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VERY PRELIMINARY 
 
 
 

We interpret recent developments in the field of artificial intelligence (AI) as 
improvements in prediction technology. In this paper, we explore the consequences of 
improved prediction in decision-making. To do so, we adapt existing models of 
decision-making under uncertainty to account for the process of determining payoffs. 
We label this process of determining the payoffs ‘judgment.’ There is a risky action, 
whose payoff depends on the state, and a safe action with the same payoff in every 
state. Judgment is costly; for each potential state, it requires thought on what the payoff 
might be. Prediction and judgment are complements as long as the expected payoffs 
in the two states (before judgment is applied) are not too different. We next consider a 
tradeoff between prediction frequency and accuracy. We show that as judgment 
improves, accuracy becomes more important relative to frequency. Finally, we explore 
the process of gaining experience over time, and show that a seller of predictions 
cannot extract the full value of the predictions from a buyer. 
 

	  

																																																								
* Our thanks to Scott Stern and participants at the AEA (Chicago), Harvard Business School, MIT and University of 
Toronto for helpful comments. Responsibility for all errors remains our own. The latest version of this paper is 
available at joshuagans.com.  
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1 Introduction 

There is widespread discussion regarding the impact of machines on employment (see Autor, 

2015). In some sense, the discussion mirrors a long-standing literature on the impact of the 

accumulation of capital equipment on employment; specifically, whether capital and labor are 

substitutes or complements (Acemoglu, 2003). But the recent discussion is motivated by the 

integration of software with hardware and whether the role of machines goes beyond physical tasks 

to mental ones as well (Brynjolfsson and McAfee, 2014). As mental tasks were seen as always 

being present and essential, human comparative advantage in these was seen as the main reason 

why, at least in the long term, capital accumulation would complement employment by enhancing 

labour productivity in those tasks.  

The computer revolution has blurred the line between physical and mental tasks. For 

instance, the invention of the spreadsheet in the late 1970s fundamentally changed the role of book-

keepers. Prior to that invention, there was a time intensive task involving the recomputation of 

outcomes in spreadsheets as data or assumptions changed. That human task was substituted by the 

spreadsheet software that could produce the calculations more quickly, cheaply, and frequently. 

However, at the same time, the spreadsheet made the jobs of accountants, analysts, and others far 

more productive. In the accounting books, capital was substituting for labour but the mental 

productivity of labour was being changed. Thus, the impact on employment critically depended 

on whether there were tasks the “computers cannot do.” 

These assumptions persist in models today. Acemoglu and Restrepo (2016) observe that 

capital substitutes for labour in certain tasks while at the same time technological progress creates 

new tasks. They make what they call a “natural assumption” that only labour can perform the new 

tasks as they are more complex than previous ones.1 Benzell, LaGarda, Kotlikoff, and Sachs (2015) 

consider the impact of software more explicitly. Their environment has two types of labour – high-

tech (who can, among other things, code) and low-tech (who are empathetic and can handle 

interpersonal tasks). In this environment, it is the low-tech workers who cannot be replaced by 

machines while the high-tech ones are employed initially to create the code that will eventually 

displace their kind. The results of the model depend, therefore, on a class of worker who cannot 

																																																								
1 To be sure, their model is designed to examine how automation of tasks causes a change in factor prices that biases 
innovation towards the creation of new tasks that labour is more suited to.  
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be substituted directly for capital but also on the inability of workers themselves to substitute 

between classes. 

In this paper, our approach is to delve into the weeds of what is happening currently in the 

field of artificial intelligence (AI). The recent wave of developments in artificial intelligence (AI) 

all involve advances in machine learning. Those advances allow for automated and cheap 

prediction; that is, providing a forecast (or nowcast) of a variable of interest from available data. 

In some cases, prediction has enabled full automation of tasks – for example, self-driving vehicles 

where the process of data collection, prediction of behavior and surroundings, and actions are all 

conducted without a human in the loop. In other cases, prediction is a standalone tool – such as 

image recognition or fraud detection – that may or may not lead to further substitution of human 

users of such tools by machines. Thusfar, substitution between humans and machines has focused 

mainly on cost considerations. Are machines cheaper, more reliable, and more scalable (in their 

software form) than humans? This paper, however, considers the role of prediction in decision-

making explicitly and from that examines the complementary skills that may be matched with 

prediction within a take. 

Our focus, in this regard, is on what we term judgment. While judgment is a term with broad 

meaning, here we use it to refer to a very specific skill. To see this, consider a decision. That 

decision involves choosing an action, x, from a set, X. That payoff (or reward) from that action is 

defined by a function, 𝑢(𝑥, 𝜃) where q is a realization of an uncertain state drawn from a 

distribution, F(q). Suppose that, prior to making a decision, a prediction (or signal), s, can be 

generated that results in a posterior, 𝐹(𝜃 𝑠). Thus, the decision-maker would solve: 

max,∈. 𝑢(𝑥, 𝜃)𝑑𝐹(𝜃 𝑠) 

In other words, a standard problem of choice under uncertainty. In this standard world, the role of 

prediction is to improve decision-making. The payoff, or utility function, is known. 

To create a role for judgment we depart from this standard set-up and ask how a decision-

maker comes to know the function, 𝑢(𝑥, 𝜃)? We assume that this is not simply given or a primitive 

of the decision-making model. Instead, it requires a human to undertake costly process that allows 

the mapping from (𝑥, 𝜃) to a particular payoff value, u, to be discovered. This is a reasonable 

assumption given that beyond some rudimentary experimentation in closed environments, there is 
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no current way for an AI to impute a utility function that resides with humans. Additionally, this 

process separates the costs of providing the mapping for each pair, (𝑥, 𝜃). (Actually, we focus, 

without loss in generality, on situations where 𝑢(𝑥, 𝜃) ≠ 𝑢(𝑥) for all q and presume that if a payoff 

to an action is state independent that payoff is known). In other words, while prediction can obtain 

a signal of the underlying state, judgment is the process by which the payoffs from actions that 

arise based on that state can be determined. We assume that this process of determining payoffs 

requires human understanding of the situation: It is not a prediction problem.  

For intuition on the difference between prediction and judgment, consider the example of 

credit card fraud. A bank observes a credit card transaction. That transaction is either legitimate or 

fraudulent. The decision is whether to approve the transaction. If the bank knows for sure that the 

transaction is legitimate, the bank will approve it. If the bank knows for sure that it is fraudulent, 

the bank will refuse the transaction. Why? Because the bank knows the payoff of approving a 

legitimate transaction is higher than the payoff of refusing that transaction. Things get more 

interesting if the bank is uncertain about whether the transaction is legitimate. The uncertainty 

means that the bank also needs to know the payoff from refusing a legitimate transaction and from 

approving a fraudulent transactions. In our model, judgment is the process of determining these 

payoffs. It is a costly activity.  

As the new developments regarding AI all involve making prediction more readily available, 

we ask, how does judgment and its endogenous application change the value of prediction? Are 

prediction and judgment substitutes or complements? How does the value of prediction change 

monotonically with the difficulty of applying judgment? When judgment is a factor, how does this 

impact on the pricing of AI? Does judgment play a role in the way in which machines learn to 

predict? And do the answers to these questions change if judgment is an on-going activity versus 

something that can be gained with experience and become long-lived? 

We proceed by first providing supportive evidence for our assumption that recent 

developments in AI overwhelmingly impact the costs of prediction. Drawing inspiration from 

Bolton and Faure-Grimaud (2009), we then build the baseline model with two states of the world 

and uncertainty about payoffs to actions in each state. We explore the value of judgment in the 

absence of any prediction technology, and then the value of prediction technology when there is 

no judgment. We finish the discussion of the baseline model with an exploration of the interaction 
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between prediction and judgment, demonstrating that prediction and judgment are complements 

as long as the ex ante payoffs to the risky action (before judgment is applied) are expected to be 

similar. In other words, if the payoffs in the two states are not anticipated to be different before 

judgment is applied, then prediction and judgment are complements. They are substitutes if and 

only if anticipated differences in payoffs are high before the decision-maker invests in judging the 

specific payoffs. After these basic results are established, we show that there is no monotonic 

relationship between improvements in prediction and the value of judgment. We then separate 

prediction quality into prediction frequency and prediction accuracy. As judgment improves, 

accuracy becomes more important relative to frequency. Finally, we allow the decision maker to 

gain experience over time and learn the payoffs given knowledge of the state, without further need 

to apply judgment. In this dynamic model, we show that a seller of predictions (i.e. an AI service 

provider) cannot extract the full value of the predictions from the buyer. 

2 AI and Prediction Costs 

We argue that the recent advances in artificial intelligence are advances in the technology of 

prediction. Most broadly, we define prediction as the ability to take known information to generate 

new information. Our model emphasizes prediction about the state of the world.  

Most contemporary artificial intelligence research and applications come from a field now 

called “machine learning.” Many of the tools of machine learning have a long history in statistics 

and data analysis, and are likely familiar to economists and applied statisticians as tools for 

prediction and classification.2 For example, Alpaydin’s (2010) textbook Introduction to Machine 

Learning covers maximum likelihood estimation, Bayesian estimation, multivariate linear 

regression, principal components analysis, clustering, and nonparametric regression. In addition, 

it covers tools that may be less familiar, but also use independent variables to predict outcomes: 

Regression trees, neural networks, hidden Markov models, and reinforcement learning. Hastie, 

Tibshirani, and Friedman’s (2009) The Elements of Statistical Learning covers similar topics. The 

2014 Journal of Economic Perspectives symposium on big data covered several of these less 

																																																								
2 We define prediction as known information to generate new information. Therefore, classification techniques such 
as clustering are prediction techniques in which the new information to be predicted is the appropriate category or 
class. 



	 6	

familiar prediction techniques in articles by Varian (2014) and Belloni, Chernozhukov, and 

Hansen (2014).  

