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Abstract

We analyze the effects of a large fiscal incentive for R&D investment in China that
awards a lower average corporate income tax rate to qualifying firms. The sharp incentives
of the program generate notches, or jumps, in firm values, and vary over time and across
firm characteristics. We exploit a novel link between survey and administrative tax data
of Chinese firms to estimate investment responses, the potential for evasion, as well as
effects on productivity and tax payments. We find large responses of reported R&D using
a cross-sectional “bunching” estimators that is new in the R&D literature. We also find
evidence that firms relabel administrative expenses as R&D to qualify for the program.
We estimate an intent-to-treat effect of the policy on R&D investment of 18.8%, and find
that 45% of this response is due to evasion. These effects imply user-cost-elasticities of 2
for the reported response, and 1.14 for the real response. We utilize the panel structure of
the data to estimate the effect of the program on firm productivity, and find an increase of
1.6% for targeted firms. These estimates are crucial ingredients for designing policies that
trade-off corporate tax revenue with future productivity growth.
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It is widely believed that economic growth is highly dependent on innovation and, in particular,

on R&D investment. For this reason, governments often encourage R&D investment through

tax incentives. As China’s development through industrialization reaches a mature stage, the

country’s leaders have focused their efforts on fostering technology-intensive industries as a

source of future growth for the country (Ding and Li, 2015).1 This paper analyzes the effects

of one such effort: the InnoCom program, a large fiscal incentive for R&D investment in the

form of a corporate income tax cut. We exploit a novel link between tax return data and survey

data as well as sharp and changing tax incentives to provide new estimates of the effects of fiscal

incentives on R&D investment.

This paper analyzes quasi-experimental variation in the InnoCom program to answer three

questions that are of both policy and economic interest. First, is R&D investment responsive

to fiscal incentives and, if so, do firms engage in evasion or manipulation of reported R&D in

response to the tax incentives? Quantifying these effects is crucial for governments to determine

the cost of the marginal yuan of R&D investment in terms of foregone tax revenue. Second,

how much do firms value an additional yuan of R&D investment in terms of future profits?

Finally, what is the effect of fiscal incentives on firm-level productivity and aggregate productivity

growth? These questions are central to the decision of whether and to what degree governments

should encourage R&D investment through tax subsidies.

Answers to these questions are often confounded by the lack of large and plausibly exogenous

variation in tax incentives. Since R&D usually requires both fixed and adjustment costs, small

fiscal incentives are unlikely to have large effects on R&D investment, especially at the individual

firm level. In addition, as firms with better prospects for innovation are likely to invest more

heavily, comparisons of investment and profitability across different firms yield upward biases in

the value of R&D investment to firms.

We overcome these concerns by leveraging an unusual and large fiscal incentive for R&D

investment that is embedded in the Chinese corporate income tax. Before 2008, firms with

an R&D intensity (R&D investment over revenue) above 5% qualified for a special status as

high-tech firms that was accompanied by a lower average tax rate of 15%—a large reduction

from the standard rate of 33%. After 2008, the government established three thresholds of 3%,

4%, and 6% for firms of different size categories. The use of average, as opposed to marginal

incentives, creates a notch in the corporate income tax that generates very large incentives for

firms to invest in R&D. The combination of administrative tax data and survey data provides

a new way to precisely measure a firm’s R&D investment, exposure to the fiscal incentives, as

well as firm-level outcomes of interest, such as productivity.

We first provide descriptive evidence that the R&D notches have significant effects on R&D

intensity. We show that a large number of firms choose to locate at the threshold and that

introducing the tax cut led to a large increase in R&D investment. We use a group of firms

unaffected by the incentive prior to 2008 to show that the bunching patterns are driven by the

tax incentive and are not a spurious feature of the data. We also find that firms adjust their

R&D to the changes in the thresholds before and after 2008.

We then develop a model of firm behavior where R&D investment depends on tax incentives,

1Figure 1 shows the explosive growth in R&D intensity in China, relative to other selected countries.
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the effect of R&D on productivity, as well as heterogeneity in the profitability of R&D investment

across the population of firms. As long as the profitability of R&D investment is smoothly

distributed across the population, an R&D notch leads to excess bunching at the R&D notch

relative to the decisions made under a tax system without a notch. Our analysis characterizes the

profit function of the firm that is indifferent between the level of R&D implied by the notch and

a level of investment below the notch. We derive a bunching estimator that relates the bunching

patterns to the percentage increase in R&D following methods similar to those in Kleven and

Waseem (2013) and Saez (2010). The model then shows that the indifference condition of the

marginal buncher is an implicit function for the elasticity of profits to R&D investment, and that

this function depends solely on the estimated increase in R&D, and observed tax parameters.

We then extend the model to incorporate several realistic features. Most importantly, we allow

firms to have evasion motives and to potentially over-report their R&D. Finally, we design an

empirical strategy that relies on firm’s non-R&D expenditure data to detect and quantify evasion

responses.

Our empirical results use the insights from the model to quantify firms’ responses to the

tax incentives. We first use the bunching estimator to quantify the percentage increase in R&D

investment that is due to the tax incentive. We then analyze the potential for this response to

be driven by evasion. We find significant evidence that a portion of the observed response is

driven by mis-categorization of non-R&D expenses. On average, firms over-report 28% − 52%

of their R&D expenditure, which translates into a large reduction in firm’s real R&D responses.

For instance, our bunching estimator shows that a marginal firm participating in the InnoCom

program increased R&D by 58% to 92%, depending on the size of the firm. Taking the evasion

response into account, however, the elasticities of real R&D investment range from 30% to 66%.

One advantage of our setting is that, in contrast to pure administrative data, the Chinese

Survey of Manufacturing contains detailed information on factors of production at the firm level.

This allows us to relate R&D spending to observable measures of productivity. Using a regression

framework of firm level R&D on lagged R&D investment, we find that doubling R&D spending

increases firm level productivity in the short-run by 2.8%. We also find that adjusting for mis-

reported R&D is important when estimating the effect of R&D on productivity. In particular,

firms that are not mis-reporting R&D have consistently larger effects of R&D on productivity.

Using the attenuation in the real effect of R&D on productivity as a second measure of mis-

characterization, we find slightly larger estimates of the real increase in R&D investment.

We use a new estimator developed by Diamond and Persson (2016) to estimate treatment

effects of the InnoCom policy on investment, relabeling, profitability and tax revenues. We find

estimates of intent-to-treat effects that confirm an increase in reported R&D investment and a

decrease in administrative costs. We calculate the elasticity of R&D investment to the change

in the user cost of capital that is induced by the InnoCom program, and we find an elasticity

of 2 for reported R&D, and, once we account for relabeled administrative costs, an elasticity of

1.14 for real R&D investment. Even though a significant fraction of the response is consistent

with relabeling, we find persistent and statistically significant effects of the InnoCom program

on future productivity and profitability. In particular, between 2009 and 2011, the program led

to an increase of 6% in both productivity and profitability for every 100% increase in reported
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R&D. While the effects of the program on profitability lessen the fiscal cost of the government,

we find that raising productivity by 1% cost the government a 5.3% decrease in corporate tax

revenues. Finally, we recover the structural parameters of the model, including the long-run

effect of R&D investment on profitability that is implied by the bunching and evasion responses.

We find this “revealed preference” estimate of the productivity effects of R&D investment has a

similar magnitude to our other estimates.

The paper relates to several literatures. First, this paper is related to a large literature

analyzing tax incentives for R&D investment. Becker (2015) and Hall and Van Reenen (2000)

survey evidence of R&D tax incentives, and Hall and Van Reenen (2000) find a dollar-for-dollar

effect of tax credits on R&D investment. The recent empirical evidence so far is concentrated

in OECD countries, where micro-level data of firm innovation and/or tax records became in-

creasingly available.2 While earlier work typically relied on matching and panel data methods,

there is an emerging literature that explores the impact of tax incentives on R&D incentives in

a quasi-experimental setup, in particular, by exploiting policy discontinuities. Examples include

Agrawal et al. (2014), Bøler et al. (2015), Dechezlepretre et al. (2016), Einiö (2014), Guceri

and Liu (2015), and Rao (2015). To our knowledge, this is the first paper to analyze the R&D

tax incentive in a large emerging economy such as China. It is also one of the first few studies

that combine administrative tax data with industry survey data to study the link between fiscal

incentives, R&D investment, and firm-level productivity.

Second, our paper is related to a recent literature that uses non-parametric methods to

recover estimates of behavioral responses to taxation by analyzing the effects of sharp economic

incentives, such as kinks or notches in tax schedules, on aggregate patterns of “bunching” in

distributions of economic activity.3 As detailed below, the R&D tax incentive creates a jump

or notch in the after-tax profit function, generating similar incentives to those in Kleven and

Waseem (2013) and Best and Kleven (2015). However, in contrast to this literature, the incentive

generated by the notch targets a particular action, increasing R&D investment, as opposed to

simply changing the rate of taxation. We exploit this feature of our setting to estimate treatment

effects of the program on R&D investment, tax revenues, and growth in productivity using an

estimator recently developed by Diamond and Persson (2016).

Third, a previous literature has long documented “relabeling” as an important challenge to

identifying the real impact of tax incentive on R&D (see Hall and Van Reenen (2000), Eisner

et al. (1984), Mansfield and Switzer (1985)). This issue is likely more severe in a developing

economy setting (Bachas and Soto (2015), Best et al. (2015)). Our paper exploits unique data on

firm expenditures to jointly model and estimate firm’s R&D bunching and relabeling behaviors.

The rest of the paper is organized as follows. Section 1 provides a description of the fiscal

2For instance, see Agrawal et al. (2014) and Czarnitzki and Licht (2006) for Canada, Einiö (2014) for Finland,
Mulkay and Mairesse (2013) for France, Almus and Czarnitzki (2003) and Hussinger (2008) for Germany, Lach
(2002) for Israel, Bøler et al. (2015) for Norway, González and Pazó (2008) for Spain, Griffth et al. (2001), Guceri
and Liu (2015), and Dechezlepretre et al. (2016) for the UK, and Rao (2015) for the U.S.

3These methods, pioneered by Saez (2010), have been used by researchers analyzing a wide range of behaviors.
Kleven (2015) provides a recent survey. Our project is most related to a smaller literature analyzing firm-level
responses (Devereux et al. (2014), Patel et al. (2016), Liu and Lockwood (2015), Almunia and Lopez-Rodriguez
(2015), Bachas and Soto (2015)) as well as to papers analyzing the effect of constraints to optimizing behavior
(Kleven and Waseem (2013), Best and Kleven (2015), Gelber et al. (2014)).
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incentive for R&D investment. Section 2 discusses the data and Section 3 provides descriptive

evidence of the effects of the tax incentive on R&D investment. Section 4 develops a model

of R&D investment that links traditional estimates of productivity with bunching estimators.

Section 5 describes our results on the real and evasion responses to the InnoCom program, the

implications for policy analysis, and how accounting for evasion affects estimates of the effects

of R&D on firm-level productivity. Section 5 culminates with the estimation of the structural

parameters of the model and Section 6 concludes.

1 Fiscal R&D Incentives and the Chinese Corporate

Income Tax

China had a relatively stable Enterprise Income Tax (“EIT”) system in the early part of our

sample from 2000 - 2007. During that period, the EIT ran on a dual-track tax scheme with the

base tax rate for all “domestic owned” enterprises (DOE) at 33% and “foreign owned” enterprises

(FOE) ranging from 15% to 24%.4

Our project analyzes the “InnoCom” program, which targets qualifying “high tech” enter-

prises (HTE) and provides them a flat 15% income tax rate. This program is most important

for DOEs, including both state-owned and domestically private-owned enterprises, as they are

not eligible for many other tax breaks. Prior to 2008, the certification process was administered

by the local Ministry of Science and Technology, which established a long list of prerequisites.

The most important determinants for certification are the following:5

1. At least 30% of the firm’s (technician) employees must have a college degree, and at least

10% of the firm’s total employment should be devoted to R&D.

2. The firm’s R&D intensity (ratio of R&D expenditure to total sales) must be greater than

or equal to 5%. In addition, more than 60% percent of the R&D expenditure must be

incurred within China.

3. The sales of “high tech” products must account for more than 60% of the firm’s total sales.

4The preferential treatment of FOEs has a long history dating to the early 1990s, when the Chinese government
started to attract foreign direct investment in the manufacturing sector. It offered all new FOEs located in the
Special Economic Zone (SEZ) and Economic and Technology Development Zone (ETDZ) a reduced EIT of 15%.
It also offered a reduced EIT of 24% for all FOEs located in urban centers of cities in the SEZs and ETDZs. The
definition of “foreign owned” is quite broad: it includes enterprises owned by Hong Kong, Macau, and Taiwan
investors. It also includes all joint-venture firms which has foreign share of equity larger than 25%. The effective
tax rates of FOEs are even lower since most had tax holidays, typically tax free for the first 2 years or when
the firm becomes profitable, and then half the EIT rate for the subsequent 3 years. In addition to the special
tax treatments of FOEs, the Chinese government started the first round of the “West Development” program in
2001. Both DOEs and FOEs that are located in west China and are part of state-encouraged industries enjoy a
preferential tax rate of 15%. West China is defined as the provinces of Chongqing, Sichuan, Guizhou, Yunnan,
Tibet, Shaanxi, Gansu, Ningxia, Qinghai, Xinjiang, Inner Mongolia and Guangxi. Finally, there is also a small
and medium enterprise tax break, which is common in other countries, but the revenue threshold is as low as
$50, 000 and is effectively irrelevant for our sample.

