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Abstract

We study how the structure of social media networks a�ects the degree of polarization

in society. We analyze a dynamic model of opinion formation in which individuals have im-

perfect information about the true state of the world and su�er from bounded rationality.

Key to the analysis is the presence of ‘internet bots’ that communicate fake news, modeled

as extremely biased opinions. We characterize how the �ow of opinions evolves over time

and evaluate the determinants of long-run disagreement among individuals in the network.

To that end, we simulate a large set of random networks with di�erent characteristics and

quantify how the number of bots, their degree of centrality, and ability to spread fake news

a�ect polarization in the long-run.
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JEL Classi�cation: C63, D83, D85

1 Introduction

The United States has experienced an unprecedented surge in political polarization over the last

two decades. A recent survey conducted by The Pew Research Center indicates that Republicans

and Democrats are further apart ideologically than at any point since 1994 (see Figure 1).

What could be causing this increase in polarization? Traditional theories in economics and

political science point to the recent rise in income inequality, the in�uence of PACs through cam-
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Figure 1: Political Polarization in the American Public (2014, Pew Research Center)

paign �nancing, party sorting among voters, re-districting (Gerrymanding), and changes in the

media environment as potential determinants (see Barber and McCarthy, 2015 for an excellen-

t discussion). More recently, attention has focused on the internet as an alternative candidate

explanation. Cass Sunstein (2002) argues that the internet creates ‘echo chambers’ where indi-

viduals �nd their own biases and opinions endlessly reinforced, and writes that ‘people restrict

themselves to their own points of view—liberals watching and reading mostly or only liberals;

moderates, moderates; conservatives, conservatives; Neo-Nazis, Neo-Nazis’ (p. 5-6). This reduces

the ‘unplanned, unanticipated encounters central to democracy itself’ and signi�cantly increases

polarization (p. 9).

According to a 2016 study by the Pew Research Center and the John S. and James L. Knight

Foundation, 62% of adults get their news from social media (a sharp increase from the 49% ob-

served in 2012).
1

Among these, two-thirds of Facebook users (66%) get news on the site, nearly

six-in-ten Twitter users (59%) get news on Twitter, and seven-in-ten Reddit users get news on that

platform. With the dispersion of news through social media, and more generally the internet, and

given that a growing proportion of individuals, politicians, and media outlets are relying more

intensively on this networked environment to get information and to spread their world-views, it

is natural to ask whether and to what extent political polarization might be exacerbated by social

media communication.

Another phenomena—of particular interest to the study of polarization—that became preva-

lent particularly around 2016 presidential election was the massive spread of fake news (also

referred to as disinformation campaigns, cyber propaganda, cognitive hacking, and information

1
The distribution of social media users is similar across education levels, race, party a�liation and age. About

22% of 18-29 year olds are social media users, 34% are aged 30-49, 26% are aged 50-64, and 19% 65 and older.
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warfare) through the internet. As de�ned by Gu, Kropotov, and Yarochkin (2016), ‘Fake news is

the promotion and propagation of news articles via social media. These articles are promoted in

such a way that they appear to be spread by other users, as opposed to being paid-for advertis-

ing. The news stories distributed are designed to in�uence or manipulate users’ opinions on a

certain topic towards certain objectives.’ While the concept of propaganda is not new, the arrival

of the internet (particularly through social media) has made the spreading of ideas faster and

more scalable, making it easier for propaganda material to reach a wider set of people. Relative

to more traditional ways of spreading propaganda, fake news are extremely di�cult to detect

posing a challenge for social media users, moderators, and governmental agencies trying control

their dissemination. A December 2016 Pew Research Center study found that ‘about two-in-three

U.S. adults (64%) say fabricated news stories cause a great deal of confusion about the basic fact-

s of current issues and events.’ Moreover, 23% admit to having shared a made-up news story

(knowingly or not) on social media. Understanding how fake news spread and a�ect opinions in

a networked environment is at the core of our work.

We study a dynamic model of opinion formation in the spirit of Jadbabaie, Molavi, Sandroni,

and Tahbaz-Salehi (2012, JMST henceforth) in which individuals who are connected in a social

network have imperfect information about the true state of the world. The true state of the world

can be interpreted as the relative quality of two candidates competing for o�ce, the optimality of

a speci�c government policy or regulation (e.g. restrictions on immigration, imposition of tari�s,

mandatory vaccination, etc.), the degree of government intervention (through the provision of

public goods such as healthcare or education), etc. Individuals can obtain information (e.g. sig-

nals) about the true state of the world from unbiased sources (scienti�c studies, unbiased news

media, reports from non-partisan research centers such as the CBO, etc.), but are unable pro-

cess all the available information. They can also obtain information from their social neighbours

(e.g. individuals connected to them through the network) who are potentially exposed to other

sources.

Due to limited observability about the structure of the network and the probability distribu-

tion of signals observed by others, individuals would need to update opinions on the state of the

world as well as on the topology of the network. This makes Bayesian updating complex and im-

practical. We assume instead that individuals su�er from bounded rationality, and update their

opinions partly based on information obtained from their social network in an inhomogeneous

stochastic gossip model of communication based on JMST(2012) and Acemoglu, Como, Fagnati,

and Ozdaglar (2013, ACFO henceforth).

3



There are two types of individuals in this economy: regular agents and internet bots. Regular

agents receive signals from unbiased sources and are also in�uenced by the opinion of their social

neighbours. Internet bots, on the other hand, ignore the opinion of others and have the ability

to produce fake news. The opinions generated from the exchange of information forms a Markov

process which never leads to consensus among regular agents. In such environment, it can be

shown that society’s beliefs fail to converge almost surely. Moreover, under some conditions, the

belief pro�le can �uctuate in an ergodic fashion leading to polarization cycles.

The structure of the graph representing the social media network and the degree of in�u-

ence of bots in it shape the dynamics of opinion and the degree of polarization in the long-run.

More speci�cally, long-run polarization depends on three factors: behavioral assumptions (e.g.

the updating rule), communication technology (e.g. the speed at which information �ows), and

the network topology (e.g. the share of bots on the population, their centrality and ability to

spread fake news, clustering among agents, etc.). Because a theoretical characterization of the

relationship between the topology of the network and the degree of polarization is unfeasible,

we simulate a large set of random networks with di�erent characteristics. We then quantify how

the degrees of centrality, connectedness, and in�uence a�ect long-run polarization, de�ned as in

Esteban and Ray (1994) and Esteban (2007).

By connecting individuals through networks, social media provided a platform for individuals

to share information in real time. On the �ip side, it made it more di�cult for them to assess the

credibility of the content received allowing fake news to spread and contaminate the network.

From our simulations, we �nd that to the extent that agents rely more heavily on the opinion of

others (and less on incorporating signals from unbiased sources), polarization rises. The speed

of communication, measured by the percentage of friends a given agent pays attention to at

each point in time, reduces polarization, as agents are able to aggregate information even in the

presence of bots. This is consistent with �ndings by Barbera (2015) who documents that the

expansion of Twitter resulted in lower political polarization. As expected, a larger number of

bots increases polarization, and so does an increase in their ability to stream fake news. In terms

of the e�ects of network topology, we �nd that a higher degree of centrality of bots (measured

by in-degree or PageRank) exacerbates polarization. However, as the ability of a given bot to

reach most of the network (measured by high in-closeness centrality) rises, polarization declines.

This happens because the internet bot is able to manipulate opinions more e�ciently by pulling

society’s beliefs to one side of the political spectrum. Finally, we �nd that networks with a high

degree of clustering and reciprocity tend to exhibit lower polarization in the long run, as greater
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connectivity among agents facilitates consensus.

Related Literature Our paper is related to a growing number of articles studying information

transmission in networks under both, bounded and fully rational agents.

The strand of the literature assuming that agents are fully rational typically considers a dy-

namic game where individuals interact sequentially and exchange opinions only once. Examples

are Banerjee (1992), Smith and Sorensen (2000), Banerjee and Fundenberg (2004), and Acemoglu

et. al (2011). Because the theoretical characterization of equilibria is complex, these papers re-

strict attention to very stylized networks. Moreover, they typically study environments in which

society eventually reaches consensus, implying that polarization arises only in the short-run.

The strand of literature focusing on bounded rational agents (also referred to as ‘De-Grootian’)

assumes that individuals follow simple heuristic rules to update beliefs. Examples are Ellison and

Fundenberg (1993, 1995), Bala and Goyal (1998,2001), De Marzo et al (2003), Golub and Jackson

(2010), and ACFO (2013). In these environments, long-run polarization arises in equilibrium be-

cause individuals receive information only once—at the outset of the initial period. There is no

sense in which new information (form unbiased sources) may arrive and modify regular agents’

opinions. JMST (2012) show that when this assumption is relaxed, that is, when individuals re-

ceive a constant �ow of information, polarization eventually disappears. This occurs even though

individuals are not fully Bayesian, but requires the network to be strongly connected (i.e. no in-

ternet bots are present).

In this paper, we consider simultaneously the possibility of learning from unbiased sources

and being exposed to fake news spread by internet bots. As a result, our environment encompass-

es ACFO (2013) and JMST (2012) as special cases. We �rst show that their results can be replicated

by an appropriate choice of parameters. That is, we can show that by shutting down the degree

of in�uence of internet bots, regular agents eventually learn the truth. But if bots are in�uential,

social media communication is not e�ective in aggregating information, and polarization persists

in the long run. Our main contribution relative to the existing literature is that we simulate a large

set of complex social networks and quantify the relative importance of behavioral assumptions,

technological characteristics, and network topology on long-run polarization.