While many of these prediction techniques are not new, recent advances in computer speed, 

data collection, data storage, and the prediction methods themselves have led to substantial 

improvements. These improvements have transformed the computer science research field of 

artificial intelligence. The Oxford English Dictionary defines artificial intelligence as “[t]he theory 

and development of computer systems able to perform tasks normally requiring human 

intelligence.” In the 1960s and 1970s, artificial intelligence research was primarily rules-based, 

symbolic logic. It involved human experts generating rules that an algorithm could follow 

(Domingos 2015, p. 89). These are not prediction technologies. Such systems became very good 

chess players and they guided factory robots in highly controlled settings; however, by the 1980s, 

it became clear that rules-based systems could not deal with the complexity of many non-artificial 

settings. This led to an “AI winter” in which research funding artificial intelligence projects largely 

dried up (Markov 2015).  

Over the past 10 years, a different approach to artificial intelligence has taken off. The idea 

is to program computers to “learn” from example data or experience. In the absence of the ability 

to pre-determine the decision rules, a data-driven prediction approach can conduct many mental 

tasks. For example, humans are good at recognizing familiar faces, but we would struggle to 

explain and codify this skill. By connecting data on names to image data on faces, machine learning 

solves this problem by predicting which image data patterns are associated with which names. As 

a prominent artificial intelligence researcher put it, “Almost all of AI’s recent progress is through 

one type, in which some input data (A) is used to quickly generate some simple response (B)” (Ng 

2016). Thus, the progress is explicitly about improvements in prediction. In other words, the suite 

of technologies that have given rise to the recent resurgence of interest in artificial intelligence use 

data collected from sensors, images, videos, typed notes, or anything else that can be represented 

in bits to fill in missing information, recognize objects, or forecast what will happen next.  

To be clear, we do not take a position on whether these prediction technologies really do 

mimic the core aspects of human intelligence. While Palm Computing founder Jeff Hawkins 

argues that human intelligence is — in essence — prediction (Hawkins 2004), many 

neuroscientists, psychologists, and others disagree. Our point is that the technologies that have 
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been given the label artificial intelligence are prediction technologies. Therefore, in order to 

understand the impact of these technologies, it is important to assess the impact of prediction on 

decisions. 

3 Baseline Model 

Our baseline model is inspired by the “bandit” environment considered by Bolton and Faure-

Grimaud (2009) although it departs significantly in the questions addressed and base assumptions 

made. Like them, in our baseline model, we suppose there are two states of the world, {𝜃2, 𝜃3} 

with prior probabilities of {𝜇, 1 − 𝜇}. There are two possible actions: a state independent action 

with known payoff of S (safe) and a state dependent action with unknown payoff, R or r as the 

case may be (risky).  

As noted in the introduction, a key departure from the usual assumptions of rational decision-

making is that the decision-maker does not know the payoff from the risky action in each state and 

must apply judgment to determine that payoff.3 Moreover, decision-makers need to be able to make 

a judgment for each state that might arise in order to formulate a plan that would be the equivalent 

of payoff maximization. In the absence of such judgment, the ex ante expectation that the risky 

action is optimal in state 𝜃8 is 𝑣8. Thus, if before applying judgment, the decision maker does not 

have any knowledge about the difference in payoffs between the states, then 𝑣2 = 𝑣3 = 𝑣. To 

make things more concrete, we assume that there are only two possible payoffs from the risky 

action, R and r, where 𝑅 > 𝑆 > 𝑟.4 In this case, we assume that 𝑣8 is the probability in state 𝜃8 that 

the risky payoff is R rather than r. This is not a conditional probability of the state. It is a statement 

about the payoff, given the state.  

In the absence of knowledge regarding the specific payoffs from the risky action, a decision 

can only be made on the basis of prior probabilities only. Then the safe action will be chosen if: 

																																																								
3 Bolton and Faure-Grimaud (2009) consider this step to be the equivalent of a thought experiment where thinking 
takes time. To the extent that our results can be interpreted as a statement about the comparative advantage of humans, 
we assume that only humans can do judgment.  
4 Thus, we assume that the payoff function, u, can only take one of three values, {R, r, S}. The issue is which 
combinations of state realization and action lead to which payoffs. However, we assume that S is the payoff from the 
safe action regardless of state and so this is known to the decision-maker. As it is the relative payoffs from actions 
that drive the results, this assumption is without loss in generality. Requiring this property of the safe action to be 
discovered would just add an extra cost. Implicitly, as the decision-maker cannot make a decision in complete 
ignorance, we are assuming that the safe action’s payoff can be judged at an arbitrarily low cost. 
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𝜇 𝑣2𝑅 + 1 − 𝑣2 𝑟 + 1 − 𝜇 𝑣3𝑅 + 1 − 𝑣3 𝑟 ≤ 𝑆 

If 𝑣8 = 𝑣 then this becomes 𝑣𝑅 + 1 − 𝑣 𝑟 ≤ 𝑆. So that the payoff is: 𝑉C = max	{𝜇 𝑣2𝑅 +

1 − 𝑣2 𝑟 + 1 − 𝜇 𝑣3𝑅 + 1 − 𝑣3 𝑟 , 𝑆}. To make things simpler, we will focus our attention 

on the case where the safe action is – in the absence of prediction or judgment – the default. That 

is, we assume that: 

A1 (Safe Default) 𝜇 𝑣2𝑅 + 1 − 𝑣2 𝑟 + 1 − 𝜇 𝑣3𝑅 + 1 − 𝑣3 𝑟 ≤ 𝑆  

This assumption is made for simplicity only and will not change the qualitative conclusions 

below.5 Under A1, in the absence of knowledge of the payoff function or a signal of the state, the 

decision-maker would choose S.  

Judgment in the absence of prediction 

Prediction provides knowledge of the state. The process of judgment provides knowledge of 

the payoff function. Judgment therefore allows the decision-maker to understand which action is 

optimal for a given state should it arise. Suppose that this knowledge is gained (as it would be 

assumed to do under the usual assumptions of economic rationality). Then the risky action will be 

chosen (1) if it is the preferred action in both states (which arises with probability 𝑣2𝑣3); (2) if it 

is the preferred action in 𝜃2 but not 𝜃3 and 𝜇𝑅 + 1 − 𝜇 𝑟 > 𝑆 (with probability 𝑣2 1 − 𝑣3 ); or 

(3) if it is the preferred action in 𝜃3 but not 𝜃2 and 𝜇𝑟 + 1 − 𝜇 𝑅 > 𝑆 (with probability 

𝑣3 1 − 𝑣2 ). Thus, the expected payoff is:  

𝑣2𝑣3𝑅 + 𝑣2 1 − 𝑣3 max 𝜇𝑅 + 1 − 𝜇 𝑟, 𝑆 + 𝑣3 1 − 𝑣2 max 𝜇𝑟 + 1 − 𝜇 𝑅, 𝑆

+ (1 − 𝑣2) 1 − 𝑣3 𝑆 

Note that this is greater than 𝑉C. The reason for this is that, when there is uncertainty, judgment is 

valuable because it can identify actions that are dominant or dominated – that is, that might be 

optimal across states. In this situation, any resolution of uncertainty does not matter as it will not 

change the decision made.  

A key insight is that judgment itself can be consequential. 

																																																								
5 Bolton and Faure-Grimaud (2009) make the opposite assumption. Here as our focus is on the impact of prediction, 
it is better to consider environments where prediction has the effect of reducing uncertainty over riskier actions. 
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Result 1. If 𝜇𝑅 + 1 − 𝜇 𝑟 > 𝑆, it is possible that judgment alone can cause the decision to switch 
from the default action (safe) to the alternative action (risky).  
As we are motivated by understanding the interplay between prediction and judgment, we want to 

make these consequential. Therefore, we make the following assumption to ensure prediction 

always has some value: 

A2 (Judgment Insufficient) max	{𝜇𝑅 + 1 − 𝜇 𝑟, 𝜇𝑟 + 1 − 𝜇 𝑅} ≤ 𝑆  

Under this assumption, if different actions are optimal in each state and this is known, the decision-

maker will not change to the risky action. This, of course, implies that the expected payoff is: 

𝑣2𝑣3𝑅 + (1 − 𝑣2𝑣3)𝑆 

Note that, absent any cost, full judgment improves the decision-maker’s payoff. 

Judgment does not come for free. We assume here that it takes time (although the 

formulation would naturally match with the notion that it takes costly effort). Suppose the discount 

factor is d < 1. A decision-maker can spend time in a period determining what the optimal action 

is for a particular state. If they choose to apply judgment with respect to 𝜃8, then there is a 

probability 𝜆8 that they will determine the optimal action in that period and can make a choice 

based on that judgment. Otherwise, they can choose to apply judgment to that problem in the next 

period.  

It is useful, at this point, to consider what judgment means once it has been applied. The 

initial assumption we make here is that the knowledge of the payoff function depreciates as soon 

as a decision is made. In other words, applying judgment can delay a decision (and that is costly) 

and it can improve that decision (which is its value) but it cannot generate experience that can be 

applied to other decisions (including future ones). In other words, the initial conception of 

judgment is the application of thought rather than the gathering of experience. Practically, this 

reduces our examination to a static model. However, in a later section, we consider the experience 

formulation and demonstrate that most of the insights of the static model carry over to the dynamic 

model. 

In summary, the timing of the game is as follows: 

1. At the beginning of a decision stage, the decision-maker chooses whether to apply 

judgment and to what state or whether to simply choose an action. If an action is 
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chosen, uncertainty is resolved and payoffs are realized and we move to a new 

decision stage. 

2. If judgment is chosen, with probability, 1 − 𝜆8, they do not find out the payoffs for 

the risky action in that state, a period of time elapses and the game moves back to 1. 

With probability 𝜆8, the decision-maker gains this knowledge. The decision-maker 

can then take an action, uncertainty is resolved and payoffs are realized and we move 

to a new decision stage. If no action is taken, a period of time elapses and the current 

decision stage continues. 

3. The decision-maker chooses whether to apply judgment and to the other state or 

whether to simply choose an action. If an action is chosen, uncertainty is resolved 

and payoffs are realized and we move to a new decision stage. 

