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Abstract

Vaccination represents a canonical example of externalities in economics, yet there are
few estimates of their magnitudes. I provide evidence on the social and externality
benefits of influenza vaccination in two settings. First, using pre-existing differences
in state-level vaccination rates interacted with exogenous variation in vaccine quality,
I provide causal estimates of the impacts of aggregate vaccination rates on mortality
and work absences in the United States. Scaled nationally, I find that a one percentage
point increase in the vaccination rate results in 985 fewer deaths and 7.5 million fewer
work hours lost due to illness each year. The mortality effects are concentrated among
individuals 75 and older, but 35-85% of the benefits are driven by the vaccination
of people under 75, suggesting a considerable externality effect. Second, I examine
a setting in which vaccination is targeted at a group with high externality benefits:
influenza vaccination mandates for health care workers. I estimate that these mandates
lead to a 17% decrease in hospital admissions with an influenza diagnosis. For both the
general population and the population of health care workers, I calculate the monetary
benefit per vaccination and find that these benefits are large in comparison to the costs
of vaccine administration.
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1 Introduction

According to the Centers for Disease Control and Prevention (CDC), between 5% and 20% of

the U.S. population are infected with influenza each year; these infections result in an average

of approximately 200,000 hospitalizations and over 20,000 deaths.1 Influenza is considered to

be a vaccine-preventable disease, yet vaccination rates for influenza are substantially lower

than vaccination rates for other vaccine-preventable diseases. This is largely due to the fact

that the vaccine has to be received annually (and thus the cost of vaccination is relatively

high) and due to the lack of public policy incentivizing vaccination.

Vaccination serves as a canonical example of positive externalities in economics. Those

who receive the vaccine incur some cost (monetary or otherwise) and experience a private

benefit through the reduced risk of becoming ill; the externality benefit comes through the

reduced risk of spreading the disease to others and the social benefit is the sum of the two.

Because the benefits of vaccination are not fully internalized by the recipient, vaccines will

be under-utilized relative to the social optimum in the absence of policy. This feature of

vaccination has long been recognized by economists, and many theorists have considered

how the socially optimal level of vaccination can be reached.2 Achieving a social optimum

requires information on both the marginal cost and the marginal social benefit of vaccination.

While the private benefits of vaccination can be measured to some extent through the use of

randomized controlled trials (RCTs), estimating the full extent of the social benefits requires

an analysis at the population level.

This paper measures the marginal social benefit of influenza vaccination in two settings.

First, I estimate the effects of state-level vaccination rates on influenza-related mortality

and work absences in the United States. This portion of the analysis addresses the social

benefits of vaccination in the general population. Second, I consider the efficiency gains to be

had through targeted vaccination by examining a situation in which the externality benefits

of vaccination are likely to be especially important. I analyze the impacts of influenza

vaccination mandates that apply to health care workers (HCWs) in California.

I measure the causal impacts of state-level vaccination rates by interacting pre-existing

state-level differences in vaccination rates with year-to-year variation in the effectiveness of

the vaccine. Vaccine effectiveness is measured as the extent to which the strains included in

the season’s vaccine match the strains that end up circulating. Mis-matches occur because of

unpredictable genetic changes in the virus, and the prominence of these mis-matched viruses

is not known until after vaccines have been distributed. Mis-matches provide an exogenous

1Source: http://www.cdc.gov/flu/about/qa/disease.htm.
2For example: Stiglitz (1988); Brito et al. (1991); Francis (1997); Geoffard and Philipson (1997); Francis

(2004); Boulier et al. (2007); Althouse et al. (2010); Manski (2010, 2016).
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source of variation in effective vaccination while allowing for actual vaccination rates to be

held constant.

I find that increases in influenza vaccination rates lead to significant reductions in influenza-

related mortality. Scaled nationally, I find that a one percentage point increase in the U.S.

vaccination rate would result in approximately 985 fewer deaths per year. The mortality

benefits primarily accrue to individuals 75 and older, though 35-85% of this benefit is driven

by the vaccination of people under 75, suggesting that externalities play an important role. I

also find that influenza vaccination is associated with reductions in the probability of illness-

related work absences. The estimates indicate that a one percentage point increase in the

U.S. vaccination rate would result in approximately 7.5 million fewer work hours lost due

to illness annually. I find no impacts on either outcome during periods in which there is no

influenza circulating and no impacts on outcomes that are implausibly related to influenza

during any period.

I translate these impacts into monetary estimates of the marginal social benefits of vacci-

nation. Using an age-adjusted value of statistical life (VSL), I estimate that each vaccination

confers between $67 and $254 in benefits, depending on the VSL figure considered, due to re-

duced mortality among individuals 75 and older. This benefit grows considerably if younger

individuals are considered as well, though the estimates are only statistically different from

zero at conventional levels for the elderly. On the dimension of illness absences, I find that

each vaccination confers benefits of approximately $49.

Because the first component of the analysis exploits natural variation in vaccination rates,

the estimates can be interpreted as the impacts of increasing vaccination among individuals

who are on the margin of the decision to vaccinate. The social benefits of vaccination

are likely to be heterogeneous depending on who is vaccinated, and it is not necessarily

those who are on the margin whose potential externality benefit is largest. In the second

component of the analysis, I consider vaccination policy targeted at individuals with a high

potential externality benefit by exploiting the roll-out of county-level influenza vaccination

mandates that apply to health care workers in California. This setting also provides a

distinct advantage in measuring externality impacts as there exists clear link between those

who receive the treatment (health care workers) and those who benefit from the externality

(their patients). Most of these mandates apply to all licensed health care facilities in a county,

and thus there is potential for these mandates to reduce the spread of influenza both within

the hospital (the unit of analysis) and in other health care settings (e.g., primary care offices).

The main finding is a reduction in admissions with an influenza diagnosis by approximately

17%. This effect is largest for children (especially infants), and is driven by both infections

that were acquired prior to admission and during the hospital stay. Using only the reduction
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in new admissions (i.e., infections acquired outside of the hospital), I estimate the marginal

benefit of vaccination in terms of health care costs to be approximately $172 per vaccination.

For both vaccination of the general population and of health care workers, the estimated

marginal benefits of vaccination are large in comparison to the cost of vaccine administration,

suggesting that programs seeking to increase vaccination in either population are likely to

be cost-effective.

The primary contribution of this paper is to provide causal estimates of the effects of

increasing population-level vaccination rates. While a large medical literature evaluates the

benefits of influenza vaccination, much of existing evidence on these benefits is derived from

RCTs in which vaccination is randomized within a given group and outcomes are compared

across individuals assigned to the treatment or control group.3 Such a design cannot capture

externality effects, and estimates of the direct effects may be attenuated if members of the

control group benefit from the vaccination of others. There are a limited number of studies

in the RCT literature that directly evaluate externality effects by randomizing across groups

rather than individuals (i.e., cluster RCTs). For example, Loeb et al. (2010) employ such a

design, randomizing across isolated communities in Canada. In their study, influenza vac-

cinations were provided to children in the treatment communities and placebo vaccinations

were provided to children in control communities. The authors find that vaccinating chil-

dren led to reductions in laboratory-confirmed influenza for both children and adults in the

treated communities, providing evidence of an externality benefit.

While it is possible to identify the presence of externalities in the context of an RCT,

it is exceedingly difficult to identify the benefits of vaccination on severe outcomes such as

mortality. The relative infrequency of the outcome would necessitate an extremely large-

scale study; furthermore, ethical concerns over providing placebo vaccinations to high risk

groups essentially relegates the study of any benefits (i.e., not only mortality) of influenza

vaccination in the elderly population to an observational setting. The potential for bias in

existing observational studies is large: a review of the evidence on vaccination in the elderly

population noted implausibly large effects of vaccination on all-cause mortality, explaining

that these results were likely due to, “systematic differences between the intervention and

control arms” (Jefferson et al., 2010).

To my knowledge, there are few examples of papers that effectively circumvent this

endogeneity issue. Ward (2014) uses exogenous variation in vaccine effectiveness to evaluate

the impacts of a regional influenza vaccination campaign in Ontario, Canada. The author

3Reviews of this evidence are available from several sources, including the annual Recommendations of the
Advisory Committee on Immunization Practices provided by the CDC (Grohskopf et al., 2014), a number of
Cochrane reviews (Jefferson et al., 2010, 2012; Demicheli et al., 2014), and others (Osterholm et al., 2012).
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finds that the program increased vaccination rates for non-elderly adults by approximately

10.8 percentage points (the post-treatment vaccination rates was approximately 33.3%) and

resulted in a near elimination of influenza infection, a 92% reduction. The results suggest

that Ontario reached a threshold level of vaccination beyond which the marginal benefits of

vaccination fall to near zero. Models of influenza dynamics suggest the existence of such a

threshold (Boulier et al., 2007). That being said, the fact that an annual epidemic is still

experienced each year in the U.S. despite vaccination rates well above those during the study

period in Ontario suggests that such a threshold has not been reached in the U.S. and that

the results of the program in Ontario may have been specific to the location or period of

analysis.

Similar to Ward (2014), my identification strategy relies on exogenous year-to-year varia-

tion in vaccine effectiveness. My strategy, however, has the advantage of exploiting variation

in vaccination rates and outcomes across 50 states and 21 influenza seasons. As such, the

average impacts that I estimate are not strongly influenced by the experience in any one lo-

cation or period. The estimates presented here are somewhat smaller in magnitude, though

they still suggest large benefits of vaccination: my estimates suggest that a similar increase

in the influenza vaccination rate (10.8 percentage points) would decrease influenza mortality

by up to half.4

This paper also provides the first large-scale evidence on the impacts of influenza vacci-

nation mandates for health care workers. This is an important contribution as such policies

are actively being considered by regional public health departments. This is underscored by

editorial articles published in several prominent medical journals that call for the adoption of

such requirements (Stewart, 2009; Caplan, 2011; Hooper et al., 2014). The existing evidence

on the benefits of such policies is derived from a relatively small number of studies that assess

the impacts of vaccination requirements primarily for employees of long-term care facilities.

A recent meta-analysis rates the overall quality of evidence on the subject as either “low”

or “very low” (Thomas et al., 2016). Furthermore, these studies have limited scope for iden-

tifying the impacts of HCW vaccination on low-probability outcomes, and any impacts in

settings other than a long-term care facility. The latter point is especially important in light

of the findings presented here, indicating that the largest benefits of these policies accrue to

infants.

Finally, this paper contributes more generally to a literature in economics that seeks to

empirically identify externality impacts in a variety of settings. This literature is especially

4This is inferred from estimates of average annual influenza mortality; if lower-bound figures (near 20,000)
are used then the estimates suggest a reduction in mortality by approximately one half. If upper-bound
figures are used (near 50,000), then the estimates suggest a reduction in mortality by less than a quarter.
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prominent in environmental economics, where many papers have sought to measure the

impacts of pollution (broadly defined) on a variety of outcomes.5 Other examples include the

evaluation of externality impacts of de-worming programs on health and schooling outcomes

(Miguel and Kremer, 2004) and the estimation of displacement effects in job placement

programs (Crépon et al., 2013). Notably, there are few papers to my knowledge that seek to

empirically identify externality or social impacts of vaccination, despite the fact that vaccines

are often regarded as the “textbook” example of a positive externality (Stiglitz, 1988).

The remainder of the paper is structured as follows. Section 2 provides background in-

formation on influenza and influenza vaccination, as well as a conceptual discussion that is

helpful for interpreting the results of the empirical analysis to follow. Section 3 describes the

data, empirical strategy and the results for the analysis of aggregate vaccination rates. Sec-

tion 4 describes the data, institutional setting, empirical strategy, and results for the analysis

of HCW mandates in California. Finally, Section 5 offers a discussion of the estimates and

concludes.

2 Background

In this section, I provide a brief overview of several points regarding influenza and influenza

vaccination that are necessary for interpreting the results of the empirical analysis. I also

provide a conceptual discussion of the benefits of vaccination, focusing on the theoretical

shape of the marginal social benefit curve in the specific case of influenza vaccination.

2.1 Influenza and Influenza Vaccination

There are three key points regarding influenza for which I provide an overview in this sec-

tion. First, I discuss the burden of influenza; specifically, it is important to understand the

specific ways in which different groups are affected by the disease. Second, I discuss influenza

vaccination, summarizing the current state of knowledge regarding vaccine efficacy. Third,

I discuss in more detail the importance of vaccine match, as an understanding of the causes

and consequences of vaccine mis-match are key to understanding the identification strategy

used in the analysis to follow.

The total burden of influenza illness is large and crosses all demographic groups, though

there is substantial heterogeneity in how groups are affected. For the sake of this analysis, I

focus on age as the primary dimension of heterogeneity. This discussion reflects the findings

5These papers study the consequences of a variety of pollutants including regional air pollution, water
pollution, the potential impacts of climate change (see Graff Zivin and Neidell (2013) for a review).
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of the CDC’s Recommendation of the Advisory Committee on Immunization Practices, which

summarizes the general findings from an extensive list of references (Grohskopf et al., 2014).

For children, influenza is responsible for large number of outpatient visits and hospital-

izations, and this is especially true for infants (children under one). Neuzil et al. (2000) find

that influenza was responsible for an annual average of 6-15 outpatient visits per 100 children

under 15. Additionally, Zhou et al. (2012) estimate annual influenza-related hospitalization

rates (per 100,000) equal to 151 for infants, 38.8 for children aged 1-4, and 16.6 for individ-

uals 5-49. While outpatient visits and hospitalization are fairly common, death attributable

to influenza among children is relatively rare. For non-elderly adults, influenza infection is

typically less severe and less likely to result in hospitalization or death. While severe out-

comes are less likely, the burden of influenza is still significant, often resulting in outpatient

visits and worker absenteeism (Molinari et al., 2007). Influenza infection in elderly adults is

the most severe. The majority of deaths related to influenza occur in individuals at least 65

years old. The CDC estimates that between 1976-2007, average annual deaths attributable

to influenza were 21,098 for individuals 65 and older, 2,385 for individuals 19-64, and 124

for individuals under 19 (Thompson et al., 2010). As such, these estimates indicate that

elderly individuals account for approximately 90% of all influenza-related deaths. It should

be noted that due to difficulties in reporting and diagnosis, there is no consensus as to the

number of deaths that are caused by influenza in each year. Other evidence suggests that

the true number could be much larger; Dushoff et al. (2006), for instance, estimate annual

average deaths equal to 41,400 for the period 1979-2001.

