
Working paper, uploaded to SocArXiv on 24 March 2017.

The geometry of mortality change:
Convex hulls for demographic analysis

Audrey F. Lai*

Andrew Noymer†

Tsuio Tai‡

24 March 2017

Abstract

We introduce convex hulls as a data visualization and analytic tool for

demography. Convex hulls are widely used in computer science, and

have been applied in fields such as ecology, but are heretofore under-

utilized in population studies. We briefly discuss convex hulls, then we

show how they may be applied profitably to demography. We do this

through three examples, drawn from the relationship between child

mortality and adult survivorship (5q0 and 45p15 in life table notation).

The three examples are: (i) using convex hulls for outlier identifica-

tion; (ii) for studying sex differences in mortality; and (iii) for study-

ing period and cohort differences. We find, respectively, that convex

hulls can be useful in robust compilation of demographic databases,

and that the gap/lag framework for sex differences or period/cohort

differences is more complex when mortality data are arrayed by two

components as opposed to a unidimensional measure such as life ex-

pectancy. The potential applicability of these methods goes beyond

mortality.
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Introduction

We propose convex hulls as a technique of demographic analysis, illustrated

by three examples. The convex hull of a set of points is the polygon defined

by a perimeter in which the line segment connecting any two points lies

on or inside the perimeter.1 An informal heuristic is that if a set of points

are pegs in a board, the convex hull is the shape of a rubber band stretched

around the outermost pegs, such that all the pegs are enclosed by the band.

Figure 1 is an example: the data are seven random points in a plane (1A).

There are a number of ways to draw a perimeter, of which one is shown

(1B). The convex hull, which is unique, is illustrated as a white polygon

(1C). The dashed line segments (1D) demonstrate why the region in 1B is

not convex. Line segments connecting any two points in the data may be

an edge of the convex hull, or interior, but cannot pass outside of it. Convex

hulls exist in all dimensions: as a range (line segment) for unidimensional

data, as polygons in R
2 (“2D”), as polyhedra in R

3 (“3D”), and as polytopes

in higher dimensional spaces. In this paper, we only consider applications

in two dimensions.

Calculating a convex hull of multidimensional data is analogous to sort-

ing unidimensional data, in the sense that it determines the boundaries

of the data, which in the univariate case is the minimum and maximum

(Barnett 1976). For cross-classified data, the x range is the orthogonal pro-

jection of the convex hull onto the x-axis, similarly with the y data, and so

on if there are more dimensions. Using convex hulls in data analysis is not

a new idea. “Tukey peeling”, also called convex peeling (Hodge and Austin,

2004), has some similarities to our first application. It entails obtaining

robust estimates in multivariate analysis by removing one or more convex

hulls from the data, pre-analysis. It dates back to the early 1970s (Huber,

1972), and is further elaborated in Tukey (1975) and Bebbington (1978).

The properties of convex hulls of data are fairly well understood, provided

the data are reasonably well behaved. There is a large literature here; see,

f.e., Efron (1965), Eddy (1980), Aldous et al. (1991), Blackwell (1992), Sny-

der and Steele (1993), Hueter (1994), Massé (2000), Suri et al. (2013). To

1For a concise and more formal definition of convexity, cf. Kemeny and Snell (1962,

p. 123); also Kemeny et al. (1966), pp. 312–3: “A convex set C is a set such that whenever

u and v are points of C, the entire line segment between u and v also belongs to C.” A

convex hull consists of vertices, edges that connect these vertices, and the (interior) convex

polygon defined by the edges; see figure 1 (p. 3).
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Figure 1: A: seven randomly-distributed points in a plane. B: one possible perime-

ter and its (non-convex) polygon (shaded). C: the convex hull, in white. D: dashed

line segments illustrate non-convexity of the original perimeter. Vertices of the

convex hull are shown as filled disks, while original points that are members of

the convex set (i.e., the white region), but are not hull vertices, are shown as open

circles.

the best of our knowledge, these techniques have not been applied in depth

in demography. Appearances of “convex hull” in the demographic litera-

ture are sparse and arise in conjunction with linear programming solutions

(f.e., Georgakis and Tziafetas, 1982), rather than as an analytic tool on its

own terms. Wrigley and Schofield (1981) discuss “demographic terrain”

(p. 247), similar in spirit to convex hull analysis as we conceptualize it (see

also Goldstone 1986, Galloway 1994). Neighboring academic fields, such as

ecology, have used convex hulls more (f.e., Getz and Wilmers 2004, Corn-

well et al. 2006). Our three applications illustrate the usefulness of convex

hulls to population studies.

Materials and Methods

Using data on all countries in the Human Mortality Database (2017, Bar-

bieri et al. 2015), we analyze life table probabilities of child mortality (5q0)
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Table 1: Country list: Start and end years.

