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Abstract 
 

The idea that genetic differences may explain a multitude of individual-level behaviors 
and outcomes as studied by economists, is more than a bit controversial. Since an increasing 
number of datasets now contain measures of genetic variation, it is reasonable to postulate that 
incorporating genomic data into economic analyses will become increasingly common. 
However, there remains much debate among academics as to: First, whether and how ignoring 
genetic differences in empirical analyses would bias the resulting estimates; Second, since 
genetic characteristics are largely immutable, what types of policy guidance, if any, the 
incorporation of these variables into economic analyses may yield. In this paper, we revisit these 
concerns and survey the main avenues by which empirically oriented economic researchers have 
utilized measures of genetic markers to improve our understanding of economic phenomena. We 
discuss the strengths, limitations and potential of existing approaches and conclude by 
highlighting several prominent directions forward for future research. 
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1. Introduction 

It would not be an exaggeration to say that the mere mention of the word genetics to an 
economist a decade ago could raise alarm. This alarm may have been a response in part to one 
recalling the general response to then Harvard President Lawrence H. Summers’ January 14, 
2005 speech at an economics conference when discussing the under-representation of female 
scientists at elite universities.1  This alarm perhaps was also triggered by memories of events 
approximately one decade earlier when Richard Herrnstein and Charles Murray attracted 
substantial controversy following the 1994 publication of the book titled “The Bell Curve”, 
which was popularly (mis-)interpreted as ascribing the link between race and IQ to genetic 
factors.2 Even recently, economists working on issues related to genetic factors continue to 
attract interdisciplinary criticism. For example, Ashraf and Galor’s (2013) arguing for the 
importance of genetic diversity in explaining national income per capita drew a series of harsh 
responses from a long list of prominent scientists and anthropologists.3 These three independent 
episodes occurred in a 20 year span have clearly indicated the controversy that one may 
encounter when interpreting or accounting for genetic factors within economic analyses. Thus, it 
would be unsurprising if individual researchers today would conclude that it is best to ignore 
genetic factors since the potential cost from subsequent criticism and potential damage to one’s 
academic reputation could greatly outweigh any benefit one may receive from incorporating 
them. In short, genetic information becomes the hornet’s nest that many economists stay away 
from. 

In this paper, we argue that this would exactly be the wrong response. Not only has the 
role of empirical work in economics increased sharply over the last 20 years, but there is now a 
growing number of datasets that provide detailed information on genetic characteristics. Genetic 
markers are easily identifiable portions of our DNA code that are located at a specific known 
location on the chromosome. These measures are now being collected in multiple nationally 
representative social surveys and Conley (2009) suggests can be deployed to i) assess the direct 
impact of specific genetic influences on socioeconomic and behavioral outcomes, ii) explore 
genetic-environmental interactions, and iii) trace genealogies across time and space. Indeed, as 
                                                            
1 A national media frenzy erupted focusing on an explanation that this under-representation may stem in 
part from "issues of intrinsic aptitude" between men and women, without considering the context in 
which the remarks were made. Summers’ remarks made at the NBER Conference on Diversifying the 
Science & Engineering Workforce are posted online at 
http://www.harvard.edu/president/speeches/summers_2005/nber.php.  
2 Despite the hysteria at the time concerning this book and the link between IQ and genes, the authors (on 
page 311) made clear that while this explanation may hold water, they had no idea as to the importance. 
Specifically, (on page 311) in the concluding section they write, “If the reader is now convinced that 
either the genetic or environmental explanation has won out to the exclusion of the other, we have not 
done a sufficiently good job of presenting one side or the other. It seems highly likely to us that both 
genes and the environment have something to do with racial differences. What might the mix be? We are 
resolutely agnostic on that issue; as far as we can determine, the evidence does not yet justify an 
estimate.” 
3 For example, d’Alpoim Guedes et al. (2012, 2013) present critiques against claims in Ashraf and 
Galor’s (2013) and Ashraf and Galor (2012) replied to the first critique. 

http://www.journals.uchicago.edu/doi/full/10.1086/669034#rf5
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we discuss below, economists have done substantial applied research related to the first two 
themes. Further, simultaneous to the trend of growing importance of empirical economics, has 
been the development of a multitude of econometric strategies that exploit various research 
designs to identify causal impacts. These applied econometric methods have not solely 
transformed empirical practice within economics, but also in all other social science disciplines 
such as political science and sociology. We suggest that as economists increase their familiarity 
with genetic data, it is likely that they can develop methodological tools to generate new 
empirical strategies to shed light on the role of genetic factors that will be of interest to those 
within economics, as well as in many other scientific disciplines. 

This paper can be viewed as an extension of the comprehensive reviews presented in 
Benjamin et al. (2007, 2012) and Lehrer (2015) that explore the use of genetic markers in studies 
within economics. While Benjamin et al (2007) coined the term “genoeconomics” for this field, 
the view that we advance is somewhat less ambitious. We argue that genetic markers are simply 
a new way to get inside the black box of individual permanent unobserved heterogeneity within 
numerous fields in economics. For example, in studies that explore labor supply, researchers 
often employ a fixed effect strategy to account for permanent unobserved differences in tastes or 
preferences across individuals. Similarly, when estimating wage, academic achievement or 
health outcome equations, researchers often employ fixed effects to capture permanent 
productivity characteristics of the individual. Genetic markers may be truly what is meant by 
permanent “unobserved” heterogeneity since they are assigned at conception, and (with the sole 
exception of monozygotic twins) differ markedly across individuals.4 

 
While some economists have begun to incorporate data of genetic markers into their 

empirical analyses, their use remains scattered and limited to a handful of specific applications. 
This is somewhat surprising given the long history of economic research that explores how 
numerous traits and behaviors pass from one generation to the next. With data on genetic 
markers, perhaps one can gain understanding on how the transmission of genetic factors 
influences the transmission of outcomes. We should quickly state here that recent work by 
economists employing genetic data has attracted significant positive acclaims by researchers in 
other disciplines. Thus, our true aim of this survey is to reduce entry cost and hopefully attract 
other empirical economists to consider integrating genetic factors within their studies.  

 
This paper is organized as follows. In Section 2, we provide a brief scientific primer on 

genetic terminologies. Section 3 reviews the four major strands of research in economics that has 
used genetic data to date. Section 4 proposes three directions for future research for economists. 
A concluding section summarizes our arguments and draws attention to how research using 
genetic data within economics is actually following trends in research within labor economics.  

2. A Primer on Genetics 

                                                            
4 Jencks (1980) may have been the first to point out that “genetic” does not imply “immutable”. Thus, it 
may be the case that the effects of specific portions in an individual’s DNA sequence on specific 
outcomes vary over the lifecycle, perhaps due to environmental stimuli. In a traditional fixed effects 
estimating equation, both the impact and stock of unobserved heterogeneity are assumed to be fixed over 
the period in which data is being analyzed. 
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In the Oxford Dictionary, the word “genome” is defined as a combination of the word 
“gene” and “chromosome”. The genome is contained in all cells that have a nucleus and consists 
of more than 3.2 billion DNA base pairs located on 23 pairs of chromosomes. To help visualize 
the human genome, consider an instruction manual composed of 23 chapters (chromosomes) that 
is over 3.2 billion letters. The length of each chapter varies from 48 to 250 million letters (A, C, 
G, T) without any spaces. This genome that lies within each cell in our body is formed at 
conception when one member of each pair of chromosomes is inherited from the mother and the 
other from the father.  