5The original government regulations also require that the firms operate in a number of selected state-
encouraged industries. However, due to the breadth and vagueness of these industry definitions, this requirement
does not constitute a substantial hurdle.
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The program thus generates a large fiscal incentive to investment more than 5% of sales on

R&D, which we model in Section 4.

Corporate Income Tax Reform of 2008

In addition to leveraging the cross-sectional implications of the InnoCom program, we also exploit

changes in tax rates across time. The Chinese government implemented a major corporate tax

reform in 2008 in order to eliminate the dual-track system based on domestic/foreign ownership

and established a common rate of 25%.6 In concert with this reform, the Ministry of Science and

Technology reformed the InnoCom program by streamlining the application process, teaming-

up with the Ministry of Finance and the National Tax Bureau to improve compliance, and by

changing the threshold requirement of R&D intensity as a function of firms’ sales. The post-2008

requirements are as follows:

1. Firms with sales below 50 million RMB must maintain an R&D intensity at, or above 6%.

2. Firms with sales above 50 million RMB, but below 200 million RMB must maintain an

R&D intensity at, or above 4%.

3. Firms with sales above 200 million RMB must maintain an R&D intensity at, or above

3%.

4. More than 60 percent of R&D expenditures must be incurred within China

The rest of the pre-2008 requirements remain in effect. In addition, the state authorities further

require that firms meet all these criteria in the previous three accounting years, or from whenever

the firm is registered, in case the firm is less than three years old.

The InnoCom program has several desirable characteristics that allow us to avoid common

problems that arise when estimating the effects of fiscal incentives on R&D investment. First,

researchers often lack plausibly exogenous variation in fiscal incentives. As firms with better

prospects for innovation are likely to invest more in R&D, comparisons of investment and prof-

itability across firms with different levels of R&D may result in upwardly biased estimates of

the value of R&D investment to firms. The InnoCom program generates sharp counterfactual

predictions for the distribution of R&D intensity by changing firms’ average tax rate, which gen-

erates a notch in firms’ after-tax value functions. This allows us to use cross-sectional estimation

methods (e.g., Saez (2010), Kleven and Waseem (2013), and Diamond and Persson (2016)) to

identify causal effects of the tax incentives on firm investment and productivity.

A second concern is that, since R&D usually requires large fixed costs, even randomly assigned

incentives might not have the statistical power to detect meaningful responses. Since the average

tax rate of the firm can fall from 33% to 15%, the incentives implied by this program are

economically very important and may lead firms to invest in projects with substantial fixed

costs.

6Some of the existing previous tax breaks for FOEs were also gradually phased-out. For instance, FOEs which
previously paid an EIT of 15% paid a tax rate of 18% in 2008, 20% in 2009, 22% in 2010, and 24% in 2011. In
contrast, the “West Development” program will remain in effect until 2020.
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A final concern is that the reported R&D investment might not represent a real change in

investment, but instead might be a form of tax avoidance, or evasion. This concern is important

when interpreting the reported elasticity of R&D investment as real activity, and may loom large

when measuring the effects of R&D investment on productivity. To our knowledge, the current

literature is not able to circumvent this problem. We address this concern by devising a strategy

to test for misreporting, and to quantify the extent of the evasion response. This strategy

relies on the fine detail of expense reporting in our tax data, and on details of the institutional

setting that suggest the most likely channels for relabeling. Given that firms must maintain the

requirements above for a period of 3 years and that firms often use specialized consulting firms

to ensure they satisfy the standards set by the Ministry of Science and Technology, it is unlikely

that the bulk of this response will represent tax avoidance. In addition, since China relies on a

VAT system with third-party reporting, it is hard for companies to report expenses that are not

reported by third-party vendors. However, firms may be able to misreport non-R&D expenses to

qualify for the program. The administrative tax data we employ contains detailed information

on the breakdown of operating expenses and R&D expenses. This allows us to compare whether

firms that respond to the InnoCom program change spending in categories that are more likely to

be subject to manipulation, such as administrative or clerical services, relative to more tangible

categories, such as capital investment.

2 Data and Summary Statistics

We connect three large firm-level databases of Chinese manufacturing firms. The first is the

relatively well-studied Chinese Annual Survey of Manufacturing (ASM), an extensive yearly

survey of Chinese manufacturing firms. The ASM is weighted towards medium and large firms,

and includes all Chinese manufacturing firms with total annual sales of more than 5 million

RMB (approximately $800,000), as well additional state-owned firms with lower sales. This

survey provides detailed information on ownership, location, production, and the balance sheet

of manufacturing firms. This data allows us to measure total firm production, sales, inputs, and,

for a few years, detailed skill composition of the labor force. We supplement this data with a

separate survey by the Chinese National Bureau of Statistics that includes firms’ reported R&D.

We use these data for years 2006–2007.

The second dataset we use is the administrative enterprise income tax records from Chinese

State Administration of Tax (SAT). The SAT is the counterpart to the IRS in China and is in

charge of tax collection and auditing. In addition, the SAT supervises various tax assistance

programs such as the InnoCom program. The SAT keeps its own firm-level records of tax

payments as well other financial statement information used in tax-related calculations. We

have acquired these administrative enterprise income tax records from 2008–2011, which allows

us to construct detailed tax rate information for individual manufacturing firms. The scope of

the SAT data is slightly different from the ASM, but there is a substantial amount of overlap

for the firms which conduct R&D. For instance, for the year of 2008, the share of total R&D

that can be matched with ASM records is close to 85%.

The third dataset we use is the list of firms that are enrolled in the InnoCom program from
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2008–2014. For each of these manufacturing firms, we have the exact Chinese name, and the

year it was certified with high-tech status. This list is available from the Ministry of Science and

Technology website, and we have digitized it in order to link it to the SAT and ASM data. We

use these data to cross-validate the high-tech status recorded in the SAT data.

Summary Statistics

Table 1 reports descriptive statistics of all the firms in our analysis sample. In panel A, we report

the summary statistics of our main dataset from the SAT for all surveyed manufacturing firms

from 2008 to 2011. As discussed in Section 1, the 2008 tax reform creates an interesting pre- and

post-test for FOEs, as these firms did not have an incentives to obtain the high-tech certification

prior to 2008. Similarly, the change in the R&D intensity threshold across size-groups allows us

to trace the response of firms across time. Our benchmark cross-sectional results focus on data

from 2011, which allows for firms to respond to the phase-in of the tax changes.

Our data are comprised of around 1.2 million observations and about 300, 000 firms in each

sample year. On average, 8% of the sample reports positive R&D. Among firms with positive

R&D, the ratio of R&D to sales ratio, i.e. R&D intensity, is highly dispersed. The 25th-, 50th-

, and 75th-percentile are 0.3%, 1.5%, and 4.3%, respectively. The administrative expense to

sales ratio, which we use as a measure of misreporting to detect evasion, is close to 5.8% at the

median. We also report input and output variables that we used to construct measures of firm

performance. As in standard micro-level producer data, these variables are all quite dispersed

and skewed, and their means are much larger than their medians. For instance, the mean sales

is 118.2 million RMB, while the median firm’s sales is 10.6 million RMB. Similarly, the average

number of workers is 175, while the median is 48. The summary statistics are quite stable over

the four years, which is why we only report pooled moments.

In panel B, we report the summary statistics of Chinese manufacturing firms with R&D

activity in the Annual Survey of Manufacturing during the period 2006–2007. Since the National

Statistical Office of China stops reporting firm R&D activity after 2007, we mostly use these

firms in our descriptive evidence analysis. We have a similar sample size of around 300, 000

each year, although the firms in the ASM sample are noticeably larger than those in the SAT

sample. The difference is more pronounced when we look at the lower quartile (i.e. 25%) of the

distribution of sales, fixed assets, and the number of workers. This is consistent with the fact

that the ASM is weighted towards medium and large firms. Interestingly, the firms in the ASM

sample do not appear to invest more in R&D despite being larger. The fraction of positive R&D

firms is slightly higher than 10%, however, R&D intensity ranges from 0.1% to 1.7% at the 25th

and 75th percentile in this sample.

3 Descriptive Evidence of R&D Responses to Tax Notches

In this section, we provide descriptive evidence suggesting that R&D investment by Chinese

manufacturing firms is responsive to the fiscal incentives of the InnoCom program. In particular,

we document stark bunching patterns precisely above tax notches. We first analyze data from
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the post-2008 period as the phasing out of the dual-track system provides for cleaner comparisons

across firms. Moreover, the multiple tax notches based on firm size generate rich variation in

R&D bunching patterns.

Figure 2 plots the empirical distribution of the R&D intensity of Chinese firms in 2011. We

limit our sample to firms of R&D intensity between 1% and 15% to focus on firms with non-

trivial innovation activities. The first panel in Figure 2 shows the histogram of overall R&D

intensity distribution. There are clear bunching patterns at 3%, 4%, and 6% of R&D intensity,

which correspond to the three thresholds where the corporate income tax cut kicks-in. This

first panel provides strong prima-facie evidence that fiscal incentives provided by the InnoCom

program play an important role in firm’s R&D investment choices.

To further validate that these R&D bunching patterns are motivated by this specific policy,

the remaining panels of Figure 2 plot the histograms of R&D intensity for the three different size

ranges specified by the InnoCom program. For firms with annual sales less than 50 million RMB

in sales, we find clear bunching at 6% and nowhere else. Similarly, for firms with annual sales

between 50 million and 200 million RMB, the bunching is at 4%, while for firms with more than

200 million RMB annual sales, the bunching is at 3%. These patterns are consistent with the

size-dependent tax incentive programs laid out in the InnoCom program. Moreover, these plots

allay concerns of potential “round number problems” that might occur if firms report rounded

versions of true data and that are present in other bunching studies (e.g., Kleven and Waseem

(2013)) as there are no other significant spikes in the data.

Next, we analyze data sample from the pre-2008 period and we report in Figure 3 the empiri-

cal distribution of Chinese firms’ R&D intensity during 2006–2007. Recall that the tax incentive

of the InnoCom was not size-dependent before 2008 and kicks-in uniformly at a 5% R&D in-

tensity level. In addition, our pre-2008 data has information of each firm’s employee education

based on the Census of Manufacturing conducted in 2004. This allows us to refine our sample to

firms with more than 30% college educated workers, consistent with the requirement of InnoCom

program. It is reassuring here that we observe the R&D intensity bunching solely at 5%, and no

significant spikes at 3%, 4%, and 6%. The contrast of R&D intensity bunching patterns across

different time periods provides further evidence that Chinese firms respond actively to the tax

notches based on R&D intensity.

Bunching Response to the Tax Reform of 2008

The previous figures look at the cross-sectional distribution of R&D intensity and show a striking

pattern of bunching for both pre and post-2008 periods. We now explore some of the variation

over time in the Chinese corporate income tax system described in Section 1.

Consider first the behavior of FOEs in the large category (sales above 200 million RMB) as

the incentive to invest in R&D changes dramatically for these firms after 2008. Before 2008,

most of the large FOEs benefited from the dual-tax system and faced an EIT rate between 15%

to 24%. These firms were not likely to obtain the HTE certification as they saw little to no

tax benefits from the InnoCom program. However, when the dual-tax system was phased-out

in 2008, the InnoCom program becomes the most important tax incentive program for large
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FOEs.7 In Figure 4, we compare the R&D intensity distribution for the large FOEs before and

after 2008. To make the two samples comparable, we only use those firms that we were able to

match between the SAT and ASM data. The figure illustrates clearly that the changing EIT

system has a large impact on firm behavior. In the pre-2008 data, unlike the DOEs that show

a clear bunching at 5% of R&D intensity level, large FOEs have no clear pattern of bunching.

This is consistent with the fact that FOEs already faced very favorable EIT treatment during

that period. In contrast, FOEs start behaving like DOEs after 2008. Their R&D intensity

distribution starts to show a very distinguishable bunching at the 3% level, which is the exact

threshold required for these firms to qualify as HTEs.

We now consider the behavior of “small” (sales below 50 million RMB) DOEs. This is an

interesting group of firms since it is the only category that saw an increase in the required

R&D intensity threshold from 5% to 6%. Figure 5 shows this adjustment process. Similar to

the previous case, we restrict our analysis to those firms that we can match across samples

over time. While there is a stable bunching pattern at 5% for years 2006 and 2007, it almost

completely disappears in 2008. However, it takes a few additional years for this group of firms to

gradually increase their R&D to generate a clear bunching at 6%. This pattern is indicative of

adjustment cost or other constraints that a firm needs to overcome when they start to increase

R&D investment.

Combined, these figures provide strong qualitative evidence that firms are responsive to the

InnoCom program. Our quantitative analysis will focus on measuring the size of the change in

R&D investment, analyzing the degree to which the response is due to evasion, and studying

how evasion may influence the effect of R&D on productivity.

4 A Model of R&D Investment and Corporate Tax Notches

This section develops and discusses the empirical implementation of a model of R&D investment

where firms respond to notches in the corporate income tax schedule in China. The objective

of the model is two-fold. First, the model shows that we can recover a non-parametric estimate

of the increase in R&D following the InnoCom program using a bunching estimator as in Saez

(2010) and Kleven and Waseem (2013). Second, the model relates the bunching behavior to

firm-level parameters of interest, such as the profitability effect of R&D investment.