Period Cohort

Country start end start end

Australia 1921 2014

Austria 1947 2014

Belarus 1959 2014

Belgium† 1841 2015

Bulgaria 1947 2010

Canada 1921 2011

Chile 1992 2005

Czech Republic 1950 2014

Denmark 1835 2014 1835 1923

Estonia 1959 2013

Finland 1878 2015 1878 1924

France* 1816 2014 1816 1923

E Germany 1956 2013

W Germany 1956 2013

Greece 1981 2013

Hungary 1950 2014

Ireland 1950 2014

Iceland 1838 2013 1838 1922

Israel 1983 2014

Italy 1872 2012 1872 1921

Japan 1947 2014

Latvia 1959 2013

Lithuania 1959 2013

Luxemburg 1960 2014

Netherlands 1850 2012 1850 1921

New Zealand (Maori) 1948 2008

New Zealand (Non-Maori) 1901 2008

Norway 1846 2014 1846 1923

Poland 1958 2014

Portugal 1940 2015

Russia 1959 2014

Slovakia 1950 2014

Slovenia 1983 2014

Spain 1908 2014

Sweden 1751 2014 1751 1923

Switzerland 1876 2014 1876 1923

Taiwan 1970 2014

U.K./England & Wales* 1841 2013 1841 1922

U.K./Scotland 1855 2013 1855 1922

U.K./Northern Ireland 1922 2013

Ukraine 1959 2013

United States 1933 2015

Notes: †: missing 1914–1918.

*: total population (i.e., not only civilian)
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and adult survivorship (45p15). Table 1 lists the included countries. Through-

out, we refer to cross-classification of child mortality and adult survivorship

as the mortality relationship, and, as applicable, the mortality hull. We perform

three analyses, the first of which is to examine outlier countries, in which

we systematically delete one country at a time, and quantify how the con-

vex hull changes. The second analysis compares male and female convex

hulls, on a country-by-country basis. The third compares period and cohort

data, on a per-country and per-sex basis. Convex hull calculation is well

studied (Preparata and Shamos 1985, de Berg et al. 2008), and is available

in many software packages. We used IDL ver. 8.6 (Exelis Visual Information

Solutions, Inc., Boulder, Colorado, USA).

Figure 2 (p. 6) is an example of the convex hull approach to the mor-

tality relationship, showing the mortality hull, separately by sex, for the

entire data set. Individual countries are color-coded, although most of the

data are densely clustered and therefore overlapping. Superposed on fig-

ure 2 is a more conventional approach, namely a regression fit of 45p15 as

a quadratic function of 5q0, along with its 95% prediction interval.2 Near

the center of mass, the regression line does a good job of representing the

tendency of the mortality relationship. However, we think figure 2 is a good

illustration of the shortcomings of the parametric curve fitting approach.3

Particularly away from the center, and even with the prediction interval,

the regression line does not represent the variation of the data as well as

the convex hull.

The geometric (i.e., convex hull) approach is not meant to be a replace-

ment for curve fitting, but a complement to it. Nonetheless, in many areas

of population studies, convex hulls may better capture the inherent varia-

tion of the data, especially in situations where the quantities of interest do

not have a homoskedastic relationship.4 The logic of our approach is that

when comparing the mortality relationship (or any other multivariate clas-

sification) of two or more populations, convex hulls are a natural way to

see how the data interleave. This approach is superior to comparing the bi-

2This is wider than the 95% confidence interval of the regression curve. See, f.e.,

Snedecor and Cochran (1989), p. 168; DeGroot and Schervish (2002), p. 614; etc.
3An excellent example of the regression approach to two life table quantities working

well is Woods and Hinde (1987), p 45.
4For quantities analyzed on log scale (f.e., as is often the case with death rates, nMx),

log the data first, then calculate the hull. Although the logarithmic transformation is

monotone, it is not affine, so it need not preserve convexity.
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Figure 2: Adult survivorship vs child mortality, by sex. With convex hull,

and quadratic regression line (solid) and its associated 95% prediction interval

(dashed). Inside the hull, line segments connect chronologically-consecutive

points on a per-country basis.
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variate ranges, which would replace the hulls with rectangles of potentially

much greater area. It is an alternative to fitting curves for each population,

and then comparing the regressions.

The cross-classification of child mortality and adult survivorship — what

we are calling the mortality relationship — has been studied without hulls,

often as 45q15 vs 5q0 (the same thing, for all intents and purposes). In

populations with incomplete data, it is common to have only estimates of

45p15 and 5q0 (or similar), from which the rest of the life table is imputed

(Timæus and Moultrie, 2013). Even without the use of convex hulls, data

quality can be assessed by comparing the mortality relationship of a single

country to model predictions (Woods 1993, 2000, p. 375; Rao et al. 2005),

or to a battery of countries with good data quality (Reniers et al. 2011, Ger-

land 2014). Examining the mortality relationship (or other, similar, cross

classifications of life table quantities) is a staple of methodological work on

model life tables (f.e., Coale and Demeny 1983, Murray et al. 2003, Wilmoth

et al. 2012). Convex hull analysis permits quantification of these compar-

isons.

