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Abstract

We study a dynamic principal-agent relationship with adverse selection and lim-

ited commitment. We show that when the relationship is subject to productivity

shocks, the principal may be able to improve her value over time by progressively

learning the agent’s private information. She may even achieve her first best payoff

in the long-run. The relationship may also exhibit path dependence, with early

shocks determining the principal’s long-run value. These findings contrast sharply

with the results of the ratchet effect literature, in which the principal persistently

obtains low payoffs, giving up substantial informational rents to the agent.
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1 Introduction

Consider a long-term relationship between an agent who has persistent private information

and a principal who cannot commit to long-term contracts. If the parties are sufficiently

forward-looking, then the relationship is subject to the ratchet effect: the agent is unwill-

ing to disclose his private information, fearing that the principal will update the terms of

his contract. This limits the principal’s ability to learn the agent’s private information,

and reduces her value from the relationship.

The ratchet effect literature has shed light on many economic applications including

planning problems (Freixas et al., 1985), labor contracting (Gibbons, 1987; Dewatripont,

1989), regulation (Laffont and Tirole, 1988), optimal taxation (Dillen and Lundholm,

1996), repeated buyer-seller relationships (Hart and Tirole, 1988; Schmidt, 1993), and

relational contracting (Halac, 2012; Malcomson, 2015).

A natural feature in virtually all of these applications is that productivity shocks to the

economy have the potential to change the incentive environment over time. In this paper,

we show that the classic ratchet effect results may not hold when the principal-agent

relationship is subject to time-varying productivity shocks. In particular, the principal

may gradually learn the agent’s private information, which increases the value that she

obtains from the relationship over time. The principal may even achieve her first-best

payoff in the long run.

We study a stochastic game played between a principal and an agent. At each period,

the principal offers the agent a transfer in exchange for taking an action that benefits

her. The principal is able to observe the agent’s action, but the agent’s cost of taking the

action is his private information, and constant over time. The principal has short-term,

but not long-term, commitment power: she can credibly promise to pay a transfer in the

current period if the agent takes the action, but cannot commit to future transfers. The

realization of a productivity shock affects the size of the benefit that the principal obtains

from having the agent take the action. The realization of the current period shock is

publicly observed by both the principal and the agent at the start of the period, and the

shock evolves over time as a Markov process.

Hart and Tirole (1988) and Schmidt (1993) study the special case of our model in

which productivity is constant over time. The equilibrium of this special case differs

qualitatively from the equilibrium of our model in which productivity changes over time.

We explain the three main differences as follows.
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First, we find that in the presence of productivity shocks the equilibrium may be

persistently inefficient. This contrasts with the equilibrium of the model without the

shocks, which is efficient.

Second, productivity shocks give the principal the opportunity to progressively learn

the agent’s private information. As a result, the principal’s value from the relationship

gradually improves over time. We show that under natural assumptions, the principal is

only able to get the agent to disclose some of his private information when productivity is

low; that is, learning takes place in “bad times.” We also show that productivity shocks

can enable the principal to obtain profits that are arbitrarily close to her full commitment

profits. Lastly, we derive conditions under which the principal ends up fully learning the

agent’s private information and attains her first-best payoffs in the long-run.

Third, we show that learning by the principal may be path dependent: the degree to

which the principal learns the agent’s private information may depend critically on the

order in which productivity shocks were realized early on in the relationship. This is true

even when the process governing the evolution of productivity is ergodic. As a result,

early shocks can have a lasting impact on the principal’s value from the relationship.

Our model generates two testable predictions. First, the agent’s performance in our

model will typically be higher after the firm experiences negative shocks. This is consistent

with Lazear et al. (2016), who find evidence that workers’ productivity increases following

a recession. Second, there will be hysteresis in the agent’s compensation: the current wage

of the agent is negatively affected by previous negative shocks. This result is consistent

with Kahn (2010) and Oreopoulos et al. (2012), who find evidence that recessions have a

long lasting impact on workers’ compensation.

The key feature of our model that drives these dynamics is that the agent’s incentive

to conceal his private information changes over time. When current productivity is low

and the future looks dim, the informational rents that low cost types expect to earn by

mimicking a higher cost type are small. When these rents are small, it is cheap for the

principal to get a low cost agent to reveal his private information. These changes in the

cost of inducing information disclosure make it possible for the principal to progressively

screen the different types of agents, giving rise to our equilibrium dynamics.

Related literature. Our work relates to prior papers that have suggested different ways

of mitigating the ratchet effect. Kanemoto and MacLeod (1992) show that competition for

second-hand workers may alleviate the ratchet effect. Carmichael and MacLeod (2000)

show that the threat of future punishment may deter the principal from updating the
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terms of the agent’s contract, mitigating the ratchet effect. Fiocco and Strausz (2015)

show that the principal can incentivize information disclosure by delegating contracting

to an independent third party. Our paper differs from these studies in that we do not

introduce external sources of contract enforcement, nor do we reintroduce commitment

by allowing for non-Markovian strategies.

Instead, we focus on the role that shocks play in ameliorating the principal’s com-

mitment problem. This connects our paper with Ortner (2016), who considers a durable

goods monopolist who lacks commitment power and who faces time-varying production

costs. In contrast to the classic results on the Coase conjecture (Fudenberg et al., 1985;

Gul et al., 1986), Ortner (2016) shows that time-varying costs may enable the monopolist

to extract rents from high value buyers. A key difference between Ortner (2016) and the

current paper is that the interaction between the monopolist and buyers is one-shot in

the Coasian environment. As a result, issues of information revelation, which are central

to the current paper, are absent in that model.1

Blume (1998) generalizes the Hart and Tirole (1988) model to a setting in which

the consumer’s valuation has both permanent and transient components. Blume (1998)

shows that optimal renegotiation-proof contracts in this environment give the buyer the

chance to exit in the future in case his valuation falls. Gerardi and Maestri (2015) study a

dynamic contracting model with no commitment in which the agent’s private information

affects his marginal cost of effort. They find that the principal’s lack of commitment may

push her to offer inefficient pooling contracts.

Our model is strategically equivalent to a setting in which the agent has at each period

an outside option, whose value varies over time and is publicly observed. This relates our

model to papers studying how outside options affect equilibrium dynamics in the classic

Coasian model (Fuchs and Skrzypacz, 2010; Board and Pycia, 2014; Hwang and Li, 2017).2

The key difference, again, is that we study the effect that time-varying outside options

have in settings with repeated interaction.3

1The current paper also differs from Ortner (2016) in terms of results. Ortner (2016) shows that the
monopolist’s ability to extract rents diminishes as the support of the value distribution becomes dense.
In contrast, the equilibrium dynamics of our model hold independently of how dense the support of the
agent’s cost distribution is.

2See also Compte and Jehiel (2002), who study the effect that outside options have in models of
reputational bargaining.

3Our model also relates to Kennan (2001), who studies a bilateral bargaining game in which a long-
run seller faces a long-run buyer. The buyer is privately informed about her valuation, which evolves over
time as a Markov chain. Kennan (2001) shows that time-varying private information gives rise to cycles
in which the seller’s offer depends on the buyer’s past purchasing decisions.
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The path-dependence result relates our paper to a series of recent studies in organi-

zation economics that attempt to explain the persistent performance differences among

seemingly identical firms (Gibbons and Henderson, 2012). Chassang (2010) shows that

path-dependence may arise when a principal must learn how to effectively monitor the

agent. Li and Matouschek (2013) study relational contracting environments in which the

principal has private information, and show that this private information may give rise

to cycles. Callander and Matouschek (2014) show that persistent performance differences

may arise when managers engage in trial and error experimentation. Halac and Prat

(2015) show that path-dependence arises due to the agent’s changing beliefs about the

principal’s monitoring ability. We add to this literature by providing a new explanation

for persistent performance differences, with new testable implications.

Finally, our paper relates to a broader literature on dynamic games with private infor-

mation (Hart, 1985; Sorin, 1999; Wiseman, 2005; Peski, 2008, 2014). In this literature our

paper relates closely to work by Watson (1999, 2002), who studies a private information

partnership game, and shows that the value of the partnership increases over time as the

players gradually increase the stakes of their relationship to screen out bad types.

2 Two Period Example

Consider the following two-period game played between a principal and an agent. At

t = 0, the agent learns her cost of work c ∈ {cL, cH}. Let µ ∈ (0, 1) be the probability

that the agent’s cost is cL. At the start of each period t = 0, 1, the principal’s benefit

bt ∈ {bL, bH} from having the agent work is publicly revealed. After observing bt, the

principal offers the agent a transfer Tt ≥ 0 for working. The agent then publicly chooses

whether or not to work. The payoffs of the principal and an agent of type c are

(1− δ)(b0 − T0)a0 + δ(b1 − T1)a1,

(1− δ)(T0 − c)a0 + δ(T1 − c)a1,

where at ∈ {0, 1} denotes whether or not the agent works in period t = 0, 1 and δ ∈ (0, 1)

measures the importance of period t = 1 relative to period t = 0. We assume

0 ≤ cL < bL < cH < bH and µ <
bH − cH
bH − cL

=: µ
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Lastly, we assume that the benefit bt is drawn i.i.d. over time, with prob(bt = bL) = q ∈
[0, 1] for t = 0, 1. We consider pure strategy equilibria of this game.

Consider play at t = 1. Since we focus on pure strategy equilibria, at the start of t = 1

the principal’ beliefs are either equal to her prior or are degenerate. If the principal’s

beliefs are equal to her prior, she finds it optimal to offer a transfer T1 = cH that both

types accept if b1 = bH (since µ < µ), and she finds it optimal to offer transfer T1 = cL

that only a low cost type accepts if b1 = bL. If the principal learned that the agent’s cost

is c, she finds it optimal to offer T1 = c, which the agent accepts if and only if b1 > c.

Consider now play at t = 0. Suppose first that b0 = bL. In this case, the principal

must choose between two options: make a low offer that both types reject, or make

a higher offer that only the low cost type accepts. Making an offer that both types

accept is not profitable since bL < cH . Suppose the principal makes a separating offer

T0 that only a low cost type accepts. Note that a low cost agent reveals his private

information by accepting, so his payoff is (1 − δ)(T0 − cL) + δ0. Also note that the low

cost type can obtain a payoff of δ(1− q)(cH − cL) by rejecting the offer, so we must have

T0 ≥ cL + δ
1−δ (1 − q)(cH − cL). Since the high cost type rejects offer T0 if and only if

T0 ≤ cH , we must have cH ≥ cL + δ
1−δ (1− q)(cH − cL), or

δ

1− δ
(1− q) ≤ 1. (1)

When the future is sufficiently valuable (i.e., δ > 1/2), this inequality holds only if the

probability 1 − q of high productivity tomorrow is low enough; i.e., if the future looks

dim. When (1) holds, the principal finds it optimal to make a separating offer, since such

an offer gets the low cost type to work at time t = 0. In contrast, when (1) does not hold

the principal makes a low offer that both types reject.

Suppose next that b0 = bH . In this case, the assumption that µ < µ implies that it

is optimal for the principal to make a pooling offer T0 = cH that both types accept. In

particular, if the benefit is large with probability 1 (i.e., q = 0), the principal is never able

to learn the agent’s type.

There are three main takeaways from this example. First, productivity shocks may

enable the principal to learn the agent’s private information. Second, learning happens

when times are bad and the future looks dim. Third, there is path dependence: the value

that the principal derives in the second period depends on the first period shock.

In the rest of the paper, we consider an infinite horizon model in which both the

agent’s type and the principal’s benefit can take finitely many values. The three main

6



takeaways of the two period model extend to this environment. But the infinite horizon

model gives rise to new results as well. First, the principal may learn the agent’s private

information gradually over time. Second, even when learning takes place, learning may

stop before the principal achieves her first best payoff. And finally, the principal’s payoff

may display path dependence even in the long run, and even when the process governing

the evolution of productivity is ergodic.

3 Model

3.1 Setup

We study a repeated interaction between a principal and an agent. Time is discrete and

indexed by t = 0, 1, 2, ...,∞. At the start of each period t, a state bt is drawn from a finite

set of states B, and is publicly revealed. The evolution of bt is governed by a Markov

process with transition matrix [Qb,b′ ]b,b′∈B. After observing bt ∈ B, the principal decides

how much transfer Tt ≥ 0 to offer the agent in exchange for taking a productive action.

The agent then decides whether or not to take the action. We denote the agent’s choice

by at ∈ {0, 1}, where at = 1 means that the agent takes the action at period t. The action

provides the principal a benefit equal to bt.

The agent incurs a cost ac ≥ 0 when choosing action a ∈ {0, 1}. The agent’s cost

c of taking the action is his private information, and it is fixed throughout the game. c

may take one of K possible values from the set C = {c1, ..., cK}. The principal’s prior

belief about the agent’s cost is denoted µ0 ∈ ∆(C), which we assume has full support. At

the end of each period the principal observes the agent’s action and updates her beliefs

about the agent’s cost. The players receive their payoffs and the game moves to the next

period.4 Both players are risk-neutral expected utility maximizers and share a common

discount factor δ < 1.5 The payoffs to the principal and an agent of cost c = ck at the

end of period t are, respectively,

u(bt, Tt, at) = (1− δ) (bt − Tt) at,

vk(bt, Tt, at) = (1− δ) (Tt − ck) at.

4As in Hart and Tirole (1988) and Schmidt (1993), the principal can commit to paying the transfer
within the current period, but cannot commit to a schedule of transfers in future periods.

5The results are qualitatively the same when the players have different discount factors.
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We assume, without loss of generality, that the agent’s possible costs are ordered so

that 0 < c1 < c2 < ... < cK . To avoid having to deal with knife-edge cases, we further

assume that b 6= ck for all b ∈ B and ck ∈ C. Then, it is socially optimal for an agent with

cost ck to take action a = 1 at state b ∈ B if and only if b− ck > 0. Let the set of states

at which it is socially optimal for an agent with cost ck to take the action be

Ek := {b ∈ B : b > ck}.

We refer to Ek as the efficiency set for type ck. Note that by our assumptions on the

ordering of types, the efficiency sets are nested, i.e. Ek′ ⊆ Ek for all k′ ≥ k.

We assume that process {bt} is persistent and that players are moderately patient. To

formalize this, first define the following function: for any b ∈ B and B ⊆ B, let

X(b, B) := (1− δ)E

[
∞∑
t=1

δt1{bt∈B}|b0 = b

]
,

where E[·|b0 = b] denotes the expectation operator with respect to the Markov process

{bt}, given that the period 0 state is b. Thus X(b, B) is the expected discounted amount

of time that the realized state is in B in the future, given that the current state is b. For

any b ∈ B, let b+ := {b′ ∈ B : b′ ≥ b}. We maintain the following assumption throughout.

Assumption 1 (discounting/persistence) X(b, b+) > 1− δ for all b ∈ B.

When there are no shocks to productivity (i.e., when the state is fully persistent) this

assumption holds when δ > 1/2. In general, for any δ > 1/2, it holds whenever the

process {bt} is sufficiently persistent. For any ergodic process {bt}, there is a cutoff

δ ∈ (1/2, 1) such that the assumption holds whenever δ > δ.

3.2 Histories, Strategies and Equilibrium Concept

A history ht = 〈(b0, T0, a0), ..., (bt−1, Tt−1, at−1)〉 records the states, transfers and agent’s

action from the beginning of the game until the start of period t. For any two histories

ht′ and ht with t′ ≥ t, we write ht′ � ht if the first t period entries of ht′ are the same as

the t period entries of ht. Let Ht denote the set of histories of length t and H =
⋃
t≥0Ht

the set of all histories. A pure strategy for the principal is a function τ : H × B → R+,

which maps histories and the current state to transfer offers T . A pure strategy for the

agent is a collection of mappings {αk}Kk=1, αk : H ×B×R+ → {0, 1}, each of which maps
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the current history, current state and current transfer offer to the action choice a ∈ {0, 1}
for a particular type ck.