We start with a simple model and develop extensions to allow for fixed costs of certification,

adjustments costs of R&D investment, as well the possibility that the reported R&D response

is partly due to evasion. Full details of the model are presented in Appendix A.

4.1 Model Setup

Consider a firm i with a Cobb-Douglas production function given by:

qit = exp{φit}Kκ
itV

1−κ
it ,

7Since most of these firms are located in coastal Special Economic Zones or in Economic and Technology
Development Zones, the Western Development program usually does not apply.
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where Kit and Vit are static inputs with respective prices pk and pv, and where φit is log-TFP,

which follows the law of motion given by:

φi,t = ρφi,t−1 + ε ln(Di,t−1) + uit,

where Di,t−1 is R&D investment, and ui,t ∼ i.i.d. N(0, σ2).8 This setup is consistent with

the R&D literature where knowledge capital is depreciated (captured by ρ) and influenced by

continuous R&D expenditure (captured by ε). In a stationary environment, it implies that the

elasticity of TFP with respect to a permanent increase in R&D is ε
1−ρ .

We assume the firm faces a constant elasticity demand function: pit = q
−1/θ
it . This implies

that we can write expected profits as follows:

E[πit] = E[πit|Di,t−1 = 0]D
(θ−1)ε
i,t−1 .

R&D Choice Under A Linear Tax

Before considering how the InnoCom program affects a firm’s R&D investment choice, we first

consider a simpler setup without such a program. In a two-period context with a linear tax, the

firm’s inter-temporal problem is given by:

max
D1

(1− t1)(πi1 −Di1) + β(1− t2)E[πi2].

The optimal choice of Di1 given by:

Di1 =

[
1

(θ − 1)ε

1− t1
β(1− t2)

1

E[πi2|Di1 = 0]

] 1
(θ−1)ε−1

. (1)

Notice first that if the tax rate is constant across periods, the corporate income tax does not

affect the choice of R&D investment.9 This equation shows that the optimal R&D choice has a

constant elasticity with respect to the net of tax rate, so that

d lnDi1

d ln(1− t2)
=

1

1− (θ − 1)ε
.

In particular, this elasticity suggest that firms that have a higher valuation of R&D, that is when

(θ − 1)ε is greater, will be more responsive to tax incentives.

The choice of R&D depends on the potentially-unobserved, firm-specific factors, as they

influence E[πi2|Di,t−1 = 0]. An important insight from this analysis is that we can recover these

factors from D1i as follows:

E[πi2|Di1 = 0] =
1

(θ − 1)ε

1− t1
β(1− t2)

D
1−(θ−1)ε
i1 . (2)

8Note that an alternative formulation where we allow for capital to be fixed results in similar conclusions.
9This simple model eschews issues related to the user-cost of capital, as in Hall and Jorgenson (1967), and to

issues related to the source of funds, as in Auerbach (1984).
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A Notch in the Corporate Income Tax

Assume now that the tax in the second period has the following structure, modeled after the

incentives in the InnoCom program:

t2 =

{
tLT2 if D1 < αθπ1

tHT2 if D1 ≥ αθπ1
,

where sales equal θπ1, tLT2 > tHT2 , and where LT/HT stands for low-tech/high-tech. Intuitively,

this tax structure induces a notch in the profit function at D1 = αθπ1, where α is the R&D

intensity required to attain the high-tech certification. Figure 6 presents two possible scenarios

following this incentive. Panel (a) shows the situation where the firm finds it optimal to choose a

level of R&D intensity below the threshold. At this choice, the first order condition of the linear

tax case holds and the optimal level of R&D is given by Equation 1. From this panel, we can

observe that a range of R&D intensity levels below the threshold are dominated by choosing an

R&D intensity that matches the threshold level α. Panel (b) shows a situation where the firm is

indifferent between the internal solution of Panel (a) and the “bunching” solution of Panel (b).

The optimal choice of R&D for this firm is characterized both by Equation 1 and by D1 = αθπ1.

Whether the firm finds it optimal to set R&D intensity equal to the notch threshold depends

on firm-level conditions that are summarized by E[πi2|Di,t−1 = 0], as well as on the degree to

which R&D investment is valued by firms in terms of future profits (i.e., ε(θ − 1)). However,

as long as E[πi2|Di,t−1 = 0] is smoothly distributed around the threshold α, this incentive will

lead a mass of firms to find D1 = αθπ1 optimal and thus “bunch” at this level. Our analysis

proceeds by first identifying the firm that is marginal between both solutions in terms of the

R&D intensity, and then by using the identity of the marginal firm to relate the amount of

bunching at the notch to the firm’s valuation of R&D investment: ε(θ − 1).

We now characterize the firm that is indifferent between the level of R&D given by the notch

and a lower level of R&D investment D∗−i1 . Define Π(·|t) as the value function of the firm’s inter-

temporal maximization problem when facing tax t in period 2. A firm i is a marginal buncher

if:

Π(D∗−i1 |tLT2 ) = Π(αθπ1|tHT2 ),

where the left-hand side is the profit from an internal solution facing the low-tech tax rate tLT2

and the right hand side is the bunching solution when facing the high-tech tax rate tHT2 . Using

the optimal choice for an internal solution in Equation 2, we can manipulate Π(D∗−i1 |tLT2 ) to

obtain:

Π(D∗−i1 |tLT2 ) = (1− t1)(π1 −D∗−i1 ) +
(1− t1)

(θ − 1)ε
D∗−i1 . (3)

Similarly, we manipulate Π(αθπ1|tHT ) by substituting for the unobserved components of the

firm-decision, i.e. E[πi2|Di1 = 0], using Equation 2 to obtain:

Π(αθπ1|tHT ) = (1− t1)(π1 − αθπ1) +
(1− t1)D∗−i1

(θ − 1)ε

(
αθπ1

D∗−i1

)(θ−1)ε(
1− tHT2

1− tLT2

)
. (4)
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Comparing Equations 3 and 4 , we see that Equation 4 shows a larger cost of investment in the

first period (since D∗−i1 < αθπ1) and higher profits in the second period. Profits are higher by a

factor of
(
αθπ1
D∗−
i1

)(θ−1)ε (
1−tHT2

1−tLT2

)
, which combines productivity effects as well as a tax benefit.

We use Equations 3-4 and the indifference condition that defines the marginal bunching firm

to obtain a relation between the percentage difference in R&D intensity and (θ− 1)ε. Equating

Π(αθπ1|tHT2 ) and Π(D∗−1 |tLT2 ), dividing by (1− t1)αθπ1, and manipulating we obtain:

(1−∆D∗)1−(θ−1)ε

(θ − 1)ε
×
(

1− tHT2

1− tLT2

)
− 1 =

(
1

(θ − 1)ε
− 1

)
(1−∆D∗), (5)

where we define ∆D∗ = αθπ1−D∗−

αθπ1
as the percentage increase in R&D spending due to the notch.

The right-hand-side of this equation describes the profit from the internal optimum, relative

to the after-tax profits in the first period. The left-hand-side describes the relative profits

from bunching, which depend on productivity gains and tax gains, but which are lower by the

additional cost of investment.

While there is no closed-form solution for Equation 5, this equation describes an implicit

function between ∆D∗ and (θ−1)ε. In particular, given observable tax parameters tHT2 and tLT2 ,

and the empirical quantity ∆D∗, a solution to Equation 5 would result in an estimate of (θ−1)ε.

Figure A3 in the Appendix plots this function. Note that while we are not able to separately

identify θ and ε, the quantity (θ−1)ε is informative as it represents the effect of R&D investment

on future profitability. Before we discuss how we recover ∆D∗ from aggregate bunching patterns,

we first generalize the model to allow for evasion responses and costs of adjustment.

R&D Choice Under Tax Notch with Evasion

As discussed in Section 1, one mechanism driving the large bunching responses we observe might

be manipulation of reported R&D investment. We now assume that firms may misreport their

costs and shift non-RD costs to the R&D category.

We choose to focus on this form of evasion since the institutional setting limits other types

of evasion. First, cases where all of the change in R&D is driven by evasion are ruled out by the

requirement that firms obtain the InnoCom certification. In particular, part of this certification

includes an audit of the firm’s tax and financial standings. Second, China relies on a value-

added-tax (VAT) system based on third-party reporting. As in other settings (e.g., Kleven et al.

(2011)), third-party-reporting may limit a firm’s ability to avoid taxation by reporting “phantom

expenses.”

The most likely form of evasion is the mis-categorization of administrative expenses as re-

search expenses. These type of expenses are easily shifted and may be hard to identify in any

given audit. Interviews with accountants and controllers of large Chinese firms reveal that this is

the most likely source of evasion. In particular, since the threshold of R&D depends on sales, it

might be hard for firms to perfectly forecast their expenses. A firm with unexpectedly high sales,

for instance, might choose to characterize administrative expenses as R&D in order to meet the

InnoCom requirement in any given year. For this reason, we analyze expense substitution of

administrative expenses to R&D.
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Denote a firm’s reported level of R&D spending by D̃1. The expected cost of misreporting

to the firm is given by h(D1, D̃1). We assume that the cost of mis-reporting is proportional to

the reported R&D, D̃1, and depends on the percentage of mis-reported R&D, D̃1−D1

D̃1
, so that:

h(D1, D̃1) = D̃1h̃ (δ) ,

where δ = D̃1−D1

D̃1
. We also assume that h̃ satisfies h̃(0) = 0 and h̃′(·) ≥ 0. In practice, we

parametrize this function with a constant elasticity: h̃(δ) = δη/η.

Firms qualify for the lower tax whenever D̃1 ≥ αθπ1. Notice first that if a firm decides not

to bunch at the level αθπ1, there is no incentive to misreport R&D spending as it does not affect

total profits or the tax rate. However, a firm might find it optimal to report D̃1 = αθπ1, even if

it actually invested a lower level of R&D.

We characterize the firm that is indifferent between bunching and potentially misreporting,

and not bunching. Figure 7 describes the intuition behind this choice. The firm that is willing

to evade in order to reach the notch now has a lower internal solution that would be preferable

to the firm than bunching if evasion were not possible. Because the firm gets positive returns

from R&D investment and because increasing actual R&D investment lowers the cost of evasion,

the firm increases its real investment to D∗K , which is such that αθπ1 ≥ D∗K ≥ D∗−. At this

point, the firm’s choice is characterized by three conditions: the indifference condition, the first

order condition of the internal solution, and the first order condition of the extent of evasion.

We now derive these conditions in our model. Define Π(D1, D̃1|t) as the value function of a

firm’s inter-temporal maximization problem when the firm faces tax t in period 2, invests D1 on

R&D, and declares investment of D̃1. A firm i is a marginal buncher if:

Π(D∗−i1 , D
∗−
i1 |tLT2 ) = Π(αθπ1, D

∗K
1 |tHT2 ),

where the left-hand side is the profit from an internal solution facing the low-tech tax rate tLT2 ,

the right hand side is the bunching solution when facing the high-tech tax rate tHT2 , and where

the firm chooses a real R&D level of D∗K .

Consider first Π(D∗−i1 , D
∗−
i1 |tLT2 ). Since the firm does not mis-report in this case, Equation 3

still describes the profit in this case. Now manipulate Π(αθπ1, D
∗K
1 |tHT ) using Equation 1 to

obtain:

Π(αθπi1, D
∗K
i1 |tHT2 ) = (1− t1)

(
πi1 −D∗Ki1

)
− h(D∗K1 , αθπ1)

+
(1− t1)D∗−i1
ε(θ − 1)

(
D∗Ki1
D∗−i1

)(θ−1)ε
(1− tHT2 )

(1− tLT2 )
(6)

As in the case without evasion, we equate and manipulate Equations 3 and 6 to obtain the

following indifference condition:

1

(θ − 1)ε

(
1−∆D∗

1− δ∗

)1−(θ−1)ε

×
(

1− tHT2

1− tLT2

)
− 1− (δ∗)η

(1− δ∗)(1− t1)η
=

(
1

(θ − 1)ε
− 1

)(
1−∆D∗

1− δ∗

)
. (7)

Equations 7 and 5 are very similar. If δ∗ = 0, such that there is no evasion, these equations

are identical. When δ∗ > 0 these equations differ by the cost of evasion, and by noting that
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the real increase in R&D is now given by 1−∆D∗

1−δ∗ . This quantity is the relevant quantity when

accounting for the effects of R&D on productivity.

In the case when the firm decides to bunch and evade, we have the additional information that

DK is chosen optimally. The first-order-condition of Equation 6 implies the following condition:(
1−∆D∗

1− δ∗

)1−(θ−1)ε

×
(

1− tHT2

1− tLT2

)
= 1− (δ∗) η−1

(1− t1)
. (8)

Equation 8 along with Equation 7 now form a system of two equations that are implicit functions

for the parameters η and (θ− 1)ε. As we show in Appendix B, for a given set of tax parameters

(tH , tL) and response margins (∆D∗, δ∗), Equations 7 and 8 can be rearranged as closed-form

functions relating (θ − 1)ε and η. The intersection of these functions identifies the parameters

consistent with the data.