Using genetic data requires undertaking a molecular genetic approach to understand 
variation between individuals in the genetic code itself. This differs sharply from the approach in 
behavioral genetics that categorizes much earlier research in economics that aimed to understand 
the role of genetic factors using data collected from samples of twins or siblings. Briefly, and 
interested readers are referred to Behrman (2015) for a recent review of research using this 
approach, researchers begin by assuming that all variation in the outcome being investigated 
could be decomposed into additively separable genetic and environmental contributions. That 
is, the variance of a behavior being investigated is decomposed into three orthogonal 
components: additive genetic effects (A), common environment effects (C), and unique 
environment effects (E); hence the acronym ACE models.5 If one further assumes that the same 
genetic or environmental factor has the same impact between monozygotic twins who share the 
same hereditary and environmental variables, within twin comparisons would thereby provide 
estimates of A+C. For dizygotic twins who share the same environmental variables and on 
average 50% of their genes, the same assumption on within twin comparisons would provide an 
estimate of ½A+C. Contrasting the monozygotic twins with dizygotic twins thus would isolate 
the hereditary effect A, by taking twice the difference between identical and fraternal twin 
correlations. Once A is obtained, C is then obtained by subtracting the estimated A from the 
identical twin correlation, whereas an estimate of E is given by subtracting the identical twin 
correlation from the number one. Within economics, Taubman (1976) is generally considered the 
first such study, which estimated that between 18% and 41% of variation in income across 
individuals was heritable.6 Research using genetic data is now moving beyond variance 
decompositions between twins of different zygosity7 into analyzing the impacts of specific 
portions of the genetic code. 

  

                                                            
5 While not discussed in this paper due to space constraint, estimating heritability with data on twins has 
been taken under alternative assumptions including regression based methods (e.g., DeFries and Fulker, 
1985), structural equation models (Boker et al., 2011), and generalized linear mixed models (Rabe-
Hesketh et al., 2008). 
6 Jensen et al (1967) previously conducted a study published in a general interest scientific journal that 
tried to isolate the role of heredity, environment and luck in earnings.  
7  More recent research has shifted away from using data collected in traditional surveys to using data 
from either incentivized experiments or surveys, to explore the heritability in different measures of 
economic preferences (e.g.  Wallace et al. (2007) and Cesarini et al. (2008, 2009, 2010, 2012). See Kohler 
et al. (2011) for a discussion of how to leverage twin-studies to model unobserved genetic endowments 
and causal pathways). In the section on gene by environment interactions (Section 3.4), we will discuss 
genome-wide complex trait analysis (GCTA), a method that uses restricted maximum likelihood 
estimation to estimate heritability from molecular genetic data. 
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Molecular genetics is the branch of genetics that studies the structure and function of 
DNA. The sequencing of the human genome in 2001 (Venter et al. 2001) has provided a means 
to measure genetic variation across individuals. One of the principal means through which 
genetic variation occurs is called a single nucleotide polymorphism (SNP); it refers to a mutation 
at a specific point in the genetic code where a single nucleotide is substituted (i.e. using the 
analogy before, for example, a single letter such as an A is substituted with a T at that point).8 It 
has been estimated that there are only approximately two million sites on the genome where a 
SNP can be found. The genetic variants of SNPs are commonly referred to by the number of 
alleles. For example, at one of these specific locations, one’s genotype can be denoted by the 
number of “risky” alleles (0, 1 or 2). Only a small minority of all of the known SNPs are 
considered to play important roles influencing the function and structure of the human body and 
these could be selectively advantageous or disadvantageous. In other words, while the human 
genome is over 3.2 billion chemical letters in length, less than 0.1% of these locations are 
believed to potentially account for observed differences in human behavior or outcome. 

3. Categorizing Research by Economists Using Genetic Data 

The majority of databases that contain genetic information were collected by medical 
scientists. However, a growing number of longitudinal databases that were designed for social 
scientists are adding genetic information. For example, the Add-Health Study has collected 
information on a few SNPs for primarily the sibling sample, the Health and Retirement Study has 
recently begun to make this information available from consenting participants, and the UK 
Biobank has linked genetic information to participants in the 1958 birth cohort study. To obtain 
measures of molecular genetic variation, a number of commercial entities have developed 
technologies that could measure several hundred thousand human SNPs simultaneously from 
blood or saliva samples.9 Over the last decade, there have been a multitude of technological 
breakthroughs that not only make it easier to genotype more SNPs and other genetic variants, but 
to do so at lower costs. That said, in many datasets the genetic information provided is an 
imputed SNP, that is, it is calculated based on the high degrees of correlation between 
neighboring SNPs.10 Prior to describing how such data could being utilized, it is important to 
point out that while some characteristics or health outcomes are known to be a unique result of a 
specific genetic difference, the majority of characteristics that economists are interested in are 
polygenic, meaning they are influenced by multiple genetic polymorphisms.   

 
Before proceeding further, we would like to bring forth a controversial issue that some 

researchers in this area face by calling immutable characteristics such as SNPs, “treatments”. 
                                                            
8 Other sources of genetic variation could be mutations affecting repeated segments of DNA and include 
what are known as variable number of tandem repeat polymorphisms and copy number variation (CNV) 
polymorphisms. The interested reader is referred to a molecular genetics text for further reading on these 
mutations. 
9 There are methods that target the whole genome and others that are more selectively targeted. In 
general, the resulting data quality is heavily dependent upon the average number of times each base in the 
genome is actually 'read' during the sequencing process. 
10 The consequences of imputation have received scant attention thus far. It clearly generates 
measurement error, something that labor economists know a lot about and have a rich set of tools to offer 
to other researchers. 
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Many critics point to the impossibility of manipulating genetic traits that are fixed at conception 
in a manner that is analogous to administering a treatment in a randomized experiment. 
However, Greiner and Rubin (2011) argue that it is actually a matter of perception on those 
characteristics and perceptions are not as immutable.11 Even without going all the way to the 
level of perception, if two individuals are the same in all important characteristics (age, gender, 
education, family background, residence, etc.) except for a specific SNP, then their difference in 
outcomes could still be attributed to this specific genetic difference, in which sense a specific 
SNP would be a legitimate “treatment” in the potential outcomes framework. 

3.1 Candidate Gene Studies 

Much of the earliest work by economists using genetic data is limited by the genetic 
information collected within the data being investigated. Generally, the initial genetic markers 
made available were those that at the time were hypothesized to be most important. These 
markers are called candidate genes. They were generally chosen to be genotyped (measured) 
since they were located in a particular chromosome region suspected of being involved in the 
outcome or its protein product may suggest that it could influence the outcome being 
investigated. 

