the transfer τ t is such that gross disposable income for households in state i equals

a constant level yi, i = 1, 2, with y1 < y2. As in our baseline model, both income levels satisfy the

normalization
λ2

λ1 + λ2

y1 +
λ1

λ1 + λ2

y2 = 1.

Also, later we show that in equilibrium gross income equals one: Π̂t + wt
λ1

λ1+λ2
z = 1. It is then

easy to verify that implementing the gross disposable income allocation Iit = yi, i = 1, 2, requires

a transfer equal to τ t = λ2

λ1+λ2
y1− λ2

λ1+λ2
Π̂t. Finally, total price adjustment costs are assumed to be

distributed in proportion to each household’s share of total consumption, i.e. household k incurs

adjustment costs in the amount (c̃kt/C̃t)(
ψ
2
π2
t C̃t) = c̃kt

ψ
2
π2
t . Letting Ikt ≡ ykt ∈ {y1, y2} denote

household k’s gross disposable income, the law of motion of that household’s real net wealth is

thus given by

dakt =

[(
δ

Qt

− δ − πt
)
akt +

Ikt − c̃kt − c̃ktψπt/2
Qt

]
dt

=

[(
δ

Qt

− δ − πt
)
akt +

ykt − ckt
Qt

]
dt, (82)

where in the second equality we have used (80). Equation (82) is exactly the same as its counterpart

in the main text, equation (3). Since household’s welfare criterion is also the same, it follows that

so is the corresponding maximization problem.

Aggregation and market clearing

In the symmetric equilibrium, each firm’s labor demand is njt = yjt = ȳt. Since labor supply
λ1

λ1+λ2
z = 1 equals one, labor market clearing requires

∫ 1

0

njtdj = ȳt = 1.

Therefore, in equilibrium aggregate output is equal to one. Firms’profits gross of price adjustment

costs equal

Π̂t =

∫ 1

0

Pjt
Pt
yjtdj − wt

∫ 1

0

njtdj = ȳt − wt,
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such that gross income equals Π̂t + wt = ȳt = 1.

Central bank and monetary policy

We have shown that households’welfare criterion and maximization problem are as in our baseline

model. Thus the dynamics of the net wealth distribution continue to be given by equation (14).

Foreign investors can be modelled exactly as in Section 2.2. Therefore, the central bank’s optimal

policy problems, both under commitment and discretion, are exactly as in our baseline model.

E. The methodology in discrete time

The aim of this appendix is to illustrate how the methodology can be extended to discrete-time

models. We assume again that (Ω,F , {Ft} ,P) is a filtered probability space but time is discrete:

t ∈ N.

E.1. Model

Households

Output and net assets. The domestic price at time t, Pt, evolves according to

Pt = (1 + πt)Pt−1, (83)

where πt is the domestic inflation rate.

Household k ∈ [0, 1] is endowed with an income ykt per period, where ykt follows a two-state

Markov chain: ykt ∈ {y1, y2} , with y1 < y2. The transition matrix is

P =

[
p11 p12

p21 p22

]
.

Outstanding bonds are amortized at rate δ > 0 per period. The nominal value of the household’s

net asset position Akt evolves as follows,

Akt+1 = Anewkt + (1− δ)Akt,

where Anewkt is the flow of new issuances. The nominal market price of bonds at time t is Qt and

ckt is the household’s consumption. The budget constraint of household k is

QtA
new
kt = Pt (ykt − ckt) + δAkt.
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The dynamics for net nominal wealth are

Akt+1 = (1 + rt)Akt +
Pt (ykt − ckt)

Qt

. (84)

where rt ≡ δ
Qt
− δ is the nominal bond yield.

The dynamics of the real net wealth as akt ≡ Akt/Pt are

akt+1 =
1

1 + πt

[
(1 + rt) akt +

ykt − ckt
Qt

]
= st (akt, ykt) . (85)

From now onwards we drop subscripts k for ease of exposition. For any Borel subset Ã of Φ

we define the transition function associated to the stochastic process at as

Ht

[
(a, yi) ,

(
Ã, yj

)]
= P(at+1 ∈ Ã, yt+1 = yj|at = a, yt = yi), i, j = 1, 2.