For conciseness, we restrict attention to pure strategy perfect Bayesian equilibrium

(PBE) in the body of the paper. We consider mixed strategies in Online Appendix

OA2.2; see also Remark 2 below. Pure strategy PBE are denoted by the pair (σ, µ),

where σ = (τ, {αk}Kk=1) is a strategy profile and µ : H → ∆(C) gives the principal’s beliefs

about the agent’s type after each history. For any PBE (σ, µ), the continuation payoffs

of the principal and an agent with cost ck after history ht and shock realization bt are

denoted U (σ,µ)[ht, bt] and V
(σ,µ)
k [ht, bt]. For any µ0 ∈ ∆(C), any PBE (σ, µ) and any state

b ∈ B, we denote by W (σ,µ)[µ0, b] the principal’s payoff at the start of a game with prior

µ0 under the PBE (σ, µ) when the initial state is b.

We restrict attention to pure strategy PBE that satisfy a sequential optimality con-

dition for the principal, defined as follows. For each integer n ≤ K, define Sn := {λ ∈
∆(C) : |suppλ| = n}. Let Σ0 denote the set of pure strategy PBE. For all k = 1, 2, ..., K,

we define the sets Σk recursively as follows:

Σk :=

(σ, µ) ∈ Σk−1 :

σ is a pure strategy profile and

∀(ht, bt) with µ[ht] ∈ Sk and ∀(σ′, µ′) ∈ Σk−1,

U (σ,µ)[ht, bt] ≥ W (σ′,µ′)[µ[ht], bt]

 .

Thus, Σ1 is the set of pure strategy PBE that deliver the highest possible payoff to the

principal at histories at which her beliefs are degenerate. For all k > 1, Σk is the set of

pure strategy PBE in Σk−1 that deliver the highest possible payoff to the principal (among

all PBE in Σk−1) at histories at which the support of her beliefs contains k elements. In

what follows, we restrict attention to PBE in ΣK (recall that |C| = K) and use the

word equilibrium to refer such a PBE. By forcing continuation play to be efficient for the

principal at all histories, this solution concept naturally captures lack of commitment.

Alternatively, our solution concept can be thought of as capturing renegotiation-

proofness. At histories at which the principal learned the agent’s type, players must

play a continuation PBE that is optimal for the principal (who is assumed to have all the

bargaining power). Similarly, at histories at which the principal believes that the agent

may be one of two possible types, players play a continuation PBE that is optimal for the

principal among the set of PBE that are principal-optimal at histories at which beliefs

are degenerate. And so on.6

6This solution concept is similar in spirit to the refinement used by Gerardi and Maestri (2015).
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We end this section by noting that our equilibrium refinement facilitates a direct com-

parison with prior papers on the ratchet effect, e.g. Hart and Tirole (1988) and Schmidt

(1993). As we will show below, this refinement selects a unique equilibrium that natu-

rally generalizes the equilibrium studied in these papers. In particular, when there are

no productivity shocks (i.e., when B is a singleton), our equilibrium coincides with the

equilibrium in Hart and Tirole (1988) and Schmidt (1993).

4 Equilibrium Analysis

4.1 Incentive Constraints

Fix an equilibrium (σ, µ) =
(
(τ, {αk}Kk=1), µ

)
. Recall that for any ht ∈ H, µ[ht] are the

principal’s beliefs at history ht. We use C[ht] ⊂ C to denote the support of µ[ht], and

k[ht] := max{k : ck ∈ C[ht]} to denote the highest type index in C[ht]. Since c1 < ... < cK ,

ck[ht]
is the highest cost in the support of µ[ht]. Finally, we let at,k be the random variable

indicating the action in {0, 1} that agent type ck takes in period t.

For any history ht, any pair ci, cj ∈ C[ht], and any productivity level b ∈ B, let

V
(σ,µ)
i→j [ht, b] := (1− δ)E(σ,µ)

[
∞∑
t′=t

δt
′−tat′,j(Tt′ − ci)|ht, bt = b

]

be the expected discounted payoff that an agent with cost ci obtains after history ht when

bt = b from following the equilibrium strategy of an agent with cost cj. Here, E(σ,µ)[·|ht, bt]
denotes the expectation over future play under equilibrium (σ, µ) conditional on history

ht and current shock bt. Note that for any ci ∈ C[ht], the continuation value of an agent

with cost ci at history ht and current shock b is simply V
(σ,µ)
i [ht, b] := V

(σ,µ)
i→i [ht, b]. Also

note that

V
(σ,µ)
i→j [ht, b] = (1− δ)E(σ,µ)

[
∞∑
t′=t

δt
′−t (at′,j(Tt′ − cj) + at′,j(cj − ci)) |ht, bt = b

]
= V

(σ,µ)
j [ht, b] + (cj − ci)Aσj [ht, b] (2)

where V
(σ,µ)
j [ht, b] is type cj’s continuation value at (ht, b) and

A
(σ,µ)
j [ht, b] := (1− δ)E(σ,µ)

[
∞∑
t′=t

δt
′−tat′,j|ht, bt = b

]
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is the expected discounted number of times that type cj takes the productive action after

(ht, b) under equilibrium (σ, µ). Equation (2) says that type ci’s payoff from deviating

to cj’s strategy can be decomposed into two parts: type cj’s continuation value, and an

informational rent (cj − ci)A(σ,µ)
j [ht, bt], which depends on how frequently cj is expected

to take the action in the future. In any equilibrium (µ, σ),

V
(σ,µ)
i [ht, bt] ≥ V

(σ,µ)
i→j [ht, bt] ∀(ht, bt),∀ci, cj ∈ C[ht] (3)

which represents the set of incentive constraints that must be satisfied in equilibrium. We

then have the following lemma, which we prove in the Online Appendix. Part (i) says that,

in any equilibrium, the highest cost type in the support of the principal’s beliefs obtains

a continuation payoff equal to zero. Part (ii) says that “local” incentive constraints bind.

Lemma 0. Fix an equilibrium (σ, µ) and a history ht, and if necessary renumber the types

so that C[ht] = {c1, c2, ..., ck[ht]
} with c1 < c2 < ... < ck[ht]

. Then, for all b ∈ B,

(i) V
(σ,µ)

k[ht]
[ht, b] = 0.

(ii) If |C[ht]| ≥ 2, V
(σ,µ)
i [ht, b] = V

(σ,µ)
i→i+1[ht, b] for all ci ∈ C[ht]\{ck[ht]

}.

4.2 Equilibrium Characterization

We now describe the (essentially) unique equilibrium of the game. Recall that ck[ht]
is the

highest cost in the support of the principal’s beliefs at history ht, and Ek is the set of

productivity levels at which it is socially optimal for type ck ∈ C to take the action.

Theorem 1. The set of equilibria is non-empty. In any equilibrium (µ, σ), for every

history ht and every bt ∈ B, we have:

(i) If bt ∈ Ek[ht]
, the principal offers transfer Tt = ck[ht]

and all types in C[ht] take

action a = 1.

(ii) If bt /∈ Ek[ht]
and X(bt, Ek[ht]

) > 1− δ, all types in C[ht] take action a = 0.

(iii) If bt /∈ Ek[ht]
and X(bt, Ek[ht]

) ≤ 1 − δ, there is a threshold type ck∗ ∈ C[ht] such

that types in C− := {ck ∈ C[ht] : ck < ck∗} take action a = 1, while types in

C+ := {ck ∈ C[ht] : ck ≥ ck∗} take action a = 0. If C− is non-empty, the transfer

that the principal offers (and which is accepted by types in C−) satisfies

Tt = cj∗ +
1

1− δ
V

(σ,µ)
j∗→k∗ [ht, bt], (∗)
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where cj∗ = maxC−.

Theorem 1 says that at histories (ht, bt) satisfying the conditions in parts (i) or (ii), all

the agent types in C[ht] take the same action. Hence, the principal learns nothing about

the agent’s type at such states. When the history (ht, bt) satisfies these conditions, an

agent with cost ci < ck[ht]
gets large rents by mimicking an agent with cost ck[ht]

. Since

low cost types anticipate that the principal would leave them with no rents in the future

if they were to reveal their private information, the principal is unable to learn.

Equilibrium behavior is, however, quite different at histories satisfying the conditions

in parts (i) and (ii). When bt ∈ Ek[ht]
, there is an efficient ratchet effect. At these

productivity levels the agent takes the socially efficient action a = 1, and the principal

compensates him as if he was the highest cost type. This replicates the main finding

of the ratchet effect literature. For example, Hart and Tirole (1988) and Schmidt (1993)

consider a special case of our model in which the benefit from taking the action is constant

over time and strictly larger than the highest cost (i.e., for all times t, bt = b > cK). Thus,

part (i) of Theorem 1 applies: the principal offers a transfer T = cK that all agent types

accept in every period, and she never learns anything about the agent’s type.7

Part (ii), in contrast, characterizes histories (ht, bt) at which there is an inefficient

ratchet effect. In these histories, low cost types pool with high cost types and don’t

take the productive action even if the principal is willing to fully compensate their costs.

This contrasts with the results in Hart and Tirole (1988) and Schmidt (1993), where the

equilibrium is always socially optimal.

Part (iii) characterizes histories (ht, bt) at which learning may take place. Specifically,

the principal learns about the agent’s type when a subset of the types take the action

(i.e., when the set C− is nonempty). In contrast to states in part (ii), the informational

rent that type ci < ck[ht]
gets from mimicking an agent with the highest cost ck[ht]

are

small when X(bt, Ek[ht]
) ≤ 1 − δ. As a result, the principal is able to get low cost types

to reveal their private information. In Appendix A.1.3 we provide a characterization of

the threshold cost ck∗ in part (iii) of the theorem as the solution to a finite maximization

problem. Building on this, we also characterize the principal’s equilibrium payoffs as the

fixed point of a contraction mapping.

7Hart and Tirole (1988) and Schmidt (1993) consider games with a finite deadline. In such games,
the principal is only able to induce information revelation at the very last periods prior to the deadline.
As the deadline grows to infinity, there is no learning by the principal along the equilibrium path.
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Remark 1. (Markovian equilibrium) Note that the equilibrium characterized in The-

orem 1 is Markovian: at each period t, the behavior of principal and agent depends solely

on the principal’s beliefs µ[ht] and the current shock realization bt.

Remark 2. (mixed strategies) In the Online Appendix OA2.2, we extend our analysis

and consider a broad class of mixed strategies. In particular, we look at the class of

finitely revealing PBE (Peski, 2008); i.e., PBE in which, along any history, the principal’s

beliefs are updated only finitely many times.

Let ΣM
0 denote the set of PBE that are finitely revealing. For k = 1, ..., K, define the

sets ΣM
k recursively as follows:

ΣM
k :=

(σ, µ) ∈ ΣM
k−1 :

σ is finitely revealing

∀(ht, bt) with µ[ht] ∈ Sk and ∀(σ′, µ′) ∈ ΣM
k−1

U (σ,µ)[ht, bt] ≥ W (σ′,µ′)[µ[ht], bt]

 .

This is the natural generalization to the mixed strategy case of our refinement capturing

renegotiation-proofness in the pure strategy case, but with the added restriction that the

principal updates her beliefs a bounded number of times in any equilibrium outcome.

Let (σP , µP ) denote the PBE in Theorem 1. We show in the appendix that (σP , µP ) ∈
ΣM
K . This implies that any equilibrium in ΣM

K must give the principal the same payoff

as (σP , µP ) at every history. Moreover, we show along the way that generically any

equilibrium in the set ΣM
K is outcome-equivalent to (σP , µP ).

Remark 3. (full-commitment benchmark) We can compare the principal’s equilib-

rium profits to what she would obtain if she had full commitment. A principal with

commitment power will in general want to make a high-cost agent take action a = 1

inefficiently few times, to reduce the informational rents of low cost types. Time-varying

shocks enable the principal to approximate the full-commitment solution. At histories

(ht, bt) with bt /∈ Ek[ht]
and X(bt, Ek[ht]

) ≤ 1 − δ, the principal can truthfully commit to

contract infrequently with the highest cost agent ck[ht]
in the future. This reduces the

rents for lower cost types, and enables the principal to learn about the agent’s type.

In Online Appendix OA2.3, we illustrate this result for the case of two types, C =

{c1, c2}. We show that if X(b, E2) = ε ≤ 1 − δ for some productivity level b ∈ E1\E2,

then the principal’s equilibrium payoff at histories (ht, bt) such that C[ht] = C and bt = b

are within εM of her full commitment payoff for some constant M .
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4.3 Examples

We end this section with a couple of two-type, two-shock examples that illustrate some of

the main equilibrium features of our model. The first highlights the fact that equilibrium

outcome in our model can be inefficient. The second illustrates a situation in which the

principal learns the agent’s type, and the equilibrium outcome is efficient.

Example 1. (inefficient ratchet effect) Suppose that there are two states, B =

{bL, bH}, and two types, C = {c1, c2} with c1 < bL < c2 < bH , so that E1 = {bL, bH}
and E2 = {bH}. Assume further that X(bL, {bH}) > 1− δ.

Consider a history ht such that C[ht] = {c1, c2}. Theorem 1(i) implies that, at such

a history, both types take the action if bt = bH , receiving a transfer equal to c2. On the

other hand, Theorem 1(ii) implies that neither type takes the action if bt = bL. Indeed,

when X(bL, {bH}) > 1− δ the benefit that a c1-agent obtains by pooling with a c2-agent

is so large that there does not exist an offer that a c1-agent would accept but a c2-agent

would reject. As a result, the principal never learns the agent’s type. Inefficiencies arise

in all periods t in which bt = bL: an agent with cost c1 never takes the action when the

state is bL, even though it is socially optimal for him to do so.

Example 2. (efficiency and learning) The environment is the same as in Example

2, with the only difference that X(bL, {bH}) < 1 − δ. Consider a history ht such that

C[ht] = {c1, c2}. As in Example 2, both types take the action in period t if bt = bH . The

difference is that, if bt = bL, the principal offers a transfer Tt that a c2-agent rejects, but

a c1-agent accepts. The principal’s offer Tt exactly compensates type c1 for revealing his

type: (1−δ)(Tt− c1) = X(bL, {bH})(c2− c1).8 Note that X(bL, {bH}) < 1−δ implies that

Tt < c2, so an agent with cost c2 rejects offer Tt. The principal finds it optimal to make

such an offer, since it induces an agent with cost cL < bL to take the efficient action.

We note that the principal learns the agent’s type at time t = min{t : bt = bL}, and

the outcome is efficient from time t+ 1 onwards: type ci takes the action at time t′ > t if

and only if bt′ ∈ Ei. Moreover, Lemma 0(i) guarantees that the principal extracts all of

the surplus from time t+ 1 onwards, paying the agent a transfer equal to his cost.

The inefficiency in Example 1 contrasts with the results of the ratchet effect literature

in which the outcome is always efficient. The results of Example 2 contrast sharply

8The payoff a low cost agent obtains by accepting offer T is (1− δ)(T − c1) + δ0, since the principal
learns that the agent’s cost is c1. On the other hand, the payoff such an agent obtains from rejecting the
offer and mimicking a high cost agent is X(bL, {bH})(c2 − c1).
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with this literature as well, in which learning never takes place. The key features of this

example are that (i) learning by the principal takes place only if productivity is low, (ii)

the principal eventually achieves her first best payoff, and (iii) the equilibrium exhibits

a form of path-dependence: equilibrium play at time t depends on the entire history of

shocks up to period t.9 These features motivate the results of the next section.

5 Implications

5.1 The Consequences of Bad Shocks

In Example 2 above, the principal learns the agent’s type and learning takes place the

first time the relationship hits the low productivity state. In addition, as soon as the low

productivity state is reached for the first time, the agent’s compensation falls permanently.

In this section, we present conditions under which these results generalize.

Consider the following assumption, which is a monotonicity condition on the stochastic

process Q that governs the evolution of productivity.

Assumption 2 For all ck ∈ C, X(b, Ek) ≤ X(b′, Ek) for all b, b′ ∈ B with b < b′.

The assumption is natural; for example, it holds when {Qb,b̃}b̃∈B and {Qb′,b̃}b̃∈B satisfy the

monotone likelihood ratio property.10

Now refer to history (ht, bt) as a history of information revelation if µ[ht+1] 6= µ[ht];

i.e., if learning takes place at history (ht, bt). The following proposition states that under

Assumption 2, learning takes place only in periods of low productivity.

Proposition 1. (learning in bad times) Suppose that Assumption 2 holds. For every

history ht there exists a productivity level b[ht] ∈ B such that (ht, bt) is a history of

information revelation only if bt < b[ht].

Proof. By Theorem 1, µ[ht+1] 6= µ[ht] only if bt is such that X(bt, Ek[ht]
) ≤ 1 − δ. By

Assumption 2, there exists b[ht] such thatX(bt, Ek[ht]
) ≤ 1−δ if and only if bt < b[ht].