  
Many candidate gene studies in economics investigate whether specific SNPs correlate 

with measures of economic primitives such as risk aversion and delay discounting parameters, 
attempting to provide their biological micro foundations. Cesarini et al. (2009) suggest that 
approximately one-fifth of the variation in these measures is due to genetic factors. Initially, 
economists focused their candidate gene investigations on whether genes thought involved in the 
dopamine and serotonin system12 in the brain's reward pathways explain primitives of behavior 
(e.g. Dreber et al., 2009, Kuhnen and Chiao, 2009).13 While these early studies found some 
statistically significant associations, they were not replicated in samples of adolescents (Gee, 
2014) and other samples analyzed by Carpenter et al. (2011) and Dreber et al (2011).  

 
Associations between candidate genes and socio-economic outcomes have been 

undertaken in situations where the genetic basis for variation in outcomes was not established. 
For instance, DeNeve and Fowler (2015) and Kuhnen et al. (2013) respectively explore if there 
                                                            
11 Specifically, Greiner and Rubin (2011) focus on circumstances under which race/gender can be 
appropriately called treatments. They argue that what causally explains gaps in outcomes between groups 
are not the groups themselves, but rather, are perceptions of the groups. In a genetic marker context, 
similar arguments could be made if employers or health insurers make decisions based on perceptions of 
the genetic characteristics of workers. While laws do exist in many countries, including the Genetic 
Information Nondiscrimination Act (GINA) in the United States, prohibit employment discrimination 
based on genetic information that forbid employers from asking about individuals’ genetic information, 
including information about family members’ health status, or family history. However, there are many 
reports that individuals voluntarily provide this information particularly to help develop workplace-based 
wellness programs and Baicker et al (2010) made a case this information provides benefits to employers. 
12 Dopamine and serotonin are two powerful neurotransmitters that affects one’s mood and happiness. In 
general, neurotransmitters are chemical messengers which neurons use to tell other neurons that they have 
received an impulse. 
13 See Knafo et al (2008), Mertins et al (2011) and Zhong et al (2009) for studies that link specific genetic 
variants to outcomes measured in the laboratory. 
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existed statistically significant links between specific genetic markers and credit card debt and 
the number of credit lines opened. Since decisions on whether to issue a credit card as well as 
setting the credit limit are made by lenders and not by the borrowers themselves, whether there is 
a biological plausible mechanism underlying any such association should be justified. This is the 
practice within genetic epidemiology where researchers using candidate genes carefully explain 
how the putative candidate gene was chosen based on its relevance in the mechanism of the trait 
being investigated. 

  
In short, studies that fall under the heading of candidate genes are likely undertaken 

based on convenience and have a poor track record when it comes to replication. Candidate 
genes studies also face concerns that they lack statistical power. Intuitively, if well-powered 
studies that search the entire genome for associations find only tiny effects, then the large effects 
found in many of these candidate gene studies with much smaller sample sizes are likely false 
positives.14 We believe that despite the ease with which this research can be undertaken, 
candidate gene studies are unlikely to convince many in the research community.  

 
An under-investigated aspect of candidate gene studies is whether the inclusion of genetic 

information changes the effects of other covariates. After all, if genetic factors are important, 
does their inclusion change estimates of other coefficients? In other words, is bias from omitted 
variables reduced? Or certain well-known covariates have approximated well for genetic factors? 
Answers to these question are important in understanding whether molecular genetic information 
is truly a valuable addition to many datasets.15 

 
 

3.2 Moving Beyond Associations: Genetic Markers as Instruments 

Perhaps the area that has attracted the most amount of debate among economists is 
whether or not genetic data can provide a source of exogenous variation to identify the impact of 
specific health conditions on socioeconomic outcomes. This source of identifying variation was 
first introduced in economics by Ding et al. (2009) who essentially used candidate genes as 
instruments to understand the impact of health outcomes on academic performance. Ding et al 
(2009)’s analysis underscores both the challenges researchers face when using genetic 
information as an instrument for specific health conditions and the need to investigate the 
sensitivity of one’s conclusions to the identifying assumptions. We discuss these issues in further 
detail below. 

 
The concept of comorbidity is well known in the medical sciences. It is defined as the 

simultaneous presence of two and more chronic poor health conditions in one individual. In 

                                                            
14 Chabris et al., (2012) discuss the importance and challenge of replicating results from studies using 
genetic data.  
15 As we will discuss later, research focused on identifying genetic associations with outcomes of interest 
to economists has moved from using data collected on a few candidate genotypes to those measuring 
variation across the full genome. These studies have also proposed calculating genetic risk scores which 
are single variable measures that capture information contained in a multitude of SNPs. These covariates 
may help provide some preliminary information on the value of genetic information as a covariate but 
present difficulties in their interpretation. 
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empirical research, we are not provided with a single accurate measure of an individual's health, 
but rather proxies such as specific diagnoses. In their analyses, Ding et al (2009) show that using 
richer vectors of health conditions is important to identify the true effect of a specific condition 
since poor physical and mental health conditions are often positively correlated. By omitting the 
comorbid condition(s), different estimates may arise when using different estimators and specific 
instruments. The challenge of comorbidity has significant implications for researchers aiming to 
single out the role of a specific health condition and was first pointed out in economics due to 
this investigation using genetic information. Comorbidity also influences the general ways in 
which applied researchers select their instruments based on first stage relevance and whether 
they meet the exclusion restriction criteria.16   

 
As with all studies that use instrumental variables to identify causal parameters, the 

plausibility of the (genetic) instrument comes into question. In a sense, one will never know 
whether a specific candidate gene is a valid IV since one cannot randomly assign genes to 
humans or create human equivalents to knockout mice but as discussed earlier the argument of 
Greiner and Rubin (2011) applies and a specific SNP could be a legitimate “treatment” in the 
causal framework. In addition, the role of individual genetic markers in many socioeconomic 
outcomes is likely quite small and likely explains less than 1% of the variation in that phenotype. 
This suggests that individual markers are likely weakly correlated.17 Further, these genetic 
markers could be subject to the presence of dynastic effects since without more detailed data on 
parental outcomes and family environments (as well as parental genes), we cannot separate out 
the portion of the impact that is uniquely brought on by the child's gene.  

 
Turning to the genetic marker itself, one may worry about population stratification18 that 

there are subtle genetic differences between groups of individuals that are not accounted for and 
the gene being investigated is correlated with a missing genetic marker that is driving the results. 
Similarly, this may happen since genes located close together on the same chromosome are 
sometimes inherited as a group, so one may not be attributing the effect to the correct 
polymorphism. Given these potential confounders, researchers using genes as IVs could use the 
Conley et al. (2012) local to zero approximation sensitivity analysis.19  

 
Conley (2009) argues that the phenomenon of pleiotropy presents a further challenge for 

the plausibility of a genetic instrument: since many genes code for proteins that may have 
multiple functions and effects, it is hard to know for certain that the instrument only affects 
outcomes through the endogenous regressor. Naturally, without random assignment one may 

                                                            
16  Using genes as instruments has been subject to criticism as outlined in Cawley et al (2011) and Fang 
(2013), among others. 
17 For example, Wehby et al. (2011) uses two independent samples from Norway and the US to conduct IV 
analyses and finds weak correlations between maternal smoking and the genetic variant instrument sets.  
18 We discuss the term population stratification in further detail in the section on genome wide association 
studies, but the general idea is that there might be systematic differences in the frequency of risky alleles 
between groups, thereby leading to a form of omitted variable bias. 
19 This analysis involves making an adjustment to the asymptotic variance matrix, thereby directly 
affecting the standard errors. That is, a term that measures the extent to which the exogeneity assumption 
is erroneous constructed from prior information regarding plausible values of the impact of genetic factors 
on second stage outcomes is added to the variance matrix. 
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never be certain about the role of any specific genotype so this reinforces the need to investigate 
the robustness of results. 