Fixed and Adjustment Costs

In addition to the possibility of evasion, we also allow for the possibility that firms face adjust-

ment costs of investment and fixed costs of certification. We assume that the fixed cost is given

by: c × αθπ1i. We allow quadratic adjustment costs governed by: bθπ1i
2

[
Di
θπ1i

]2

. Appendix A

provides technical details and shows that the indifference condition of the marginal firms is now

given by:(
1−∆D∗

1− δ∗

)1−(θ−1)ε

×
(

1− tHT2

1− tLT2

)
×
(

1 + αb(1−∆D∗)

(θ − 1)ε

)
− 1− c

1− δ∗
− αb

2
− (δ∗)η

(1− δ∗)(1− t1)η
(9)

=

(
1−∆D∗

1− δ∗

)
×
[(

1

(θ − 1)ε
− 1

)
+ αb

(
1

(θ − 1)ε
− 1

2

)
(1−∆D∗)

]
.(10)

Similarly, the condition from the first order condition of evasion is now:(
1−∆D∗

1− δ∗

)1−(θ−1)ε

×
(

1− tHT2

1− tLT2

)
=

1 + αb(1− δ∗)− (δ∗)η−1

1−t1
1 + αb(1−∆D∗)

. (11)

The parameters (θ−1)ε, η, b, and c are now under-identified by a single pair of data (∆D∗, δ∗).

In practice, we calibrate the parameters b and c or impose restrictions across different size groups

in order to identify all of these parameters. Appendix B discusses the identification of the

structural parameters in this case.

4.2 Empirical Implementation of the Bunching Estimator

We now describe how we obtain estimates of the percentage change in R&D investment ∆D∗

from the distributional patterns described in Section 3. Figure 8 provides the intuition for this

procedure. Panel (a) provides a counterfactual distribution of R&D intensity under a linear tax.

Denote this counterfactual density by h0(·). Panel (a) demonstrates the effect of the notch on

the distribution of R&D intensity in a world of unconstrained firms with homogenous values of

(θ−1)ε. In this case, there is a range of R&D intensity levels that is dominated by the threshold
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α. Firms with an internal solution in this rage will opt to bunch at the notch, which generates

the bunching patterns. Define this excess mass at the notch, relative to the counterfactual

distribution, as B. To understand the empirical content underlying this bunching prediction,

recall that firms with higher valuations of R&D investment will be more responsive to the fiscal

incentive, and will be more likely to bunch at the notch.

We can now relate the percentage change in R&D investment ∆D∗ to the quantities B and

h0(α) by noting that:

B =

α∫
D−∗
i1
θπ1

h0

(
Di1

θπ1

)
d
Di1

θπ1

≈ h0(α)

(
α− D−∗i1

θπ1

)
= h0(α)α∆D∗. (12)

The first part of Equation 12 makes the point that the excess mass B will equal the fraction

of the population of firms that would have located in the dominated region. This quantity is

defined by the integral of the counterfactual distribution h0(·) over the dominated interval, which

is given by
(
D−∗
i1

θπ1
, α
)
. The second part of Equation 12 approximates this integral by multiplying

the length on this interval by the value of the density at α. Simplifying this expression and

solving for ∆D∗ we obtain:

∆D∗ =
B

h0(α)α
.

Thus, in order to estimate ∆D∗, and subsequently (θ − 1)ε, it suffices to have an estimate of

the counterfactual density h0(·), and to use this to recover the quantities B and h0(α). Prior

to detailing the estimation of this counterfactual density, however, we first discuss a generalized

version of the model that allows for frictions as well as heterogeneous values of (θ − 1)ε.

The prediction in Panel (a) of Figure 8 is quite stark in that no firms are expected to locate

in the dominated interval. However, it is possible that some of the firms in our sample are

not able to increase their R&D investment due to some friction, such as a credit constraint.

We follow Kleven and Waseem (2013) in allowing for this possibility. Denote by a
(
Di1
θπ1

)
the

fraction of firms that are constrained in increasing their investment past Di1
θπ1

. This fraction can

be computed easily by comparing the fraction of firms that are close to the notch but are not

bunching to the counterfactual density h0(α). Recovering ∆D∗ with this modification requires

a slight modification to Equation 12 by replacing h0

(
Di1
θπ1

)
with

(
1− a

(
Di1
θπ1

))
h0

(
Di1
π1

)
.

We can further generalize this setup by allowing for heterogenous values of (θ − 1)ε across

firms. Variation in these parameters will affect the fraction of firms that are constrained as

well as the expected change in R&D investment, which we now denote as a
(
Di1
θπ1
, (θ − 1)ε

)
and

∆D∗(θ−1)ε, respectively. Panel (b) of Figure 8 describes graphically how allowing for this degree

of heterogeneity, in addition to frictions, affects the predicted bunching pattern. Equation 12
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can now be generalized as follows:

B =

∫ α∫
D−∗
i1
θπ1

(
1− a

(
Di1

θπ1

, (θ − 1)ε

))
h̃0

(
Di1

θπ1

, (θ − 1)ε

)
d
Di1

θπ1

d(θ − 1)ε

≈ h0(α)αE[∆D∗(θ−1)ε]

(
1− E

[
a

(
Di1

θπ1

, (θ − 1)ε

)])
,

where h̃0

(
D
θπ1
, (θ − 1)ε

)
is the joint distribution of R&D intensity and the parameters (θ− 1)ε,

and where E[∆D∗(θ−1)ε] now denotes the average percentage change in R&D intensity.

We now address how we estimate h0(·) to recover the empirical quantities B and h0(α). We

follow the literature (see, e.g., Kleven (2015)) by estimating a flexible polynomial on a subset

of data that excludes the area around the threshold, and by using the fitted polynomial on the

excluded region as an estimate of h0(·). Mechanically, we first group the data into bins of R&D

intensity and then estimate the following regression:

cj =

p∑
k=0

βk · (dj)k + γj · 1
[
D−∗1

θπ1

≤ dj ≤
D+∗

1

θπ1

]
+ νj

where cj is the count of firms in the bin corresponding to R&D intensity level
Dj1
θπ1

and where(
D−∗

1

θπ1
,
D+∗

1

θπ1

)
is the region excluded in the estimation. Given the monotonically decreasing shape

of the R&D intensity, we restrict the estimated βk’s to result in a decreasing density. We also

follow Diamond and Persson (2016) in using a data-based approach to selecting the excluded

region (i.e.,
D−∗

1

θπ1
and

D+∗
1

θπ1
) and degree of the polynomial, p. In particular, we use K-fold cross-

validation (K=5) to evaluate the fit of a range of values for these three parameters.

An estimate for h0

(
Dj1
θπ1

)
is now given by ĉj =

p∑
i=0

β̂i ·
(
Dj1
θπ1

)i
. Similarly, we obtain a coun-

terfactual estimate for h0(α) and B as follows:

ĥ0(α) =

p∑
k=0

β̂k · (α)k and B̂ =
α∑

dj=
D−∗
1
θπ1

p∑
k=0

β̂k · (dj)k .

Finally, an estimate of the fraction of constrained firms is given by:

̂
E
[
a

(
Di1

θπ1

, (θ − 1)ε

)]
=

γ̂α−

p∑
k=0

β̂k · (α−)k
,

where α− is the value of R&D such that a firm would be willing to jump to the notch even

if R&D had no effects on productivity.10 Standard errors for the regression estimates, and for

estimates of the counterfactual density can be computed by bootstrapping the residuals and

re-estimating the coefficients.

10This “money-burning” point is easy to compute given an estimate of θ. In this case, the tax benefit is given
by (tL−tH)π1 and the cost of jumping to the notch is θπ1(α−α−), which implies that α− = α−(tL−tH)×(1/θ).
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4.3 Quantifying Evasion

As mentioned above, the total response ∆D∗ may include real investment as well as misreporting.

Importantly, since China’s SAT also collects value-added tax, it keeps records of transaction

invoices between a given firm and its third-party business partners. For this reason, it is very

hard, if not impossible, for firms to completely make up “phantom” R&D expenses. In addition,

the Chinese State Administration of Tax, together with the Ministry of Science and Technology,

conducts regular auditing of the InnoCom HTE firms, which likely eliminates the possibility for

all-out evasion.

From conversations with the State Administration of Tax as well as corporate executives, we

recognize that the most important source of evasion is expense mis-categorization. Specifically,

in the Chinese Accounting Standard, R&D is categorized under “Administrative Expenses,”

which also includes various other expenses that are related to corporate governance.11 This

raises the possibility that firms reallocate the non-R&D administrative expenditure into R&D

in order to over-report their R&D intensity. Our empirical strategy exploits additional cost data

at the firm level in the SAT dataset in order to quantify the extent of evasion by analyzing the

potential for firms to mis-report R&D expenses.

We test for this possibility using three different strategies. First, we test for a structural

break, or discontinuity, in the non-R&D admin expense-to-sales ratio around the notch α. This

strategy is similar to those of Hilber and Lyytikäinen (2013) and Bachas and Soto (2015). We

implement this strategy by estimating a series regression in the neighborhood to the left and

right of the threshold to identify the magnitude of the jump.

To relate this empirical strategy to our model, recall that the fraction of R&D that is evaded

is given by:
αθπ1 −DK∗

αθπ1

= δ∗.

As our model indicates, if firms indeed over-report part of their R&D αθπ1 −DK∗ to reach the

threshold for R&D intensity, then one will expect that the non-R&D administrative expense-to-

sales ratio will take a downward jump around α. Let βEvasion be the estimate of the structural

break or jump. If we attribute this jump to evasion, then we can recover

δ∗ =
−βEvasion

α
.

In Section 5.3 we describe an alternative method of estimating δ∗ that relies on the attenu-

ation of the estimated effects of R&D on productivity. Our third strategy relies on estimating

a counterfactual value of the non-R&D admin expense-to-sales ratio over the excluded region.

We discuss these results in Section 5.5.

Armed with estimates of ∆D∗ and δ∗, we can assess the fraction of the bunching response that

is due to evasion, and estimate the real effect of the policy on R&D investment. Additionally,

we can implement our model and estimate the structural parameters (θ − 1)ε and η.

11Examples include administrative worker salary, business travel expenses, office equipments, etc.
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5 Effects of R&D Notches on Investment, Evasion, and

Productivity

This section discusses the results of our analyses. Section 5.1 estimates the investment response

from the bunching estimator. Section 5.2 presents evidence of evasion, and Section 5.3 shows

that accounting for evasion results in larger estimates of the effects of R&D on productivity.

Section 5.4 discusses reduced-form policy elasticities from these estimates. Section 5.5 presents

estimates of treatment effects on productivity and tax revenues, and Section 5.6 uses the moment

conditions from the model to recover productivity effects of R&D from firms’ revealed investment

choices.

5.1 Bunching Estimates of Investment Response

As mentioned above, implementing the bunching estimator requires choosing the degree of the

polynomial and selecting the excluded region. Our cross-validation procedure searches over

values of p < 7, and all possible discrete values of
D−∗

1

θπ1
< α and

D+∗
1

θπ1
> α that determine the

excluded region. For each value, the procedure estimates the model in K = 5 training subsamples

of the data and computes two measures of model fit on corresponding testing subsamples of the

data. First, we test the hypothesis that the excess mass (above the notch) equals the missing mass

(below the notch). Second, we compute the sum of squared errors across the test subsamples.

We select the combination of parameters that minimizes the sum of squared errors, among the

set of parameters that do not reject the test of equality between the missing and excess mass

at the 10% level.12 We obtain standard errors by bootstrapping the residuals from the series

regression, generating 500 replicates of the data, and re-estimating the parameters.

Figure 9 displays the results of the bunching estimator for the three different notches after

2011. The red line displays the observed distribution of R&D intensity h1(·), the vertical dashed

lines display the data-driven choices of the omitted region, and the blue line displays the esti-

mated counterfactual density h0(·). Each of these graphs also reports the implied values of ∆D∗,

the fraction of firms that are constrained at the notch point, and the p-value of the test that the

missing mass and the excess mass are of the same magnitude.13

Panel (a) shows an increase in R&D intensity of 58% as a fraction of the notch. This estimate

corresponds to the response of “complier” firms that are not otherwise constrained in their ability

to respond to the incentives of the InnoCom program. The specification test shows that using

the missing mass or the excess mass results in statistically indistinguishable estimates. We also

find that 58% of the firms are not able to respond to the incentive. As these are small firms,

many firms may be constrained in their ability to increase investment to a significant degree, to

develop a new product, or to increase the fraction of their workforce with college degrees. In

12Note that a common practical problem in the literature is the higher frequency in the reporting of “round
numbers.” As Figures 2 and 3 in Section 3 demonstrate, our data does not display “round-number” problems
that are often present in other applications.

13In order to calculate the fraction of firms that is constrained, we use the average of the net profitability ratio
in our data of 7%. This implies that firms in the range (α − .07 × (tL − tH), α) are not able to respond to the
incentives of the InnoCom program. Table A4 presents alternative estimates that assume θ = 5, which implies a
net profitability ratio of 20%.
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addition, a higher failure rate among small firms implies that a long process of certification may

never pay off in lower taxes.

Panels (b) and (c) show the same set of results for medium and large firms. We find similar

increases in R&D intensity of 63% and 92%, respectively. In both cases, using the missing mass

and the excess mass results in statistically indistinguishable estimates of the increases in R&D.

The estimated fraction of firms that face constraints to respond to the program is now 37%

and 33%, respectively. When we analyze these firms, we find that most of these firms have low

profitability, or are already benefitting from other tax credits. Both of these features would

lower the incentive to be certified by the InnoCom program.

While ∆D∗ represents a percentage increase in R&D, we can also obtain an estimate of the

increase in R&D as a fraction of sales by multiplying ∆D∗ by α. This implies an increase of

2.5% and 2.76% of revenue for medium and large firms, respectively. Finally, it is worth noting

that these effects are estimated with a high degree of precision as standard errors are often an

order of magnitude smaller than the estimates.