Results

i) Country peeling: Outlier quantification in the HMD

In using convex hulls to identify outliers, we take a country-centered ap-

proach, removing one country at a time and seeing how the resulting hull

differs from the master hull (i.e., the hull of the entire data set, shown in

figure 2). This country peeling differs from Tukey peeling. In figure 2, the

female hull is defined by 13 points from three countries and the male hull

by 12 points from six countries. Under Tukey peeling, we would remove

these 13 or 12 points, respectively, and examine the modified data set, or

peel the next hull. With country peeling, we remove entire countries, one

at a time, instead of all the vertices of the master convex hull. A priori, the

country peeling will have no effect except when the country being peeled is

one of those three countries for females (six for males).

When a country is peeled, a new, smaller, hull is calculated to reflect

the country-peeled data set. Table 2 lists the component countries of the

master hull and the number of points each of those countries contributes

to the master hull (column A). The next three columns of table 2 give a
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Table 2: Country peeling

Number of points Ratio of peeled Number of Number of

Peeled contrib. to outside to master hull countries in sides in

country master CH peeled hull area diameter peeled hull peeled hull

(A) (B) (C) (D) (E) (F)

Males

Belarus 1 5 0.9994 1.0 8 12

Estonia 1 2 0.9997 1.0 7 11

Finland 2 2 0.9736 1.0 7 11

France 1 2 0.9919 1.0 7 11

Iceland 6 13 0.8092 0.9504 11 15

Russia 1 4 0.9977 1.0 6 12

Females

Belarus 1 3 0.9998 1.0 3 12

Iceland 8 16 0.6527 0.9333 10 16

N.Z. (Maori) 4 27 0.9829 1.0 3 10

counterfactual as-if-adding scenario. That is to say, if a country were never

in the data set to begin with, and was then added, how much of an outlier

would it be relative to the convex hull of the prior mortality relationship.

This can be measured by how many points of the country lie outside the

prior (i.e., peeled) hull (column B), or as the how large the peeled hull is,

relative to the as-if-added hull (viz., the master hull) (column C).

The diameter of a convex hull is the greatest distance between any two

vertices. Column D gives the diameter length of the peeled hull relative to

that of the master hull. This column reveals an idiosyncrasy of the HMD

data, namely that Iceland populates the hull at both ends, high child mor-

tality/low adult survivorship (in the 19th century), and low child mortal-

ity/high adult survivorship (in the 21st century). The endpoints of the di-

ameter of the master hull (known as the antipodes) need not be drawn

from the same country, but in the HMD data set, they are. Thus, the di-

ameter changes if and only if Iceland is the peeled country, as column D

shows. Column E gives the number of component countries of the peeled

hull. For both sexes, Iceland stands out as having a peeled hull with nearly

the same number of component countries as the master hull, in contrast

to the other peeled countries where this number declines more. Column F
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Figure 3: Adult survivorship vs child mortality, by sex. For each sex, two hulls are

shown: the outer, colored, hull is the master convex hull (the same as shown in

figure 2). The inner, white, hull is the result of peeling Iceland, the data of which

is shown in color.
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gives the number of sides of the peeled hull.5 This is a measure of the topo-

logical complexity of the hull. In all cases except Iceland, the peeled hull

has the same number of sides, or fewer, compared to the master hull. The

Iceland-peeled hull for both sexes has more sides than the master hull. As

with the prior columns, this descriptive statistic identifies Iceland as being

qualitatively different.

Country peeling is a technique for outlier detection: it answers the ques-

tion, “if country X were being added to the HMD for the first time, how

different would it be from the existing countries?” Table 2 shows that most

countries are similar in the mortality relationship. Indeed, for females, only

three countries would be flagged as outliers if being added (one at a time) to

the HMD for the first time. The most severe outlier for both sexes, as quan-

tified by table 2, is Iceland. Country peeling for Iceland is shown graphically

in figure 3. The inner, peeled, hull (in white, consisting of points from 10

countries for females and 11 for males) is smaller in area and has a smaller

diameter than the master hull.

Iceland is an outlier in large part because it has a long data series (the

fourth longest in the HMD, cf. table 1), and it goes from the being worst 5q0
performer among the small set of HMD polities in the 1830s and 1840s

(when it was a colony of Denmark), to, often, the best in the twenty-

first century. Iceland is now a highly developed country with excellent

health statistics. Historically, Iceland experienced mortality crises (Schleis-

ner 1851, Tomasson 1977), some of which were associated with the tail end

of Europe’s “Little Ice Age” (Vasey, 2001). Most countries are not outliers,

reflecting commonalities in the mortality relationship in the HMD data.

The take home message of this section is that convex hulls are an effective

tool for qualitatively identifying outliers, as well as quantifying their degree

of outlierness. The following section looks at intra-country analysis of the

mortality relationship by sex, and shows that convex hulls are not just for

outlier detection.