There is a growing empirical literature analyzing the e�ects of social media in opinion for-

mation and voting behavior (Halberstam and Knight, 2016). Because individual opinions are

unobservable from real network data, these papers typically use indirect measures of ideology to

back-out characteristics of the network structure (such as homophily) potentially biasing their
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impact. By creating a large number arti�cial networks, we can directly measure how homophily

and other network characteristics a�ect opinion. Finally, our paper complements the literature

on the role of biased media such as Campante and Hojman (2013), Gentzkow and Shapiro (2006,

2010, and 2011), and Flaxman et al. (2013) and the e�ects of social media on political polarization,

such as Boxell et al (2017), Barbera (2016), and Weber at al (2013).

2 Baseline Model

Agents and Information Structure The economy is composed by a �nite number of agents

i ∈ N = {1, 2, . . . , n} interacting through a social network. Individuals have imperfect informa-

tion about the true state of the world θ belonging to a parameter space Θ = [0, 1]. This parameter

can be interpreted as the relative quality of two candidates, L and R, competing for o�ce. A val-

ue of θ = 0 would imply that candidate L is better suited for o�ce, whereas θ = 1 would imply

that R is more quali�ed.

Each agent starts with a prior belief θi,0 assumed to follow a Beta distribution,

θi,0 ∼ Be
(
αi,0, βi,0

)
.

This distribution or world-view is characterized by initial parameters αi,0 > 0 and βi,0 > 0. Note

that individuals agree upon the parameter space Θ and the functional form of the probability

distribution, but have di�erent world-views as they disagree on αi,0 and βi,0. Given prior beliefs,

we de�ne the initial opinion of agent i yi,0 about the true state of the world as her best guess of θ

given the available information,
2

yi,0 = E[θ|Σ0] =
αi,0

αi,0 + βi,0

where Σ0 = {αi,0, βi,0} denotes the information set available at time 0.

Example 1. In the Figure below, we depict the world-views of two individuals (distributions) and

their associated opinions (vertical lines). The world-view that is skewed to the right is represented

by the distribution Be(α = 2, β = 8). The one skewed to the left is represented by the distribution

Be(α = 8, β = 2). The opinions are, respectively, 0.2 and 0.8.

2
Note thatE[θ/Σ0] is the Bayesian estimator of θ that minimizes the mean squared error given a Beta distribution.
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At each point in time t ≥ 1 regular agent i obtains information from unbiased sources that

are jointly informative about the true state of the world. We formalize the information obtained

from unbiased sources as a draw si,t from a Bernoulli distribution with parameter θ. The signal

is unbiased, as it is centered around the true state of the world.

Social Network We assume that regular agents update their world-views and opinions based

not only on private signals si,t, but also through the in�uence of individuals connected to them

in a social network.

The connectivity among agents in the network at each point in time is described by a directed

graph Gt = (N, gt), where gt is a real-valued n × n adjacency matrix. Each regular element gtij

in the directed-graph represents the connection between agents i and j at time t. More precisely,

gtij = 1 if i is paying attention to (e.g. receiving information from) j, and 0 otherwise. Since the

graph is directed, it is possible that some agents pay attention to (e.g. receive information from)

others who are not necessarily paying attention to (e.g. obtaining information from) them, i.e.

gtij 6= gtji. The out-neighborhood of any agent i at any time t represents the set of agents that

i is receiving information from (e.g. i’s references), and is denoted by N out
i (gt) = {j|gtij = 1}.

Similarly, the in-neighborhood of any agent i at any time t, denoted by N in
i (gt), represents the

set of agents that are receiving information from i (e.g. i’s audience or followers), N in
i (gt) =

{j|gtji = 1}. We de�ne a directed path in Gt
from agent i to agent j as a sequence of agents

starting with i and ending with j such that each agent is a neighbour of the next agent in the

7



sequence. We say that a social network is strongly connected if there exists a directed path from

each agent to any other agent.

In the spirit of Acemoglu, Ozdaglar, and Parandeh Ghebi (2010) and ACFO (2012), we allow

the connectivity of this graph gtij to change over time stochastically. This structure captures

rational inattention, incapacity of processing all information, or impossibility to pay attention to

all individuals in the agent’s social clique. More speci�cally, for all t ≥ 1, we associate a clock to

every directed link of the form (i,j) in the initial adjacency matrix g0
to determine whether the

link is activated or not at time t. The ticking of all clocks at any time is then dictated by i.i.d.

samples from a Bernoulli Distribution with �xed and common parameter ρ ∈ [0, 1], meaning

that if the (i,j)-clock ticks at time t (realization 1 in the Bernoulli draw), then agent i receives

information from agent j. The Bernoulli draws are represented by the n × n matrix ct, with

regular element ctij ∈ {0, 1}. Thus, the adjacency matrix of the network evolves stochastically

across time according to the following equation
3
:

gt = g0 ◦ ct, (1)

where the initial structure of the network, represented by the initial adjacency matrix g0
, remains

unchanged.

Example 2 (Bernoulli Clock). In this example we intend to illustrate the network dynamics. The

�gure in Panel 2a represents the original network and its adjacency matrix, whereas the �gure in

Panel 2b depicts a realization such that agent 1 does not pay attention to agents 2 and 4 in period 1.

Agents 2 and 3, on the other hand, pay attention to agent 1 in both periods.

3
The notation ◦ denotes the Hadamard Product, or equivalently, the element-wise multiplication of the matrices.
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(a) Original Network at t = 0

1

2 3

4

g1 =


0 0 0 0

1 0 0 0

1 0 0 0

0 0 0 0


(b) Potential Network at t = 1

Figure 2: Bernoulli Clock and Network Dynamics

Evolution of Beliefs Before the beginning of each period, agent i meets individuals in her

out-neighbourhoodN out
i (gt), a set determined by the realization of clock. These neighbors share

their world-views, summarized by αj,t and βj,t for all j ∈ N out
i (gt). At the beginning of period t,

a signal pro�le is realized and the signal si,t is privately observed by agent i.

Regular agents

After observing this signal from unbiased sources, regular agent i computes her Bayesian pos-

terior conditional on si,t. We assume that parameters αi,t+1 and βi,t+1 are convex combinations

between her Bayesian posterior and the weighted average of the information obtained from her

neighbors.

αi,t+1 = bi,t[αi,t + si,t] + (1− bi,t)
∑

j∈Nout
i (gt)

ĝtijαj,t (2)

βi,t+1 = bi,t[βi,t + 1− si,t] + (1− bi,t)
∑

j∈Nout
i (gt)

ĝtijβj,t, (3)

where

bi,t = 1{∑j ĝ
t
ij=0}1 +

(
1− 1{∑j ĝ

t
ij=0}

)
b (4)

denotes the reliance weight given to unbiased sources and 1−bi,t captures the in�uence of friends

through social media. The parameter bi,t ∈ [0, 1] captures the attention span: a regular agent’s full

attention span is split between processing information from unbiased sources and that provided

9



by their friends in the network (e.g. reading a Facebook or Twitter feed). Equation (4) speci�es

that if no friends are found in the neighborhood of agent i, then this agent attaches weight 1 to

the signal received. Conversely, if at least one friend is found, this agent uses a common weight

b ∈ [0, 1]. The term ĝti,j =
gti,j

|Nout
i (gt)| represents the weight given to the information received from

her out-neighbor j. When bi,t = 1 for some t agent i fully relies on her private signal behaving

like a standard Bayesian agent. As bi,t approaches zero, she is more in�uenceable by social media,

as more weight is given to her friends’ opinions.

Finally, note that this updating rule implies that the posterior distribution determining world-

views of agent i will also be a Beta distribution with parameters αi,t+1 and βi,t+1. Hence, an

agent’s opinion regarding the true state of the world at t can be computed as

yi,t =
αi,t

αi,t + βi,t
.

Our heuristic rule resembles the one in JMST (2012), but there are two important distinctions.

First, their adjacency matrix is �xed over time, whereas ours is stochastic (an element we bor-

rowed from ACFO, 2013). Second, we restrict attention to a speci�c family of distributions (e.g.

Beta) and assume that individuals exchange parameters that characterize this distribution (e.g.

αi,t and βi,t). So the heuristic rule involves updating these parameters, whereas JMST (2012)’s

heuristic rule involves a convex combination of the whole distribution. Given their rule, the pos-

terior distribution may not belong to the same family as the prior distribution. That is not the

case in our environment, as the posterior will also belong to the Beta distribution family.

Internet bots

We assume that there are two types of bots, L-bot and R-bot, with extreme views. Internet

bot i disregards information from other agents in the network and has the ability to produce a

stream of fake news κspi,t, for p ∈ {L,R}, where sLi,t = 0 for type L-bot and sRi,t = 1 for type

R-bot at time t.

The parameter κ ∈ N+
measures the ability of bots to produce more than one fake-news

article per period, which can be interpreted as their �ooding capacity (i.e. how fast they can

produce fake news compared to the regular �ow of informative signals received by agents). When

bumping into a regular agent in the network, bots transmit the whole stream of information to

the agent. Hence, a value of κ > 1 gives them more de-facto weight in the updating rule of
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agents, emphasizing their degree of in�uence on the network.
4

To the extent that bots might be in�uential, their presence in the network will be key for

both, the existence and persistence of polarization over time. This is due to the fact that they

will consistently communicate fake news (biased signals) to other agents in the network and are

ultimately the underlying force that pushes agents to the extreme of the political spectrum. Note

that bots share similar characteristics with the ‘stubborn’ agents in ACFO (2013).

3 Polarization and Network Structure

We base our notion of polarization on the seminal work by Esteban and Ray (1994), adapted

to the context of this environment. At each point in time, we partition the [0, 1] interval into

K ≤ n segments. Each segment represents signi�cantly-sized groups of individuals with similar

opinions. We let the share of agents in each group k ∈ {1, ..., K} be denoted by πk,t, with∑
k πk,t = 1.