This transition function equals

Ht

[
(a, yi) ,

(
Ã, yj

)]
= pij1Ã (st,i (a)) ,

where 1Ã (·) is the indicator function of subset Ã and st,i (a) ≡ st (a, yi) .

Preferences. Household have preferences over paths for consumption ckt and domestic infla-
tion πt discounted at rate β > 0,

U0 ≡ E0

[ ∞∑
t=0

βtu(ct, πt)

]
. (86)

We use the short-hand notation vi(t, a) ≡ v(t, a, yi) for the value function when household income

is low (i = 1) and high (i = 2). The Bellman equation results in

vi(t, a) = max
ct

u(ct, πt) + β (T vi) (t+ 1, a), i = 1, 2, (87)

where operator T is the Markov operator associated with (85), defined as54

(T vi) (t+ 1, a) = Et [v(t+ 1, at+1, yt+1)|at = a, yt = yi] (88)

=

2∑
j=1

∫
vj (t+ 1, a′)Ht [(a, yi) , (da

′, yj)] =
2∑
j=1

pijvj(t+ 1, st,i (a)).

54Notice that we consider the complete space R as the borrowing limit affects the dynamics through the admissible
consumption paths.
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The first order condition of the individual problem is

uc (ci) + β

(
T ∂vi
∂a

)
(t+ 1, a)

∂st,i (a)

∂ci
= uc (ci)−

(
T ∂vi
∂a

)
(t+ 1, a)

β

(1 + πt)Qt

= 0 (89)

Foreign investors

The nominal price of the bond at time t is given by

Qt =
δ + (1− δ)Qt+1

(1 + πt) (1 + r̄)
.

Distribution dynamics

The state of the economy at time t is the joint density of net wealth and output, f(t, a, yi) ≡ fi(t, a),

i = 1, 2. The dynamics of this density are given by the Chapman—Kolmogorov (CK) equation,

fi(t, a) = (T ∗fi) (t− 1, a) (90)

where the adjoint operator T ∗t−1 is defined as

(T ∗fi) (t− 1, a) =
2∑
j=1

∫
Ht−1 [(a′, yj) , (a, yi)] fj(t− 1, a′)da′ =

2∑
j=1

pji
fj(t− 1, s−1

t−1,j (a))

dst−1,j/da
, (91)

where s−1
t,i (a) is the inverse function of st,i (a) : if a′ = st,i (a) then a = s−1

t,i (a′) .

The proof of the CK equation is as follows. Let

P(at ≤ a, yt = yi) =

∫ a

−∞
fi (t, a

′) da′,

be the joint probability of at ≤ a and yt = yi. It is equal to

2∑
j=1

pji

∫ s−1
t−1,j(a)

−∞
fj (t− 1, a′) da′,

and taking derivatives with respect to a:

fi (t, a) =

2∑
j=1

pjifj
(
t− 1, s−1

t−1,j (a)
) ds−1

t−1,j (a)

da
=

2∑
j=1

pji
fj(t− 1, s−1

t−1,j (a))

dst−1,j/da
,

where we have applied the inverse function theorem.

If we define T v(t, ·) = [T v1(t, ·), T v2(t, ·)]T and T ∗f(t, ·) = [T ∗f1(t, ·), T ∗f2(t, ·)]T the inner
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product results in

〈T v(t+ 1, ·), f(t, ·)〉 =
2∑
i=1

∫
(T vi) (t+ 1, a)fi(t, a)da =

2∑
i=1

∫ 2∑
j=1

pijvj(t+ 1, st,j (a))fi(t, a)da

=

2∑
j=1

∫ 2∑
i=1

pijfi(t, a)vj(t+ 1, st,j (a))da.

