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1. Introduction

Anthropogenic emissions of greenhouse gases are projected to significantly alter the global climate

over the current century and beyond. The Intergovernmental Panel on Climate Change (IPCC)

projects that the average global surface temperature will rise by between 1 and 3.7◦C (1.8 - 6.7◦F)

by the end of the century. If significant mitigation efforts are not undertaken in the near future,

warming is likely to be at the higher end of that range. This shift in the mean of the global surface

temperature distribution will be accompanied by significant increases in the frequency and intensity

of extreme heat events (IPCC AR5, 2013). Humans respond to hot outdoor ambient temperatures

by cooling the indoor environment at home and/or at work. If the frequency and intensity of

hot days increases due to climate change, one would expect this to cause increased cooling and

decreased heating demand. One of the three Integrated Assessment Models used in the calculation

of the federal Social Cost of Carbon concludes that increased space cooling is the major driver

of Global Climate Damages (Rose et al, 2014). This finding relies on an assumed temperature

responsiveness of a simple space cooling function in the FUND Integrated Assessment model, which

has little to no empirical basis.

Air conditioning is the main adaptation mechanism open to humans and has been shown to

be an effective strategy to mitigate the negative health impacts of hot days. Barreca et al. (2016)

show that in the United States the mortality effect of a very hot day decreased by roughly 80%

between 1900-1959 and 1960-2004 due to increased penetration of air conditioners. The observed

trajectory of air conditioner installation has been driven by growth in incomes and falling prices

of AC units and the electricity required to operate them over the past century (Biddle, 2008).

Hence areas, which have a hotter climate, are wealthier and have lower electricity costs have higher

levels of air conditioner penetration. (EIA, 2011). However, a changing climate represents a new

driver of air conditioner adoption. If San Francisco with its pleasant coastal climate by end of

century “receives” Fresno’s hot climate, even San Franciscans will install window units in existing

apartments and new construction will have central air conditioning units installed. The cost of

this adaptation mechanisms comes in the form of installation and operating costs, while the ben-
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efits accrue in the form of better health outcomes and comfort. A recent review of the literature

(Auffhammer and Mansur, 2014) lamented the dearth of causal estimates of empirically calibrated

damage functions, which quantify the short and long run relationship of higher temperatures and

electricity consumption from space cooling.

One dimension of this adaptation response to the higher incidence of extreme heat days

arising from global climate change, will be the more frequent operation of existing air conditioning

equipment, which we will refer to as the intensive margin adjustment for the remainder of the

paper. The other response will be the climate driven installation of air conditioners in areas that

currently see little penetration of this equipment. We will refer to this dimension of adaptation as

the extensive margin adjustment. While there are a number of papers attempting to quantify the

intensive margin adjustment, a full characterization of the extensive margin at fine enough levels of

aggregation to be useful to planners is extremely difficult, as data on installed air conditioners over

time and space are not available for the United States. Davis and Gertler (2015) is the only example

for a large country which utilizes data both on appliance holdings and electricity consumption for

a large share of the population.

The main innovation of this paper is that we lay out a simple method to estimate both the

intensive and extensive margin impacts of climate change on consumption when one does not have

data on installed capital (e.g. air conditioners). In a first stage, we estimate the causal temperature

response function of household electricity consumption at a fine level of spatial aggregation - the

five-digit ZIP code level. These response functions allow us to examine how the intensive margin

adjustment (“increased usage of existing equipment”) varies across more than 1,000 ZIP codes in

California in our sample. Estimation at this fine level is made possible by the fact that we observe

almost 2 billion electricity and natural gas bills which represent 79 percent of California’s household

over a decade.

For electricity, in a second stage, we explain cross-sectional variation in these “first stage”

estimated slopes of each ZIP code’s temperature response function as a function of long run average

weather (“climate”), income and population density. Technically speaking, in this “second stage”
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we regress the slope of each ZIP code’s temperature response function in different temperature bins

on income, population density and summer climate. We therefore separate the impact of income

and population density on temperature response from the direct effect of climate. The estimated

marginal effect of climate on the slope of the response function allows us to capture extensive

margin adjustments to long run changes in climate. We use downscaled climate projections from

18 of the IPCC’s most recent climate models to simulate future household electricity consumption

at the ZIP code level under climate change, taking into account both intensive (“first stage”)

and extensive margin (“second stage”) adjustments. We then compare the projected increases in

electricity consumption to climate driven reductions in natural gas consumption due to warmer

winters, which are derived from a “first stage” intensive margin only regression (as one would not

expect people to install more or less heating equipment due to milder winters). We show that in

the case of California’s residential sector, the natural gas savings are greater than the increases in

electricity consumption in BTU terms.

The main advantage of the approach proposed here is the fact that it does not require data

on where air conditioners are installed. While there are a few surveys that record such data in the

US (e.g. RASS, RECS), the spatial coverage is limited and the exact location of the household is

masked for privacy reasons. Our approach circumvents this data limitation, which would be very

costly to overcome, by relying on observed electricity consumption from billing data and weather

only. The approach outlined here can be adopted for other sectors as well (e.g. health, agriculture).

2. Literature Review

The literature quantifying the economic impacts of climate change has exploded over the past

decade. Review articles by Carleton and Hsiang (2016), Hsiang (2016), and Dell et al. (2014) provide

up to date and comprehensive overviews of both methods and applications. The key challenge is to

estimate externally valid dose response functions between economic outcomes of interest (e.g. energy

consumption, crop yields, mortality, water consumption, labor productivity, cognitive ability) and
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a long (e.g. 30 year) average of weather, which is commonly referred to as climate. This estimated

long run response is supposed to capture both adaptation behavior at the intensive margin (e.g.

increased operation of existing air conditioners) and extensive margin (e.g. installation of additional

air conditioners). The coefficients parameterizing said dose response function should be estimated

in a way that allows them to take on a causal interpretation. This is anything but straightforward.

Below I provide a brief summary of the methodological approaches in existing papers, while listing

examples with an energy focus. For a broader review, consult Carleton and Hsiang (2016).

The earliest literature relied on large-scale bottom-up simulation models to simulate future

electricity demand under varying climate scenarios. The advantage of these models is that they can

simulate the effects of climate change given a wide variety of technological and policy responses.

The drawback to these models is that they contain a large number of response coefficients and make

a large number of assumptions about the evolution of the capital stock, for either of which there

is little empirical guidance. The early papers in this literature suggest that climate change will

significantly increase energy consumption (Cline, 1992; Linder et al. (1987), Baxter and Calandri

(1992); Rosenthal et al. (1995)).

The recent literature has focused on providing empirical estimates of climate response func-

tions for a large number of sectors. There are four empirical approaches using distinctly different

sources of variation to parameterize climate response functions: (1) Time Series Regression (2) Ri-

cardian Approach (3) Panel Estimation (4) Long differences. Each of these approaches has distinct

advantages and disadvantages. This paper builds on insights in other papers to provide a fifth

approach, which I call Climate Adaptive Response Estimation (CARE).

A simple and commonly practiced approach taken to quantify the impact of climate on

electricity consumption uses high frequency (e.g. daily or hourly) time series of electricity load and

regresses these on population weighted functions of weather. Franco and Sanstad (2008) use hourly

electricity load for the entire California ISO over the course of the year 2004 and regress them

on average daily temperature. They identify a highly nonlinear response of load to temperature.