5.2 Estimates of Evasion Response

We now explore the degree to which the bunching response may be due to expense mis-reporting.

As mentioned above, under Chinese Accounting Standards, R&D is categorized under “Admin-

istrative Expenses.” For this reason, we look for evidence of evasion by studying the ratio of

non-R&D administrative expenses to sales. Figure 10 explores how this ratio is related to R&D

intensity, and whether this ratio changes discontinuously at the relevant notches. For each size

group, this figure groups firms into bins of R&D intensity and plots the mean non-R&D admin

expense-to-sales ratio for each bin. We report the data along with an estimated cubic regres-

sion of the expense ratio on R&D intensity with heterogeneous coefficients above and below

the notches. The green dots are for large sales firms, red for medium sales firms, and blue for

small firms. For each size category, there is an obvious discontinuous jump downward at each

threshold. Once the firms get further away from the bunching threshold, there is no systemic

difference of the admin expense-to-sales ratio for firms with either low or high R&D intensities.

This pattern is very consistent with the hypothesis that firms mis-categorize non-R&D expenses

into R&D when they get close to the bunching thresholds.14

In Table 2, we report the estimated jump at the notch from the series regression to further

quantify the size of the downward jump for each size group. The coefficient of structural break

is highly significant for all three groups. The large, medium, and small sales firms reduce

their admin expense-to-sales ratio by 1.4%, 1.3%, and 0.8%, respectively. Using the formula

δ∗ = −βEvasion
α

to adjust for each group’s thresholds 3%, 4%, and 5%, we find that the fraction

of R&D misreported δ∗ is on average 0.233 for large sales firms, 0.329 for medium sales firms,

and 0.269 for small sales firms.

As a robustness check, we conduct a similar set of analysis focusing on the ratio of R&D to

total administrative expenses. In this case, expense mis-categorization would result in discon-

14The existence of different thresholds across size groups also allows us to conduct a set of falsification tests. In
particular, we find that when we impose the “wrong” thresholds of the other size groups, there is no observable
discontinuity.
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tinuous increases in this ratio at the notch. This is confirmed in Table A1 and in Figure A2.

We also explore the degree to which evasion is related to firm liquidity. In Table A2, we analyze

whether the jump in the non-R&D administrative expense-to-sales ratio is larger for firms with

more current assets. This table shows that mis-reporting is larger for small and large firms with

high current asset ratios but is not noticeably different for medium firms.

5.3 Productivity

We now investigate the implications of firm bunching and evasion behavior for measured pro-

ductivity. Our benchmark model assumes the following relationship between R&D and the firm

productivity:

φi,t = ρφi,t−1 + ε ln(Di,t−1) + uit.

Our evasion analysis indicates that firms have incentives to over-report their R&D in order to

obtain the HTE status.

This measurement problem can result in attenuation bias in the estimated effectiveness of

R&D on firm productivity. We overcome this challenge by borrowing from the model intu-

ition that firms do not misreport if they decide to have an R&D intensity below the qualifying

threshold. Thus, our empirical specification allows the elasticity of log TFP with respect to log

reported R&D, i.e. ε, to depend on whether or not the firm is below or above the respective

HTE threshold.

φit = ρφit−1 + β1I[Above]× lnRDi,t−1 + β2I[Below]× lnRDi,t−1 + uit.

Before we estimate the equation above, we describe how we construct an empirical measure of

firm-level productivity φ̂it. First, we use the structure in our model of constant elasticity demand

to write firm revenue (value-added) as:

ln rit =

(
θ − 1

θ

)
[κ ln kit + (1− κ) ln lit + φit],

where lit is the labor input which we assume may be chosen each period. Second, we obtain the

following relation from the first order condition of cost minimization for the variable input lit:

ln slit ≡ ln

(
wlit
rit

)
= ln

[
(1− κ)

(
θ − 1

θ

)]
+ vit,

where vit ∼ iid, and E[vit] = 0 is measurement error or a transitive shock in factor prices. Third,

we obtain a consistent estimate of (1 − κ)( θ−1
θ

) for each 3-digit manufacturing sector. Finally,

given our benchmark value of θ = 5, we construct a residual measure of log TFP as follows:

φ̂it =
θ

θ − 1
ln rit − κ̂ ln kit − (1− κ̂) ln lit.

With these measures of firm-level productivity, we estimate the regression of firm productivity

evolution including the relation between log R&D and log TFP.
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Table 3 reports the results of this regression analysis. All specifications include industry-

year fixed effects and the standard errors are clustered at the industry level. Overall, the

coefficients on lagged log R&D are always highly significant. Column (1) shows that doubling

R&D increases firm-level productivity by 2.8%. Comparing columns (1) and (2), we find that

separately estimating the R&D elasticity based on a firm’s position relative to the notch produces

results consistent with the presence of evasion. When a firm’s R&D intensity is below the notch,

doubling R&D spending improves productivity by 2.8%. However, when a firm’s R&D intensity

is above the notch, this magnitude is reduced to 2.5%, around ten percent lower than the “no

evasion” group. The last row of the table shows that this difference is statistically significant at

the 1% level.

Columns (3)-(5) report similar estimates when we estimate this equation separately for small,

medium, and large firms. The magnitude of the R&D elasticity varies across these groups, with

the effectiveness of R&D improving when firm size is larger. Doubling R&D improves the

productivity of a small firm by 1% but improves the productivity of a large firm by 4.4%. We

also find evidence of smaller effects of R&D on productivity for firms that are above the notch,

and likely misreporting. This difference also grows with firm size and is statistically significant

in all cases. The attenuation in the effect of R&D on productivity suggests a second measure of

relabeling given by: δ∗ = 1 − β1
β2

. This measure is reported in the last row of the table and is

overall lower than that reported in the previous section. A potential concern with this measure is

that it represent decreasing returns to scale in R&D investment. Table A3 assuages this concern

by showing that we do not obtain the same pattern of results when we replicate this table at a

fake notch that is above the true notch.

5.4 Policy Elasticities

We now combine the estimates from our bunching and evasion analyses to construct reduced-

form policy elasticities. From a policy evaluation perspective, policy-makers may be interested

in different aspects of these elasticities.

In Table 4, we explore three measures of the response to the InnoCom program: the overall

effect of the policy on reported R&D, the real response of the compliers, and the population

increase in real R&D intensity. The first two column of Table 4 report the bunching elasticities

∆D∗ and fraction of constrained firms a∗ from Figure 9. Column (3) combines these estimates

to produce the population increase in reported R&D, which results in a substantial decrease

from the response by the complies. We can also derive the real percentage increase in R&D

by subtracting our two measures of evasion. Columns (4) and (5) report estimates of δ and

Columns (6) and (7) report estimates of real increases in R&D investment by complier firms.

These estimates are diminished by as much as 52%. Nonetheless, they represent a substantial

increase in real investment. Finally, Columns (8) and (9) report the real population increase in

R&D intensity. For small and medium firms, this increase is between 0.66 and 1.4 percentage

points. For large firms, this increase is between 1.2 and 1.4 percentage points.

Two cautions are warranted when using these numbers for policy analysis. First, while

understanding the behavior of firms of different sizes is interesting from an economic point of

view, policy makers may be interested in the aggregate increase in R&D across the economy.
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Figure A1 shows that the vast majority of R&D is conducted by firms in the large sales category.

It thus makes sense to focus on these firms when when mapping these estimates to the patterns

in Figure 1. Second, our estimates of evasion from sales may result in a lower bound on the

real R&D response to the degree that the structural break is partly due to behavioral responses

and not to mis-reporting. From this perspective, the estimates of relabeling form real effects on

productivity may be preferable.

5.5 Causal Estimates on Productivity and Tax Collections

We now use an estimator of causal effects developed by Diamond and Persson (2016) to estimate

the effects of the InnoCom program on productivity and on fiscal costs. The intuition of the

estimator is to compare the observed aggregate mean outcome for firms in the excluded region

to a suitable counterfactual. For a given outcome Yi,t2 , the estimator is:

β̂
Yt2
ITT =

1

NExcluded

∑
ri,t1∈(D∗−,D∗+)

Yi,t2 −
∫ D∗+

D∗−
ĥ0(r) ̂E[Yi,t2|rt1 ,No Notch]dr. (13)

The first quantity is the observed average value of a given outcome Yi,t2 over the excluded

region. The second quantity is a counterfactual average value of Yi,t2 , which is constructed by

combining the counterfactual density of R&D intensity, ĥ0(·), estimated as part of the bunching

analysis, with an estimated average value of the outcome conditional on a given value of R&D.

Since the estimator compares averages over the excluded region, which includes compliers

and non-compliers, we interpret it as an intent-to-treat (ITT). Taking ratios of these estimates

produce Wald estimates of treatment effects. One way to think of this counterfactual is from

the point of view of the law of iterated expectations. As the quantity ̂E[Y |r,No Notch] recovers

the average value of a given outcome had there been no notch, the integral simply averages this

function of r over the excluded region with respect to the counterfactual density of R&D, ĥ0(r).

In order to implement this estimator, we estimate ̂E[Yi,t2|rt1 ,No Notch] as a flexible poly-

nomial regression of Yi,t2 on R&D intensity over the same excluded region used to estimate

ĥ0(·):

Yi,t2 =

p∑
k=0

βk · (ri,t1)
k

︸ ︷︷ ︸
E[Yt2 |RDt1=r,No Notch]

+γ · 1
[
D−∗1

θπ1

≤ ri,t1 ≤
D+∗

1

θπ1

]
+ δYi,t1 + φs + νi.

Figure 11 presents a visual example. The first panel shows the counterfactual density of R&D in

2009 for firms in the large sales group. The second panel estimates a cubic regression of the profit

ratio in 2011 on R&D intensity in 2009 over the same excluded region as the density above. The

integral in Equation 13 combines the two blue lines to form an estimate of the counterfactual

average of the profit ratio, assuming there is no notch.

Panel (a) of Table 5 presents estimates of the ITT of the InnoCom program on several out-

comes. This table focuses on large firms and reports estimates of treatment effects for outcomes

in 2009 and 2011, given the the excluded region of R&D intensity in 2009. Between 2009 and

2011, we find an increase in the profit ratio of 1.6% that is statistically significant at the 5%
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level. We find a similar increase in TFP and a marginally significant increase in the investment

to capital ratio. While the statutory decline in tax rates is 10%, we see tax collections decreased

only by 8.4%, which is commensurate with an increase in profits of 1.6%. Comparing the effect

on 2009 R&D and administrative costs, we find that about 45% of the increase in R&D intensity

is due to relabeling of administrative expenses.

The second panel of Table 5 presents estimates of ratios of the estimates in the first panel.

The first row reports that for a 1% increase in R&D investment, there is also a 6% increase in

the profit ratio between 2009 and 2011. The interpretation of this ratio deserves caution as it

represents the effects of increasing R&D as well as other effects of the InnoCom program, such

as the tax cut.15 From the point of view of the government, it is useful, however, to calculate

the fiscal cost of encouraging R&D investment, and increasing productivity. Table 5 shows that

doubling R&D investment would cost the government 30% of corporate tax revenues. Similarly,

we find that increasing TFP by 1% would cost the government a reduction of 5.3% in corporate

tax revenues. These estimates imply a user-cost-of-capital elasticity of R&D investment of 2 for

reported R&D, and of 1.14 for real R&D. These estimates are crucial ingredients for deciding

whether the InnoCom policy is too expensive, or whether externalities from R&D investment

merit further subsidies.

5.6 Implied Structural Parameters

Our final set of results implements the model in Section 4 to map the reduced-form estimates

of bunching (∆D∗) and evasion (δ∗) to the structural parameters (θ − 1)ε, the elasticity of

profitability with respect to R&D, and η, the elasticity of evasion costs. Recall that our model

describes the optimizing behavior of the firm with two equations: the indifference condition

between bunching and not bunching, and the optimal evasion response conditional on bunching.

We implement this model with a method of moments approach. For a given group k, let hBk
denote the moment formed from the bunching equation, and hEk denote the moment condition

from the evasion choice.

These two conditions can be expressed as two closed-form solutions relating (θ − 1)ε and

η conditional on data from a given group k: (∆D∗k, δ
∗
k).

16 The intersection of these relations

identifies the set of parameters that are identified by the data. Figure A4 plots these relations

and Section B discusses the identification of these parameters in detail.

In practice, the simple model without adjustment or fixed costs is not able to fit the data well.

For this reason, we use the version of the model that allows for evasion, adjustment costs, and

fixed costs of certification. The bunching and evasion equations correspond to Equations 10 and

11, respectively. These equations now depend on four parameters (θ− 1)ε, η, b, and c. Section B

discusses how these parameters may be identified through restrictions on structural parameters

across different groups. Alternatively, our current estimates calibrate the cost parameters b and

c in order to fit the data and allow for heterogeneous elasticities across groups.

15See Jones (2015) for a useful exposition of the economics of such restrictions. Even from the point of view of
the effects of R&D investment, this elasticity would also need to be adjusted for the fact that the program elicits
persistent changes in investment, as opposed to the static elasticities that are usually reported in the literature.