5This is the same as the number of vertices. Some algorithms will potentially return

three colinear points — i.e., what is really one side of a hull would be two sides, if counting

vertices. This can arise with gridded data, but is unlikely with empirical data. We check

for this, but there are no such instances.
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ii) Sex differences

Much of population studies concerns time series of demographic phenom-

ena (life expectancy, total fertility rate, etc.). Gaps and lags is one way to

conceptualize the movement of two time series where each one is mea-

suring the same quantity for different (but related) populations. Figure 4

illustrates this for American males and females; each panel shows a dif-

ferent mortality measure: figure 4A, child mortality (5q0); figure 4B, adult

survivorship (45p15). The separations between the male and female series

can be regarded as a gap (along the vertical axis, shown in white), or as a

lag (along the horizontal axis, shown in black). In 1945, the male-female

gap in child mortality was 11 per thousand. Or, one could say that the males

would take 4.5 more years to achieve the equivalent 5q0 as females in 1945

(a lag). Goldstein and Wachter (2006) formalized the gaps and lags frame-

work, using periods and cohorts as the population dichotomy. As we show

here without the formalism, this framework also applies to sex differences.

In the univariate time series approach, gaps can be recast as lags. In

terms of mortality decline, males and females plough the same ground,

but the female mortality advantage (or gap) means that males do so later.

Figure 5 shows the convex hull approach to this problem. Consider first

the “ISL” panel, for Iceland. We see exactly the phenomenon of males

following in the path of females: the hulls are substantially overlapping.

Given that the time period is the same for each sex, we should not expect

total overlap. Males begin the series with mortality levels higher than seen

in females, and females end the series with lower mortality than seen in

males for the same time interval. Thus, we expect two regions, at opposite

ends of the space, where the hulls do not overlap. This is precisely what the

convex hull plot for Iceland shows.

For the United States (figure 5, “USA”), the convex hull analysis reveals

a different pattern. Unlike the univariate time series in figure 4, the males’

mortality relationship does not follow in the footsteps of the females’. The

convex hulls are disjoint, indicating that males and females are not play-

ing follow the leader, but are taking different paths. The disparate lags in

figure 4 (i.e., 35 years for adult survivorship but only 4.5 years for child

mortality) drive the disjointness of the male and female hulls. The long

lag for the adult survivorship data is thought to be due principally to be-

havioral influences, especially tobacco use (Pampel 2002). While a careful

read of figure 4 would allow one to predict the divergent paths over time,

11



Working paper, uploaded to SocArXiv on 24 March 2017.

     1945     1965     1985     2005 
Year

.005

 

.02

 

.08

5q
0

4.5 year lag
0.011
gap

  

  

 

 

 

          

0.65

0.75

0.85

0.95

45
p 1

5 35 year lag

.09
gap

  

  

 

 

 

 

A

B

Males
Females

Figure 4: Sex differences in mortality, gaps and lags perspective. Female advantage,

which is the typical, can be viewed as period gap, or as a lag of males, taking

them a certain number of years to catch up. A: 5q0, child mortality; B: 45p15, adult

survivorship. All data from HMD, for the United States.
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Figure 5: Male (blue) and female (red) sex-specific hulls for the mortality relation-

ship, Iceland (ISL) and United States (USA). Overlap shown in purple. Bullseyes

mark the centroids of the hulls.
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Table 3: Male and female hulls: Descriptive and comparative statistics.

Female to male Intersection % of points in Euclidean Centroid in

Area Diameter area as % of intersection dist. btwn. opposite hull?

Country Ratio Ratio M F M F centroids M F

(A) (B) (C) (D) (E) (F) (G) (H) (I)