11

9Before state bL is reached for the first time, the principal pays a transfer equal to the agent’s highest
cost c2 to get both types to take the action. After state bL is visited, if the principal finds that the agent
has low cost, then she pays a lower transfer equal to c1.

10That is, for every b > b′,
Qb,b̃

Qb′,b̃
= prob(bt+1=b̃|bt=b)

prob(bt+1=b̃|bt=b′)
is increasing in b̃.

11When b[ht] = minB, X(b, Ek) > 1 − δ for all b ∈ B. In this case, the principal’s beliefs remain
unchanged after history ht.
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To see why the result holds, note that under Assumption 2 the future expected dis-

counted surplus of the relationship is decreasing in the current shock bt. This implies that

the informational rent that agents with type ci < ck[ht]
get from mimicking an agent with

the highest cost ck[ht]
is also decreasing in bt. As a result, the principal is only able to

learn about the agent’s type in periods where the productivity bt is low.

Next, recall that according to Theorem 1, if (ht, bt) is a history of information revela-

tion, then there exists a type cj∗ ∈ C[ht] such that only agents with cost at most cj∗ take

action the action at time t. We refer to type cj∗ the marginal type in period t. Also, for

every history (ht, bt) and every type cj ∈ C[ht], define

Pj[ht, bt] := −(1− δ)E(σ,µ)

[
∞∑
t′=t

δt
′−t|1bt′∈Ej − at′,j|(bt′ − cj)

∣∣∣ht, bt]

which is a measure of how efficient the equilibrium actions of type cj are. The fol-

lowing proposition, which follows directly from Theorem 1, states two results: (i) that

productivity increases after histories of information revelation, and (ii) that the agent’s

compensation may fall permanently after such histories.

Proposition 2. (productivity and compensation) Let (ht, bt) be a history of infor-

mation revelation, and cj∗ the marginal type at time t. Then, for all (hτ , bτ ) with hτ � ht,

(i) Pj∗ [hτ , bτ ] = 0, and

(ii) V
(σ,µ)
j∗ [hτ , bτ ] = 0.

Part (i) of this result, combined with Proposition 1, implies that agents’ productivity

will increase after the relationship goes through bad times. The result is in line with Lazear

et al. (2016), who find evidence that workers’ productivity increases after a recession.

Part (ii) combined with Proposition 1 implies that the agents’ compensation may be

permanently lowered after the relationship experiences negative shocks. This finding is

consistent with Kahn (2010) and Oreopoulos et al. (2012), who provide evidence that

recessions have a persistent negative effect on worker compensation.

5.2 Long-Run First-Best Payoffs

Another notable feature of Example 2 is that full learning takes place, and as a result,

the principal’s value increases permanently to the first best level. Here, we characterize

general conditions under which the principal obtains her first-best payoff in the long-run,
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as well as conditions under which she doesn’t. Before stating our results, we introduce

some additional notation and make a preliminary observation.

An equilibrium outcome can be written as an infinite sequence h∞ = 〈bt, Tt, at〉∞t=0, or

equivalently as an infinite sequence of equilibrium histories h∞ = {ht}∞t=0 such that ht+1 �
ht for all t. For any equilibrium outcome h∞, there exists a time t∗[h∞] such that µ[ht] =

µ[ht∗[h∞]] for all ht � ht∗[h∞]. That is, given an equilibrium outcome, learning always stops

after some time t∗[h∞]. Given an equilibrium outcome h∞, in every period after t∗[h∞]

the principal’s continuation payoff depends only on the realization of the current period

shock. Formally, given any equilibrium outcome h∞ = {ht}∞t=0, the principal’s equilibrium

continuation value at time t ≥ t∗[h∞] can be written as U
(σ,µ)
LR (bt|ht∗[h∞]).

For all b ∈ B and all ck ∈ C, the principal’s first best payoffs conditional on the current

shock being b and the agent’s type being c = ck are given by

U∗(b|ck) := (1− δ)E

[
∞∑
t′=t

δt
′−t(bt′ − ck)1{bt′∈Ek}

∣∣∣ bt = b

]
.

Under the first best outcome the agent takes the action whenever it is socially optimal

and the principal always compensates the agent his exact cost. Say that an equilibrium

(σ, µ) is long run first best if for all ck ∈ C, the set of equilibrium outcomes h∞ such that

U
(σ,µ)
LR (bt|ht∗[h∞]) = U∗(bt|ck) ∀t > t∗[h∞] and ∀bt ∈ B,

has probability 1 when the agent’s type is c = ck. The next result, which we prove in

Appendix A.2, reports a sufficient condition for the equilibrium to be long run first best.

Proposition 3. (long run first best) Suppose that {bt} is ergodic and that for all

ck ∈ C\{cK} there exists a productivity level b ∈ Ek\Ek+1 such that X(b, Ek+1) < 1 − δ.
Then, the equilibrium is long run first best.

The condition in the statement of Proposition 3 guarantees that, for any history ht such

that |C[ht]| ≥ 2, there exists at least one state b ∈ B at which the principal finds it

optimal to make an offer that only a strict subset of types accept. So if the process {bt}
is ergodic, then it is certain that the principal will eventually learn the agent’s type, and

from that point onwards she gets her first best payoffs.

If an equilibrium is long run first best then it is also long run efficient, i.e. for all

ck ∈ C, with probability one an agent with cost ck takes the action at time t > t∗[h∞]

if and only if bt ∈ Ek. However, the converse of this statement is not true. Because of
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this, there are weaker sufficient conditions under which long run efficiency holds. One

such condition is that {bt} is ergodic and for all ck ∈ C such that Ek 6= EK , there exists

b ∈ Ek\Ek such that X(b, Ek) < 1− δ, where k = min{j ≥ k : Ej 6= Ek}. This condition

guarantees that the principal’s beliefs will eventually place all the mass on the set of types

that share the same efficiency set with the agent’s true type. After this happens, even if

the principal does not achieve her first best payoff by further learning the agent’s type,

the agent takes the action if and only if it is socially optimal to do so. The argument

mirrors that of Proposition 3.

Our next result provides a partial counterpart to Proposition 3. The result is an

immediate consequence of Theorem 1.

Proposition 4. (no long run first best; no long run efficiency) Let ht be an

equilibrium history such that |C[ht]| ≥ 2 and suppose that X(b, Ek[ht]
) > 1 − δ for all

b ∈ B. Then µ[ht′ ] = µ[ht] for all histories ht′ � ht (and thus |C[ht′ ]| ≥ 2), so the

equilibrium is not long run first best. If, in addition, there exists ci ∈ C[ht] such that

Ei 6= Ek[ht]
, then the equilibrium is not long run efficient either.

5.3 Long-Run Path Dependence

The third notable feature of Example 2 was that the equilibrium exhibits a form of path-

dependence: equilibrium play at time t depends on the entire history of shocks up to period

t. Note, however, that the path dependence in this example is short-lived: after state bL is

visited for the first time, the principal learns the agent’s type and the equilibrium outcome

from that point onwards is independent of the prior history of shocks. Here we show that

this is not a general property of our model.

Say that an equilibrium (σ, µ) exhibits long run path dependence if for some type of

the agent c = ck ∈ C there exists U1 : B → R and U2 : B → R, U1 6= U2, such that

conditional on the agent’s type being ck, the set of outcomes h∞ with U
(σ,µ)
LR (·|ht∗[h∞]) =

Ui(·) has positive probability for i = 1, 2. That is, the equilibrium exhibits long run path

dependence if, with positive probability, the principal’s long run payoffs may take more

than one value conditional on the agent’s type.

The next example shows that equilibrium may exhibit long-run path dependence when

process {bt} is not ergodic.

Example 3. (path dependence with non-ergodic shocks) Let C = {c1, c2}, and B =

{bL, bM , bH}, with bL < bM < bH . Suppose that E1 = {bL, bM , bH} and E2 = {bM , bH}.
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Suppose further that the transition matrix [Qb,b′ ] satisfies: (i) X(bL, E2) < 1− δ, and (ii)

QbH ,bH = 1 and Qb,b′ ∈ (0, 1) for all (b, b′) 6= (bH , bH). Thus, state bH is absorbing. By

Theorem 1, if bt = bH , from time t onwards the principal makes an offer equal to ck[ht]

and all agent types in C[ht] accept.

Consider history ht with C[ht] = {c1, c2}. By Theorem 1, if bt = bM the principal

makes an offer Tt = c2 that both types of agents accept. If bt = bL, the principal makes

an offer Tt = c1 + 1
1−δX(bL, E2)(c2− c1) ∈ (c1, c2) that type c1 accepts and type c2 rejects.

Therefore, the principal learns the agent’s type.

Now suppose that the agent’s true type is c = c1, and consider the following two

histories, ht and h̃t:

ht = 〈(bt′ = bM , Tt′ = c2, at′ = 1)t−1
t′=1〉,

h̃t = 〈(bt′ = bM , Tt′ = c2, at′ = 1)t−2
t′=1, (bt−1 = bL, Tt−1 = T̃ , at−1 = 1)〉.

Under history ht, bt′ = bM for all t′ ≤ t − 1, so the principal’s beliefs after ht is realized

are equal to her prior. Under history h̃t the principal learns that the agent’s type is c1 at

time t − 1. Suppose that bt = bH , so that bt′ = bH for all t′ ≥ t. Under history ht, the

principal doesn’t know the agent’s type at t, and therefore offers a transfer Tt′ = c2 for all

t′ ≥ t, which both agent types accept. However, under history h̃t the principal knows that

the agent’s type is c1, and therefore offers transfer Tt′ = c1 for all t′ ≥ t, and the agent

accepts it. Therefore, when the agent’s type is c1, the principal’s continuation payoff at

history (ht, bt = bH) is bH − c2, while her payoff at history (h̃t, bt = bH) is bH − c1.

Path-dependence in this example is driven by the non-ergodicity of the productivity

shocks. Since bH > c2 is absorbing, Theorem 1 implies that the principal will stop learning

once the shock reaches this state. At the same time, the principal is able to screen the

different types when the shock reaches state bL (since X(bL, E2) < 1− δ), but is unable to

screen them at state bM . Therefore, the principal only learns the agent’s type at histories

such that shock bL is realized before shock bH .

We highlight, however, that the model may give rise to path-dependence even when

the evolution of productivity is governed by an ergodic process. The following example,

which is fully developed in Online Appendix OA2.4, illustrates this.

Example 4. (path dependence with ergodic shocks) Let C = {c1, c2, c3} and B =

{bL, bML, bMH , bH}, bL < bML < bMH < bH . Suppose that E1 = E2 = {bML, bMH , bH} and
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E3 = {bH}. Suppose further that the transition matrix [Qb,b′ ] satisfies: (a) Qb,b′ > 0 for

all b, b′ ∈ B, and (b) X(bMH , {bH}) > 1− δ and X(bML, {bH}) < 1− δ.
In Online Appendix OA2.4 we show that the unique equilibrium has the following

properties:

(i) For histories ht such that C[ht] = {c1, c2}, µ[ht′ ] = µ[ht] for all ht′ � ht (i.e., there

is no more learning by the principal from time t onwards);

(ii) For histories ht such that C[ht] = {c2, c3}: if bt = bL or bt = bMH , types c2 and c3

take action a = 0; if bt = bML, type c2 takes action a = 1 and type c3 takes action

a = 0; and if bt = bH , types c2 and c3 take action a = 1;

(iii) For histories ht such that C[ht] = {c1, c2, c3}: if bt = bL, type c1 takes action a = 1

while types c2 and c3 take action a = 0; if bt = bML, types c1 and c2 take action

a = 1 and type c3 takes action a = 0; if bt = bMH , all agent types take action a = 0;

and if bt = bH , all agent types take action a = 1.

An immediate consequence of these facts is that when the agent’s type is c1, the principal

learns the agent’s type at histories such that state bL is visited before bML. In contrast,

at histories at which bML is visited before bL, the principal only learns that the agent’s

type is in {c1, c2}. From this point onwards, her beliefs are never again updated. As a

result, the principal’s long run value when the agent’s type is c1 depends on whether or

not shock bL was realized before shock bML.

To understand Example 4, note that the informational rents that type c1 gets by mimicking

type c2 depend on how often c2 is expected to take the productive action in the future.

In turn, how often c2 takes the productive action depends on the principal’s beliefs. If

the principal learns along the path of play that the agent’s type is not c3, from that time

onwards type c2 will take the action whenever the state is in E2 = {bML, bMH , bH}.
In contrast, at histories at which the principal has not ruled out types c2 and c3,

type c2 will not take the productive action at time t if bt = bMH (since, by assumption,

X(bMH , E3) > 1 − δ). Therefore, type c2 is expected to take the action significantly less

frequently in the future at a history after which the support of the principal’s beliefs is

{c1, c2, c3} than at a history at which it is {c1, c2}.
As a consequence of this, the cost of getting a c1-agent to reveal his private information

depends on the principal’s beliefs. In particular, when the current productivity level is

bL, getting a c1-agent to reveal his private information is cheaper at histories where all
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three types are in the support of the principal’s beliefs than at histories at which only

c1 and c2 are in the support. This difference makes it optimal for the principal to get

a c1-agent to reveal his type when productivity is bL and the support of the principal’s

beliefs is {c1, c2, c3}, and at the same time it makes it suboptimal to get this agent type

to reveal himself when productivity is bL and the support is {c1, c2}.

6 Final Remarks

Productivity shocks are a natural feature of most economic environments, and the in-

centives that economic agents face in completely stationary environments can be very

different than the incentives they face in environments subject to these shocks. Our re-

sults demonstrate the consequences of this fact for the traditional ratchet effect literature.

A key takeaway from this literature is that outside institutions that provide contract en-

forcement can help improve the principal’s welfare. However, our results show that even

without such institutions, a strategic principal can use productivity shocks to her advan-

tage to gradually learn the agent’s private information and improve her own welfare.

Our model has several natural extensions. For example, we have assumed that the

benefit bt that the principal obtains when the agent takes the action is publicly observed.

This assumption is natural in settings in which the principal’s benefits depends on the cost

of some key input (like oil or cement), or when these benefits are linked to the aggregate

state of the economy. However, it is also interesting to consider settings in which the

benefit bt is privately observed by the principal.

For concreteness, consider the setting of Examples 1 and 2, in which bt can take values

{bL, bH} and the agent’s cost can take values {c1, c2}, with bH > c2 > bL > c1 (i.e.,

E1 = {bL, bH} and E2 = {bL}). Consider first that X(b, E2) > 1 − δ for b = bL, bH . In

this case, the equilibrium outcome in Theorem 1 remains an equilibrium even when bt is

privately observed. Indeed, under this condition, a low cost agent is not willing to disclose

his private information, regardless of whether he observes the realization of bt or not.

On the other hand, when X(bL, E2) < 1 − δ, the equilibrium outcome in Theorem 1

fails to be an equilibrium. Indeed, in this case, when the benefit is bH the principal would

prefer to make an offer as if the benefit were bL, to induce the low cost agent to reveal his

private information. In this setting, one can construct PBE under which the principal’s

transfer offer perfectly reveals her private information at each point (i.e., her transfer Tt

reveals the realization of benefit bt at every period t). Under such equilibria, at histories
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(ht, bt) with bt = bL and C[ht] = {c1, c2} the principal makes a low offer Tt ∈ (c1, c2)

that leaves low cost agents indifferent between accepting and rejecting. Such an offer is

rejected by high cost agents, and accepted with probability αt ∈ [0, 1] by low cost agents.

The probability of acceptance αt is calibrated to provide incentives to the principal to

make a high offer Tt = c2 at histories (ht, bt) with bt = bH .12

A Appendix

A.1 Proof of Theorem 1

The proof proceeds in three steps. First we analyze the case where bt ∈ Ek[ht]
, establishing

part (i) of the theorem. Then we analyze the case where bt /∈ Ek[ht]
, establishing parts

(ii) and (iii). Finally, we show that equilibrium exists and has unique payoffs. In doing

so, we also characterize the threshold type ck∗ defined in part (iii).