4. If judgment is chosen, with probability, 1 − 𝜆F8, they do not find out the payoffs for 

the risky action in that state, while with probability 𝜆F8, the decision-maker gains this 

knowledge. The decision-maker then chooses an action, uncertainty is resolved and 

payoffs are realized and we move to a new decision stage.  

Below, when prediction is available, it will become available prior to the beginning of a decision 

stage. The various parameters are listed in Table 1. 

Table 1: Model Parameters 

Parameter Description 
S Known payoff from the safe action 
R Potential payoff from the risky action in a given state 
r Potential payoff from the risky action in a given state 
𝜃8 Label of state 𝑖 ∈ {1,2} 
m Probability of state 1 
𝑣8 Prior probability that the payoff in 𝜃8 is R 

𝜆8 
Probability that decision-maker learns the payoff to the risky action 𝜃8 if 
judgment is applied for one period 

d Discount factor 
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Suppose that the decision-maker focusses on judging the optimal action (i.e., assessing the 

payoff) for 𝜃8. Then the expected present discount payoff from applying judgment is: 

𝜆8 𝑣8𝑅 + 1 − 𝑣8 𝑆 + 1 − 𝜆8 𝛿𝜆8 𝑣8𝑅 + 1 − 𝑣8 𝑆 + 1 − 𝜆8 J𝛿J𝜆8 𝑣8𝑅 + 1 − 𝑣8 𝑆
K

JL3

 

=
𝜆8

1 − 1 − 𝜆8 𝛿
𝑣8𝑅 + 1 − 𝑣8 𝑆  

The decision-maker eventually is expected to learn what to do and will earn a higher payoff then 

without judgment but will trade this off against a delay in the payoff. 

This calculation presumes that the decision-maker knows the state--that 𝜃8 is true—prior to 

engaging in judgment. If this is not the case, then the expected present discounted payoff to 

judgment on, say, 𝜃2 alone is: 

𝜆2
1 − 1 − 𝜆2 𝛿

max	{𝑣2 𝜇𝑅 + 1 − 𝜇 𝑣3𝑅 + 1 − 𝑣3 𝑟

+ 1 − 𝑣2 𝜇𝑟 + 1 − 𝜇 𝑣3𝑅 + 1 − 𝑣3 𝑟 , 𝑆}

=
𝜆2

1 − 1 − 𝜆2 𝛿
max	{𝑣2 𝜇𝑅 + 1 − 𝜇 𝑣3𝑅 + 1 − 𝑣3 𝑟 , 𝑆} + 1 − 𝑣2 𝑆  

where the last step follows from (A1). To make exposition simpler, we suppose that 𝜆2 = 𝜆3 = 𝜆. 

In addition, let 𝜆 = M
NO NOM P.	 𝜆	can be given a similar interpretation to 𝜆, the quality of judgment. 

We, therefore, work with 𝜆 until we introduce a dynamic model with experience in Section 6. 

If the strategy were to apply judgment on one state only and then make a decision, this would 

be the relevant payoff to consider. However, because judgment is possible in both states, there are 

several cases to consider.  

First, the decision-maker might apply judgment to both states in sequence. In this case, the 

expected present discounted payoff is: 

𝜆3 𝑣2𝑣3𝑅 + 𝑣2 1 − 𝑣3 max 𝜇𝑅 + 1 − 𝜇 𝑟, 𝑆 + 𝑣3 1 − 𝑣2 max 𝜇𝑟 + 1 − 𝜇 𝑅, 𝑆

+ (1 − 𝑣2) 1 − 𝑣3 𝑆 = 𝜆3 𝑣2𝑣3𝑅 + 1 − 𝑣2𝑣3 𝑆  

where the last step follows from (A1).  
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Second, the decision-maker might apply judgment to, say,	𝜃2 first and then, contingent on 

the outcome there, apply judgment to 𝜃3. To explore this, we assume that 𝑣2 ≥ 𝑣3. If the decision-

maker chooses to pursue judgment on 𝜃3 if the outcome for 𝜃2 is that the risky action is optimal, 

the payoff becomes: 

𝜆 𝑣2𝜆 𝑣3𝑅 + 1 − 𝑣3 max	{𝜇𝑅 + 1 − 𝜇 𝑟, 𝑆} + 1 − 𝑣2 max	{𝜇𝑟

+ 1 − 𝜇 𝑣3𝑅 + 1 − 𝑣3 𝑟 , 𝑆} = 𝜆 𝑣2𝜆 𝑣3𝑅 + 1 − 𝑣3 𝑆 + 1 − 𝑣2 𝑆  

It is easy to check that it is optimal to search 𝜃2 first rather than 𝜃3 if 𝑣2 ≥ 𝑣3. If the decision-

maker chooses to pursue judgment on 𝜃3 after determining that the outcome for 𝜃2 is that the safe 

action is optimal, the payoff becomes: 

𝜆 𝑣2 max 𝜇𝑅 + (1 − 𝜇) 𝑣3𝑅 + 1 − 𝑣3 𝑟 , 𝑆 + 1 − 𝑣2 𝜆(𝑣3max	{𝜇𝑟 + (1 − 𝜇)𝑅, 𝑆}

+ 1 − 𝑣3 𝑆) = 𝜆 𝑣2 max 𝜇𝑅 + (1 − 𝜇) 𝑣3𝑅 + 1 − 𝑣3 𝑟 , 𝑆 + 1 − 𝑣2 𝜆𝑆  

Note, that if 𝜇𝑅 + 1 − 𝜇 𝑣3𝑅 + 1 − 𝑣3 𝑟 ≤ 𝑆, then this is option is dominated by not 

applying judgment at all. Thus, in what follows, whenever we evaluate this option we will assume 

that 𝜇𝑅 + 1 − 𝜇 𝑣3𝑅 + 1 − 𝑣3 𝑟 > 𝑆. Also note that in this case, it is optimal to search 𝜃2 

first if 𝑣2 ≤ 𝑣3. Thus, if, as we assume, 𝑣2 ≥ 𝑣3, for this strategy, it is optimal to search 𝜃3 first 

and the resulting payoff is: 

𝜆 𝑣3 max (1 − 𝜇)𝑅 + 𝜇 𝑣2𝑅 + 1 − 𝑣2 𝑟 , 𝑆 + 1 − 𝑣3 𝜆𝑆  

Given this we can prove the following: 

Proposition 1. Under A1, and A2, and in the absence of any signal about the state, (a) judging 
both states and (b) continuing after the discovery that the safe action is preferred in a state are 
never optimal. 

PROOF: Note that judging two states is optimal if: 

𝜆 >
𝑆

𝑣3 max 𝜇𝑟 + 1 − 𝜇 𝑅, 𝑆 + 1 − 𝑣3 𝑆
 

𝜆 >
(1 − 𝜇)𝑅 + 𝜇 𝑣2𝑅 + 1 − 𝑣2 𝑟

𝑣3𝑅 + 1 − 𝑣3 max 𝜇𝑅 + 1 − 𝜇 𝑟, 𝑆  

As (A2) implies that 𝜇𝑟 + 1 − 𝜇 𝑅 ≤ 𝑆, the first condition reduces to 𝜆 > 1. Thus, (a) 
judging two states is dominated by judging one state and continuing to explore only if the 
risky is found to be optimal in that state. 
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Turning to the strategy of continuing to apply judgment only if the safe action is found to 
be preferred in a state, we can compare this to the payoff from applying judgment to one 
state and then acting immediately. Note that: 

𝜆 𝑣3 max 𝜇𝑅 + (1 − 𝜇) 𝑣2𝑅 + 1 − 𝑣2 𝑟 , 𝑆 + 1 − 𝑣3 𝜆𝑆
> 𝜆 𝑣3 max (1 − 𝜇)𝑅 + 𝜇 𝑣2𝑅 + 1 − 𝑣2 𝑟 , 𝑆 + 1 − 𝑣3 𝑆  

This can never hold proving that (b) is dominated. 
 

The intuition is similar to Propositions 1 and 2 in Bolton and Faure-Grimaud (2009). The intuition 

behind this proposition is that applying judgment is only useful if it is going to lead to the decision-

maker switching to the risky action. Thus, it is never worthwhile to unconditionally explore a 

second state as it may not change the action taken. Similarly, if judging one state leads to 

knowledge the safe action continues to be optimal in that state, in the presence of uncertainty about 

the state, even if knowledge is gained of the payoff to the risky action in the second state, that 

action will never be chosen. Hence, further judgment is not worthwhile. Hence, it is better to 

choose immediately at that point rather than delay the inevitable. 

Given this proposition, there are only two strategies that are potentially optimal (in the 

absence of prediction). One strategy (we will term here J1) is where judgment is applied to one 

state and if the risky action is optimal, then that action is taken immediately; otherwise the safe 

default is taken immediately. The other strategy (we will term here J2) is where judgment is applied 

to one state and if the risk action is optimal, then judgment is applied to the next state; otherwise 

the safe default is taken immediately. Note that J2 is preferred to J1 if: 

𝜆 𝑣2𝜆 𝑣3𝑅 + 1 − 𝑣3 𝑆 + 1 − 𝑣2 𝑆

> 𝜆 𝑣3 max (1 − 𝜇)𝑅 + 𝜇 𝑣2𝑅 + 1 − 𝑣2 𝑟 , 𝑆 + 1 − 𝑣3 𝑆

⟹ 𝜆𝑣2 𝑣3𝑅 + 1 − 𝑣3 𝑆

> 𝑣3max (1 − 𝜇)𝑅 + 𝜇 𝑣2𝑅 + 1 − 𝑣2 𝑟 , 𝑆 + 𝑣2 − 𝑣3 𝑆 

⟹ 𝜆 >
𝑣3max (1 − 𝜇)𝑅 + 𝜇 𝑣2𝑅 + 1 − 𝑣2 𝑟 , 𝑆 + 𝑣2 − 𝑣3 𝑆

𝑣2 𝑣3𝑅 + 1 − 𝑣3 𝑆
 

This is intuitive. Basically, it is only when the efficiency of judgment is sufficiently high, that more 

judgment is applied. 
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Prediction in the absence of judgment 

Next, we consider the model with prediction but no judgment. Suppose that there exists an 

AI that can, if deployed, identify the state prior to a decision being made. In other words, 

prediction, if it occurs, is perfect; an assumption we will relax in a later section. Initially, suppose 

there is no judgment mechanism to determine what the optimal action is in each state. 