Esteban and Ray (1994)’s polarization measure aggregates both ‘identi�cation’ and ‘alien-

ation’ across agents in the network. Identi�cation between agents captures a sense of ideological

alignment: an individual feels a greater sense of identi�cation if a large number of agents in so-

ciety shares his or her opinion about the true state of the world. In this sense, identi�cation of

a citizen at any point in time is an increasing function of the share of individuals with a similar

opinion. The concept of identi�cation captures the fact that intra-group opinion homogeneity

accentuates polarization. On the other hand, an individual feels alienated from other citizens

if their opinions diverge. The concept of alienation captures the fact that inter-group opinion

heterogeneity ampli�es polarization. Mathematically, we have the following representation.

De�nition 1 (Polarization). Polarization Pt aggregates the degrees of ‘identi�cation’ and ‘alien-

ation’ across groups at each point in time.

Pt =
K∑
k=1

K∑
l=1

π1+a
k,t πl,t |ỹk,t − ỹl,t| (5)

4
Under this rule, we can model the bot update as

αpi,t+1 = αpi,t + κspi,t

βpi,t+1 = βpi,t + κ− κspi,t.
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where a ∈ [0, 1.6] and ỹk,t is the average opinion of agents in group k and πk,t is the share of

agents in group k at time t.

We are interested in understanding how the existence of bots and the structure of the network

a�ect the evolution of polarization.

Polarization without Internet Bots The following two results show conditions under which

polarization vanishes in the limit. The �rst one is analogous to Sandroni et al (2012), whereas the

second one extends it to a network with dynamic link formation as in Acemoglu et al (2010).

Proposition 1. If the network G0 = (N, g0) is strongly connected and if the directed links are

activated every period (e.g., gt = g0), all agents eventually learn the true θ

max
i
| plim
t→∞

yi,t − θ| < ε

As a consequence, polarization converges to zero,

plim
t→∞

Pt = 0.

Proof. See Appendix A.

When the network is strongly connected all opinions and signals eventually travel through

the network allowing agents to perfectly aggregate information. Note that strong connectedness

precludes the existence of bots, as these agents do not internalize other people’s opinions. The

proposition shows that the society reaches consensus (e.g. there is no polarization) and uncovers

the true state of the world, θ. We refer to this as a ‘wise’ society, as de�ned below.

De�nition 2 (Wise Society). We say that a society is wise if

max
i
| plim
t→∞

yi,t − θ| < ε.

The result in Proposition 1 is in line with the �ndings in JMST (2012) despite the di�erence

in heuristic rules being used. Proposition 2 shows that the assumption of a �xed listening matrix

can be relaxed. In other words, even when gt is not constant, polarization vanishes in strongly

connected networks.

Proposition 2. If the network G0 = (N, g0) is strongly connected, even when the edges are not

activated every period, polarization still converges to zero, plimt→∞ P
a
t = 0.
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Proof. See Appendix B.

Polarization with Internet Bots The presence of bots breaks the strong connectivity in the

network, but this does not necessarily imply that the society will exhibit polarization. The fol-

lowing example depicts two networks, with three regular agents (2, 3, and 4) and one bot—L-bot

in panel (a) and R-bot in the panel (b)—.

L

24

3

(a) Society with L-bot

R

24

3

(b) Society with R-bot

Figure 3: Two societies with internet bots

Polarization in both societies converges to zero in the long-run. However, neither society is

wise. This illustrates that the in�uence of bots may generate mis-information in the long run,

preventing agents from uncovering θ, but does not necessarily create polarization. This insight

is formalized in Proposition 3

Proposition 3. A wise society experiences null social polarization. However, not all societies that

experience null social polarization are wise.

Proof. If perfect information aggregation is reached at any particular time t̄, then we know that

yi,t̄ = θ for all i ∈ G, thus all alienation terms in the polarization function are zero because

|yi,t̄− yj,t̄| = |θ− θ| = 0, for all i and j in N . Therefore, Polarization Pt̄ is zero for any particular

choice of parameter a. Conversely, if polarization at time t̄ is zero, then all alienation terms are

necessarily zero, since the measure of groups is non-negative. This means that |yi,t̄ − yj,t̄| = 0

implies yi,t̄ = yj,t̄ and, therefore, any opinion consensus of the form yi,t̄ = yj,t̄ = θ̃, such that

θ̃ ∈ Θ = [0, 1] and θ̃ 6= θ, meets this requirement.

In other words, it is possible for a society to reach consensus (i.e. experience no polarization

of opinions) to a value of θ that is incorrect. In order for a society to be polarized, individuals

need to be exposed to bots with opposing views.
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(b) Cycles

Figure 4: Two societies with internet bots

Consider the social network depicted in Figure 4a, in which both L-bots and R-bots are present.

Even though agents 2 and 3 receive unbiased signals and communicate with each other (e.g. up-

date their beliefs according to eqs. 2 and 3), this society exhibits polarization in the long run. This

happens because bots subject to di�erent biases (e.g. L and R) are in�uential.

Another noticeable characteristic of the evolution of Pt over time is that rather than settling

at a constant positive value, it �uctuates in the interval [0.2,0.4]. The example illustrates that

polarization cycles are possible in this environment.

0.10

0.15

0.20

0.25

0.30

0 100 200 300 400 500
Time

S
oc

ia
l P

ol
ar

iz
at

io
n

Figure 5: Di�erent polarization levels

Finally, we want to point out that whether polarization increases, decreases, or �uctuates over

time depends importantly on the topology of the network, the number and degree of in�uence of

bots, the frequency of meetings between individuals (e.g. the clock) and the degree of rationality
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of agents. Figure 5 depicts the behavior of Pt over time for a series of larger random networks

(e.g. there are 100 nodes, an arbitrary number of bots, and di�erent rationality levels). The next

section is devoted to uncovering what drives these di�erent dynamics.

4 Numerical Simulation

One of the biggest challenges when using network analysis is to ascertain analytical closed forms

and tractability. The combinatorial nature of social networks that exhibit a high degree of hetero-

geneity makes them very complex objects, imposing a natural challenge for theoretical analysis.

In our work, limiting properties can be characterized only when we assume strong connectivity

and absence of internet bots. As we drop these assumptions, we observe that di�erent network-

s might experience di�erent limiting polarization levels, even if departing from the very same

initial level of polarization.

To understand such di�erences, we resort to computer simulations where a large number

of random networks is mainly generated according to a classical random graph model based

on Barabasi and Albert (1999). Besides emulating real-world networks characteristics, this model

allow us to create a variety of initial networks with di�erent characteristics (e.g. di�erent degrees

of in�uence, etc) and learning standards (i.e., exposition to signals from unbiased sources and/or

social media). The simulation exercise helps us to better understand the relative importance of the

network topology and other social characteristics in driving polarization by producing enough

variability in a controlled environment.

4.1 Network Topology: Augmented Barabasi-Albert Random Graph

Barabasi and Albert (1999) were mainly motivated by the emergence of the World Wide Web and

the evolution of popularity of some web pages. They noted that popular web pages would show

a tendency to get more popular over time. The popularity of web pages in this context refers to

the number of other web pages pointing a direct link to them. This characteristic means that new

entrant nodes (web pages) tend to link themselves to already existent nodes that are very well

connected (popular web pages), indicating that the probability with which a new node connects

to the existing nodes is not uniform. Contrarily, there is a higher probability that it will be linked

to a node that already has a large number of connections. An implication of this characteristic is

that a few nodes in the network are very well connected while most of the other nodes are not
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as well connected and “hubs” are formed.

In this context, Barabasi and Albert (1999) developed an algorithm to generate random net-

works with such characteristics using a process called preferential attachment. In this process,

starting with a small number n0 of nodes, at every time step a new node with m(≤ n0) edges

is added to the network. Thus, the new node links to m di�erent nodes already present in the

system. To incorporate preferential attachment, they assume that the probability Π that a new

node will be connected to node i depends on the connectivity ki (in-degree, or the number of

nodes pointing to them) of that node, so that Π = ki∑
j kj

. After t periods, this protocol leads to a

random network with t + n0 nodes and mt edges. Figure 6 illustrates a random network gener-

ated following this procedure. In it, there is a small subset of agents in the center of the network

with a relatively large audience. In our context, each node represents an agent. Individuals with

a larger audience are more in�uential.
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Figure 6: Barabasi-Albert

n = 28, Power= 1.5,

Out Dist = G(3, 1)
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Figure 7: Barabasi-Albert w/ reciprocity

n = 28, Power= 1.5
Out Dist = G(3, 1)

While this model allows us to introduce in�uential agents, it rules out (i) reciprocity, i.e. the

chance that nodes are both paying attention to each other; and (ii) heterogeneity in the degree

centrality of agents, both key characteristics of social media interactions. To capture this, we

augment the Barabasi-Albert algorithm to introduce di�erent degrees of reciprocity through the

heterogeneity of connections. To produce networks with such characteristics, we implement two

extra routines, respectively: (i) similarly to the Erdos-Renyi random graph model, we �x a set of

nodes n̄ ⊆ n in each simulation and assume that each link between two agents is formed with a
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given probability. The link formation is independent across links; and (ii) in each step, instead of

allowing only a �xed number m(≤ n0) of links to be formed, the number of edges of an entrant

node at any time t is given by the realization of a draw from a gamma distribution de�ned over

the potential number of edges to add in each time step. If this rule is not implemented, we would

implicitly assume that every regular agent would be paying attention to exactlym(≤ n0) agents.