Australia 0.518 0.869 18.9 36.4 0.0 58.3 0.041 No No

Austria 0.346 0.777 disjoint 0.072 —

Belarus 0.231 0.295 disjoint 0.162 —

Belgium 0.666 0.985 58.4 87.6 0.0 35.7 0.022 Yes Yes

Bulgaria 0.292 1.049 0.3 1.1 11.1 0.0 0.074 No No

Canada 0.439 1.044 34.0 77.4 0.0 31.2 0.016 Yes Yes

Chile 0.274 0.585 disjoint 0.074 —

Czech Republic 0.337 0.831 disjoint 0.086 —

Denmark 0.936 0.941 78.9 84.3 18.2 40.0 0.039 Yes Yes

Estonia 0.291 0.368 disjoint 0.163 —

Finland 0.285 0.574 20.9 73.4 0.0 35.7 0.210 No Yes

France 0.412 0.793 36.4 88.3 0.0 30.0 0.161 No Yes

E Germany 0.385 0.913 disjoint 0.077 —

W Germany 0.346 0.635 disjoint 0.067 —

Greece 0.308 0.819 disjoint 0.059 —

Hungary 0.286 0.854 disjoint 0.109 —

Ireland 0.484 0.976 12.1 25.0 8.3 27.3 0.039 No No

Iceland 0.914 1.009 80.8 88.4 20.0 50.0 0.062 Yes Yes

Israel 0.568 0.613 disjoint 0.043 —

Italy 0.428 0.851 39.6 92.5 0.0 10.0 0.083 No Yes

Japan 0.809 0.881 19.0 23.5 0.0 37.5 0.044 No No

Latvia 0.233 0.338 disjoint 0.187 —

Lithuania 0.194 0.336 disjoint 0.163 —

Luxemburg 0.366 0.573 3.9 10.7 0.0 20.0 0.083 No No

Netherlands 0.645 0.940 61.2 94.9 0.0 72.7 0.032 Yes Yes

N.Z. (Maori) 1.022 1.472 73.2 71.6 33.3 40.0 0.009 Yes Yes

N.Z. (Non-Maori) 0.580 0.754 52.5 90.5 0.0 57.1 0.062 Yes Yes

Norway 0.804 0.905 68.8 85.5 0.0 42.9 0.042 Yes Yes

Poland 0.220 0.828 disjoint 0.118 —

Portugal 0.622 0.912 disjoint 0.083 —

Russia 0.274 0.307 disjoint 0.219 —

Slovakia 0.368 1.093 disjoint 0.097 —

Slovenia 0.322 0.404 disjoint 0.108 —

Spain 0.555 0.987 42.7 77.0 0.0 9.1 0.049 Yes Yes

Sweden 0.883 0.988 83.3 94.3 0.0 50.0 0.035 Yes Yes

Switzerland 0.632 0.890 56.8 89.8 0.0 33.3 0.066 Yes Yes

Taiwan 0.907 0.969 disjoint 0.079 —

England and Wales 0.296 0.815 25.6 86.4 0.0 57.1 0.123 No Yes

Scotland 0.748 0.959 44.1 59.0 8.3 50.0 0.042 Yes Yes

Northern Ireland 0.661 1.131 52.0 78.7 0.0 40.0 0.007 Yes Yes

Ukraine 0.225 0.230 disjoint 0.166 —

United States 0.332 0.896 disjoint 0.061 —
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the hull approach reveals this much more clearly. The Iceland data goes

back to 1838, and high variance contributes to the overlap of the hulls. The

American data begin in 1933 and show less variance, with thinner hulls. Of

the twenty countries with disjoint hulls, (table 3), all have data beginning

after the Second World War, except Portugal (1940) and the United States

(1933) (table 1). With improvements in nutrition, the advent of antibiotic

drugs, and so on, the postwar mortality regime is lower variance (at least in

the HMD member countries), which favors these disjoint hulls. However,

Austria (1947), Bulgaria (1947), Ireland (1950), Japan (1947), Luxembourg

(1960), and New Zealand/Maori (1948) are all exclusively postwar data, yet

have overlapping hulls, so the overlap is not exclusively driven by noisy

prewar data.

Table 3 gives comparative descriptive statistics of the sex-specific hulls,

on a per-country basis. Columns A and B give the area and diameter ra-

tio, respectively, of the female to male male hull. Male mortality has a

higher variance than that of females, and as a result, all the male hulls

have larger area than the country-corresponding female hull, except New

Zealand/Maori. The topology of the hulls is complex, and despite the area

statistics, six male hulls have shorter diagonals than the corresponding fe-

male hull. Columns C and D give the intersection area as a percent of male

and female fulls. The most interesting aspect of these columns is that al-

most half the hulls (20/42) are disjoint across the sexes, indicating that

male mortality decline, as measured by the mortality relationship, does not

follow in the footsteps of the female mortality decline.

Columns columns E and F give the percentage of points of male and

female hulls contained within their intersection. Even for the non-disjoint

hulls, this statistic may be zero, since the hulls trace out area in regions

where they are not populated by data. As noted, the male hulls are larger,

but of the 22 hulls that overlap, for 16 of them there are no male data points

populating the overlapping region. Conversely, none of the overlapping re-

gions are devoid of female data points.6 This is an indication that that male

hulls are larger in a meaningful sense. The distance between the centroids

of each hull is given in column G. The male and female hull centroids that

are furthest apart are Russia (0.22) and Finland (0.21); these hulls are dis-

6An overlapping region must contain at least one hull vertex, thus it is impossible for

both columns E and F to be zero in the same country, unless the hulls are disjoint. (Edges

that touch but which do not share vertex are not considered to be an overlapping region.)
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joint and overlapping, respectively. This shows that variance as well as loca-

tion drives the overlap/non-overlap of the hulls. Indicators for whether the

hull centroids lie inside the opposite-sex hull are given in columns H and I.

In 13 of the 22 overlapping hulls, the overlap region contains the centroids

of both convex hulls.