Influenza vaccination effectiveness – the extent to which vaccination protects against

laboratory-confirmed influenza – is determined by several factors. Vaccine match is an

especially important factor and will be discussed more fully below, but it is important to

note that even when the vaccine is perfectly matched it is not 100% effective. Vaccine

effectiveness also varies with age; diminished immune response in elderly individuals means

that they are less able to create the antibodies needed to gain immunity. Estimates of

vaccine effectiveness in the prime-age population vary, though several studies find values

in the range of 50-60% in a well-matched season (Demicheli et al., 2014; Grohskopf et al.,

2014). Estimates of vaccine effectiveness in the elderly population are more contentious;

this is primarily due to the fact that ethical concerns over providing placebo vaccinations to

high-risk populations limit the ability of researchers to use RCTs. There is some debate as

to whether the vaccine provides any protective benefits among the elderly (Simonsen et al.,

2007), though a recent study reported by the CDC indicated effectiveness of approximately

26% among people 65 and older (McLean et al., 2014) during a well-matched season.

Vaccine match – the degree to which the strains included in the vaccine match the strains
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that end up circulating – is an especially important determinant of vaccine effectiveness; stud-

ies of vaccine effectiveness find that the vaccine is much less effective when at least one of the

dominant circulating strains is not included in the vaccine (Jefferson et al., 2010). Under-

standing the identification strategy in the main analysis requires understanding the process

by which a vaccine mis-match occurs. For the North American vaccine, this process begins

in early Spring, when the World Health Organization (WHO) convenes a meeting in order to

make recommendations regarding the composition of the following season’s influenza vaccine.

The vaccine includes three (trivalent) or four (quadrivalent) strains, and the decision as to

which strains to include in the vaccine is primarily based on which strains were circulating

most recently.6 The Food and Drug Administration makes the ultimate decision regarding

vaccine composition in the U.S., and vaccine composition is common across all states. Due

to the time it takes to produce and distribute the vaccine, this decision must be made in

early Spring so that vaccines can be administered in the Fall. The influenza virus itself

undergoes constant genetic change (“antigenic drift”) such that there are always viruses in

existence that are genetically distinct from the dominant strains; vaccines may not provide

protection against these genetically distinct viruses. Significant mis-matches occur when

one or more of these genetically distinct viruses spreads and becomes one of the dominant

strains in a given season. Such mis-matches are essentially impossible to predict prior to the

start of influenza season. It is also important to note that not only is the vaccine formulated

well before influenza season begins, but individuals typically have no information regarding

vaccine match at the time of vaccination. I provide direct evidence of this in Section 3.2.

2.2 Marginal Social Benefits of Vaccination

The goal of this paper is to estimate the marginal social benefits of influenza vaccination. It is

useful to consider this in the context of a simple economic framework of externalities. In this

framework, there is a marginal private benefit of vaccination (MPB) and a marginal social

benefit of vaccination (MSB); these benefits are assumed to be decreasing in the vaccination

rate and the MSB is at least as large as the MPB at all points (i.e., the externality is non-

negative). In a competitive equilibrium, consumers purchase vaccines such that the MPB

equals the marginal private cost (MPC), and the vaccine will be under-provided relative to

a social optimum. The economic intuition is straightforward and is the basis for the analysis

conducted in this paper. Considering the shape of the benefits curve in the specific context

of influenza vaccination provides additional insight.

6The quadrivalent vaccine was introduced in 2012. This does not present a problem for the analysis as
the fourth strain has not circulated widely in the years under study.
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Boulier et al. (2007) combine this basic externality theory with a workhorse model of

disease dynamics (the susceptible-infected-removed, or “SIR”, model) and parameterize the

model to the case of influenza in order to derive theoretical predictions for the shape of

the marginal benefits curves. Figure 1 reproduces their results, allowing the MPB and

MSB to depend on vaccine effectiveness. I have plotted each assuming either 100% or 50%

effectiveness (denoted E). Recall that even when the vaccine is well-matched, estimates of

vaccine effectiveness are typically in the range of 50-60%. Consider first the case of a perfectly

effective vaccine. The gap between the MPB and MSB represents the marginal externality

effect; note that the y-axis measures the number of infections such that at a vaccination

rate of zero, the model predicts that an additional vaccination will prevent more than 1.5

infections in expectation; 0.5 infections are prevented in private benefits and the remainder

are prevented in externality benefits. Measuring infections is equivalent to measuring the

cost of disease if it assumed that the cost of infection is homogeneous and equal to one.

As the vaccination rate increases, the MPB decreases but the MSB stays relatively flat

(or increases) until a threshold is reached. This threshold represents the point at which

a seasonal epidemic fails to emerge. The shape of these curves prior to the threshold is

important as they imply that neither the externality nor the social benefit of vaccination

decreases prior to this point. Furthermore, it can be inferred that the U.S. is not beyond the

threshold, as an influenza epidemic does emerge in each season. Current vaccination rates

(approximately 43% in 2014) in combination with the persistence of an annual epidemic is

at odds with the model that assumes E = 100% and predicts a threshold level of vaccination

between 30% and 40%. If we consider a lower E, the benefits of vaccination fall and the

threshold increases. At a more realistic E = 50%, the vaccination threshold beyond which

there would be limited marginal benefits of vaccination is over 60%.

I caution that this model depends on a number of parameter choices that are difficult

to estimate accurately.7 That being said, considering the general shape implied by the

model helps to guide the interpretation of the results presented in this paper. The model

implies relatively constant marginal social benefits of vaccination below a threshold. The

implication is that estimates of the social benefits are unlikely to depend strongly on the level

of vaccination. In other words, we should expect that the relationship between vaccination

rates and the outcome of interest is roughly linear. This applies only until the threshold is

reached, though reaching the threshold would be obvious as a seasonal epidemic would fail

to form and very few infections would occur.

7Important parameters include the vaccine effectiveness (as shown) and the “contact number”, which
is the number of additional infections that result from a single infection when the entire population is
susceptible.
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Discussion of this framework also presents the opportunity to discuss potential hetero-

geneous impacts of vaccination. It is worth considering how three groups in particular may

differ from the remainder of the population: infants, the elderly, and health care workers. For

infants, the cost of infection is relatively high as infection is often serious enough to result in

hospitalization; furthermore, infants under 6 months of age cannot receive the vaccine. For

these reasons, infants are a group who benefit substantially from the vaccination of others.

A similar intuition holds for the elderly: the cost of infection is high and vaccine effectiveness

is relatively low. These factors combined imply that the elderly benefit substantially from

the vaccination of others. Health care workers are a group who come in relatively frequent

contact with both infected individuals and people with a high cost of illness; as such, the

external benefits of health care worker vaccination are likely to be large. This heterogeneity

motivates the focus on these subgroups in the empirical analysis to follow.

3 Part I: Aggregate Vaccination Rates

3.1 Data

The analysis of aggregate vaccination rates requires data on mortality by cause of death,

illness-related work absences, influenza vaccination rates, information on the timing and

magnitude of influenza activity, and the degree to which each year’s vaccine matches the

circulating strains. The unit of analysis is the state-year-month and the data cover the years

1993-2013.8

3.1.1 Mortality Data

Mortality data are derived from the multiple cause of death files from the National Vital

Statistics System (NVSS). This is the restricted version of this data that include state iden-

tifiers beyond 2005. It is important to note the use of multiple causes of death in classifying

mortality as influenza-related rather than the single underlying cause of death. Dushoff et

al. (2006) find that a large number of influenza-related deaths are excluded when only the

underlying cause of death is used. Accordingly, I classify deaths by diagnosis if any of the

(up to 21) diagnosis codes fall into the relevant category. Even using multiple causes of

death, it is very rare for a death to be classified as specifically due to influenza. As such,

the category with the highest level of specificity that I use in the analysis of mortality, and

the primary outcome of interest, is deaths related to pneumonia and influenza (PI). Because

8The data source used to measure vaccination rates begins in 1993.
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deaths due to influenza often occur as a result of complications or the exacerbation of pre-

existing conditions, even PI deaths may exclude deaths that occurred as a result of influenza

infection. As such, I also analyze deaths in two higher levels of aggregation: deaths with

any respiratory or circulatory diagnosis, and all-cause deaths. Because it is highly unlikely

that deaths without a respiratory or circulatory diagnosis occurred as a result of influenza

infection, I use these non-respiratory/circulatory deaths as a falsification test.9

3.1.2 Labor Market Data

Data on illness absences and hours worked are derived from the Current Population Survey

(CPS) basic monthly files. I follow Stearns and White (2016) in constructing the measure of

illness absence; while more details can be found in Stearns and White (2016), I describe the

important points here. The measure of illness absences is constructed using two questions

posed to all individuals who report being employed. First, individuals who report being

employed but absent from work for the entire reference week (i.e., worked zero hours) are

asked the main reason for their absence from work. Second, individuals who are employed

and at work during the reference week report both their usual hours worked per week and

the number of hours actually worked in the reference week. Those who work less than 35

hours during the reference week but report that they usually work at least 35 hours per

week are asked the main reason for working less than normal. Typically, these are full-time

workers who took one or more days off in the reference week, yet worked a non-zero number

of hours (i.e., were not absent the entire week).

Each of these two questions lists “own illness” as one possible reason for missing work

and is the reason given for approximately 19% of absences (for both entire-week and partial-

week absences). Leave-taking for own illness is the primary labor market outcome of interest,

though I also assess whether leave-taking for any other reason is affected as a falsification

test. It is important to note that these measures of absence can only be constructed for

individuals who work at least 35 hours per week. This is not true of data on hours worked,

for which the full sample of employed workers is used. In the labor market analysis, I also

use a standard set of controls including indicators for gender, age (<20, 20-30, 30-40, 40-

50, 50-60, >60), marital status (married, widowed/divorced/separated, never married), and

education (less than high school, high school diploma, some college, college graduate).

9The ICD9 and ICD10 codes used to classify these diagnoses are as follows: Influenza (ICD9: 487, ICD10:
J9-J11), Influenza/Pneumonia (ICD9: 480-488, ICD10: J9-J18), Respiratory/Circulatory (ICD9: 390-519,
ICD10: I00-I99, J00-J99).
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3.1.3 Vaccination Rates

Data on state-level vaccination rates are obtained through the Behavioral Risk Factor Surveil-

lance System (BRFSS). The BRFSS is a large-scale telephone survey that has been conducted

at the national level since 1993.10 The BRFSS asks whether each participant has received

an influenza vaccination within the past 12 months.11 The phrasing of this question is not

ideal for determining vaccination rates in each influenza season as there are several months

wherein the season to which the vaccine applies is ambiguous. As such, I drop all survey re-

sponses taken from September through December, as these are the months in which the vast

majority of influenza vaccinations are received. Vaccination rates for the 2012-13 influenza

season, for example, are calculated as the percentage of respondents surveyed between Jan-

uary and August of 2013 who report having received an influenza vaccination within the

past 12 months. Information on vaccination rates was not collected in the survey years 1994,

1996, 1998 or 2000. To fill in these gaps, I linearly interpolate vaccination rates in these

years for each state. Because vaccination rates evolve relatively smoothly over time, and

because the identification strategy used in this analysis relies not on year-to-year changes in

vaccination rates but on baseline differences in the level of vaccination across states, such a

procedure is not a concern for identification.12

3.1.4 Match Rates

Data on vaccine effectiveness are derived from annual influenza season summaries, which con-

sist of data compiled from the CDC’s virologic surveillance system.13 This system consists of

approximately 110 World Health Organization (WHO) laboratories and 240 National Res-

piratory and Enteric Virus Surveillance System (NREVSS) laboratories located throughout

the country. These laboratories test respiratory specimens for the presence of any influenza

virus and characterize viruses according to the exact strain. The annual summary data

contain information on the number of viruses by strain and information indicating which

strains the season’s vaccine protects against. The match rate for each season is defined as

the percentage of characterized viruses that match the strains contained in that season’s

vaccine. It is possible that the vaccine can offer some level of protection against strains that

are not perfectly matched if the strain in the vaccine and the strain circulating are similar,

10The survey began in 1984, though it was conducted in a limited number of states.
11The exact phrasing of this question varies slightly from year-to-year. In more recent years, for instance,

the survey asks about various types of vaccination (i.e., flu shots or spray). I classify each individual as having
received an influenza vaccination if they received at least one dose of any type of influenza vaccination.

12Table A1 demonstrates that the main results are not sensitive to excluding the years in which interpolated
vaccination rates were used.

13These data are available at: http://www.cdc.gov/flu/weekly/pastreports.htm.
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and this information is indicated in the data. I construct two versions of the match rate,

one in which strains are characterized as matched only if it is the exact strain contained in

the vaccine, and one in which strains are characterized as matched if the vaccine offers some

level of protection. The main specification uses the average of these two measures.14

3.1.5 Influenza Activity

Data on the timing and magnitude of influenza activity are also obtained from the CDC’s

virologic surveillance system. The primary measure of influenza activity is the percentage

of tests that are positive for any type of influenza. I re-scale this variable to range between

zero and one within the sample by dividing by the maximum observed value such that the

measure can be interpreted as an index with a value of one representing severe (but observed)

influenza activity. This data is used in both the analysis of aggregate vaccination rates and

and the analysis of health care workers. For the analysis of aggregate vaccination rates, I use

data from all U.S. laboratories, and for the analysis that is specific to California, I use data

from laboratories in the western region of the U.S. (the finest level of geographic specificity).

3.2 Empirical Framework

Estimating the impacts of population-level vaccination rates is an empirically difficult task.