 
Among economists that use genetic markers as instruments, there is a major difference in 

how these variables are included in the first stage. Ding et al (2009) used a series of binary 
variables for each potential genetic polymorphism in the genes they investigated. A potential 
concern with datasets containing thousands of SNPs is that this may lead to the many instrument 
problem (Hausman et al 2012).20 Other researchers treat the genetic information as a set of 
continuous variables and for each SNP include the count of the number of risk alleles. We argue 
that using a count variable not only makes it more challenging for researchers to interpret first 
stage relationships and assess if they are consistent with the scientific literature, but this also 
imposes a strong assumption that first stage outcomes are linear in the number of risk alleles (this 
assumes we know a lot more about the operation of genetic markers than the scientific literature 
has presently concluded). We would argue that there are benefits from allowing for non-linear 
relationships through using discrete indicator variable for each polymorphism of a SNP. First, 
one can easily test whether the linearity restriction from using a count is supported by the data. 
Second, this approach truly sheds more light on what features of the polymorphism are driving 
the estimated effect and one can then compare these results with those hypothesized in the 
scientific literature to gain more validity. 

 
Studies that use genetic markers as instruments generally draw biological justification 

from results of published candidate gene studies, which as discussed are controversial.21 The 
journal Behavior Genetics recently adopted stricter standards for publication of candidate gene 
studies (Hewitt 2012). To be considered for publication, any candidate gene study must be well 
powered, make corrections in statistical inference for multiple testing and any new finding must 
be accompanied by a replication.22 Thus, when searching for a plausible genetic instrument by 
reviewing the literature, researchers should also justify their choice by considering the statistical 
power of the study.  

  
The idea of using genetic information as a source of identifying variation also appears in 

the epidemiological literature where it is termed Mendelian randomization. Mendelian 
randomization was first proposed in Katan (1986) and applied with data in Davey-Smith (2003). 
Studies using Mendelian randomization all implicitly assume that there are no dynastic effects to 
invoke the term randomization. However, genes are inherited by design from one’s parents who 
may also transmit environmental inputs and numerous behaviors across generations. In effect, 

                                                            
20 To date, no research has investigated using the LASSO for variable selection in the first stage 
to determine which binary genetic variants in a large set of SNPs should be used as instruments. 
21 The scientific literature is populated with conflicting findings from candidate gene studies and many 
early studies failed to be replicated since, initially, researchers did not adjust for population stratification. 
Further, studies in this literature often suffer from low statistical power, coupled with potential 
publication bias as well as undisclosed pretesting, they could have led to too many false positives 
appearing in press. 
22 Chabris et al. (2013) illustrates a limitation of candidate gene studies. They replicate previously 
identified candidate genes using data from three independent longitudinal studies, and the results are 
disappointing since they found fewer significant associations than a traditional power analyses would 
have ex-ante predicted. 
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empirical economists can draw a parallel between the Mendelian randomization research design 
and the econometric analysis of a randomized experiment with non-compliance. Thus, under the 
assumption of no dynastic effects, Mendelian randomization can be viewed as an encouragement 
design. Since randomization (experiments) is often regarded as the gold standard in medical 
research, we would suggest that these studies be more accurately recast as being a Mendelian 
encouragement design. 

 
 A final variant on the instrumental variable strategy was introduced by Fletcher and 
Lehrer (2009ab, 2011) who exploit genetic inheritance within full biological siblings. Fletcher 
and Lehrer name a family fixed effects estimator with genetic instruments as the “genetic 
lottery”. This genetic lottery might truly characterize Mendelian randomization, since by 
controlling for the family fixed effect one removes the dynastic effects (assuming they are 
constant) between full biological siblings. This strategy exploits variation in genetic inheritance 
and socio-economic outcomes between full-biological siblings and provides a means to test a key 
identifying assumption in a workhorse research design used in family and population economics 
that has been applied in almost every branch of empirical economics as well as behavioral 
genetics. That is, does the family fixed effects estimator sufficiently solve the underlying 
endogeneity problem? By using a bootstrapped Hausman test to compare a family fixed 
estimator to estimates with a family fixed effects IV (aka genetic lottery) one can find evidence 
that either refutes or is unable to reject the maintained assumptions. In each of their applications, 
Fletcher and Lehrer are able to reject that the family fixed effects estimators sufficiently solve 
the endogeneity problem in health, when estimating its effects on academic and early labor 
market outcomes. While labor economists have made substantial advances at estimating causal 
relationships, we believe that genetic information may hold more hope at identifying causal 
mechanisms, a topic we elaborate upon in our discussion of gene-environment interactions. 
  
3.3 Economists Replicate Scientific Studies: Genome Wide Association Studies 

Whereas research by economists using genetic markers as instruments displays a new use 
of these data, economists have also ventured into research methods common in medical science 
and by geneticists. This work led by economists who established the Social Science Genetic 
Association Consortium (SSGAC) involves the development of large networks of researchers 
and pooling of multiple datasets containing genetic information.23 The primary goal is to conduct 
large scale genome wide association studies (GWAS) on a number of training datasets and to see 
if the results from the training datasets are replicated in other studies. Such design could yield 
more robust evidence (or refute) of the molecular genetic basis of outcomes of interest to 
economists. This approach strives to overcome many criticisms of candidate gene studies.24 
                                                            
23 The economists who established the SSGAC are Dan Benjamin, David Cesarini and Phil Kollinger. 
Ambitious, the SSGAC may have been motivated by The Wellcome Trust Case Control Consortium’s 
attempts to improve the understanding of the aetiological basis of several major causes of global disease 
by pooling databases collected by individual research teams. The consortium’s pooled data approach has 
yielded important findings in the medical sciences, particularly in understanding the genetics of autism 
(Glesner et al., 2014) and schizophrenia (Ripke et al., 2014). 
24 The declining cost of genotyping and technological advances include the availability of canned software 
packages to do the analyses also likely played a large role in their growth. See McCarthy et al., (2008) 
among others for early examples of work in this area. Other work involves using what is termed genomic-
relatedness-matrix restricted maximum likelihood (GREML) that for a sample of unrelated individual pairs 
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To date, the best example of research in this strand appears in Okbay et al (2016).25 The 

authors first conduct a GWAS of about 300,000 people (named the discovery sample)26 and find 
a total of 74 SNPs associated with educational attainment, where educational attainment is the 
amount of formal education completed. In aggregate, these 74 SNPs explain only 0.43% of the 
variation in educational attainment across individuals in the discovery sample. The economic 
significance of each of these 74 SNPs is also found to be quite small, since even in the strongest 
association reported, that is individuals with 0 instead of 2 copies of the risky allele of the 
genetic variant, it is shown to predict (on average) roughly 9 extra weeks of schooling. What is 
striking is that when the authors conduct a replication study with 110,000 individuals from the 
U.K. Biobank, they find that 72 of the initially identified 74 SNPs remain significantly 
associated with educational attainment. Thus, they are confident they have identified the 
molecular genetic basis for educational attainment.  