Recall that, in the absence of prediction or judgment, (A1) ensures that the safe action will 

be chosen. If the decision-maker knows the state, then the risky action in a given state is chosen 

if: 

𝑣8𝑅 + 1 − 𝑣8 𝑟 > 𝑆 

Thus, the expected payoff is: 

𝑉S = 𝜇max	{𝑣2𝑅 + 1 − 𝑣2 𝑟, 𝑆} + 1 − 𝜇 max	{𝑣3𝑅 + 1 − 𝑣3 𝑟, 𝑆} 

Note that 𝑉S ≥ 𝑉C as prediction allows a state specific response to be chosen. If 𝑣8 = 𝑣 then this 

becomes: 

𝑉S = max	{𝑣𝑅 + 1 − 𝑣 𝑟, 𝑆} 

which is the same outcome if there is no judgment or prediction. This generates the following 

result: 

Result 2. Prediction (in the absence of judgment) is valuable only if the probability that the risky 
action is optimal differs between states.  
 

Note that, by (A1), if 𝑣2𝑅 + 1 − 𝑣2 𝑟 > 𝑆 then 𝑣3𝑅 + 1 − 𝑣3 𝑟 < 𝑆. Thus, a necessary 

condition for 𝑉S > 𝑉C is that 𝑣2𝑅 + 1 − 𝑣2 𝑟 > 𝑆 in which case, 𝑉S = 𝜇max	{𝑣2𝑅 +

1 − 𝑣2 𝑟, 𝑆} + 1 − 𝜇 𝑆. 

Prediction and judgment together 

Both prediction and judgment can be valuable on their own. The question we next wish to 

consider is whether they are complements or substitutes.  

While perfect prediction allows you to choose an action based on the actual rather than 

expected state, it also affords the same opportunity with respect to judgment. As judgment is costly, 

it is useful not to waste considering what action might be taken in a state that does not arise. This 
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was not possible when there was no prediction. But if you receive a prediction regarding the state, 

you can then apply judgment exclusively to actions in relation to that state. To be sure, that 

judgment still involves a cost but at the same time does not lead to any wasted cognitive resources. 

Given this, if the decision-maker were the apply judgment after the state is predicted, their 

expected discounted payoff would be: 

𝑉SU = 𝜇max	{𝜆 𝑣2𝑅 + 1 − 𝑣2 𝑆 , 𝑆} + 1 − 𝜇 max	{𝜆 𝑣3𝑅 + 1 − 𝑣3 𝑆 , 𝑆} 

This represents the highest expected payoff possible (net of the costs of judgment).  

We are now in a position to prove the following. 

Proposition 2. Under A1 and A2, prediction and judgment are complements (substitutes) if 𝑣2 −
𝑣3 is small (large). Specifically, the returns to prediction are increasing in l if: 

𝜆 <
	𝑣3((1 − 𝜇)𝑅 + 𝜇 𝑣2𝑅 + 1 − 𝑣2 𝑟 ) + 𝑣2 − 𝑣3 𝑆

𝑣2 𝑣3𝑅 + 1 − 𝑣3 𝑆
 

If 𝑣2𝑅 + 1 − 𝑣2 𝑟 > 𝑆 this condition becomes necessary and sufficient. 

PROOF: Prediction and judgment are complements if: 

𝑉SU − 𝑉U > 𝑉S − 𝑉C
⟹ 𝜇max 𝜆 𝑣2𝑅 + 1 − 𝑣2 𝑆 , 𝑆 + 1 − 𝜇 max	{𝜆 𝑣3𝑅 + 1 − 𝑣3 𝑆 , 𝑆}
− max 𝜆 𝑣2𝜆 𝑣3𝑅 + 1 − 𝑣3 𝑆
+ 1 − 𝑣2 𝑆 , 𝜆 𝑣3 max 1 − 𝜇 𝑅 + 𝜇 𝑣2𝑅 + 1 − 𝑣2 𝑟 , 𝑆
+ 1 − 𝑣3 𝑆 > 𝜇max 𝑣2𝑅 + 1 − 𝑣2 𝑟, 𝑆 + 1 − 𝜇 𝑆 − 𝑆 

There are numerous cases to consider: 

(1) 𝑣2𝑅 + 1 − 𝑣2 𝑟 < 𝑆: In this case, the RHS of the inequality is equal to 0 and the 
remaining terms become: 

𝜇max 𝜆 𝑣2𝑅 + 1 − 𝑣2 𝑆 , 𝑆 + 1 − 𝜇 max	{𝜆 𝑣3𝑅 + 1 − 𝑣3 𝑆 , 𝑆}
> max 𝜆 𝑣2𝜆 𝑣3𝑅 + 1 − 𝑣3 𝑆
+ 1 − 𝑣2 𝑆 , 𝜆 𝑣3 max 1 − 𝜇 𝑅 + 𝜇 𝑣2𝑅 + 1 − 𝑣2 𝑟 , 𝑆
+ 1 − 𝑣3 𝑆  

which always holds. Note that this case is the only one if 𝑣2 = 𝑣3 = 𝑣, proving the 
complementarity result. 

(2) 𝑣2𝑅 + 1 − 𝑣2 𝑟 > 𝑆 and 𝑣2𝜆 𝑣3𝑅 + 1 − 𝑣3 𝑆 > 	𝑣3 max 1 − 𝜇 𝑅 +
𝜇 𝑣2𝑅 + 1 − 𝑣2 𝑟 , 𝑆  
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𝜆 𝜇(𝑣2𝑅 + 1 − 𝑣2 𝑆) + 1 − 𝜇 (𝑣3𝑅 + 1 − 𝑣3 𝑆)
− 𝜆 𝑣2𝜆 𝑣3𝑅 + 1 − 𝑣3 𝑆 + 1 − 𝑣2 𝑆
> 𝜇 𝑣2𝑅 + 1 − 𝑣2 𝑟 + 1 − 𝜇 𝑆 − 𝑆
⟹ 𝜆 𝜇𝑣2 + 1 − 𝜇 𝑣3 − 𝑣2𝑣3𝜆 (𝑅 − 𝑆) + 𝑣2(1 − 𝜆)𝑆
> 𝜇(𝑣2𝑅 + 1 − 𝑣2 𝑟 − 𝑆) 

As 𝑣2 → 1 and 𝑣3 → 0, this becomes 

𝜆𝑆 > 𝜇(𝑅 − 𝑆) 

Recall that 𝑣2𝜆 𝑣3𝑅 + 1 − 𝑣3 𝑆 > 	𝑣3 max 1 − 𝜇 𝑅 + 𝜇 𝑣2𝑅 + 1 − 𝑣2 𝑟 , 𝑆  if: 

𝜆 >
𝑣3max (1 − 𝜇)𝑅 + 𝜇 𝑣2𝑅 + 1 − 𝑣2 𝑟 , 𝑆 + 𝑣2 − 𝑣3 𝑆

𝑣2 𝑣3𝑅 + 1 − 𝑣3 𝑆
 

which becomes, as 𝑣2 → 1 and 𝑣3 → 0, 

𝜆 > 1 

Thus, this case is ruled out.  

(3) 𝑣2𝑅 + 1 − 𝑣2 𝑟 > 𝑆 ⟹ 𝑣3𝑅 + 1 − 𝑣3 𝑟 < 𝑆; 𝜆 𝑣2𝜆 𝑣3𝑅 + 1 − 𝑣3 𝑆 +
1 − 𝑣2 𝑆 < 	𝜆 𝑣3((1 − 𝜇)𝑅 + 𝜇 𝑣2𝑅 + 1 − 𝑣2 𝑟 ) + 1 − 𝑣3 𝑆  which implies that 
1 − 𝜇 𝑅 + 𝜇 𝑣3𝑅 + 1 − 𝑣3 𝑟 > 𝑆. 

𝜆 𝜇 𝑣2𝑅 + 1 − 𝑣2 𝑆 + 1 − 𝜇 𝑣3𝑅 + 1 − 𝑣3 𝑆
− 𝜆 𝑣3 (1 − 𝜇)𝑅 + 𝜇 𝑣2𝑅 + 1 − 𝑣2 𝑟 + 1 − 𝑣3 𝑆
> 𝜇 𝑣2𝑅 + 1 − 𝑣2 𝑟 + 1 − 𝜇 𝑆 − 𝑆 

⟹ 𝜆(𝑣2 1 − 𝑣3 𝑅 − (𝑣2 − 𝑣3)𝑆 − 𝑣3 1 − 𝑣2 𝑟) > 𝑣2𝑅 + 1 − 𝑣2 𝑟 − 𝑆 

As 𝑣2 → 1, this becomes: 

𝜆 1 − 𝑣3 (𝑅 − 𝑆) > 𝑅 − 𝑆 
which cannot hold implying that prediction and judgment are substitutes.  

The returns to judgment are increasing in prediction if: 

(1) 𝑣2𝑅 + 1 − 𝑣2 𝑟 < 𝑆 and 𝑣2𝜆 𝑣3𝑅 + 1 − 𝑣3 𝑆 > 	𝑣3 max 1 − 𝜇 𝑅 + 𝜇 𝑣2𝑅 + 1 −
𝑣2 𝑟 , 𝑆 :  

Note that the payoff for prediction and judgment will exceed S if 𝜆 > X
YZ[\ NOYZ X. 