To illustrate this difficulty, consider the following empirical equation:

Ysmy = βVsy + δmy + εsmy (1)

Ysmy is the mortality rate in state s in flu-year y and month m. Note that I define “flu-

years” as years running from July through June so that each flu-year represents a distinct

influenza season. Vsy is the vaccination rate for state s and flu-year y. The regressor of

interest in this equation (Vsy) is endogenous. It is certainly plausible, for example, that

individuals in states that are more affected by influenza are more likely to receive an influenza

vaccination. Figure 2 maps vaccination rates along with PI mortality rates in the U.S. The

endogeneity of vaccination is apparent, as there appears to be a positive correlation between

14The exact process by which I calculate the match rate is slightly more complicated than I have laid out
above. Each positive test received by the CDC is classified as either influenza A or influenza B. A subset of
influenza A viruses are sub-typed (H1N1 or H2N3) and a subset of each subtype are then characterized to
determine the exact strain. A subset of influenza B viruses are characterized to determine the exact strain.
The annual summaries contain information on the number of total tests, the number of positive tests, the
number of A and B viruses, the number of viruses sub-typed, the number of each subtype characterized, and
the number of viruses belonging to a specific strain. Though relatively straightforward, I have developed a
calculator that takes these numbers as inputs and outputs the match rate for each season. This calculator
is available upon request.
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vaccination rates and PI mortality. My strategy is to interact differences in vaccination rates

with year-to-year variation in vaccine effectiveness to generate plausibly exogenous variation

in the effective vaccination rate.

Ysmy = γ1(Vsy ∗My) + γ2Vsy + δmy + εsmy (2)

Equation (2) describes this difference-in-differences approach. In this equation, My is

the match-rate, measured nationally for each influenza season. A match rate of zero implies

that the vaccine is minimally effective whereas a match rate of one implies maximum effec-

tiveness.15 γ2 represents the potentially endogenous component of the relationship between

vaccination rates and the outcome of interest: this measures the relationship between vac-

cination rates and and the outcome in seasons in which the vaccine is minimally effective

(i.e., zero match rate). γ1 is the object of interest, and represents the differential effect of

an increase in the vaccination rate between years when the vaccine is at maximum versus

minimum effectiveness. Intuitively, γ1 picks up the impact of effective vaccination (i.e., the

causal effect of vaccination), but not the component of the relationship between vaccination

rates and the outcome that persists in seasons when the vaccine is ineffective.

Identification relies on the assumption that the match rate is exogenous from year to year

and that unobserved factors that are correlated with vaccination rates are unrelated to the

match rate. Of potential concern is that there may be differential responses to match rates

in terms of vaccination behavior across states with different vaccination rates. The process

by which the strains are chosen for inclusion in the following season’s vaccine formulation,

described in Section 2.1, supports the notion that the match rate is effectively random from

year to year. Further, I provide evidence that there is limited scope for individuals to respond

to vaccine effectiveness in terms of vaccination behavior.

From 2007 onward, the BRFSS has asked respondents not only whether they received

a vaccination, but the month in which they were vaccinated. Figure 3 plots the average

(across years) cumulative vaccination rate by month for the years in which this data is

available. Additionally, this figure displays average influenza intensity by month. Together,

this figure shows that in a typical influenza season, nearly all vaccinations are distributed

before the onset of the season’s influenza outbreak. Because information on the vaccine’s

match cannot be determined until a significant number of individuals are infected, this plot

suggests that there is very limited scope for responding to the match rate at all, much less

15A zero match rate does not necessarily imply that the vaccine is completely ineffective as vaccination
can provide some level of protection against non-matched strains (especially if the strain is similar to that
included in the vaccine). Similarly, maximum effectiveness does not imply that the vaccine is perfectly
effective. In fact, maximum efficacy is approximately 60% effectiveness in a typical year.
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differentially across states.16 Table 2 provides additional evidence on this point. Column

one reports estimates of a regression of the vaccination rates on match rates. The estimate,

while statistically different from zero, is negative and close to zero. The estimate implies

that the vaccination rates are 0.5 percentage points lower in a 100% match season compared

to a 0% match season. If individuals were truly responding to match rates, it is likely that

vaccination rates would be higher rather than lower in high match seasons. Column two

presents estimates of a test for differential responses to vaccine effectiveness by interacting

the match rate with mean vaccination rate for each state; the results suggest that there is

no differential response among states that tend to have higher or lower vaccination rates.

Influenza vaccination rates will only have a causal effect on mortality during periods in

which influenza is circulating. As a third source of variation, I exploit within-year variation

in the timing and magnitude of influenza activity. I exploit this variation in two ways.

First, I estimate Equation (2) in periods of relatively high and low influenza activity. The

coefficient of interest, γ1, is expected to be relatively close to zero in periods of low influenza

activity. Second, I conduct this exercise more formally in a triple-difference approach.

Ysmy = φ1(Vsy ∗My ∗ Amy) + φ2(Vsy ∗My) (3)

+ φ3(Vsy ∗ Amy) + φ4Vsy + δmy + εsmy

Amy is a measure of influenza activity common to all states; this is an index that is

scaled to equal one during the month in the sample with the maximum influenza activity

and zero when there is no influenza activity. As such, φ1 measures the difference in γ1,

from Equation (2), between periods of maximum activity and periods of zero activity. The

advantage of this approach is that the linear measure of influenza activity provides a more

accurate measure relative to the somewhat arbitrary classification of months into “high” and

“low” activity. Estimates of φ1 are my preferred estimates in this analysis.

I have not to this point discussed the inclusion of additional fixed effects (e.g., state fixed

effects) as the identification strategy does not rely on their inclusion. The inclusion of state-

specific effects changes the intuition as to what variation is being exploited in estimating

these models; specifically, the inclusion of state fixed effects implies that the estimates rely on

within-state differences over time in the vaccination rate rather than cross-state differences.

16This plot illustrate another important point as well. For most years, there does not exist data on the
timing of vaccination and as such the main specification defines vaccination rates at the state-by-season
level. Figure 3 provides support for the idea that this is a reasonable strategy as vaccinations are typically
received before the onset of any influenza activity. In other words, I am not measuring the effects of vaccines
received in February on influenza-related mortality in January.
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In either case, the interaction with random year-to-year variation in vaccine match provides

a plausibly exogenous variation in effective vaccination. I explore a range of fixed-effects

specifications, though my preferred specification includes the year-by-month effects described

above as well as state-by-month effects that not only account for state-specific factors, but

allow seasonality in the outcome to vary by state. Note that I do not include any state-level

time varying characteristics; instead, I recognize that Equation (3) allows for the inclusion of

state-by-year fixed effects and demonstrate that the results are not sensitive their inclusion.

Finally, to assuage any remaining concerns that the results are driven by changes in vac-

cination behavior in response to current conditions, I estimate an additional specification

wherein only pre-existing variation in vaccination rates is employed. More specifically, I

re-estimate Equation (3) where the vaccination rate and each of its interactions are instru-

mented using the vaccination rate from three seasons prior and the corresponding interac-

tions.

3.3 Results

In interpreting the estimates, note that the three regressors (Vaccination, Match, and Ac-

tivity) are all linear measures. Vaccination is measured on a scale of zero to 100 such that

the estimates can be interpreted as a one percentage point increase in the vaccination rate,

while the other two regressors are measured on a scale of zero to one. This section primarily

focuses on mortality as the outcome, which is measured as the PI mortality rate per 100,000

individuals.

3.3.1 Main Results

Table 3 provides estimates of the difference-in-differences equation described in Equation (2).

Similar to the following tables, the columns represent estimates from models specified in

different ways. The first includes only month-by-year fixed effects, the second adds state-

by-month fixed effects, and the third additionally uses the vaccination rate from the prior

season to instrument for the current vaccination rate. In Table 3, Panel A presents estimates

that include all months, where Panel B restricts the sample to months in which the influenza

activity index is greater than 0.5 (relatively high activity), and Panel C restricts the sample

to months in which the activity index is less than 0.5 (relatively low activity).

Let us first consider Panel A. In these difference-in-differences estimates, the coefficient

on “Vacc” represents the relationship between vaccination rates and PI mortality when

the match rate is zero. The first column indicates that the estimate of γ2 is positive and

significant when no state-by-month fixed effects are included in the model. Taken at face

15



value, this implies that states with higher vaccination rates experience more PI deaths. This

illustrates the positive correlation suggested by Figure 2.

The coefficient on the interaction term is the estimate of interest, as this represents the

differential effect of an increase in the vaccination rate between years in which the vaccine is

perfectly matched and years in which the match rate is zero. In the model without state fixed

effects, the estimate of the interaction is not statistically different from zero. The estimates

are negative and statistically different from zero in columns two and three. The estimates

from Panel A include many months in which there is no influenza activity and thus the

estimates are likely to be dampened by their inclusion. The estimates of the interaction in

Panel B, in which the sample is limited to months with relatively high influenza activity are

negative, significant, and similar in magnitude across all three models. The interpretation

of the coefficient reported in column one (-0.135) is that a one percentage point increase in

the vaccination rate leads to a decrease in influenza mortality of 0.135 per 100,000 residents

during seasons in which the vaccine is perfectly matched and months with relatively high

influenza activity. Note that I will provide a more intuitive interpretation of the results in

discussion of the triple difference model to come.

The coefficient estimates on the un-interacted term in Panel B are worth noting as well.

These estimates are somewhat larger than the estimates for all months. The implication

is that it is not only people in states with higher PI mortality in general that are more

likely to be vaccinated against influenza, but people in states with higher mortality that is

specifically related to influenza. Finally, Panel C reports estimates for months with relatively

low influenza activity. The estimates indicate that influenza vaccination has little impact

on PI mortality in low activity months. Note that the estimates of the interaction terms

in models with state fixed effects are statistically different from zero, though quite small

in comparison to the estimates for months with high activity. This negative estimate is

not unexpected as low activity months are simply defined as months with relatively little

influenza activity rather than zero activity.

The estimates reported in Table 4 formalize the comparison between months with high

and low influenza activity in a triple difference context. The triple interaction is the coef-

ficient of interest in this model. The estimated coefficients are somewhat larger than the

coefficients estimated for high activity months in the diff-in-diff specification. This is unsur-

prising given that these estimates represent a comparison between months with maximum

influenza activity and zero influenza activity rather than an estimate representing the dif-

ferential effect between relatively high and low activity months. A point estimate of -0.196

implies that that a one percentage point increase in the influenza vaccination rate will de-

crease the PI mortality rate by 0.196 per 100,000 individuals during months with maximum
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influenza activity compared to months with no influenza activity, and during seasons in

which the vaccine is perfectly matched.17

Because the interpretation of this estimate is not the most transparent, I also report an

estimate of the expected annual benefit of vaccination. To calculate the expected annual

benefit, I first create expected monthly benefits and then sum across months. The expected

monthly benefit is calculated as the product of the coefficient estimate, mean month-specific

influenza activity, and the mean match rate. The estimates in the second column indicate

that the expected annual mortality reduction due to a one percentage point increase in

the vaccination rate is approximately 0.309 per 100,000 residents. Scaling this to the U.S.

population, this implies that a one percentage point increase in the national vaccination rate

would result in approximately 985 fewer deaths due to influenza. This is a significant, albeit

reasonable number given that estimates of average annual deaths due to influenza lie in the

range of approximately 20,000-40,000.

Before moving on, I first explore the extent to which PI deaths capture the total benefits

of influenza vaccination in terms of mortality. In Table 5, I re-estimate the triple difference

specification in models where the outcome is constructed using a broader definition. The

two broader definitions are deaths with any respiratory or circulatory diagnosis and all-

cause deaths. The estimates indicate that the PI categorization captures the majority of

the benefits realized by influenza vaccination, though the point estimates do grow slightly

(for example, from -0.196 using only PI deaths to -0.242 using all respiratory and circulatory

in one specification). While these estimates are slightly larger, the confidence intervals are

larger as well; the precision afforded by the more specific PI definition is preferred for the

remainder of the analysis. Table 5 also reports estimates from an important falsification test:

defining the outcome as deaths that should not plausibly be related to influenza infection

(deaths without any respiratory or cardiovascular diagnosis). The estimates indicate small

and insignificant effects of influenza vaccination on these deaths.

3.3.2 Age Heterogeneity

A natural question to ask at this point is who reaps the benefit of reduced influenza mortality.

I decompose the main effect by age in Table 6, where I report the triple-difference estimate

17The other estimates reported in Table 4 are worth noting as well. The second row (the vaccination rate
interacted with the match rate), because of the interaction with the exogenous match rate, can be considered
the causal effect of increasing influenza vaccination rates on PI mortality during months in which there is no
influenza activity. Reassuringly, these estimates are not statistically different from zero. The estimates in the
third row (the vaccination rate interacted with influenza activity) again illustrate the positive relationship
between influenza-specific mortality and vaccination rates. The estimates in the final row (the vaccination
rate un-interacted) essentially represents the relationship between PI mortality that is not influenza-specific
and vaccination rates.
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for five age groups (infants under 1, 1-10, 10-64, ≥64 and ≥74). In Table 6, I calculate

age-specific mortality rates by dividing by the total state population rather than the age-

specific population. As such, the estimates can be interpreted as an accounting of the total

benefits of influenza vaccination – the sum of the impacts for the mutually exclusive age

groups equals the total effect. In this table, I report in brackets the percentage of benefits

that accrue to each age group. This is calculated as the age-specific coefficient divided by

the corresponding all-age coefficient from Table 4. The disadvantage of this approach is that

it does not account for the size of the population in each age group; I provide an additional

set of estimates in Table A2 that uses the age-specific population in constructing mortality

rates.

The age-specific estimates indicate that the vast majority of the mortality benefits of

influenza vaccination accrue to the elderly population. This is not a surprising result given

that estimates of influenza-related mortality are heavily concentrated among the elderly

population. Grohskopf et al. (2014) reports that the ≥ 65 population accounted for 90% of

all influenza-related deaths between 1976 and 2007. The estimates presented here accord

with these findings: I estimate that between 89% and 93% of the reduction in mortality

due to influenza vaccination is experienced among the ≥ 65 population (depending on the

model).

While analysis of the ≥ 65 population is useful for comparison with other studies of

influenza-related mortality, I find present additional results for an older age group and find

that almost all of the benefits are concentrated among the ≥ 75 population. The specification

in column 2 indicates that 89% of the total benefits accrue to the ≥ 65 population and 83%

to the ≥ 75 population.