They show projected increases in electricity consumption and peak load of 0.9 to 20.3 percent and
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1.0 to 19.3 percent, respectively. Crowley and Joutz (2003) use a similar approach for the PJM

Interconnection. Auffhammer et. al (2017) estimate the response of peak load and average load to

daily weather for 166 load balancing authorities, covering the vast majority of US electricity load.

They show modest increases in consumption by the end of this century, yet significant increase in

the intensity of annual peak load (15-21%) and a twelve to fifteen fold increase in peak events by

the end of century. The drawback of this approach is that it relies on short term fluctuations in

weather and hence does not estimate a long run climate response but rather a short run weather

response. It simply cannot account for adaptation responses to climate change such as increased use

and installation of air conditioners or increased incidence of demand side management and energy

efficiency programs.

The second strand of the literature is based upon the seminal work by Mendelsohn et al.

(1994), who estimated the impact of climate change on agricultural yields by regressing yields or

net profits on climate. This cross sectional approach has the advantage that it estimates a true

climate response. The method has been widely criticized, as any non-experimental cross sectional

regression is bound to suffer from omitted variables bias (e.g. Deschenes and Greenstone, 2007).

Any unobserved factor correlated with climate and the outcome of interest will bias the coefficients

on the climate variable. This approach has not been widely applied in the energy literature, yet

Mansur et al. (2008) is one example of cross sectional approaches are Mansur et al. (2008) and

Mendelsohn (2003). The innovation in these papers is that they endogenize fuel choice, which is

usually assumed to be exogenous and provides one avenue of adaptation.

The third strand of the literature relies on panel data of energy consumption at the household,

county, state or country level to estimate a dose response function. Deschenes and Greenstone (2011)

were the first to use the panel approach to quantify the impacts of climate change on residential

electricity demand. They use variation residential energy consumption at the state level using

flexible functional forms of daily average temperatures. Their identifying assumption is that wether

fluctuations are random conditional on a set of spatial and time fixed effects, which is credible. The

authors, like the time series papers cited above, find a U-shaped response function. The impact of
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climate change on annual residential energy consumption for the Pacific Census Region (California,

Oregon, and Washington) by 2099 is approximately nine percent - yet not statistically different from

zero. Aroonruengsawat and Auffhammer (2012) use a panel of household level electricity billing

data to examine the impact of climate change on residential electricity consumption. They use

within-household variation in temperature, which is made possible through variation in start dates

and lengths of household billing periods. They can control for household fixed effects, month fixed

effects, and year fixed effects. Their projected impacts are consistent with the findings by Deschenes

and Greenstone (2011), ranging between 1% and 6%. The panel approach has the advantage that

one can control for often extensive sets of fixed effects, which deal with the omitted variables issues

the Ricardian model suffers from. This comes at a cost. The estimated response is again a short

run - not a long run climate - response, which fails to incorporate extensive margin adaptation.

Hsiang (2016) makes an argument that under a certain set of conditions, these short run responses

are identical to climate responses, yet these are not necessarily met in the energy sector, where the

penetration and efficiency of technology changes at a rapid pace. Further, the inclusion of large

suites of fixed effects may amplify measurement error issues (Fisher et al., 2012).

A fourth approach, which to my knowledge has not yet been applied in the energy sector

is long difference estimation. Burke and Emerick (2016) take long differences (e.g 10 or 20 year)

of economic outcomes of interest (e.g. agricultural yields) and regress these on long differences of

weather. This approach differences out until level unobservable cross sectional differences. The

advantage of this method is that it estimates a long run climate response and is robust to the

omitted variables issues raised in the Ricardian context. The data requirements are significant, as

this approach requires a panel long enough to generate difference in weather, which is long enough

to be interpreted as climate (ideally 30 years).

None of the approaches above formally model the intensive and extensive margin adapta-

tion adjustments separately. The time series and panel approaches only capture intensive margin

changes. The Ricardian and long difference estimation approaches have extensive margin adjust-

ments “baked in”. In order to separate the two one has to formally model the extensive margin
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adjustment process. A separate literature exists, which looks only at extensive margin adjustments,

not necessarily just to higher temperatures but also income and prices. Biddle (2008) uses a reduced

form econometric model, which accounts for changes in incomes, prices, and weather to explain the

heterogeneity in air conditioner penetration throughout the 20th century. Sailor and Pavlova (2003)

use data on air conditioning penetration for 39 U.S. cities to parameterize a relationship between

cooling degree days (CDDs) and market saturation. They show a nonlinear relationship between

CDDs and penetration. They further report that a significant number of cities have air condition-

ing penetration below 80 percent, suggesting that ignoring the adoption decision would lead to an

underestimation of future electricity consumption. Rapson (2011) estimates a dynamic structural

model of air conditioner adoption using five cross sections of the Energy Information Administra-

tion’s Residential Energy Consumption Survey (RECS), which could easily be expanded to estimate

a weather/climate response.

Davis and Gertler (2015) is the only paper to my knowledge which combines a formal esti-

mation of the extensive margin adoption decision with a more traditional panel data based intensive

margin response function. They take advantage of a large database on household air conditioner

penetration and electricity consumption for a large rapidly developing country - Mexico. They also

employ a massive database of electricity bills to characterize the temperature response on the in-

tensive margin. To characterize their extensive margin impacts, they rely on a large cross sectional

survey of appliance ownership across households. They link the two models to simulate impacts of

growing income and warming climate on intensive and extensive margin consumption of electricity.

They find significant impacts: For the worst case climate scenario and continued income growth

they estimate a 15.4 % increase in electricity consumption by end of century. Once they account

for the extensive margin adjustment, the impacts grow to an 83.1% increase in consumption. The

problem is that data on technology penetration and the outcome of interest (e.g. air conditioners

and electricity consumption) do not exist for most developing or developed countries, which requires

a different approach when one observes usage data only.

In this paper we propose a simple method which endogenizes the shape of the temperature
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response function without observing the level and type of adopted technology. This approach,

CARE, uses fixed effects estimation to obtain causal estimates of the short run (intensive margin)

temperature response for a large number of relatively fine spatial aggregates (ZIP codes). In a

second regression we then estimate the sensitivity of the estimated slopes across space as a function

of long run climate. The simulation then uses Global Climate Model (GCM) output to simulate the

intensive margin impacts by moving along a given response function as well as the extensive margin

impacts by shifting the response function as climate changes. This method is applicable beyond the

energy sector. There is a literature which has endogenized response functions (e.g. (Barreca et al.

2016; Dell, Jones, and Olken 2012, 2014; Hsiang and Narita, 2012; Butler et al. 2013; Auffhammer

and Aroonruengsawat (2012b)). We build on the general insight of a climate dependent response

function and formalize an empirical approach to do so when one observes a large number of micro

level observations on outcomes. This allows e.g. utilities to estimate the BAU impacts of climate

change on consumption without having to engage in the costly collection of appliance stock and

efficiency data.

The next section describes the data. Section (4) describes the empirical model, followed

by estimation results in section (5). Section (6) contains the simulation results and section (7)

concludes.

3. Data

3.1 Residential Billing Data

The University of California Energy Institute, jointly with California’s investor-owned utilities,

established a confidential data center, which contains the complete billing history for all households

serviced by the four largest investor owned utilities in the state: Pacific Gas and Electric (PG&E),

Southern California Edison (SCE), Southern California Gas Company and San Diego Gas and

Electric (SDG&E). SDG&E and PG&E are gas and electric utilities, while SoCalGas is gas only

and SCE only provides electricity to its customers. Table (1) provides an overview of the temporal
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data coverage for the four utilities by energy source (electricity and natural gas).