16We use the estimate of relabeling from the sales analysis in Section 5.2.
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To implement the method of moments estimator, we form the criterion function:

Q((θ − 1)ε, η; b, c) =


hB1 ((θ − 1)ε, η; b, c)
hE1 ((θ − 1)ε, η; b, c)

...
hBK((θ − 1)ε, η; b, c)
hEK((θ − 1)ε, η; b, c)


′

W


hB1 ((θ − 1)ε, η; b, c)
hE1 ((θ − 1)ε, η; b, c)

...
hBK((θ − 1)ε, η; b, c)
hEK((θ − 1)ε, η; b, c)

 ,

where W is a weighting matrix. In a first step, we set W equal to the identity matrix and

minimize this function with respect to ((θ − 1)ε, η) using bootstrapped version of the estimates

{(∆D∗k,b, δ∗k,b)} for the three groups k and for b = 1, ...500. Second, for each bootstrapped version

of the data, we evaluate the six moment conditions and compute the variance of these empirical

moments. Third, we set W equal to the inverse variance of the empirical moments and minimize

the function above to obtain estimates of ((θ−1)ε, η). We compute standard errors by repeating

the third step on the bootstrapped versions of the data.

Table 6 reports estimates of ((θ − 1)ε, η) for calibrated values of b = 3 and c = 0.5. Panel

(a) restricts the parameters to be constant for all groups. Consider the estimate for (θ − 1)ε.

Our data suggest an average value of the net profit ratio of 7%, which corresponds to a value of

θ = 14.5. The estimate from Panel (a) then implies an estimate of ε of 0.134. Since the InnoCom

program requires that firms commit to a permanent increase in R&D, the interpretation of this

coefficient is that of a long-run effect. As we mention in Section 4, a transitory elasticity is

likely to be closer to (1 − ρ)ε, which, for ρ = 0.74 as estimated in Table 3, implies a short-run

elasticity of R&D on productivity of around 0.035. It is reassuring to find that our model delivers

a “revealed preference” value of the effect of R&D on productivity that is quantitatively very

close to those reported in Table 3. Panel (b) allows this elasticity to vary across the three groups.

The average elasticity is closest to the elasticity for large firms, while smaller firms have a larger

elasticity and medium firms a smaller one. Figures A6 and A7 explore the sensitivity of these

estimates with respect to the calibrated values b and c. These figures show that our estimate of

ε is robust to these calibrations.17

6 Conclusions

Governments around the world devote considerable tax resources to incentivize R&D invest-

ment; however, there is widespread concern that firms respond by relabeling other expenses as

R&D expenditures. This paper takes advantage of a large fiscal incentive and detailed adminis-

trative tax data to analyze these margins in the important case of China. We provide striking

graphical evidence consistent with both large reported responses, and significant scope for re-

labeling. Despite the relabeling responses, we find significant effects on firm-level productivity

and profitability that are consistent with sizable returns to R&D.

17However, the estimate of η is more sensitive to assumptions about b and c. This is because our model can
rationalize the data by either assuming an increase in evasion costs, which would lower bunching, or an increase
in adjustment or fixed costs. Thus, whether a reform would lead to additional evasion or to non-response due to
adjustment costs is an open question

24



Optimal subsidies for R&D will depend on the fiscal cost for the government and whether

the R&D investment has external effects. This paper provides a useful metric that traces the

government’s tradeoff between own-firm productivity growth and tax revenues. If R&D has is

believed to have positive externalities on other-firm productivity, our estimates provide a bound

on the size of the externality that would justify government intervention.

Finally, while we find evidence consistent with evasion, the unusual structure of the InnoCom

program may limit the scope of evasion through pre-registration and auditing. In contrast, R&D

investment tax credits may be more susceptible to evasion in developing, and even developed

countries. As this paper demonstrates, accounting for evasion may have large effects on the

design of R&D subsidy policies, and future research should explore the potential for relabeling

in other contexts.
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Figure 1: Cross Country Comparison: R&D as Share of GDP
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Figure 2: Bunching at Different Thresholds of R&D Intensity (2011)
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Source: Administrative Tax Return Database. See Section 2 for details.
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Figure 3: Bunching at 5% R&D Intensity (2005-2007)
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Figure 4: Foreign-Owned, Large Companies

0
.01

.02
.03

.04
.05

Hi
sto

gra
m

0 .01 .02 .03 .04 .05 .06 .07 .08 .09 .1
R&D Intensity

(a) Pre 2008

0
.01

.02
.03

.04
.05

Hi
sto

gra
m

0 .01 .02 .03 .04 .05 .06 .07 .08 .09 .1
R&D Intensity

(b) Post 2008

Source: Administrative Tax Return Database and Annual Survey of Manufacturers.
See Section 2 for details.
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Figure 5: Domestic-Owned, Small Companies
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Figure 6: Induced Notch in Profit Functions
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Figure 7: Marginal Buncher and Evasion
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Figure 8: Theoretical Predictions of Bunching
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Figure 9: Estimates of Excess Mass from Bunching at Notch (2011)
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Figure 10: Empirical Evidence of Evasion
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Figure 11: Estimates of Excess Mass from Bunching at Notch (2009) and ITT on Profit Margin
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Table 1: Descriptive Statistics

Panel A: State Administration of Tax Data 2008 - 2011
Mean Std p25 p50 p75 # of Obs.

Sales (mil RMB) 118.2 1394.8 2.6 10.6 42.1 1202257
Fixed Asset (mil RMB) 32.9 390.4 0.4 2.1 10.7 1139038
# of Workers 175 852 17 48 136 1213497
R&D or not 0.08 0.27 – – – 1202186
R&D/Sales (if>0) 3.5% 6.9% 0.3% 1.5% 4.3% 98187
Adm Expense/Sales 9.4% 11.8% 2.8% 5.8% 11.1% 1171366

Panel B: Annual Survey of Manufacturing 2006 - 2007
Sales (mil RMB) 110.8 1066.1 10.7 23.7 59.5 638668
Fixed Asset (mil RMB) 42.7 703.5 1.7 4.5 13.4 634561
# of Workers 238 1170 50 95 200 638668
R&D or not 0.10 0.30 – – – 638668
R&D/Sales (if>0) 1.6% 3.2% 0.1% 0.5% 1.7% 65272

Notes: Various sources, see Section 2 for details.

Table 2: Estimates of Mis-categorized R&D

(1) (2) (3)
Small Medium Large

Structural Break -0.014∗∗ -0.013∗∗∗ -0.008∗∗∗

(0.007) (0.004) (0.003)
Observations 5,016 8,336 8,794
Percentage Misreported .233∗∗ .329∗∗∗ .269∗∗∗

(SE) (.111) (.093) (.095)

Source: Administrative Tax Return Database. See Section 2 for
details on data sources and Section 5 for details on the estimation.
Standard errors in parentheses.
∗ p < .1, ∗∗ p < .05, ∗∗∗ p < .01
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Table 3: Effects of R&D on Log TFP

(1) (2) (3) (4) (5)
All All Small Medium Large

Lagged Log TFP 0.735∗∗∗ 0.735∗∗∗ 0.724∗∗∗ 0.713∗∗∗ 0.738∗∗∗

(0.009) (0.009) (0.015) (0.014) (0.014)

100 X Log R&D 2.779∗∗∗

(0.260)

100 X Log R&D X Above Notch 2.510∗∗∗ 0.968∗∗∗ 1.503∗∗∗ 3.767∗∗∗

(0.232) (0.355) (0.320) (0.397)

100 X Log R&D X Below Notch 2.809∗∗∗ 1.017∗∗ 1.681∗∗∗ 4.364∗∗∗

(0.263) (0.408) (0.373) (0.454)
Observations 21,052 21,052 6,030 7,662 7,360

Implied δ∗ = 1− β1
β2

.107∗∗∗ .048 .106∗∗∗ .137∗∗∗

(.008) (.041) (.027) (.017)

Source: Administrative Tax Return Database. See Section 2 for details on data sources and Section 5 for
details on the estimation. Industry X Year FE, standard errors in parentheses, clustered at Industry level.
∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01

φ̂it = ρ ˆφit−1 + β1I[Above]× lnRDt−1 + β2I[Below]× lnRDt−1 + uit
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Table 4: Policy Effects

Population Misreporting Real Effect Real Population R&D Intensity
Sales Frictions Response δ∗ : ∆D∗ − δ∗ (1− a∗)α(∆D∗ − δ∗)
Group ∆D∗ a∗ (1− a∗)∆D∗ Sales TFP δ∗ : Sales δ∗ : TFP δ∗ : Sales δ∗ : TFP

(1) (2) (3) (4) (5) (6) (7) (8) (9)
Small 0.579*** 0.577*** 0.239*** 0.232** 0.035 0.347** 0.546*** 0.898*** 1.441***

(0.113) (0.094) (0.040) (0.111) (0.072) (0.164) (0.130) (0.330) (0.293)

Medium 0.629*** 0.369*** 0.380*** 0.325*** 0.102*** 0.304 0.527** 0.656 1.159***
(0.239) (0.072) (0.062) (0.101) (0.029) (0.254) (0.240) (0.460) (0.380)

Large 0.921*** 0.334*** 0.618*** 0.263*** 0.138*** 0.658*** 0.784*** 1.176*** 1.397***
(0.165) (0.030) (0.147) (0.100) (0.018) (0.188) (0.166) (0.456) (0.451)

Source: Administrative Tax Return Database. See Section 2 for details on data sources and Section 5 for details on the estimation. Standard
errors obtained via bootstrap in parentheses. The fraction a∗ is determined using the average net profit ratio of 0.07. See Appendix Table A4
for alternative calculations that assume a profit ratio of 0.2.
∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01
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Table 5: Estimates of Treatment Effects

(a) Estimates of Intent-to-Treat (ITT) Effects

Bootstrap
ITT SE T-Stat 5th Perc. 95th Perc.

2011
Profit Ratio 0.016 0.008 2.163 0.005 0.03

I to K Ratio 0.033 0.02 1.612 -0.003 0.063

TFP 0.016 0.005 2.931 0.007 0.025

R&D Intensity 0.272 0.033 8.247 0.223 0.33

Tax -0.084 0.029 -2.91 -0.128 -0.038

2009
R&D 0.188 0.061 3.112 0.088 0.286

Admin Costs -0.084 0.046 -1.836 -0.153 -0.004

User Cost of K -0.092 0.041 -2.263 -0.159 -0.022

(b) Wald Estimates of Treatment Effects

Bootstrap
Wald Estimate 5th Perc. 95th Perc.

2011
Profit Ratio to R&D 0.06 0.019 0.11

TFP to R&D 0.059 0.025 0.096

Tax to R&D -0.308 -0.494 -0.137

Tax to TFP (1%) -0.053 -0.134 -0.021

2009
R&D to User Cost -2.040 -6.282 -0.685

Real R&D to User Cost -1.136 -4.227 0.373

Source: Administrative Tax Return Database. See Section 2 for details on data sources
and Section 5 for details on the estimation. Standard errors obtained via bootstrap.

ITT =
1

NExcluded

∑
i∈(D∗−,D∗+)

Yi −
∫ D∗+

D∗−
ĥ0(r) ̂E[Y |rd,No Notch]dr
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Table 6: Structural Estimates

(a) Estimates with Homogeneous ε(θ − 1)

ε(θ − 1) η b c
Estimate 1.786 0.538 3.000 0.500
SE 0.203 0.288
T-Stat 8.794 1.868

(b) Estimates with Heterogeneous ε(θ − 1)

ε(θ − 1)
Small Medium Large η b c

Estimate 1.482 1.696 1.868 0.910 3.000 0.500
SE 0.113 0.275 0.240 0.352
T-Stat 13.135 6.179 7.794 2.585

Source: Administrative Tax Return Database. See Section 2 for details on
data sources and Section 5 for details on the estimation. Standard errors
obtained via bootstrap.
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Online Appendix: Not For Publication

A Detailed Model Derivation

A.1 Model Setup

Consider a firm i with a Cobb-Douglas production function given by:

qit = exp{φit}Kκ
itV

1−κ
it ,

where Kit and Mit are static inputs with respective prices pk and pv, and where φit is log-TFP

which follows the law of motion given by:

φi,t = ρφi,t−1 + ε ln(Di,t−1) + uit

where Di,t−1 is R&D investment, and ui,t ∼ i.i.d. N(0, σ2). This setup is consistent with the R&D

literature where knowledge capital is depreciated (captured by ρ) and influenced by continuous

R&D expenditure (captured by ε). In a stationary environment, it implies that the elasticity of

TFP with respect to a permanent increase in R&D is ε
1−ρ .

A.2 Cost Function and Profit Function

A.2.1 Cost Function

The cost function for this familiar problem is given by:

C(q;φit, pk, pv) =
q

exp{φit}
pκkp

1−κ
v

κκ(1− κ)1−κ

Define also the unit cost function:

c(φit, pk, pv) =
C(q;φit, pk, pv)

q
=

1

exp{φit}
pκkp

1−κ
v

κκ(1− κ)1−κ

A.2.2 Profit Function

The firm faces a constant elasticity demand function given by:

pit = q
−1/θ
it ,

where θ > 1. Revenue for the firm is given by q
1−1/θ
it . In a given period, the firm chooses qit to

max
qit

q
1−1/θ
it − qc(φit, pk, pv).

The profit-maximizing qit is given by:

q∗it =

(
θ − 1

θ

1

c(φit, pk, pv)

)θ
.
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Revenue is then given by:

Revenueit =

(
θ

θ − 1

1

c(φit, pk, pv)

)θ−1

=
θ

θ − 1
q∗itc(φit, pk, pv)

That is, revenues equal production costs multiplied by a gross-markup θ
θ−1

. Head and Mayer

(2014) survey estimates of θ from the trade literature. While there is a broad range of estimates,

the central estimate is close to a value of 4, which implies a gross-markup around 1.33. Per-period

profits are then given by:

πit =
1

θ − 1
q∗itc(φit, pk, pv) =

(θ − 1)θ−1

θθ
c(φit, pk, pv)

1−θ.