3.3.3 Externality Effects

To evaluate the extent to which the mortality benefits of influenza vaccination operate

through an externality effect, I use the notion that the vast majority of benefits accrue

to individuals who are at least 75 years of age and separately estimate the effects of vac-

cination rates for individuals who are either within or outside of that age group. More

specifically, I estimate the following equation:

Y O75
smy = ψ(V O75

sy ∗My ∗ Amy) + ω(V U75
sy ∗My ∗ Amy) (4)

+ Other Interactions & Fixed Effects + εsmy

In Equation (4), I include the full set of interactions described in Equation (3) for both
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people who are under 75 and those who are at least 75. As such, ψ represents a combination of

direct and externality effects, where the externality effects are limited to capturing the spread

of influenza among people who are in the age 75 and older group. The other coefficient of

interest, ω, represents the effect of vaccination among people under 75 on influenza mortality

for individuals who are at least 75; this represents a pure externality effect. The results of

this exercise are presented in Table 7. The estimates in the first two columns suggest that

the majority of the mortality benefits for individuals at least 75 result from the vaccination

of people who are under 75. In the IV estimates, the dominant magnitude flips to at least

75 group, though the standard errors grow substantially. The figure reported in brackets

indicates that vaccination of those under 75 accounts for between 35% and 85% of the total

mortality benefits that accrue to those at least 75. These results suggest a substantial role for

externality effects in the mortality benefits of vaccination. Given the relatively low efficacy

of influenza vaccinations in older individuals, this is an important though not necessarily

surprising finding.

3.3.4 Evaluating Mortality Benefits

The monetary benefits of influenza vaccination in terms of mortality depend on the value of

a statistical life (VSL). Because the mortality benefits are concentrated among individuals

at least 75 years of age, it is especially important that VSL estimate is age-adjusted. I

use the method of Murphy and Topel (2006), who develop a framework for estimating the

value of remaining life given a standard VSL figure that is evaluated using mortality risk

reductions from working-age adults. I apply two such figures: estimates from Ashenfelter and

Greenstone (2004) of $2.3 million (denoted “AG”) as a lower bound, and the current standard

from the EPA of $8.8 million as an upper bound.18 The Murphy and Topel (2006) framework

provides VSL estimates for single years of age; I follow the method of Barreca et al. (2016)

to calculate a VSL estimate for more aggregated age groups, taking a weighted average of

single-year VSL estimates where the weight is the share of deaths from each single-year age

group. The single-year VSL figures, derived from Murphy and Topel (2006), as well as the

weights used to calculate VSL estimates for age groups, are described in Figure 5. For the

benefits calculations, I consider the following age groups: < 10, 10-64, 65-74 and ≥ 75. The

VSL estimates for these groups are highly dependent on age. These VSL estimates, along

with estimates of the monetary benefits of mortality reduction are presented in Table 8.

For each age group, I consider the annual benefits of a policy that increases the national

18Each VSL figure is reported in 2016 dollars.
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influenza vaccination rate by one percentage point.19 I use estimates of age-specific reductions

in mortality; these are similar to those presented in Table 6.20 I then estimate the annual

number of deaths avoided, as well as the monetary benefits. Further, I estimate the benefits

per vaccination (dividing by 3.19 million, as that is approximately one percent of the U.S.

population). While the reductions in mortality are concentrated among individuals at least

75, the monetary benefits are more equally distributed given the relatively low VSL for older

individuals. Considering all ages, I find that the benefit of an additional vaccination to be

between $134 and $511, depending on whether VSL estimates from the EPA or AG are

used. That being said, the only age-specific estimates considered here that are significantly

different from zero are the estimates for the at least 75 group; as such, my preferred estimates

of the social benefits of vaccination in terms of mortality are limited to this group: $67 using

the AG VSL and $254 using the EPA VSL.

3.3.5 Work Absences

Mortality represents the most severe outcome associated with influenza infection; addition-

ally, the lack of quality evidence on the mortality benefits of vaccination makes it a particu-

larly important outcome to examine. While I do provide estimates of the monetary benefits

of influenza vaccination on the dimension of mortality, such estimates are often subject to

considerable controversy. Since one of the primary purposes of this analysis is to determine

the marginal social benefit of vaccination, it would be useful to analyze an outcome for which

calculation of the monetary benefits is subject to less debate. In this section, I re-estimate

the triple-difference specification (described in Equation (3)) with three different outcomes:

the average share of employed individuals absent from work due to illness, average hours

worked, and the average share of workers absent from work due to reasons other than illness

(as a falsification test).

The results of this exercise are described in Table 9. The main finding is that increasing

state-level vaccination rates by one percentage decreases the share of workers absent from

work in that month by approximately 0.05 percentage points during maximum influenza

months and during a good match year (an approximate 2% effect from the mean). While the

estimates for average hours worked are positive (the expected direction), they lack precision,

and none of these estimates are statistically different from zero. It is not surprising that

a statistically significant effect would not be detected for average hours since this variable

19I implicitly assume that the distribution of the increased vaccination rates across ages is proportional to
the current age distribution of vaccination rates.

20Note that these age groups are slightly distinct from those considered previously; the age groups used
here need to be mutually exclusive, and should include the ≥ 75 category as that is where most of the
benefits lie. The estimates for the modified age groups are presented in Table A8.
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is non-specific relative to illness absences; put another way, a far greater proportion of the

variation in this variable comes through factors unrelated to influenza.21 Reassuringly, I find

small and insignificant impacts on absences for reasons other than illness.

Because the estimates for average hours worked lack precision, I require an estimate

of the number of hours lost per absence so that I can use these estimates to calculate a

monetary benefit of increasing the vaccination rate. Consider the average number of hours

worked for three groups: workers who take no absence (43.29), workers reporting any illness

absence (18.31), and workers reporting illness absence for only part of the reference week

(24.92). The difference in average hours between the no-absence workers and the illness

absence workers are my estimates of the number of hours lost per reported absence. I prefer

the more conservative definition which excludes entire week absences. The differences are

17.0 hours (partial week illness absences) and 24.9 (all illness absences). These estimates are

in line with estimates from research analyzing working days lost due to influenza infection;

Keech and Beardsworth (2008) is a meta-analysis of such studies, reporting that the mean

number of days lost due to influenza infection ranges from 1.5 to 4.9, depending on the study.

The goal is to convert the estimates in Table 9 into an estimate of the expected annual

benefit per vaccination in monetary terms. To start, I multiply the effect on work absences

by the number of hours lost per absence to arrive at the number of work hours lost per

week, in maximum influenza months and perfectly matched seasons. I then multiply by the

number of weeks per month (30.5/7) to convert this to a monthly effect. I then multiply by

the same factor that I used to scale the mortality estimates to an expected annual benefit

(Match×
∑

mActivitym). The resulting figure is 0.06 hours gained per worker, per year in

expectation. Scaling this to a national level, I multiply by the number of full time workers

in the U.S. (126 million) to arrive at a figure of 7.47 million hours gained; multiplying by

the median hourly wage for full-time workers ($20.58) results in expected annual benefits of

$156.8 million.22 Since it would take approximately 3.19 million additional vaccinations (1%

of the U.S. population), this implies that the marginal social benefit of vaccination in terms

of productive hours gained is approximately $49.2. If I assume that each reported weekly

absence results in 24.9 hours lost, this figure is $70.7 per vaccination.

21It is worth noting that the magnitude of these estimates is substantially larger than would be implied
by the effect on illness absences, yet it is still insignificant.

22Median hourly wage for full-time workers is calculated as median usual weekly earnings ($824) divided
by median usual hours (40).
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3.4 Robustness Checks

In this section, I provide a brief discussion of several robustness checks. All estimates for these

robustness checks are reported in the appendix. The first check I present is a specification

test in order to determine the extent to which the estimates rely on the set of fixed effects

included in the analysis. I emphasize in the main analysis that identification does not rely on

the inclusion of state fixed effects, though the only estimates I present in the main analysis

either exclude state fixed effects altogether or include highly flexible state-by-month effects.

In Table A3, I present several additional specifications. The results reported here indicate

that the main effect changes little across a wide variety of specifications. Note that I do

not include any state-level time-varying controls in the main analysis. One advantage of the

triple-difference specification – which emphasizes the idea that influenza vaccination has no

casual effect on mortality (or any other outcome) during periods in which there is no influenza

circulating – is that it allows for the inclusion of state-by-year fixed effects. State-by-year

fixed effects control for all factors common to all months within a given state-year, effectively

controlling for any state-specific factors that vary at the annual level. The useful variation

in vaccination rates is preserved in this setting, as the effect of vaccination depends on the

level of influenza activity, which is not constant throughout the year. The main results are

not sensitive to the inclusion of these fixed effects, which lends support to the identification

strategy in general and obviates the need for state-specific time-varying controls.

Another concern is the lack of regional variation in match rates in the main analysis.

Although the strains included in the vaccine are identical across North America, it is possible

that regional variation in the circulating strains generates regional variation in the match

rate. If a subset of regions tend to drive variation in match rates at the national level, and

this variation is correlated with vaccination rates, then the inability to use regional variation

in match rates could bias the estimates. To determine the extent to which this may be the

case, I utilize data on regional variation in the strains of influenza that circulate in a given

year to construct match rates at the regional level (census divisions) for the years in which

this data are available. While there is variation across regions in the match rate, I find that

the degree of variation tends to be minimal. I provide estimates of the main results that

include the regional measure of match rates and present the estimates in Table A4. For the

sake of comparison, I first present estimates that exclude years prior to 1998, but do not

use regional variation in the match rate – I am not able to construct regional measures of

the match rate prior to this year. This turns out to be unimportant, however, as the main

estimates are not sensitive to the exclusion of earlier years. The estimates are also insensitive
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to the use of regional match rates.23

Next, I address a concern that by comparing outcomes in months that have relatively

high or low influenza activity, that I am effectively conditioning on an outcome. In the

main analysis, influenza activity is defined at the national level, and I argue that it is highly

unlikely that local conditions affect the timing and magnitude of influenza activity at the

national level on such a scale that the results would be meaningfully affected. In any case,

I present two additional sets of results to support this claim. First, using regional data on

influenza activity (for years 2008 and beyond), I define influenza activity for each state as

the average level of activity in all regions except the state of interest. In this specification,

it is even less likely that the measure of influenza activity would be meaningfully affected by

local conditions as the measure excludes all states in the region of the state of interest. These

results are presented in Table A5; the estimates indicate that the results are insensitive to

the use of this leave-one-out measure of activity.

Second, instead of using actual influenza activity, I defined the months December through

March as months that typically have high influenza activity and all other months as months

with typically low activity, and use this consistent set of months across all years in the

analysis. The results from this analysis are presented in Table A6. As expected, these

estimates are smaller in magnitude – these estimates can essentially be interpreted as an

intent-to-treat effect, as the comparison is no longer between months with actual high or

low levels of influenza activity, but a comparison between months with typically high or low

influenza activity. That being said, the estimates can be scaled up for comparison with the

main estimates; the average levels of influenza activity in the typically high and low months

are 0.38 and 0.09, respectively. As such, I scale the estimates by a factor of 1/(0.38-0.09)

and find that the estimates are similar to those in the main analysis.

Finally, to test for lagged impacts of influenza mortality, I replicate the estimates pre-

sented in Table 4, but additionally include one and two month lags in the interactions that

include influenza activity (as these are the only interactions that vary across months within

a year). The estimates reported in Table A7 represent the sum of the contemporaneous and

lagged coefficients. The estimates indicate that allowing for lagged effects of mortality does

not substantially alter the results. The estimates that include lagged coefficients are slightly

larger in some specifications, but these differences are small.

23Note that this model includes the Match × Activity interaction and the main effect for Match, as
these are no longer absorbed by the month-year fixed effects; the coefficients on these terms are not easily
interpreted, as they represent out-of-sample predictions (i.e., a vaccination rate of zero).
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4 Part II: Health Care Worker Mandates

The analysis conducted in Section 3 was intended to estimate the benefits of influenza vac-

cination in the general population. The estimates are relevant to a policy that would in-

crease vaccination rates in proportion to the current distribution of vaccination rates. In

other words, a hypothetical policy would target individuals who are closest to the margin of

choosing whether to receive a vaccination. In this section, I recognize that there is likely to

be substantial heterogeneity in benefits depending on who receives the vaccine. Health care

workers (HCWs) come in relatively frequent contact with infected individuals and individuals

whose cost of infection is high. As such, HCWs are a group for whom the external benefits

of vaccination are large. I examine the effects of mandates requiring health care workers

be vaccinated against influenza on the outcomes of their patients. To begin, I describe the

institutional background and the roll-out of these policies.

4.1 Institutional Background

On September 28, 2006, the Governor of California signed into law Senate Bill 739, requiring

that health facilities implement various measures to protect against the spread of infection

within these facilities. One component of this law was to require all licensed hospitals in

California to report to the Department of Public Health on the percentage of HCWs (employ-

ees and non-employee personnel) vaccinated against influenza in each season beginning in

2008/2009; fortunately, this allows for the measurement of vaccination rates within hospitals

in California. This law would also require that all health facilities offer influenza vaccinations

free of charge to all HCWs and require that employees sign a statement declaring that he or

she had declined vaccination. Though detailed data on vaccination rates prior to this policy

are not available, it is likely that these policies increased vaccination rates of HCWs. This

is only relevant for this study in that baseline levels of vaccination are likely higher, how-

ever, as the variation in influenza mandates does not begin until 2009, when hospital-level

vaccination rates are observed.

In May of 2009, the H1N1 influenza pandemic began. In response to the pandemic,

several individual hospitals began requiring influenza vaccination for their workers. Because

these mandates were implemented in response to the crisis, the timing of vaccination relative

to the timing of the pandemic is unclear. For this and other reasons, I treat 2009 differently

than other years and I will elaborate on this in more detail in the following section. After the

2009 pandemic, these hospitals continued requiring annual influenza vaccinations for their

workers and in following influenza seasons several other hospitals began introducing their

own vaccination requirements. Beginning in the 2011-12 influenza season, three counties
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implemented county-wide influenza vaccination mandates. In the 2012-13 and 2013-14 in-

fluenza seasons, several more counties began implementing vaccination requirements. The

influenza season in which these policies were implemented is indicated for all hospital- and

county-level policies in Table A9. More than half of the hospitals in the state were subject to

an influenza vaccination mandate in the 2013-14 influenza season. Because these mandates

typically required HCWs to be vaccinated against influenza by the start of December at

the latest, and since all influenza seasons in the sample past 2009 did begin until well into

December or later, the timing problem that exists for the 2009 pandemic does not exist in

the following influenza seasons.