Figure 7 illustrates the network generated from the augmented model. In it, we can see that

information �ows in both directions (e.g. there is reciprocity) and that some agents are more

in�uential than others (e.g. there is preferential attachment). This procedure usually produces

networks in which regular agents, i.e. all agents but bots, are not strongly connected.
5

We disre-

gard from our analysis the few instances in which strong connectivity is observed among these

agents.

In addition, we select one agent, uniformly at random among agents i ∈ N with |N in
i (g0)| ≥ 1

and |N out
i (g0)| ≥ 1, to be a bot. After such node is transformed into a bot, we break its out-

links. We repeat this routine sequentially until the pre-determined number of bots is reached

(see next subsection). By proceeding this way, we guarantee that the bot is not disconnected

of the resulting network and that it can be located in any node that displays at least a minimal

amount of followers.

L

FL N

FLR

FR

R

Figure 8: Possible

Finally, our algorithm produces agents which can be related to bots in four di�erent ways, for

any size n of the network. These are: Follower of L-bot (FL), Follower of R-bot (FR), Follower

of both R-bot and R-bot simultaneously (FLR) and Neutral agent N (e.g. someone who is not

following either bot but is connected to other regular agents). Figure 8 depicts these agents in a

hypothetical complete network characterized by exactly one agent of each type.

5
This characteristic is basically driven by a small probability of link formation between two nodes.
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4.2 Generating the dataset

The set of networks constituting our arti�cial dataset is created as follows. We �x the number of

agents (or nodes) n = 35 and the average degree of polarization P 0
across networks. We restrict

attention to networks with a symmetric number of L-bots and R-bots, considering 1, 2, 3, or 4

bots of each type per network. Given these parameters, we draw a large number M = 5435 of

initial random networks G0
following our augmentation of the Barabasi-Albert model. We then

assign initial conditions and other characteristics that vary across networks. More speci�cally,

we vary the speed of communication through the clock parameter ρ and the �ooding parameter

κ, the weight given to unbiased sources b, the location of bots in the network, the degree of

initial homophily, clustering, and reciprocity as described in more detail below. This produces the

basic structure for social communication and determines the initial dispersion of beliefs about θ.

Finally, we simulate social media communication for a large number of periods (T = 2000) given

the network structure, and use the resulting opinions to compute the evolution of polarization.

4.2.1 Network Heterogeneity

For each network m, we �x the initial distribution of opinions so that the same mass of the total

population lies in the middle point of each one of 7 groups. This rule basically distributes our

agents evenly over the political spectrum [0, 1] such that each of the 7 groups contains exactly
1
7

of the total mass of agents, as shown in Figure 9.

0 1

0 1

0 1

P = 0.123

P = 0.296

P = 0.120

Figure 9: Initial distribution of opinions in all simulations

Moreover, we set the same variance for each agent world-view to be σ2 = 0.03. With both

opinion and variance, we are able to compute the initial parameter vector (α0 , β0).
6

Among

the agents populating our network, a predetermined number of agents is chosen, uniformly at

random among those with at least one individual in their in-neighborhood at t = 0, to be internet

bots in each simulation. For symmetry, we simulate networks with the same number of bots of

each type.

6
In this case, we only need to use the relationships µ = α

α+β and σ2 = αβ
(α+β)2(α+β+1) to fully determine α and

β. Algebraic manipulation yields α = −µ(σ
2+µ2−µ)
σ2 and β = (σ2+µ2−µ)(µ−1)

σ2 .
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We also allow the degree of rationality b and the parameter ρ of the Bernoulli distribution

determining the ticking of the clock (e.g. the persistence of connections) to vary across networks.

We draw bm and ρm from discrete Uniform distributions with bm [0, 1] and ρm (0, 1] (with band-

with 0.05) for each network m ≤M . Note that we are excluding cases in which nodes are never

activated, ρ = 0 as the network would exhibit no dynamics in such case. We vary the �ooding

parameter κ across simulations from the set κ ∈ {1, ..., 8, 10, 15, 20}.
It is informative to analyze the variability in network characteristics arising from our random

network generation exercise. Network characteristics can be split in three categories: behavioral,

technological, and topological.

Table 1: Network characteristics

Mean Std Dev. Min Max

Behavioral

Weight unbiased source b 0.475 0.319 0 1

Technological

Clock ρ 0.522 0.275 0.100 1

Flooding parameter κ 7.42 5.77 1 20

Topological

in-Degree L-bot 0.170 0.142 0.024 0.917

in-Degree R-bot 0.170 0.140 0.024 0.861

Page Rank L-bot 0.027 0.021 0.005 0.212

Page Rank R-bot 0.027 0.021 0.005 0.237

in-Closeness L-bot 0.155 0.089 0.024 0.486

in-Closeness R-bot 0.155 0.089 0.024 0.473

% Following both bots 0.149 0.148 0 0.829

Reciprocity 0.070 0.043 0 0.257

Clustering 0.276 0.049 0.090 0.405

Homophily −0.023 0.057 −0.263 0.231

The variability in the behavioral dimension is given by changes in the parameter b, capturing

the degree to which agents rely more or less heavily on the opinion of others. Recall that a

higher value of b gives more weight to the Bayesian posterior from unbiased signals. Table 1

shows that the parameter ranges between 0 (emulating De-Grootian agents) and 1 (emulating

purely Bayesian agents), with an average value of b is 0.475 and a standard deviation of 0.319.

The two parameters capturing communication technology are ρ, which controls the speed at

which links are activated and κ, which determines the ability of bots to �ood the network with
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fake news. A higher value of ρ could be interpreted as higher speed of information �ow, i.e. the

easiness to access all friends opinions. We restrict this parameter to be strictly positive and no

greater than 1. Given that it has been drawn from a uniform distribution, the average ρ in our

sample is 0.52. A standard deviation of 0.275 ensures that there is signi�cant variability in the

arti�cial dataset. The average number of signals sent by each bot in our sample is 7.4, with a

minimum of one (which is the number of signals sent by regular agents per encounter) and a

maximum of 20, indicating that bots can place fake news 20 times faster than an unbiased source

of news per period. The main di�erence between increasing κ vis-a-vis increasing the number

of bots, is that the former keeps the location of bots in the network constant whereas the latter

doesn’t.

In terms of the network topology, of particular interest to us is the location of bots in the

network, as this a�ects their degree of in�uence. The more central a bot is, the easier it is for it

to spread fake news and manipulate regular agents’ opinions. There are several ways in which

centrality can be measured according to the literature. Degree is the simplest centrality measure,

which consists on counting the number of neighbors an agent has. We focus on in-degree, de�ned

as the number of incoming links to a given bot (their out-degree is null by construction). This

measure is normalized by the size of the network (minus 1),

Din

i =
1

n− 1

∑
j

gji.

The average in-degree in our sample is 0.14, indicating that bots of a given type are followed,

on average, by 14% of regular agents. There is a large dispersion across networks, with cases in

which bots are being followed by around 90% of agents in the network.

While this measure of in�uence is intuitive, it is not necessarily the only way in which a bot

can be e�cient at manipulating opinion, and hence a�ecting polarization. There are networks

in which a bot has very few followers (and hence a low in-degree) but each of their followers is

very in�uential. If the bot manages to manipulate a regular agent who is itself very central, it

may be able to a�ect the opinion of others to a large extent. An alternative measure of centrality

that incorporates these indirect e�ects is Google’s PageRank centrality.
7

PageRank tries to ac-

count not only by quantity (e.g. a node with more incoming links is more in�uential) but also by

quality (a node with a link from a node which is known to be very in�uential is also in�uential).

7
This measure is a variant of eigenvector centrality, also commonly used in network analysis.
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Mathematically, the PageRank centrality PRi of a node i is represented by

PRi = α
∑
j

gji
Dout

j

PRj +
1− α
n

,

where Dout

j is the out-degree of node j if such degree is positive and α is the damping factor,

set to α = 0.85.
8

Note that the PageRank of bot i depends on the PageRank of its followers in

the recursion above. Summary statistics for the average PageRank across bots of each type are

shown in Table 1. As this is a more sophisticated version of degree centrality, it’s correlation with

in-degree is high (about 0.8 in our sample).

An alternative measure of centrality is given by closeness centrality. This measure keeps track

of how close a given bot is to each other node in the network. High proximity to all agents in

the network makes the bot more e�cient in spreading fake news, as they reach their targeted

audience more quickly. To compute closeness, we �rst measure the mean distance between the

bot and every other agent in the network. De�ne dji as the length of the shortest path from

regular agent j to bot i.9 In-closeness centrality is de�ned as the inverse of the mean distance dji

across regular agents to reach bot i,

C in

i =
n∑
j dji

.

Table 1 shows summary statistics for the in-closeness of each bot. It is worth noticing that even

though in-degree and in-closeness are related measures of centrality, they capture slightly di�er-

ent concepts. A bot is central according to in-degree, because it has a large number of followers,

whereas a bot is central according to in-closeness because it is easier for it to reach a large num-

ber of agents in the network. The correlation between these two variables is just 0.44. Moreover,

there is disagreement between these two metrics when ranking the most in�uential bot in some

of our networks.

Finally, di�erent than the measures of centrality computed for the set of agents, we present

three network statistics we judge relevant for our analysis. For these network statistics, we use

the subgraph of G0
induced by the set of regular agents R = {i ∈ N : |N out

i (g0)| > 0}, i.e.

all nodes, but bots. The reason we compute these statistics for this subgraph is because these

measures would be under-reported if we had kept bots in the network. This is because bots do

8
The damping factor tries to mitigate two natural limitations of this centrality measure. First, an agent can get

“stuck” at the nodes that have no outgoing links (bots) and, second, nodes with no incoming links are never visited.

The value of 0.85 is standard in the literature.

9
In many networks sometimes one agent may �nd more than one path to reach the bot. In such case, the shortest

path is the minimum distance among all possible distances.