The condition of the proposition says that in the absence of prediction, the payoff from 
judgment is: 𝜆 𝑣3 max 1 − 𝜇 𝑅 + 𝜇 𝑣2𝑅 + 1 − 𝑣2 𝑟 , 𝑆 + 1 − 𝑣3 𝑆 . Note that for 
this to be feasible, it must be the case that:	𝜆 𝑣3 max 1 − 𝜇 𝑅 + 𝜇 𝑣2𝑅 + 1 − 𝑣2 𝑟 , 𝑆 +
1 − 𝑣3 𝑆 > 𝑆 or 𝜆 > X

YZ]^_ NO` [\` YN[\ NOYN a ,X \ NOYZ X. This requires 1 − 𝜇 𝑅 +
𝜇 𝑣2𝑅 + 1 − 𝑣2 𝑟 > 𝑆 so we can refine this condition to: 𝜆 >

X
YZ( NO` [\` YN[\ NOYN a ,X)\ NOYZ X. It is easy to see that the RHS of this expression exceeds 

b
cZde 2FcZ b

. Thus, whenever judgment alone is feasible, prediction and judgment together is 
feasible. 



	 17	

Next note that, for 𝜆 > X
YZ( NO` [\` YN[\ NOYN a ,X)\ NOYZ X: 

𝜕(𝑉SU − 𝑉U)
𝜕𝜆

= 𝜇 𝑣2𝑅 + 1 − 𝑣2 𝑆 + 1 − 𝜇 𝑣3𝑅 + 1 − 𝑣3 𝑆

− 𝑣3 1 − 𝜇 𝑅 + 𝜇 𝑣2𝑅 + 1 − 𝑣2 𝑟 ) − 1 − 𝑣3 𝑆  

𝑣2 1 − 𝑣3 𝑅 − 𝑣2 − 𝑣3 𝑆 − 𝑣3 1 − 𝑣2 𝑟 > 0 

Note that for 𝑣2 → 𝑣3, this is positive and that as 𝑣2 the LHS of this inequality decreases. 
Finally, as 𝑣2 → 1, this becomes: 1 − 𝑣3 (𝑅 − 𝑆) > 0. 

(2) 𝑣2𝑅 + 1 − 𝑣2 𝑟 > 𝑆 ⟹ 𝑣3𝑅 + 1 − 𝑣3 𝑟 < 𝑆; 𝜆 𝑣2𝜆 𝑣3𝑅 + 1 − 𝑣3 𝑆 + 1 −
𝑣2 𝑆 < 	𝜆 𝑣3((1 − 𝜇)𝑅 + 𝜇 𝑣2𝑅 + 1 − 𝑣2 𝑟 ) + 1 − 𝑣3 𝑆  

𝑣2 1 − 𝑣3 𝑅 − 𝑣2 − 𝑣3 𝑆 − 𝑣3 1 − 𝑣2 𝑟 > 0 
which is the same condition as (1) above. Thus, we can conclude that in this case, the returns 
to judgment are increasing in prediction. 

Now assume that 𝑣2𝑅 + 1 − 𝑣2 𝑟 > 𝑆 and 𝑣2𝜆 𝑣3𝑅 + 1 − 𝑣3 𝑆 > 	𝑣3 max 1 −
𝜇 𝑅 + 𝜇 𝑣2𝑅 + 1 − 𝑣2 𝑟 , 𝑆 . In this case,  

𝜕(𝑉SU − 𝑉U)
𝜕𝜆

= 𝜇𝑣2 + 1 − 𝜇 𝑣3 − 2𝑣2𝑣3𝜆 𝑅 − 𝑆 + 𝑣2 1 − 2𝜆 𝑆 > 0

⟹
𝜇𝑣2 + 1 − 𝜇 𝑣3 𝑅 − 𝑆 + 𝑣2𝑆

2𝑣2(𝑣3 𝑅 − 𝑆 + 𝑆) > 𝜆 

Note, however, if 𝜆 is high enough for 𝑣2𝜆 𝑣3𝑅 + 1 − 𝑣3 𝑆 > 	𝑣3 max 1 − 𝜇 𝑅 +
𝜇 𝑣2𝑅 + 1 − 𝑣2 𝑟 , 𝑆 , then it is also high enough that this condition would not hold and 
the returns to judgment are decreasing in prediction.  

 
The intuition is straightforward. When the prior probability that the risky action is optimal is 

similar across states, then using prediction to reveal the state does not assist the decision-maker 

much in the absence of judgment that tells the decision-maker what to do should a given state arise. 

On the other hand, if it is known that the risky action is optimal if 𝜃2 should arise, then even if 

judgment is not costly (i.e., 𝜆 is close to 1), prediction is just as valuable as the decision-maker 

knows what to do if the state is identified (that is, take the risky action in 𝜃2 and the safe action in 

𝜃3). Similarly, it is only when judgment is particularly costly (i.e., that it is optimal, in the absence 

of prediction, to apply judgment to a single state), that prediction can increase the returns to 

judgment by ensuring that judgment need only be applied to the state that actually arises.  

This result yields an important corollary: 

Corollary 1. Under A1 and A2, prediction and judgment are complements if 𝑣2 = 𝑣3 = 	𝑣. 
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In other words, if the decision maker does not have strong information about differences in payoffs 

between the states before exercising judgment, then prediction and judgment are always 

complements. 

4 How does the value of prediction vary with the quality of judgment? 

Consider a firm that is trying to work out where to apply prediction machines first. Should 

it target tasks where judgment is weak (low l) or strong (high l)? Specifically, on the continuum 

of possible qualities of judgment, at what point is the value of prediction (that is, prediction above 

and beyond what judgment can achieve on its own) highest? 

To keep things simple, we assume here that 𝑣8 = 𝑣. From Proposition 1, in the absence of 

prediction, there are only two judgment strategies (that is, ways of applying judgment) that can be 

optimal: J1 where judgment is applied to one state and if the risky action is optimal, then that 

action is taken immediately; otherwise the safe default is taken immediately and J2 where 

judgment is applied to one state and if the risk action is optimal, then judgment is applied to the 

next state; otherwise the safe default is taken immediately. Earlier we determined that, because it 

involves more application of judgment, J2 will be optimal only if 𝜆 exceeds some threshold which 

we here label, 𝜆U3: 

𝜆 > 𝜆U3

≡ max	{
max 𝜇𝑅 + 1 − 𝜇 𝑣𝑅 + 1 − 𝑣 𝑟 , 𝑆

𝑣𝑅 + 1 − 𝑣 𝑆 ,
𝑆 4𝑣3𝑅 + 𝑆 1 + 2𝑣 − 3𝑣3 − 1 − 𝑣 𝑆

2𝑣 𝑣𝑅 + 1 − 𝑣 𝑆 } 

where the first term is the range where J2 dominates J1 while the second term is where J2 

dominates S alone; so for J2 to be optimal it must exceed both. Note also that as 𝜇 → XOa
[Oa		(its 

highest possible level consistent with A1 and A2), then 𝜆U3 → 1. On the other hand, J1 can only 

arise if its payoff exceeds the default without judgment, S; that is, if 𝜆 exceeds a threshold, 𝜆U2: 

𝜆 > 𝜆U2 ≡
𝑆

𝑣max	{𝜇𝑅 + 1 − 𝜇 𝑣𝑅 + 1 − 𝑣 𝑟), 𝑆 + 1 − 𝑣 𝑆 

Note that if 𝜇𝑅 + (1 − 𝜇)(𝑣𝑅 + 1 − 𝑣 𝑟 ≤ 𝑆, J1 is never optimal as 𝜆U2 = 1. If 𝜇𝑅 + (1 −

𝜇)(𝑣𝑅 + 1 − 𝑣 𝑟) > 𝑆, note that: 
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𝜆U3 > 𝜆U2 ⟹
𝜇𝑅 + 1 − 𝜇 𝑣𝑅 + 1 − 𝑣 𝑟

𝑣𝑅 + 1 − 𝑣 𝑆 >
𝑆

𝑣 𝜇𝑅 + 1 − 𝜇 𝑣𝑅 + 1 − 𝑣 𝑟 + 1 − 𝑣 𝑆

⟹ (1 − 𝑣)𝑆(𝜇𝑅 + 1 − 𝜇 𝑣𝑅 + 1 − 𝑣 𝑟 − 𝑆)

> 𝑣(𝑅𝑆 − 𝜇𝑅 + 1 − 𝜇 𝑣𝑅 + 1 − 𝑣 𝑟 3) 

which may not hold for v sufficiently high. However, it can be shown that when 𝜆U3 = 𝜆U2, then 

the two terms of 𝜆U3 are equal and the second term exceeds the first when 𝜆U3 < 𝜆U2. This implies 

that in the range where 𝜆U3 < 𝜆U2, J2 dominates J1. 

This analysis implies there are two types of allocations of labour to tasks. If 𝜆U3 > 𝜆U2, then 

low ordered tasks are allocated to people who use J2, the next tranche of tasks are allocated to 

those who use J1 while the remainder do not exercise judgment at all. On the other hand, if 𝜆U3 <

𝜆U2, then the low order tasks are allocated to people using J2 while the remainder are allocated to 

people not using judgment at all.  

Having established how tasks are allocated in the absence of prediction, we now turn to 

consider what the value of prediction is conditional on the difficulty (𝜆) of a task. In particular, 

while prediction (if it were free) would enhance the value of all tasks and even for tasks with a low 

𝜆, may enable judgment – thereby, expanding the range of tasks where judgment is applied – if it 

is costly on what sort of tasks will prediction be applied first. That is, how does the incremental 

value of prediction (𝑉SU − 𝑉U3, 𝑉SU − 𝑉U2 or 𝑉SU − 𝑉C) change with 𝜆? 