The county-level policies were not all implemented in exactly the same fashion. Specifi-

cally, a limited number of these policies only applied only to hospitals, while others applied

more broadly (i.e., all licensed health care facilities). Figure 6 maps the implementation of

these policies over time and distinguishes between the type of county-level mandate. As is

clear from this map, much of the variation in influenza vaccination requirements comes in

the last two seasons in the sample, and most of the county-level policies apply to all licensed

health care facilities.

4.2 Data

To estimate the effects of HCW vaccination mandates on patient outcomes, I make use of

data on the timing of the mandates themselves, vaccination rates for HCWs and outcomes

observed at the hospital.

4.2.1 Mandates

Data on the timing of mandates is compiled from several sources. Information on hospital-

level mandates comes largely from the Immunization Action Coalition (IAC), a non-profit

immunization activist group. IAC’s “Influenza Vaccination Honor Roll” lists health care

organizations across the U.S. that mandate influenza vaccination for their workers as well as

the dates these policies were implemented.24 This is not a comprehensive list of vaccination

mandates, and it is possible that there are hospitals in the sample that do indeed have a

vaccination mandate but are not classified as such in my data. The California Department

of Public Health (CDPH) maintains a list of counties that require influenza vaccination

mandates with information on the implementation date of each.25 This list, however is not

completely accurate with respect to the implementation dates. Through a process of search-

24Source:http://www.immunize.org/honor-roll/influenza-mandates/.
25Source: https://www.cdph.ca.gov/.
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ing for county-level public health orders and identifying the initial date of implementation,

I have either verified or amended the dates of nearly all counties on the list provided by

the CDPH.26 Summary statistics reported in Table 1 indicate the number and percentage of

hospitals subject to vaccination requirements in each influenza season.

4.2.2 HCW Vaccination Rates

As required by California law, all licensed hospitals report, for each influenza season, infor-

mation on their vaccination rates to the CDPH. This information is compiled in their annual

Hospital Employee Influenza Vaccination Reports. Though all hospitals provide informa-

tion on vaccination rates, the within-hospital response rate is not 100% (though most are

well over 90%). The vaccination rate for each hospital and influenza season is calculated

as the percentage of responding employees who are vaccinated. In estimates of the effects

of vaccination mandates on vaccination rates (i.e., the first stage), I only use hospitals that

have response rates of at least 80% in all years. In part due to a statewide law implemented

in 2006 that encouraged but did not require vaccination, the baseline level of vaccination

was relatively high for many hospitals even in the absence of a mandate. As indicated in

Table 1, the average vaccination rate for hospital-years without a mandate is approximately

73%, compared to an average of 91% for hospital-years with a mandate in place.

4.2.3 Hospital Patient Outcomes

The primary data source on outcomes is restricted data on the universe of inpatient hos-

pital admissions in California between 2005 and 2014, obtained through California’s Office

of Statewide Health Planning and Development (OSHPD). For each admission, I observe

the hospital and date of admission, allowing the data to be merged with information on

vaccination mandates and influenza activity.

Unlike the mortality data, in which influenza is rarely indicated as a cause of death, hos-

pital patients routinely receive diagnoses specifically for influenza. This allows the outcome

measure to be more specific in nature. The primary outcome of interest is admissions with

a diagnosis specifically for influenza; admissions are classified as such if any of the up to 25

diagnoses are for influenza.

I also examine a set of less specific outcomes that may be affected during periods of

high influenza activity. These outcomes include a more aggregate classification for influenza-

related diagnoses (pneumonia/influenza), the patient’s length of stay, and the patient’s total

hospital charges. Data on all outcomes is collapsed to the monthly level, where the admissions

26I have compiled a number of public health orders and these documents are available upon request.
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are hospital-by-month counts of influenza-related hospital admissions, and the less specific

measures are average length of stay, and average charges. Summary statistics for all outcomes

are presented in Table 1. In addition to these hospital-level measures, I also examine PI

mortality, which is observed at the county level using restricted data files from the National

Vital Statistics System (i.e., the same outcome as in the analysis in Part I, though at the

county level).

4.3 Empirical Framework

I estimate the impacts of these vaccination requirements using a standard difference-in-

differences framework that exploits the roll-out of these policies over time. The data used

in this analysis is described in Section 4.2. Similar to the mortality analysis, I also use a

triple-difference framework that additionally exploits the timing and magnitude of influenza

activity for outcomes that exhibit variation throughout the year. Because HCW vaccination

rates are measured annually, the triple-difference strategy is not necessary in estimates of

the first-stage. Furthermore, the primary outcomes of interest is influenza-specific diagnoses

(i.e., more specific than PI diagnoses). Because there is no variation in diagnoses that are

specific to influenza in months with no influenza circulating, the triple-difference strategy is

not be necessary for this outcome.27 Consider the following difference-in-differences equation

to be estimated at the annual level:

Yhy = α + πRequiredhy + δh + δy + εhy (5)

In Equation (5), Yhy represents either vaccination rates (first stage), or the number of

influenza diagnoses (reduced form) at hospital h in year y. Requiredhy is a variable indicating

whether there is a vaccination requirement in effect; δh and δy are hospital and year fixed

effects.

The coefficient of interest, π, is identified under the assumption that variation in the tim-

ing of influenza vaccination mandates is uncorrelated with other unobserved time-varying

determinants of the outcomes of interest. The hospital fixed effects control for all hospital-

specific and time invariant factors such as hospital size or hospital type (e.g., research hos-

pitals). The year fixed effects account for factors common to all hospitals and specific to

a given year, such as changes in state or national health policy. While the identifying as-

sumption is fundamentally un-testable, I provide evidence from a number of indirect tests

that support the assumption. Importantly, in the discussion of results I provide an event

27Estimation of the triple-difference specification is possible for this outcome, but results in extremely
large standard errors.

27



study version of Equation (5); this exercise indicates that changes in the outcomes of interest

coincide with the implementation of the policy, and that treatment effects are not identified

off of differential trends between treatment and control hospitals.

Because influenza diagnoses represent a highly specific outcome, many hospital-years

have zero admissions with influenza diagnoses (especially small hospitals). Figure 7 displays

the distribution of this outcome, which clearly indicates that a count model would be pre-

ferred to an OLS estimator. There are several possible count models available, and in the

case of panel data requiring fixed effects (as here) the choice is not trivial.28 The workhorse

count model that allows for fixed effects is the Poisson fixed effects estimator (Hausman et

al., 1984; Wooldridge, 1999); this estimator, unlike many nonlinear models, provides consis-

tent estimates of the slope parameters in the presence of fixed effects. A deficiency of the

Poisson model, however, is that it assumes that the variance and mean of the outcome are

equal (i.e., equi-dispersion). Table 1 clearly indicates the presence of over-dispersion in the

hospitalization counts (i.e., the variance is greater than the mean). The usual solution is

to use a negative binomial in place of a Poisson model, which allows for over-dispersion in

the data. Hausman et al. (1984) offer a fixed-effects version of the negative binomial, but

subsequent work has pointed out that this model requires an additional and often unrealis-

tic assumption regarding the relationship between the fixed effects and the over-dispersion

parameter (Allison and Waterman, 2002; Guimaraes, 2008). An alternative strategy is to

estimate a standard negative binomial model with a full set of indicators as fixed effects. In

nonlinear models using short panels, this leads to biased and inconsistent estimates of the

slope parameters due to an incidental parameters problem. That being said, Allison and

Waterman (2002) provide evidence from Monte Carlo simulations that suggests little bias

resulting from the incidental parameters problem in the case of the negative binomial model

with indicator as fixed effects. I adopt the negative binomial with indicators as fixed effects

as the main specification, though I also show that the results are not sensitive to the choice

of count model.29 With a count model it is important to allow the probability of an event

to occur (i.e., an influenza-related diagnosis) to differ by hospital size. This is done through

the use of an exposure variable, which I set to be the total number of all-cause admissions

at a given hospital over the entire sample period.

For outcomes that vary across all months of the year, the preferred specification is a

triple difference, estimated at the monthly level and taking the following form:

28See Cameron and Trivedi (2013a,b) for a review of count models in general and specifically for panel
data.

29Estimates for a fixed effects Poisson model and a zero-inflated negative binomial model are presented in
Table A10.

28



Yhym = α + θ1(Requiredhym ∗ Activityym) + θ2Requiredhym + δh + δym + εhym (6)

In Equation (6), the policy indicator is interacted with an index of influenza activity,

Activityym. This measure, described previously, is an index that measures influenza activity

at any particular time and ranges from zero to one (where one is the maximum observed

value in the sample). As such, θ1 measures the effect of influenza vaccination mandates

during a time of peak influenza activity relative to a period with zero influenza activity.

Further, θ2 measures the effect of influenza vaccination mandates during times of very low

influenza activity and is expected to be near zero. This in itself provides an additional test

of the validity of the (stronger) assumption required for the difference-in-differences model,

and demonstrating that estimates of θ2 are near zero lends additional credence to the validity

of the assumptions behind the empirical model described in Equation (5).

Because the outcomes of interest here (average charges, average length of stay, PI di-

agnoses, and PI mortality) are less specific in nature, vary throughout all months of the

year, and are rarely equal to zero, a count model is not necessary for the analysis of these

variables.30 The distributions for length of stay and charges at the micro-level (i.e., before

collapsing to the hospital-month level) have extremely long tails. To ensure that my estimates

are not driven by these outliers, I exclude micro-level observations that are above the 99th

percentile of each variable’s distribution before calculating monthly averages. Additionally,

charges are not reported for all inpatient visits. Some hospitals in particular consistently fail

to report charges. Because these observations are unlikely to be missing randomly, I exclude

hospitals that do not report charges for at least 95% of their patients over the sample period

in the analysis of average charges.31

Finally, the data on mortality are derived from a different data source than the hospital-

level measures. The mortality data are only available at the county level and as such only

county-level vaccination mandates are used in the analysis of this outcome. Furthermore, it

should be noted that the estimating equation is slightly distinct in that county fixed effects

are used in place of hospital fixed effects.

30While PI diagnoses still represent a count, these are not typically near zero and thus do not require a
count model.

31This consists of approximately 13% of the hospitals in the sample.
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4.4 Results

The estimates for the first stage and influenza-specific diagnoses are derived using a model

estimated at the annual level (described in Equation (5)) and are presented in Table 10.

The first-stage estimates indicate that influenza vaccination mandates led to increases in the

HCW vaccination rate of approximately 9.9 percentage points. It is important to keep in

mind that the first-stage estimates only represent vaccination rates for hospital workers. This

is especially important in considering the county-level requirements, which often apply far

more broadly than to just hospital workers. Because I do not observe the vaccination rates

of other HCWs, I prefer to display the results in the remainder of the paper as reduced-form

policy estimates rather than providing results in an instrumental variables framework. That

being said, there is reason to believe that the first-stage effect for non-hospital HCWs may

be larger than that of hospital HCWs. The CDC conducts an online survey that provides

national estimates of influenza vaccination for HCWs by place of work. The survey applying

to the 2014-15 influenza season indicated vaccination rates of 78.7%, 66.3%, 54.4% and 55.7%

for HCWs in hospital, ambulatory care, long-term care, and other settings, respectively.

Because hospital workers tend to have the highest baseline vaccination rate, it is likely that

influenza vaccination requirements have a larger effect on workers in settings with a lower

baseline level. That being said, it is also possible that enforcement is weaker in non-hospital

settings; unfortunately I cannot test this with the data available.

The reduced-form estimates presented in Table 10 indicate that HCW vaccination man-

dates lead to an approximate 17% reduction in hospital visits that include a diagnosis for

influenza. Recall that these estimates are derived using a negative binomial model; and

the coefficients reported may be interpreted as percent changes. For all outcomes I present

results that include all years, and results that exclude the 2008-09 and 2009-10 influenza

seasons; this is to ensure that it is not conditions specific to the H1N1 pandemic that are

driving the results. In general, the results are quite similar regardless of this exclusion.

At this point, it is not clear whether the reduction in influenza diagnoses is due to a re-

duction in new admissions (through influenza acquired in a non-hospital health care setting)

or a reduction in influenza acquired in the hospital; I explore this further in Section 4.4.1.

For now, however, I focus on establishing that the observed reduction is indeed a causal

effect.

The results presented in Table 10 are supplemented with event study versions of both

the first-stage and reduced form estimates in Figures 8 and 9. The event-study analysis for

the first-stage reveals no statistically significant effects on influenza vaccination in the years

prior to the implementation of the policy, and highly significant positive effects in the first

year that the mandates are implemented and each year thereafter. For the reduced-form
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event study, I again present versions that include or exclude H1N1 pandemic seasons. The

event-study estimates reveal that there are substantial pre-treatment trends in the outcomes

in treated hospitals compared to the control hospitals. Specifically, it appears as though

influenza diagnoses were increasing in hospitals that adopted these mandates relative to

hospitals that did not. In the first year of policy implementation, however, there exists a

dramatic decrease in the adopting hospitals. This decrease appears to be sustained over

time, though the differential pre-treatment trend appears to persist in the post-period as

well. Because the trends in the outcome are in the opposite direction of the treatment

effects, this implies that estimates of the treatment effects that do not account for these

trends are biased towards zero. Indeed, specifications that include hospital-specific time

trends exhibit somewhat larger point estimates. These estimates are provided in Table A10.

Examining the age groups affected by these policies reveals strikingly different results rel-

ative to the estimates of influenza vaccination rates on mortality. Table 11 reports results for

the following groups: under 1, 1-9, 10-64 and over 64. The estimates indicate that treatment

effects are strongest for children, with infants (under 1) being affected most. In general, it is

not surprising that infants would benefit more on the dimension of hospitalization relative

to mortality, as infants are quite likely to be hospitalized for influenza, but unlikely to die as

a result of infection. The point on hospitalizations is emphasized in Figure 10, which plots

the distribution of influenza diagnoses by single year of age; the plot indicates that infants

are unique in that the number of hospitalizations for this group is much larger than for any

other single year of age.

While the age distribution indicates that infants are more likely to be hospitalized in

general, the estimates indicate that infants receive larger benefits of HCW vaccination com-

pared to other age groups. There are several potential reasons why this could be the case.