A.1.1 Proof of part (i) (the case of bt ∈ Ek[ht]
)

We prove part (i) by strong induction on the cardinality of C[ht]. If C[ht] is a singleton

{ck}, the result holds: in any PBE in ΣK , the principal offers the agent a transfer Tt′ = ck

at all times t′ ≥ t such that bt′ ∈ Ek and the agent accepts, and she offers some transfer

Tt′ < ck at all times t′ ≥ t such that bt′ /∈ Ek, and the agent rejects.

Suppose next that the claim is true for all histories ht′ such that |C[ht′ ]| ≤ n− 1. Let

(ht, bt) be a history such that |C[ht]| = n and bt ∈ Ek[ht]
. We show that, at such a history

(ht, bt) the principal makes an offer Tt = ck[ht]
that all agent types accept.

Note first that, in a PBE in ΣK , it cannot be that at (ht, bt) the principal makes an

offer that no type in C[ht] accepts. Indeed, suppose that no type in C[ht] takes the action.

Consider an alternative PBE which is identical to the original PBE, except that at history

(ht, bt) the principal makes an offer T = ck[ht]
, and all agent types in C[ht] accept any

offer weakly larger than T = ck[ht]
. The principal’s beliefs after this period are equal to

µ[ht] regardless of the agent’s action. Since T = ck[ht]
, it is optimal for all agent types

to accept this offer. Moreover, it is optimal for the principal to make offer T . Finally,

since bt ∈ Ek[ht]
, the payoff that the principal gets from this PBE is larger than her payoff

under the original PBE. But this cannot be, since the original PBE is in ΣK . Hence, if

bt ∈ Ek[ht]
, at least a subset of types in C[ht] take the action at time t if bt ∈ Ek[ht]

.

12Further details about such equilibria are available from the authors upon request.
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We now show that, in a PBE in ΣK , it cannot be that at (ht, bt) the principal makes

an offer Tt that only a strict subset C ( C[ht] of types accept. Towards a contradiction,

suppose that a strict subset C ( C[ht] of types accept Tt, and let cj = maxC. There are

two possible cases: (a) cj = ck[ht]
, and (b) cj < ck[ht]

. Consider case (a). By Lemma 0,

the continuation payoff of an agent with cost ck[ht]
is zero at all histories. This implies

that Tt = ck[ht]
. Let ci = maxC[ht]\C (note that C[ht]\C is non-empty). Since ci rejects

the offer today and becomes the highest cost in the support of the principal’s beliefs

tomorrow, Lemma 0 implies that V
(σ,µ)
i [ht, bt] = 0. But this cannot be, since this agent

can guarantee a payoff of at least (1 − δ)(Tt − ci) = (1 − δ)(ck[ht]
− ci) > 0 by accepting

the offer. Hence, if only a strict subset C ( C[ht] of types accept, cj = maxC < ck[ht]
.

Consider next case (b). By Lemma 0, the payoff of type cj from taking the productive

action at time t is (1− δ)(Tt− cj) + 0. Indeed, at period t+ 1, cj will be the highest cost

in the support of the principal’s beliefs if he takes the action at t. Since an agent with

cost cj can mimic the strategy of type ck[ht]
, incentive compatibility implies that

(1− δ)(Tt − cj) ≥ V
(σ,µ)

k[ht]
[ht, bt] + (ck[ht]

− cj)A(σ,µ)

k[ht]
[ht, bt]

≥ (ck[ht]
− cj)X(bt, Ek[ht]

) > (1− δ)(ck[ht]
− cj) (4)

The first inequality follows from equation (3) in the main text. The second inequality

follows from Lemma 0 and the fact that A
(σ,µ)

k[ht]
[ht, bt] ≥ X(bt, Ek[ht]

). To see why this

last inequality holds, note that ck[ht]
/∈ C, so at most n − 1 types accept the principal’s

offer. Thus, the inductive hypothesis implies that if the agent rejects the offer, then at all

periods t′ > t the principal will get all the remaining types to take the action whenever

bt ∈ Ek[ht]
, and so A

(σ,µ)

k[ht]
[ht, bt] ≥ X(bt, Ek[ht]

). The last inequality in equation (4) follows

from the fact X(bt, Ek[ht]
) ≥ X(bt, b

+
t ) > 1 − δ where the first inequality holds because

bt ∈ Ek[ht]
and the second follows by Assumption 1.

On the other hand, because Lemma 0 implies that an agent with type ck[ht]
has a

continuation value of zero, the transfer Tt that the principal offers must be weakly smaller

than ck[ht]
; otherwise, if Tt > ck[ht]

, an agent with type ck[ht]
could guarantee himself a

strictly positive payoff by accepting the offer. But this contradicts (4). Hence, it cannot

be that only a strict subset of types in C[ht] accept the principal’s offer at (ht, bt).

By the arguments above, all agents in C[ht] take action a = 1 at (ht, bt) with bt ∈ Ek[ht]
.

Since an agent with cost ck[ht]
obtains a payoff of zero after every history (Lemma 0), the

transfer that the principal offers at time t is Tt = ck[ht]
.
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A.1.2 Proof of parts (ii) & (iii) (the case of bt /∈ Ek[ht]
)

In both parts (ii) and (iii) of the theorem, the highest cost type in the principal’s support

ck[ht]
does not take the productive action when bt /∈ Ek[ht]

. We prove this in Lemma A.1

below, and use the lemma to prove parts (ii) and (iii) separately.

Lemma A.1. Fix any equilibrium (σ, µ) and history ht. If bt /∈ Ek[ht]
, then an agent with

cost ck[ht]
does not take the productive action.

Proof. Suppose for the sake of contradiction that an agent with type ck[ht]
does take

the action at time t if bt /∈ Ek[ht]
. Since, by Lemma 0, this type’s payoff must equal

zero at all histories, it must be that the offer that is accepted is Tt = ck[ht]
. We now

show that if the principal makes such an offer, then all agent types will accept the offer

and take the productive action. To see this, suppose some types reject the offer. Let

cj be the highest cost type that rejects the offer. By Lemma 0, type cj’s continuation

payoff is zero, because this type becomes the highest cost in the support of the principal’s

beliefs following a rejection. However, this type can guarantee himself a payoff of at least

(1− δ)(Tt − cj) = (1− δ)(ck[ht]
− cj) > 0 by accepting the current offer. Hence, it cannot

be that some types reject offer Tt = ck[ht]
when type ck[ht]

accepts it.

It then follows that if type ck[ht]
accepts the offer, then the principal will not learn

anything about the agent’s type. Since bt /∈ Ek[ht]
, her flow payoff from making the offer

is (1 − δ)(bt − ck[ht]
) < 0. Consider an alternative PBE which is identical to the original

PBE, except that at history (ht, bt) the principal makes an offer T = 0, and all agent

types in C[ht] reject this offer. The principal’s beliefs after this period are equal to µ[ht]

regardless of the agent’s action. Note that it is optimal for all types to reject this offer.

Moreover, since bt /∈ Ek[ht]
, the payoff that the principal gets from this PBE is larger than

her payoff under the original PBE. But this cannot be, since the original PBE is in ΣK .

Hence, if bt /∈ Ek[ht]
, an agent with type ck[ht]

does not take the action at time t.

Proof of part (ii). Fix a history ht and let bt ∈ B\Ek[ht]
be such that X(bt, Ek[ht]

) > 1−δ.
By Lemma A.1, type ck[ht]

doesn’t take the productive action at time t if bt /∈ Ek[ht]
.

Suppose, for the sake of contradiction, that there is a nonempty set of types C ( C[ht]

that do take the productive action. Let cj = maxC. By Lemma 0 type cj obtains a

continuation payoff of zero starting in period t + 1. Hence, type cj receives a payoff

(1− δ)(Tt− cj) + δ0 from taking the productive action in period t. Since this payoff must

be weakly larger than the payoff the agent would obtain by not taking the action and
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mimicking the strategy of agent ck[ht]
in all future periods, it follows that

(1− δ)(Tt − cj) ≥ V
(σ,µ)

k[ht]
[ht, bt] + (ck[ht]

− cj)A(σ,µ)

k[ht]
[ht, bt]

≥ (ck[ht]
− cj)X(bt, Ek[ht]

) (5)

> (1− δ)(ck[ht]
− cj), (6)

where the first line follows from incentive compatibility, the second line follows from the

fact that at′,k[ht]
= 1 for all times t′ ≥ t such that bt′ ∈ Ek[ht]

(by the result of part (i)

proven above), and the third line follows since X(bt, Ek[ht]
) > 1 − δ by assumption. The

inequalities in (6) imply that Tt > ck[ht]
. But then by Lemma 0, it would be strictly

optimal for type ck[ht]
to deviate by accepting the transfer and taking the productive

action, a contradiction. So it must be that all agent types in C[ht] take action at = 0.

Proof of part (iii). Fix a history ht and let bt ∈ B\Ek[ht]
be such that X(bt, Ek[ht]

) ≤
1 − δ. We start by showing that the set of types that accept the offer has the form

C− = {ck ∈ C[ht] : ck < ck∗} for some ck∗ ∈ C[ht]. The result is clearly true if no agent

type takes the action, in which case set ck∗ = minC[ht]; or if only an agent with type

minC[ht] takes the action, in which case set ck∗ equal to the second lowest cost in C[ht].

Therefore, suppose that an agent with type larger than minC[ht] takes the action,

and let cj∗ ∈ C[ht] be the highest cost agent that takes the action. Since bt /∈ Ek[ht]
, by

Lemma A.1 it must be that cj∗ < ck[ht]
. By Lemma 0, type cj∗ ’s payoff is (1− δ)(Tt− cj∗),

since from date t+ 1 onwards this type will be the highest cost type in the support of the

principal’s beliefs if the principal observes that the agent took the action at time t. Let

ck∗ = min{ck ∈ C[ht] : ck > cj∗}. By incentive compatibility, it must be that

(1− δ)(Tt − cj∗) ≥ V
(σ,µ)
k∗ [ht, bt] + (ck∗ − cj∗)A(σ,µ)

k∗ [ht, bt], (7)

since type cj∗ can obtain the right-hand side of (7) by mimicking type ck∗ . Furthermore,

type ck∗ can guarantee himself a payoff of (1− δ)(Tt− ck∗) by taking the action at time t

and never taking the action again. Therefore, it must be that

V
(σ,µ)
k∗ [ht, bt] ≥ (1− δ)(Tt − ck∗) ≥ (1− δ)(cj∗ − ck∗) + V

(σ,µ)
k∗ [ht, bt] + (ck∗ − cj∗)A(σ,µ)

k∗ [ht, bt]

=⇒ 1− δ ≥ A
(σ,µ)
k∗ [ht, bt] (8)

where the second inequality in the first line follows from (7).
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We now show that all types ci ∈ C[ht] with ci < cj∗ also take the action at time t.

Suppose for the sake of contradiction that this is not true, and let ci∗ ∈ C[ht] be the

highest cost type lower than cj∗ that does not take the action. The payoff that this type

would get by taking the action at time t and then mimicking type cj∗ is

V
(σ,µ)
i∗→j∗ [ht, bt] = (1− δ)(Tt − cj∗) + (cj∗ − ci∗)A(σ,µ)

j∗ [ht, bt]

= (1− δ)(Tt − cj∗) + (cj∗ − ci∗)(1− δ +X(bt, Ej∗))

≥ (cj∗ − ci∗)(1− δ +X(bt, Ej∗)) + V
(σ,µ)
k∗ [ht, bt] + (ck∗ − cj∗)A(σ,µ)

k∗ [ht, bt]

(9)

where the first line follows from the fact that type cj∗ is the highest type in the support

of the principal’s beliefs in period t + 1, so he receives a payoff of 0 from t + 1 onwards;

the second follows from part (i) and Lemma 2, which imply that type cj∗ takes the action

in periods t′ ≥ t + 1 if and only if bt′ ∈ Ej∗ (note that type cj∗ also takes the action at

time t); and the third inequality follows from (7).

On the other hand, by Lemma 0(ii), the payoff that type ci∗ gets by rejecting the offer

at time t is equal to the payoff she would get by mimicking type ck∗ , since the principal

will believe for sure that the agent’s type is not in {ci∗+1, ..., cj∗} ⊆ C[ht] after observing

a rejection. That is, type ci∗ ’s payoff is

V
(σ,µ)
i∗ [ht, bt] = V

(σ,µ)
i∗→k∗ [ht, bt] = V

(σ,µ)
k∗ [ht, bt] + (ck∗ − ci∗)A(σ,µ)

k∗ [ht, bt] (10)

From equations (9) and (10), it follows that

V
(σ,µ)
i∗ [ht, bt]− V (σ,µ)

i∗→j∗ [ht, bt] ≤ (cj∗ − ci∗)
[
A

(σ,µ)
k∗ [ht, bt]− [1− δ +X(bt, Ej∗)]

]
< 0,

where the strict inequality follows after using (8). Hence, type ci∗ strictly prefers to mimic

type cj∗ and take the action at time t than to not take it, a contradiction. Hence, all

types ci ∈ C[ht] with ci ≤ cj∗ take the action at t, and so the set of types taking the

action takes the form C− = {cj ∈ C[ht] : cj < ck∗}.
Finally, it is clear that in equilibrium, the transfer that the principal will pay at time

t if all agents with type ci ∈ C− take the action is given by (∗). The payoff that an

agent with type cj∗ = maxC− gets by accepting the offer is (1 − δ)(Tt − cj∗), while her

payoff from rejecting the offer and mimicking type ck∗ = minC[ht]\C− is V
(σ,µ)
k∗ [ht, bt] +
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(ck∗ − cj∗)A
(σ,µ)
k∗ [ht, bt]. Hence, the lowest offer that a cj∗-agent accepts is (1 − δ)Tt =

(1− δ)cj∗ + V
(σ,µ)
k∗ [ht, bt] + (ck∗ − cj∗)A(σ,µ)

k∗ [ht, bt].

A.1.3 Proof of Existence and Uniqueness

For each history ht and each cj ∈ C[ht], let Cj+[ht] = {ci ∈ C[ht] : ci ≥ cj}. For each

history ht and state realization bt ∈ B, let

A
(σ,µ)
j+ [ht, bt] := (1− δ)E(σ,µ)

[
∞∑

t′=t+1

δt
′−tat′,j|(ht, bt) and C[ht+1] = Cj+[ht]

]
.

That is, A
(σ,µ)
j+ [ht, bt] is the expected discounted fraction of time that an agent with type

cj takes the action after history (ht, bt) if the beliefs of the principal at time t + 1 have

support Cj+[ht]. We then have:

Lemma A.2. Fix any equilibrium (σ, µ) and history (ht, bt). Then, there exists an offer

T ≥ 0 such that types ci ∈ C[ht], ci < cj, accept at time t and types ci ∈ C[ht], ci ≥ cj,

reject if and only if A
(σ,µ)
j+ [ht, bt] ≤ 1− δ.

Proof. First, suppose such an offer T exists, and let ck be the highest type in C[ht]

that accepts T . Let cj be the lowest type in C[ht] that rejects the offer, and note that

ck < cj. By Lemma 0, the expected discounted payoff that an agent with type ck gets from

accepting the offer is (1−δ)(T −ck)+δ0. The payoff that type ck obtains by rejecting the

offer and mimicking type cj from time t+ 1 onwards is V
(σ,µ)
j [ht, bt] + (cj− ck)A(σ,µ)

j+ [ht, bt].

Therefore, the offer T that the principal makes must satisfy

(1− δ)(T − ck) ≥ V
(σ,µ)
j [ht, bt] + (cj − ck)A(σ,µ)

j+ [ht, bt]. (11)

Note that an agent with type cj can guarantee herself a payoff of (1−δ)(T − cj) by taking

the action in period t and then never taking it again; therefore, incentive compatibility

implies

V
(σ,µ)
j [ht, bt] ≥ (1− δ)(T − cj) ≥ V

(σ,µ)
j [ht, bt] + (cj − ck)

[
A

(σ,µ)
j+ [ht, bt]− (1− δ)

]
=⇒ 1− δ ≥ A

(σ,µ)
j+ [ht, bt]

where the second inequality in the first line follows after substituting T from (11).

Suppose next that A
(σ,µ)
j+ [ht, bt] ≤ 1− δ, and suppose the principal makes offer T such

that (1 − δ)(T − ck) = V
(σ,µ)
j [ht, bt] + (cj − ck)A(σ,µ)

j+ [ht, bt], which only agents with type
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c` ∈ C[ht], c` ≤ ck are supposed to accept. The payoff that an agent with cost ck obtains

by accepting the offer is (1−δ)(T−ck), which is exactly what he would obtain by rejecting

the offer and mimicking type cj. Hence, type ck has an incentive to accept such an offer.