To examine this, note the following: 

𝜕(𝑉SU − 𝑉U3)
𝜕𝜆

= 𝑣(𝑅 − 2𝜆 𝑣𝑅 + 1 − 𝑣 𝑆 ) 

𝜕(𝑉SU − 𝑉U2)
𝜕𝜆

= 𝑣(1 − 𝜇)(1 − 𝑣)(𝑅 − 𝑟) 

𝜕(𝑉SU − 𝑉C)
𝜕𝜆

= 𝑣𝑅 + 1 − 𝑣 𝑆 

Note that: 

𝜕(𝑉SU − 𝑉C)
𝜕𝜆

>
𝜕(𝑉SU − 𝑉U2)

𝜕𝜆
>
𝜕(𝑉SU − 𝑉U3)

𝜕𝜆
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where the final inequality can be shown be noting that: 

𝜕(𝑉SU − 𝑉U3)
𝜕𝜆 𝜆 = 𝜆U3

= 𝑅 − 2𝜆U3 𝑣𝑅 + 1 − 𝑣 𝑆 < 1 − 𝜇 1 − 𝑣 𝑅 − 𝑟 =
𝜕(𝑉SU − 𝑉U2)

𝜕𝜆
⟹ −𝑅 𝜇 + 𝑣 − 𝑣𝜇 < (1 − 𝜇)(1 − 𝑣)𝑟 

In other words, as we reduce l, the returns to prediction rise. The issue is whether the incremental 

returns to prediction (over judgment alone) are increasing in 𝜆8. We know that they increase up 

until 𝜆U3 but at a diminishing rate. In the regime where J2 is optimal, they increase up until the 

point where:  

𝑣 𝑅 − 2𝜆∗ 𝑣𝑅 + 1 − 𝑣 𝑆 = 0 ⟹ 𝜆 < 𝜆∗ =
𝑅

2 𝑣𝑅 + 1 − 𝑣 𝑆  

Thus, if 𝑅 ≥ 2 𝑣𝑅 + 1 − 𝑣 𝑆 , then the highest incremental value for prediction is where 𝑖 = 0 

(that is, the least costly tasks in terms of applying judgment). On the other hand, if  

𝜆U3 < 𝜆∗ ⟹
𝑅

2 𝑣𝑅 + 1 − 𝑣 𝑆

> max	{
max 𝜇𝑅 + 1 − 𝜇 𝑣𝑅 + 1 − 𝑣 𝑟 , 𝑆

𝑣𝑅 + 1 − 𝑣 𝑆 ,
𝑆 4𝑣3𝑅 + 𝑆 1 + 2𝑣 − 3𝑣3 − 1 − 𝑣 𝑆

2𝑣 𝑣𝑅 + 1 − 𝑣 𝑆 } 

then the highest incremental value for prediction is where 𝜆 = 𝜆∗. Otherwise, the highest 

incremental value for prediction is where 𝜆8 = 𝜆U3.  

Thus, generally the highest value for prediction resides where judgment takes on an 

intermediate value. If judgment is non-existent, it is that way because it is difficult and, while 

prediction can enhance value, it is constrained by that difficulty. By contrast where judgment is 

relatively easy, prediction plays a diminished role in increasing the effectiveness of judgment. That 

said, there are conditions under which the highest value for prediction resides at an extreme of 

difficult or easy judgment. These conditions are summarized in the following proposition.  

Proposition 3. The highest incremental value of prediction is where 𝜆 = 1 if (NZ − 𝑣)𝑅 > 1 − 𝑣 𝑆 
and it is where no judgment would otherwise be applied only if J1 is never optimal and 𝑣𝑅 +

1 − 𝑣 𝑆 < 𝑆 4𝑣3𝑅 + 𝑆 1 + 2𝑣 − 3𝑣3 . 
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What this suggests is that the mapping from quality of judgment to the value of prediction is not 

straightforward. It depends on the relative values of 𝑣, 𝑆, 𝑅, and 𝜇 in complicated and nonlinear 

ways.  

5 Prediction Reliability and Judgment 

Up until this point we have treated prediction as something that just becomes available. In 

reality, prediction is something that is available but improves over time. In this regard, designers 

of AI have an important decision. Do they emphasize the extensive margin (returning a prediction) 

versus the intensive margin (the reliability of predictions)? In particular, we assume that with 

probability e, an AI yields a prediction while otherwise, the decision must be made in its absence. 

We also assume that if an AI predicts a state 𝜃8, there is a probability (a), independent of the 

probability a state arises, that it is reliable. Otherwise, with probability 1 – a, the state predicted is 

not the state that will actually arise. 

We suppose it is the case that if you want a prediction to be reported more often (a higher 

e), then that only comes about with a sacrifice in reliability (a). That is, you can design the machine 

prediction technology to be more optimistic (that is, reporting a prediction that the state is positive 

more often) but at the expense of that prediction being true less often. By contrast, a cautious 

prediction would be one that it was reported more sparingly but that was more likely to be true 

when reported. An alternative interpretation of this trade-off is to consider e as not simply a 

prediction but the ability of a human to parse the prediction (that is, to understand it). In this 

interpretation, the more a prediction can be explained, the less reliable it becomes. Regardless of 

interpretation, what interests us here are situations where there is a technical constraint that relates 

the reliability of prediction to its availability. 

To consider this, assume that the technical relationship between e and a is described by e(a); 

a decreasing, quasi-concave function. What we are interested in is how the effectiveness of human 

judgment changes the type of prediction technology chosen. 

Proposition 4. As l increases, the optimal value of e decreases while the optimal value of a 
increases.  

PROOF: The fact that the AI can be an imperfect predictor impacts upon 𝑉SU which now 
becomes: 
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𝑉SU = 𝑒max 𝜆 𝑣(𝑎𝑅 + 1 − 𝑎 𝑣𝑅 + 1 − 𝑣 𝑟 ) + 1 − 𝑣 𝑆 , 𝑆
+ 1 − 𝑒 max	{𝜆(𝑣𝜆 𝑣𝑅 + 1 − 𝑣 𝑆
+ 1 − 𝑣 𝑆), 𝜆 𝑣max 1 − 𝜇 𝑅 + 𝜇 𝑣𝑅 + 1 − 𝑣 𝑟 , 𝑆 + 1 − 𝑣 𝑆 } 

For l low, it is not optimal to use judgment as all. But as l rises, it is optimal to use it in 
conjunction with prediction. When 𝜆 < 𝜆U3, J1 is the optimal (no prediction) strategy but it 
can readily be seen that in this case,  
𝜕𝑉SU/𝜕𝑒
𝜕𝑉SU/𝜕𝑎

=
𝑣(𝑎𝑅 + 1 − 𝑎 𝑣𝑅 + 1 − 𝑣 𝑟 ) − 𝜆 𝑣max 1 − 𝜇 𝑅 + 𝜇 𝑣𝑅 + 1 − 𝑣 𝑟 , 𝑆 }

𝑒 𝑣(𝑅 − 𝑣𝑅 + 1 − 𝑣 𝑟 )  

is independent of 𝜆. However, for 𝜆 ≥ 𝜆U3, J2 is optimal so that: 

𝜕𝑉SU/𝜕𝑒
𝜕𝑉SU/𝜕𝑎

=
𝑣(𝑎𝑅 + 1 − 𝑎 𝑣𝑅 + 1 − 𝑣 𝑟 ) − (𝑣𝜆 𝑣𝑅 + 1 − 𝑣 𝑆 )}

𝑒 𝑣(𝑅 − 𝑣𝑅 + 1 − 𝑣 𝑟 )  

which is decreasing in 𝜆. This proves to comparative static in the proposition. 

Intuitively, an improvement in judgment (l) impacts on the expected payoff from prediction and 

judgment and judgment alone in the same manner. However, it has a larger impact on J2 as 

judgment is applied potentially to both states prior to a decision being made. This strategy is only 

likely to be used if no prediction is realized. Thus, the greater is judgment, the lower is the return 

to having a prediction per se and thus, it falls relative to the return to more reliable prediction. 

Hence, improved judgment (or easier decisions) will be associated with an AI design that favours 

reliability over supplying a prediction. As judgment improves, the decision maker needs better 

predictions but less often. 

It is useful to note that the returns to improving a by an AI provider are subject to increasing 

returns. Below some threshold, the decision-maker chooses not to apply judgment and takes the 

safe action: 

𝑎 ≤
2
n
𝑆 − 𝑣𝑅

𝑣(1 − 𝑣)(𝑅 − 𝑟) −
𝑆 + 𝑟

𝑣(𝑅 − 𝑟) 

Above this threshold, the expected discounted payoff to the decision-maker increases linearly in 

a. This arises because of the complementarity between prediction and judgment. We observe this 

here because it is something that may impact on the strategic value of AI. 
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6 Experience and Judgment 

The analysis to date takes a static approach to the interdependencies between prediction and 

judgment. This is because both are required every time a new decision is made. However, while 

predictions must be provided every period in order to identify the state, judgment is a learning 

process and it can easily be imagined that once an aspect of the payoff function is known, that 

knowledge can be applied in future periods. In other words, judgment allows us to give a formal 

language to the degree of experience a decision-maker has acquired. 

Thusfar, we have not distinguished between judgment as acquired in the absence of 

prediction versus judgment acquired after knowing which state has arisen. This is perhaps a natural 

starting point when judgment is really the application of thought but when it is gained with 

experience, it is easy to imagine situations in which judgment applied when the agent has 

knowledge of the state is different from judgment acquired through a hypothetical thought process 

(i.e., thinking what you should do if a state could arise). Here we sidestep this issue by assuming 

that judgment can only be applied when a state arises. Interestingly, this means that experience is 

tied to having encountered particular states – a somewhat natural interpretation of the word. 

In order to gain experience that translates into knowledge of the payoff function, we assume 

here that the agent must actually experience the state they are applying judgment to and know that 

they are doing so. This means that without prediction, judgment cannot be applied. Now that the 

dynamics of the model matter, we return to focusing on 𝜆 as the parameter for quality of judgment. 

A key difference between the static game and the new dynamic game here is that the decision 

state and period of time are now one in the same. The new timing of the game is as follows: 

0. The AI tells the decision-maker the state that applies that period. 

1. The decision-maker chooses whether to apply judgment and to what state or whether 

to simply choose an action. If an action is chosen, uncertainty is resolved and payoffs 

are realized and we move to the next time period. 

2. If judgment is chosen, with probability, 1 − 𝜆8, they do not find out the payoffs for 

the risky action in that state, the decision-maker then takes an action, uncertainty is 

resolved and payoffs are realized and we move to the next time period. With 

probability 𝜆8, the decision-maker gains this knowledge. The decision-maker then 
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takes an action, uncertainty is resolved and payoffs are realized and we move to the 

next time period and the decision-maker retains the knowledge of the payoffs. 