Uncertainty and R&D investment enter per-period profits through the realization of log-TFP

φit. We can write expected profits as follows:

E[πit] =
(θ − 1)θ−1

θθ
c(ρφi,t−1 + ε ln(Di,t−1) + (θ − 1)σ2/2, pk, pv)

1−θ

= E[πit|Di,t−1 = 0]D
(θ−1)ε
i,t−1 ,

where E[πit|Di,t−1 = 0] is the expected profit without any R&D investment.

We follow the investment literature and model this cost with a quadratic form that is pro-

portional to revenue θπi1 and depends on the parameter b:

g(Di1, θπi1) =
bθπi1

2

[
Di1

θπi1

]2

.

We also allow for the possibility that firms incur a fixed cost of attaining the InnoCom certifi-

cation. To model this, we assumer that if firms decide to pursue the certification, they incur a

cost of: c×Di1.

A.3 Derivation of Moment Equations

A.3.1 R&D Choice Under Linear Tax

Before considering how the InnoCom program affects a firm’s R&D investment choice, we first

consider a simpler setup without such a program. In a two-period context with a linear tax, the

firm’s inter-temporal problem is given by:

max
D1

(1− t1) (πi1 −Di1 − g(Di1, θπi1)) + β(1− t2)E[πi2],

where the firm faces and adjustment cost of R&D investment given by g(Di1, θπi1). This problem

has the following first-order condition:

FOC : −(1− t1)

(
1 + b

[
Di1

θπi1

])
+ β(1− t2)ε(θ − 1)D

(θ−1)ε−1
i1 E[πi2|Di1 = 0] = 0. (14)
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Notice first that if the tax rate is constant across periods, the corporate income tax does not

affect the choice of R&D investment.18 In the special case of no adjustment costs (i.e., b = 0),

the optimal choice of Di1 is given by:

Di1 =

[
1

(θ − 1)ε

1− t1
β(1− t2)

1

E[πi2|Di1 = 0]

] 1
(θ−1)ε−1

. (15)

This equation shows that the optimal R&D choice has a constant elasticity with respect to the

net of tax rate, so that
d lnDi1

d ln(1− t2)
=

1

1− (θ − 1)ε
.

In particular, this elasticity suggest that firms that have a higher valuation of R&D, that is when

(θ − 1)ε is greater, the firm will be more responsive to tax incentives.

Even in the general case (unrestricted b), we also observe that the choice of R&D depends on

potentially-unobserved, firm-specific factors including Ki and φi1 that influence E[πi2|Di,t−1 = 0].

An important insight for the proceeding analysis is that we can recover these factors from D1i

as follows:

E[πi2|Di1 = 0] =
(1− t1)D

1−(θ−1)ε
i1

β(1− t2)ε(θ − 1)

(
1 + b

[
Di1

θπi1

])
.

A.3.2 Second Order Condition

This problem may feature multiple solutions. To ensure our model results in sensible solutions,

we confirm the second order condition at the estimated values. The SOC is given by:

SOC : −(1− t1)

(
b

[
1

θπi1

])
+ β(1− t2)ε(θ − 1)((θ − 1)ε− 1)D

(θ−1)ε−2
i1 E[πi2|Di1 = 0] < 0.

Using the expression for E[πi2|Di1 = 0] above, we can re-express this condition for the marginal

buncher as:

SOC ′ :
(1− t1)

D∗−

{
((θ − 1)ε− 1)

(
1 + b

[
D∗−

θπi1

])
− b
[
D∗−

θπi1

]}
< 0.

Since (1−t1)
D∗− > 0 we focus on the term in the brackets and use the definition of ∆D∗ to obtain:

SOC ′′ : ((θ − 1)ε− 1) (1 + αb(1−∆D∗))− αb(1−∆D∗) < 0,

which holds whenever:
(θ − 1)ε− 1

2− (θ − 1)ε

1

α(1−∆D∗)
< b

Since (θ−1)ε−1 ∈ [1, 2], this lower bound on b is positive. For sample values (θ−1)ε−1 = 1.9,

α = .03, ∆D∗ = .33, we have:

(θ − 1)ε− 1

2− (θ − 1)ε

1

α(1−∆D∗)
≈ 429 < b.

We check that this equation holds in practice and restrict the structural estimation to parameter

values that satisfy this condition.

18This simple model eschews issues related to source of funds, as in Auerbach (1984).
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A.3.3 A Notch in the Corporate Income Tax

Assume now that the tax in the second period has the following structure that mirrors the

incentives in the InnoCom program:

t2 =

{
tLT2 if D1 < αθπ1

tHT2 if D1 ≥ αθπ1
,

sales equal θπ1, tLT2 > tHT2 and where LT/HT stands for low-tech/high-tech. Intuitively, this

tax structure induces a notch in the profit function at D1 = αθπ1, where α is the R&D intensity

required to attain the high-tech certification. Figure 6 presents two possible scenarios following

this incentive. Panel (a) shows the situation where the firm finds it optimal to choose a level

of R&D intensity below the threshold. At this choice, the first order condition of the linear

tax case holds and the optimal level of R&D is given by Equation 14. From this panel, we can

observe that a range of R&D intensity levels below the threshold are dominated by choosing

an R&D intensity that matches the threshold level α. Panel (b) shows a situation where the

firm that is indifferent between the internal solution of Panel (a) and the “bunching” solution

of Panel (b). The optimal choice of R&D for this firm is characterized both by Equation 14 and

by D1 = αθπ1.

Which of the two scenarios holds depends on determinants of the R&D investment decision

that may vary at the firm level and are summarized by E[πi2|Di,t−1 = 0], as well as on the degree

to which R&D investment is valued by firms in terms of future profits (i.e. ε(θ − 1)). However,

as long as E[πi2|Di,t−1 = 0] is smoothly distributed around the threshold α, this incentive will

lead a mass of firms to find D1 = αθπ1 optimal and thus “bunch” at this level. Our analysis

proceeds by first identifying the firm that is marginal between both solutions in terms of the

R&D intensity and then by using the identity of the marginal firm to relate the amount of

bunching at the notch to the firm’s valuation of R&D investment ε(θ − 1).

We start by characterizing the firm that is indifferent between level of R&D given by the

notch and a lower level of R&D investment D∗−i1 . Define Π(·|t) as the value function of the firm’s

inter-temporal maximization problem when facing tax t in period 2. A firm i is a marginal

buncher if:

Π(D∗−i1 |tLT2 ) = Π(αθπ1|tHT2 ),

where the left-hand side is the profit from an internal solution facing the low-tech tax rate tLT2

and the right hand side is the bunching solution when facing the high-tech tax rate tHT2 . Using

the optimal choice for an internal solution in Equation 14, we can manipulate Π(D∗−i1 |tLT2 ) to

obtain:

Π(D∗−i1 |tLT2 ) = (1− t1)

(
πi1 −D∗−i1 −

bθπi1
2

[
D∗−i1
θπi1

]2
)

+ β(1− tLT2 )(D∗−i1 )(θ−1)εE[πi2|Di1 = 0]

= (1− t1)

(
πi1 +

(
1

ε(θ − 1)
− 1

)
D∗−i1 + bθπi1

(
1

ε(θ − 1)
− 1

2

)[
D∗−i1
θπi1

]2
)
, (16)

where we substitute for E[πi2|Di1 = 0] using the optimality condition above.
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Similarly, we manipulate Π(αθπ1|tHT ) by substituting for the unobserved components of the

firm-decision, i.e. E[πi2|Di1 = 0], using Equation 14 to obtain:

Π(απ1|tHT2 ) = (1− t1)

(
πi1 − αθπi1(1 + c)− bθπi1

2

[
αθπi1
θπi1

]2
)

+ β(1− tHT2 )(αθπi1)(θ−1)εE[πi2|Di1 = 0]

= (1− t1)

(
πi1 − αθπi1(1 + c)− α2bθπi1

2

+
(1− tHT2 )

ε(θ − 1)(1− tLT2 )

(
αθπi1
D∗−i1

)(θ−1)ε(
1 + b

[
D∗−i1
θπi1

])
D∗−i1

)
. (17)

We then use Equations 16 and 17 and the indifference condition that defines the marginal

bunching firm to obtain a relation between the percentage difference in R&D intensity and the

parameters of interest: (θ − 1)ε. Subtracting Π(αθπ1|tHT2 ) from Π(D∗−1 |tLT2 ) and manipulating

we obtain:

0 =

(
1

ε(θ − 1)
− 1

)
D∗−i1 + bθπi1

(
1

ε(θ − 1)
− 1

2

)[
D∗−i1
θπi1

]2

+ αθπi1(1 + c) +
α2bθπi1

2

− (1− tHT2 )

ε(θ − 1)(1− tLT2 )

(
αθπi1
D∗−i1

)(θ−1)ε(
1 + b

[
D∗−i1
θπi1

])
D∗−i1

0 =

(
1

ε(θ − 1)
− 1

)
D∗−i1
αθπ1

+ αb

(
1

ε(θ − 1)
− 1

2

)[
D∗−i1
αθπi1

]2

+ 1 + c+
αb

2

− (1− tHT2 )

ε(θ − 1)(1− tLT2 )

(
αθπi1
D∗−i1

)(θ−1)ε−1(
1 + αb

[
D∗−i1
αθπi1

])
0 =

(
1

ε(θ − 1)
− 1

)
(1−∆D∗) + αb

(
1

ε(θ − 1)
− 1

2

)
(1−∆D∗)2 + 1 + c+

αb

2

− (1− tHT2 )

(1− tLT2 )
× (1−∆D∗)1−(θ−1)ε

ε(θ − 1)
(1 + αb(1−∆D∗)) , (18)

where the first line ignores the common term (1− t1) in both equations, the second line divides

by αθπ1, and the third line defines ∆D∗ = αθπ1−D∗−

αθπ1
as the percentage increase in R&D spending

due to the notch. Given an estimate of b, c, Equation 18 is an implicit function for (θ − 1)ε.

Thus, given observable tax parameters tHT2 and tLT2 and the empirical quantity ∆D∗, which

can be estimated from the bunching patterns described in Section 3, it is possible to recover an

estimate of the parameters (θ−1)ε, b, and c from multiple groups of firms with similar structural

parameters.

A.3.4 R&D Choice Under Tax Notch with Evasion

Assume now that firms may misreport their costs and shift non-RD costs to the R&D category.

Following conversations with CFOs of large Chinese companies, we model evasion as a choice

to misreport expenses across R&D and non-RD categories. Misreporting expenses or revenues

overall is likely not feasible as firms are subject to third party reporting (see, e.g., Kleven et al.

(2011) and Pomeranz (2015)).
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Denote a firm’s reported level of R&D spending by D̃1. The expected cost of misreporting

to the firm is given by h(D1, D̃1). We assume that the cost of mis-reporting is proportional to

the reported R&D, D̃1, and depends on the percentage of mis-reported R&D, D̃1−D1

D̃1
, so that:

h(D1, D̃1) = D̃1h̃

(
D̃1 −D1

D̃1

)
.

We also assume that h̃ satisfies h̃(0) = 0 and h̃′(·) ≥ 0.

The effects of the InnoCom program are now as follows:

t2 =

{
tLT2 if D̃1 < αθπ1

tHT2 if D̃1 ≥ αθπ1
,

Notice first that if a firm decides not to bunch at the level αθπ1, there is no incentive

to misreport R&D spending as it does not affect total profits and does not affect the tax rate.

However, a firm might find it optimal to report D̃1 = αθπ1 even if the actual level of R&D is lower.

We characterize the firm that is indifferent between bunching, and potentially misreporting, and

not bunching.

We start by characterizing the firm that is indifferent between level of R&D given by the

notch and a lower level of R&D investment D∗−i1 . Define Π(D1, D̃1|t) as the value function of

the firm’s inter-temporal maximization problem when facing tax t in period 2 that spends D1

on R&D but that declares D̃1. A firm i is a marginal buncher if:

Π(D∗−i1 , D
∗−
i1 |tLT2 ) = Π(αθπ1, D

∗K
1 |tHT2 ),

where the left-hand side is the profit from an internal solution facing the low-tech tax rate tLT2 ,

the right hand side is the bunching solution when facing the high-tech tax rate tHT2 , and where

the firm chooses a real R&D level of D∗K .

We first consider Π(D∗−i1 , D
∗−
i1 |tLT2 ). Since the firm need not mis-report in this case, Equation

16 still describes the profit in this case.