The dataset contains the complete bill level consumption and expenditure information for

the population of single metered residential customers during the years we have data for as outlined

in table (1). Specifically, we observe an ID number for the physical location (e.g. residence), a

service account number (e.g. customer), bill start-date, bill end-date, total electricity or natural

gas consumption (in kilowatt-hours, kWh or therms), and the total amount of the bill (in $) for each

billing cycle, as well as the five-digit ZIP code of the premise. Only customers who were individually

metered are included in the dataset, hence we cannot say anything about single metered multi-family

homes. We also cannot reliably identify households who have moved and therefore refrain from using

this as a source of econometric identification. For the purpose of this paper, a customer is defined

as a unique combination of premise and service account number. We can also identify whether a

customer receives a low income subsidy on their electricity pricing through a state-level program.

Further, we can also determine which homes are all-electric, meaning that they heat and cool using

electricity as well as own electric water heaters. This is mostly not by choice of the homeowners, but

simply due to the fact that not all of California has natural gas infrastructure to serve residences.

It is important to note that each billing cycle does not follow the calendar month, and the

length of the billing cycle varies across households, with the vast majority of households being

billed on a 25-35 day cycle. We remove bills with average daily consumption less than 2 kWh

from our sample, since we are concerned that these outliers are not regular residential homes, but

rather vacant vacation homes. We also remove homes on solar tariffs from our data, since we do

not observe total consumption from these homes, but only what they take from the grid, rendering

these data useless for the purpose of this exercise. Also, the bill start dates differ across households.

Hereafter, this dataset is referred to as “billing data.”

For electricity we observe total of 964 million bills and 928 million bills for natural gas. We

observe 658 million electric bills for “normal” households, which are neither on the subsidized tariff

nor all-electric homes. In addition we have 92 million bills for all-electric homes in the PG&E and

SCE territory. The remaining bills are for households in all four utility territories on the subsidized
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tariff. We will treat these three classes of households separately in terms of estimation. For the

simulation exercise we will take a consumption weighted average across these household types.

There is significant variation in bill level consumption across and within households. Because

across-household variation may be driven by unobservable characteristics at the household level (e.g.,

income, physical building characteristics, and installed capital), we will control for unobservable

confounders at the household level using fixed effects and use bill-to-bill variation at the household

level as our source of identifying variation. To proceed with estimation at the ZIP code level, we

identify all ZIP codes across the three utilities’ territories for which we have at least 1,000 bills.

Figure 1 displays the approximately approximately 1,200 ZIP codes for which we observe such

billing data. The left panel identifies the electricity ZIP codes and the right panel identifies the

Natural Gas ZIP codes. Our sample covers a large portion of the state both from north to south

and east to west. The sample represents approximately 80 percent of California’s population.

3.2 Weather Data

The daily weather observations to be matched with the household consumption data have been pro-

vided by the PRISM (2004) project at Oregon State University. This dataset contains daily gridded

maximum and minimum temperature for the continental United States at a grid cell resolution of

roughly 2.5 miles. We observe these daily data for California from 1980-2015. In order to match the

weather grids to ZIP codes, we have obtained a GIS layer of ZIP codes from ESRI, which is based

on the US Postal Service delivery routes for 2013. For small ZIP codes not identified by the shape

file we have purchased the location of these ZIP codes from a private vendor (zip-codes.com). We

matched the PRISM grids to the ZIP code shapes from the census and averaged the daily temper-

ature data across the multiple grids within each ZIP code for each day. For ZIP codes identified as

a point, we simply use the daily weather observation in the grid at that point. This leaves us with

a complete daily record of minimum and maximum temperature as well as precipitation at the ZIP

code level from 1980 - 2015.
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3.3 Other Data

Unfortunately we only observe bill details about each household and are missing any sociodemo-

graphic observables. We do, however, observe the five-digit ZIP code in which each household

is located. We purchased socio-demographics at the ZIP code level from a firm aggregating this

information from census estimates (zip-codes.com). We only observe these data for a single year

(2016).

There are 1,640 five digit ZIP codes, which have non-zero population in California. Our

sample of ZIP does with more than 1,000 bills contains households for 1,165 of these. We do not

have sufficient data for households in the remaining 475 ZIP codes. These remaining ZIP codes

are either not served by the three utilities, or we do not have a sufficient number of bills for them.

Table 2 shows summary statistics for both the ZIP codes in our sample and the ZIP codes for

which we do not have billing data. The ZIP codes in our sample represent 79 percent of California’s

population. The ZIP codes in our sample are more populated, younger, richer, have more expensive

homes, have slightly more persons per household, and have a lower proportion of Caucasians and a

higher proportion of Hispanics and Asians. There is a small but statistically significant difference in

summer and winter temperature, without ZIP codes being slightly warmer. This is not surprising

since most of the ZIP codes we are missing are in the Northern part of the state and the mountainous

Sierras. The big difference in elevation confirms this. Taking these differences into consideration is

again important when judging the external validity of our estimation and simulation results.

We will not make explicit use of this information in our first-stage regression, but control for

the observable sources of variation in our cross-sectional second stage, which does not allow for a

fixed effects strategy by design. The variables we will make use of in the second stage are income,

population density, and summer climate.
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4. Econometric Estimation Strategy

4.1 Intensive Margin: The Usage Response to Temperature

Equation 1 below shows our main estimating equation, which is a simple log-linear equation es-

timated separately for each ZIP code j. This estimating equation has been commonly employed

in aggregate electricity demand estimation and climate change impacts estimation (e.g., Deschenes

and Greenstone 2011, Davis and Gertler, 2015).

log(qit) =
14∑
p=1

βjpDpit + γZit + αi + φm + ψy + εit (1)

where log(qit) is the natural logarithm of household i’s daily average electricity (or natural

gas) consumed in kilowatt-hours (therms) during billing period t. Dpit are our measures of tem-

perature, which we discuss in detail below. Zit are observed confounders at the household level,

αi are time invariant household fixed effects, φm are month of year fixed effects, and ψy are year

fixed effects. εit is a stochastic error term. As bills do not overlap with calendar months and years

perfectly, φm and ψy are assigned as shares to individual bills according to the share of days in a

bill for each month and year.

For estimation purposes, our unit of observation is a unique combination of premise and

service account number, which is associated with an individual and structure. We thereby avoided

the issue of having individuals moving to different structures with more or less efficient electricity

consuming capital or residents with different preferences over electricity consumption moving in

and out of a given structure.

California’s housing stock varies greatly in its energy efficiency and installed energy-consuming

capital. Further, California’s population is not randomly distributed across ZIP codes. We suspect

that there may be differences in attitudes towards cooling, installed capital, quality of construction

across ZIP codes, and the associated demographics and capital. The key novelty in this paper is

that we estimate equation (1) separately for each of the approximately 1,200 ZIP codes displayed

in Figure 1. This is possible, since we observe such a large amount of data. While big data in past
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often posed a computational capacity problem once could overcome by sampling, it provides an op-

portunity in this context: the causal identification of a large number of electricity and natural gas

temperature response functions across space. The motivation for doing this is that we would expect

the relationship between consumption and temperature to vary across these ZIP codes according to

the penetration of air conditioners and the resident population’s propensity to use these. Obtaining

ZIP code specific responses and simulation results will also allow us to examine the incidence of

climate change on different socioeconomic groups in California exploiting cross sectional variation

in population characteristics across ZIP codes. One could of course estimate a pooled regression

with interaction terms to limit the number of estimated coefficients. This is simply a weighted

average of our disaggregate results. Since one of the main points of this paper is the heterogeneity

of impacts, we impose as little structure as possible by estimating equation (1) at the ZIP code

level instead of pooling.