Similarly, one can check that all types c` ∈ C[ht], c` < ck also have an incentive to accept

the offer. If the agent accepts such an offer and takes the action in period t, the principal

will be believe that the agent’s type lies in {c` ∈ C[ht] : c` ≤ ci}. Note that, in all periods

t′ > t, the principal will never offer Tt′ > ck.

Consider the incentives of an agent with type ci ≥ cj > ck at time t. The payoff that

this agent gets from accepting the offer is (1 − δ)(T − ci), since from t + 1 onwards the

agent will never accept any equilibrium offer. This is because all subsequent offers will be

lower than ck < cj ≤ ci. On the other hand, the agent’s payoff from rejecting the offer is

V
(σ,µ)
i [ht, bt] ≥ V

(σ,µ)
i→j [ht, bt] = V

(σ,µ)
j [ht, bt] + (cj − ci)A(σ,µ)

j+ [ht, bt]

≥ (1− δ)(T − ci) = (1− δ)(ck − ci) + V
(σ,µ)
j [ht, bt] + (cj − ck)A(σ,µ)

j+ [ht, bt],

where the second inequality follows since A
(σ,µ)
j+ [ht, bt] ≤ 1− δ.

The proof of existence and uniqueness relies on Lemma A.2 and uses strong induction on

the cardinality of C[ht]. Clearly, Σ1 is non-empty, and all PBE in Σ1 give the same payoff

to the principal at histories (ht, bt) such that C[ht] = {ck}: in this case, the principal

offers the agent a transfer Tt′ = ck (which the agent accepts) at times t′ ≥ t such that

bt′ ∈ Ek and offers some transfer Tt′ < ck (which the agent rejects) at times t′ ≥ t such

that bt′ /∈ Ek.
Suppose next that Σk−1 is non-empty for all k ≤ n − 1, and that for all k ≤ n − 1,

all PBE in Σk give the principal the same payoff at histories (ht, bt) with |C[ht]| = k. We

now show that Σn is non-empty, and that all all PBE in Σn give the principal the same

payoff at histories (ht, bt) with |C[ht]| = n.

Consider a history (ht, bt) with |C[ht]| = n. If bt ∈ Ek[ht]
, then by part (i) it must be

that all agent types in C[ht] take the action in period t and Tt = ck[ht]
; hence, at such

states

U (σ,µ)[ht, bt] = (1− δ)(bt − ck[ht]
) + δE

[
U (σ,µ)[ht+1, bt+1]|bt

]
If bt /∈ Ek[ht]

and X(bt, Ek[ht]
) > 1 − δ, then by part (ii), all agent types in C[ht] don’t

take the action (in this case, the principal makes an offer T small enough that all agents
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reject); hence, at such states

U (σ,µ)[ht, bt] = δE
[
U (σ,µ)[ht+1, bt+1]|bt

]
In either case, the principal doesn’t learn anything about the agent’s type, since all types

of agents in C[ht] take the same action, so her beliefs don’t change.

Finally, consider states bt /∈ Ek[ht]
with X(bt, Ek[ht]

) ≤ 1− δ. Two things can happen

at such a state: (i) all types of agents in C[ht] don’t take the action, or (ii) a strict subset

of types in C[ht] don’t take the action and the rest do.13 In case (i), the beliefs of the

principal at time t+ 1 would be the same as the beliefs of the principal at time t, and her

payoffs are

U (σ,µ)[ht, bt] = δE
[
U (σ,µ)[ht+1, bt+1]|bt

]
In case (ii), the types of the agent not taking the action has the form Cj+[ht] = {ci ∈
C[ht] : ci ≥ cj} for some cj ∈ C[ht]. So in case (ii) the support of the beliefs of the principal

at time t + 1 would be Cj+[ht] if the agent doesn’t take the action, and C[ht]\Cj+[ht] if

he does.

By Lemma A.2, there exists an offer that types Cj+[ht] reject and types C[ht]\Cj+[ht]

accept if and only if A
(σ,µ)
j+ [ht, bt] ≤ 1 − δ. Note that, by the induction hypothesis,

A
(σ,µ)
j+ [ht, bt] is uniquely determined.14 Let C∗[ht, bt] = {ci ∈ C[ht] : A

(σ,µ)
i+ [ht, bt] ≤ 1− δ}.

Without loss of generality, renumber the types in C[ht] so that C[ht] = {c1, ..., ck[ht]
}, with

c1 < ... < ck[ht]
. For each ci ∈ C∗[ht, bt], let

T ∗t,i−1 = ci−1 +
1

1− δ

(
V

(σ,µ)
i [ht, bt] + A

(σ,µ)
i+ [ht, bt](ci − ci−1)

)
be the offer that leaves an agent with type ci−1 indifferent between accepting and rejecting

when all types in Ci+[ht] reject the offer and all types in C[ht]\Ci+[ht] accept. Note that

T ∗t,i−1 is the best offer for a principal who wants to get all agents with types in C[ht]\Ci+[ht]

to take the action and all agents with types in types in Ci+[ht] to not take the action.

Let T = {T ∗t,i−1 : ci ∈ C∗[ht, bt]}. At states bt /∈ Ek[ht]
with X(bt, Ek[ht]

) ≤ 1, the

principal must choose optimally whether to make an offer in T or to make a low offer (for

13By Lemma A.1, in equilibrium an agent with cost ck[ht]
doesn’t take the action.

14A
(σ,µ)
j+ [ht, bt] is determined in equilibrium when the principal has beliefs with support Cj+[ht], and

the induction hypothesis states that the continuation equilibrium is unique when the cardinality of the
support of principal’s beliefs is less than n.

29



example, Tt = 0) that all agents reject: an offer Tt = T ∗t,i−1 would be accepted by types

in C[ht]\Ci+[ht] and rejected by types in Ci+[ht], while an offer Tt = 0 will be rejected

by all types. For each offer T ∗t,i−1 ∈ T , let p(T ∗t,i−1) be the probability that offer T ∗t,i−1

is accepted; i.e., the probability that the agent has cost weakly smaller than ci−1. Let

U (σ,µ)[ht, bt, T
∗
t,i−1, at = 1] and U (σ,µ)[ht, bt, T

∗
t,i−1, at = 0] denote the principal’s expected

continuation payoffs if the offer T ∗t,i−1 ∈ T is accepted and rejected, respectively, at history

(ht, bt). Note that these payoffs are uniquely pinned down by the induction hypothesis:

after observing whether the agent accepted or rejected the offer, the cardinality of the

support of the principal’s beliefs will be weakly lower than n− 1. For all b ∈ B, let

U∗(ht, bt) = max
T∈T

{
p(T )((1−δ)(b−T )+U (σ,µ)[b, µ[ht], T, 1])+(1−p(T ))U (σ,µ)[b, µ[ht], T, 0]

}
and let T (b) be a maximizer of this expression.

Partition the states B as follows:

B1 = Ek[ht]

B2 = {b ∈ B\B1 : X(bt, Ek[ht]
) > 1− δ}

B3 = {b ∈ B\B1 : X(bt, Ek[ht]
) ≤ 1− δ}

By our arguments above, the principal’s payoff U (σ,µ)[ht, bt] satisfies:

U (σ,µ)[ht, bt] =


(1− δ)(b− ck[ht]

) + δE
[
U (σ,µ)[ht+1, bt+1]|bt

]
if bt ∈ B1

δE
[
U (σ,µ)[ht+1, bt+1|bt

]
if bt ∈ B2

max{U∗(ht, bt), δE
[
U (σ,µ)[ht+1, bt+1]|bt

]
} if bt ∈ B3

(12)

Let F be the set of functions from B to R and let Φ : F → F be the operator such that,

for every f ∈ F ,

Φ(f)(b) =


(1− δ)(b− ck[ht]

) + δE[f [bt+1]|bt = b] if b ∈ B1

δE[f [bt+1]|bt = b] if b ∈ B2

max{U∗(ht, b), δE[f [bt+1]|bt = b]} if b ∈ B3

One can check that Φ is a contraction of modulus δ < 1, and therefore has a unique

fixed point. Moreover, by (12), the principal’s equilibrium payoffs U (σ,µ)[ht, bt] are a fixed

point of Φ. These two observations together imply that the principal’s equilibrium payoffs

U (σ,µ)[ht, bt] are unique. The equilibrium strategies at (ht, bt) can be immediately derived
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from (12). Finally, it can be readily seen that these equilibrium strategies can be taken

to be Markovian with respect to the principal’s beliefs µ[ht] and the shock bt.

A.2 Proof of Proposition 3

Fix a history ht such that |C[ht]| ≥ 2 and without loss of generality renumber the types

so that C[ht] = {c1, ..., ck[ht]
} with c1 < ... < ck[ht]

. We start by showing that for every

such history, there exists a shock realization b ∈ B with the property that, if bs = b at

time s ≥ t, then the principal makes an offer that a strict subset of the types in C[ht]

accepts.

Suppose for the sake of contradiction that this is not true. Note that this implies that

µ[ht′ ] = µ[ht] for every ht′ � ht. By Theorem 1, this further implies that after history ht,

the agent only takes the action when the shock is in Ek[ht]
, and receives a transfer equal

to ck[ht]
. Therefore, the principal’s payoff after history (ht, bt) is

U (σ,µ)[ht, bt] = (1− δ)E

[
∞∑
t′=t

δt
′−t(bt′ − ck[ht]

)1{bt′∈Ek[ht]}
|bt = b

]
.

Let b ∈ Ek[ht]−1 be such that X(b, Ek[ht]
) < 1 − δ. The conditions in the statement of

Proposition 3 guarantee that such a shock b exists. Suppose that the shock at time s ≥ t

is bs = b, and let ε > 0 be small enough such that

T = ck[ht]−1 +
1

1− δ
X(b, Ek[ht]

)(ck[ht]
− ck[ht]−1) + ε < ck[ht]

. (13)

Note that at history (hs, bs), an offer equal to T is accepted by all types with cost strictly

lower than ck[ht]
, and is rejected by type ck[ht]

.15 The principal’s payoff from making an

offer T conditional on the agent’s type being ck[ht]
is U (σ,µ)[ht, bt]. On the other hand,

when the agent’s type is lower than ck[ht]
, the principal obtains (1 − δ)(b − T ) at period

t if she offers transfer T , and learns that the agent’s type is not ck[ht]
. From period t+ 1

onwards, the principal’s payoff is bounded below by what she could obtain if at all periods

t′ > t she offers Tt′ = ck[ht]−1 whenever bt′ ∈ Ek[ht]−1 (an offer which is accepted by all

types), and offers Tt′ = 0 otherwise (which is rejected by all types). The payoff that the

15Indeed, by accepting offer T , an agent with cost ci < ck[ht]
obtains a payoff of at least (1 − δ)(T −

ci) + δ× 0. This payoff is strictly larger than the payoff of X(b, Ek[ht]
)(ck[ht]

− ci) he obtains by rejecting
and continuing playing the equilibrium.
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principal obtains from following this strategy when the agent’s cost is lower than ck[ht]
is

U = (1− δ)(b− T ) + (1− δ)E

[
∞∑

t′=s+1

δt
′−s(bt′ − ck[ht]−1)1{bt′∈Ek[ht]−1}|bs = b

]

= (1− δ)(b− ck[ht]−1 − ε) + (1− δ)E

[
∞∑

t′=s+1

δt
′−s(bt′ − ck[ht]

)1{bt′∈Ek[ht]}
|bs = b

]

+ (1− δ)E

[
∞∑

t′=s+1

δt
′−s(bt′ − ck[ht]−1)1{bt′∈Ek[ht]−1\Ek[ht]}

|bs = b

]
= U (σ,µ)[ht, b] + (1− δ)(b− ck[ht]−1 − ε)

+ (1− δ)E

[
∞∑

t′=s+1

δt
′−s(bt′ − ck[ht]−1)1{bt′∈Ek[ht]−1\Ek[ht]}

|bs = b

]
,

where the second line follows from substituting (13). Since b ∈ Ek[ht]−1, from the third

line it follows that if ε > 0 is small enough then U is strictly larger than U (σ,µ)[ht, b]. But

this cannot be, since the proposed strategy profile was an equilibrium. Therefore, for all

histories ht such that |C[ht]| ≥ 2, there exists b ∈ B with the property that at history

(hs, bs) with hs � ht and bs = b the principal makes an offer that a strict subset of the

types in C[ht] accept.

We now use this result to establish the proposition. Note first that this result, together

with the assumption that process {bt} is ergodic, implies that there is long run learning

in equilibrium. Indeed, as long as C[ht] has two or more elements, there will be some

shock realization at which the principal makes an offer that only a strict subset of types

in C[ht] accepts. Since there are finitely many types and {bt} is ergodic, with probability

1 the principal will end up learning the agent’s type.

Finally, fix a history ht such that C[ht] = {ci}. Then, from time t onwards the princi-

pal’s payoff is U (σ,µ)[ht, b] = (1 − δ)E
[∑∞

t′=t δ
t′−t(bt′ − ci)1{bt′∈Ei}|bt = b

]
= U∗i (b|c = ci),

which is the first best payoff. This and the previous arguments imply that the equilibrium

is long run first best.
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OA2 Online Appendix

OA2.1 Proof of Lemma 0

Proof of part (i). The proof is by strong induction on the cardinality of the support

of the principal’s beliefs, C[ht]. Fix an equilibrium (σ, µ), and note that the claim is true

for all histories ht such that |C[ht]| = 1.16 Suppose next that the claim is true for all

histories h̃t̃ with |C[h̃t̃]| ≤ n− 1, and consider a history ht with |C[ht]| = n.

Suppose by contradiction that V
(σ,µ)

k[ht]
[ht, bt] > 0. Then, there must exist a state bt′ and

history ht′ � ht that arises on the path of play with positive probability at which the

principal offers a transfer Tt′ > ck[ht]
that type ck[ht]

accepts. Note first that, since type

ck[ht] accepts offer Tt′ , all types in the support of C[ht′ ] must also accept it. Indeed, if

this were not true, then there would be a highest type ck ∈ C[ht′ ] that rejects the offer.

By the induction hypothesis, the equilibrium payoff that this type obtains at history ht′

is V
(σ,µ)
k [ht′ , bt′ ] = 0, since this type would be the highest cost of in the support of the

principal’s beliefs following a rejection. But this cannot be, since type ck can get a payoff

of at least Tt′ − ck > 0 by accepting the principal’s offer at time t′.

We now construct an alternative strategy profile σ̃ that is otherwise identical to σ

except that at history (ht′ , bt′) the agent is offered a transfer T̃ ∈ (ck[ht]
, Tt′). Specify

the principal’s beliefs at history (ht′ , bt′) as follows: regardless of the agent’s action, the

principal’s beliefs at the end of the period are the same as her beliefs at the beginning of

the period. At all other histories, the principal’s actions and beliefs are the same as in the

original equilibrium. Note that, given these beliefs, at history ht′ all agent types in C[ht′ ]

find it strictly optimal to accept the principal’s offer T̃ and take the action. Thus, the

principal’s payoff at history ht′ is larger than her payoff under the original equilibrium,

which cannot be since the original equilibrium was in ΣK .

Proof of part (ii). The proof is by induction of the cardinality of C[ht]. Consider first

a history ht such that |C[ht]| = 2. Without loss of generality, let C[ht] = {c1, c2}, with

c1 < c2. There are two cases to consider: (i) for all histories ht′ � ht, µ[ht′ ] = µ[ht], i.e.,

there is no more learning; and (ii) there exists a history ht′ � ht such that µ[ht′ ] 6= µ[ht].

Consider first case (i). Since µ[ht′ ] = µ[ht] for all ht′ � ht, both types of agents take

the productive action at the same times. This implies that A
(σ,µ)
2 [ht, bt] = A

(σ,µ)
1 [ht, bt].