We now we manipulate Π(αθπ1, D
∗K
1 |tHT ) using the FOC for D∗−i1 to obtain:

Π(αθπi1, D
∗K
i1 |tHT2 ) = (1− t1)

(
πi1 −D∗Ki1 − αθπi1c−

bθπi1
2

[
D∗Ki1
θπi1

]2
)

+β(1− tHT2 )(D∗Ki1 )(θ−1)εE[πi2|Di1 = 0]− h(D∗K1 , αθπ1)

= (1− t1)

(
πi1 −D∗Ki1 − αθπi1c−

bθπi1
2

[
D∗Ki1
θπi1

]2
)
− h(D∗K1 , αθπ1)

+
(1− t1)(1− tHT2 )

ε(θ − 1)(1− tLT2 )

(
D∗Ki1
D∗−i1

)(θ−1)ε(
1 + b

[
D∗−i1
θπi1

])
D∗−i1 (19)

We then use Equations 16 and 19 and the indifference condition that defines the marginal

bunching firm to obtain a relation between the percentage difference in R&D intensity and

the parameters of interest: (θ − 1)ε. Subtracting Π(αθπ1, D
∗K
1 |tHT2 ) from Π(D∗−i1 , D

∗−
i1 |tLT2 ) and
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manipulating we obtain:

0 =

(
1

ε(θ − 1)
− 1

)
D∗−i1 + bθπi1

(
1

ε(θ − 1)
− 1

2

)[
D∗−i1
θπi1

]2

+D∗Ki1 + αθπi1c+
bθπi1

2

[
D∗Ki1
θπi1

]2

− (1− tHT2 )

ε(θ − 1)(1− tLT2 )

(
D∗Ki1
D∗−i1

)(θ−1)ε(
1 + b

[
D∗−i1
θπi1

])
D∗−i1 +

h(D∗K1 , αθπ1)

(1− t1)

0 =

(
1

ε(θ − 1)
− 1

)
D∗−i1
αθπ1

+ αb

(
1

ε(θ − 1)
− 1

2

)[
D∗−i1
αθπi1

]2

+
D∗Ki1
αθπi1

+ c+
αb

2

[
D∗Ki1
αθπi1

]2

− (1− tHT2 )

ε(θ − 1)(1− tLT2 )

(
D∗Ki1
D∗−i1

)(θ−1)ε−1(
1 + αb

[
D∗−i1
αθπi1

])
D∗Ki1
αθπi1

+
h̃(D∗K1 , αθπ1)

(1− t1)
,

where the first line ignores the common term (1− t1) and the second line divides by αθπ1. We

now use the definitions ∆D∗ = αθπ1−D∗−

αθπ1
as the percentage increase in R&D spending due to the

notch and δ = D̃1−D1

D̃1
as the percentage of misreporting relative to the reported value. We also

consider a particular function for h̃(δ) given by δ1+η

1+η
. These definitions and assumptions yield

the following condition:

0 = 1 +
c

1− δ∗
+
αb

2
(1− δ∗) +

(
1−∆D∗

1− δ∗

)[(
1

ε(θ − 1)
− 1

)
+ αb

(
1

ε(θ − 1)
− 1

2

)
(1−∆D∗)

]
− (1− tHT2 )

(1− tLT2 )

(
1−∆D∗

1− δ∗

)1−(θ−1)ε(
1 + αb(1−∆D∗)

ε(θ − 1)

)
+

(δ∗)η+1(1− δ∗)−1

(1− t1)(η + 1)
(20)

Notice that in the special case with no evasion, when δ∗ = 0, Equation 20 is identical to Equation

18.

In the case when the firm decides to bunch and evade, we have the additional information

that DK is chosen optimally. From Equation 19, the firm solves the following problem:

max
DK1

(1− t1)

(
πi1 −D∗Ki1 − αθπi1c−

bθπi1
2

[
D∗Ki1
θπi1

]2
)
− αθπ1

(
αθπ1 −DK

αθπ1

)η+1
1

η + 1

+
(1− t1)(1− tHT2 )

ε(θ − 1)(1− tLT2 )

(
D∗Ki1
D∗−i1

)(θ−1)ε(
1 + b

[
D∗−i1
θπi1

])
D∗−i1

,

with the following FOC:(
1 + αb

[
D∗Ki1
αθπi1

])
=

(
1− tHT2

1− tLT2

)(
D∗Ki1
D∗−i1

)(θ−1)ε−1(
1 + b

[
D∗−i1
θπi1

])
+

(
αθπ1 −DK

αθπ1

)η
1

1− t1
Notice that this equation is equivalent to:(

1− δ∗

1−∆D∗

)(θ−1)ε−1

=
1 + αb(1− δ∗)− (δ∗)η

1−t1(
1−tHT2

1−tLT2

)
(1 + αb(1−∆D∗))

(21)

Equation 21 along with Equation 20 now form a system of two equations that are implicit

functions for the parameters η and (θ − 1)ε.
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A.3.5 Second Order Conditions

Consider again the FOC for the evasion problem:

FOC : −(1− t1)

(
1 + b

[
DK∗

θπi1

])
+ (1− t1)

(
1− tHT2

1− tLT2

)(
D∗Ki1
D∗−i1

)(θ−1)ε−1(
1 + b

[
D∗−i1
θπi1

])
+

(
αθπ1 −DK

αθπ1

)η−1

The SOC is given by:

−(1− t1)b

[
1

θπi1

]
+

((θ − 1)ε− 1)

D∗−i1
(1− t1)

(
1− tHT2

1− tLT2

)(
D∗Ki1
D∗−i1

)(θ−1)ε−2(
1 + b

[
D∗−i1
θπi1

])
−(η − 1)

(
αθπ1 −DK

αθπ1

)η−2
1

αθπ1

< 0

Collecting terms and substituting for δ∗ and ∆D∗ we can rewrite this as:

(1− t1)(1−∆D∗)

{
((θ − 1)ε− 1)

(1−∆D∗)

(
1− tHT2

1− tLT2

)(
1− δ∗

1−∆D∗

)(θ−1)ε−2

(1 + αb(1−∆D∗))− αb− (η − 1)

(1− t1)
(δ∗)η−2

}
< 0

B Identification

B.1 Simple Model

Consider first the model without evasion, adjustment, or fixed costs. In this case, Equation 18

defined an implicit function of (θ − 1)ε as a function of ∆D∗. While there is no closed-form

equation for (θ − 1)ε, there is an intuitive relation between ∆D∗ and (θ − 1)ε. As more firms

choose to bunch at the notch, this would imply that the effect of R&D on profits is larger. It

follows that (θ− 1)ε is increasing in ∆D∗. Figure A3 provides the implied value of Equation 18

for a range of values of ∆D∗ and confirms this intuition.

B.2 Model With Evasion

While there are no closed-form expressions for η and (θ− 1)ε, using Equations 20 and 21 we can

find a closed-form solution for the effect of R&D on profits as a function of η and b. Solving for

(θ − 1)ε in Equation 21 yields:

ε(θ − 1) = 1 +
ln
(

1 + αb(1− δ∗)− (δ∗)η

1−t1

)
− ln

((
1−tHT2

1−tLT2

)
(1 + αb(1−∆D∗))

)
ln
(

1−δ∗
1−∆D∗

) (22)
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Similarly, we can substitute Equation 21 into 20 to obtain the following expression:

0 = 1 + c+
αb

2
(1− δ∗) +

(
1−∆D∗

1− δ∗

)[(
1

ε(θ − 1)
− 1

)
+ αb

(
1

ε(θ − 1)
− 1

2

)
(1−∆D∗)

]
−

1 + αb(1− δ∗)− (δ∗)η

1−t1
ε(θ − 1)

+
(δ∗)η+1(1− δ∗)−1

(1− t1)(η + 1)
,

which is linear in (θ − 1)ε. Solving for (θ − 1)ε, we obtain:

ε(θ − 1) =

(
1−∆D∗

1−δ∗
)

(1 + αb(1−∆D∗))− 1− αb(1− δ∗) + (δ∗)η

1−t1(
1−∆D∗

1−δ∗
) (

1 + αb
2

(1−∆D∗)
)
− 1− c

1−δ∗ −
αb
2

(1− δ∗)− (δ∗)η+1(1−δ∗)−1

(1−t1)(η+1)

. (23)

Figure A4 plots the non-linear relations between η and (θ−1)ε that are implied by Equations

22 and 23 while holding b, c = 0. Panel (a) explores Equation 22 and shows that for reasonable

values of η, (θ − 1)ε is positive. This figure also shows that, given values of ∆D∗ and δ∗, as

evasion become more costly (larger η), the value of R&D to the firm also increases. Figure A4

panel (b) explores Equation 23 and shows that, for a given cost and amount of evasion, i.e., η

and δ∗, a larger response in terms of reported R&D corresponds to larger values of (θ−1)ε. This

figure plots this relation for different values of η and thus shows how the reduced-form moments

δ∗ and ∆D∗ influence the estimates in the model.

For a given set of empirical estimates ∆D∗ and δ∗ and values b and c, the structural pa-

rameters η and (θ − 1)ε are identified by the intersection of the graphs in both panels. This

intersection will vary as a function of b and c and will generate a set of structural parameters that

are compatible with the data. Figure A5 shows the intersection of these functions for multiple

values of b, while holding c = 0. Th red line represent the locus of parameters that is compatible

with a given set of data ∆D∗ and δ∗. The parameters η, (θ− 1)ε, b, and c are identified through

cross-group restrictions that use data on ∆D∗ and δ∗ for the three groups of firms.

54



Appendix Graphs

Figure A1: Aggregate Implications
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Figure A2: Alternative Empirical Evidence of Evasion
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Figure A3: Relation Between 1−∆D∗ and (θ − 1)ε Without Evasion.
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Figure A4: Identification When Evasion is Possible

(a) Relation Between (θ − 1)ε and η (b) Relation Between (θ − 1)ε and 1−∆D∗

for different values of η
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Figure A5: Identification in Full Structural Model
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Figure A6: Sensitivity to Calibrated b
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Figure A7: Sensitivity to Calibrated c
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Appendix Tables

Table A1: Alternative Estimates of Mis-categorized R&D

(1) (2) (3)
Low Sales Medium Sales High Sales

Structural Break 0.02 0.03∗∗ 0.05∗∗

(0.02) (0.01) (0.01)
N 4028 6461 7222
Mean Ratio Above α 0.47 0.45 0.51
Fraction Constrained: a∗ 0.87 0.47 0.41
Percentage Evasion: δ∗ 0.25 0.15 0.16

Standard errors in parentheses

* p < 0.10, ** p < 0.05, *** p < 0.01

Table A2: Estimates of Mis-categorized R&D by Current Asset Ratio

(1) (2) (3)
Low Medium Large

(a) Low Current Asset Ratio

Structural Break -0.017∗∗ -0.013∗∗∗ -0.004
(0.007) (0.004) (0.002)

Percentage Misreported .278∗∗ .326∗∗∗ .117
(SE) (.111) (.088) (.081)
(b) High Current Asset Ratio

Structural Break -0.020∗ -0.013∗ -0.011∗∗

(0.011) (0.007) (0.005)
Percentage Misreported .328∗ .318∗ .375∗∗

(SE) (.181) (.171) (.166)

Standard errors in parentheses
∗ p < .1, ∗∗ p < .05, ∗∗∗ p < .01
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Table A3: Effects of R&D on Log TFP: Placebo with Fake Notch

(1) (2) (3) (4) (5)
All All Small Medium Large

Lagged Log TFP 0.716∗∗∗ 0.717∗∗∗ 0.705∗∗∗ 0.688∗∗∗ 0.726∗∗∗

(0.014) (0.014) (0.027) (0.021) (0.017)

100 X Log R&D 3.319∗∗∗

(0.449)

100 X Log R&D X Above Notch 3.280∗∗∗ 1.514∗ 3.518∗∗∗ 5.391∗∗∗

(0.433) (0.827) (0.591) (0.579)

100 X Log R&D X Below Notch 3.315∗∗∗ 1.370∗ 3.779∗∗∗ 5.324∗∗∗

(0.444) (0.793) (0.687) (0.656)
Observations 9,223 9,223 3,203 3,528 2,492

Implied δ∗ = 1− β1
β2

.011 -.105 .069∗ -.013

(.016) (.08) (.041) (.03)

Source: Administrative Tax Return Database. See Section 2 for details on data
sources and Section 5 for details on the estimation. Industry X Year FE, standard
errors in parentheses, clustered at Industry level.
∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01

φ̂it = ρ ˆφit−1 + β1I[Above]× lnRDt−1 + β2I[Below]× lnRDt−1 + uit
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Table A4: Alternative Policy Effects

Population Misreporting Real Effect Real Population R&D Intensity
Sales Frictions Response δ∗ : ∆D∗ − δ∗ (1− a∗)α(∆D∗ − δ∗)
Group ∆D∗ a∗ (1− a∗)∆D∗ Sales TFP δ∗ : Sales δ∗ : TFP δ∗ : Sales δ∗ : TFP

(1) (2) (3) (4) (5) (6) (7) (8) (9)
Small 0.533*** 0.550*** 0.240*** 0.232** 0.035 0.301*** 0.499*** 0.806*** 1.350***

(0.020) (0.085) (0.046) (0.111) (0.072) (0.113) (0.074) (0.334) (0.339)

Medium 0.723*** 0.434*** 0.403*** 0.325*** 0.102*** 0.398** 0.621*** 0.878*** 1.382***
(0.180) (0.039) (0.062) (0.101) (0.029) (0.202) (0.182) (0.362) (0.266)

Large 1.049*** 0.416*** 0.620*** 0.263*** 0.138*** 0.786*** 0.912*** 1.396*** 1.617***
(0.137) (0.048) (0.144) (0.100) (0.018) (0.166) (0.139) (0.421) (0.413)

Source: Administrative Tax Return Database. See Section 2 for details on data sources and Section 5 for details on the estimation. Standard
errors obtained via bootstrap in parentheses. The fraction a∗ is determined using the average net profit ratio of 0.2. See Table 4 for alternative
calculations that assume a profit ratio of 0.07.
∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01
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