The main variables of interest in this paper are those measuring temperature. Following

recent trends in the literature we include our temperature variables in a way that imposes a minimal

number of functional form restrictions in order to capture potentially important nonlinearities of the

outcome of interest - electricity consumption - in weather (e.g., Schlenker and Roberts 2006, 2009;

Deschenes and Greenstone 2011, Davis and Gertler (2015)). We achieve this by sorting each day’s

mean temperature experienced by household i into one of 14 temperature bins. For the purposes

of this study, we use the same set of bins for each ZIP code in the state. In order to define a set of

temperature bins we split the state’s temperature distribution into a set of percentiles and use those

as the bins sorting. Aroonruengsawat and Auffhammer (2012) show that the alternative approach

of using equidistant five-degree bins yields almost identical results. As a result, not each ZIP code

will have observations in each bin. The northern ZIP codes, for example, do not experience days in

the hotter bins, while the southwestern parts of California have few or no days in the coldest bins.

We split the temperature distribution into deciles, yet break down the upper and bottom

decile further to include buckets for the first, fifth, ninety-fifth, and ninety-ninth percentile to

account for extreme cold/ heat days. We therefore have a set of 14 buckets which we use for each
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household, independent of in which climate zone the household is located.1 For each household

and bill, we count the number of days the mean daily temperature falls into each bin and record

this as Dpit. The main coefficients of interest are the fourteen βjp coefficients, which measure the

impact of one more day with a mean temperature falling into bin p on the log of household daily

electricity consumption in ZIP code j. For small values, βjp’s interpretation is approximately the

percent increase in daily average household electricity/natural gas consumption during a billing

period from experiencing one additional day in that temperature bin.

Panel (a) in Figure (2) displays the daily average temperature for the months of June, July

and August averaged over the years 1981-2015. This is a reasonable measure of summer climate (a 25

year average instead of the usual thirty year average). Figure (2) shows that the Central Valley non-

coastal areas of Southern California are very warm during the summer months. We would expect for

these areas to have a significantly more temperature sensitive electricity consumption response than

the cooler coastal areas of Northern California and higher altitude settings in the Sierras. Panel (b)

displays the winter month (December, January, February) average daily temperature. The spatial

distribution is similar to that of the summer climate. This figure simply stresses that due to its size

and geography, California possesses significant heterogeneity in climate, which is necessary for our

approach to work.

Zit is a vector of observable confounding variables, which vary across billing periods and

households. The first of two major confounders that we observe at the household level are the

average electricity price for each household for a given billing period. California utilities price

residential electricity on a block rate structure. The average price experienced by each household

in a given period is therefore not exogenous, since marginal price depends on consumption (qit).

Identifying the price elasticity of demand in this setting is problematic, and a variety of approaches

have been proposed (e.g., Hanemann 1984; Reiss and White 2005; Ito, 2014). The maximum

likelihood approaches are computationally intensive and given our sample size cannot be feasibly

implemented here. Further, we are not interested in identifying the price elasticity of demand here,

1The cutoffs for the bins are 24, 35, 40, 46, 51, 55, 59, 63, 67, 72, 78, 83 and 92 degrees Fahrenheit mean daily
temperature.
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since it is simply impossible write a better paper than Ito (2014), who uses the same electricity

data we employ here.

An econometric issue arises that cannot be ignored. Higher temperatures in a given month

will lead to higher electricity consumption. Block rate prices will force a share of households onto

a higher pricing tier and raise average price, as is discussed in detail in Ito (2014). This induces

a positive conditional correlation between price and consumption by design. This is testable as

one would expect a positive coefficient estimate on price if included in model (1). Hence if we

include price in equation (1) as part of Zit, we would have to explicitly model the impact of higher

temperatures on average price in a simulation framework. An alternate approach would be to omit

average price from equation (1) and let the temperature coefficient capture both channels. If the

intuition is correct here, what we would expect is that the pure temperature response is on average

flatter in regressions that control for price. We will test for this and if confirmed omit average price

from our regressions.

The second major time-varying confounder is precipitation in the form of rainfall. We control

for rainfall using a second-order polynomial in all regressions. A third confounder, which we do

not observe, is humidity. Humidity is not a major issue in California as most parts of the state

are semi arid. Our temperature coefficients hence capture the effects of humidity. Our simulations

would become invalid if the correlation patterns between humidity and temperature in the future

were different from the historical correlations, which we could find no evidence of.

To credibly identify the effects of temperature on the log of electricity consumption, we

require that the residuals conditional on all right-hand side variables be orthogonal to the temper-

ature variables, which can be expressed as E[εitDpit|D−pit, Zit, αi, φm, ψy] = 0. Since we control for

household fixed effects, identification comes from within household variation in daily temperature

after controlling for confounders common to all households (e.g., business cycle effects) and rainfall.

We estimate equation (1) by fuel for each of the approximately 1,200 ZIP codes in our sample

using a least-squares fitting criterion and a household level clustered variance covariance matrix.

This approach serves as the first stage in our overall methodology and serve as the basis for our
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estimates of intensive margin adjustment due to climate change. We must make the assumption

that response to slowly changing climate over this relatively short sample period is small in order

to be able to interpret our coefficients as the intensive margin adjustment to the changes in usage

of existing equipment in response to changing temperature, which we deem to be reasonable.

4.2 Extensive Margin: The Long-Run Response to Temperature

In a warmer world, existing air conditioners will be run for more hours, which we call the intensive

margin adjustment. The second margin of adaptation is the installation of additional air condi-

tioners in existing homes and new construction. One can easily imagine that if San Francisco’s

future climate resembles that of current day Fresno during the summer, the wealthy residents of

San Francisco will install (additional) cooling equipment in their homes. To be clear - what we

are interested in is the climate change driven response, not an income or price driven response.

We provide an attempt to quantify the magnitude of this response. We estimate equations of the

following form:

βjp = δ1 + δ2Cpj + δ3Zj + ηj (2)

where βjp is a measure of ZIP code j’s temperature responsiveness in bin p ε [10; 14] as

estimated in equation (1). We would expect there to be a response only in the upper portion of the

temperature response curve, where cooling occurs, which is why we limit the estimation of equation

(2) to bins 10-14. A common threshold for the uptick in the temperature response curve, which

we will show is valid for our data in the results section, is 65 degrees Fahrenheit, which is also a

commonly used base temperature for calculating cooling degree days (CDD).

The variable Cpj in equation (2) is the share of days ZIP code j experienced in temperature

bin p during the sample years 1981-2000 from our ZIP code level weather data produced from the

PRISM data. Cpj is bounded by 0 and 1 and adds to one if one were to sum it across all temperature

bins from 1-14. The variable(s) Zj are any confounders that may affect the temperature response

of the population in ZIP code j. The main confounders we consider here is income, as higher-
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income households are thought to more easily afford the capital expenditure of an air conditioner

and its associated operating expense (Rapson 2011). We also include population density to proxy

for the level of urbanization. While we will not use the estimated coefficients on income and

population density in our simulation later, controlling for them ensures that we do not confound

the temperature extensive margin adjustment by income. If individuals sort into climate according

to income, failing to control for these factors would bias our estimated climate response. In terms

of estimation, we could estimate five separate equations of type (2) or estimate a pooled regression

allowing for flexibility in the δ2 coefficient for higher bins. We chose to estimate a pooled model,

which restricts the coefficients on income and population density to be identical for all bins, yet

controls for bin dummies. This provided more stable estimation results than the separate equations.