16Indeed, if C[ht] = {ci}, then in any PBE in ΣK the agent takes action a = 1 at time t′ ≥ t if and
only if bt′ ∈ Ei, and the principal pays the agent a transfer equal to ci every time the agent takes the
action.
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Moreover, by Lemma 0(i), the transfer that the principal pays when the productive action

is taken is equal to c2. Hence, V
(σ,µ)

1 [ht, bt] = (1 − δ)E(σ,µ)
[∑∞

t′=t δ
t′−t(Tt′ − c1)at′,1|ht

]
=

V
(σ,µ)

2 [ht, bt] + A
(σ,µ)
2 [ht, bt](c2 − c1), where we have used V

(σ,µ)
2 [ht, bt] = 0 and Tt′ = c2 for

all t′ such that at′,1 = at′,2 = 1 (both of these follow from part (i) of the Lemma).

Consider next case (ii), and let t = min{t′ ≥ t : at′,1 6= at′,2}. Hence, at time t only

one type of agent in {c1, c2} takes the action. Note that an agent of type c1 must take

the action at time t. To see why, suppose that it is only the agent of type c2 that takes

the action. By part (i) of the Lemma, the transfer Tt that the principal pays the agent

must be equal to c2. The payoff that an agent with type c1 gets by accepting the offer Tt

is bounded below by c2 − c1 > 0. In contrast, by part (i) of the Lemma, an agent of type

c1 would obtain a continuation payoff of zero by rejecting this offer. Hence, it must be

that only an agent with type c1 takes the action at time t.

Note that, by part (i) of the Lemma, the total payoff that an agent with type c1

gets from time t onwards is equal to V
(σ,µ)

1 [ht, bt] = (1 − δ)(Tt − c1). Note further that

(1 − δ)(Tt − c1) ≥ V
(σ,µ)

2 [ht, bt] + A
(σ,µ)
2 [ht, bt](c2 − c1), since an agent of type c1 can get

a payoff equal to the right-hand side by mimicking an agent with type c2. Since we

focus on PBE in ΣK , the transfer that the principal offers the agent at time t must be

(1− δ)(Tt − c1) = V
(σ,µ)

2 [ht, bt] + A
(σ,µ)
2 [ht, bt](c2 − c1), and so

V
(σ,µ)

1 [ht, bt] = V
(σ,µ)

2 [ht, bt] + A
(σ,µ)
2 [ht, bt](c2 − c1) = A

(σ,µ)
2 [ht, bt](c2 − c1), (OA14)

where the last equality follows from part (i) of the Lemma.

Note next that, for all t′ ∈ {t, ..., t− 1}, at′,1 = at′,2, i.e., both types of agents take the

same action. Moreover, by part (i) of the Lemma, Tt′ = c2 whenever at′,1 = at′,2 = 1, i.e.,

the principal pays a transfer equal to c2 whenever the high cost agent takes the action.

Therefore,

V
(σ,µ)

1 [ht, bt] = E(µ,σ)

[
t−1∑
t′=t

δt
′−t(1− δ)(Tt′ − c1)at′,1 + δt−tV

(σ,µ)
1 [ht, bt] | ht, bt

]

= E(µ,σ)

[
t−1∑
t′=t

δt
′−t(1− δ)(c2 − c1)at′,2 + δt−tA

(σ,µ)
2 [ht, bt](c2 − c1) | ht, bt

]
= A

(σ,µ)
2 [ht, bt](c2 − c1) = V

(σ,µ)
2 [ht, bt] + A

(σ,µ)
2 [ht, bt](c2 − c1),

where we have used (OA14), and the fact that V
(σ,µ)

2 [ht, bt] = 0. Therefore, the lemma

holds for all ht such that |C[ht]| = 2.
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Suppose next that the result holds for all h̃t̃ such that |C[h̃t̃]| ≤ n − 1, and consider

a history ht such that |C[ht]| = n. Consider two “adjacent” types ci, ci+1 ∈ C[ht]. We

have two possible cases: (i) with probability 1, types ci and ci+1 take the same action at

all histories ht′ � ht; (ii) there exists a history ht′ � ht at which types ci and ci+1 take

different actions. Under case (i),

V
(σ,µ)
i [ht, bt] = E(σ,µ)

[
∞∑
t′=t

δt
′−t(1− δ)(Tt′ − ci)at′,i|ht, bt

]

= E(σ,µ)

[
∞∑
t′=t

δt
′−t(1− δ)(Tt′ − ci+1)at′,i+1|ht, bt

]

+ E(σ,µ)

[
∞∑
t′=t

δt
′−t(1− δ)(ci+1 − ci)at′,i+1|ht, bt

]
= V

(σ,µ)
i+1 [ht, bt] + A

(σ,µ)
i+1 [ht, bt](ci+1 − ci).

For case (ii), let t = min{t′ ≥ t : at′,i+1 6= at′,i} be the first time after t at which

types ci and ci+1 take different actions. Let ck ∈ C[ht] be the highest cost type that

takes the action at time t. The transfer Tt that the principal offers at time t must

satisfy V
(σ,µ)
k [ht, bt] = (1 − δ)(Tt − ck) = V

(σ,µ)
k+1 [ht, bt] + A

(σ,µ)
k+1 [ht, bt](ck+1 − ck).

17 Note

further that V
(σ,µ)
k+1 [ht, bt] ≥ (1− δ)(Tt− ck+1), since an agent with cost ck+1 can guarantee

(1 − δ)(Tt − ck+1) by taking the action at time t and then not taking the action in all

future periods. Since (1 − δ)(Tt − ck) = V
(σ,µ)
k+1 [ht, bt] + A

(σ,µ)
k+1 [ht, bt](ck+1 − ck), it follows

that A
(σ,µ)
k+1 [ht, bt] ≤ 1− δ.

We now show that all types below ck also take the action at time t. That is, we show

that all agents in the support of C[ht] with cost weakly lower than ck take the action at t,

and all agents with cost weakly greater than ck+1 do not take the action. Note that this

implies that ci = ck (since types ci and ci+1 take different actions at time t). Suppose for

the sake of contradiction that this is not true, and let cj be the highest cost type below

ck that takes does not take the action. The payoff that this agent gets from not taking

the action is V
(σ,µ)
j→k+1[ht, bt] = V

(σ,µ)
k+1 [ht, bt] + A

(σ,µ)
k+1 [ht, bt](ck+1 − cj), which follows since at

time t types cj and ck+1 do not take the action and since, by the induction hypothesis,

from time t + 1 onwards the payoff that an agent with cost cj gets is equal to what this

agent would get by mimicking an agent with cost ck+1. On the other hand, the payoff

17The first equality follows since, after time t, type ck is the highest type in the support of the
principal’s beliefs if the agent takes action a = 1 at time t. The second equality follows since we focus on
PBE in ΣK , so the transfer Tt leaves a ck-agent indifferent between accepting and rejecting.
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that agent cj obtains by taking the action and mimicking type ck is

V
(σ,µ)
j→k [ht, bt] = V

(σ,µ)
k [ht, bt] + A

(σ,µ)
k [ht, bt](ck − cj)

= (1− δ)(Tt − cj) + A
(σ,µ)
k [ht, bt](ck − cj)

= V
(σ,µ)
k+1 [ht, bt] + A

(σ,µ)
k+1 [ht, bt](ck+1 − ck) + A

(σ,µ)
k [ht, bt](ck − cj)

> V
(σ,µ)
k+1 [ht, bt] + A

(σ,µ)
k+1 [ht, bt](ck+1 − cj),

where the inequality follows since A
(σ,µ)
k+1 [ht, bt] ≤ 1 − δ < A

(σ,µ)
k [ht, bt].

18 Hence, type j

strictly prefers to take the action, a contradiction. Therefore, all types below ck take the

action at time t, and so ci = ck.

By the arguments above, the payoff that type ci = ck obtains at time t is

V
(σ,µ)
i [ht, bt] = (1− δ)(Tt − ci) = V

(σ,µ)
i+1 [ht, bt] + A

(σ,µ)
i+1 [ht, bt](ci+1 − ci),

since transfer that the principal offers at time t satisfies (1− δ)(Tt − ci) = V
(σ,µ)
i+1 [ht, bt] +

A
(σ,µ)
i+1 [ht, bt](ci+1 − ci). Moreover,

V
(σ,µ)
i [ht, bt] = E(σ,µ)

[
t−1∑
t′=t

δt
′−t(1− δ)(Tt′ − ci)at′,i + δt−tV

(σ,µ)
i [ht, bt]|ht, bt

]

= E(σ,µ)

[
t−1∑
t′=t

δt
′−t ((1− δ)(Tt′ − ci+1)at′,i+1 + (1− δ)(ci+1 − ci)at′,i+1) |ht, bt

]

+ E(σ,µ)

[
δt−t

(
V

(σ,µ)
i+1 [ht, bt] + A

(σ,µ)
i+1 [ht, bt](ci+1 − ci)

)
|ht, bt

]
= V

(σ,µ)
i+1 [ht, bt] + A

(σ,µ)
i+1 [ht, bt](ci+1 − ci),

where the second equality follows since at′,i = at′,i+1 for all t′ ∈ {t, ..., t − 1}. Hence, the

result also holds for histories ht with |C[ht]| = n.

OA2.2 Mixed strategies

This appendix extends the results in the main text to allow for mixed strategies. In

particular, we show that the equilibrium we characterize in Theorem 1 remains the unique

18Recall that, for all (ht, bt), A
(σ,µ)
k [ht, bt] = (1 − δ)E(µ,σ)[

∑∞
t′=t δ

t′−tat′,k|bt, ht]. By assumption, an
agent with type ck takes action a = 1 at time t, so at,k = 1. Moreover, it is easy to show that an agent with

cost ck will take action a = 1 with positive probability at some date t > t. Therefore, A
(σ,µ)
k [ht, bt] > 1−δ.
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PBE that is sequentially optimal for the principal among all finitely revealing PBE; i.e.,

among all PBE in which, along any history, the principal updates her beliefs a finite

number of periods.

Fix a PBE (σ, µ), with σ = (τ, {αk}Kk=1). For any history (ht, bt), we say that period t

is a period of revelation if (a) µ[ht] /∈ S1 (i.e., if the principal is uncertain about the agent’s

type) and (b) there exists ci, cj ∈ C[ht] such that αi(ht, bt) 6= αj(ht, bt) (i.e., there exists

at least two types in the support of the principal’s beliefs that play different (possibly

mixed) actions at history (ht, bt)). We say that an equilibrium (σ, µ) is T -revealing if, for

any t and along any history ht, the number of periods of revelation t′ < t is not greater

than T .19

Three things are worth noting about T -revealing PBE. First, a T -revealing strategy

does not put any bound on the occurrence of the last period of revelation. Hence, infor-

mation may be revealed at any point during the game. Second, a T -revealing strategy

does not require the agent to reveal her information fully. Third, since the set of possible

types of the agent is finite, any pure strategy PBE is T -revealing for some T .

Let ΣM
0 denote the set of PBE that are finitely revealing (i.e., the set of PBE that are

T -revealing for some finite T ). For all k = 1, ..., K, we define the sets ΣM
k recursively as

follows:

ΣM
k :=

(σ, µ) ∈ ΣM
k−1 :

σ is finitely revealing

∀(ht, bt) with µ[ht] ∈ Sk and ∀(σ′, µ′) ∈ ΣM
k−1

U (σ,µ)[ht, bt] ≥ W (σ′,µ′)[µ[ht], bt]

 .

Let (σP , µP ) denote the PBE characterized in Theorem 1, and note that (σP , µP ) ∈
ΣM

0 . The following theorem shows that (σP , µP ) belongs to the set ΣM
K . Note that

this implies that any PBE in ΣM
K gives the principal the same payoff as (σP , µP ) at every

history. Moreover, as the proof the theorem clarifies, any equilibrium (σ, µ) ∈ ΣM
K induces

the same outcome as (σP , µP ).

Theorem OA1. (σP , µP ) ∈ ΣM
K .

Proof. Fix a finitely revealing equilibrium (σ, µ) ∈ ΣM
K , and let T be the upper bound on

the periods of revelation under (σ, µ). We start by showing that, at histories at which

there have already been T periods of information revelation, players’ behavior under (σ, µ)

must coincide with their behavior under (σP , µP ).

19This definition is borrowed from Peski (2008).
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Consider a history (ht, bt) at which there have already been T periods of information

revelation. Hence, µ[ht] = µ[ht+s] for all s ≥ 0 and all histories ht+s that follow history

ht. This implies that

U (σ,µ)[ht, bt] ≤ (1− δ)E

[
∞∑
s=0

δs1{bt+s∈Ek[ht]}
(bt+s − ck[ht]

)|bt

]
, (OA15)

where U (σ,µ)[ht, bt] is the principal’s continuation payoff at history (ht, bt). To see why the

inequality holds, note that all agent types in the support of µ[ht] use the same strategy

at all periods after time t. Moreover, since an agent of type ck[ht]
gets a continuation

payoff of 0 at all histories, she only takes the action at time τ ≥ t if Tτ = ck[ht]
.20 These

two observations together imply the bound in equation (OA15). Since the principal’s

continuation payoff at history (ht, bt) under equilibrium (σP , µP ) is weakly larger than

the right-hand side (OA15), it follows that players’ behavior under (σ, µ) must coincide

with their behavior under (σP , µP ) at all histories after information revelation has stopped.

Next, consider a history ht with the property that, for all histories ht+s with s ≥ 1 that

follow history (ht, bt), players’ behavior under (σ, µ) ∈ ΣM
K coincides with their behavior

under (σP , µP ). We now show that, at such a history (ht, bt), the players’ behavior under

(σ, µ) ∈ ΣM
K coincides with their behavior under (σP , µP ). Before presenting its proof, we

note that this result and the result above together establish Theorem OA1.

To see why the result is true, we consider two separate cases: (i) bt such thatX(bt, Ek[ht]
) >

1− δ, and (ii) bt such that X(bt, Ek[ht]
) ≤ 1− δ.

Case (i). Let Tt be the principal’s offer at history (ht, bt) and note that Tt ≤ ck[ht]
(see

footnote 20). We start by showing that if Tt ≤ ck[ht]
is such that an agent with type

ck[ht]
rejects the offer with probability 1, then all agents types also reject the offer with

probability 1. Suppose by contradiction that the set of types that accept offer Tt with

positive probability is non-empty. Let ci < ck[ht]
be the highest cost of a type that accepts

Tt with positive probability. The payoff that type ci obtains by accepting the offer is

(1− δ)(Tt− ci) + δ× 0 ≤ (1− δ)(ck[ht]
− ci), since from t+ 1 onwards type ci would be the

highest type in the support of the principal’s beliefs following an acceptance, and since

equilibrium (σ, µ) coincides with (σP , µP ) at all histories that follow history (ht, bt). In

20In any PBE in ΣMK , the principal never makes an offer Tt that is larger than the highest cost in the
support of her beliefs. Indeed, if Tt > ck[ht]

for some history (ht, bt), we can construct an alternative

finitely-revealing equilibrium in ΣMk−1 (where k = |C[ht]|) that gives the principal strictly more profits

than (σ, µ), which would contradict (σ, µ) ∈ ΣMk .
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contrast, the payoff that type ci gets by rejecting the offer and mimicking type ck[ht]
at

all times τ > t is X(bt, Ek[ht]
)(ck[ht]

− ci) > (1 − δ)(ck[ht]
− ci), a contradiction. Hence, if

Tt ≤ ck[ht]
is such that an agent with type ck[ht]

rejects the offer with probability 1, then

all agents types also reject the offer with probability 1.

There are two subcases to consider: (ia) bt ∈ Ek[ht]
, and (ib) bt /∈ Ek[ht]

. Consider case

(ia). We show that, in this case, the principal makes offer Tt = ck[h]
, and that this offer is

accepted by all types with probability 1 (so behavior under equilibrium (σ, µ) coincides

with behavior under (σP , µP )). As a first step, we show that the principal makes offer

Tt = ck[h]
, and that this offer is accepted by an agent of type ck[ht]

with positive probability.

Indeed, if this was not the case, then by the arguments above no agent type would accept

offer Tt, so µ[ht+1] = µ[ht]. But then we would be able to construct an alternative

finitely revealing equilibrium in ΣM
k−1 (where k = |C[ht]|) that gives the principal strictly

more profits than (σ, µ), which would contradict (σ, µ) ∈ ΣM
k . To see how, consider an

equilibrium in which players’ behavior is identical to their behavior under (σ, µ) at every

history except for history (ht, bt). At history (ht, bt), the principal makes offer Tt = ck[h]

and every type accepts this offer with probability 1. The principal’s beliefs at t + 1 are

identical to µ[ht] regardless of whether the agent accepts or not the offer. One can check

that this modified strategy profile is a PBE in finitely revealing strategies that lies in

ΣM
k−1. Moreover, it delivers the principal a strictly larger payoff at history (ht, bt) than

(σ, µ), which contradicts (σ, µ) ∈ ΣM
K .