Let 𝜋8 denote the expected present discounted value if the agent already knows what the optimal 

action is in 𝜃8. Then: 

𝜋2 = 𝜇 𝑣𝑅 + 1 − 𝑣 𝑆 + 𝛿𝜋2 + 1 − 𝜇 1 − 𝜆 𝑆 + 𝛿𝜋2 + 𝜆 cde 2Fc b
2Fp

⟹ 𝜋2

=
(𝜇 + 2Fq n

2Fp ) 𝑣𝑅 + 1 − 𝑣 𝑆 + 1 − 𝜇 1 − 𝜆 𝑆
1 − (1 − (1 − 𝜇)𝜆)𝛿  

𝜋3 = (1 − 𝜇) 𝑣𝑅 + 1 − 𝑣 𝑆 + 𝛿𝜋3 + 𝜇 1 − 𝜆 𝑆 + 𝛿𝜋3 + 𝜆 cde 2Fc b
2Fp

⟹ 𝜋3

=
(1 − 𝜇 + qn

2Fp) 𝑣𝑅 + 1 − 𝑣 𝑆 + 𝜇 1 − 𝜆 𝑆
1 − (1 − 𝜇𝜆)𝛿  

Thus, the expected present discount payoff prior to any experience is: 

𝑉SU = 𝜇(𝜆 𝑣𝑅 + 1 − 𝑣 𝑆 + 𝛿𝜋2 + 1 − 𝜇 𝜆 𝑣𝑅 + 1 − 𝑣 𝑆 + 𝛿𝜋3 ) + 1 − 𝜆 (𝑆 + 𝛿𝑉SU)  

⟹ 𝑉SU =
1

1 − 1 − 𝜆 𝛿 𝜆 𝑣𝑅 + 1 − 𝑣 𝑆 + 1 − 𝜆 𝑆

+ 𝛿𝜇
𝜇 + 2Fq n

2Fp 𝑣𝑅 + 1 − 𝑣 𝑆 + 1 − 𝜇 1 − 𝜆 𝑆
1 − 1 − 1 − 𝜇 𝜆 𝛿 + 𝛿(1

− 𝜇)
1 − 𝜇 + qn

2Fp 𝑣𝑅 + 1 − 𝑣 𝑆 + 𝜇 1 − 𝜆 𝑆
1 − 1 − 𝜇𝜆 𝛿  

Thus, there is a learning period of uncertain length followed by a period whereby the agent can 

apply full experience to decisions into the future earning 𝑣𝑅 + 1 − 𝑣 𝑆 on average. 

Pricing AI as a service 

Without any judgment or experience, the net present discounted value earned by the agent 

would be N
NOP𝑆. Without initial access to an AI, the agent cannot apply judgment and gain 

experience to improve upon this. This suggests that a monopolist provider of AI could charge a 

fixed sum of 𝑉SU − N
NOP𝑆. Moreover, as 𝑉SU is increasing in l, that provider would want to target 

agents with judgment ability (or ease) as high as possible first before moving on to harder 

decisions. 
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It is easy to imagine that selling an AI which has an ongoing service in terms of providing 

prediction each period when the environment may be changing, cannot be credibly conducted 

through an upfront payment. What if, instead, an agent could subscribe to AI as a service paying 

a price, p, each period? If the AI provider does not have knowledge of the experience level – and 

indeed, the experience – of each agent, this is a non-trivial pricing problem. 

To see this, let us consider the purchase decisions of fully experienced agents who know 

their payoff function. For some of these agents, they would have found that neither the safe nor 

risky action is dominated and their per period expected payoff is 𝜇𝑅 + 1 − 𝜇 𝑆 or 1 − 𝜇 𝑅 +

𝜇𝑆 as the case may be. They can realize these payoffs with prediction but in the absence of 

prediction, they earn S per period (by A1). Thus, their willingness to pay for prediction is 𝜇(𝑅 −

𝑆) or 1 − 𝜇 (𝑅 − 𝑆). For other agents, their experience has shown them that one of the actions is 

dominated. Those agents either earn R or S per period but do not need prediction to do so. What 

this means is that the long-term market for prediction is at most a share 2𝑣(1 − 𝑣) of the original 

market; that is, prediction is only valuable to those who have found neither action to be dominated. 

To keep things simple, in this section we assume that 𝑣 = 𝜇 = N
Z. In this case, a fully 

experienced agent will continue to purchase AI if NZ(𝑅 − 𝑆) ≥ 𝑝. What about an agent who has 

learned the payoff for one state but not the other? If they have learned that the risky action is 

optimal in that state, their expected discounted payoff is 𝜋d where: 

𝜋d =
2
3
𝑅 + 𝛿𝜋d + 2

3
1 − 𝜆 𝑆 + 𝛿𝜋d + 𝜆 sdebF3t)

u(2Fp)
− 𝑝 ⟹ 𝜋d

=
𝑅 + n

u(2Fp) 3𝑅 + 𝑆 − 2𝑝 + 1 − 𝜆 𝑆 − 2𝑝

2(1 − 1 − 2
3𝜆 𝛿)

 

If this agent did not have access to an AI after this point, their expected discounted payoff would 

be: N
NOPmax	{

2
u
3𝑅 + 𝑟 , 𝑆}. On the other hand, if they learned the safe action was optimal, their 

expected discounted payoff is 𝜋b where: 

𝜋b =
2
3
𝑆 + 𝛿𝜋b + 2

3
1 − 𝜆 𝑆 + 𝛿𝜋b + 𝜆 desbF3t

u(2Fp)
− 𝑝 ⟹ 𝜋b

=
𝑆 + n

u(2Fp) 𝑅 + 3𝑆 − 2𝑝 + 1 − 𝜆 𝑆 − 2𝑝

2(1 − 1 − 2
3𝜆 𝛿)
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If this agent did not have access to an AI after this point, their expected discounted payoff would 

be: N
NOP𝑆. These two options differ both in terms of the payoffs they generate while learning as well 

as what the potential upside is from moving to full experience. If the agent has learned that the 

risky action is optimal, this upside is vw𝑅 +
N
Z𝑆 − 𝑝 while otherwise it is NZ𝑅 +

v
w𝑆 − 𝑝. Thus, 𝜋d >

𝜋b.  

This leads to a pricing dilemma on the part of an AI provider. They have two pricing options: 

they can set p so that min	{𝜋d − N
NOPmax

2
u
3𝑅 + 𝑟 , 𝑆 , 𝜋b − N

NOP𝑆} ≥ 0 selling to the entire 

market or price above this level so that either 𝜋d ≥ N
NOPmax

2
u
3𝑅 + 𝑟 , 𝑆  or 𝜋b ≥ N

NOP𝑆 and sell 

to half of the market. The following proposition demonstrates, however, that for a far sighted AI 

provider, servicing the entire market is the more profitable approach; however, the AI provider 

does not extract the full value of the prediction despite having perfect knowledge of the state. 

Proposition 5. For d sufficiently high, the AI provider will set a price equal to: 

𝑝 = 𝑚𝑖𝑛	{𝜋d −
2

2Fp
𝑚𝑎𝑥

1
4 3𝑅 + 𝑟 , 𝑆 , 𝜋b −

2
2Fp

𝑆} 

and cover the entire market. 

 
PROOF: Let’s first assume that they price to include at this stage. Then, working backwards 
and taking into account p: 

𝑉SU = 𝜆2
3
𝑅 + 𝛿𝜋d + 𝑆 + 𝛿𝜋b + 1 − 𝜆 𝑆 + 𝛿𝑉SU − 𝑝 ⟹ 𝑉SU

=
𝜆23 𝑅 + 𝛿𝜋d + 𝑆 + 𝛿𝜋b + 1 − 𝜆 𝑆 − 𝑝

1 − (1 − 𝜆)𝛿  

The issue is whether an AI provider can charge a price that extracts the maximal rents at this 
stage. If this could be done, p will be: 

𝑝 = 𝜆 2
3
𝑅 + 𝛿𝜋d + 𝑆 + 𝛿𝜋b + 2

2Fp
𝑆  

Substituting and solving for p we have: 

𝑝 = 𝜆
(2 − 𝛿)(1 − 1 − 𝜆 𝛿)

4 − 𝛿 8 − 𝜆 6 + 𝜆 − 𝛿 4 − 6𝜆
(𝑅 − 𝑆) 

However, it easy to check that at this price 𝜋b < N
NOP𝑆, so this would not result in full 

inclusion. Thus, the maximum price would be that min{𝜋d − N
NOPmax

2
u
3𝑅 + 𝑟 , 𝑆 , 𝜋b −

N
NOP𝑆} ≥ 0. (a) If 𝜋d − N

NOPmax
2
u
3𝑅 + 𝑟 , 𝑆 ≥ 𝜋b − N

NOP𝑆, this price is found by setting 
𝜋b = N

NOP𝑆 which yields: 
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𝑝 =
𝜆

2𝜆 + 8(1 − 𝛿) (𝑅 − 𝑆) 

This price is less than NZ(𝑅 − 𝑆); otherwise there will be no demand beyond this stage. (b) If 
𝜋d − N

NOPmax
2
u
3𝑅 + 𝑟 , 𝑆 < 𝜋b − N

NOP𝑆, the price is found by setting 𝜋d = N
w(NOP) 3𝑅 + 𝑟  

which yields: 

𝑝 =
1

2𝜆 + 8 1 − 𝛿 (𝜆(3 1 − 𝛿 (𝑅 − 𝑆) + (𝑆 − 𝑟)𝛿) − 2 𝑟 + 𝑅 − 2𝑆 1 − 𝛿 ) 

By assumption this price must also be less than NZ(𝑅 − 𝑆) as it is lower than the price in the 
previous case.  