The bin dummies control for the fact that each bin contains the response coefficients for a different

collection of ZIP codes. This arises, as we mentioned above, since we do not have temperature

coverage in all bins for all ZIP codes. Finally, we estimate equation (2) via Ordinary Least Squares

with heteroskedasticity robust standard errors, as the dependent variables are estimated coefficients

and do not have constant variance. Running Weighted Least Squares does not significantly change

the results, yet the least squares estimates are more stable.

5. Estimation Results

5.1 Intensive Margin: The Usage Response to Temperature

As discussed in the previous section, we estimate equation (1) for each of the approximately 1,200

ZIP codes that have more than 1,000 bills. While we cannot feasibly present the approximately

1,200 estimated temperature response functions (which are comprised of 13 parameter estimates

each), we can display the distribution of the temperature response curves in a fan plot, which is

shown in figure (3). The top figure estimates equation (1) by excluding average price from Zit. The

thick black line displays the median temperature response curve across the approximately 1,200

ZIP codes. As the regression has average daily consumption on the left hand side and the number
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of days out of a normalized 30 spent in each bin on the right hand side, the coefficients indicate the

percent change in average daily consumption from one additional day spent in a given bin relative

to a day in the 65 degree bin. The curve has the expected U-shape with a steep positive slope

above 65 degrees and a shallower negative slope at temperatures below 65 degrees. The trough of

the U-shaped response curve is right near the omitted bin of 65 degrees. Examining the distribution

of the slopes of the temperature response across the state displays patters similar to those found

by Aroonruengsawat and Auffhammer (2012). They demonstrated that within a given temperature

bin, there is significant variation in temperature response across the state - depending on physical

location. They only estimate sixteen distinct temperature response curves, which makes it difficult

to examine the source of variation in slope at higher temperatures, which is what we will do in the

next section. Figure 3 displays the significant heterogeneity in temperature response via the shaded

fan areas. The palest grey fan indicates bounds the 5th to 95th percentile of the distribution. Each

darker shade of grey increments the interval by 10%. What we see here is that there are significant

numbers of ZIP codes with an extremely steep temperature response as well as a significant number

of ZIP codes with an almost flat temperature response. The bottom panel displays the temperature

response when including average price in the regressions. As hypothesized, the response function

flattens out significantly after controlling for price, which is consistent with the forced positive

correlation between average price and consumption.

Figure (4) produces analogous pictures for the subsidized households and the all-electric

households. The subsidized household distribution has a slightly shallower slope at both high

and low temperatures. The all-electric distribution has slightly steeper slopes at higher and lower

temperatures, which is to be expected as these houses tend to be older and heating and cooling are

conducted using electricity, not natural gas.

Figure (5) displays the analogous results for the natural gas regressions, also excluding

price from the regressions. Since the only major ambient temperature sensitive use of natural

gas in residences is space heating, we would expect a downward sloping line in temperature at

low temperatures and a relatively flat response curve at higher temperatures. Figure (5) displays
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exactly that. There is quite a bit of variation in slope across ZIP codes, yet the median response is

exactly as expected and flattens out at almost exactly 65 degrees Fahrenheit.

5.2 Extensive Margin: The Long-Run Electricity Consumption Re-

sponse to Temperature

As discussed in Section 4.2, we exploit the approximately 1,200 estimated electricity temperature

response curves and examine whether we can explain variation in temperature response at high

temperatures through cross-sectional variation in “climate” as well as income and population den-

sity.

The left hand side variable is our measure of temperature response of electricity consumption

for each of the bins 10-14, which we estimated for each ZIP code i in the previous step using equation

(1). On the right hand side we control for the percent of days spent in the respective bins during

the years 1981-2000 (our predetermined proxy for summer climate), income and population density.

We run a pooled regression, the results of which are shown in table (3). As the dependent variable is

an estimated coefficient, we use White robust standard errors. Model (1) simply regressed the slope

for the roughly 5,000 ZIP/bin observations on the share of days spent in the bin. The coefficient is

negative, which hints at omitted variables issues. In model (2) we control for income and population

density and somewhat surprisingly the coefficient does not move. Model (3) controls for bin fixed

effects, which allows for separate intercepts for each bin and the coefficient carries the theoretically

correct positive sign, which indicates that having more days in the bins, which usually see some

cooling, results in a steeper temperature response. This is not surprising as the bins contain very

different mixes of ZIP codes. Not all ZIP codes, for example, experience days in the hottest bin.

The bin fixed effects hence control for unobservable difference across bins. Model (4) allows for a

differential shift in the temperature response function for the three highest bins and as expected the

shift is significant and much larger than the pooled estimate. We use these estimated coefficients

from model (4) as the basis for our simulation. Model (5) is identical to Model (4) but does the

regression for the subsidized households. Model (6) conducts the regression for all electric homes.
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We use the results from models (4), (5) and (6) in table (3) to simulate the impacts of climate

change on the slope of each ZIP code’s temperature response curve. In the next section, we will

generate a large number of counterfactual climate futures from 18 General Circulation Models (the

technical term for climate models) and two different scenarios of emissions. We will use these ZIP

code level climate futures to shift each ZIP code’s temperature response curve for bins 10-14 using

the estimates from table (3). This simulated shift in the temperature response curve will allows to

quantify the extensive margin adaptation response.

6. Electricity and Natural Gas Consumption Simulations

In this section, we simulate the impacts of climate change on electricity and then natural gas

consumption under two different emissions scenarios using eighteen different climate models from

the latest round of the IPCC assessments (AR5, CMIP5) in their downscaled form. For electricity

we conduct three different simulations. The first simulation holds population growth constant

and only simulates electricity consumption per household using the first-stage estimates, which do

not allow for changes in the extensive margin. In a second simulation we incorporate the extensive

margin adjustments from the previous section. In a final simulation we allow for population growth.

For each simulation we can calculate the trajectory of aggregate electricity consumption from the

residential sector until the year 2099, which is standard in the climate change literature. We provide

simulated impacts for the periods 2020-2039, 2040-2059, 2060-2079 and 2080-2099.

In our simulations we make one key assumption. For natural gas we only use the intensive

margin simulations as one would not expect households to install more or fewer heaters in response

to climate change. We would expect existing equipment to be operated less frequently. But one

would not go an install a more efficient heater which is going to be used less due to climate change.
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6.1 Temperature Simulations

The simulation for this section uses the climate response parameters estimated in Section 5.1. Using

these estimates as the basis of our simulation has several strong implications. Using the only the first

stage parameters via equation (1) implies that the climate responsiveness of consumption within

climate zones remains constant throughout the century.