First, many hospitalizations for children occur in children’s hospitals; if infectious diseases

are more likely to spread in a children’s hospital setting, then it is likely that increasing the

vaccination rate of employees in these hospitals would have a relatively large effect. Also

note that much of the variation in these policies is identified off of mandates that apply to

all health care facilities in a county, including primary care settings; if pediatric primary

care offices act as an important vector for disease, then it is again likely that increasing

vaccination in these settings would have a disproportionately large effect. In each case, it is

not unreasonable to argue that the spread of disease is more likely among children relative

to adults.

Next, I move on to discussing the results for the less specific outcomes estimated in

the triple-difference framework. Specifically, the results for PI diagnoses, average charges,

average length of stay, and PI mortality are presented in Table 12. Note that all outcomes
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are measured at the hospital level with the exception of PI mortality. The data on mortality

come from the National Vital Statistics System and are measured at the county level, and

thus only county-level HCW vaccination mandates are relevant to these estimates. While

the estimates for PI diagnoses and PI mortality are presented for completeness, these are

not precisely estimated.32

For both average length of stay and average charges, the estimates exhibit greater pre-

cision and indicate that HCW vaccination leads to improvements during months of high

influenza activity. For both, there is no statistically significant effect during periods in

which influenza is not circulating. The estimates for both length of stay and charges are

statistically different from zero at the 10% level in models that include all years, and at the

5% level in models that exclude H1N1 pandemic years.

4.4.1 Mechanisms

To this point, I have provided evidence that patients benefit from HCW vaccination. What

is not yet clear is the mechanism through which these benefits are realized. In this section,

I attempt to discern whether these impacts are driven by one of two alternative (though

not mutually exclusive) mechanisms. The first potential mechanism is that the benefits are

driven by factors within the hospital. The most obvious is the reduced probability that a

patient is infected with influenza during their stay (i.e., hospital-acquired infection). It is

also possible, however, that by vaccinating health care workers and improving the health

of the hospital staff, the hospital is less likely to be understaffed or is otherwise operating

at greater capacity. The second potential mechanism is a reduced probability of infection

in a non-hospital health care setting. In this case, the reduction in influenza diagnoses is a

result of fewer admissions rather than fewer in-hospital infections. This is certainly possible

as most HCW mandates apply not only to hospitals, but all licensed health care facilities

within a county.

The results indicating that HCW vaccination mandates lead to shorter stays with lower

charges support the idea that at least some of the benefits are derived through within-hospital

factors. To test this more directly, however, I make use of a feature of the hospitalization

32For example, the 95% confidence interval for the coefficient on PI diagnoses is (-9.6%, 12.9%). Mul-
tiplying by average monthly influenza activity gives the annual effect and associated confidence interval
(2.4%, 3.3%). Note that for every influenza-specific diagnosis there are approximately 27 PI diagnoses; if the
influenza-specific diagnoses captured the full impact of these mandates (which is unlikely), then the implied
effect on PI admissions (based on the 17% reduction from Table 10) would be approximately -0.6% annually.
If only one in four influenza illnesses were correctly diagnosed with an influenza-specific ICD code (rather
than a more general PI code), the implied effect on PI admissions would still be within the confidence interval
for the estimates using PI diagnoses. Due to the lack of precision in these estimates, I defer to the estimates
using influenza-specific diagnoses as my preferred estimate for the effects on influenza-related diagnoses.
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data that indicates whether each diagnosis was present at the time that the patient was

admitted. In Table 13, I separately analyze the effects of HCW mandates on influenza

diagnoses that were or were not present at the time of admission. I interpret diagnoses

that were present at the time of admission as new admissions, and diagnoses not present

at the time of admission as hospital-acquired. Because a large proportion of total influenza

diagnoses are classified as present at admission, the estimates for this category are quite

similar to those in the main analysis. The estimates for diagnoses that were not present

at admission are substantially larger in percentage terms; the estimates indicate that HCW

vaccination mandates lead to an approximate 35% reduction in hospital-acquired influenza

diagnoses. In general, this evidence suggests that the reduction in influenza diagnoses is

driven by both influenza acquired within and outside of the hospital setting.

4.4.2 Estimating Benefits

As with the analysis conducted at the national level, one of the primary purposes of this

analysis is to estimate the marginal social benefit of vaccination in monetary terms. Due

to relatively imprecise estimates and the fact that it will be necessary to make somewhat

stronger assumptions, the figure I derive here should be taken with some degree of caution

relative to the estimates for the national-level analysis. I believe that this back-of-the-

envelope calculation is informative nonetheless.

To estimate the marginal social benefit of HCW vaccination, I use the estimate corre-

sponding to the reduction in influenza diagnoses that were present on admission, assuming

that these represent new admissions (i.e., the admissions would not have taken place in

absence of the policy). To arrive at a figure of benefits per vaccination, I use figures cor-

responding to California as a whole and consider a hypothetical policy that considers a

statewide HCW vaccination mandates (relative to no mandate). First, the mean annual

number of admissions with an influenza diagnoses that was present on admission is 6,451.

This figure excludes the H1N1 pandemic season, during which there were significantly more

admissions relative to a typical season. Furthermore, this figure includes the years in which

mandates were in place for some hospitals, and thus represents a lower bound on the coun-

terfactual in which HCW mandates were never introduced. Multiplying this figure by the

estimated reduction indicates 1,097 fewer admissions each year. The average charges for

these influenza-related admissions is $58,803. Since charges do not necessarily represent the

cost of providing services or the willingness to pay to avoid an illness, I prefer to use a

measure of the cost of providing hospital services. This measure is obtained by multiplying

charges by a cost-to-charge ratio. This ratio (0.288) is specific to hospitals in California and

is derived from the National Inpatient Sample provided by the Healthcare Cost and Uti-
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lization Project. Average hospital costs for influenza-related admissions are then $16,935.

The implied benefits of these mandates are approximately $18.5 million per year if applied

statewide. To arrive at a per-vaccination figure, I require an estimate of the number of

vaccinations required to achieve this. The Bureau of Labor Statistics estimates there were

approximately 1.10 million workers in occupations related to the health care industry in

California during 2015. Multiplying by the first-stage estimate of 0.098 implies 108,057 ad-

ditional vaccinations would be received in the hypothetical statewide policy. The implied

benefits are equal to $171.9 per HCW vaccination on the margin of reduced hospital costs.

5 Discussion and Conclusion

In this paper, I estimate the marginal social benefits of influenza vaccination for the general

population and for the population of health care workers. In both cases, I provide policy-

relevant estimates of the benefits per vaccination: these benefits are estimated to be $67

in terms of reduced mortality (at minimum), $49 in terms of work hours gained, and $172

per health care worker vaccination in terms of reduced health care costs. How do these

benefits compare to the costs of prospective vaccination programs? Prosser et al. (2008)

estimates that the cost of administering a vaccination (including the medicine, labor, over-

head, promotion, and other expenses) ranges from $15 in a mass vaccination setting to $37

in a schedule doctor’s office visit.33 Administration costs, however, may only represent a

portion of the total private costs of vaccination if there are significant non-monetary costs

such as inconvenience or discomfort. Indeed, many choose not to vaccinate despite monetary

costs equal to zero (influenza vaccination is covered under Medicare, and many health plans

cover vaccination with zero copay). Recognizing these non-monetary costs of vaccination is

critical in the development of policies that encourage influenza vaccination.

What do these estimates suggest for vaccination policy? The answer to this question de-

pends on the type of policy under consideration. Let us consider two prospective vaccination

policies in turn: a policy to increase vaccination in the general population and a policy to

increase the vaccination rates among health care workers.

The analysis of aggregate vaccination rates is relevant to a policy that would increase

vaccination rates among the general population by targeting those on the margin of the

decision to vaccinate. Such a policy could be accomplished through a number of mechanisms:

by providing monetary incentives or by reducing non-monetary costs through increasing

accessibility to vaccine providers, for instance. The marginal social benefits that I estimate

suggest that vaccination policy resulting in marginal increases in the vaccination rate above

33Dollar estimates are converted to $US 2016 dollars
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current levels is beneficial so long as the marginal cost curve does not increase steeply at the

current level of vaccination. While such a steep increase in the cost curve is conceivable at

some level of vaccination, as some individuals are opposed to vaccination on religious grounds

or concerns over vaccine safety, that level is likely to be quite high as those individuals

represent only a small portion of the total population (Kennedy et al., 2005).

Policymakers may even consider incentive schemes that target the socially optimal level

of vaccination in the population (i.e., non-marginal changes). Models of disease dynamics,

such as Boulier et al. (2007), suggest that the marginal benefits of vaccination are relatively

constant until a threshold level of vaccination is reached and an epidemic is no longer experi-

enced. If the marginal social cost curve does not increase steeply prior to this threshold, the

results presented here suggest that targeting vaccination rates at a level near the threshold is

likely to be socially optimal. If policymakers are risk averse and the location of the threshold

is unknown, it may be the case that targeting a level of vaccination that is safely beyond the

threshold is optimal as well, so long as the marginal costs are not too large.

Considering vaccination policy that applies only to health care workers is a somewhat

more simple thought experiment: such policy only affects a small portion of the popula-

tion, and is unlikely to result in such large benefits that a threshold level of vaccination is

reached. For health care workers, the estimates presented here are large in comparison to

adminstration costs. It is worth noting that many health care facilities employ mass vac-

cination campaigns that not only reduce the administrative costs of vaccination, but likely

reduce any inconvenience costs through making vaccination highly accessible (Prosser et al.,

2008; Nowalk et al., 2013). The estimates in this paper are relevant to policies that mandate

influenza vaccination, creating an extremely high cost for those choosing not to vaccinate.34

It is possible that other incentive-based programs could achieve a more efficient result if there

are individuals for which the marginal cost of vaccination is very high, yet still choose to

vaccinate under a mandate given an even higher cost of choosing not to do so. In any case,

the social benefits of health care worker vaccination that I estimate are large, indicating that

policies increasing vaccination among health care workers are cost-effective under reasonable

assumptions regarding the costs.

In summary, I estimate that the social benefits of influenza vaccination are substantial

and that much of the total benefits are realized through externality effects. Determining the

socially optimal level of vaccination depends critically on the marginal cost of vaccination and

the shape of the marginal cost curve – under reasonable assumptions about these marginal

costs, the results of this study indicate that policies that encourage take-up of influenza

34Most mandates do allow for medical exemptions and for those choosing not to vaccinate to wear a
surgical mask through the remainder of influenza season.
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vaccination in either the general population or in the population of health care workers are

cost-effective.
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Figures & Tables

Figure 1: Marginal Benefits of Vaccination
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This figure reproduces the results of Boulier et al. (2007), describing the theoretical marginal social and
marginal private benefits of influenza vaccination for two levels of vaccine effectiveness (100% and 50%).
Even in well-matched seasons, estimates of influenza vaccine effectiveness are closer to the 50% figure.
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Figure 2: Geography of Vaccination and Mortality Rates
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Figure 3: Vaccination and Influenza Timing
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Note – This plot displays average monthly influenza activity and the average cumulative vaccination rate
across years. Data on the timing of vaccination is available beginning in 2007. The year of the H1N1 influenza
pandemic (2009) was excluded from the averages represented in this figure as it was a highly abnormal year
in terms of the timing of both influenza activity and vaccination.
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Figure 4: Actual and Effective Vaccination Rates
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Note – There was a vaccine shortage in the 2004/05 season. As a result of this shortage, vaccines were
allocated to “high-risk” groups including the elderly; as such, members of the non-elderly adult population
(18-64) were disproportionately affected.
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Figure 5: Age-Adjusted Value of a Statistical Life
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Note – The single-age VSL figures are derived from Murphy and Topel (2006), but adjusted to reflect the
either the EPA’s prime-age VSL figure of $8.8 million or the estimate from Ashenfelter and Greenstone
(2004) of $2.31 million (denoted “AG”), and converted to 2016 dollars. To construct a VSL figure for each
age group, I take a weighted average of these single-age VSL figures, where the weight is the share of deaths
represented by each age. The implicit assumption is that deaths avoided because of influenza vaccination
would have had the same age distribution as all-cause deaths within each age group.
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Figure 6: California Mandates
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These plots display the roll-out of influenza vaccination mandates. Circles represent policies implemented at
the hospital level and shaded regions represent policies implemented at the county level. The lighter shaded
regions represent county-level policies that apply only to hospitals, and the darker regions represent county-
level policies that apply more broadly. In two cases, county-level policies that applied only to hospitals and
were subsequently replaced with policies applying more broadly.
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Figure 7: Distribution of Influenza Admissions
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This plot displays the distribution of the number of admissions with an influenza diagnosis at the hospital-
by-year level. The large number of hospital-years with zero observations is driven by a relatively small
number of very small hospitals. The right tail is longer than implied by this plot, though there are very few
observations with more than 100 influenza diagnoses; the maximum value is 403.
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Figure 8: First Stage Event Study (HCW Vaccination Rates)
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Points on this plot represent the point estimates from an event-study version of Equation (5) with HCW
vaccination rates as the outcome. Shaded regions represent 95% confidence intervals around the point
estimates. The event-study version is estimated by replacing the policy indicator (Requiredhym) with a

series of variables indicating years relative to the policy:
∑−3

j=−4 γjRequiredhymj +
∑3

j=−1 γjRequiredhymj .
Note that the indicator representing two years prior to the policy is omitted as the reference group.
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Figure 9: Reduced Form Event Study (Influenza Diagnoses)
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Points on this plot represent the point estimates from an event-study version of Equation (5) with influenza-
related admissions as the outcome. Shaded regions represent 95% confidence intervals around the point
estimates. The event-study version is estimated by replacing the policy indicator (Requiredhym) with a

series of variables indicating years relative to the policy:
∑−2

j=−4 γjRequiredhymj +
∑T

j=0 γjRequiredhymj .
Note that the indicator representing two years prior to the policy is omitted as the reference group and that
the final time period (T ) depends on whether hospital-level policies (T = 4) or county-level policies (T = 2)
are being analyzed
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Figure 10: Age Distribution of Influenza Admissions
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This plot displays the single-year age distribution of influenza admissions. This emphasizes that infants are
at the highest risk of hospitalization for influenza. Note that this includes all years of data including the
2009 H1N1 pandemic. The age distribution of the 2009 pandemic was somewhat younger than a typical
year, accounting for a larger-than-typical number of admissions in the 20-60 range.