When mortality is summarized in more than one dimension, a male-

female gap cannot be construed to be the same as a lag. Table 3 shows a

diversity of relationships. The male and female mortality hulls are, in many

cases, disjoint within the same national population. For some countries,

the hulls are quite different from disjoint, but contain each other’s center, at

least as measured by the centroid. Predicting the future of male mortality as

catching-up to female mortality makes sense on a unidimensional basis, but

should be done with caution when dealing with 5q0 and 45p15 considered

together.

iii) Period and cohort

As an example of convex hulls applied to period and cohort data, the Finnish

mortality relationship is shown in figure 6; graphs for the ten other coun-

tries with cohort data (see table 1) are in Appendix III (p. 34). The female

(red) and male (blue) convex hulls represent the period data in the same

years as the cohort data series (yellow). Where the period and cohort hulls

overlap is shaded orange for females and green for males. The colored re-

gions in these graphs are like-for-like comparisons of years (1878–1924 in

the Finland example). The union of the red or blue period hull and the

white (non-convex) region forms the convex hull of the entire period data

set (1878–2015 in the Finland example). Consider the data projected onto

the horizontal axis (child mortality). Cohort 5q0 is a combination of 1qx for

x=0,. . . ,4, in five consecutive years of time. The most important compo-

nent, 1q0, is from the same calendar year for both period and cohort data.

Thus, the period and cohort spreads along the horizontal axis are very sim-

ilar. The forty-five year time/age span of 45p15 brings out more profound

differences. For Finnish females, the ranges are similar in length, but over-

lap little, and hulls are disjoint. Whereas among the males, the range of

cohort 45p15 data is much smaller than that of the period data, and the

cohort hull is semi-embedded in the period hull. Reflecting the influenza

pandemic (Ansart et al. 2009) and the Finnish Civil War (Turpeinen 1979),
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Table 4: Cohort and period hulls: Descriptive and comparative statistics.

period/cohort perimeter/area % of cohort diagonal canonical corr.

Country sex area area* cohort period outside per. correlation 1st 2nd

(A) (B) (C) (D) (E) (F) (G)

Denmark M 1.525 1.157 43.09 34.41 disjoint 0.978 0.956 0.295

F 1.697 1.339 54.21 33.17 95.2 0.996 0.958 0.389

Finland M 5.118 4.912 52.27 24.15 32.2 0.573 0.854 0.097

F 1.090 1.167 51.05 40.43 disjoint 0.905 0.856 0.417

France M 3.220 2.829 29.77 15.09 36.6 0.952 0.936 0.211

F 1.431 1.866 46.13 33.82 90.6 0.996 0.943 0.238

Iceland M 2.235 1.407 18.14 9.33 35.3 0.999 0.887 0.110

F 2.524 1.498 19.14 10.01 44.6 0.987 0.874 0.076

Italy M 3.635 2.288 30.32 16.34 68.7 0.654 0.949 0.331

F 2.272 1.544 48.38 29.87 disjoint 0.950 0.968 0.414

Netherlands M 1.525 1.394 31.93 28.19 99.4 0.960 0.978 0.543

F 1.433 0.950 36.91 28.99 98.6 0.999 0.975 0.418

Norway M 2.077 1.980 54.54 29.12 82.9 0.997 0.937 0.259

F 1.385 1.384 52.61 33.89 88.9 0.946 0.927 0.256

Sweden M 3.318 2.874 35.26 15.00 35.4 1.000 0.934 0.205

F 3.853 3.359 45.39 16.77 40.8 0.994 0.927 0.199

Switzerland M 3.258 2.353 70.82 27.39 disjoint 0.997 0.987 0.128

F 2.319 1.689 79.52 37.50 disjoint 1.000 0.986 0.131

England and Wales M 2.550 2.188 40.73 22.52 86.6 0.890 0.970 0.035

F 0.776 0.614 41.63 49.33 95.3 1.000 0.970 0.344

Scotland M 1.045 1.364 54.33 51.08 90.2 0.994 0.919 0.269

F 0.844 0.891 55.33 51.47 92.0 0.961 0.927 0.279

* comparison of full-extent period data, normalized (i.e., per number of years)

the minimum 45p15 data point in the period hull corresponds to 1918. The

1939–40 Finno-Soviet war did not occur during the time span of the cohort

data; its effects can be seen in the white region.

As seen in Finnish females and the graphs in Appendix III, the co-

hort hull “floats” above the period hull. This is the analogue of the gap

phenomenon in the time series approach (Goldstein and Wachter 2006).

Nonetheless, with the mortality relationship, the story is more complicated

than gaps and lags. The overlapping regions are generally small, and five

sets of hulls are disjoint, including Finnish females. Considered one di-

mension at a time, the time series experience the gaps and lags. In general,

however, the period hulls do not lag the cohort hulls (viz., cover the same

ground) — in fact, some of the period and cohort hulls are disjoint.

17



Working paper, uploaded to SocArXiv on 24 March 2017.

0 0.1 0.2 0.3 0.4
5q0

0.0

0.2

0.4

0.6

0.8

1.0

45
p 1

5

  

  

 

 

 

 

Males

0 0.1 0.2 0.3 0.4
5q0

0.0

0.2

0.4

0.6

0.8

1.0

45
p 1

5

  

  

 

 

 

 

Females

Figure 6: Period and cohort mortality relationship for Finland; data are harmonized

so that the period and cohort years coincide. For the period hulls, males are blue

and females are red. The cohort mortality relationship is shown in yellow (or green,

where it overlaps with male period data). Dashed lines denote the diagonals of

the hulls. Underplotted in white is the convex hull for the entire extent of the

period data; the red or blue hull partially overlaps this white hull, by definition.