As is standard in this literature, the counterfactual climate is generated by a general circu-

lation model (GCM). These numerical simulation models generate predictions of past and future

climate under different scenarios of atmospheric greenhouse gas (GHG) concentrations. The quan-

titative projections of global climate change conducted under the auspices of the IPCC’s fifth

assessment report (AR5) and applied in this study are driven by modeled simulations of two sets of

projections of twenty-first century social and economic development around the world, the so-called

“RCP4.5” and “RCP8.5” storylines. The number after the RCP stands for the likely increase in

forcing from the scenario by end of century relative to preindustrial values in Watts per square

meter. In terms more familiar to most economists, RCP4.5 is expected to result in a warming of

1.8 ◦C with a likely range of 1.1. to 2.6 ◦C. This is a very optimistic scenario as attaining a goal of

warming less than 2 degrees is unlikely. RCP 8.5 is the worst case scenario and expected to result

in a warming of 3.7 ◦C with a likely range of 2.6 to 4.8 ◦C.

We simulate consumption for each scenario using the 18 downscaled GCMs from the IPCC’s

CMIP5 database. The downscaled temperature scenarios were drawn from a statistical downscaling

of global climate model (GCM) data from the Coupled Model Intercomparison Project 5 (Taylor et

al. 2012) utilizing a modification (Hegewisch and Abatzoglou, 2015) of the Multivariate Adaptive

Constructed Analogs (Abatzoglou and Brown, 2012) method with the Livneh (Livneh et.al.,2013)

observational dataset as training data. These were provided to us by the MACA project at the

University of Idaho. We matched the fine scale grids of the downscaled climate data to ZIP codes

in the same fashion we matched the Schlenker and Roberts (2009) weather grids. We calculated

future climate by adding the predicted change in monthly temperature for each model, scenario

and period to our baseline weather data to avoid local biases as the MACA project does not use
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the same weather data as its training data set.2

To obtain estimates for a percent increase in electricity consumption for the representative

household in ZIP code j and period t+ h, we use the following relation:

qj,t+h

qj,t
=
exp(

∑14
p=1 bpjDpj,t+h)

exp(
∑14

p=1 bpjDpj,t)
(3)

The top panel of figure (6) displays the projected increases in household residential electricity

consumption across the approximately 1,200 ZIP codes for each of the four projection periods and

the 18 GCMs for RCP8.5. The box plots display tremendous variation across time (the box and

whiskers plots for each model are shown in increasing temporal order for each model), across models

and within models. It is quite clear that median impacts are increasing over time and impacts range

from the negative teens to increases approaching 50% for some ZIP codes.3. While this figure is

useful in displaying the variability in projections, it does not display the spatial variability in

intensive margin impacts for the average household across ZIP codes. Panel (a) in Figure (7) tries

to convey this by plotting the predicted impact for the average household by end of century using

the ensemble average prediction across all 18 GCMs for RCP8.5. What this graph shows is that the

ZIP codes in the Central Valley and non-coastal Southern California are projected to experience the

largest increases in household electricity consumption. This is due to the combination of the slope

of the temperature response function and projected warming from the GCMs. These projections

ignore potential extensive margin impacts, which we turn to next.

For each ZIP code, climate model and scenario, we calculate the simulated shift of the

temperature response curve using model (4) in table (3). As the temperature distribution shifts

to the right for the vast majority of ZIP codes in California, a higher share of days in the higher

bins is projected under both climate change scenarios for most models. It is impractical to show

the almost 44,460 counterfactual response curves, yet figure (8) collapses the temperature response

2A detailed description of the climate model output is available at http://maca.northwestknowledge.net/.
3We trim the distribution of estimated impacts at the top and bottom as some point estimates are too large to be

credible. This has to do with a lack of precision for some zip codes with very few observations in the extreme bins.
We censor the slope coefficients to be less than 0.2 in absolute value and projected impacts to be less than 50%.
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curves across ZIP codes by projection period. The top panel displays the population weighted state

wide response curve in-sample in black and the projected future response curves in blue and red.

As expected the response curve tilts up more and more over time. The bottom panel repeats this

exercise for RCP 4.5, which results in significantly less movement.

We now use the extensive margin adjusted response functions to simulate impacts of climate

change on electricity consumption. The bottom panel of figure (6) displays the same box and

whisker plots as we did for the intensive margin simulations earlier, but now incorporating the

extensive margin changes. What stands out from this graph is an almost uniform upward shift in

the medians across models and increased variability across models - especially at the high end.

Panel (b) in Figure (7) displays the impacts on the average household in a ZIP code using

the ensemble average of GCMs and RCP 8.5 by end of century across the state.= fro the extensive

margin adaptation. It indicates a noticeable increase in consumption across the state. The right

panel shows that these extensive margin impacts will be felt most strongly in the Central Valley

and non-coastal areas of Southern California.

While these maps are instructive, it is hard to determine how big the overall impact of

allowing for extensive margin adjustment is. Table (4) therefore shows the overall population-

weighted increases in total electricity consumption averaged across the 18 climate models and the

two RCPs - with and without extensive margin adjustments. The first thing to notice from this

table is that accounting for the extensive margin adjustments results in a significant difference in

simulated impacts, which is consistent with the findings in Davis and Gertler (2015) for Mexico. For

RCP4.5 by the end of the century, accounting for extensive margin impacts increases the estimated

impacts by 50%. The second noteworthy fact is that even until 2059, the estimated impacts for

electricity consumption are relatively small - strictly less than 5% even for the worst case scenario.

In terms of electricity planners planning horizon the magnitude of the impacts is in the noise. By

the end of the century, however the impacts are larger, yet their magnitudes are small enough that

not overly optimistic assumptions about technological change related to energy efficiency should

more than be able to offset these gains.
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For natural gas, however, we see more significant decreases in consumption, even by mid-

century. Under RCP8.5 consumption is expected to decrease by 10.4% and by end of century by

20.5%. While again, the end of century is a long ways away and beyond the utility planners horizon,

this begs the question whether in this counterfactual world, the savings from natural gas are bigger

than the projected increases in electricity consumption. The EIA states that California Homes used

0.287 quadrillion BTU of electricity and 0.439 quadrillion BTU of natural gas in 2009. If we use

the projected percentage changes from table (4) we arrive at the conclusion that climate change is

simulated to lead to a 0.039 quad BTU net decrease in energy consumption for the residential sector

in California. We will discuss the limitations of this simulation in the conclusions, yet before we do

it is instructive to put into perspective the impacts of other drivers for electricity consumption over

the next century.

6.2 Temperature and Population Simulations

California has experienced an almost seven-fold increase in its population since 1929 (BEA 2008),

and California’s population growth rate over that period (2.45 percent) was more than double that

of the national average (1.17 percent). Over the past 50 years California’s population has grown

by 22 million people to almost 37 million in 2007 (BEA, 2008). To predict what the trajectory

of California’s population will look like until the year 2100, many factors have to be taken into

account. The four key components driving future population are net international migration, net

domestic migration, mortality rates, and fertility rates. The State of California provides forecasts

55 years into the future, which is problematic, since we are interested in simulating end-of-century

electricity consumption. The Public Policy Institute of California has generated a set of population

projections until 2100 at the county level, and we obtained these from Sanstad et al. (2009).

The three sets of projections developed for California and its counties are designed to provide

a subjective assessment of the uncertainty of the state’s future population. The projections present

three very different demographic futures. In the low series, population growth slows as birth rates

decline, migration out of the state accelerates, and mortality rates show little improvement. In the
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high series, population growth accelerates as birth rates increase, migration increases, and mortality

declines. The middle series, consistent with (but not identical to) the California Department of

Finance projections, assumes future growth in California will be similar to patterns observed over

the state’s recent history - patterns that include a moderation of previous growth rates but still large

absolute changes in the state’s population. In the middle series, international migration flows to

California remain strong to mid-century and then subside, net domestic migration remains negative

but of small magnitude, fertility levels (as measured by total fertility rates) decline slightly, and

age-specific mortality rates continue to improve.