50



Table 1: Summary Statistics

Variable Mean (SE) # Hospitals Affected Percentage
National Data

Vaccination Rate 34.45 (6.51) - -
Vaccination Rate ≥ 75 72.06 (7.39) - -
Vaccination Rate < 75 31.42 (6.52) - -
Match Rate 0.739 (0.287) - -
Influenza Activity (1993-2014) 0.188 (0.228) - -
Pneumonia/Influenza (PI) Mortality 6.21 (2.14) - -
R&C Mortality 36.24 (11.93) - -
All-Cause Mortality 71.84 (12.78) - -
Non-R&C Mortality 35.60 (9.48) - -
Illness Absence 0.025 (0.009) - -
Other Absence 0.093 (0.045) - -
Hours Worked 37.73 (1.317) - -

California Hospital Data

HCW Vaccination Rate (No Mandate) 0.733 (0.120) - -
HCW Vaccination Rate (Mandate) 0.910 (0.061) - -
Influenza Activity (2007-2014) 0.254 (0.241) - -
Influenza Activity (Excluding H1N1) 0.238 (0.208) - -
Influenza Diagnoses (Annual) 16.00 (30.15) - -
PI Diagnoses (Annual) 437.22 (429.06)
Average Length of Stay 5.584 (4.224) - -
Average Charges 31,650 (15,821) - -
Required 2009-10 - - 13 0.030
Required 2010-11 - - 18 0.040
Required 2011-12 - - 44 0.099
Required 2012-13 - - 121 0.273
Required 2013-14 - - 252 0.563

Peak intensity is the average of the annual maximum values of influenza intensity. Peak
intensity excluding 2009 is intended to measure the annual peak of seasonal influenza activity
and is useful for calculating estimated policy effects using the triple difference model.

51



Table 2: Effects of the Match Rate on Vaccination Rates

(1) (2)
Match -0.461∗ -0.358

(0.184) (1.890)
Match × Mean Vacc Rate -0.003

(0.055)
N 1,070 1,070

The outcome in these regressions is the vaccination rate.
While the regressions are estimated at the state-month-year
level (the same level as the analysis to come), neither match
rates and vaccination rates vary by month in the data. The
interaction with mean vaccination rates is intended to test
whether high- and low-vaccination states respond differen-
tially to match rates. Regressions include state fixed effects
and a linear time trend. Standard errors are clustered at the
state level. ** p<0.01; * p<0.05; + p<0.1
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Table 3: Pneumonia/Influenza Mortality (Diff-in-Diff)

(1) (2) (3)
Panel A: All Months

Vacc × Match 0.002 -0.036∗∗ -0.035∗∗
(0.023) (0.010) (0.013)

Vacc 0.109∗∗ 0.007 0.006
(0.040) (0.016) (0.024)

N 12,534 12,534 11,012

Panel B: High Activity Months

Vacc × Match -0.135∗∗ -0.161∗∗ -0.139∗∗
(0.042) (0.035) (0.043)

Vacc 0.276∗∗ 0.109∗∗ 0.071
(0.059) (0.036) (0.044)

N 1,835 1,835 1,376

Panel C: Low Activity Months

Vacc × Match 0.010 -0.021∗ -0.023∗
(0.022) (0.009) (0.011)

Vacc 0.091∗ -0.006 0.003
(0.038) (0.015) (0.025)

N 10,699 10,699 9,279

Month-Year Fixed Effects X X X
State-Month Fixed Effects - X X
IV - - X
Mean Dep. Var. 6.21 6.21 6.21

“High Activity” is defined as months where the influenza index is at least 0.5, and
“Low Activity” is months where the influenza index is less than 0.5. The “IV”
specification indicates that the vaccination rate from three years prior is used as an
instrument for the current year’s vaccination rate. Standard errors are clustered
at the state level. ** p<0.01; * p<0.05; + p<0.1
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Table 4: Pneumonia/Influenza Mortality (Triple Difference)

(1) (2) (3)
Vacc × Match × Activity -0.192∗∗ -0.196∗∗ -0.183∗∗

(0.054) (0.047) (0.062)

Vacc × Match 0.017 -0.009 -0.007
(0.019) (0.008) (0.011)

Vacc × Activity 0.287∗∗ 0.220∗∗ 0.198∗∗
(0.061) (0.050) (0.062)

Vacc 0.069+ -0.028+ -0.029
(0.035) (0.017) (0.027)

Expected Annual Benefit -0.302∗∗ -0.309∗∗ -0.288∗∗
(0.085) (0.074) (0.097)

Month-Year Fixed Effects X X X
State-Month Fixed Effects - X X
IV - - X
Mean Dep. Var. 6.21 6.21 6.21
N 12,534 12,534 11,012

The “Expected Annual Benefit” is the coefficient on the triple interaction
scaled by a factor of Match ×

∑
m Activitym (approximately 1.57) and is

intended to measure the annual reduction in the mortality rate that would
be expected to result from a one percentage point increase in the vaccination
rate. The “IV” specification indicates that the vaccination rate from three
years prior is used as an instrument for the current year’s vaccination rate.
Standard errors are clustered at the state level. ** p<0.01; * p<0.05; +
p<0.1
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Table 5: Mortality by Cause

(1) (2) (3)
R&C Mortality (Mean = 36.24)

D-D-D Effect -0.173 -0.242∗ -0.293∗∗
(0.131) (0.102) (0.096)

All-Cause Mortality (Mean = 71.84)

D-D-D Effect -0.071 -0.219 -0.269∗
(0.215) (0.146) (0.133)

Non R&C (Mean = 35.60 )

D-D-D Effect 0.102 0.022 0.024
(0.125) (0.086) (0.081)

Month-Year Fixed Effects X X X
State-Month Fixed Effects - X X
IV - - X
N 12,534 12,534 11,012

“R&C” refers to respiratory and circulatory deaths. Deaths are classified as R&C if any of
the diagnosis codes are for a respiratory or circulatory illness (ICD9: 390-419; ICD10: “I”
codes and “J” codes); note that pneumonia/influenza deaths are included among R&C
deaths. Non-R&C is presented as a falsification test. All coefficients represent estimates of
the triple-interaction (Vacc × Match × Activity) from the triple-difference specification.
Standard errors are clustered at the state level. ** p<0.01; * p<0.05; + p<0.1
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Table 6: Pneumonia/Influenza Mortality by Age

(1) (2) (3)
Age Under 1

D-D-D Effect -0.003+ -0.002 -0.002
(0.002) (0.002) (0.002)

[2%] [1%] [1%]
Age 1-9

D-D-D Effect -0.001 -0.000 0.000
(0.001) (0.001) (0.001)

[1%] [0%] [0%]
Age 10-64

D-D-D Effect -0.006 -0.016+ -0.009
(0.011) (0.009) (0.010)

[5%] [8%] [5%]
Age Over 64

D-D-D Effect -0.182∗∗ -0.178∗∗ -0.173∗∗
(0.050) (0.043) (0.056)

[93%] [91%] [94%]
Age Over 74

D-D-D Effect -0.178∗∗ -0.165∗∗ -0.175∗∗
(0.048) (0.040) (0.052)

[90%] [84%] [95%]
Month-Year Fixed Effects X X X
State-Month Fixed Effects - X X
IV - - X
N 12,534 12,534 11,012

Age-specific mortality rates are calculated as the number of deaths per
100,000 total individuals in the population (i.e., the denominator is not
age-specific). As such, these estimates represent an accounting of the to-
tal mortality benefits of increased vaccination – the sum of the mutually
exclusive age categories equals the total effect. The percentage of total
benefits is reported in brackets (the age-specific coefficient here divided by
the all-age coefficient in Table 4. I report additional estimates in Table A2 in
which the denominator is age-specific. All coefficients represent estimates of
the triple-interaction (Vacc × Match × Activity) from the triple-difference
specification. Standard errors are clustered at the state level. ** p<0.01; *
p<0.05; + p<0.1
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Table 7: Pneumonia/Influenza Mortality – Externality Effects

Age ≥ 75 Mortality
(1) (2) (3)

D-D-D Effect (≥ 75 Vaccination) -0.021 -0.041 -0.110∗
(0.035) (0.028) (0.049)

[15%] [27%] [65%]

D-D-D Effect (< 75 Vaccination) -0.116∗ -0.110∗ -0.060
(0.054) (0.044) (0.077)

[85%] [72%] [35%]

Month-Year Fixed Effects X X X
State-Month Fixed Effects - X X
IV - - X
N 12,534 12,534 11,012

Coefficients represent estimates of the triple-interaction terms (Vacc × Match × Ac-
tivity) from a triple-difference specification; the specification represented by these
estimates includes the full set of variables and interactions for two age-specific vac-
cination rates (≥ 75 and <75). The estimate corresponding to the ≥ 75 group
represents a combination of direct and partial externality effects from influenza vac-
cination; the coefficient corresponding to the < 75 group is intended to measure a
pure externality effect. The figure in brackets represents the percentage of the total
effect that each individual effect accounts for. ** p<0.01; * p<0.05; + p<0.1
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Table 8: Monetized Benefits of Mortality Reductions

Scaled Nationally

Age-Adjusted VSL Number of Deaths Monetized Value Value Per Vaccination
EPA VSL ($8.8 million 2016$)

Age Under 10 $8,705,051 13.7 $119,259,198 $37.4
Age 10-64 $6,470,611 80.8 $522,825,368 $163.9
Age 65-74 $2,866,840 62.4 $178,890,816 $56.1
Age Over 74 $975,689 829.7 $809,529,163 $253.8
Total - 986.6 $1,630,504,545 $511.1

AG VSL ($2.3 million 2016$)

Age Under 10 $2,285,076 13.7 $31,305,542 $9.8
Age 10-64 $1,698,535 80.8 $137,241,675 $43.0
Age 65-74 $752,545 62.4 $46,958,842 $14.7
Age Over 74 $256,118 829.7 $212,501,490 $66.6
Total - 986.6 $428,007,549 $134.11

Value of a Statistical Life (VSL) estimates are generated using the EPA’s figure of $8.8 million or the estimate from Ashenfelter and Greenstone (2004) of $2.3
million (denoted “AG”), applied to the method of Murphy and Topel (2006) to calculate age-adjusted VSL figures for each age group. Estimates correspond to
a one percentage point increase in the vaccination rate, and correspond to the model that includes state-by-month fixed effects but does not use the IV strategy.
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Table 9: Labor Market Impacts

(1) (2) (3)
Absent for Illness (Mean = 0.025)

D-D-D Effect -0.00064∗∗ -0.00052∗ -0.00048+
(0.00024) (0.00023) (0.00025)

Hours Worked (Mean = 35.60)

D-D-D Effect 0.0681 0.0402 0.0372
(0.0423) (0.0322) (0.0387)

Absent for Other Reason (Mean = 0.093)

D-D-D Effect 0.0013 0.0002 -0.0002
(0.0008) (0.0007) (0.0009)

Value Per Vaccination $60.50 $49.17 $45.38
Month-Year Fixed Effects X X X
State-Month Fixed Effects - X X
IV - - X
N 12,636 12,636 11,462

The reported “Benefit Per Vaccination” represents a calculation based off of the effects on illness absences
and is intended to measure the marginal social benefit of influenza vaccination on the margin of gains
in work hours; this calculation is described in Section 3.3.5. All coefficients represent estimates of the
triple-interaction (Vacc × Match × Activity) from the triple-difference specification. Standard errors are
clustered at the state level. ** p<0.01; * p<0.05; + p<0.1
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Table 10: Effects of HCW Mandates – First Stage and Influenza Diagnoses

(1) (2) (3)
Vaccination Rates (First Stage)

Required 0.0988∗∗ - -
(0.0123)

Influenza Diagnoses

Required - -0.171∗∗ -0.187∗
(0.0652) (0.0760)

Drop H1N1 Seasons - - X
N 1,524 3,280 2,460

Note that the mean vaccination rate among hospital workers with no vaccination man-
date is approximately 73%. H1N1 seasons are the 2008-09 and 2009-10 seasons. These
are dropped because the timing of vaccination relative to the epidemic is not clear.
Standard errors are clustered at the county level. The smaller number of observations
for the first stage is due to the fact that these data are available beginning in 2008,
and that these data are not available for all hospitals, as discussed in Section 4.2. **
p<0.01; * p<0.05; + p<0.1
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Table 11: Effects of HCW Mandates by Age – Influenza Diagnoses

(1) (2)
Age Under 1

Required -0.446∗∗ -0.436∗∗
(0.120) (0.140)

N 2,008 1,506

Age 1-10

Required -0.282∗∗ -0.216∗∗
(0.0699) (0.0784)

N 1,648 1,236

Age 10-64

Required -0.102 -0.111
(0.0830) (0.101)

N 3,272 2,454

Age Over 64

Required -0.104 -0.139+
(0.0786) (0.0790)

N 3,120 2,340

Drop H1N1 Seasons - X

H1N1 seasons are the 2008-09 and 2009-10 seasons.
These are dropped because the timing of vaccination rel-
ative to the epidemic is not clear. Standard errors are
clustered at the county level. Hospitals are excluded from
each regression if there is not at least one age-specific ad-
mission in all time periods, accounting for the difference
in sample sizes. ** p<0.01; * p<0.05; + p<0.1
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Table 12: Effects of HCW Mandates – Other Outcomes

ihs(PI Diagnoses) ln(Length of Stay) ln(Charges) ihs(PI Mortality)
Required×Activity 0.0340 0.0241 -0.0220+ -0.0321∗ -0.0116+ -0.0142∗ -0.0172 -0.0176

(0.0498) (0.0535) (0.0124) (0.0133) (0.0059) (0.0069) (0.0590) (0.0588)
Required -0.007 -0.003 -0.0126 -0.0108 -0.0039 -0.0047 -0.0424 -0.0410

(0.0187) (0.0183) (0.0167) (0.0173) (0.0079) (0.0079) (0.0451) (0.0458)
Drop H1N1 Seasons - X - X - X - X
County-Level - - - - - - X X
N 38,304 28,728 34,080 25,560 38,296 28,720 6,874 5,499

Note that the inverse hyperbolic sine is used in place of the log specification for PI diagnoses and PI mortality due to a small number of zeroes
in each measure. H1N1 seasons are the 2008-09 and 2009-10 seasons. These are dropped because the timing of vaccination relative to the
epidemic is not clear. The smaller number of observations for the estimates of charges results from the fact that charges are not consistently
reported by all hospitals; hospitals that do not report charges for at least 95% of admissions are dropped. Furthermore, length of stay is
unreported for approximately 1% of admissions; averages cannot be calculated for these outcomes when all hospital-by-month outcomes are
missing – this typically only occurs when there is a single observation in that cell. Standard errors are clustered at the county level. ** p<0.01;
* p<0.05; + p<0.1
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Table 13: Effects of HCW Mandates – Mechanisms