The visible white region is therefore not convex, but the union of the white and

red/blue regions (ignoring the overlapping yellow hull) is convex.
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Table 4 (p. 17) gives descriptive statistics for the cohort and period hulls.

As in the previous section, we report ratios of one hull to another. Apart

from column B, all the statistics refer to the period data that are coincident

with the cohort data. Column A gives the period to cohort area ratio, which,

in the HMD data, is always > 1, except females in Great Britain (analyzed

below). This regularity occurs because the range of the 45p15 is greater for

the period data. Column B provides the same statistic, but includes all of

the available period data (i.e., including the white region in figure 6), and

therefore the period hull encloses many more data points than that of the

cohort. To achieve a meaningful statistic, we normalized the area by the

number of years; this is not necessary in any other column. As with col-

umn A, most of the ratios are > 1, with females in Great Britain and the

Netherlands being exceptions. As a measure of spread, columns C and D

give the perimeter to area ratios for the cohort and period hulls, respec-

tively.7 This is notable because only one population (England and Wales,

females) has period perimeter-to-area ratio exceeding that for cohort.

Column E gives the percentage of the cohort hull area that lies outside

the period hull. Most have some overlap, but five hulls (out of 22) are dis-

joint, including both sexes for the Swiss data. Finnish males are the most

overlapping, with all but 32% of the cohort hull enveloped by the period

hull. We also introduce the diagonal correlation (column F), or the cosine

of the angle between the diagonals.8 The diagonal correlation provides a

rough, but useful, dimensionless measure of how parallel, so to say, the

two hulls are. While diagonals may be perfectly parallel — and three of the

hulls indeed have perfect diagonal correlation (i.e., rounded up to 1.0) —

the hulls themselves are polygons which do not have correlations in the tra-

ditional sense. Nonetheless, the Finnish example demonstrates the utility

of the diagonal correlation measure. For males, the diagonal correlation is

0.57 while for females it is 0.91. Compare these to the hulls illustrated in

7As measured by this statistic, a circle has the minimum spread of any convex shape.

For a circle, the distance to the furthest point from the center is the radius, r, and the

perimeter to area ratio is 2/r. A square of the same area has a perimeter of 4
√

πr, and a

perimeter to area ratio of (2/r)(2/
√

π) > 2/r. The distance to the furthest point from the

center of the square is r
√

π/2 > r. Thus, the square of the same area has more spread and

a greater perimeter to area ratio, and so on.
8In the literature, we have not found any references to the term diagonal correlation as

it relates to polygons, nor the use of this quantity as we define it.
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figure 6, where the alignment (using a non-rigorous, intuitive meaning) of

the two hulls seems much better for females.

The diagonal correlation is more informative than at least one conven-

tional approach: column G gives the first and second canonical correlations

(Hotelling, 1936) of the period and cohort data (not just the hull vertices).9

While Finnish males stand out in the hull diagonal correlations (column F),

there is nothing unusual about their canonical correlations (column G).

This is not to say that standard techniques cannot detect something differ-

ent about Finnish males relative to other HMD countries. In country×sex-

specific OLS regressions of year-matched 45p15 and 5q0 data (period and co-

hort, pooled) including a dummy variable for period or cohort, the dummy

is not statistically significant only for Finnish males. Thus, equipped only

with OLS regression, no visualization, and no convex hulls, one could dis-

cern that something is different about Finland. Nonetheless, if customary

techniques were unable to confirm putative outlier status identified by the

hull approach, the idea of convex hulls for demographic data analysis would

be moot.

Table 4 also points to England and Wales, females, as being different.

Figure 7 focuses on the cohort data for England and Wales, females. Con-

sider two subhulls, one from the start of the data until the temporal mid-

point, and another from the midpoint+1 until the end of the data. These

subhulls are superposed on the hull of the cohort mortality relationship in

figure 7. The subhull for the earlier half of the birth cohorts has horizon-

tal hatching, and that for the later half has vertical hatching. The union

of these two subhulls forms a non-convex region which envelops all the

cohort data for England and Wales females. The ratio of the area of the

hatched region to the area of the convex hull is called the convexity index

(Tanimoto, 1987, p. 427); in this example, it is 0.497. Using the data mid-

point as the pivot point of the subhulls, this the lowest convexity index in

the HMD data set among females.