 
Despite this confidence, Okbay et al (2016) are quite cautious in how one should interpret 

their findings since years of educational attainment is a complex phenomena. The results only 
point towards an association and one cannot separate if these identified genes are truly related to 
educational attainment or whether they explain the selection process that led one to complete 
more schooling.27 Since there are more hypotheses of significant association than data points, 
one must make corrections for multiple testing, and they are careful to use an independent 
sample for the replication study. The authors take great care to convince the reader that the 
observed associations are unlikely to be spurious by both utilizing the latest quality control 
protocols in the medical genetics literature (Winkler et al., 2014) and carefully account for 
population stratification in their analysis. Specifically, the authors repeat the analysis where i) 
common support is imposed across samples by excluding dissimilar individuals, ii) account for 
high levels of principal components as additional controls to capture potentially confounding 

                                                            
estimates what portion of the total fraction of variance in a trait is attributable to the average effects of SNPs. 
That is, does genetic similarity predicts phenotypic similarity? We return to how genetic similarity is 
measured in the section on gene by environment interactions. 
25 Two examples of earlier papers by the SSGAC include Rietveld et. al (2013a)  who combined data on 
42 cohorts providing over 100,000 individuals to study which of approximately two million single 
nucleotide polymorphisms influences measures of educational attainment such as college completion and 
years of education. This research suggested three specific genetic variants. Subsequently, Rietveld et al 
(2014) verified the robustness of these findings using data from three new sources, as well as used 
exploited only genetic variation within families. 
26 The discovery sample pools numerous datasets and contains information from participants in 15 
different countries. 
27 Instrumental variable estimators of the effects of years of schooling generally identify the causal effect 
of years of schooling only for the subsample whose behavior was influenced by the instrument. A popular 
example is compulsory schooling and often the resulting estimate compares individuals with 11 to 12 
years of schooling. At present, with GWAS we do not know where in the decision process, the individual 
markers operate on individual behavior. 
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genetic differences across samples,28 and iii) include family fixed effects in the analysis.29 This 
paper provides a comprehensive guide on how to undertake and report results from a GWAS.  

 
Many economists’ first reaction to a GWAS is that it simply is data mining. After all, these 

studies are not motivated by any theory of why specific SNPs are being investigated and simply 
examine for an outcome of interest, whether it is associated with one or more of the (typically 
millions of) measured SNPs. Further, genetic researchers are generally solely interested in 
characterizing the variance of estimates of how much SNPs influence outcomes and point 
estimates are not usually the focus. While it could be of interest to discover what percentage of the 
variation in outcome an individual SNP can account for, this is definitely not how economists 
determine the relative importance of explanatory variables in outcome regressions such as wage, 
health, education and economic growth. In response, Rietveld et al (2013a, 2014) suggest 
examining polygenic scores in future research, and Papageorge and Thom (2016) present one of 
the first attempts to incorporate these scores in a labor economics application.  

 
A polygenic score is constructed by adding up the individual alleles that are reliably 

related to this trait, where each allele is weighted by effect sizes estimated from a GWAS 
(Dudbridge, 2013). The underlying idea is that from the GWAS results we can give weights of 
relative importance to each SNP. Then, with a polygenic score, a researcher could exploit the 
joint predictive power of many SNPs when used as an input in an estimating equation. As an 
explanatory variable, these polygenic scores are constructed to explain more variation than 
individual SNPs and may provide clearer role on some combined genetic influence. The scores 
provide a means to identify individuals at high risk for certain outcomes. From an econometric 
perspective, this may reduce the chance of including irrelevant variables in a regression model 
and increase the resulting efficiency of estimates but come at a cost of placing strong functional 
form assumptions on the components of the score.30 After all, the score is just a weighted linear 
combination which implicitly makes assumptions about relative substitutability of effects of 
different SNPs.   

 
GWAS research with replication samples could be valuable to establish robust evidence 

of a main genetic effect. Referenced with GWAS results, studies using specific genes either in a 
candidate gene approach or as an instrumental variable may face significantly less opposition. 
We should point out, however, that evidence of main effects from these large scale GWAS 
requires the genetic variant to have a similar effect across all samples with respect to the same 
dependent variable, which likely differs on the basis of the environment and sample 
characteristics. It is reasonable to assume that specific genetic variants may only have significant 

                                                            
28 Since data is pooled from different studies, the principal components off the gene chip (i.e. the 
correlation matrix of all the assayed SNPs) are measured. To control for population stratification, 
generally, the first four of these components are used to identify geographic ancestry within the sample. 
29 By exploiting variation within siblings, one controls for dynastic factors and any differences in genetic 
factors do not come from differences in sample composition. Since there is less variation and a smaller 
sample size, the effects are noisier relative to the discovery sample but the effect sizes are remarkably 
similar on average, enhancing confidence in the initial GWAS results. 
30 Debates about the relevance of polygenic scores exist outside of economics. Purcell et al., (2009) list 
concerns on their likely usefulness, whereas Belsky et al, (2012, 2013) are empirical examples illustrating 
potential benefits. 
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effects in particular environments or with specific types of samples, while being insignificant in 
all other cases.  If either of the above scenarios hold, then a standard GWAS would never 
identify the main effect of this variant, despite the fact that there may be strong evidence of a 
significant heterogeneous impact of this variant with the environment.31 Thus, there is interest in 
understanding the interplay between genes and the environment, a challenging area since the bar 
to find robust evidence of gene by environment interactions might be quite high since replication 
across similar contexts clearly places challenges on the date used to explore the interactive effect 
of genetic variants.  