(1) (2)
Influenza Diagnoses (Present on Admission)

Required -0.170∗∗ -0.186∗
(0.0647) (0.0754)

Influenza Diagnoses (Not Present on Admission)

Required -0.358∗ -0.346+
(0.149) (0.193)

Drop H1N1 Seasons - X
N 3,280 2,460

H1N1 seasons are the 2008-09 and 2009-10 seasons. These are dropped because the timing of
vaccination relative to the epidemic is not clear. Standard errors are clustered at the county
level. ** p<0.01; * p<0.05; + p<0.1
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Table A1: PI Mortality – Exclude Interpolated Vaccination Rates

(1) (2) (3)
Vacc × Match × Activity -0.220∗∗ -0.219∗∗ -0.195∗∗

(0.059) (0.048) (0.068)
Vacc × Match 0.024 -0.013 -0.011

(0.022) (0.008) (0.011)
Vacc × Activity 0.293∗∗ 0.234∗∗ 0.202∗∗

(0.063) (0.050) (0.064)
Vacc 0.078∗ -0.026 -0.032
Month-Year Fixed Effects X X X
State-Month Fixed Effects - X X
IV - - X
Mean Dep. Var. 6.21 6.21 6.21
N 10,398 10,398 9,788

These estimates reproduce the estimates reported in Table 4, but drop the
years in which interpolated vaccination rates were employed. The “IV”
specification indicates that the vaccination rate from three years prior is
used as an instrument for the current year’s vaccination rate. Standard
errors are clustered at the state level. ** p<0.01; * p<0.05; + p<0.1

64



Table A2: PI Mortality by Age – Age Specific Rates (Triple Diff)

(1) (2) (3)
Age Under 1

-0.205+ -0.176 -0.149
(0.116) (0.118) (0.135)

Age 1-9
-0.005 -0.002 0.004
(0.011) (0.011) (0.014)

Age 10-64
-0.015 -0.026∗ -0.017
(0.014) (0.012) (0.013)

Age Over 64
-1.082∗∗ -1.158∗∗ -0.968∗
(0.350) (0.309) (0.417)

Age Over 74
-1.744∗∗ -1.886∗∗ -1.781∗
(0.629) (0.557) (0.771)

Month-Year Fixed Effects X X X
State-Month Fixed Effects - X X
IV - - X
N 12,534 12,534 11,012

The estimates reported here differ from the estimates reported in the main
analysis in that the age-specific mortality rates are calculated using age-
specific population counts as the denominator. The advantage of this ap-
proach is that the estimates take into account differences in the size of
the group affected, and thus indicates whether certain groups are affected
relatively more than others. All coefficients represent estimates of the triple-
interaction (Vacc × Match × Activity) from the triple-difference specifica-
tion. Standard errors are clustered at the state level. ** p<0.01; * p<0.05;
+ p<0.1
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Table A3: PI Mortality Specification Checks (Triple Difference)

(1) (2) (3) (4) (5) (6) (7)
Vacc × Match × Activity -0.140+ -0.192∗∗ -0.183∗ -0.169∗∗ -0.150∗ -0.178∗∗ -0.165∗∗

(0.079) (0.051) (0.071) (0.048) (0.069) (0.047) (0.062)

Vacc × Match -0.016 -0.015 -0.010 - - - -
(0.017) (0.009) (0.011)

Vacc × Activity 0.234∗∗ 0.273∗∗ 0.260∗∗ 0.255∗∗ 0.237∗∗ 0.202∗∗ 0.177∗∗
(0.085) (0.059) (0.077) (0.057) (0.076) (0.048) (0.060)

Vacc 0.110∗∗ -0.037∗ -0.041 - - - -
(0.039) (0.018) (0.028)

Month-Year Fixed Effects X X X X X X X
State Fixed Effects - X X - - - -
State-Year Fixed Effects - - - X X X X
State-Month Fixed Effects - - - - - X X
IV (t-3) X - X - X - X
N 11,012 12,534 11,012 12,534 11,012 12,534 11,012

Standard errors are clustered at the state level. ** p<0.01; * p<0.05; + p<0.1
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Table A4: PI Mortality - Regional Triple Diff

Exclude Pre-1998 Regional Variation in Match

(1) (2) (3) (4) (5) (6)
Vacc × Match × Activity -0.202∗∗ -0.199∗∗ -0.188∗ -0.214∗∗ -0.200∗∗ -0.185∗

(0.059) (0.051) (0.080) (0.060) (0.052) (0.084)

Vacc × Match 0.030 -0.015 -0.009 0.017 -0.015 -0.009
(0.026) (0.010) (0.013) (0.023) (0.010) (0.013)

Vacc × Activity 0.262∗∗ 0.214∗∗ 0.196∗∗ 0.277∗∗ 0.220∗∗ 0.199∗
(0.063) (0.055) (0.074) (0.065) (0.055) (0.079)

Vacc 0.091∗ -0.029+ -0.040 0.100∗∗ -0.029∗ -0.039
(0.036) (0.014) (0.028) (0.036) (0.014) (0.029)

Match × Activity - - - 8.282∗ 8.699∗∗ 7.736+
(3.236) (2.426) (3.969)

Match - - - 1.394 0.457 0.113
(1.370) (0.666) (0.640)

Expected Annual Benefit -0.317 -0.313 -0.295 -0.337 -0.314 -0.291
Mean Dep. Var. 6.02 6.02 6.02 6.02 6.02 6.02
Month-Year Fixed Effects X X X X X X
State-Month Fixed Effects - X X - X X
IV - - X - - X
N 9,486 9,486 7,650 9,486 9,486 7,650

The first three columns represent estimates from regressions similar to Table 4, except that they exclude years prior
to 1998. This is included for comparison with the regressions reported in the following columns that utilize data on
match rates that are region-specific; this data is only available in years prior to 1998. Note that the Match × Activity
and Match variables need to be included in these regressions are they are no longer absorbed by the month-year fixed
effects. Standard errors are clustered at the state level. ** p<0.01; * p<0.05; + p<0.1
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Table A5: PI Mortality - Leave One Out Triple Diff

(1) (2) (3)
Vacc × Match × Activity -0.182∗∗ -0.185∗∗ -0.180∗∗

(0.060) (0.050) (0.064)
Vacc × Match 0.014 -0.013 -0.011

(0.018) (0.008) (0.011)
Vacc × Activity 0.278∗∗ 0.217∗∗ 0.203∗∗

(0.065) (0.052) (0.064)
Vacc 0.074∗ -0.025 -0.026

(0.034) (0.017) (0.027)
Match × Activity 11.07∗ 14.92∗∗ 15.16∗∗

(4.59) (3.32) (3.36)
Activity -23.85∗∗ -22.58∗∗ -22.55∗∗

(5.47) (3.02) (3.08)
Mean Dep. Var. 6.21 6.21 6.21
Month-Year Fixed Effects X X X
State-Month Fixed Effects - X X
IV - - X
N 12,534 12,534 11,012

Influenza activity in these regressions is defined as the average measure
of influenza activity across all regions except the region of analysis. The
purpose is to ensure that the measure of influenza activity is not influenced
by local vaccination behavior. Because activity varies by state in these
estimates, the interaction of the match rate with influenza activity (Match
× Activity) and the main effect for influenza activity (Activity) are not
absorbed by the time period fixed effects. Caution should be exercised
in interpreting these estimates, however, as they represent out of sample
predictions (i.e., zero vaccination rate). Standard errors are clustered at
the state level. ** p<0.01; * p<0.05; + p<0.1
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Table A6: PI Mortality - Monthly Triple Diff

(1) (2) (3)
Vacc × Match × High -0.038+ -0.041∗ -0.044+

(0.021) (0.018) (0.023)

Vacc × Match 0.006 -0.026∗ -0.022+
(0.020) (0.010) (0.012)

Vacc × High 0.082∗∗ 0.027 0.014
(0.026) (0.016) (0.021)

Vacc 0.088∗ -0.000 0.004
(0.033) (0.016) (0.026)

Scaled DDD Effect -0.131 -0.141 -0.151
Mean Dep. Var. 6.21 6.21 6.21
Month-Year Fixed Effects X X X
State-Month Fixed Effects - X X
IV - - X
N 12,534 12,534 11,012

“High” Refers to months December through March; these are the months
during which influenza circulation is typically highest. The average values
of the influenza activity measure during during “High” and “Low” months
are 0.38 and 0.09, respectively. Because the main estimates represent the
difference in Vacc × Match between periods of maximum influenza activity
(Activity=1) and zero influenza activity, the estimates presented here are
not directly comparable. “Scaled DDD Effect” is reported for comparison
with the main estimates in Table 4, and is equal to the reported DDD
coefficient scaled by a factor of 1/(0.38-0.09). Standard errors are clustered
at the state level. ** p<0.01; * p<0.05; + p<0.1

Table A7: PI Mortality - Lagged Impacts

Add One Lag Add Two Lags

(1) (2) (3) (4) (5) (6)
DDD Effect -0.269∗∗ -0.243∗∗ -0.231∗∗ -0.244∗∗ -0.189∗∗ -0.176∗∗

(0.065) (0.055) (0.073) (0.063) (0.049) (0.062)
Month-Year Fixed Effects X X X X X X
State-Month Fixed Effects - X X - X X
IV - - X - - X
N 12,434 12,434 11,012 12,434 12,434 11,012

Estimates test whether the contemporaneous month is sufficient to capture the full extent of influenza-related
mortality. “Add One Lag” estimates replicate the estimates in Table 4, but include a one month lag in the
interactions that include influenza activity. The reported coefficients are the sum of the contemporaneous and
lagged impact. “Add Two Lags” extends this to include an additional month. Standard errors are clustered at
the state level. ** p<0.01; * p<0.05; + p<0.1

69



Table A8: PI Mortality by Age – Alternate Categories

(1) (2) (3)
Age Under 10

D-D-D Effect -0.0035∗ -0.0027 -0.0016
(0.0016) (0.0016) (0.0014)

[-17.78] [-13.65] [-8.20]

Age 10-64

D-D-D Effect -0.006 -0.016+ -0.009
(0.011) (0.009) (0.010)

[-31.95] [-80.79] [-46.39]

Age 65-74

D-D-D Effect -0.004 -0.012 0.003
(0.013) (0.014) (0.012)

[-22.23] [-62.43] [14.08]

Age Over 74

D-D-D Effect -0.178∗∗ -0.165∗∗ -0.175∗∗
(0.048) (0.040) (0.052)

[-892.47] [-829.66] [-879.29]

Month-Year Fixed Effects X X X
State-Month Fixed Effects - X X
IV - - X
N 12,534 12,534 11,012

This table presents age-specific mortality impacts corresponding to the age groups
used in the calculation of monetary benefits. In brackets is the estimated number
of deaths avoided due to a national policy increasing the influenza vaccination
rate by one percentage points. All coefficients represent estimates of the triple-
interaction (Vacc × Match × Activity) from the triple-difference specification.
Standard errors are clustered at the state level. ** p<0.01; * p<0.05; + p<0.1
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Table A9: Policy Timing

Hospital Season County Season
Children’s of Orange 2009 (H1N1) Sacramento 2011-12
Community Hospital of LB 2009 (H1N1) San Luis Obispo 2011-12
Hoag Hospitals 2009 (H1N1) San Francisco 2011-12
Long Beach Memorial 2009 (H1N1) Alameda 2012-13
Miller Children’s 2009 (H1N1) Amador 2012-13
Orange Coast Memorial 2009 (H1N1) Contra Costa 2012-13
Pacific Hospital of LB 2009 (H1N1) El Dorado 2012-13
St. Joseph (Orange) 2009 (H1N1) Mono 2012-13
St. Jude (Fullerton) 2009 (H1N1) Nevada 2012-13
UC Davis 2009 (H1N1) San Joaquin 2012-13
UC Irvine 2009 (H1N1) Santa Clara 2012-13
UC San Diego 2009 (H1N1) Santa Cruz 2012-13
Saddleback Memorial 2009 (H1N1) Sonoma 2012-13
Santa Rosa Memorial 2010-11 Tehama 2012-13
Sierra Vista (SLO) 2010-11 Yolo 2012-13
Tri-City (Oceanside) 2010-11 Los Angeles 2013-14
Petaluma Valley Hospital 2010-11 Marin 2013-14
Oroville Hospital 2012-13 Monterey 2013-14
Banner Lassen Medical Center 2012-13 Napa 2013-14
Barton Memorial 2012-13 San Benito 2013-14
UCSF (Children’s - Oakland) 2012-13 Shasta 2013-14
Cottage Hospitals 2013-14 Trinity 2013-14
Salinas Valley Hospital 2013-14 - -

Note: Hospitals that implemented their mandates in 2009, labelled “2009
(H1N1)”, did so in response to the H1N1 pandemic. All other mandates
were implemented prior to the beginning of an influenza season.
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Table A10: Effects of HCW Mandates – Specification Checks

(1) (2)
Add Time Trends

Required -0.200∗ -0.200∗
(0.0929) (0.0901)

N 3,280 2,460

Fixed Effects Poisson

Required -0.156∗∗ -0.168∗∗
(0.0541) (0.0578)

N 3,000 2,238

Zero-Inflated Negative Binomial

Required -0.199∗∗ -0.189∗
(0.0630) (0.0762)

N 3,280 2,460

Drop H1N1 Seasons - X

The three panels represent different specification checks. The first panel
adds hospital-specific linear time trends. The second panel uses a fixed-
effects Poisson estimator. The third panel uses a zero-inflated negative
binomial. The zero-inflated model is a two step model that allows different
data generating processes to predict first whether a positive count will be
observed and second the count (conditional on it being positive). The first
step is predicted by only month-year fixed effects while the second uses
the same regressors as the main analysis. Standard errors are clustered
at the county level except in the case of the fixed effects Poisson, where
the standard errors must be clustered at the same level as the fixed effect
(i.e., hospital). ** p<0.01; * p<0.05; + p<0.1
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