The bottom panel of figure 7 gives a time series plot of 45p15 and 5q0; the

midpoint (1881) is shown as a vertical gray rule, and a 19-year period from

1880 is shaded light gray. This part of the figure helps explain why England

and Wales females have the lowest convexity index, and are outliers, in gen-

eral, in table 4. During the period 1880–99, cohort child mortality stagnates

9Canonical correlations calculated with Stata v.13.1, StatCorp LLC, College Station,

Texas.
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Figure 7: Top panel (“GBRTENW”): cohort mortality hull for England and Wales

females. Also shown are the sub-hulls for the first half of the data (birth cohorts

1841–1881, with horizontal hatching) and the second half (1882–1922, with ver-

tical hatching). Bottom panel: time series plot of 5q0 (right axis) and 45p15 (left

axis); the axes have different ranges but the same extent, so slopes are compara-

ble. A 19-year period starting in 1880 is indicated by different shading; this is a

period of stagnation of cohort 5q0.
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while adult survivorship continues to rise. This unusual pattern causes the

mortality relationship to rise without much horizontal displacement. This

is seen clearly in the second (vertically-hatched) subhull in figure 7. As

a result, the cohort convex hull is relatively larger than that of the other

hulls, which is accounts for the unusual descriptive statistics for England

and Wales females in table 4. The convexity index analysis helps bring this

into focus.10 The usual pattern of improvements along both axes of the

mortality relationship is interrupted in this example, creating an outlier.

Mortality decline in Victorian England is well-studied, and while trends in

5q0 have been shown before (Woods et al., 1988), we are unaware of com-

ments on the unusual stagnation of cohort 45p15 relative to 5q0, compared

to other countries. This is another illustration of the strength of the convex

hull approach.

Similar to the analysis of the male and female mortality relationship,

the convex hull analysis of periods and cohorts shows that when mortality

is cross-classified as the mortality relationship, period and cohort relation-

ships are not well described in terms of gaps and lags, but have a more

complex relationship. That is not especially surprising — given that the

mortality relationship is not life expectancy and does not have the same

dimensionality — it should behave differently. Nonetheless, convex hull

analysis helps bring out some interesting aspects of the mortality history

more efficinetly than looking one dimension at a time. What is more, the

convex hull approach to the mortality relationship allows quantitative char-

acterizations of the patterns and how they relate to one another.

Conclusion

The goal of this work is to introduce convex hull analysis to demography, as

a tool for exploratory data analysis (in the sense of Tukey, 1977). Further

refinements are possible, such as hypothesis testing (see, f.e., Rogers, 1978)

— although there are substantial difficulties using convex hulls as inferen-

tial tools when the analyzed quantities don’t follow standard distributions

such as normal, which is often the case in demography.

10It helps that, coincidentally, the start of the period of 5q0 stagnation is very close to the

midpoint of cohort series, thus the temporally-later sub-hull has a much greater area than

it otherwise would.
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A number of the interesting findings brought out by the convex hulls —

for example female mortality in Victorian England and Wales, or Iceland’s

move from worst to first — can be divined by more standard techniques.

We suggest that convex hulls bring these patterns into sharp relief when

they might otherwise hide in the data. Independent verification of what

is happening using more time-tested techniques does not seem to us to

be a weakness of the convex hull approach. Indeed, one of the themes of

Gnanadesikan’s fine textbook (1997) on multivariate methods is that more

often than not, there are multiple ways to get the same substantive answer

to a question involving cross-classified data. We see convex hulls as fitting

neatly into that idea.

One of the strengths of our approach is that we use convex hulls as a

descriptive tool, and as such there are no assumptions that can be violated.

However, convex hulls are only as good as the data used to construct them,

so are not without potential limitations. Convex hulls are determined by

extreme values. As such, convex hulls should prove to be quite useful in

the identification of defective data in that outliers become readily apparent.

Where outlying observations cause especial difficulties, the data may be

(appropriately enough) Tukey peeled one or more times prior to the main

analysis.

This is the first work of which we are aware that makes extensive use of

convex hulls as an analytic tool or framework for population data. We hope

our analysis demonstrates convex hull analysis as a promising tool for de-

mographers and we encourage population scientists to consider their use.

Convex hulls are a tool that compliment standard approaches, and they are

not proposed as a replacement for anything. The applicability of convex

hulls in population studies is not limited to the mortality relationship. For

example, application to the demographic transition (Kirk, 1996) seems es-

pecially promising. Historical demography seems like another area in which

convex hulls could be profitably applied, with log(GRR) plots (Wachter,

2014, p. 133) particularly inviting.
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Appendix I: Peeled hulls for all countries

This appendix shows the country-peeled hulls for all countries in which

peeling has an effect, apart from Iceland (which is shown in figure 3 in the

main text).
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Appendix II: Sex-specific hulls for all countries

This appendix shows the male and female sex-specific hulls (as in figure 5),

except for Iceland and the United States, which are shown in the main text.
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Appendix III: Period-cohort hulls for all coun-

tries

This appendix shows the period-cohort hulls for all countries apart from

Finland (which is shown in figure 6 in the main text). Period hulls are

colored red (females) and blue (males); cohort hulls are yellow. Where

period and cohort hulls overlap, the colors are orange (females) or green

(males). Period hulls are constrained to the same time range as the cohort

data. Underplotted white regions are the full extent of available period

data; see figure 6 caption for more details.
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