 
3.4 Gene by Environment Interactions 

Recall that research in behavioral genetics (comparing twins) began by assuming the 
absence of gene by environment interactions, henceforth G*E. This assumption is now clearly 
rejected and researchers across a multitude of disciplines champion the importance of G*E 
effects. Among labor economists, James Heckman is perhaps best known for arguing of the 
importance of G*E effects in his testimony designed to convince policymakers to invest early in 
child development.32 

To explore G*E effects requires rich longitudinal data with clean variation in 
environmental exposure to interact with genetic factors. Modelling G*E effects requires either 
exogenous variation in environmental factors or a clean econometric strategy that can identify 
unknown breakpoints in relationships between genetic factors and outcomes.33 Rosenquist et al 
(2015) undertakes the latter approach using the threshold regression estimator by Hansen (1999) 
to estimate an augmented version of a linear age–period–cohort model, to understand the source 
of G*E with longitudinal data collected between 1971 and 2008 in the offspring cohort of the 
Framingham Heart study. Specifically, they test whether the well-documented association 
between the rs993609 variant of the FTO gene and body mass index (BMI) varies across birth 
cohorts, time period, and the lifecycle.34 A key feature of the analysis is statistically testing for a 
                                                            
31 We are grateful to Pietro Biroli for discussion that clarified why gene by environment interactions 
should not solely be motivated by results from GWAS.  
32 Heckman (2007) writes: “Third, the nature versus nurture distinction, although traditional, is obsolete. 
The modern literature on epigenetic expression and gene environment interactions teaches us that the 
sharp distinction between acquired skills and ability featured in the early human capital literature is not 
tenable (Rutter, (2006), Gluckman and Hanson (2005), Rutter et al., (2006)). Additive ‘nature’ and 
‘nurture’ models, although traditional and still used in many studies of heritability and family influence, 
mischaracterize gene-environment interactions. Recent analyses in economics that break the ‘causes’ of 
birthweight into environmental and genetic components ignore the lessons of the recent literature. Genes 
and environment cannot be meaningfully parsed by traditional linear models that assign unique variances 
to each component. Abilities are produced, and gene expression is governed by environmental conditions 
(Rutter, (2006), Rutter et al., (2006). Behaviors and abilities have both a genetic and an acquired 
character. Measured abilities are the outcome of environmental influences, including in utero experiences, 
and also have genetic components.” 
33 Fletcher and Conley (2013) argue that G*E interactions are most meaningful when they are based on 
exogenous environmental measures that are not themselves a function of genes. Pushing further, van 
IJzendoorn and Bakermans-Kranenburg (2012) advocate using randomized controlled trials to study how 
environmental changing interventions have differential effects as a function of genetic endowments. 
34 In other words, aggregate macro-environmental conditions are explored and one cannot identify 
mechanisms that operate within these three categories. It is worth pointing out that since all the data used 
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structural break of unknown timing across cohorts and checking the robustness of their finding 
by additionally controlling for family fixed effects. The selected breakpoint is based on the 
model that best fits the data using a grid search algorithm.35   

Rosenquist et al (2015) find that there is a robust relationship between birth cohort and 
the FTO risk allele with BMI, with an observed inflection point for those born after 1942.36 
Specification tests of the unrestricted model that additionally control for gene*cohort effects and 
gene*age effects provide evidence that the inclusion of gene*contemporaneous period effects is 
statistically insignificant. Only if one were to ignore gene*cohort effects, would they find 
evidence that G*E effects are due to contemporaneous events for FTO and BMI. Upon 
reflection, this result is unsurprising since environments are highly correlated over the lifecycle 
for most individuals and there is limited variation in environmental conditions experienced to 
affect the penetrance of genetic influences.  

 
The results also have important implications for how one interprets evidence from 

GWAS that pools data across samples. With GWAS researchers carefully account for population 
stratification when pooling data from different sources. However, the findings in Rosenquist et al 
(2015) raise the possibility that genetic associations may differ across birth cohorts due to 
variation in prevailing environmental contexts.37 In other words, there may be a need to control 
for the need for environmental stratification.  It remains an open question if the low replication 
rates of many GWAS due to ignoring environmental stratification that arises from differences in 
the period of time study subjects were born in and the historical moment researchers conduct 
their investigations.  

 
To date, the majority of work by social scientists evaluating G*E effects does not 

explicitly consider the endogeneity of the environmental variables that were selected by the 
individual. Perhaps the best example of research in this stream is Biroli (2015) who situates his 
analysis within an economic framework.38 Biroli (2015) integrates genetic factors inside the 
canonical model of health production due to Grossman (1972), allowing genetic variants to both 
potentially differentially affect the health production function and preferences related to the 
incentives related to health investment faced by individuals. Using data from both the 

                                                            
in this study was collected in a single small geographic area, any potential biases due to sorting across 
regions based on environmental conditions due to unobservables are reduced. 
35 Best fitting refers to explained variation. That is, the breakpoint identifies the point in time where the 
difference between birth cohorts in how genes influence obesity that would explains the most variation in 
the data. The econometric strategy does not identify the point where the relationship is most different.  
36 Consistent with Rosenquist et al. (2015), Biroli (2015) finds that the estimated interaction between the 
FTO genotype and caloric intake is stronger for individuals born in later cohorts. 
37 This criticism is not viewed favorably among geneticists and is more natural to economists who 
understand that GWAS just report associations, and not causal or structural parameters. 
38 As with candidate gene studies, concerns of low statistical power due to a combination of potential pre-
testing and publication bias are likely valid in what we shall term “candidate gene*environment 
interactions”. Two examples of such studies: 1. Caspi et al (2002) finds that the effects of self-reported 
childhood maltreatment on adolescent antisocial behavior varied based on one’s MAOA gene. 2. 
Shanahan et al. (2008) discovers a significant interaction between a variant of the DRD2 dopamine 
receptor gene with factors such as having a parent that belongs to the PTA and how often parents discuss 
school related issues with the student.  
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Framingham Heart study and Avon Longitudinal Study of Parents and Children, Biroli finds 
evidence that genetic factors do change both the production function of BMI and the level of 
health investment. While this work extends our analysis of a workhorse model in health 
economics, the empirical analysis requires one to assume that caloric intake is exogenous and not 
a behavioral choice, otherwise biased coefficients may result.  

  
Studies that have tried to exploit genetic variation within families have the potential to 

provide more compelling evidence of candidate G*E effects. Similar to Fletcher and Lehrer 
(2011), the idea is to exploit within family differences in genetic code to remove biases from 
dynastic effects.  For example, Thompson (2014) exploits within-family variation in genetic 
inheritance, to see if there are differential responses of household income on child education 
outcomes by variants of the MAOA genes. The results indicate that the gradient is steeper for 
those with rarer variants.39 Conley and Rauscher (2013) advise caution in this line of research. 
When they investigate how genetic traits may moderate the relationship between birthweight and 
several outcomes including high school GPA that exploits within twin- pair birthweight 
differences, the sole statistically significant G*E effect discovered has a sign that is the opposite 
of what had been suggested by prior scientific research.  