21



not connect to any agent in the network. Moreover, any comparison across simulations could

be harmed by the average connectivity of each bot, implying that we could lose some degree of

comparability of simulations, particularly when changing the number of bots across networks.

The �rst measure is reciprocity, which de�nes the proportion of mutual connections in a net-

work. A nodes pair (i, j) is said to be reciprocal if there are edges between them in both directions.

The reciprocity of a directed graph is the proportion of all possible pairs (i, j) which are reciprocal,

provided there is at least one edge between i and j. In mathematical terms

R(m) =

∑
i

∑
j (g ◦ g′)ij∑
i

∑
j gij

Even though reciprocity is bounded between 0 and 1, it is possible to see that our data genera-

tion process only allow reciprocity to reach the maximum value of 0.257. This is mainly because

we have not strongly connected networks and this measure could never reach 1 in our data. On

average, this metric tells us that around 7% of the connections are mutual, with standard devia-

tion of 4.3%.

Another important aspect of a social networks is how tightly clustered they are. Many empir-

ical networks display an inherent tendency to form circles in which one’s friends are friends with

each other. In order to assess clustering in our directed networks, we use an extension to directed

graphs of the clustering coe�cient proposed by Fagiolo (2007). This quantity is de�ned as the

average, over all nodes i, of the nodes-speci�c clustering coe�cients and is de�ned as follows

cl(m) =
1

n

∑
i

(g + g′)3
ii

2 (Dtot

i (Dtot

i − 1)− 2 (g2)ii)
,

whereDtot

i is the total degree, i.e. in-degree plus out-degree, of agent i. In our data, we observe

an average clustering of 0.276, with standard deviation of 0.049.

Finally, many social networks exhibit a characteristic named homophily. This concept refers

to the fact that people are more prone to maintain relationships with people who are similar to

themselves. In our context, the level of initial homophily of opinions of agents is measured by an

assortativity coe�cient, as in Newman (2003), which takes positive values (maximum 1) if nodes

with similar opinion tend to connect to each other, and negative (minimum −1) otherwise
10

.

10
In political science and economic networks literatures, homophily is a characteristic that drives link formation.

In our case, initial homophily is simply a statistic of assortativity computed over opinions after the initial random

network is fully characterized and populated with di�erent agents and beliefs. The degree of homophily in the long-

run is endogenously determined. In an environment with no bots, for example, all agents converge to the same

opinion.
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Homophily is an important aspect of social networks since it might be related to the degree of

political polarization. Our simulated societies display an average of homophily of −0.023, with

standard deviation of 0.057.

4.2.2 Simulation

We �x the true state of the world, θ = 0.5. For each networkm, we draw a signal smi,t for individual

i ∈ N at time t ∈ T from a Bernoulli distribution with parameter θ = 0.5 for regular agents,

or parameters θL = 0 for L-bots and θR = 1 for R-bots. We also draw the n × n matrix ct at

each period t from a Bernoulli distribution with parameter ρm, which determines the evolution

of the network structure according to eq. (1). Together, the signals and the clock determine the

evolution of world-views according to eqs. (2) and (3). Polarization Pm,t is computed according

to eq. (5) at each point in time, assuming a parameter a = 0.5. Our variable of interest is the level

of polarization in the long-run, P̄m, which is normalized to belong to the interval [0, 1].11
This is

de�ned as the average value of Pm,t for t larger than a threshold t̄, which in our simulations is

set to be t̄ = 500. We chose this threshold because simulations converge after about 500 periods

to an ergodic set (most statistics and results are unchanged when using the last 200 periods).

Mathematically, for each network m we compute

P̄m ≡
∑
t>t̄

1

T − t̄− 1
Pm,t.

It is important to recall that this measure of polarization is computed from the limiting opinion

of regular agents (that is, we do not consider the opinion of bots). This is done in order to allow

a fair comparison of polarization levels across networks with di�erent number of bots; if bots’

opinions were included, we would mechanically rise polarization as we rise the number of bots.

The resulting sample consists of 5435 networks with associated observations for polariza-

tion P̄m (where m indicates a particular network). About 91% of the sample exhibits positive

polarization levels P̄m > 0, while the remaining 9% is composed of networks in which agents

have weight parameters b close to 1 (so their opinions eventually converge to the true state of

the world implying that P̄m = 0). Figure 10 depicts the distribution of polarization (conditioned

on being positive) in our sample. There is a signi�cant degree of variability in our sample, even

though the polarization levels are relatively small, with most P̄m observations lying below 0.5

11
With a = 0.5 the maximum possible level of polarization is around 0.707. We divide all values of polarization by

this number to normalize the upper bound to 1. This is without loss of generality and aims at easing interpretation.
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(recall that maximum polarization has been normalized to 1 while the maximum polarization

level in our sample is 0.63). The average value of P̄m across networks is 0.113, with a standard

deviation of 0.09. Interestingly, we also observe some mass near 0, indicating that agents reach

quasi-consensus (e.g. disagreement is relatively small among regular agents) about θ in 3% of the

networks.
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Figure 10: Average polarization
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Figure 11: Average opinions

The distribution of opinions across networks that exhibit positive polarization (also computed

over the last 500 periods) is shown in Figure 11. Two remarks are in place. First, we see that the

distribution centers around 0.5. This implies that there is a non-negligible set of networks in

which individuals’ opinions about the true state of the world are –on average—correct, even

though there is some disagreement among regular agents. Second, there is a non-trivial amount

of networks in which agents’ opinions become extreme on average. This indicates that there are

cases in which bots are successful at manipulating options towards their own, as even though

there is some disagreement, average beliefs are centered around 0 or 1.

5 Regression Analysis

We are interested in estimating the e�ect of network characteristics on long-run polarization. To

assess the quantitative importance of each explanatory variable, we estimate the coe�cients of

an OLS model,

P̄m = Xmβ + εm.

where the m × 1 vector P̄m denotes long-run polarization obtained from simulation m ∈
{1 . . .M}, Xm denotes the matrix of network characteristics per simulation m, and εm is the

error term.
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The set of explanatory variables in our benchmark speci�cation is composed of the behav-

ioral, technological, and topological characteristics of our networks listed in Table 1. Estimated

coe�cients are reported in Table 2.

Table 2: Regression results

Dependent Variable: Average Polarization P̄m
in-Degree, κ = 1 in-Degree PageRank + PR Aud

(1) (2) (3) (4)

Weight unbiased source b -0.078*** -0.065*** -0.065*** -0.065***

(0.007) (0.003) (0.003) (0.003)

Clock ρ -0.081*** -0.080*** -0.082*** -0.082***

(0.007) (0.003) (0.003) (0.003)

Degree/PageRank bot 0.096*** 0.091*** 0.707*** 0.680***

(0.022) (0.009) (0.067) (0.068)

% Following both bots FLR 0.083*** 0.048*** 0.167** 0.267***

(0.026) (0.0099) (0.076) (0.082)

in-Closeness bot -0.045 -0.187*** -0.165*** -0.178***

(0.045) (0.025) (0.025) (0.024)

Initial Homophily 0.039 -0.011 -0.016 -0.015

(0.045) (0.016) (0.016) (0.016)

Reciprocity -0.194*** -0.258*** -0.203*** -0.216***

(0.0455) (0.0223) (0.0228) (0.0229)

Cluster of Direction -0.395*** -0.352*** -0.249*** -0.246***

(0.042) (0.017) (0.018) (0.018)

Proportion of type i bots

2/35 0.033*** 0.009*** 0.012*** 0.009***

(0.006) (0.003) (0.003) (0.003)

3/35 0.061*** 0.019*** 0.027*** 0.022***

(0.007) (0.004) (0.004) (0.004)

4/35 0.074*** 0.030*** 0.040*** 0.034***

(0.008) (0.005) (0.005) (0.005)

PageRank Audience L-bot 0.283***

(0.073)

PageRank Audience R-bot 0.297***

(0.066)

κ = 1 ≥ 1 ≥ 1 ≥ 1
Observations 752 4,816 4,816 4,816

R-squared 0.63 0.55 0.53 0.53

Robust standard errors in parentheses

*** p<0.01, ** p<0.05, * p<0.1

In the �rst column, we consider the case in which each bot can send at most one message by

restricting the sample to networks in which κ = 1. The negative coe�cient on b implies that as

regular agents place more weight on the unbiased signal (and less on the social media friends’

opinions), polarization falls. In other words, agents are able to partially “mute” the network

channel through which fake news permeate, facilitating information aggregation and reducing

polarization as b raises. The overall e�ect of a higher clock parameter ρ is a priori ambiguous:

on the one hand, it is more likely that a regular agent will (indirectly) incorporate fake news

from those paying attention to the extreme views of bots as the speed of communication rises;

on the other hand, a faster �ow of information makes it more likely to form consensus among
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regular agents. Under the current speci�cation, we �nd that the elasticity of polarization to the

parameter ρ (evaluated at their average values ρ̄ and P̄m) is
∂P̄m
∂ρ̄

ρ̄
P̄m

= −0.37. This result suggests

that the e�ect of internalizing a larger number of opinions outweighs the e�ect of higher fake

news exposure.

As the degree of in�uence of bots— proxied by their in-degree— rises, polarization is exacer-

bated. This follows from the the positive and signi�cant coe�cient on degree centrality, reported

only for the R-bot (the L-bot is basically identical due to symmetry). The elasticity of polarization

to the number of followers, computed at their mean values is
∂P̄m
∂D̄in

D̄in

P̄m
= 0.17. It is also interesting

to note that as the percentage of individuals following both bots,ALR rises, polarization increases

as well. This happens because only a subset of all the notes in a given agents’ in-neighborhood

are activated at each point in time. In a relatively small network, this means that individuals will

be exposed at opposing extreme views over time causing �uctuations in their beliefs.
12

The coef-

�cient of in-closeness is insigni�cant in this speci�cation, a result that is not robust to networks

in which bots can send more than one message. Reciprocity decreases polarization, as expect-

ed from that fact that it facilitates consensus between any two agents exchanging information.