By changing variable a′ = st,i (a) :

〈T v(t+ 1, ·), f(t, ·)〉 =

2∑
j=1

∫ 2∑
i=1

pijfi(t, s
−1
t,i (a′))vj(t+ 1, a′)

da′

dst,i/da

=
2∑
j=1

∫ [ 2∑
i=1

pij
fi(t, s

−1
t,i (a′))

dst,i/da

]
vj(t, a

′)da′

=
2∑
j=1

∫
(T ∗t fj) (t, a′)vj(t, a

′)da′ = 〈v(t+ 1, ·), T ∗t f(t, ·)〉 ,

showing that T and T ∗ are adjoint operators with one period lag.55

E.2. Optimal monetary policy

Central bank preferences

The central maximizes economy-wide aggregate welfare,

UCB
0 =

∞∑
t=0

βt
[∫ ∞

φ

∑2

i=1
u (ci (t, a) , π (t)) fi(t, a)da

]
. (92)

55A general proof for the time-invariant case can be found in theorem 8.3 in Stockey and Lucas (1989).
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Ramsey problem

Lagragian In this case the Lagragian can be written as

L [π,Q, f, v, c] =
∞∑
t=0

βt 〈ut, ft〉+

∞∑
t=0

〈
βtζt, T ∗ft−1 − ft

〉
+
∞∑
t=0

βtµt

(
Qt −

δ + (1− δ)Qt+1

(1 + πt) (1 + r̄)

)
+
∞∑
t=0

〈
βtθt, ut + βT vt+1 − vt

〉
+
∞∑
t=0

〈
βtηt, uc,t −

β

(1 + πt)Qt

(
T ∂vt+1

∂a

)〉
,

where βtζt (a), βtηt (a), βtθt (a) e−ρtµt are Lagrange multipliers.

The problem of the central bank in this case is

max
{πs,Qs,vs(·),cs(·),fs (·)}∞s=0

L [π,Q, f, v, c] . (93)

We can apply the fact that T and T ∗ are adjoint operators to express

〈
βtζt, T ∗ft−1 − ft

〉
= βt 〈T ζt, ft〉 − βt 〈ζt, ft〉 ,〈

βtθt, ut + βT vt+1 − vt
〉

= βt 〈θt, ut − vt〉+ βt+1 〈T ∗θt, vt+1〉 ,〈
βtηt, uc,t −

β

(1 + πt)Qt

(
T ∂vt+1

∂a

)〉
= βt 〈ηt, uc,t〉 −

βt+1

(1 + πt)Qt

〈
T ∗ηt,

∂vt+1

∂a

〉
.

Necessary conditions In order to find the maximum, we need to take the Gateaux derivative

with respect to the controls f , π, Q, v and c.

The Gateaux derivative with respect to ft (·) in the direction h is

βt 〈ut, ht〉+ βt+1
〈
T ζt+1, ht

〉
− βt 〈ζt, ht〉 = 0. (94)

Expression (94) should equal zero for any function hit (·) ∈ L2 (R) , i = 1, 2 :

ζ i (t, a) = u(ct,i, πt) + β (T ζ i) (t, a) ,

which coincides with the household’s Bellman equation (87) and hence ζ i (t, a) = vi (t, a) .
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In the case of ct (a) , the Gateaux derivative is

βt 〈uctht, ft〉 −
βt+1

(1 + πt)Qt

〈
htT

∂ζ+1

∂a
, ft

〉
+ βt 〈θt, uctht〉 −

βt+1

(1 + πt)Qt

〈
θt, htT

∂vt+1

∂a

〉
+βt 〈ηt, ucc,tht〉+

βt+1

(1 + πt)
2Q2

t

〈
ηt, ht

(
T ∂

2vt+1

∂a2

)〉
,

where we have applied the fact that ∂
∂c
T ∂vt+1

∂a
= − 1

(1+πt)Qt
T ∂2vt+1

∂a2 . This expression should be zero

for any function hit (·) ∈ L2 (R) , i = 1, 2. Notice that〈
θt,

(
uct −

1

(1 + πt)Qt

βT ∂vt+1

∂a

)
ht

〉
= 0

due to the first order condition of the individual problem (89). Analogously,〈
ft,