 
Economists are well-aware of the benefits of comparative advantage. Thus, one can 

interpret the set of guidance provided in Conley and Rauscher (2013) as indicating potential 
benefits from interdisciplinary collaborations. Most economists are not trained to assess whether 
the estimated effects of specific SNPs are plausible in sign and magnitude.40   

 
Dealing with potential ‘environmental stratification’ is explicitly yet indirectly 

considered in what is known as genome-wide complex trait analysis (GCTA), a variant on the 
behavioral genetic approach to measure heritability between genetically dissimilar individuals.41 
Yang et al., (2011) suggests that genetic similarity between two individuals is essentially 
estimated as a weighted correlation of their genotypes on the included SNPs and the goal is to 
restrict the analysis to unrelated individuals. This restriction is motivated by the assumption that 
individuals who are more genetically related share a more similar environment than unrelated 
individuals. Using a restricted maximum likelihood estimator (commonly referred to as REML 
in the literature), one can obtain estimates of heritability without resorting to twins data.42 

                                                            
39 Thompson (2014) also point out that parents may make “compensating” investments in which more 
resources are allocated to the less able sibling to promote equality. Thus, one cannot rule out with the data 
that MAOA variants is correlated with the environmental conditions children receive from their parents 
after conception. Future research is need to see if a child’s MAOA status induces differential treatment 
from their parents who invest in their children’s human capital and if so, to what signals of MAOA status 
do parents respond, given that they are unlikely to have genotyped their children. 
40 There are examples of successful interdisciplinary collaborations reviewed in this chapter, including the 
multiple papers produced by the SSGAC that was lauded in an editorial Nature (Hayden, 2013), 
Rosenquist et al (2015), among others.  
41 Benjamin et al. (2012), use this approach in their analysis to explain heritability of economic 
preferences.  
42 As an example, Rietveld et al (2013b) point out that while twins studies suggest that genetic factors 
may account for as much as 30–40% of the variance in subjective well-being measures, additive effects of 
genetic polymorphisms that are common in the population can only explain 5-10% of the variation in 
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However, this identifying assumption appears strong to individuals trained as labor or urban 
economists since it would suggest that genetic markers must explain much selection of one’s 
environment. To test this assumption, one may develop tests similar to understanding whether 
selection on observables leads to balance. We discuss further econometric and computational 
directions for economists in the next section.43 

4: Potential Future Areas for Economists to Analyze Genetic Data 
 

We suggest that there are, at a minimum, three main directions that economists can 
contribute to the literature using genetic data. First, economists can provide an understanding of 
genetic influences in a logically consistent framework. Economists should not fall victim to 
thinking that just because one’s genetic code is fixed at conception, genetic-expression is also 
fixed. Labor economists treat fixed characteristics such as gender and race as having time-
varying effects in empirical analysis. Research is needed to understand whether individual SNPs 
or polygenic scores are time varying and to what extent they are truly capturing a portion of what 
economists in longitudinal analysis refer to as permanent individual specific unobserved 
heterogeneity. Clarifying what is meant by a genetic disposition is an area where economists can 
contribute strongly. 

 
Moreover, similar to Manski (2013) arguing in his view of the incredible certitude taken 

by many in the public policy community, economists should help other research communities to 
become much more comfortable with embracing uncertainty in how genetic effects operate. To 
an extent, the work of the SSGAC evaluating genome associations is striving to reduce the 
degrees of certitude represented in any given candidate gene study. Future research if well-
powered can also be used to understand why across the databanks collected by the SSGAC, 
divergent main effects are observed. That is, do differences in specific life events of the 
participants across studies explain these divergence in the main effects? After all, different 
experiences may alter the magnitude of genetic expression on a given trait, or it may in fact 
instigate different genetic processes. 

 
Building on the above point that suggests potential gene environment interplay is 

something that should be emphasized more strongly in the genetics literature, a second area 
where economists can contribute is by developing tools and research designs to shed new light 
on the pathways through which genetic factors influence socioeconomic outcomes. Lehrer 
(2015) suggests that researchers should consider working with more aggregated environmental 
factors and perhaps exploit regional environmental changes. Indeed, there is a large history in 
empirical microeconomics of exploring differences in environmental conditions or policies 
across regions as natural experiments. Thus, exploring genetic heterogeneity in the estimated 
effects with this research design seems to hold promise. An early example of such a study is 
Okbay et al (2016a) who compare cohorts prior to and post a suite of schooling reforms that, 

                                                            
these measures. While subjective well-being measures are not accurately measured, accounting for 
measurement error only increases the amount of explained variation from additive genetic effects to 12-
18%. 
43 More recent developments for sequencing and linkage analysis that have been introduced in the 
genetics literature include Ott et al (2015) and Pabinger et al (2014); but to the best of our knowledge 
have yet to be used by economists. 
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most importantly, extended mandatory schooling from seven to nine years. The authors find that 
the association between educational attainment and the polygenic score constructed from their 
GWAS is roughly half as large among Swedish individuals in later cohort, suggestive that the 
Swedish reforms reduced the effects of genetic variants in generating differences in educational 
attainment. 

 
With genetic data, it may be possible to use biological mechanisms to shed light on why 

treatment effect heterogeneity is observed. Researchers in empirical microeconomics already 
have sets of tools to explore whether interventions have different effects for subgroups defined 
on the basis of more aggregated predetermined characteristics such as gender and race.44 It is 
also necessary to move beyond linear models in order to study G*E effects. Conti and Heckman 
(2010) provide a more general framework to operationalize and interpret gene-environment 
interactions.  

 
As a whole, there is tremendous scope in this stream for both empiricists and 

econometricians to collaborate and develop methodological tools for G*E analyses. Researchers 
currently use G*E to both describe situations where the effect of exposure to an environmental 
factor on a behavior is conditional upon a person’s genotype, as well as situations when the 
genotype’s effect is moderated by some environmental effect. While statistically separating these 
pathways is needed, policy audiences do need to understand what is being identified. Lehrer 
(2015) suggests that researchers use G*E responses to refer to situations where the effect of 
exposure to an environmental factor on a behavior is conditional upon a person’s genotype and 
G*E modifications to refer to differential genetic reactions to environment Personalized 
medicine and policies that would target by genotype may be interested in G*E modifications, 
whereas G*E responses may be more interesting for researchers trying to understand the 
heterogeneity in environmental effects on outcomes across population. In short, improving 
methodological tools can lead to more credible evidence from rigorous G*E studies, which could 
subsequently reshape theories on various health and socioeconomic outcomes. 
 

Third, economists have the advantage to investigate the behavioral restrictions implicitly 
imposed by empirical methods used to both elucidate genetic associations and construct 
polygenic scores. Consider how Todd and Wolpin (2003) influenced researchers in the 
economics of education by highlighting the behavioral restrictions on an underlying model of 
human capital development that were implicitly made by researchers when estimating various 
equations that proxied for education production functions. Analogously, the socioeconomic 
outcomes being investigated in both candidate gene and GWAS studies are likely determined by 
complex processes that involve behavioral decisions. As another example that was discussed in 
the section considering genes as instruments, should risk alleles enter these estimating equations 
as a count assuming a linear effect or as a series of indicator variables? The consequences of 
using imputed versus actual SNPs also requires further evaluation. Further, it is worth stressing 
that much of the existing analysis in the scientific literature uses canned software that itself 
imposes additional assumptions on the underlying process generating the outcomes. The 
maintained assumptions in the methodology undertaken need to be made clear to the general 
research community.  
                                                            
44 For example, Lee and Shaikh (2014) and Lehrer et al. (2016) provide a set of methodological tools to 
analyze heterogeneity in causal effects that can additionally incorporate corrections for multiple testing. 



18 
 

 
In GWAS, a number of potential methodological questions are worth considering. For 

example, should these equations be estimated for different health outcomes independently, or as 
a system of equations framework allowing for correlations in the residuals? Similar to evidence 
of the importance of comorbidity in Ding et al (2009), Boardman et al. (2015)’s GWAS 
investigation of the molecular basis of education and depression / self-rated health, points out 
that one may wish to disentangle whether a given genetic marker has an independent influence 
on outcomes or mediates the effect of these correlated outcomes on one another. Could we use 
LASSO estimator for GWAS studies as a means to shrink the variable set in place of REML 
estimators? Other directions include developing an optimal way to make corrections for multiple 
testing in settings where there are potentially more covariates (SNPs) than observations.  