Next, we show that offer Tt = ck[h]
is accepted with probability 1 by all agent types

ci < ck[ht]
. Towards a contradiction, let ci be the highest cost type below ck[ht]

that rejects

the offer. The payoff that this type obtains by rejecting is at most X(bt, Ek[ht]
)(ck[ht]

−
ci), since either type ci will be the second highest cost in the support of µ[ht+1] (and

type ck[ht]
will be the highest), or type ci will be the highest cost in the support of

µ[ht+1]. In contrast, by accepting the offer and then mimicking type ck[ht]
, she obtains

(1− δ+X(bt, Ek[ht]
))(ck[ht]

− ci), which cannot be. Hence, offer Tt = ck[h]
is accepted with

probability 1 by all agent types ci < ck[ht]
.

Finally, we show that Tt = ck[h]
is accepted by an agent with cost ck[h]

with probability

1. Suppose by contradiction this is not true, and consider an alternative finitely revealing

equilibrium such that players’ behavior coincides with their behavior under (σ, µ) at all

histories except (ht, bt). At such a history, the principal makes offer Tt = ck[h]
, and this

offer is accepted by all types of the agent with probability 1 (the principal’s beliefs after

remain equal to µ[ht] regardless of the agent’s action). One can check that this is a PBE

in Σk−1, and that this PBE gives the principal a strictly larger profit than the original
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equilibrium (σ, µ), a contradiction. Hence, offer Tt = ck[h]
is accepted by all agent types

with probability 1.

Consider next case (ib). We show that, in this case, the principal makes an offer

Tt < ck[ht]
that all agent types reject. From our arguments above, if Tt ≤ ck[ht]

is rejected

by an agent of type ck[ht]
with probability 1, then the offer is rejected by all agent types

ci < ck[ht]
with probability 1. This implies that any offer Tt < ck[ht]

is rejected by every

agent type with probability 1. Note that in an equilibrium (σ, µ) ∈ ΣM
K , at such a history

the principal would never make an offer Tt = ck[ht]
that is accepted by an agent of type

ck[ht]
with positive probability. If this were the case, and by the same arguments used in

case (1a), such an offer would be accepted by all types ci < ck[ht]
with probability 1. Since

bt < ck[ht]
, the principal would be strictly better off by making an offer Tt < ck[ht]

that is

rejected by all types with probability 1.21

Case (ii). Consider next histories (ht, bt) with X(bt, Ek[ht]
) ≤ 1. We show that, in this

case, there exists a threshold ck∗ ∈ C[ht] such that types in C− = {c ∈ C[ht] : c < ck∗}
accept with probability 1, and that types in C+ = {c ∈ C[ht] : c ≥ ck∗} reject with

probability 1. When C− is non-empty, the principal offers transfer Tt in equation (∗) in

the main text.

We start by showing that, at such a history (ht, bt), type ck[ht]
takes the action with

probability 0. Suppose to the contrary that type ck[ht]
takes the action with positive

probability, so that Tt = ck[ht]
. If this is so, then all types ci < ck[ht]

must take the action

with probability 1. To see why, suppose this is not true, and let ci be the highest type below

ck[ht]
that does not take the action with probability 1. Since equilibrium behavior under

(σ, µ) coincides with equilibrium behavior under (σP , µP ) at all times τ ≥ t+1, the payoff

that type ci obtains by rejecting the offer is at most X(bt, Ek[ht]
)(ck[ht]

− ci). However,

type ci can guarantee herself a payoff of (1− δ+X(bt, Ek[ht]
))(ck[ht]

− ci) by accepting the

offer today and then mimicking type ck[ht]
at all times τ ≥ t + 1, a contradiction. Since

ck[ht]
< bt, then the principal would be strictly better off under an equilibrium in ΣM

k−1 that

is identical to (σ, µ), except that at history (ht, bt) the principal makes offer Tt = ck[ht]

21Indeed, starting from t + 1 equilibrium behavior under (σ, µ) coincides with equilibrium behavior
under (σP , µP ). As a result, the profits that the principal obtains from each type of agent ci < ck[ht]

from t + 1 onwards do not depend on the relative likelihood that she assigns to type ck[ht]
. Moreover,

the profits that she extracts from type ck[ht]
from t+ 1 onwards are the same regardless of whether this

type accepts or not. These two observations imply that, at time t, the principal is better off making an
offer that every type of agent rejects.
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which is rejected by type ck[ht]
and accepted by all types ci < ck[ht]

. This contradicts

(σ, µ) ∈ ΣM
K . Hence, at history (ht, bt) type ck[ht]

takes the action with probability 0.

Next, we show that at history (ht, bt), there exists a threshold ck∗ ∈ C[ht] such that

types in C− = {c ∈ C[ht] : c < ck∗} accept with probability 1, and that types in

C+ = {c ∈ C[ht] : c ≥ ck∗} reject with probability 1. The statement is true if all types

reject the offer with probability 1. Suppose the set of types in C[ht] that accept the offer

with positive probability is non-empty, and let cj∗ < ck[ht]
be the highest type in this set.

Since equilibrium behavior at times τ ≥ t + 1 coincides with (σP , µP ), type cj∗ obtains

a payoff of (1 − δ)(Tt − cj∗) + δ × 0. Let ck∗ be the lowest type in {c ∈ C[ht] : c > cj∗}.
Note that the offer that the principal makes must satisfy (∗) in the main text:

(1− δ)(Tt − cj∗) = V
(σP ,µP )
k∗ [ht, bt] + A

(σP ,µP )
k∗ [ht, bt](ck∗ − cj∗).

Indeed, this transfer leaves type cj∗ indifferent between accepting the offer and rejecting

it. Since type ck∗ rejects the offer with probability 1, it must be that

V
(σP ,µP )
k∗ [ht, bt] ≥ (1− δ)(Tt − ck∗)⇐⇒ 1− δ ≥ A

(σP ,µP )
k∗ [ht, bt]. (OA16)

We now show that type cj∗ accepts with probability 1. Indeed, the payoff that the

principal obtains from type cj∗ from t + 1 onwards if this type accepts the offer is (1 −
δ)E[

∑∞
s=1 δ

s1bt+s∈Ej∗ (bt+s− cj∗)|bt], which is the efficient payoff and is clearly higher than

what she would obtain from this type if the type rejects the offer.22

Next, we show that all types in ci ∈ C[ht] with ci < cj∗ accept offer Tt with proba-

bility 1. Towards a contradiction, let ci be the highest type below ci that rejects Tt with

positive probability. Since equilibrium behavior from t + 1 onwards under (σ, µ) coin-

cides with equilibrium behavior under (σP , µP ), type ci obtains payoff V
(σP ,µP )
k∗ [ht, bt] +

A
(σP ,µP )
k∗ [ht, bt](ck∗ − ci) from rejecting offer Tt. In contrast, the payoff that type ci

would obtain from accepting offer Tt and mimicking type cj∗ from time t + 1 onwards

is (1− δ)(Tt − ci) +X(bt, Ej∗)(cj∗ − ci). Note that

(1− δ)(Tt − ci) +X(bt, Ej∗)(cj∗ − ci)− V (σP ,µP )
k∗ [ht, bt]− A(σP ,µP )

k∗ [ht, bt](ck∗ − ci)

=(cj∗ − ci)
(

1− δ +X(bt, Ej∗)− A(σP ,µP )
k∗ [ht, bt]

)
> 0,

22Moreover, if some types ci < cj∗ were to reject the offer, the continuation payoff that the principal
would get from them would be weakly higher if type cj∗ were to accept offer Tt with probability 1, than
if type cj∗ were to reject the offer with positive probability. Indeed, if type cj∗ is not in the support of
the principal’s beliefs at time t+ 1, then types ci < cj∗ get smaller informational rents.
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where we used equation (OA16).

The arguments above show that, at histories (ht, bt) with X(bt, Ek[ht]
) ≤ 1, there

exists a threshold ck∗ ∈ C[ht] such that types in C− = {c ∈ C[ht] : c < ck∗} accept with

probability 1, and that types in C+ = {c ∈ C[ht] : c ≥ ck∗} reject with probability 1. Since

the threshold ck∗ is chosen optimally under equilibrium (σP , µP ), under equilibrium (σ, µ)

the principal would choose the same cutoff. Hence, at history (ht, bt), players’ behavior

under (σ, µ) ∈ ΣM
K coincides with their behavior under (σP , µP ).

OA2.3 Full Commitment

This appendix studies the problem of a principal who has full commitment power. For

conciseness, we focus on the case in which there are two types of agents: C = {c1, c2},
with c1 < c2. Let µ ∈ (0, 1) be the probability that the agent’s cost is c2.

The principal’s problem is to choose processes {ai,t, Ti,t} for i = 1, 2, with ai,t ∈ {0, 1}
and Ti,t ∈ R, to solve

UFC(b) = max
{ai,t Ti,t}i=1,2

(1− δ)E

[
∞∑
t=0

δt ((1− µ)(a1,tbt − T1,t) + µ(a2,tbt − T2,t)) |b0 = b

]
(OA17)

subject to E

[
∞∑
t=0

δt(Ti,t − ai,tci)|b0 = b

]
≥ 0 for i = 1, 2

and E

[
∞∑
t=0

δt(Ti,t − ai,tci)|b0 = b

]
≥ E

[
∞∑
t=0

δt(Tj,t − aj,tci)|b0 = b

]
for i, j = 1, 2.

By familiar arguments, the participation constraint of type c1 and the incentive com-

patibility constraint of type c2 do not bind. The participation constraint of type c2

and the incentive compatibility constraint of type c1 hold with equality at the solution

to (OA17). Using these two constraints to solve for the expected discounted transfers

(1− δ)E [
∑∞

t=0 δ
tTi,t|b0 = b] for i = 1, 2 and replacing them into the objective yields

UFC(b) = max
{ai,t}i=1,2

(1− δ)E

[
∞∑
t=0

δt
(

(1− µ)a1,t(bt − c1) + µa2,t

(
bt − c2 −

(1− µ)

µ
(c2 − c1)

))
|b0 = b

]
.

(OA18)

The solution to problem (OA18) has: a1,t = 1 if and only if bt ≥ c1 (i.e., iff bt ∈ E1), and

a2,t = 1 if and only if bt ≥ c2 + (1−µ)
µ

(c2 − c1) > c2.
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The following result shows that, in the presence of stochastic shocks, the principal’s

equilibrium payoffs can be close to her full commitment payoffs

Proposition OA1. Let C = {c1, c2}, and assume there exists b ∈ E2\E1 with X(b, E2) =

ε < 1− δ. Then, at histories (ht, bt) with C[ht] = {c1, c2} and bt = b,

UFC(bt)− Uσ,µ[ht, bt] ≤ (1− µ)(c2 − c1)ε.

Proof. Note that, at such a history, the principal can make a separating offer T with

(1− δ)(T − c1) = X(b, E1)(c2 − c1) that only low types accept. Conditional on the agent

being a low type, the principal’s profits are

(1− δ)E

[
∞∑
τ=t

δτ−t1bτ∈E1(bτ − c1)|bt = b

]
−X(b, E1)(c2 − c1).

Conditional on the agent’s type being a high type, the principal’s profits are

(1− δ)E

[
∞∑
τ=t

δτ−t1bτ∈E2(bτ − c2)|bt = b

]
.

The principal’s expected payoff at history (ht, bt) from making offer T is then

Uσ,µ[ht, bt] = (1−δ)E

[
∞∑
τ=t

δτ−t
(

(1− µ)1bτ∈E1(bτ − c1) + µ1bτ∈E2

(
bt − c2 −

(1− µ)

µ
(c2 − c1)

))
|bt

]
(OA19)

The principal’s full commitment payoffs are

UFC(bt) = (1−δ)E

[
∞∑
τ=t

δτ−t
(

(1− µ)1bτ∈E1(bτ − c1) + µ1bτ∈Ê2

(
bt − c2 −

(1− µ)

µ
(c2 − c1)

))
|bt

]
,

(OA20)
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where Ê2 = {b ∈ B : bt ≥ c2 + (1− µ)(c2 − c1)/µ} ⊂ E2. Using (OA19) and (OA20),

UFC(bt)− Uσ,µ[ht, bt] = −(1− δ)µE

[
∞∑
τ=t

δτ−t1bτ∈E2\Ê2

(
bt − c2 −

(1− µ)

µ
(c2 − c1)

)
|bt

]

≤ (1− δ)µE

[
∞∑
τ=t

δτ−t1bτ∈E2\Ê2

(
(1− µ)

µ
(c2 − c1)

)
|bt

]
= (1− µ)(c2 − c1)X(bt, E2\Ê2)

≤ (1− µ)(c2 − c1)ε,

where the first inequality follows since bτ ≥ c2 for all bτ ∈ E2, and the second inequality

follows since X(bt, E2\Ê2) ≤ X(bt, E2) = ε.

OA2.4 Path Dependence when Shocks are Ergodic

In this appendix, we show by example that the equilibrium may exhibit long-run path

dependence when the shock process is ergodic. Let B = {bL, bML, bMH , bH}, with bL <

bML < bMH < bH and C = {c1, c2, c3}. Assume that the efficiency sets are E1 = E2 =

{bML, bMH , bH} and E3 = {bH}.

Proposition OA2. Suppose that the transition matrix [Qb,b′ ] satisfies:

(a) Qb,b′ > 0 for all b, b′ ∈ B;

(b) X(bMH , {bH}) > 1− δ, X(bML, {bH}) < 1− δ and X(bML, {bML}) > 1− δ

Then, there exists ε1 > 0, ε2 > 0,∆1 > 0 and ∆2 > 0 such that, if Qb,bL < ε1 for all

b ∈ B\{bL} and Qb,bML
< ε2 for all b ∈ B\{bML}, and if |bL−c1| < ∆1 and |bL−c2| > ∆2,

the unique equilibrium satisfies:

(i) For histories ht such that C[ht] = {c1, c2}, µ[ht′ ] = µ[ht] for all ht′ � ht (i.e., there

is no more learning by the principal from time t onwards);

(ii) For histories ht such that C[ht] = {c2, c3}: if bt = bL or bt = bMH , types c2 and c3

take action a = 0; if bt = bML, type c2 takes action a = 1 and type c3 takes action

a = 0; and if bt = bH , types c2 and c3 take action a = 1;

(iii) For histories ht such that C[ht] = {c1, c2, c3}: if bt = bL, type c1 takes action a = 1

while types c2 and c3 take action a = 0; if bt = bML, types c1 and c2 take action
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a = 1 and type c3 takes action a = 0; if bt = bMH , all agent types take action a = 0;

and if bt = bH , all agent types take action a = 1.

We prove the three properties in Proposition OA2 separately.

Proof of Property (i). Note first that, by Theorem 1, after such a history the principal

makes a pooling offer T = c2 that both types accept if bt ∈ E2 = {bML, bMH , bH}. To

establish the result, we show that if bt = bL, types c1 and c2 take action a = 0 after

history ht. If the principal makes a separating offer that only a c1 agent accepts, she

pays a transfer Tt = c1 + 1
1−δX(bL, E2)(c2 − c1) that compensates the low cost agent for

revealing his type. The principal’s payoff from making such an offer, conditional on the

agent being type c1, is

Ũ sc[c1] = (1− δ)(bL − Tt) + E

[∑
t′>t

δt
′−t(1− δ)1bt∈E1(bt′ − c1)|bt = bL

]
= (1− δ)(bL − c1) +

∑
b∈{bML,bMH ,bH}

X(bL, {b})[b− c2].

Her payoff from making that offer conditional on the agent’s type being c2 is Ũ sc[c2] =∑
b∈{bML,bMH ,bH}X(bL, {b})[b−c2]. If she doesn’t make a separating offer when bt = bL, she

never learns the agent’s type and gets a payoff Ũnsc =
∑

b∈{bML,bMH ,bH}X(bL, {b})[b− c2].

Since bL − c1 < 0 by assumption, Ũnsc > µ[ht][c1]Ũ sc[c1] + µ[ht][c2]Ũ sc[c2], and therefore

the principal does not to make a separating offer.