The high projection is equivalent to an overall growth rate of 1.47 percent per year and

results in a quadrupling of population to 148 million by the end of the century. The middle series

results in a 0.88 percent annual growth rate and 2.3-fold increase in total population. The low

series is equivalent to a 0.18 percent growth rate and results in a population 18 percent higher than

today’s. Projections are available at the county level and not at the ZIP code level. We therefore

assume that each ZIP code in the same county experiences an identical growth rate.

Table 5 displays the simulated aggregate changes in electricity consumption all three pop-

ulation growth scenarios under the two scenarios of climate change averaged across the 18 GCMs

using the full intensive and extensive margin adjustment. It is not surprising to see that popula-

tion growth has much larger consequences for simulated total electricity consumption compared to

climate uncertainty or price uncertainty. The simulations for the low forcing scenario RCP4.5 and

the low population growth scenario show a 27 percent increase in consumption, which is largely due

to projected increases in population. For the RCP8.5 scenario and the high population growth sce-

nario, the predicted increases are pushing a tripling in consumption. This, unsurprisingly, stresses

that population trajectories are much bigger drivers of residential electricity demand than climate

change.Natural gas demand would of course increase as well as more people will demand more gas.
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6.3 Incidence of Climate Change

There is big literature on the sorting of individuals across space in order to match amenities to their

preferences. Local climate is of course one of the characteristics that individuals take into account

when choosing a place to live. There is an emerging literature suggesting that climate shocks may

lead to measurable rural to urban migration (e.g. Feng et al. 2010, Auffhammer and Vincent

2012 and Feng et al. 2012). We would expect that shifts in climate would lead to a redistribution

of population across space. Transactions costs of moving are large, and it would likely require

significant climate change for there to be a detectable redistribution of population.

It is therefore instructive to examine whether there is a correlation between projected impacts

of electricity consumption and current observable population characteristics. Table (6) provides

such conditional correlations. We regress the projected total impacts across all climate models for

mid and end of century and RCPs 4.5 and 8.5 on ZIP code observables. These clearly non-causal

estimates do provide some interesting patterns. It seems that ZIP codes with less expensive homes,

a larger share of hispanics, higher income and a younger population are projected to experience

higher impacts. This is not surprising, given that Figure (7) shows that the main impacts will be

concentrated in the San Joaquin Valley and the interior parts of Southern California. The sign on

income is somewhat surprising, yet it is conditional on home value.

7. Conclusions

In the residential sector, one of the most widely discussed modes of adaptation to higher tempera-

tures due to climate change is the increased demand for cooling and decreased demand for heating

in the built environment. Due to its mild climate and heavy reliance on natural gas, California’s

residential sector uses relatively little electricity for heating. It is therefore expected that the de-

mand for electricity will increase as households operate existing air conditioners more frequently,

and in many regions will install air conditioners where there currently are few. This paper pro-

vides reduced form estimates of changes in electricity consumption due to increased use of installed
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cooling equipment under a hotter climate. This study adds to the literature by incorporating the

change in temperature responsiveness due to likely increases in air conditioner penetration under

climate change using a two-stage method. The advantage of the proposed methods lie in its relative

simplicity and the fact that it only requires data on electricity consumption and not on installed

cooling equipment. The paper shows that accounting for extensive margin adjustments will lead to

statistically and economically significantly higher projections of electricity consumption.

By estimating the response of natural gas consumption to higher temperatures, we show

that the projected increases in electricity consumption are more than offset by savings in natural

gas, making climate change a net energy saving factors for the residential sector. It is important

to keep in mind several caveats. These are not forecasts, yet simulations. We think of the results

provided in this paper as imposing end of century climate on a current day economy. Many other

drivers of energy consumption will change. What our paper shows is the business as usual path,

which mitigation strategy has to work against. We do not and cannot model changes in electricity

consumption due to improvements in the efficiency of heating and cooling equipment and/or build-

ings. These effects will offset some or all of the gains in electricity consumption outlined in this

paper and amplify the natural gas savings. Further, the extensive margin adjustments in this paper

cannot meaningfully control for changes in urban form, urban heat island effects, or other variables

potentially leading to a higher response, which may be correlated with temperature. We leave the

study of these effects to future work.
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Table 1: Electricity and Natural Gas Bills by Utility

Utility Electricity Years # of Bills Gas Years # of Bills
PG&E 2003-2009 342 Million 2004-2014 587 Million

SDG&E 2000-2009 153 Million 2008-2015 74 Million
SCE 1999-2008 469 Million

SoCalGas 2010-2015 267 Million
Total 964 Million 928 Million

Notes: This table displays the total number of bills in our dataset. We drop electricity bills with average
daily consumption less than 2kWh as well as solar homes. Further, our models only include ZIP codes for
which we have more than 1,000 bills.
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Table 2: Summary Statistics for ZIP Codes In and Out of Sample

In Sample Out of Sample p-value
Population (in thousands) 25.19 16.51 0.00
% White 70.07 72.35 0.04
% Black 5.13 5.31 0.67
% Hispanic 30.95 26.08 0.00
% Asian 10.87 10.10 0.26
% Male 50.14 50.93 0.00
Median Age (years) 38.90 40.31 0.00
Persons per Household 2.85 2.59 0.00
Average Home Value (in 100k US$) 4.14 3.98 0.39
Income per Household (in 10k US$) 6.52 5.99 0.00
Population Density 30.21 44.51 0.00
Elevation (in feet) 392.10 741.26 0.00
Mean Summer Temperature (F) 72.03 70.51 0.00
Mean Winter Temperature (F) 50.74 48.48 0.00
Mean Summer Precipitation (mm) 0.10 0.16 0.00
Mean Winter Precipitation (mm) 3.25 3.43 0.13

Notes: This table displays the mean observable characteristics of the ZIP codes in our sample and ZIP
codes not in our sample with positive population. The t-test assumes unequal variances. The observable
characteristics were purchased from zip-codes.com.
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Table 3: Second Stage Regressions of Temperature Response Coefficients by Tem-
perature Bin

(1) (2) (3) (4) (5) (6)

Historical Bin -0.047*** -0.0450*** 0.0124*** 0.0116*** 0.0217*** 0.0168***
Tavg Share (0.000) (0.000) (0.000) (0.000) (0.000) (0.000)

Interaction 0.0276*** 0.0758*** 0.0858***
Bin 12+ (0.000) (0.000) (0.000)

Special Customer No No No No Care All-E
Income No Yes Yes Yes Yes Yes
Population Density No Yes Yes Yes Yes Yes
Bin Fixed Effects No No Yes Yes Yes Yes
Price in Equation (1)? No No No No No No

Observations 5,137 5,116 5,116 5,116 4,984 4,642

Notes: This table displays coefficients from a regression of the electricity slope coefficients estimated in
equation (1) on the share of days in a given temperature bin the ZIP code has experienced over the period
1981-2000. The regression only includes the air conditioning relevant temperature bins 10-14. The standard
errors are Huber-White. Regressions 1-4 are for “normal” households. Regression (5) is for households
with subsidized energy bills. Regression (6) is for all-electric homes.
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Table 4: Projected Percent Changes in Residential Electricity Consumption