 
Labor economists have done much work developing methods to estimate both cross-

sectional and panel data models with repeated cross sections. To an extent, work on GWAS is 
pooling many samples that did not choose individuals in the study via random sampling. In 
addition, between the different datasets, members of the population have an unequal probability 
of being observed. These sampling issues are normally not considered other than creating a form 
of balance the samples by adding controls for population stratification. Issues related to 
nonparameteric identification of population parameters in this setting when many choice based 
samples are combined (and as noted earlier, Rosenquist et al (2015) point out that differences 
across environments in these studies is not considered), seem important to correctly interpret the 
resulting estimates. Further, given the combination of these non-random samples, there may be 
methods to conduct efficient estimation from a combination of biased samples. While much 
work has been done across disciplines on topics related to combining non-random datasets, the 
mixing of types of datasets used in GWAS which range from case-control studies to random 
samples likely requires researchers to find better ways to combine samples in order to improve 
both the estimation and interpretation of results from GWAS.  

 
Polygenic scores are beginning to generate much interest for assessing the explanatory 

power of an ensemble of genetic markers. Turning to the construction of polygenic scores,45 
should these be anchored in a metric that has economic significance such as earnings? How 
should researchers account for estimation error in these scores when including these measures as 
explanatory variables? Is there a partial identification approach to calculate polygenic scores? 
Labor economists have worked as applied econometricians for decades and as one becomes more 
familiar with not just genetic data but with the methods used to measure and analyze this data, 
we believe there is great scope to develop refinements that will have impacts not solely on the 
economics literature but in other disciplines that analyze these data.  

 
Along these lines, to understand one of the main challenges with using polygenic scores, 

consider the ingredients to their construction faces a common problem empirical researchers face 
in practice when trying to decide what conditioning variables to include when estimating either a 
structural parameter or causal effects. After all, with GWAS, there is a related problem of 
selecting which SNPs from a potentially large set to include since ignoring potentially relevant 
variables that do not satisfy a strong sparsity condition would result in omitted variables bias.   
                                                            
45 At present, most researchers who construct these scores rely on canned software routines such as 
PRSice for convenience and do not discuss the statistical and behavioral restrictions embedded. 
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This bias has been shown in Leeb and Pötscher (2008), Belloni et al (2014, 2016), among others,  
to exist with common  econometric estimator and machine learning strategies who additionally 
use simulations to demonstrate that the sampling distribution of whichever estimator is not 
centered around the true parameter. Since GWAS is focused strictly on prediction and not causal 
effects, it is unclear how to adapt double-selection estimators to this setting. Since the ingredients 
to the construction of the polygenic score are biased and unlikely to be robust to even minor 
deviations from conditions implying perfect model selection in the GWAS itself, it is unclear 
whether this variable can accurately capture individual genetic predisposition. Future work that 
uses these scores in empirical applications may be better off creating binary indicators for having 
a very high or very low polygenic score, rather than assuming perfect model selection and treat 
the polygenic score as a continuous variable.  

 
Finally, as the scientific literature is also now moving beyond only considering main 

genetic effects, it is worth pointing out that gene-gene interactions almost certainly do exist.46 
Indeed, both Ding et al. (2006, 2009) and Fletcher and Lehrer (2009b, 2011) consider such two-
way interactions in their instrument set, but there is not much information even in the behavioral 
genetics literature on how and why these interactions operate. In other words, understanding the 
genetic architecture of a particular trait is one of the main goals and this challenge mirrors the 
steps required when labor economists create empirical models to understand the underlying data 
generation process. With newer and richer data, future research will be able to additionally 
explore the interactive effects between genes themselves as well as with environmental 
interactions and genetic networks. With the likely continued increasing focus of labor 
economists at understanding the origins of economic inequality, we believe that molecular 
genetic data may help shed new light on understanding the sources of unobserved heterogeneity. 

 
5. Conclusions 

 Many labor economists including Claudia Goldin (1999) have described their research 
strategy as first finding a topic that one is passionate about, and then being the best detective one 
could be. Indeed, labor economists have for painstakingly long analyzed data, not solely to help 
reveal trends and patterns, but also to shed new light on drivers of human behavior. There is no 
question that genetic factors do play a role in nearly every socioeconomic outcome of interest to 
empirical economists and only recently have we begun to develop affordable and reliable 
technologies to measure this individual level of variation. 

Over the past decade, a growing number of economists have begun to incorporate genetic 
markers in their empirical analyses. This area is quickly maturing and it is likely that many of the 
low hanging applications of genetic data have already been undertaken. At this stage, and similar 
to trends within labor economics, we are witnessing a shift towards researchers using much 
larger datasets to asses genetic associations as well as researchers developing new econometric 
tools to understand heterogeneity in genetic effects. These trends parallel those within labor 

                                                            
46 See Lazopoulou et al. (2014) Huang et al. (2011), among others for evidence of significant gene-gene 
interactions in obesity. In behavioral genetics, additive genetic effects are associated with a narrow sense 
of heritability and broad-sense heritability refers to the proportion of trait variation that can be attributed 
to all types of genetic effects, including dominance, epistatic interaction, and additive effects.  
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economics where a growing number of studies are relying on the use of rich administrative 
databases to draw credible evidence as well as the development of econometric tools to shed 
light on treatment effect heterogeneity.  

There is likely much more that can be done particularly along entering the black box of 
individual specific unobserved heterogeneity and exploring gene environment interactions. 
Evidence from these studies can in turn be utilized to help refine theories and potentially shape 
policies. While the idea of developing a separate field within economics called genoeconomics is 
clearly appealing to those in the area, we believe that there is more potential from incorporating 
genetic data within existing fields such as labor economics. For example, many labor economists 
when studying educational attainment must carefully deal with modelling individual choices of 
whether to continuing to study that is based on both the expected return, risk and costs. Yet, 
when researchers suggest genetic factors influence educational attainment, which aspect of the 
selection process are the markers related to? 

We should caution that there are high start-up costs for researchers trained as economists 
in understanding genetics research, in part since research in other disciplines use different and 
complex jargons and are generally much less explicit about the behavioral assumptions.47 That 
said, there are likely high returns for economists to develop richer and empirically tractable 
models to investigate the role of genetic factors that can challenge the maintained behavioral 
assumptions. In summary, while we are ultimately bullish on the future of genetic markers in 
economics, we believe such future may become more fruitful if us economists are more critical 
and disciplined in our embrace of genetic data. 

  

                                                            
47 Similar to how the training of econometricians and microeconomic theorists rely on developing 
stronger backgrounds in specific branches of mathematics and statistics, economists will need to become 
much more familiar with the genetics literature. This is not unique to the field. Currently many 
economists are now learning machine learning tools to analyze large datasets (Athey, 2015), whereas 
many behavioral economists need to keep track of developments in the psychology and neuroscience 
literatures.  
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