The negative coe�cient on clustering suggests that the implied higher connectivity reached with

higher clustering countervails the bias reinforcement associated with echo-chambers (Sunstein

2002, 2009). The e�ects of initial homophily on polarization vanish over time, as seen by the fact

that the coe�cient is statistically insigni�cant. As expected, as we increase the percentage of

bots in the population, polarization among regular agents raises.

In Speci�cation (2), we also consider networks in which bots can send multiple fake-news

articles each period (e.g. by allowing κ > 1). The number observations raises signi�cantly (from

752 to 4816) as we consider values of κ ∈ {1, ..., 8, 10, 15, 20}. We control for this greater ability

to spread fake-news by introducing a set of dummy variables I(κ), one for each κ in the regression

equation (with the exception of κ = 1, which is the reference value). To ease readability, we plot

the resulting coe�cients in Figure (12).

12
A discussion of the determinants of polarization cycles is deferred to future work.
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Figure 12: Estimated coe�cient on the indicator I(κ) (using Speci�cation 2).

As evident from the graph, all coe�cients are positive, indicating a greater ability to spread

fake news by each bot, keeping everything else constant, results in greater polarization levels.

It is worth noting that all coe�cients are signi�cant with p-values lower than 1%. In addition,

note that the larger e�ects on polarization are observed for relatively small values of κ, with the

e�ects remaining more or less stable for κ > 6. This suggests decreasing marginal returns to the

introduction of fake-news on polarization levels (although the returns on tilting opinions could

well be increasing).

The e�ects of bayes, clock, homophily, in-degree, and clustering are basically unchanged once

the full set of κs is included. One important di�erence relative to the �rst speci�cation arises on

the signi�cance of the in-closeness coe�cient. Interestingly, higher centrality as measured by

in-closeness dampens polarization, as suggested by the negative sign of the estimated coe�cient.

We interpret this as suggesting that the speed at which each given piece of fake-news travels

through the network allows the bot to e�ectively manipulate opinions pulling individuals to-

wards their preferred point. Note that this is very di�erent from the e�ect of in-degree: a larger

number of followers increases polarization whereas greater proximity to most agents in the net-

work decreases it. A second di�erence between this speci�cation and the previous one is that the

e�ect of the number of bots is smaller. This is intuitive, as each bot is now able to send several

messages, so the marginal e�ect of a given bot is now lower.

5.1 Robustness

In this sub-section, we would like to study the robustness of the results presented so far.

PageRank: We �rst investigate whether the e�ects of centrality are robust to our measure
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of degree centrality. In Speci�cation (3) of Table 2, we replace in-Degree by PageRank as an

explanatory variable and instead of considering the % of followers to both, we use the page rank

of agents connected to both bots in t = 0. The basic message remains unchanged: the more

in�uential the bot is, the greater the polarization it introduces when spreading fake news. The

size of the coe�cient is signi�cantly larger, but the elasticity is about the same (0.13 under this

speci�cation versus 0.17 in the previous one). The magnitude of the estimated coe�cients of

all other explanatory variables are basically unchanged, indicating that the results are robust

to alternative degree centrality measures. The goodness of �t decreases slightly from 0.55 in

Speci�cation (1) to 0.53 in Speci�cation (2).

In Speci�cation (4) we include, in addition to all the regressors from Speci�cation (3), the

page rank of individuals in the in-degree of each bot. The coe�cient is positive and signi�cant,

suggesting that a bot with low page-rank can still a�ect polarization if the average page-rank of

regular agents connected to it is large.

Bot Asymmetry: The previous speci�cation studied the e�ects of network characteristics

on polarization considering the centrality of each bot separately. In this sub-section, we want to

consider the e�ects of their relative centrality. To that end, we construct two auxiliary variables.

The �rst one is the Relative PageRank, de�ned as the absolute di�erence in the page rank of L-bot

and R-bots

RelPageRank = |PageRank(L)− PageRank(R)|.

The second one is Relative in-Closeness, de�ned in a similar way, as the absolute di�erence in

the in-closeness measure of the two types of bot. Using a speci�cation similar to (3), in which in-

dividual PageRank and in-Closeness are substituted by relative ones, we �nd that the coe�cient

on relative page rank is statistically insigni�cant. That is, polarization is unresponsive to increas-

es in the relative number of followers of a given bot. The coe�cient of relative in-closeness is

negative. This suggests that as a bot gets relatively closer to the rest of the network, he becomes

more e�cient at spreading fake-news decreasing polarization levels. Results are omitted due to

space constraints but are available upon request.

True State: Here, we study whether assuming θ = 0.5 has consequences for the size or sign

of estimated coe�cients. To that end, we simulate an additional 4317 networks using the same

procedure as before, but assuming that the true state of the world is θ = 0.7 instead. The �rst

column of Table 3 replicates the results from Speci�cation (3) above (e.g. when theta = 0.5)

whereas the second column displays the result for the sample where θ = 0.7.
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Table 3: Regression results

Dependent Variable: Average Polarization P̄m

θ = 0.5 θ = 0.7

Weight unbiased source b -0.065*** -0.072***

(0.003) (0.004)

Clock ρ -0.082*** -0.086***

(0.003) (0.004)

PageRank L-bot 0.703*** 0.763***

(0.0627) (0.0691)

PageRank R-bot 0.680*** 0.427***

(0.068) (0.062)

PageRank FL 0.283*** 0.270***

(0.0726) (0.0740)

PageRank FR 0.297*** 0.513***

(0.065) (0.069)

Page Rank FLR 0.267*** 0.586***

(0.082) (0.113)

in-Closeness L-bot -0.206*** -0.154***

(0.0256) (0.0217)

in-Closeness R-bot -0.178*** -0.147***

(0.024) (0.023)

Reciprocity -0.216*** -0.281***

(0.023) (0.024)

Cluster of Direction -0.246*** -0.190***

(0.018) (0.019)

Proportion of type i bots

2/35 0.009*** 0.014***

(0.003) (0.004)

3/35 0.022*** 0.037***

(0.004) (0.005)

4/35 0.034*** 0.049***

(0.005) (0.005)

κ ≥ 1 ≥ 1
Observations 4,816 4,317

R-squared 0.53 0.54

Robust standard errors in parentheses

*** p<0.01, ** p<0.05, * p<0.1

The only signi�cant di�erence is on the magnitude of coe�cient on PageRank of the R-bot,

which is now smaller (this is robust to excluding the page rank R-bot’s audience for the regression

equation). Overall, the results presented in the benchmark case are robust to having one bot’s

messages being closer to the true state of the world (i.e. news being less fake).

Network Size: Finally, we wanted to analyze the e�ects of network size on our results. We

run an additional 1501 simulations using the same procedure but considering twice the number

of nodes, n = 70. We reduced the set of κ to {1, 5, 10, 15, 20} and the number of fanatics of each

type to 1, 2, and 3. Summary statistics for the dataset with large networks can be found in Table

5 at Appendix C. Average polarization declines from P̄m = 0.12 when n = 35 (and the number

of fanatics and κ are restricted to the sets above) to P̄m = 0.09 when n = 70.

We estimate speci�cations (2) and (3) from Table 2 for small (n = 35) and large (n = 70)

29



networks. The resulting coe�cients are displayed in Table 4. Note that the sample size for small

networks is smaller than in our benchmark case due to the fact that we restricted attention to

networks with comparable κ and number of fanatics to the ones in large networks.

Table 4: Regression results

Dependent Variable: Average Polarization P̄m

Small n = 35 Large n = 70 Small n = 35 Large n = 70

Weight unbiased source b -0.064*** -0.053*** -0.065*** -0.053***

(0.005) (0.005) (0.005) (0.005)

clock -0.077*** -0.078*** -0.078*** -0.080***

(0.005) (0.006) (0.005) (0.006)

Degree/PageRank L-bot 0.086*** 0.055** 0.725*** 0.869***

(0.012) (0.024) (0.083) (0.203)

Degree/PageRank R-bot 0.108*** 0.050** 0.648*** 0.574***

(0.013) (0.024) (0.098) (0.175)

% Following both bots FLR 0.052*** 0.162*** 0.182* 0.349**

(0.015) (0.026) (0.107) (0.171)

in-Closeness L-bot -0.165*** -0.234*** -0.188*** -0.213**

(0.035) (0.090) (0.036) (0.091)

in-Closeness R-bot -0.220*** -0.445*** -0.174*** -0.362***

(0.034) (0.101) (0.035) (0.102)

Initial Homophily -0.0038 0.059 -0.014 0.070*

(0.024) (0.036) (0.025) (0.037)

Reciprocity -0.203*** -0.352*** -0.142*** -0.314***

(0.032) (0.070) (0.033) (0.072)

Cluster of Direction -0.301*** -0.320*** -0.199*** -0.269***

(0.025) (0.032) (0.026) (0.034)

Proportion of type i bots

2/35 0.004 -0.011 0.008* 0.007

(0.004) (0.007) (0.004) (0.007)

4/35 0.022*** 0.002 0.033*** 0.047***

(0.006) (0.012) (0.006) (0.012)

κ ≥ 1 ≥ 1 ≥ 1 ≥ 1
Observations 2,337 1,501 2,337 1,501

R-squared 0.53 0.55 0.51 0.50

Robust standard errors in parentheses

*** p<0.01, ** p<0.05, * p<0.1

The e�ects of the weighting parameter b and the clock ρ on polarization are the same regard-

less of network size. Interestingly, the e�ects of in-degree decrease sharply whereas the e�ects

of in-closeness increase signi�cantly when we move from n = 35 to n = 70. This implies that

having a larger set of followers is less important in driving polarization when networks are large.