Proof of Property (ii). Theorem 1 implies that, after such a history, the principal makes

a pooling offer T = c3 that both types accept if bt ∈ E3 = {bH}. Theorem 1 also implies

that, if bt = bMH , then after such a history the principal makes an offer that both types

reject (since X(bMH , {bH}) > 1 − δ by assumption). So it remains to show that, after

history ht, the principal makes an offer that a c2 agent accepts and a c3 agent rejects if

bt = bML, and that the principal makes an offer that both types reject if bt = bL.

Suppose bt = bML. Let U [ci] be the principal’s value at history (ht, bt = bML) con-

ditional on the agent’s type being ci ∈ {c2, c3}, and let Vi be the value of an agent

of type ci at history (ht, bt = bML). Note that U [c2] + V2 ≤ (1 − δ)(bML − c2) +∑
b∈{bML,bMH ,bH}X(bML, {b})[b−c2], since the right-hand side of this equation corresponds

to the efficient total payoff when the agent is of type c2 (i.e., the agent taking the ac-

tion if and only if the state is in E2.) Note also that incentive compatibility implies

V2 ≥ X(bML, {bH})(c2 − c3), since a c2-agent can mimic a c3-agent forever and obtain
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X(bML, {bH})(c2−c3). It thus follows that U [c2] ≤ (1−δ)(bML−c2)+X(bML, {bH})[bH−
c3] +

∑
s∈{bML,bMH}X(bML, {b})[b− c2].

If when bt = bML the principal makes an offer that only a c2 agent accepts, the offer

must satisfy Tt = c2 + 1
1−δX(bML, {bH})(c3− c2) < c3. The principal’s payoff from making

such an offer when the agent’s type is c2 is

U [c2] = (1− δ)(bML − Tt) +
∑

b∈{bML,bMH ,bH}

X(bML, {b})[b− c2]

= (1− δ)(bML − c2) +X(bML, {bH})[bH − c3] +
∑

b∈{bML,bMH}

X(bML, {b})[b− c2],

which, from the arguments in the previous paragraph, is the highest payoff that the

principal can ever get from a c2 agent after history (ht, bt = bML). Hence, it is optimal

for the principal to make such a separating offer.23

Suppose next that bt = bL. If the principal makes an offer that a c2-agent accepts

and a c3-agent rejects, she pays a transfer Tt = c2 + 1
1−δX(bL, E3)(c3 − c2). Thus, the

principal’s payoff from making such an offer, conditional on the agent being type c2, is

Ũ sc[c2] = (1− δ)(bL − Tt) +
∑

b∈{bML,bMH ,bH}

X(bL, {b})[b− c2]

= (1− δ)(bL − c2) +X(bL, {bH})[bH − c3] +
∑

b∈{bML,bMH}

X(bL, {b})[b− c2].

If the principal makes an offer that both types reject when bt = bL, then by the arguments

above she learns the agent’s type the first time at which shock bML is reached. Let ť be

the random variable that indicates the next date at which shock bML is realized. Then,

conditional on the agent’s type being c2, the principal’s payoff from making an offer that

both types reject when bt = bL is

Ũnsc[c2] = (1− δ)E

[
ť−1∑

t′=t+1

δt
′−t1bt′=bH (bH − c3)|bt = bL

]

+ E

δť−t
(1− δ)(bML − Tť) +

∑
b∈{bML,bMH ,bH}

X(bML, {b})[b− c2]

 |bt = bL

 .

23Indeed, the principal’s payoff from making an offer equal to Tt when the agent’s type is c3 is
X(2, {4})[b(4)− c3], which is also the most that she can extract from an agent of type c3.
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The offer Tť that the principal makes at time ť satisfies Tť = c2+ 1
1−δX(bML, {bH})(c3−c2).

Using this in the equation above,

Ũnsc[c2] = X(bL, {bH})[bH−c3]+X(bL, {bML})[bML−c2]+E
[
δť−t|bt = bL

]
X(bML, {bMH})[bMH−c2].

Then, we have

Ũnsc[c2]−Ũ sc[c2] = −(1−δ)[bL−c2]−
[
X(bL, {bMH})− E

[
δť−t|bt = bL

]
X(bML, {bMH})

]
[bMH−c2].

Since bL < c2 by assumption, there exists ∆1
2 > 0 such that, if (1− δ)(c2 − bL) > ∆1

2, the

expression above is positive. Since the principal’s payoff conditional on the agent’s type

being c3 is the same regardless of whether she makes a separating offer or not when bt = bL

(i.e., in either case the principal earns X(bL, {bH})(bH − c3)), when this condition holds

the principal chooses not to make an offer that c2 accepts and c3 rejects when bt = bL.

Proof of Property (iii). Suppose C[ht] = {c1, c2, c3}. Theorem 1 implies that all agent

types take action a = 1 if bt = bH , and all agent types take action a = 0 if bt = bMH (this

last claim follows since X(bMH , {bH}) > 1− δ).
Suppose next that C[ht] = {c1, c2, c3} and bt = bML. Note that, by Lemma 2, an

agent with type c3 takes action a = 0 if bt = bML /∈ E3 = {bH}. We first claim that if

the principal makes an offer that only a subset of types accept at state bML, then this

offer must be such that types in {c1, c2} take action a = 1 and type c3 takes action

a = 0. To see this, suppose that she instead makes an offer that only an agent with

type c1 accepts, and that agents with types in {c2, c3} reject. The offer that she makes

in this case satisfies (1 − δ)(Tt − c1) = V
(σ,µ)

2 [ht, bt] + A
(σ,µ)
2 [ht, bt](c2 − c1). By property

(ii) above, under this proposed equilibrium a c2-agent will from period t + 1 onwards

take the action at all times t′ > t such that bt′ = bML.24 Therefore, A
(σ,µ)
2 [ht, bt] ≥

X(bML, {bML}) > 1 − δ, where the last inequality follows by assumption. The payoff

that an agent of type c2 obtains by accepting offer Tt at time t is bounded below by

(1 − δ)(Tt − c2) = (1 − δ)(c1 − c2) + V
(σ,µ)

2 [ht, bt] + A
(σ,µ)
2 [ht, bt](c2 − c1) > V

(σ,µ)
2 [ht, bt],

where the inequality follows since A
(σ,µ)
2 [ht, bt] > 1 − δ. Thus, type c2 strictly prefers to

accept the offer, a contradiction. Therefore, when C[ht] = {c1, c2, c3} and bt = bML, either

24Under the proposed equilibrium, if the offer is rejected the principal learns that the agent’s type is
in {c2, c3}. By property (ii), if the agent’s type is c2, the principal will learn the agent’s type the next
time the shock is bML (because at that time type c2 takes the action, while type c3 doesn’t), and from
that point onwards the agent will take the action when the shock is in E2 = {bML, bMH , bH}.
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the principal makes an offer that only types in {c1, c2} accept, or she makes an offer that

all types reject.

We now show that, under the conditions in the Lemma, the principal makes an offer

that types in {c1, c2} accept and type c3 rejects when bt = bML and C[ht] = {c1, c2, c3}.
If she makes an offer that agents with cost in {c1, c2} accept and a c3-agent rejects, then

she pays a transfer Tt = c2 + 1
1−δX(bML, {bH})(c3 − c2). Note then that, by property (i)

above, when the agent’s cost is in {c1, c2}, the principal stops learning: for all times t′ > t

the principal makes an offer Tt′ = c2 that both types accept when bt′ ∈ E2, and she makes

a low offer Tt′ = 0 that both types reject when bt′ /∈ E2. Therefore, conditional on the

agent’s type being either c1 or c2, the principal’s payoff from making at time t an offer Tt

that agents with cost in {c1, c2} accept and a c3-agent rejects is

Û sc[{c1, c2}] = (1− δ)(bML − Tt) +
∑

b∈{bML,bMH ,bH}

X(bML, {b})[b− c2]

= (1− δ)(bML − c2) +X(bML, {bH})[bH − c3] +
∑

b∈{bML,bMH}

X(bML, {b})[b− c2]

On the other hand, if she does not make an offer that a subset of types accept when

bt = bML, then the principal’s payoffs conditional on the agent being of type ci ∈ {c1, c2}
is bounded above by

Ûnsc[ci] = E

 t̂−1∑
t′=t

δt
′−t(1− δ)1bt′=bH (bH − c3) + δt̂−t

∑
b∈Ei

X(bL, {b})(b− ci)|bt = bML


where t̂ denotes the next period that state bL is realized.25 Note that there exists ε1 > 0

small such that, if Qb,bL < ε1 for all b 6= bL, then Û sc[{c1, c2}] > Ûnsc[ci] for i = 1, 2.

Finally, note that the payoff that the principal obtains from an agent of type c3 at history

ht when bt = bML is X(bML, {bH})(bH − c3), regardless of the principal’s offer. Therefore,

if Qb,bL < ε1 for all b 6= bL, when C[ht] = {c1, c2, c3} and bt = bML the principal makes an

offer Tt that only types in {c1, c2} accept.

Finally, we show that when C[ht] = {c1, c2, c3} and bt = bL, the principal makes an

offer that only type c1 accepts. Let ť be the random variable that indicates the next date

25To see why, note that if no type of agent takes the productive action when C[ht] = {c1, c2, c3} and
bt = bML, then the principal can only learn the agent’s type when state bL is realized (i.e., at time t̂). At
times before t̂, all agent types take the action if the shock is bH (and the principal pays transfer T = c3),
and no agent type takes the action at states bML or bMH . After time t̂, the payoff that the principal gets
from type ci is bounded above by her first-best payoff

∑
b∈Ei

X(bL, {b})(b− ci).
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at which state bML is realized. If the principal makes an offer Tt that only a c1-agent

accepts, this offer satisfies

(1− δ)(Tt − c1) = V
(σ,µ)

2 [ht, bL] + A
(σ,µ)
2 [ht, bL](c2 − c1)

= X(bL, {bH})(c3 − c1) +
[
X(bL, {bML}) + E[δť−t|bt = bL]X(bML, {bMH})

]
(c2 − c1)

(OA21)

where the second equality follows since V
(σ,µ)

2 [ht, bL] = A
(σ,µ)
3 [ht, bL](c3−c2) = X(bL, {bH})(c3−

c2) and since, by property (ii), when the support of the principal’s beliefs is {c2, c3} and

the agent’s type is c2, the principal learns the agent’s type at time ť.26 Therefore, con-

ditional on the agent’s type being c1, the principal’s equilibrium payoff from making an

offer that only an agent with cost c1 accepts at state bL is

Ǔ sc[c1] = (1− δ)(bL − Tt) +
∑

b∈{bML,bMH ,bH}

X(bL, {b})[b− c1]

= (1− δ)(bL − c1) +X(bL, {bH})[bH − c3] +X(bL, {bMH})[bMH − c1]

+X(bL, {bML})[bML − c2]− E[δť−t|bt = bL]X(bML, {bMH})(c2 − c1)

where the second line follows from substituting the transfer in (OA21). On the other

hand, the principal’s payoff from making such an offer at state bL, conditional on the

agent’s type being c2, is

Ǔ sc[c2] = (1− δ)E

[
ť−1∑
t′=t

δt
′−t1bt′=bH (bH − c3)|bt = bL

]

+ (1− δ)E

δť−t((bML − c2)− X(bML, {bH})(c3 − c2)

1− δ

)
+

∞∑
t′=ť+1

δt
′−t1bt′∈E2(bt′ − c2)|bt = bL


=X(bL, {bH})(bH − c3) +X(bL, {bML})(bML − c2) + E

[
δť−tX(bML, {bMH})|bt = bL

]
(bMH − c2),

26The fact that the principal learns the agent’s type at time ť implies that

A
(σ,µ)
2 [ht, bL] =(1− δ)E

 ť−1∑
t′=t

δt
′−t1bt′=bH + δť−t

∞∑
t′=ť

δt
′−ť1bt′∈E2 |bt = bL


=X(bL, {bH}) +X(bL, {bML}) + E

[
δť−tX(bML, {bMH})|bt = bL

]
.
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where we used the fact that, when the support of her beliefs is {c2, c3}, the principal makes

an offer that only a c2-agent accepts when the state is bML (the offer that she makes at

that point is T = c2 + 1
1−δX(bML, {bH})(c3 − c2)).

Alternatively, suppose the principal makes an offer that both c1 and c2 accept but c3

rejects. Then she pays a transfer Tt = c2 + 1
1−δX(bL, {bH})(c3− c2); thus, her payoff from

learning that the agent’s type is in {c1, c2} in state bL is

Ū sc[{c1, c2}] = (1− δ)(bL − Tt) +
∑

b∈{bML,bMH ,bH}

X(bL, {b})(b− c2)

= (1− δ)(bL − c2) +X(bL, {bH})[bH − c3]

+X(bL, {bML})[bML − c2] +X(bL, {bMH})[bMH − c2],

where we used the fact that the principal never learns anything more about the agent’s

type when the support of her beliefs is {c1, c2} (see property (i) above). Note that there

exists ε2 > 0 and ∆2
2 > 0 such that, if Qb,bML

< ε2 for all b 6= bML and if c2 − bL > ∆2 =

max{∆1
2,∆

2
2}, then the following two inequalities hold:

Ǔ sc[c1]− Ū sc[{c1, c2}] =
[
1− δ +X(bL, {bMH})− E[δť−t|bt = bL]X(bML, {bMH})

]]
(c2 − c1) > 0

Ǔ sc[c2]− Ū sc[{c1, c2}] =
[
E
[
δť−tX(bML, {bMH})|bt = bL

]
−X(bL, {bMH})

]
(bMH − c2)

− (1− δ)(bL − c2) > 0.

Therefore, under these conditions, at state bL the principal strictly prefers to make an

offer that a c1-agent accepts and agents with cost c ∈ {c2, c3} reject than to make an offer

that agents with cost in {c1, c2} accept and a c3-agent rejects.

However, the principal may choose to make an offer that all agent types reject when

bt = bL and C[ht] = {c1, c2, c3}. In this case, by the arguments above, the next time the

state is equal to bML the principal will make an offer that only types in {c1, c2} accept.

The offer that she makes in this case is such that (1− δ)(T − c2) = X(bML, {bH})(c3− c2).

Then, from that point onwards, she will never learn more (by property (i) above). In this
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case, the principal’s payoff conditional on the agent’s type being {c1, c2} is

Ūnsc =(1− δ)E

[
ť−1∑
τ=t

1bτ=bH (bτ − c3)|bt = bL

]

+ E

[
δť−t(1− δ)(bML − T ) +

∑
b∈E2

X(bML, {b})(b− c2)|bt = bL

]
= X(bL, {bH})[bH − c3] +X(bL, {bML})[bML − c2] + E[δť−t|bt = bL]X(bML, {bMH})[bMH − c2],

where ť be the random variable that indicates the next date at which state bML is realized.

Note that there exists ε2 > 0 and ∆1 > 0 such that, if Qb,bML
< ε2 for all b 6= bML, and if

bL − c1 > −∆1, then the following hold:

Ǔ sc[c1]− Ūnsc = (1− δ)(bL − c1) +
[
X(bL, {bMH})− E[δť−t|bt = bL]X(bML, {bMH})

]
[bMH − c1] > 0

Ǔ sc[c2]− Ūnsc = 0.

Therefore, under these conditions, the principal makes an offer that type c1 accepts and

types in {c2, c3} reject when C[ht] = {c1, c2, c3} and bt = bL.

Properties (i)-(iii) in Proposition OA2 imply that the equilibrium exhibits long-run

path dependence. Suppose that the agent’s type is c1. Then, properties (i)-(iii) imply

that the principal eventually learns the agent’s type if and only if t(bL) := min{t ≥ 0 :

bt = bL} < t(bML) := min{t ≥ 0 : bt = bML} (i.e., if state bL is visited before state bML).

Indeed, if bL is visited before bML, at time t(bL) the principal will learn that the agent’s

type is c1 (see property (iii)). From that point onwards, the agent will take the productive

action at all periods t > t(bL) such that bt ∈ E1 at cost c1 for the principal.

In contrast, if bML is visited before bL, at time t(bML) the principal will learn that the

agent’s type is in {c1, c2} (see property (iii)). From that point onwards there will be no

more learning (property (i)). As a consequence, the agent will take the productive action

at all periods t > t(bML) such that bt ∈ E2 = E1 at cost c2 for the principal (this follows

from Theorem 1(i)).
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