Simulation (1) (2) (3) (4) (5) (6) (7) (8) (9) (10)

RCP 4.5 8.5 4.5 8.5 4.5 8.5 4.5 8.5 4.5 8.5
Special Customer No No No No CARE CARE All-E All-E No No
Fuel Elec. Elec. Elec. Elec. Elec. Elec. Elec. Elec. Gas Gas
Price Controls No No Yes Yes No No No No No No

Intensive Margin
2020-39 0.8 1.1 0.5 0.7 0.8 1.1 -0.2 -0.2 -4.0 -4.9
2040-59 2.2 3.2 1.5 2.3 2.0 2.9 0.0 0.3 -7.9 -10.4
2060-79 3.2 6.7 2.3 4.7 2.9 6.0 0.3 1.9 -10.3 -16.1
2080-99 3.7 10.8 2.6 7.4 3.3 9.8 0.5 4.3 -11.3 -20.5

Extensive Margin
2020-39 1.2 1.6 1.1 1.4 1.1 1.5 0.3 0.4 NA NA
2040-59 3.2 4.8 2.9 4.4 3.0 4.5 1.2 1.9 NA NA
2060-79 4.8 10.6 4.3 9.6 4.5 10.1 1.9 5.4 NA NA
2080-99 5.6 17.6 5.1 15.9 5.3 16.9 2.4 10.2 NA NA

Notes: This table displays the simulated percent increase in total residential electricity consumption
relative to 2000-2015 climate for the two IPCC Representative Concentration Pathways with low emissions
(4.5) and high emissions (8.5). Columns 1 and 2, indicate simulated increases for normal households
without controlling for price in the regressions. Columns (3) and (4) control for price. Columns (5) and (6)
simulate increases for subsidized households. Columns (7) and (8) simulate changes for households which
are all-electric. Columns (9) and (10) display the impacts on natural gas consumption for households with
gas bills.
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Table 5: Joint Impacts of climate change and population growth

Population Growth Scenario Low Low Medium Medium High High
RCP 4.5 8.5 4.5 8.5 4.5 8.5
Extensive Margin Yes Yes Yes Yes Yes Yes
2020-39 15% 15% 39% 40% 55% 55%
2040-59 17% 19% 66% 68% 103% 104%
2060-79 21% 26% 93% 99% 171% 176%
2080-99 27% 39% 122% 134% 275% 287%

Note: This table displays the simulated percent increase in total residential electricity consumption relative
to 2010 population and 2006-2015 climate for low, medium and high population growth scenarios using
both intensive and extensive margin adjustments. The figures are population weighted averages across
climate models. The population weights are held constant at 2010 levels.
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Table 6: Correlations between Impacts and Population Characteristics

Outcome: Projected Impacts in % (1) (2) (3) (4)

% White 0.01 0.00 0.01 0.01
(0.008) (0.028) (0.006) (0.010)

% Black -0.01 -0.01 -0.00 -0.01
(0.012) (0.038) (0.008) (0.013)

% Hispanic 0.03*** 0.09*** 0.02*** 0.03***
(0.006) (0.021) (0.004) (0.007)

Average Home Value (in 100k$) -0.50*** -1.40*** -0.33*** -0.56***
(0.046) (0.142) (0.032) (0.052)

Household Income (in 10k$) 0.49*** 1.58*** 0.33*** 0.56***
(0.049) (0.157) (0.034) (0.056)

Median Age -0.06*** -0.20*** -0.04*** -0.07***
(0.020) (0.062) (0.013) (0.022)

Constant 4.08*** 15.37*** 2.60*** 4.91***
(1.071) (3.470) (0.733) (1.212)

RCP 8.5 8.5 8.5 8.5
Period 2040-59 2080-99 2040-59 2080-99
Observations 1,165 1,165 1,165 1,165
R-squared 0.209 0.194 0.203 0.208

Note: This table displays simple and very much non-causal regressions of ensemble average predicted
impacts including intensive and extensive margin effects on a number of observable characteristics of the
population across ZIP codes.
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Figure 1: ZIP Codes with observed residential electricity and Natural Gas Bills
by Investor Owned Utility.

(a) Electricity Sample (b) Natural Gas Sample

Notes: The map above displays the five-digit ZIP codes for which we have more than 1000 bills over the
estimation period from either PG&E, SCE, SDG&E or SoCalGas. Zip codes with no data either have
fewer than 1000 bills total or a reserved by one of California’s many municipal utilities. Due to the small
size of many ZIP codes they do not show up in the map at the current resolution.
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Figure 2: California’s Summer (June-August) and Winter (December-February) Cli-
mate: Average Daily Temperature 1981-2015

(a) Summer (b) Winter
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Figure 3: Distribution of Estimated Electricity Temperature Response Coeffi-
cients across ZIP Codes omitting price (top panel) and controlling for price
(bottom panel)

Notes: This figure displays the empirical distribution of the estimated electricity temperature response
function across ZIP codes in the sample across percentile temperature bins. The lightest gray shading
indicates the range of the 5th to 95th percentile. Each darker shading represents a 5% increase in the
percentile. The solid black line represents the median temperature responsiveness. The vertical grey
lines indicate the cutoffs of the temperature bins. The top panel displays the distribution of the response
functions without controlling for average price. The bottom panel displays the distribution after controlling
for average price.
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Figure 4: Distribution of Estimated Electricity Temperature Response Coeffi-
cients across ZIP Codes for subsidized households (top panel) and all electric
households (bottom panel)

Notes: This figure displays the empirical distribution of the estimated electricity temperature response
function across ZIP codes in the sample across percentile temperature bins. The lightest gray shading
indicates the range of the 5th to 95th percentile. Each darker shading represents a 5% increase in the
percentile. The solid black line represents the median temperature responsiveness. The vertical grey
lines indicate the cutoffs of the temperature bins. The top panel displays the distribution of the response
functions for households who receive a discount on their electric bill under the subsidy program (California
Alternate Rates for Energy). The bottom panel displays the distribution for all-electric households. Neither
panel controls for price in the underlying regressions.
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Figure 5: Distribution of Estimated Natural Gas Temperature Response Coeffi-
cients across ZIP Codes

Notes: This figure displays the empirical distribution of the estimated natural gas temperature response
function across ZIP codes in the sample across percentile temperature bins. The lightest gray shading
indicates the range of the 5th to 95th percentile. Each darker shading represents a 5% increase in the
percentile. The solid black line represents the median temperature responsiveness. The vertical grey lines
indicate the cutoffs of the temperature bins. The regressions do not control for average price.
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Figure 6: Intensive margin [Top Panel] and Extensive Margin [Bottom Panel] per
household impacts across ZIP codes and Climate Models.
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Figure 7: Intensive and Extensive Margin Adjustment: Projected Percent In-
creases in Average Household Electricity Consumption 2080-2099 over 2000-2015
for RCP 8.5

(a) Intensive Margin (b) Extensive Margin Delta

Notes: This figure plots the average per household increase across all 18 GCMs for RCP8.5 for the last
two decades of this century over the years 2000-2015. The figure holds the temperature response curve
fixed at the values estimated in-sample.
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Figure 8: In Sample and Simulated Future Population-Weighted Temperature Re-
sponse Curves.

Notes: This figure plots the population weighted average of the temperature response curves across all 18
GCMs (climate models) in blue and red. The solid black line displays the in-sample estimated population
weighted average across all zip codes temperature response curve.
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