Being closer to most followers by one unit, on the other hand, proves more important in manip-

ulating opinions when n = 70. Another characteristic that gains importance in large networks

is the degree of reciprocity, which also becomes more relevant in reducing polarization when

networks are large. These are not the result of di�erences in network characteristics, as the elas-

ticities of reciprocity and in-closeness are more negative when n = 70 than when n = 35.
13

13
The elasticity of reciprocity is −0.12 in small networks and −0.18 in large networks. The elasticity of in-
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6 Conclusions

We simulated a large number of social media networks by varying their characteristics in order

to understand what the most important drivers of polarization are. A premise in all of them

is the presence of bots with opposite extreme views who purposely spread fake news in order

to manipulate the opinion of other agents. To the extent that regular agents can be partially

in�uenced by these signals—directly by ‘following’ the bot, or indirectly by following friends

who are themselves in�uenced by fake news—, this generates polarization in the long run. In

other words, fake news prevent information aggregation and consensus in the population.

An important assumption is that the links in the network evolve stochastically. It would be

interesting to extend the model to consider a case in which links are endogenously determined.

This could achieved by allowing agents to place a higher weight on individuals who share similar

priors. In addition, they could choose to ‘unfollow’ (e.g. break links) agents who have views which

are relatively far from their own.

Having identi�ed the main determinants of polarization, it would be interesting to parame-

terize a real-life social media network (e.g. calibrate it) in order to back out the amount of fake

news necessary to produce the observed increase in polarization between two periods of time. It

would also be possible to carry forward a key-player analysis on the location of internet bots to

better understand what is the most e�cient way to reduce polarization.

closeness is −0.22 for small networks and −0.31 for large networks.
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A Proof of Proposition 1

Lemma 1. The matrix Wt = Bt + (In −Bt) ĝt is row-stochastic in any period t, where Bt =

diag(b1,t, b2,t, . . . , bn,t).

Proof. It is su�cient to show that Wt111 = Bt111 + (In −Bt) ĝt111 = 111. For that we can show that the

vector Wt111, for every t, has all entries equal to

bi,t + (1− bi,t)ĝti,∗111 =

bi,t = 1{ĝti,∗111=0}1 +
(

1− 1{ĝti,∗111=0}

)
b = 1 , if ĝti,∗111 = 0

1 , if ĝti,∗111 = 1

, where ĝti,∗ is the i-th row of matrix ĝt.

Lemma 2. The iteration of the row-stochastic matrixW is convergent and therefore there exists a

threshold τ̄ ∈ N such that |W τ+1
ij −W τ

ij| < ε for any τ ≥ τ̄ and ε > 0

Proof. In order to see how W τ
behaves as τ grows large, it is convenient to rewrite W using

its diagonal decomposition. In particular, let v be the squared matrix of left-hand eigenvectors

of W and DDD = (d1, d2, . . . , dn)′ the eigenvector of size n associated to the unity eigenvalue

λ1 = 114
. Without loss of generality, we assume the following normalization 1′D1′D1′D = 1. Therefore,

W = v−1Λv, where Λ = diag(λ1, λ2, . . . , λn) is the squared matrix with eigenvalues on its

diagonal, ranked in terms of absolute values. More genreally, for any time τ we write

W τ = v−1Λτv.

Noting that v−1
has ones in all entries of its �rst column, it follows that

[W τ ]ij = dj +
∑
r

λτrv
−1
ir vrj,

for each r, where λr is the r-th largest eigenvalue of W . Therefore, limτ→∞ [W τ ]ij = D1′D1′D1′, i.e.

each row of W τ
for all τ ≥ τ̄ converge to DDD, which coincides with the stationary distribution.

Moreover, if the eigenvalues are ordered the way we have assumed, then ‖W τ−D1′D1′D1′‖ = o(|λ2|τ ),

i.e. the convergence rate will be dictated by the second largest eigenvalue, as the others converge

to zero more quickly as τ grows.

14
This is a feature shared by all stochastic matrices because having row sums equal to 1 means that ‖W‖∞ = 1

or, equivalently, W111 = 111, where 111 is the unity n-vector.
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With these two auxiliary lemmas, we start by considering the parameter update process de-

scribed in the Section (XX). Since the network’s edges are activated every single period, ĝt = ĝ

and Bt = Bn×n = B = diag(b, b, . . . , b), where b ∈ [0, 1], since

∑
j g

t
ij 6= 0 for any i and t. Thus,

the update process for the parameter-vector α of size n is

αt+1 = B(αt + st+1) + (In −B)ĝαt

= [B + (In −B)ĝ]αt +Bst+1.

We de�ne the matrix inside the squared bracket as W for any t. We re-write the update

process above as follows

αt+1 = Wαt +Bst+1

When t = 0,

α1 = Wα0 +Bs1

When t = 1,

α2 = Wα1 +Bs2

= W (Wα0 +Bs1) +Bs2

= W 2α0 +WBs1 +Bs2

When t = 3,

α3 = Wα2 +Bs3

= W
(
W 2α0 +WBs1 +Bs2

)
+Bs3

= W 3α0 +W 2Bs1 +WBs2 +Bs3

So on and so forth, resulting in the following expression for any particular period τ

ατ = W τα0 +
τ−1∑
t=0

W tBsτ−t (6)

Similarly for the parameter β, we have

βτ = W τβ0 +
τ−1∑
t=0

W tB(1− sτ−t). (7)
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where 1 is the vector of ones of size n. From Equations (6) and (7), the sum of this two

parameter-vectors is given by the following expression

ατ + βτ = W τ (α0 + β0) +
τ−1∑
t=0

W tB1

= W τ (α0 + β0) +
τ−1∑
t=0

W tb

= W τ (α0 + β0) + τb. (8)

Therefore, at any point in time τ , the opinion of any agent i is given by yi,τ =
αi,τ

αi,τ + βi,τ
.

From equation (6), we write

αi,τ = W τ
i∗α0 +

τ−1∑
t=0

W t
i∗bsτ−t

= W τ
i∗α0 + τb

1

τ

τ−1∑
t=0

W t
i∗sτ−t

= W τ
i∗α0 + τbθ̃i(τ), (9)

where the symbol W τ
i∗ is used to denote the i-th row of matrix W τ

and W 0 = In. From

equations (9) and (8), we write yi,τ as

yi,τ =
W τ
i∗α0 + τbθ̃i(τ)

W τ
i∗(α0 + β0) + τb

=
τ

τ

(
1
τ
W τ
i∗α0 + bθ̃i(τ)

1
τ
W τ
i∗(α0 + β0) + b

)
, (10)

From Equation (10), we have that the limiting opinion (in probability) of any agent i, at any

point in time τ , is described as

plim
τ→∞

yi,τ = plim
τ→∞

θ̃i(τ)

= plim
τ→∞

1

τ

τ−1∑
t=0

W t
i∗sτ−t

= plim
τ→∞

1

τ

τ̄∑
t=0

W t
i∗sτ−t + plim

τ→∞

1

τ

τ∑
t=τ̄+1

W t
i∗sτ−t. (11)

From Lemma 2, we can split the series in Equation (12) into two parts. The �rst term describes

a series of τ̄ terms that represent the “most recent” signals coming in to the network. Notice that
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every weight-matrix W t
in the interval from t = 0 to t = τ̄ is di�erent from one another, since

the matrix W t
does not converge to a row-stochastic matrix with unity rank for low t. It is

straight-forward to see that this term converges to zero as τ → ∞. The second term represents

describes a series of τ − τ̄ terms that represent the“older signals” that entered in the network and

fully reached all agents. As τ →∞, this term becomes a series with in�nite terms. From the i.i.d.

property of the Bernoulli signals, we can conclude that

plim
τ→∞

yi,τ = plim
τ→∞

1

τ

τ∑
t=τ̄+1

W t
i∗sτ−t

= plim
τ→∞

1

τ

τ∑
t=τ̄+1

WWW i∗sτ−t (by Lemma 2)

= plim
τ→∞

WWW i∗
1

τ

τ∑
t=τ̄+1

sτ−t

asy
= plim

τ→∞
WWW i∗

1

τ − τ̄

τ∑
t=τ̄+1

sτ−t

asy
= WWW i∗θθθ

∗ = θ∗, (i.i.d. Bernoulli signals) (12)

where WWW = D1′D1′D1′. From equation (12), we conclude that society is wise and because of that,

plimt→∞ |ỹk,t−ỹl,t| = 0, i.e. theK groups reach consensus, impliying plimt→∞ Pt = |θ∗−θ∗| = 0.

(Q.E.D.)
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B Proof of Proposition 2

Consider again the update process described in the Section (XX)

αt+1 = Bt(αt + st+1) + (In −Bt)ĝtαt

= [Bt + (In −Bt)ĝt]αt +Btst+1.

Notice that Bt is not �xed over time now. We re-write the stochastic matrix (see lemma 1)

inside the squared bracket as

αt+1 = Wtαt +Btst+1.

When t = 0,

α1 = W0α0 +B0s1.

When t = 1,

α2 = W1α1 +B1s2

= W1 (W0α0 +B0s1) +B1s2

= W1W0α0 +W1B0s1 +B1s2.

When t = 2,

α3 = W2α2 +B2s3

= W2(W1W0α0 +W1B0s1 +B1s2) +B2s3

= W2W1W0α0 +W2W1B0s1 +W2B1s2 +B2s3.