By contrast, the exclusion strategy would price so that 𝜋d = N
NOPmax

2
u
3𝑅 + 𝑟 , 𝑆 . (a) 

Consider first the price where 𝜋d = N
NOP𝑆 and note that: 

𝑝 = n
2Fp

2
3
𝑅 + 𝛿𝜋d + 𝑆 + 𝛿

2
2Fp

𝑆	 + 2
2Fp

𝑆

> 2
2F(2Fn)p

𝜆 2
3
𝑅 + 𝑆	 + 2ep

2Fp
𝑆 + 2

3(2Fp)
𝜆 2

3
𝑅 + 𝑆	 + 2ep

2Fp
𝑆

⟹ (1 − 1 − 𝜆 𝛿 − N
Z(s 2Fp enp))(𝑅 + 𝑆) + (1 − 1 − 𝜆 𝛿)𝛿𝜋d

> ((s 2Fp enp)(2ep)F(2F 2Fn p)(3Fp))𝑆 
which always holds for d sufficiently high.  

 

Intuitively, when some initial judgment is complete, there is either good news (in that the risky 

strategy is optimal) or bad news (in which it is not). An inclusion strategy requires price to be low 

enough that following bad news, learning still occurs. However, while the upside potential for the 

user following good news is higher than that following bad news, the value of prediction after full 

experience is gained is the same. Thus, the AI provider has no mechanism by which they can share 

in the upside. In the absence of that mechanism, they choose to price low and not exclude any 

users at this stage. Half of the users eventually opt out when they find that either the safe or risky 

action is dominant. What this means is that an AI provider who cannot implement upfront pricing 

is restricted in the value they can appropriate. While learning can yield good or bad news to the 

decision-maker, good news may cause prediction to lose its value as the decision-maker discovers 

the risky action is dominant. Thus, the AI provider must sacrifice rents in order to ensure that they 

can capture some rents as the decision-maker gains experience. 

Can versioning – selling an AI product which has lower performance – improve this outcome 

for the AI provider? The intuition would be that until they are fully experienced, users will 

purchase the lower performing product allowing the AI provider to charge more in the long-term. 
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The downside is a lower performing product may slow the gathering of experience and push that 

long-term out further. This is something we might be able to work out but leave for future work at 

the moment. 

Experience through experimentation 

Using an experience frame to judgment suggests an alternative way of ‘learning’ the reward 

function: experimentation. In particular, when coupled with prediction, a decision-maker could, 

by choosing the risky action, evaluate whether that is the right action for that state. The expected 

cost would be 𝑆 − 𝑣𝑅 − 1 − 𝑣 𝑟. In this conception, we have the following: 

𝜋2 = 𝜇 𝑣𝑅 + 1 − 𝑣 𝑆 + 𝛿𝜋2 + 1 − 𝜇 𝑣𝑅 + 1 − 𝑣 𝑟 + 𝛿 cde 2Fc b
2Fp

⟹ 𝜋2

=
𝜇 + 2Fq p

2Fp 𝑣𝑅 + 1 − 𝑣 𝑆 + 1 − 𝜇 𝑣𝑅 + 1 − 𝑣 𝑟
1 − 𝜇𝛿  

𝜋3 = (1 − 𝜇) 𝑣𝑅 + 1 − 𝑣 𝑆 + 𝛿𝜋3 + 𝜇 𝑣𝑅 + 1 − 𝑣 𝑟 + 𝛿 cde 2Fc b
2Fp

⟹ 𝜋3

=
(1 − 𝜇 + qp

2Fp) 𝑣𝑅 + 1 − 𝑣 𝑆 + 𝜇 𝑣𝑅 + 1 − 𝑣 𝑟
1 − (1 − 𝜇)𝛿  

Thus, the expected present discount payoff prior to any experience is: 

𝑉SU = 𝜇(𝑣𝑅 + 1 − 𝑣 𝑟 + 𝛿𝜋2) + 1 − 𝜇 𝑣𝑅 + 1 − 𝑣 𝑟 + 𝛿𝜋3)  

⟹ 𝑉SU = 𝑣𝑅 + 1 − 𝑣 𝑟 + 𝛿(𝜇𝜋2 + 1 − 𝜇 𝜋3) 

The convenient property of this frame is that it relates the cost of judgment explicitly to the 

expected cost of experimentation. In particular, as r decreases, experimentation becomes more 

costly. This may be a way of an AI to learn the reward function independent of a human. It could 

engage in experimentation and then learn what to do should a particular state arise. Other than that, 

at this stage, we have no further insights from this approach. 

7 Complexity and Automation (STILL INCOMPLETE) 

The literature on automation is sometimes synonymous with AI. However, there are key 

differences. In our conception, AI is all about prediction. Such prediction can enable the full 

automation of tasks but it is not a given that it will. In order for a task to be fully automated, 
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judgment needs to be codified. That is, you need to engineer the reward function into capital that 

can operate without an labour input. This marks our key departure from the literature on 

automation. In general, automation is seen as a capital investment that is either available or is not. 

In Acemoglu and Restrepo (2017), it can also emerge as the result of innovation that is produced 

by specialist scientists. But here judgment can only be codified if a human worker has mapped the 

objective function. This comes through experience and critically, the efficiency by which that 

experience is generated is impacted on by AIs through prediction.  

We now consider a situation in which there are N > 2 states in order to explore the impact of 

complexity on prediction and judgment. This has the advantage of allowing us to consider 

complexity explicitly – this is useful as it is often assumed that more ‘complex’ tasks can only be 

done by humans and cannot be automated (for example, in Acemoglu and Restrepo, 2017). The 

question we ask is whether more complex tasks will be undertaken by humans and, if so, why? 

In order N-state model, the probability of state i is 𝜇8. To keep things simple, we assume that 

𝑣8 = 𝑣. In this situation, the expected present discounted value when both prediction and judgment 

are available is: 

𝑉SU = 𝜆 𝜇8(𝑣𝑅 + 1 − 𝑣 𝑆)
~

8L2

 

Similarly, it is easy to see that 𝑉S = 𝑆 = 𝑉C as 𝑣𝑅 + 1 − 𝑣 𝑟 ≤ 𝑆. 

For the experience model, for one task, with 𝜇8 = 1/𝑁, then  

𝑉SU =
(𝑁 − 𝑁 − 1 𝛿)𝜆(𝑣𝑅 + 1 − 𝑣 𝑆) + 𝑁(1 − 𝛿) 1 − 𝜆 𝑆

(1 − 𝛿)(𝑁 − 𝑁 − 𝜆 𝛿)  

TBC 

8 Case: Radiology  

In 2016, Geoff Hinton – one of the pioneers of deep learning neutral networks – stated that 

it was no longer worth training radiologists. His strong implication was that radiologists would not 

have a future. This is something that radiologists have been concerned about since 1960 (Lusted, 

1960). Today, machine learning techniques are being heavily applied in radiology by IBM using 

its Watson computer and by a start-up, Enlitic. Enlitic has been able to use deep learning to detect 
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lung nodules (a fairly routine exercise6) but also fractures (which is more complex). Watson can 

now identify pulmonary embolism and some other heart issues. These advances are at the heart of 

Hinton’s forecast but have also been widely discussed amongst radiologists and pathologists (Jha 

and Topol, 2016). What does the model in this paper suggest about the future of radiologists? 

If we consider a simplified characterization of the job of a radiologist it would be that they 

examine an image in order to characterize and classify that image and return an assessment to a 

physician. While often that assessment is a diagnosis (i.e., “the patient has pneumonia”), in many 

cases, the assessment is in the negative (i.e., “pneumonia not excluded”). In that regard, this is 

stated as a predictive task to inform the physician of the likelihood of the state of the world. Using 

that, the physician can devise a treatment. 

These predictions are what machines are aiming to provide. In particular, it might provide a 

differential diagnosis of the following kind: 

Based on Mr Patel's demographics and imaging, the mass in the liver has a 66.6% 

chance of being benign, 33.3% chance of being malignant, and a 0.1% of not being 

real. 7 

The action is whether some intervention is needed. For instance, if a potential tumor is 

identified in a non-invasive scan, then this will inform whether an invasive examination will be 

conducted. In terms of identifying the state of the world, the invasive exam is costly but safe – it 

can deduce a cancer with certainty and remove it if necessary. The role of a non-invasive exam is 

to inform whether an invasive exam should be forgone. That is, it is to make physicians more 

confident about abstaining from treatment and further analysis. In this regard, if the machine 

improves prediction, it will lead to fewer invasive examinations. 

Judgment involves understanding the payoffs. What is the payoff to conducting a biopsy if 

the mass is benign, malignant, or not real? What is the payoff to not doing anything in those three 

states? The issue for radiologists in particular is whether a trained specialist radiologist is in the 

best position to make this judgment or will it occur further along the chain of decision-making or 

																																																								
6 "You did not go to medical school to measure lung nodules." http://www.medscape.com/viewarticle/863127#vp_2  
7 http://www.medscape.com/viewarticle/863127#vp_3  
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involve new job classes that merge diagnostic information such as a combined 

radiologist/pathologist (Jha and Topol, 2016). 

9 Conclusions 

In this paper, we explore the consequences of recent improvements in machine learning 

technology that have advanced the broader field of artificial intelligence. In particular, we argue 

that these advances in the ability of machines to conduct mental tasks are driven by improvements 

in machine prediction. In order to understand how improvements in machine prediction will impact 

decision-making, it is important to analyze how the payoffs of the model arise. We label the 

process of learning payoffs ‘judgment.’  

By modeling judgment explicitly, we derive a number of useful insights into the value of 

prediction. We show that prediction and judgment are generally complements, unless there isn’t 

that much useful to learn about payoffs. Thus, predictions are more valuable when the payoffs are 

understood, and understanding payoffs is more valuable when the state is known. At the same 

time, as the quality of judgment varies, the incremental value of predictions to the decision maker 

is non-linear. We also show that improvements in judgment change the type of prediction quality 

that is most useful: Better judgment means that more accurate predictions are valuable relative to 

more frequent predictions. Finally, we explore a dynamic model in which judgment is accumulated 

with experience. 

Overall, this paper emphasized that AI is a prediction technology, and predictions cannot be 

valued in the absence of knowing how payoffs arise. Of course, there may be many other 

consequences of improved prediction, and we leave those for future work. 
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