(
uct −

1

(1 + πt)Qt

βT ∂ζt+1

∂a

)
ht

〉
= 0

as ζ = v. Therefore the optimality condition with respect to c results in

ηt

[
ucc,t +

β

(1 + πt)
2Q2

t

(
T ∂

2vt
∂a2

)]
= 0 (95)

As the instantaneous utility function is assumed to be strictly concave, ucc,t < 0, and the individual

value function v is also strictly concave ∂2vt
∂a2 < 0 for all t and a, then

ucc,t +
β

(1 + πt)
2Q2

t

(
T ∂

2vt
∂a2

)
< 0

and the equality in equation (95) is only satisfied if ηi (t, ·) = 0, i = 1, 2.

In the case of vt (a) , the Gateaux derivative is

−βt 〈θt, ht〉+ βt 〈T ∗θt−1, ht〉 ,

where we have taken into account the fact that ηi (t, ·) = 0. The Gateaux derivative should be

zero for any function hit (·) ∈ L2 (R) , i = 1, 2 so that we obtain a CK equation that describes the

propagation of the “promises”to the individual households:

θt = T ∗θt−1,

where θ−1 = 0 as there are no precommitments. Hence θi(t, ·) = 0, i = 1, 2..
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In the case of Qt, we compute the standard (finite-dimensional) derivative:

βt+1

〈
∂

∂Qt

T vt+1, ft

〉
+ βtµt − βt−1µt−1

(1− δ)
(1 + πt−1) (1 + r̄)

= 0,

β

〈[
− δ

Q2
t

a− (yt − ct)
Q2
t

]
T vt+1, ft

〉
+ µt − β−1µt−1

(1− δ)
(1 + πt−1) (1 + r̄)

= 0,

and thus

µt =
µt−1 (1− δ)

β (1 + πt−1) (1 + r̄)
+

β

Q2
t

2∑
i=1

∫
(δa+ yi − ci (t, a))

(
T ∂vi
∂a

)
(t+ 1, a) fi (t, a) da.

The lack of any precommitment to bondholders implies µ−1 = 0.

Finally, we compute the standard derivative with respect to πt :

βt 〈uπt, ft〉+ βt+1

〈
∂

∂πt
T vt+1, ft

〉
+ βtµt

(
δ + (1− δ)Qt+1

(1 + πt)
2 (1 + r̄)

)
= 0,

〈uπt, ft〉 −
β

(1 + πt)
2

〈
T
(
at+1

∂vt+1

∂a

)
, ft

〉
+ µt

(
Qt+1

(1 + πt)
2 (1 + r̄)

)
= 0,

and hence

µtQt+1 = (1 + r̄)
2∑
i=1

∫ [
β

(1 + πt)
2T
(
a
∂vi
∂a

)
(t+ 1, a)− uπ (t, a)

]
fi (t, a) da.

The solution to the Ramsey problem in discrete time is given by the following proposition

Proposition 5 (Optimal inflation - Ramsey discrete time) If a solution to the Ramsey prob-
lem (93) exists, the inflation path π (t) must satisfy

µtQt+1 = (1 + r̄)

2∑
i=1

∫ [
β

(1 + πt)
2T
(
a
∂vi
∂a

)
(t+ 1, a)− uπ (t, a)

]
fi (t, a) da, (96)

where µ (t) is a costate with law of motion

µt =
µt−1 (1− δ)

β (1 + πt−1) (1 + r̄)
+

β

Q2
t

2∑
i=1

∫
(δa+ yi − ci (t, a))

(
T ∂vi
∂a

)
(t+ 1, a) fi (t, a) da. (97)

and initial condition µ−1 = 0.

Notice that this proposition is the the equivalent of Proposition 1 in discrete time.
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