So on and so forth and similarly for the parameter vector β.

Following Chaterjee and Seneta (1977), Seneta (2006) and Tahbaz-Salehi and Jadbabaie (2008),

we let {Wk}, for k ≥ 0, be a �xed sequence of stochastic matrices (see lemma 1), and let Ur,k be

the stochastic matrix de�ned by the following backward product

Ur,k = Wr+k ·Wr+(k−1) . . .Wr+2Wr+1Wr, (13)

where Wk = {wij(k)}, Ur,k = {u(r,k)
ij }15

.

15
Our backward product has last term equals toWr , rather thanWr+1. This is because our �rst period is 0, rather

than 1. This notation comes without costs or loss of generality.
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Then, the update process of both parameters can be represented in the following form for any

period τ

ατ = U0,τ−1α0 +

(
τ−1∑
r=1

Ur,τ−1−rBr−1sr

)
+Bτ−1sτ (14)

βτ = U0,τ−1β0 +

(
τ−1∑
r=1

Ur,τ−1−rBr−1 (111− sr)

)
+Bτ−1 (111− sτ ) (15)

From equation (14), we write its entries as

αi,τ =
∑
j

u
(0,τ−1)
ij αj,0 +

(∑
j

τ−1∑
r=1

u
(r,(τ−1−r))
ij bj,r−1sj,r

)
+ bi,τ−1si,τ

=
∑
j

u
(0,τ−1)
ij αj,0 + τ

1

τ

[(∑
j

τ−1∑
r=1

u
(r,(τ−1−r))
ij bj,r−1sj,r

)
+ bi,τ−1si,τ

]
=
∑
j

u
(0,τ−1)
ij αj,0 + τ θ̃i,1(τ) (16)

Each entry of the parameter vector β is written in a similar way

βi,τ =
∑
j

u
(0,τ−1)
ij βj,0 +

(∑
j

τ−1∑
r=1

u
(r,(τ−1−r))
ij bj,r−1(1− sj,r)

)
+ bi,τ−1(1− si,τ ).

The sum of both parameters αi,τ and βi,τ yields

αi,τ + βi,τ =
∑
j

u
(0,τ−1)
ij (αj,0 + βj,0) +

(∑
j

τ−1∑
r=1

u
(r,(τ−1−r))
ij bj,r−1

)
+ bi,τ−1

=
∑
j

u
(0,τ−1)
ij (αj,0 + βj,0) + τ

1

τ

[(∑
j

τ−1∑
r=1

u
(r,(τ−1−r))
ij bj,r−1

)
+ bi,τ−1

]
=

∑
j

u
(0,τ−1)
ij (αj,0 + βj,0) + τ θ̃i,2(τ) (17)

In which

∑
j u

(r,(τ−1))
ij = 1, for all r ≥ 0 since Ur,k is a stochastic matrix. Therefore, the

opinion of each agent i in this society, at some particular time τ , is yi,τ =
αi,τ

αi,τ+βi,τ
, where each

entry of the parameter vectors can be written as follows:

yi,τ =

∑
j u

(0,τ−1)
ij αj,0 + τ θ̃i,1(τ)∑

j u
(0,τ−1)
ij (αj,0 + βj,0) + τ θ̃i,2(τ)
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Asymptotically we have:

plim
τ→∞

yi,τ = plim
τ→∞

( ∑
j u

(0,τ−1)
ij αj,0 + τ θ̃i,1(τ)∑

j u
(0,τ−1)
ij (αj,0 + βj,0) + τ θ̃i,2(τ)

)

= plim
τ→∞

τ

τ

 ∑
j u

(0,τ−1)
ij αj,0

τ
+ θ̃i,1(τ)∑

j u
(0,τ−1)
ij (αj,0+βj,0)

τ
+ θ̃i,2(τ)


= plim

τ→∞

θ̃i,1(τ)

θ̃i,2(τ)
(18)

Our main concern in order to prove that equation (18) converges in probability to θ∗ is the

behavior of Ur,k when k → ∞ for each r ≥ 0. For that, we need to de�ne two concepts of

ergodicity. The sequence {Wk} is said to beweakly ergodic, as k →∞, if for all i, j, s = 1, 2, . . . , n

and r ≥ 0

|u(r,k)
i,s − u

(r,k)
j,s | → 0

On the other hand, we say that this very same sequence is strongly ergodic for all r ≥ 0, and

elementwise, if:

lim
k→∞

Ur,k = 1D′r

Where 1 is a size n vector of ones and Dr is a probability vector in which Dr ≥ 0 and D′r1 = 1.

Both weak and strong ergodicity describe a tendency to consensus. In the strong ergodicity

case, all rows of the stochastic matrix Ur,k are becoming the same as k grows large and reaching a

stable limiting vector, whereas in the weak ergodicity case, every row is converging to the same

vector, but each entry not necessarily converges to a limit.

The three following lemmas are auxiliary helps to conclude the proof. Lemma 1 do xxx,

Lemma 2 do yyy, whereas Lemma 3 do zzz.

Lemma 3. For the backward product (13), weak and strong ergodicity are equivalent.

Proof. Following Seneta (1977)’s Theorem 1, we only need to prove that weak ergodicity implies

strong ergodicity. Fix r ≥ 0 and ε > 0. Then, by weak ergodicity, we have

−ε ≤ u
(r,k)
i,s − u

(r,k)
j,s ≤ ε⇐⇒ u

(r,k)
i,s − ε ≤ u

(r,k)
j,s ≤ u

(r,k)
i,s + ε

for k ≥ τ̄ for all i, h, s = 1, . . . , n. Since Ur,k+1 = Wr+k+1Ur,k,

n∑
j=1

whj(r + k + 1)(u
(r,k)
i,s − ε) ≤

n∑
j=1

whj(r + k + 1)u
(r,k)
j,s ≤

n∑
j=1

whj(r + k + 1)(u
(r,k)
i,s + ε).
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The inequality above shows that for any h and k ≥ τ̄

u
(r,k)
i,s − ε ≤ u

(r,k)
h,s ≤ u

(r,k)
i,s + ε.

Thus, by induction, for any i, h, s = 1, 2, . . . , n, for any k ≥ τ̄ and for any integer q ≥ 1

|u(r,k+q)
h,s − u(r,k)

i,s | ≤ ε.

By setting i = h, it is clear that uk,ri,s is a Cauchy sequence that aproaches a limit as k →∞.

De�nition 3. The scalar function µ(·) continuous on the set of n × n stochastic matrices W and

satisfying 0 ≤ µ(W ) ≤ 1 is called a coe�cient of ergodicity. It is said to be proper if µ(W ) = 1⇔
W = 1v′1v′1v′, where v′v′v′ is any probability vector (i.e. wheneverW is a row-stochastic matrix with unity

rank).

In particular, we will focus on the proper coe�cient of ergodicity µ(W ) = 1− a(W ), where

a(W ) =
1

2
max
i,j

n∑
s=1

|wis − wjs|.

Therefore, weak ergodicity is then equivalent to µ(Ur,k)→ 1 as k →∞ and r ≥ 0.

Lemma 4. Suppose that 1 − a(·) and µ(·) are both proper coe�cients of ergodicity. Then {Wk},
k ≥ 0, is ergodic if and only if there exists a strictly increasing subsequence {ij}, j = 1, 2, . . . of the

positive integers such that
∞∑
j=1

µ
(
Uij ,ij+1−ij

)
=∞

Proof. Soon

Lemma 5. The weak ergodicity of the sequence {Wk}, k ≥ 0 is a trivial event when gt follows

equation (1).

Proof. Soon
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With the results of these three lemmas, we can proceed with

plim
τ→∞

θ̃i,1(τ)

θ̃i,2(τ)
= plim

τ→∞

1
τ

∑
j

∑τ−τ̄
r=1 u

(r,(τ−1−r))
ij bj,r−1sj,r

1
τ

∑
j

∑τ−τ̄
r=1 u

(r,(τ−1−r))
ij bj,r−1

(by lemma 5)

= plim
τ→∞

∑
j ūij

1
τ

∑τ−τ̄
r=1 bj,r−1sj,r∑

j ūij
1
τ

∑τ−τ̄
r=1 bj,r−1

(by lemma 4)

asy
≡ plim

τ→∞

∑
j ūij

1
τ−τ̄

∑τ−τ̄
r=1 bj,r−1sj,r∑

j ūij
1

τ−τ̄
∑τ−τ̄

r=1 bj,r−1

=

∑
j ūijE(bjsj)∑
j ūijE(bj)

(by weak law of large numbers)

=

∑
j ūijE(bj)E(sj)∑

j ūijE(bj)
(by independence of bj and sj)

=
θ∗
∑

j ūijE(bj)∑
j ūijE(bj)

= θ∗ (since E(sj) = θ∗,∀j ) (19)
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C Summary statistics for big networks

Table 5: Network characteristics when n = 70

Mean Std Dev. Min Max

Behavioral

Weight unbiased source b 0.416 0.282 0 1

Technological

Clock ρ 0.468 0.250 0.100 1

Flooding parameter κ 9.76 6.69 1 20

Topological

in-Degree L-bot 0.094 0.082 0.013 0.568

in-Degree R-bot 0.098 0.086 0.013 0.691

Page Rank L-bot 0.013 0.011 0.002 0.106

Page Rank R-bot 0.014 0.012 0.002 0.104

in-Closeness L-bot 0.122 0.046 0.013 0.224

in-Closeness R-bot 0.122 0.047 0.013 0.231

% Following both bots 0.09 0.111 0 0.651

Reciprocity 0.048 0.023 0 0.120

Clustering 0.226 0.045 0.096 0.336

Homophily −0.010 0.036 −0.144 0.191
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